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Abstract

There has been a great deal of excitement recently over the devel
opment of a theory for explicitly linearizing the input-output response
of a nonlinear system using state feedback. One shortcoming of this
theory is the inability to deal with non-minimum phase nonlinear sys
tems. Highly maneuverable jet aircraft, such as the V/STOL Harrier,
belong to an important class of a slightly non-minimum phase non
linear systems. The non-minimum phase character of these aircraft is
due in part to a slight coupling between rolling moments and lateral
accelerations. In this paper, we show that, while straightforward ap
plication of the linearization theory to a non-minimum phase system
results in a system with a linear input-output response but unstable
internal dynamics, designing a feedback control based on a minimum
phase approximation to the true system results in a system with de
sirable properties such as bounded tracking and asymptotic stability.

Introduction

There has been a great deal of excitement in recent years over the develop
ment of a rather complete theory for explicitly linearizing the input-output
response of a nonlinear system using state feedback. This has been explic
itly worked out in several papers, like those of [Por70], [SR72],[IKGM81].
Independently, a substantiallyidenticalsynthesis technique wassuccessfully
implemented in several practical applications, such as flight control [MC80]
and the control of rigid robots by the so-called computed torque method
[Fre75]. The theory is now well developed and understood (see, for instance
expository surveys in [Isi85], [BI88a] and [BI88b]).

•Research supported in part by NASA undergrant NAG2-243, the Schlumberger Foun
dation, and the Berkeley Engineering Fund.



The chief drawbacks to making these considerable advances into a suc
cessful design methodology come from the fact that they rely on an exact
cancellation of nonlinear terms and use a nonlinear version of pole-zero can
cellation. Of course, the nonUnear pole-zero cancellation implicit in these
techniques is only a problem when the cancellation is one involving unsta
ble zero-dynamics (a precise definition of this concept for nonUnear systems
was given in [BI88a]). In earHer work, we have discussed how to remedy
the first deficiency by using parameter adaptive control (see [SI87]). In this
paper, we discuss the second problem. We start with an example from flight
control of a system which is sUghtly non-minimum phase: the dynamics of
a vertical takeoff and landing aircraft, the Harrier. We show how a straight
forward appUcation of the Unearization techniques results in a system with
marginally stable unobservable modes resulting in undesirable closed loop
system behavior. We then show that by neglecting certain, physically small,
variables the approximate Unearization results in much better performance.

Motivated by this example, we develop the rudiments of a theory of
approximate linearization for slightly non-minimum phase systems.

Our primary goals in this project are twofold:

1. The robust nonUnear flight control of an important class of highly
maneuverable aircraft.

2. The development of a practical methodology of nonUnear control for
sUghtly non-minimum phase systems based on the recent advances in
Unearization. SUghtly non-minimum phase nonUnear systems axe to
be thought of as the generaUzation of linear systems with far off right
half plane zeros.

1 Modeling of Aircraft Dynamics

In general, the complete dynamics of an aircraft, taking into account flexi
bility of the wings and fuselage, the (internal) dynamics of the engine and
control surface actuators, and the multitude of changing variables, are quite
complex and somewhat unmanageable for the purposes of control. A more
reasonable (and useful) approach is to consider the aircraft as a rigid body
upon which a set of forces and moments act. Then, with r, i2, and w be
ing the aircraft position, orientation, and angular velocity, respectively, the
equations of motion can be written as

mf = Rfa -f mg (1)



Figure 1: Aircraft coordinate systems

Jva = ra -ua x Jua

R = wx R

(2)

(3)

where fa and ra are the force and moment acting on the aircraft expressed
relative to the aircraft. Here, the a subscript means that a quantity is
expressed with respect to the aircraft reference frame. Depending on the
aircraft and its mode of flight, the forces and moments can be generated by
aerodynamics (Uft, drag, and roU-pitch-yaw moments), by momentum ex
change (gross thrust vectoring and reaction controls to generate moments),
or a combination of the two. The flight envelope of the aircraft is the set
of flight conditions for which the pilot and/or the controlsystem can effect
the forces and moments needed to remain in the envelope and achieve the
desired task.

1.1 Force and Moment Generation

For the sake of presentation, we wiU focus our attention on a particular
aircraft, the YAV-8B Harrier produced by McDonneU Aircraft Company
[McD82,McD83]. The Harrier isa single-seat transonic Ught attack V/STOL
(vertical/short takeoff and landing) aircraft powered by a single turbo-fan



engine. Figure 1 shows the aircraft with the coordinate frame, A, attached
at the (nominal) center of mass. The x-axis is directed forward toward the
nose of the aircraft and is also known as the roll axis since positive rotation
about the x-axis coincides with rolUng the aircraft to the right (from the
pilot's point of view). The y-axis is directed toward the right wing and is
called the pitch axis (positive rotation is a pitch up). The 2-axis is directed
downward and is also known as the yaw axis (we yaw to the right about
this axis).

Also shown in figure 1 is the (inertial) runway coordinate frame, TZ. The
x-, y-, and z-axes of the runway frame are often oriented in the north, east,
and down (N-E-D) directions, respectively.

