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ABSTRACT

This technical report contains recent results, extensions and improvements
of the proofs of past results of the theory of stability, asymptotic behavior and
performance of parallel processing systems with stationary and ergodic inputs,
presented in the paper "On Stability and Performance of Parallel Processing Sys
tems" by Bambos and Walrand ([1]).

1. Introduction.

For the description of the problem and the notation used in this technical report see [1]. The
numbers in parentheses refer to the corresponding numbers in [1], The discussion is essentially
brief, but the details will be presented in the final version of [1]or in a published note.

2. A new result: The detailed structure; merging of sample-paths;strong stability.

a) The Detailed Structure.

At an arbitrary deterministic time, which without any loss of generality can be taken to be
zero, we start processing the input N, according to the Processing Scheme described in Section 1
of [1], the system being initially empty.

Define the Detailed Structure ut,teR+ to be the set of jobs, precedence constraints, and
remaining processing times ("remaining" because some of them may have already started being
serviced) of the jobs in the system at time r+.

In orderto construct a stationary regime forut,/e IR+, weuse the following argument.

Define U*, s < r, s, reR to be the detailed structure (set of jobs and their remaining processing
times) in the system at time r+, given that we have started processing the input N at time s+, and
the system has been empty for all times before s+. As s -> -*», it is easy to see that the set of
jobsin the system, aswell as their remaining processing times at time r+ (t fixed) is an increasing
sequence, so the limit

Ut = lim uf.
s

t Research supportedin pan by Pacific Bell and MICRO.
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exists almost surely. Now, since uf(Bz N)= «££(N), we have Ut (82 N) = Ut+Z (N), so the process
[Ut, te R} is stationary. Also, for y< 1, sinceMt <<*> (see [1]), the set of jobs in £/, has only a
finite number of elements. Thus, for y< 1, the regime {£/,, feR} is well defined, "finite", and
stationary.

b) Merging of the sample paths.

Lemma

If y< 1, then there exists (pathwise) an almost surely finite random time x*(N) < «>, such
that

tf/(N) = K,(N), foreveryf€(T*(N),«0,

almost surely. That is, the two processes Ut and ut merge pathwise after some finite random time
(see [1] for background).

Proof:

Briefly speaking, on any fixed sample path, the process Ut differs from ut in that in the first
one there is an initial structure U0 in the system at time 0, where in ut there is none (u0 = 0). We
need to prove that the process £/r(N) will eventually (in finite time) forget its initial structure and
will not be distinguishable from ut(N) which had no initial structure.

Referring to the figure below,

«o~-
U-

t

R <j ov/te,

we see that in order for the initial structure U0 to be able to affect the structure Ut (thus not let
ting it forget the existence of its initial condition and thus differentiating it from w,), there should
be an "unbroken string" (see [1]) of jobs with its first job in U0and its last in Ut, such that each
next job on this string arrives before the corresponding previous one has left (this is what we
mean by "unbroken chain"). In this way, all the jobs on this suing "feel" the effectof the initial
structure U0, and so its effect is transmitted by this "unbroken string" to the structure Ut. "Brak
ing" of a "string" in (0, t] occurs when the job on the string arrives at the system after the previ
ous (theone that wassupposed to block it) has left the system. Then, thatjob is not affected at all
by the previous one.

But, if there exists an "unbroken string" in (- dj] (- d is the time of arrival of the earliest arrived
job in U0)y then t^tt > t (otherwise the string would "brake"). Thus, if Ut never forgets its ini
tial structure, then
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J^dtl > t, for every f > 0,

so

lim[-^-]=Y< 1,
t -»<» t

which is a contradiction, since we have assumed that y< 1.

Thus, every string "brakes" pathwise in finite time, so there exists an almost surely finite time
t*(N) < °o, such that after this time t/r(N) forgets its initial structure at time t = 0 and coincides
with ut(N). This completes the proof of the the Lemma.

Corollary

If y< 1, then there exists (pathwise) an almost surely finite random time T*(N)< «°, such
that

Ct (N) = c, (N), for every te (x*(N), ~),

almost surely.

Proof:

Obvious by previous Lemma.

•

Analogous results hold for all the other quantities (mt ,wt,nt, see [1]).

c) Strong Stability.

Theprevious results allow us to strengthen the notion of stability by proving strong conver
gence of the process ct to the process C, uniformly over all Borel sets, where in [1] we had pro
ven only weak convergence.

Theorem: Stability Condition.

1) If y< 1, then, for any finite Ke{ 1,2, ••• } and any (xux2, ••• xK)e]RK, the process
Kc*rw» cXxH% *'' cXtc+t),telR+} converges strongly (in total variation) to the random variable
(Cx,> cx2> ''' CXk)> as r -» oo. That is, for any Borel subset B ofIR^, we have

lim/>[(cX|+/,cXrH, ••• cXK+t)eB) = P[(CXi,CXi, ••• CXK)eB],
t —> oo

Thus the system can be characterized as Stable.

