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ABSTRACT

In this thesis the problems of local stabilization and output tracking are considered for

the class of single-input single-output nonlinear control systems which are affine with

respect to the control variable.

The local stabilization problem is considered for nonlinear systems with degenerate

linearizations, i.e. with linearizations whose uncontrollable modes are on the yco-axis. A

methodology for designing a stabilizing control law in this case is presented. It involves

the following steps: 1) Reduction of the stabilityproblem to the stability of the center man

ifold system. 2) Simplification of the vector field on the center manifold using the theory

of normal forms. 3) Finding conditions under which the simplified vector field is asymp

totically stable. Following these steps, three cases of degeneracies in the linearized system

are treated and sufficient conditions for the existence of stabilizing controls are given in

each case. In addition, a theorem is presented regarding the robustness of the foregoing

control strategy to perturbations.

The notions of relative degree and minimum-phase for nonlinear systems are

reviewed. Given a bounded desired tracking signal with bounded derivatives, a control law

is designed for minimum-phase nonlinear systems which results in tracking of this signal

by the output. This control law is modified in the presence of uncertainties associated with



the model vector fields in order to reduce the effects of these uncertainties on the tracking

errors. Two types of uncertainties are considered: those satisfying a generalized matching

condition but otherwise unstructured, and those arising from linear parametric uncertainties.

It is shown that for systems with the first type of uncertainty, high gain control laws

can result in small tracking errors of 0(g), where r is a small design parameter. Further

more, it is shown that such control schemes are robust with respect to unmodeled dynamics

provided that r is of 0(e3), where e represents the singular perturbation parameter charac

terizing the time scale separation between the unmodeled dynamics (fast) and the dynamics

of the reduced model (slow) of the overall system. An alternate scheme which is based on

the variable structure control strategy is presented as well. It is shown that in the absence

of unmodeled dynamics this scheme results in zero tracking errors. In the presence of

unmodeled dynamics, however, satisfactory tracking may notbe achieved.

Adaptive control techniques are employed in dealing with systems having linear

parametric uncertainties. A distinction is made between systems with relative degree one

and those with higher relative degrees. For systems with relative degree larger than one, a

new direct adaptive control scheme is presented which is considerably simpler than the

augmented error scheme suggested previously by Narendra, Lin, and Valavani for linear

systems and by Sastry and Isidori for nonlinear systems. Contrary to the augmented error

scheme, however, in the absence of unmodeled dynamics this scheme results in small

rather than zero tracking errors. But, in the presence of unmodeled dynamics the scheme

is shown to be robust for systems with relative degree one and two, while the augmented

error scheme is not known to be robust.
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Introduction

We study two important problems in connection with controller design for single

input-single output (SISO) nonlinear systems, namely: local stabilization of an equilibrium

point by a smooth state feedback control law, and stable output tracking of a desired trajec

tory via state feedback.

In connection to the first problem, it is well known that local stabilization of a non

linear control system is immediate through a linear state feedback design based on the

linearized system about an equilibrium point, provided the linearized system has all

unstable modes in its controllable subspace. In particular, if the linearized system has

uncontrollable modes in the right half plane, then the nonlinear system is not stabilizable

by any smooth feedback. If, on the other hand, the uncontrollable modes are on the ./co-

axis, the linear information is inconclusive regarding the stabilizability of the nonlinear sys

tem. In this case, it may be possible to construct feedback controls of higher order than

linear in the state variables which stabilize the nonlinear system. We will refer to systems

whose linearizations have uncontrollable ./©-axis eigenvalues as systems with degenerate

linearizations. Thus in connection with the local stabilizability of nonlinear systems the

only nontrivial cases are those of systems with degenerate linearizations. In such cases one

is interested to know under what conditions the nonlinear system can be stabilized and

given that those conditions arc satisfied, how the actual feedback control law is



constructed. These questions were partially answered in a recent paper of Aeyels [3]

where he considered the case in which the degeneracy is of the Hopf type; i.e. the degen

erate part consists of a pair of imaginary eigenvalues. Using the center manifold theory he

reduced the stability problem of the original system to that of a two dimensional system on

a center manifold of the system. On the center manifold system he used the results of

Chow and Mallet-Paret, and Hassard and Wan (which are reported in Guckenheimer and

Holmes [15]) to find conditions for stability. Taking a different approach Abed and Fu

[1,2] also considered the Hopf degeneracy in addition to the case of a single zero eigen

value. Their approach is based on the computations of bifurcation formulae using the pro

jection method.