Four exhaust nozzles on the turbo-fan engine provide the gross thrust
for the aircraft. These nozzles can be rotated from the aft position (used for
conventional wing-borne flight) forward approximately 100 degrees allowing
jet-borne flight and nozzle braking. The throttle and nozzle controls thus
provide two degrees of freedom of thrust vectoring within the x-z plane of
the aircraft. (If the Une of action of the gross thrust does not pass through
the object center of mass, then this thrust wiU also produce a net pitching
moment.)

In addition to the conventional aerodynamic control surfaces (aileron,
stabilator, and rudder for roU, pitch, and yaw moments, respectively), the
Harrier also has a reaction control system (RCS) to provide moment genera
tion during jet-borne and transition flight. Reaction valves in the nose, tail,
and wingtips use bleed air from the high pressure compressor of the engine
to produce thrust at these points and therefore moments (and forces) at the
aircraft center of mass. The design of the aerodynamic and reaction controls
provides complete (three degree of freedom) moment generation throughout
the flight envelope of the aircraft. Since moments are often produced by
applying a single force rather than a couple, a nonzero force (proportional
to the moment) will usually be seen at the aircraft center of mass.

Using the throttle, nozzle, roU, pitch, and yaw controls we can produce
(within physical Umits) any moment and any force in the x-z plane of the
aircraft. The function, T, taking the control inputs,

c = (throttle, nozzle, roll,pitch, yaw)T, (4)

to the aircraft force and moment, (/J,tJ)t,

(M =f(r,r,R,u,c) (5)



Figure 2: Reaction control system geometry

is complex and depends upon the state of the aircraft system (airspeed, al
titude, etc.). The projection of this function taking the moments and the
x and z components of force as outputs is one-to-one and hence invert-
ible. That is, given a desired aircraft moment and (x-z plane) force that
is achievable at the current aircraft state, there is a unique control input
vector (throttle, nozzle, roU, pitch, yaw) that wiU produce that force and
moment. Letting u = (fax,faz, tJ)t, this function can be written as

c = C(r,r,R,w,u) (6)

where r, r, R, and u compose the aircraft state. Given the function C,
we are free to consider the desired moment and (3-2) force as the aircraft
control input in place of the true control input. The idea of inverting the
algebraic nonUnearities present in the system has been applied to real flight
control problems [MC80].

It is now natural to askwhat form the (state dependent) function taking
u to fay wiU take. Since moments are produced by applying forces to the
aircraft, one is hopeful that the resulting y-axis force at the aircraft center of
masswiU be a (state dependent) Unear function of the momentacting on the
aircraft. Note that this is not necessarily the case. For example, consider
the generation of a right rolUng moment (from the pilot's point of view)
during jet-borne flight. Figure 2 shows the geometry of the wingtip reaction
control valves. For small ranges of moment, the left reaction valve opens
and blows downward creating a net upward force. Once the left reaction
valve is fuUy open, the right reaction valve opens and blows upward which
reduces the net upward force. In this case, there is a nonlinear coupUng
between the rolUng moment and the force in the vertical (z-axis) direction



of the aircraft. This case is easily reconciled, however, since we can directly
affect the vertical (z-axis) force using the throttle and nozzle.

Clearly, forces in the x-z plane and moments about the y-axis will not
contribute to y-axis forces. Thus we consider the y-axis forces generated
by rolUng (z-axis) and yawing (z-axis) moments. Yawing moments are gen
erated by applying a force at the tail of the aircraft (by aerodynamic or
reaction control methods). As long as this force is effectively appUed at
the same point regardless of the magnitude of the moment, there wiU be
a (state dependent) Unear relationship between the z-axis moment and the
resulting y-axis force. The coupUng between rolUng (z-axis) moments and
y-axis forces is more subtle and is the result of the geometry of the reaction
control system. As figure 2 shows, the forces used to generate the rolUng
moment are not perpendicular to the y-axis of the aircraft. Thus, when a
positive rolUng moment is commanded, a negative force is generated in the
y-axis direction (i.e., the airplane wiU initially accelerate to the left when
it is commanded to go right). Also, as mentioned above, depending on the
magnitude of the rolUng moment, the right reaction valve could be actively
blowing upward or be fuUy closed. Fortunately, the distance to and angle
of the upward and downward reaction valve thrust vectors are equal. For
this reason, the relationship between the rolUng moment and y-axis force is
Unear.

We can now rewrite equations (1) and (2) as

R 0

0 I
Bu (7)

where B is the (state dependent, 6-by-5) matrix providing the fuU vector of
aircraft forces and moments given the control input, u. In particular, B has
the form

B =

1 0 0 0 0

0 0 Proll 0 Pyaw

0 1 0 0 . 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

(3)

where /?ro// and fiyaw are the (scalar) functions giving the coupUng between
the roU and yaw moments and the y-axis force.



Figure 3: The planar vertical takeoff and landing (PVT0L) aircraft

Figure 4: Block diagram of the PVT0L aircraft system

1.2 Simplification to a Planar Aircraft

It is particularly useful to consider a simple toy aircraft that has a minimum
number of states and inputs but retains many of the features that must
be considered when designing control laws for a real aircraft such as the
Harrier. Figure 3 shows our prototype PVT0L (planar vertical takeoff and
landing) aircraft. The aircraft state is simply the position, x, y, of the
aircraft center of mass, the angle, 0, of the aircraft relative to the x-axis,
and the corresponding velocities, x, y, 9. The control inputs, ui, u2, are the
thrust (directed out the bottom of the aircraft) and the rolUng moment.