2) If y> 1, then c, -»°° as t -» °°, almost surely. Thus, the system can be characterized as
Unstable.

Proof:

1) Since x*(N) is almost surely finite, lim P[x* >t] = 0. Let

<UN) =(cXl+,(N),cl2+,(N), ... cXK+((N)) and D, (N) =(CX|+/ (N), CXlJu)t ••• CX,+/(N)). But,
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we have d,(N) = D,(N) for every r>x*(N). Thus,
0 < \P[dteB]-P[DteB]\ = \P{dteB,t >x*]+P[dteB ,t < X*]-
-P[DteB,t >x*]-P[DteB,t < T*]l £ 2/>[x*>f], since the first and third term in the
second part of the previousexpression canceleach other out, and the two remaining are less than
P [x* > t ] each. Taking the limits in the above expression, andusing the stationarity of the pro
cess Ct the result follows immediately.

2) This part of the proof is the same as in [1].

3. Extensions.

Briefly speaking, the results are extenbable to the case where the jobs have some random
internal structure. That is, each job consists of many tasks, and there are precedence constraints
between the tasks in each job (internal precedence constraints), forming an acyclic graph. There
is also a static allocation scheme for each job that assigns the tasks to specific processors. There
may also be precedence constraints between tasks of different jobs.

Given that the arrival times of the jobs, the jobs structure (internal precedence constraints and
processing times of the tasks), and the blocking structure between tasks of different jobs, form a
stationary and ergodic sequence, the results of [1] can be extended directly.

A simple but interesting example is the case of tandem queueing networks.

4. Simplification of the proofof Lemma 4 in [1].

The part of the proof after (13) in [1] can be substituted by the following relatively simpler
argument (basically defining An in a different, simpler way):

Having fixed T as described in (13), define, for any n e 2£+, the quantity

An =sup{meZ+: 7<C/r^, for every ke {0,1,2, ••'• m}}, (14')

and An = 0, if C\~nT < T. Because Cf is decreasing ins, An is a decreasing function of n, thus
the limit lim An exists.

We will now prove by contradiction that lim An < °°. Indeed, suppose that lim An = <».
n —><» n —»oo

Observe that, for any ke {0,1, • • • An} and any finite ne 2Z+,

T < ClUl (15')

and taking into account the inequality (12), we have

Ct-kT ^ [Ct3)c+\)T-T]+ + £>t-(k+l)T,i-kT- 0°"')

From (15') and (16'), we see that the operator [ ]+ must be positive for any ke {0,1,2, •• • An },
so

Ct-kT - C7h$+i)7* ~ T +£,-(*+i)r,/-*r» ^e (0. It 2, —- An }. (17')

Also, by the definition of An, we have

Ctfl+xyr ^ T. (18')



Recursive application of (17') and use of (18*) leads to

0 < C/-rtT <; -An T+ Z^+ijr.,-*-. (W)
*=0

SO

1 *"

Letting n ->«», we have AB -> °°, and by Lemma 2 (in [1]) the right side of the above expression
converges to fs[<;/f/+T]. Thus, T < E[^lt+T]t which contradicts (13).

In view of the above, we conclude that lim An =Aik<<*>. Therefore, for the limit

Ct = lim C/~"r, we have, according to the definition of An,
n —*<»

Cma^dt^T- (21')

so, as easily seen,

Ct < T+ £o/l{rye(f-(Agll + l)r.r]}<o-. (22')

The rest of the proof remains unchanged.

D

An important fact emerging in the proof of Lemma 4, which will be used later, is the fol
lowing. For any te R and any Te R+, such that E [£,, (+T] < T, by (21'), there is a finite k0 e HL,
such that Ct_koT < T. Applying repeatedly the same argument, we can construct an absolutely
increasing sequence [kn, n e 2Z+}, such that

Ct-icT * T> forevery neZ+. (23*)

1. Simplification of the proof of Lemma 5 in [1].

The part of the proof after (29) in [1] can be substituted by the following simpler argument,
in view of the simplification of the proof of Lemma 4.

Choose a finite TelR+, such that E[^tt+T] < T (y< 1). Because of (23'), there exists an
absolutely increasing integer sequence {kn,ne7Z,+}, such that Ct^T < T, for every ne"Z+.
Thus, by (29), we have

T > C^j >t-(t-knT) = knT, (30')

for every n e %.+, and kn —> -H», which is a contradiction (impossible). Therefore, Mt <°°, for
any t e R+.

The rest of the proof remains unchanged.

•
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