In this study, we will generalize the approach taken by Aeyels through a systematic

use of the normal form theory of differential equations in order to find explicit stability

conditions on the center manifold. These conditions on the normal form vector fields are

then translated to explicit conditions on the original vector fields of the system which may

be checked easily. Using this methodology, three new cases of degeneracies will be treated,

namely: the cases of double zero eigenvalues with nonzero Jordan block, a pair of ima

ginary and single zero eigenvalues, and two pairs of imaginary eigenvalues. Stability con

ditions are derived through standard Lyapunov type arguments for the normal form vector

fields on the center manifold.

The second problem that we will address in this thesis concerns the design of a con

trol law which causes the output of a nonlinear system to follow a desired trajectory. This

problem is now a classical one in linear control theory and has been studied from several

viewpoints (see for example Callier and Desoer [10] for an algebraic approach, and Won-

ham [38] for a geometric approach). The extensive research effort of the past decade in

nonlinear systems has had a profound effect on the solvability of this problem and a host

of other problems for nonlinear control systems. In particular the works of Jakubczyk and



Respondek [25], Hunt, Su, and Meyer [21], and Su [34] in connection with state space

linearization of nonlinear systems, allowed the application of all the state feedback tech

niques in linear theory to fully linearizable nonlinear systems. For the purpose of design

ing a tracking control law, however, full linearizability of the system is not necessary. It

is, on the other hand, well known that the solvability of the tracking problem is closely

related to the invertibility of the input-output map of the system. The invenibility problem

was studied by Brocket and Mesarovic [8] and Silverman [33] in the context of linear sys

tems, and by Hirschom [19], Isidori et al [24], Claude [13], and Nijmeijer [30] in nonlinear

systems. In his work, Hirschom introduced some regularity conditions under which the

techniques of Silverman for linear systems can be generalized to nonlinear systems. These

conditions turn out to be less restrictive than those required for the state space linearization

techniques. This is expected since the invertibility of the input-output map merely implies

the input-output linearization of a nonlinear system, and not the state-space linearization of

the system, as demonstrated by Byrnes and Isidori [9]. Similar developments in this area

have been reported for discrete-time nonlinear systems as well. In particular Monaco and

Normand-Cyrot [28] developed the discrete version of the concepts introduced in [24] in

connection to the state-space linearization of a nonlinear system. In addition, there has been

recent contributions by Jakubczyk [26] in relation to state-space linearization and by

Nijmeijer [31] in input-output decouplingof nonlinear discrete-time systems.

As indicated above, the input-output linearization of a nonlinear system is based on

the invertibility of the input-output map, and therefore it relies on exact cancellation of

nonlinear terms. This presents a limitation to the theory in that in the presence of model

ing errors and unmodeled dynamics exact cancellation is not possible. In this study we will

consider those systems whose dynamics are not exactly known and/or contain dynamics

which are neglected, possibly purposely in order to simplify the controller design task. We

will identify two classes of uncertainties which will be dealt with: those uncertainties



which satisfy a generalized matching condition, and those arising from linear parametric

uncertainties in the model vector fields. For the first class of uncertainties we will employ

high gain and sliding mode control strategies and for the second class of uncertainties we

will use adaptive control techniques. Later we will examine the robustness of the high gain

and adaptive schemes to unmodeled dynamics and make conclusions about the applicability

of these techniques in a practical situation.

The organization of the thesis is as follows. In Chapter 1 we will briefly review the

mathematical tools which will be needed. In Chapter 2 we will present the stabilizability

results for systems with degenerate linearizations. Chapter 3 presents the basic output

tracking theory for nonlinear systems along with the various schemes for dealing with

modeling uncertainties in the vector fields. In Chapter 4 we will introduce the class of

unmodeled dynamics as the dynamics evolving on amuch faster time scale than the dom

inant dynamics of the system. We will use the standard singular perturbation model in

order to represent the unmodeled dynamics. In this setting we will investigate the robust

ness properties of the high gain and adaptive control schemes with respect to the unmo

deled dynamics. Finally in Chapter 5 we will give some concluding remarks along with

directions for further research. In particular we will present a simple example in order to

demonstrate some of the open problems in the linearization theory for nonlinear systems.