The equations of motion for our PVTOL aircraft are given by

x = —sin 9u\ + e cos 9u2

y = cos 9u\ -r e sin 9u2 —1

9 = u2

(9)

where '—1' is the gravitational acceleration and c is the (small) coefficient
giving the coupUng between the rolling moment and the lateral acceleration
of the aircraft. Note that e > 0 means that applying a (positive) moment to
roUleft produces an acceleration to the right (positive x). Figure 4 provides
a block diagram representation of this dynamical system.

The PVTOL aircraft system is the natural restriction of V/STOL aircraft
to jet-borne operation (e.g., hover) in a vertical plane. Our study of this
simple planar model is but the first step in an ongoing project to understand
and develop robust methods for the control of highly maneuverable aircraft
systems.

2 Linearization by State Feedback

2.1 Exact Input-Output Linearization of the PVTOL Air
craft System

Consider the PVTOL aircraft system given by (9). Choosing x and y as the
outputs to be controUed, we seek a (possibly dynamic) state feedback law
of the form

u = a(z) + b(z)v (10)

such that, for some 7 = (71,72)^,

XM =
yM =

Vi

v2.
(11)

Here, v is our new input and z is used to denote the entire state of the
system (including compensator states, if necessary).

Proceeding in the usual way, we differentiate each output until at least
one of the inputs appears. This occurs after differentiating twice and is
given by (rewriting the first two equations of (9) )

x 0
= +

. y. -1

- sin 9 € cos 9

cos 9 e sin 9

8

u2
(12)



Since the matrix operating on u (the so-called decoupling matrix) is nonsin-
gular (barely—its determinant is —e\), we can Unearize (and decouple) the
system by choosing the static state feedback law

Ui

u2

The resulting system is

— sin 9

cos 9

x — V\

v2

1

cos 9

sin 9
€

( 0
+

Vi

\\ L* J . V2 .

= j(sin9 + cos^vi + sin9v2)

(13)

(14)

This feedback law makes our input-output map linear, but has the unfor
tunate side-effect of making the dynamics of 9 unobservable. In order to
guarantee the internal stabiUty of the system, it is not sufficient to look at
input-output stabiUty, we must also show that all internal (unobservable)
modes of the system are stable as weU.

The first step in analyzing the internal stabiUty of the system (14) is
to look at the zero dynamics [BI88a] of the system. The zero dynamics of
a nonUnear system are the internal dynamics of the system subject to the
constraint that the outputs (and, therefore, all derivatives of the outputs)
are set to zero for all time.

Constraining the outputs and derivatives to zero by setting vi = v2 = 0
(and using appropriate initial conditions), we find the zero dynamics of (14)
to be

(15)0 = -sin0.
€

Equation (15) is simply the equation of an undamped pendulum. Fig
ure 5 shows the phase portrait (9 vs 9) of the pendulum (15) with e = 1.
The phase portrait for e < 0 is simply a ir-translate of figure 5. Thus, for
e > 0, the equiUbrium point (9,9) = (0,0) is unstable and the equilibrium
point (t, 0) is stable but not asymptotically stable and is surrounded by a
family of periodic orbits with periods ranging from 2t y/l to oo. Outside of
these orbits is a family of unbounded trajectories. Thus, depending on the
initial condition, the aircraft wiU either rock from side to side forever or roll
continuously in one direction (except at the isolated equiUbria).

NonUnear systems, such as (14), with zero dynamics that are not asymp
totically stable are called non-minimum phase. Figure 6 shows the response
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Figure 5: Phase portrait of an undamped pendulum (e = 1)

of the system (14) when (vi, v2) is chosen (by a stable feedback law) so that
x wiU track a smooth trajectory from 0 to 1 and y wiU remain at zero. The
bottom section of the figure shows snapshots of the PVTOL aircraft's po
sition and orientation at 0.2 second intervals. From the phase portrait of 9
(figure 6e), we see that the zero dynamics certainly exhibit pendulum like
behavior. Initially, the aircraft roUs left (positive 9) to almost 2ir. Then,
it roUs right through four revolutions before settUng into a periodic motion
about the —Zir equiUbrium point. Since v\ and v2 are zero after t = 5, the
aircraft continues rocking approximately ±tt from the inverted position.

From the above analysis and simulations, it is clear that exact input-
output Unearization of a system such as (9) can produce undesirable results.
The source of the problem Ues in trying to control modes of the system
using inputs that are weakly (e) coupled rather than controUing the system
in the way it was designed to be controUed and accepting a performance
penalty for the parasitic (e) effects. For our simple PVTOL aircraft, we
should control the Unear acceleration by vectoring the thrust vector (using
moments to control this vectoring) and adjusting its magnitude using the
throttle.

2.2 Approximate Linearization of the PVTOL Aircraft Sys
tem using a Simplified Model

In the last section we (exactly) Unearized input-output map of the PVTOL
aircraft system (9). However, due to the small coupUng between rolUng
moments and lateral acceleration, the Unearized system had unstable zero
dynamics. Thus, while the outputs (the x and y position) can be tracked
perfectly, the internal behavior (the aircraft attitude) is not regulated and

10
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Figure 6: Response of non-minimum phase system to smooth step input

11



exhibits unstable behavior.