Chapter One

Preliminaries

In this chapter we review some basic definitions and analysis tools which will be

used in subsequent chapters. We will first give some elementary definitions from

differential geometry which set the notation as well. Next, we will review some basic facts

from center manifold theory and normal form theory for differential equations, in the con

text that we need them here. The center manifold theorems are taken from Carr [11] and

the normal form theorems from Guckenheimer and Holmes [15].

1. Some Basic Definitions

Let U be an open subset of 1R". We will assume that the reader is familiar with the

concept of a tangent space to U at a point x e U, denoted by TXU (see e.g. Boothby [7]).

Definition 1.1.1: A C vector field, /, on U is a C mapping which assigns to each point

* e U a tangent vector./(*) e TXU.

D

Denoting the cotangent space at a point x e f/, the dual space to TXU, by 7^£7, we

can define a covector field or a one-form in a similar fashion.

Definition 1.1.2: A C one-form, co, on U is a C mapping which assigns to each point

xe(/a covector <o(x) e fxU.



Now, let X be a C4"1 function from U into R. Then we define the differential of X,

denoted by dK to be the one-form:

*=1 «*i

where / is any veaor field on U. The right hand side of (1.1.1) is sometimes written as

dX»flx). A one-form which is the differential of a function is referred to as an exact one-

form. The expression in (1.1.1) also defines what is known as the "Lie derivative" of X

with respect to/, denoted by LfX, which is the directional derivative of Xalong the vector

field/. Note that LfX is a function on U. Thus, if g is any other vector field on Uwe can

define LgLfX as the Lie derivative of LfX with respect to g. We can, therefore, compute

successive Lie derivatives as permitted by the degree of differentiability of the function and

the veaor fields. Next, we define the Lie derivative of a veaor field g with respect to a

second vector field/.

Definition 1.1J: Let / and g be vector fields defined on U of class C. Then the Lie

derivative of g with respect to/, denoted by Lfg, is a C* vector field on U which is

uniquely determined by:

dX*Lfg(x) := d(dX*gyf(x) - d{dX*frg{x) (1.1.2)

where Xis any C°° function on U. Lfg is sometimes denoted by adfg which is the notation

we will use in connection with the normal form theory of differential equations. It is easy

to check that Lfg Is bilinear over R, is skew commutative, and satisfies the Jacobi identity:

LqLfg =LfL<lg-LgLqf 0.1.3)

Next, we will present some results from center manifold theory.



1.1. Center Manifold Theory

Consider the following C* dynamical system in R":

x=M (1-21)

A set SeR" is said to be a local invariant set if for all xtf=S there exists 7i>0 such that the

solution of the differential equation (1.2.1) passing through xq at t=0 remains in S for |/j<7.

If T can be chosen to be «>, then S is said to be an invariant set.

Now consider the following Ck dynamical system in R"4*:

x = Ax+j(x,y) *eR"

y = By + g(x,y) yeRm
(1.2.2)

where (jc=0,y=0) is an equilibrium point, that is:

/(0,0)=0 ;s(0,0>=0 (1.2.3)

Further/ and g comprise only of quadratic and higher order terms , that is:

ZV(0,0)=0 ;ity(0,0)=0 ;D^(0,0)=0 ; Dyg(0,0)=O (1.2.4)

We also assume that o(B)<z Cf and a(i4)c{/© I coeR). For this system we have:

Definition 1.2.1: A local invariant manifold M for the system (1.2.2) is called a center

manifold if it contains the origin (x=0,y=0) and is tangent to y=0 at the origin.

D

Remarks

1) {(x,0) | xeRn] is the generalized eigenspace of the Joo-axis eigenvalues of the

linearization of the system (1.2.2). Thus a center manifold is a "nonlinear eigenspace"

corresponding to the y'co-axis eigenvalues.



2) If M is given locally as the graph of a function y = h(x), then:

h(0) = 0

Dh(0) = 0

It is a basic theorem that center manifolds exist (though elementary examples show

that they are not unique) and are locally given as the graph of a function y = h(x).