In this section, we propose controUing the system as if there were no
coupUng between rolUng moments and lateral acceleration (i.e., e = 0).
Using this approach to control the true system (9), we expect to see a
loss of performance due to the unmodeled dynamics present in the system.
In particular, we see that we can guarantee stable asymptotic tracking of
constant velocity trajectories and bounded tracking for trajectories with
bounded higher order derivatives.

We now model the PVTOL aircraft as ((9) with e = 0)

xm = —sin 9u\

ym = cos 9ui - 1

9 — u2

(16)

so that there is no coupUng between rolUng moments and lateral acceleration.
Differentiating the model system outputs, xm and ym, we get (analogous to
(12))

2*m 0 "
= +

. Vm . -1

- sin 9 0

cos0 0 u2
(17)

Now, however, the matrix multiplying u is singular which impUes that there
is no static state feedback that wiU Unearize (16). Since u2 comes into the
system (16) through 9, we must differentiate (17) at least two more times.
Let U\ and u\ be states (in effect, placing two integrators before the u\
input) and differentiate (17) twice giving

.(4)
'171

(4)
&

Mi

u2

sin 992u\ —2 cos 99u\

- cos 992ui -2 sin 99iii
+

—sin 9 —cos 9u\

cos 9 —sin 9u\ u2

(18)
The matrix operating on our new inputs, (u\,u2)T, has determinant equal

to Wi and therefore is invertible as long as the thrust, u\, is nonzero. This
fact agrees weU with our intuition since we know that no amount of rolUng
wiU affect the motion of the PVTOL aircraft if there is no thrust to effect

an acceleration. Figure 7 shows a block diagram of the model system with
u\ and u\ considered as states. Note that each input must go through four
integrators to get to the output. Thus, we linearize (16) using the dynamic
state feedback law

- sin 9 cos 9

cos 9 sinfl
U\ U\

—sin 992 wi + 2cos 99u\

cos992ui + 2sin00ui

12

+
v2



:/=:/

Figure 7: Block diagram of the augmented model PVTOL aircraft system

resulting in

02«!
_29u1

Ui

+
— sin 9 cos 9 Vl

COS0 sin0
U\ J . v1

Vi

JA
ym . v* .

(19)

(20)

UnUke the previous case (equation (14)), the linearized model system does
not contain any unobservable (zero) dynamics. Thus, using a stable track
ing law for v, we can track an arbitrary trajectory and guarantee that the
(model) system wiU be stable.

Of course, the natural question that comes to mind is: wiU a control law
based on the model system (16) work weU when appUed to the true system
(9)? In the next section, we wiU show (in a more general setting) that, if
€ is small enough, then the system wiU have reasonable properties (such as
stabiUty and bounded tracking).

How small is small enough? Figure 8 shows the response of the true
system with epsilon ranging from 0 to 0.9 (0.01 is typical during jet-borne
flight, i.e., hover, for the Harrier). As in section 2.1, the desired trajectory
is a smooth lateral motion from x = 0 to x = 1 with the altitude (y) held
constant at 0. The figure also shows snapshots of the PVTOL aircraft's
position orientation at 0.2 second intervals for e = 0.0, 0.1, and 0.3. Since the
snapshots were taken at uniform intervals, the spacing between successive
pictures gives a clueof the aircraft velocity and acceleration. The computer
graphicsmovie of the trajectoriesprovides an even better senseof the system
response.
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Figure 8: Response of the true PVTOL aircraft system under the approxi
mate control
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Interestingly, the x response is quite similar to the step response of a non-
minimum phase Uneax system. Note that for e less than approximately 0.6,
the osciUations are reasonably damped. Although performance is certainly
worse at higher values of €, stabiUty does not appear to be lost until e is in
the neighborhood of 0.9. A value of 0.9 for e means that the aircraft will
experience almost Ig (the acceleration of gravity) in the wrong direction
when a rolUng acceleration of one radian per second per second is applied.
For the range of e values that wiU normally be expected, the performance
penalty due to approximation is small, almost imperceptible.

Note that, while the PVTOL aircraft system (9) with the approximate
control (19) is stable for a large range of e, this control aUows the PVTOL
aircraft to have a bounded but unacceptable altitude (y) deviation. Since
the ground is hard and quite unforgiving and vertical takeoff and landing
aircraft are designed to be maneuvered in close proximity to the ground,
it is extremely desirable to find a control law that provides exact tracking
of altitude if possible. Now, e enters the system dynamics (9) in only one
(state-dependent) direction. We therefore expect that one should be able to
modify the system (by manipulating the inputs) so that the effects of the
e-coupling between rolUng moments and aircraft lateral acceleration do not
appear in the y output of the system.

Consider the decoupUng matrix of the true PVTOL system (9) given in
(12) as

— sin 9 e cos 0

cos 0 e sin 0
(21)

To make the y output independent of e requires that the last row of this
decoupUng matrix be independent of e. The only legal way to do this is by
multipUcation on the right (i.e., column operations) by a nonsingular matrix
V which corresponds to multiplying the inputs by V"1. In this case, we see
that

— sin0

COS0

6COS0

esin0

—etan0

1

— sin0

cos0

is the desired transformation. Defining new inputs, u, as

u2

1 €tan0

0 1

15

u2

COS0

0
(22)

(23)



we see that (12) becomes

X r o l
= +

y -i

— sin0 €

cos 9
cos 9 0 u2

(24)

FoUowing the previous analysis, we set e = 0 and Unearize the resulting
approximate system using the dynamic feedback law

Ml

«2

92ux
20fri +

—sin0

COS0

The true system inputs are then calculated as

Ml

u2

1 —etan0

0 1

COS0

sin0

«i

u2

Vi

v2
(25)

(26)

Figure 9 shows the response of the true system using the control law
specified by equations (25) and (26) for the same desired trajectory. With
this control law, our PVTOL aircraft maintains the altitude as desired and
provides stable, bounded lateral (x) tracking for € up to at least 0.6. Note,
however, that the system is decidedly unstable for e = 0.9. Since we have
forced the error into one direction (i.e., the ar-channel), we expect the ap
proximation to be more sensitive to the value of e. In particular, compare
the second column of the decoupling matrices of (12) and (24), i.e.,

6COS0

fsin0
and COS0 (27)

Notice that the first is simply € times a bounded function of 0 while the
second contains e times an unbounded function of 0 (i.e., 1/ cos0). Thus, for
(24) with € = 0 to be a good approximation to (24) with non-zero e requires
that 0 be bounded away from ±ir/2. This is not a completely unreasonable
requirement since most V/STOL aircraft do not have a large enough thrust
to weight ratio to maintain level flight with a large roll angle. Since the
physical Umits of the aircraft usually place constraints on the achievable
trajectories, a control law analogous to that defined by (25) and (26) can be
used for systems with smaU e on reasonable trajectories.

16



Figure 9: Response of the true PVTOL aircraft system under the approxi
mate control with input transformation
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3 A Formal Approach to the Control of Slightly
Non-minimum Phase Systems

In this section we wiU take a more formal approach to the control of systems
that are sUghtly non-minimum phase.

Consider the class of nonUnear systems of the form

* = f(x) + g(x)i.
y = h(x) < K" ]

)u 1

where x G Rn, u,y € Rm, and / : Rn -• R" and g : Rn -> RnXm are smooth
vector fields and h : Rn -> Rm is a smooth function with h(0) = 0.

In the sequel, we wiU assume that the origin is an equiUbrium point of
(28), i.e., /(0) = 0, and wiU consider a; in an open neighborhood, U, of the
origin, i.e., the analysis wiU be local. AU statements that we make, such as
the existence of certain diffeomorphisms, wiU be assumed merely to hold in
U. Also, when we say that a function is zero, it vanishes on U, and when
we say it is non-zero, we mean that it is bounded away from zero on U.

While we wiU not precisely define slightly non-minimum phase systems,
the concept is easy enough to explain. The reader may wish to review the
definition of the zero dynamics for non-Unear systems (and the concept of
minimum phase) in Isidori and Moog [IM87].

3.1 Single-Input Single-Output (SISO) Case

Consider first the single-input single-output (SISO) case. Suppose that
Lgh(x) = eij)(x) for some scalar function ij)(x) with e > 0 small. In other
words, the relative degree of the system is one, but is very close to being
greater than one. Here, Lgh(x) is the Lie derivative of h(-) along g(-) and
is defined to be

Lgh(X) =̂ ff-g{x). (29)
Now, define two systems in normal form (see Byrnes and Isidori [BI88a])
using the foUowing two sets of local diffeomorphisms of x £ R n

(?, nT)T = (& := h(x), m(x),..., 77n_1(rC))T, (30)

and

(ir,fjT)T = fe := h(x),£2(x) := Lsh(x)Mx),-.;?)n-2(x))T, (31)

18



with

and

gtW-o.

grfO-o.

i = 1,. ..,n— 1

i = 1,..., n —2.

System 1 (true system)

fi = Ljh(x) + Lgh(x)u
tl = q(Z,rj)

System 2 (approximate system)

f i = 6
f2 = Zrjftfa) + LgLfh(x)u
h = $(£*?)

(32)

(33)

(34)

(35)

Note that the system (34) represents the system (28) in normal form and
the dynamics of q(0, 77) represent the zero dynamics of the system (28). Sys
tem (35) does not represent the system (28), since in the (£,77) coordinates
of (31), the dynamics of (28) are given by

fi = i2 + Lgh(x)u
|2 = L)h(x) + LgLjh(x)
h = (KM)

u (36)

The system (28) is said to be slightly non-minimum phase if the true
system (34) is non-minimum phase but the approximate system (35) is min
imum phase. Since Lgh(x) = eij;(x), we may think of the system (35) as a
perturbation of the system (34) (= (36)).

Of course, there are two difficulties with exact input-output Unearization
of (34):

• The input-output Unearization requires a large control effort since the
Unearizing control is

Lgh(x) €i/)(x)
(37)

This could present difficulties in the instance that there is saturation
at the control inputs.
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• If (34)is non-minimum phase, a trackingcontrollawproducinga linear
input-output response may result in unbounded n states.