Theorem 1.2.1: (Existence of Center Manifolds) If/and g in (1.2.2) are Ck vector fields

for A£2, then there exists a center manifold y=h(x\ W<e, where h is ofclass Ck.

D

The flow on the center manifold is governed by

i = Au+fiuth(u)) (1-2.5)

The following theorem connects the stability of the system (1.2.5) to that of the system

(1.2.2).

Theorem 122: If the zero solution of (1.2.5) is stable (unstable, asymptotically stable),

then the zero solution of (1.2.2) is stable (unstable, asymptotically stable).

•

Remark

In the instance that the zero solution of (1.2.5) is stable or asymptotically stable, we

can relate the solutions of (1.2.5) to those of (1.2.2) for (jc(0),y(0)) sufficientiy small. Let

(*(0.y(0) be a solution of (1.2.2) with (x(0),y(0)) small enough. Then there exists a solu

tion u(t) of (1.2.5) such that:

*(0=k(0 + <K**)

y{t)=h(u{t)) + 0{e^) as f->~



where the rate of convergence to the center manifold, y , is related to the eigenvalues of B

alone.

Thus we see that the study of stability (instability) of the system (1.2.2) may be

reduced to the study of stability (instability) of (1.2.5), provided we have an expression for

the function h. To solve for /»(*), we use the fact that y = h(x) is invariant under the flow

of (1.2.2), thus:

y=±h{x) =Dh(x)[Ax +f(xMx))]
at

= Bh(x) + g(xMx))

that is h satisfies the partial differential equation (PDE):

Dh(x)[Ax +J{xMx))] = Bh{x) + g{xji(x)) (1.2.6)

with h(0) = 0 ; Dh(0) = 0.

Any solution of the PDE (1.2.6) i$ a center manifold for (1.2.2). Typically, it is difficult

to solve the PDE (1.2.6), consequently the following approximation theorem is of interest.

Theorem 1.2J: Let$ be a C1 mapping from a neighborhood of R" into Rm such that:

<K0) = 0 ;£><K0) = 0

if § satisfies the PDE (1.2.6) modulo terms of 0(M*) then there exists a center manifold of

(1.2.2) given by the graph of y = h(x) such that as *-»0, we have:

W*)-<K*)| = 0(W*)

D

Remark

In particular,Theorem 1.2.3 allows us to approximate h(x) by polynomials in x to any

desired accuracy.
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Theorems 1.2.1, 1.2.2, and 1.2.3 allow us to explicitly compute an approximation of

a centermanifold system (1.2.5), whose stability properties coincide with those of the ori

ginal system (1.2.2). Since the linear part of the vector field in (1.2.5) has all its eigen

values on theyea-axis, we need to study the higher order terms of the vector field in order

to determine the stability of the system. This is done next in a systematic way.

13. Normal Forms

To study the behavior of the solutions on the center manifold it is helpful to simplify

the vector field but the simplifications should preserve the qualitative behavior of the solu

tions at least locally around the equilibrium point In the following discussion a systematic

procedure of simplifying the vector fields by means of repeated coordinate transformations

is presented. The resulting simplified vector fields are called normalforms.

Define Hk to be the real vector space of vector fields whose coefficients are homo

geneous polynomials of degree k. Given a linear vector field Ux) we have the subspace:

ad L (Hd := { adLh(x) \ h(x)eHk }

and its complement Gk\ i.e.,

H^adLQid <&Gk (1.3.1)

Theorem 1.3.1: Let x =f(x) be a C dynamical system with f(0) = 0 and Df(0)x = L(x).

Then there exists an analytic change of coordinates in a neighborhood of the origin

transforming the system to y = g(y) such that:

g(y) = gl(y) + g*(y)+ • • • + f(y) + Rr 0-3-2)

where gl(y) =Uy)\ ^eG* 2<k<r and Rr =oQyf).

•
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Proof: It suffices to show that for a given I&2 the components of ad L (//*) can be locally

removed from the veaor field by an analytic change of coordinates. Performing this for

fc=2,..,r we obtain the desired coordinate transformation as the composition of the transfor

mations for each k. Thus we let:

x = y + P(y)

where P(y) is a homogeneous polynomial of degree k. We point out thatDy x(0) = / so that

we have a local diffeomorphism (thus preserving the local behaviorof the flow of the vec

tor field around the origin). Using this transformation, we get:

y = (I+DPiyyr^y^D^Piyy+oQyn] (1.3.3)

Now note that:

(I+DP(y)Tl = /-DPOO+oflylO 0-3.4)

and

Df(y)P(y)= D/(0)P(y) + *W)

= DL P(y) + oQyn (1.3.5)

Using (1.3.4) and (1.3.5) in (1.3.3) we have:

y =f(y) + DL P(y) - DP(y) L + oQyf) (1.3.6)

If we set:

/O') =A-i(y)+/*(y) +^<W0

with/^OO = [fj(y) \j=\,..,k-\) and f(y)eHk we get

g(y) =8t-i(y) +sfoMW) d-3.7)

where:

s*-i(y)=/*-i(y) (13.8)
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g*(y) =Ay) +ad L (P(y)) (1.3.9)

By choosing the coefficients ofP(y), components ofad L(//*) can be removed from fk(y)

while all lower order terms remain unchanged. Thus g*(y)eGit.

D

Although the transformations for each k leave all lower order terms unchanged, they

do alter the higher order terms. We have the following corollary to this effect.

Corollary 13.1: Let x=j(x) be a C' dynamical system, such that f(x)eGj for

j=2t..Jk-\ , k<r. Let y = g(y) represent the transformed system after the removal of 0{k)

terms in the span of ad L (H^. Then we have:

gr*(y) =f*k(y) + adf>+x(y){P(y)) j=0,..Jc-2 (1.3.10)

g*-l(y) =/2*"1(y) +adfk(y)(P(y)) - DP(y)[ad L(/>(y))] (1.3.11)

where (1.3.10) and (1.3.11) make sense provided j+k&r and 2fc-l£r respectively.

D

Proof: Using the change of coordinates x = y+P(y) we have:

y = (I+DP(y)rlf(y+P(y)) (1.3.12)

We note:

(I+DP(y))~l = / - DP(y) + (DP(y))2 +0(2k-2) (1.3.13)

f(y+P<y)) =f(y) + Df(y)P(y)+ 0(2*) (1.3.14)

Now using (1.3.13) and (1.3.14) in (1.3.12) we get:

y =J(y) + DfP- DPf- DP[DfP - DPf\ + 0(2k) (1.3.15)

Collecting the O(0 terms for various values of / we obtain (1.3.10) and (1.3.11) for g(y).

D



13

Chapter Two

Stabilization of Nonlinear Systems with Degenerate Linearizations

2.1. Introduction

In this chapter we discuss the stabilization of nonlinear systems with degenerate

linearizations, i.e. systems whose linearizations are not stabilizable by linear state feedback.

We consider systems of the form:

4=4>£)+du (2.1.1)

where 5eRB, nelR, ^.R"-*1R" is smooth, telR", and 0 is an equilibrium point of the

undriven system (2.1.1) i.e. <K0) =0. The extension to systems of the form 4= <K5) + V(5) "

is straightforward and will be discussed in Section 2.6.

By way of notation, let A=Z>^(0), the Jacobian of $ at 4 = 0. We partition the spec

trum of A as:

a(A) = (fKj&Xjcf

where <fc CZ, o^c CJ, and cr*c[/e> I co€R). Using basis vectors for the (generalized) eigen-

spaces of <f&, and <f we may transform (2.1.1) to the form:

Xu 0 0 'i &<&&&) w
0 An 0 ?2 + $2(5l.?2.?3) + 52

o o An k. $3(Sl&&). h.

(2.1.2)
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where o(An)=<f, otfa)^ o#33)=<r\ &€R\ ^R"2, and SseR"3.