Our prescription for the approximate input-output linearization of the
system (34) is to use the input-output Unearizing control law for the approx
imate system (35); namely

< =i^rm{~inx)+v) (3S)
where v is chosen depending on the control task. For instance, if y is required
to track y</, we choose v as

v = $d + <*i(yd - £2) + oc2(yd - fr) (39)
= yd + <*i(yd- Lfh(x)) + a2(yd-h(x)). (40)

Using (38) and (39) in (36) along with the definitions

ei = |i - Vd
*2 = I2 - yd

(41)

yields

e\ = e2 +etl)(x)u*a(x)
e2 = -a\e2 - a2e\ > (42)

h = $(£,*)).

The preceding discussion may be generaUzed to the case when the dif
ference in the relative degrees between the true system and the approximate
system is greater than one. For example, if

Lgh(x) = e^i(x)
LgLjh(x) = €ip2(x)

(43)

LgLj 2h(x) = €07-i(x)

but LgLjh(x) is not oforder 6, we define

(f\ f}T) = (h(x), Lfh(x),..., L)-lh(x), f)T e Rn (44)
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and note that the true system is

li = £2 + ei>i(x)u

fy-i = ey +e^y-i(*)tt (45)
|7 = L)h(x) +LgLylh(x)u
h = q(^fj).

The approximate (minimum phase) system (with € = 0) is given by

fi = £2

|7 = £}*(*) +LgL)-lh(x)u
h = ?(£*7)

The approximate trackingcontrol lawfor (46) is

"•= 77^iir:(_i?/'(l)+^)+ai(^"1)-'trlftW)+---+a-,(y</-!/)).LgL'j h(x)
(47)

The foUowing theorem provides a bound for the performance of this control
when appUed to the true system.

Theorem 1 Assume that

• the desired trajectory and itsfirst 7 - 1 derivatives (i.e., ydf yd, ...,
yd-1)) are bounded,

• the zero dynamics of the approximate system (46) are locally exponen
tially stable and q is locally Lipschitz in £ and fj, and

• the functions ip(x)ua(x) are locally Lipschitz continuous.

Then, for e sufficiently small, the states of the system (45) are bounded and
the tracking error

M := 111 - Wi < *e (48)
for some k < 00.
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Proof See appendix. D

When the control objective is stabiUzation and the approximate system
has no zero dynamics we can do much better. In this case, one can show then
that the control law that stabiUzes the approximate system also stabiUzes
the original system.

Suppose that the approximate system has no zero dynamics, i.e.,

Lgh(x) = €tj)\(x)
LgLfh(x) = etp2(x)

(49)

LgLnf2h(x) = eVn-i(z)

Define

£= (h(x), Lfh(x),..., Lnflh(x))T e Rn (50)
and write the approximate system

li = £2

£n = Lnfh(x) + LgLnf-1h(x)u

and the stabiUzing control law

(51)

v*(x) = LLn\ (-Lnfh(x) - a^n-i a„|i) (52)
= r m-iu x(-^/M*) " ctrL^Kx) anh(x)). (53)

LgLf h{X)

The true system in these coordinates is given by

£1 = £2 + €j>i(x)u

|„_1 = £n + €1pn-l(x)u
£n = Lnfh(x) + LgLnf-1h(x)u

(54)
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Using u3(x) (from (52)) in (54) yields

Sn-l

£n

0

-<*n -«n-l

0

1

In J

+ <f

^i(ar)

^n-l(^)
0

Letting ^(x) = (ip\(x), •••^n-i(x),0)T, we can state the foUowing:

us(x).

(55)

Theorem 2 Suppose that ip(x)u3(x) is Lipschitz in x and that ip(0)ua(0) =
0. Then, the system (55) is exponentially stable for e sufficiently small.

Proof See appendix.

3.2 Generalization to MIMO Systems

•

We now consider MIMO systems of the form (28) which, for the sake of
convenience, we rewrite as

x = f(x) + gi(x)ui + '- + gm(x)um
V\ = hx(x)

ym = hm(x)

Let 7,- be the relative degree of the ith output, i.e., we need to differentiate
y,- at least 7; times before at least one of the inputs appears in the right
hand side. Then, we have

yj7,) =LJhi +LgiLj-lhiUl +...+LgmLj-lhiUm 1=1,..., m. (57)
The decoupUng matrix is defined to be A(x) 6 RmXm with

LgiLj-lhx •

so that

Lg^J-'h,
A(x) =

LgiL™ ^r LgmLfm hm j

' ^'
_

' Ljhx '
+ A(x)

' wi

y£?m) . L)mhm . . um .
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If the decoupling matrix A(x) is non-singular, the control law

u(x) = A(x) 1 — j -f v

k [ij-hr
with v 6 Rm linearizes (and decouples) the system (56) resulting in

y[^

ytim)

/ Ljhx

v1

L vm J

(60)

(61)

To take up the ideas of Section 3.1, we wiU first consider the case when
A(x) is non-singular but is close to being singular, that is, its smallest sin
gular value is uniformly small for x 6 U. Definitions of zero dynamics for
MIMO systems are considerably more subtle than those for SISO systems
and the reader may wish to review them in [BI88a,BI88b] before proceeding
further. Since A(x) is close to being singular, i.e., it is close in norm to
a matrix of rank m —1, we may transform A(x) using elementary column
operations to get

A0(x) =A(x)V°(x)=[a°1(x) ••• a^.^x) ea°m(x) (62)

where each a°- is a column of A0. This corresponds to redefining the inputs
to be