It is easy to see that (2.1.2) is locally stabilizable by linear state feedback when

(ftn,£i), and (&nh) are completely controllable. It is also easy to see that if (A33,£3) is not

controllable, then no feedback law which is smooth at the origin can stabilize the system

(2.1.2). Consequently we shall be interested in the case when (^33^3) is controllable, and

the critical eigenvalues (those of An) are completely uncontrollable, i.e. $x =0. Now our

objective is to construct a feedback law u=F(Si&&) to stabilize the system. From the

preceding discussion it is plausible that higher order (quadratic, cubic, etc) terms in & are

needed to stabilize the system. By choosing u of the form u=v+A"3§3 such that

a033+^3)c C, we may rewrite (2.1.2), after a diagonalizing transformation, in the fol

lowing form:

ix An 0" %i ♦ittnW 0

ii 0 An k
+

fa*&i&>
+

b
(2.1.3)

where 5, =§lf An =4„, and <s{Azd<z CL Then we must find v=F&&). an analytic feed

back law, such that the equilibrium point of (2.1.3) is asymptotically stable. It follows that

when we set v =F(£1£2) with A22 stable, that any center manifold of (2.1.3) is tangent to

{(J-,,0) ISieR"1} and is given locally by &=Afo). Further from (1.2.6) it follows that h()

satisfies the following PDE:

DK^)[An%\ + HkiM =Anh + fc(g1(A) +bF&Jh) (2.1.4)

and the flow on the center manifold is governed by:

$'l="4ll*l+ *!<&!.*) <2'L5)

Thus, we need to choose F(&x£i> in such a way that the resulting h produces an asymptoti

cally stable equilibrium point on the center manifold. While a general solution is not
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available to this problem we consider several cases for the matrix Au. The case where

AneR2*2 and has a pairof imaginary eigenvalues was considered by D. Aeyels [3]. In [1],

Abed and Fu treat the same case using bifurcation formulae derived from the projection

method. The same technique is also employed in [2] where, the case of a single critical

mode is treated. The cases covered here, which have not been treated by Aeyels or Abed

and Fu, are the following:

(i) Double zero eigenvalues with nonzero Jordan form,

(ii) Pair of imaginary and a simplezero eigenvalue,

(iii) Two pairs of imaginary eigenvalues.

In the next three sections we will examine each of the above cases individually. We

will assume, for simplicity, that $je1R. We will show in Section 2.6, by way of an exam

ple, that there is no loss of generality in this assumptioa In Section 2.5 we will investigate

the robustness of the control laws presented in Sections 2.2 through 2.4 with respect to

perturbations in the vector fields. We will end the chapter with Section 2.6 where we will

give some illustrative examples, and discuss ourassumptions.

22. Case of Double Zero Eigenvalues

We consider here the case where AuelR2*2 and has the form:

An*
0 1

0 0

We let [xyf represent 5i and we will drop the subscript from \2 and represent it by %. We

further let:

Now rewriting (2.1.3) with the above notation we get:



x

y.
=

b 1
0 0

X

y
+ g(x,y&\

4 =-^ +4>2(xO'̂ ) +v
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(2.2.1)

where k >0. Since we will choose v to be of the form F(*o\$), we can assume that

te(*.y£) =0- The center manifold is given locally by 4=A(x,y) with Asatisfying:

Dh(x,y)
y +My.A(*oO)

sOcO^^oO)
=-kh(x,y) +F(xyMxj)) ; A(0) =0 ; DA(0) =0 (2.2.2)

We now useTheorem 1.2.3 to approximate the center manifold up to terms of 0(3), that is:

h(x,y) =af+bxy+cy2 + 0(3) (2.2.3)

Note that the choice of A in (2.2.3) automatically gives A(0,0) =0; DA(0,0) = 0. Next we

choose F to be of the form:

F(x,y£) = axt+fycy+yy7 (2.2.4)

Using (2.2.3) and (2.2.4) in (2.2.2) we get:

(2ax+by)(y+fixjji)) + (2cy+bx)g(xyji) =-kaf-kbxy-kcf+cuZ+fycy+yy2 +0(3) (2.2.5)

Recalling that /and g are both of 0(2), we mayequate terms of 0(2) in (2.2.5) to get:

(2.2.6)

For k * 0, we see from (2.2.6) that (ajbtc) can be arbitrarily assigned by a choice of (a,p,v)

in the control law (2.2.4). In other words, the control law determines a centermanifold up

to terms of 0(3). The remaining problem is to determine what choice of the parameters

(ajb,c) in (2.2.3) stabilizes the flow on the center manifold, which is given by:

'k 0 0 a a

2*0 b = P
0 1 * cm y.