«i0 Ui

= (V°(*)) -1 (63)

uS°mJ L um J

Now, the normal form of the system (56) is given by defining the foUowing
local diffeomorphism of £ G Rn,

«i,r?i)= ( ti=h1(x),...,S}ri=Lj-1h1(x),
£2 = h2(x),...,Z2, = Lj-1h2(x),

ff = hm(x),...,^m = Ly-lhm(x),
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and noting that

a = &

& = *i

a = &

m-1

m-l

€5. = Mf.nJ+E^i + ^mfli
i=i

where &,-(£,77) is Ljhi(x) for t = l,...,m in (£,77) coordinates. The zero
dynamics of the system are the dynamics of the 77 coordinates in the subspace
f = 0 with the Unearizing control law of (60) (with v = 0) substituted, i.e.,

V= ff(0,77) - P(0, r?)( A°(0,n))"1^, 77).

(65)

(66)

We wiU assume that. (56) is non-minimum phase, that is to say that the
origin of (66) is not stable.

Now, an approximation to the system is obtained by setting 6 = 0 in
(65). The resultant decoupUng matrix is singular and the procedure for
Unearization by (dynamic) state feedback (the so-called dynamic extension
process) proceeds by differentiating (65) and noting that

where

#(*) ••• &(*)] = [9i(*) '•• 9m(x)]v°(x).
We then get

(TTl+l)
W

Vm-l
i-Tm+l)

L y

= bHx,u°1,...,ul_l) + A\x,ul...,u°m_1)

= b^x^ + A^x1)^
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r -0

z.0

lm-l

. m

(67)

(68)

(69)

(70)



where

u1 = (ui,...,U°m_l,um)T (71)

is the new input and

*> = (»r, •!,.., «S,_,)r (72)

is the extended state. Note the appearance ofterms oftheform h®,..., um_1
in (69). The system (69) is Unearizable (and decouplable) if Al(x1) is non-
singular. We wiU assume that the singular values of Ax are all of order
1 (i.e., A1 is uniformly nonsingular) so that (69) is Unearizable. The nor
mal form for the approximate system is determined by obtaining a local
diffeomorphism of the states x,u^,.. .,u(m_l (G Rn+m_1) given by

(IW) =
m-l

i=i
m-l

If =M*).-..& =LJ-lh2(x\£22^ = X7ft2(x)+ S«%flJ,

m-l

If = M*).".,«. = i}m-^m(a:),|- +1 = L^hm(x)+ ^ffl^fij,
i=i

77r )
(73)

Note that £ G R?i+~+7m+m and 7) g R«-7i 7m-1 as compared with f G
R71"1 h'ym and 77 G Rn~71 'ym. With these coordinates, the true system

26



(56) is given by

-.1

£1

<»7l

6*1+1
•_2

*1

?7m

h

= 3

"»° .oL= eit-i + ^a?,

- P2— <2

•TiO ,ul

(74)

In (74) above, 6j(|,77) and a* (£,»?) are the ith element and row of 61 and
A1, respectively, in (69) above (in the £, fj coordinates). The approximate
systemused for the design of the Unearizing control is obtained from (74) by
setting € = 0. The zero dynamics for the approximate system are obtained
in the f = 0 subspace by Unearizing the approximate system using

ul(£,v) =-(A\£,ij))-l

L>>l(ln)

(75)

as

h= g(0, fj) + P(0, fj)ul(0,7?). (76)
Note that the dimension of 77 is one less than the dimension of 77 in (66).

It would appear that we are actuaUy determining the zero dynamics of the
approximation to system (56) with dynamic extension—that is to say with
integratorsappended to the first m-l inputs w°, u§, ..., u(m_l. While this
is undoubtedly true, it has been shown in Byrnes and Isidori [Bl88a] that
the zero dynamics of systems are unchanged by dynamic extension. Thus,
the zero dynamics of (76) are those of the approximation to system (56).

The system (56) is said to be slightly non-minimum phase if the equiUb-
rium 77 = 0 of (66) is not asymptotically stable, but the equiUbrium 77 = 0
of (76) is.

It is also easy to see that the preceding discussion may be iterated if it
turns out that A1 (£,fj) has some small singular values. At each stage ofthe
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dynamic extension process m —1 integrators are added to the dynamics of
the system and the act of approximation reduces the dimension of the zero
dynamics by one. Also, if at any stage of this dynamic axtension process,
there are two, three, ...singular values of order e, the dynamic extension
involves m - 2, m —3, ... integrators.

If the objective is tracking, the approximate tracking control law is

/ K(ln)
a\\-lV1a(lf)) = (A1(£,TJ))

+

„(7l+l)
yd\

\ Vbm(£,f,)\
+«\(yd7]-£Ui) +

?/(7m+l)
Vdm

(-rm)
+«r(yS »7m+l ) +

with the polynomials

'̂•+1 + aj^' + + <*'7i+l

•• + <*7l+l(^l-fl)

•••+ <*7m+l(2/rfm-£D

i = 1, . . ., 772

(77)

(78)

chosen Hurwitz.

The foUowing theorem is the analog of Theorem 1 in terms of providing
a bound for the system performance when the control law (77) is appUed to
the true system (56).

Theorem 3 Assume that

• the desired trajectory yd and the first 7,- + 1 derivatives of its ith com
ponent are bounded,

• the zero dynamics (76) of the approximate system are locallyexponen
tially stable and q+ Pu\ is locally Lipschitz in £ and fj, and

• thefunctions a^mum are locally Lipschitz continuous for i —1,..., m.

Then, for e sufficiently small, the states of the system (74) are bounded and
the tracking errors satisfy

\ei\ = \£\-ydi\ < ke
1^21 = \£i-yd2\ < ke

kmI = \£m-ydm\ < k€

(79)

for some k < 00.
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Proof Similar to that of Theorem 1. LI
As in the SISO case, the stronger conclusions of Theorem 2 can be stated

when the control objective is stabiUzation and the approximate system has
no zero dynamics.

Conclusion

In this paper, we have described the initial results of a research project
on the appUcation of techniques of exact Unearization of nonlinear control
systems to the flight control of vertical take-off and landing aircraft. We saw
that the appUcation of the theory to this example is not straightforward.
In particular, the direct appUcation of the theory yielded an undesirable
controUer. We remedied the situation by neglecting the coupUng between
the rolUng moment input to the aircraft dynamics and the dynamics along
the y axes.

The example of the vertical takeoff and landing aircraft is an example of
a system which is sUghtly non-minimum phase. Thus,the exact Unearization
technique resulted in a system whichwasinternally unstable. WegeneraUzed
the lessons learned from this appUcation to define, informally, slightly non-
minimum phasesystems and gave methods to linearize them approximately.
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Define the trajectory error, e G R7, to be

ei ' £1' " yd
e2

^^

£2 yd

. e7 . .it. (7-1)
L% J

(80)

Then, the system (45) with the approximate tracking control (47) may be
expressed as

e\ 0

e-y-i 0

•a~ -a~_i

or, compactly,

0

1

-<*i

e7-i
+ e

^(s)

ipy-i(x)

0

e = Ae + eV'(^)wa(a;)

*7 = 9(1^)-
Since the zero dynamics are assumed to be exponentially stable, a converse
Lyapunov theorem impUes the existence of a Lyapunov function (see, e.g.,
[Hah67]) v2(fj) for the system

satisfying

77 = 9(0,77)

ki\fj\2 < v2(fj) < k2\f,\2

%fq(0,fj)<-k3\ij\2

ua(x)

(81)

(82)

(83)

(84)

for some positive constants k\, k2, k3, and £4.
We first show that e and 77 are bounded. To this end, consider as Lya

punov function for the error system (82)

v(e,fj) = eTPe + nv2(fj)

where P > 0 is chosen so that

ATP + PA = -I
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(possiblesince e = Ae is stable) and \i is a positiveconstant to be determined
later.

Note that, by assumption, yd and its first (7-1) derivatives are bounded,

III < \e\ + bd, (87)

the functions, q(£, fj) and ij)(x)ua(x) are locaUy Lipschitz with ^(0)wa(0) = 0,

\q(£\fll) - q(£\fl2)\ < lq(\£l - £2\ -r It?1 - fj2\), (88)

\2Pj)(x)ua(x)\ < lu\x\, (89)

and a; is a local diffeomorphism of (£, fj),

\x\ < lx(\£\ + |r?|). (90)

Using these bounds and the properties of v2(-), we have

^q(lv) = ^"(0,71)+^(g(|,77)-5(0,77))
< -k3\fj\2 + k4lq\fj\(\e\ + bd).

Taking the derivative of v(>, •) along the trajectories of (82), we find

v = -\e\2-r2eeTPi>(x)ua(x)-rfi^q(£,fj)
< -\e\2 + e\e\ljx(\e\ + bd + |i?|) + »(-k3\fj\2 + k4lq\fj\(\e\ + M)

-(^ - (djx +»k4lq)\f,\)2 + (6/u/x + »k4lq)2\fj\2
_Mfc3(ifi-^)2 +/.^^
-(I - elulx)\e\2 - \»k3\fj\2

< -(^ - djx)\e\2 - ($tik3 - (elulx + fik4lq)2]

Define

(02)

&3
^° = At 1 1 • Z 7 ^' 93

Then, for aU \x < /*o and all e < min(\i, 47^7-), we have

,<J£_«+M^ +(fUi+^)2. (94)
4 2. K%
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Thus, v < 0 whenever \fj\ or |e| is large which impUes that \fj\ and |e|
and, hence, |£| and |x|, are bounded. Using the boundedness of x and the
continuity of tf)(x)ua(x), we see that

e = Ae + €tf)(x)ua(x) (95)

is an exponentiaUy stable Unear system driven by an order e input. Thus,
we conclude that the tracking error, e, converges to a ball of order e. LI
Proof of Theorem 2

The stabiUzed system (55) can be compactly written as

£ = A£ + €i>(x)u3(x). (96)

Choose as Lyapunov function v = £TP£ with ATP + PA = —I. Then, using
the bounds analogous to (89) and (90), the derivative of v along trajectories
of (96) is given by

* = -\£\2 + 2eP1>(x)ua(x)
<= -(l-€/u/x)|||

2 (97)

Thus, for all e < €q := j±-, the system (96) is exponentially stable. D
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