My.A(x^))

g(x,y,h(x,y))

X

y.
-

0 1

0 0

X

y
+ (2.2.7)
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This program is continued using the normal form theory of Section 1.3 in the following

theorem, where by a slight abuse of notation we let /fry) =/(x,y,A(x,y)) and

g(xj) =s(x,y,A(x,y)). Further in the sequel we use D*f to denote the *th partial derivative of

/with respect to x.

Theorem 2.2.1: A necessary condition for the zero solution of the center manifold system

(2.2.7) to be: stabilizable is:

Dlg = 0
D%g +Dlf=0

(2.2.8)

Furthermore if (2.2.8) is satisfied, then the zero solution of (2.2.7) is locally asymptotically

stable provided that:

^Dlg +(Dlf)2<0
Dl,g +D*f-Dif{bif+D*g) <0

where all the derivatives above are evaluated at the origin.

Proof: For the vector fields in R2,

Hf=spari

*

x2 / xy 0 0 0

0 0
i J

0 v\ y2
V J

Further for the system in (2.2.7), L(x,y) = [y,0]T. Then:

» * » » f "\ * « r \

-xy 0 f X2 f
ad L (Hj) = span4

0 0 0
I. J r2*?. 0

L J

Thus a complement to ad L (HJ) is given by:

f «

0

X2
V. J

»

0

xy

*

G2= span

xy

(2.2.9)
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And, the normal form of (2.2.7) can be written as:

x = y. K, +0(3) (2.2.10)
y = 8r + exy v '

where 8=xM>2g and e=I^g+D2/. It is easy to see that the zero solution of (2.2.10) is

unstable for all nonzero values of 8 and e. Thus a necessary condition for stabilization is

(2.2.8). Further with (2.2.8) holding, we may consider the 0(3) terms in the expansion of

the vector field in (2.2.7). We have:

«

X3 ft X? ? 0 0 0 0
H3 = spari

0
V. J

0
v J

0 0 X3
V. J w *?.

Then:

ad L (f/3) = span'

Therefore a complement to ad L (//3) is given by:

0
G3 = span'

»

» «

2ry2
If , 1
I X3 ft M

0
V J

k

0
V. J

0 c)'-3x2y w. [-A
<

0

[xb. }
Thus we see that the normal form of (2.2.7) up to terms of 0(4) may be written as:

JIk+M* +0(4) (2.2.11)

where: X=±Dlg', and \x =-kl^' +fl3/*). Here \f'^]T is the 0(3) vector field obtained
6 2

from (fe)T by removal of the 0(2) terms. Now using Corollary 1.3.1 to relate [fVf and

[fe]T we find for X and u,:
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x=iD^+2(Z^)2

H=\iDlyg +D3/) - \dif(D% +D2*)

Next consider the 3-jet of (2.2.11), that is the system obtained from (2.2.11) by neglecting

the 0(4) terms. Takens [35] proved that local stability properties of this system coincide

with those of (2.2.11) for nonzero values of Xand \l Now using the following Lyapunov

function candidate for the 3-jet of (2.2.11):

we have for V:

V= -)ut?y+ Xx3y + \xx2y2

Thus for X< 0 and u, < 0, V is a positive definite function whose derivative V is negative

semi definite. From LaSalle's theorem [37] it follows that the zero solution of the 3-jet is

globally asymptotically stable, since the set Q= {x | VM)} contains no nontrivial trajec

tories. Therefore for X< 0 and u. < 0, the equilibrium of (2.2.11) is locally asymptotically

stable.

D

Corollary 2.2.1: The zero solution of (2.2.1) is stabilizable by a control of the form

v= a^+pxy+w2, provided (2.2.8) is satisfied and D%g * 0.

•

Proof: By inspection, if Dj^g * 0, then the values ofDig and D3^ can be assigned arbi

trarily by a proper choice of (aj?,c) (and thus by (a,p,Y)). Thus through the control v the

parameters Xand u. can be made negative.

•



23. Case of a Pair of Imaginary and a Simple Zero Eigenvalues

We consider here the case where i4neR3x3 and is of the form:

Au«

0-10

1 0 0

0 0 0

In this case (2.1.3) may be written as:

X

y =

z

0 -1 o]
1 0 0

P o oj

X

y +

z\

flxyj&)
g(xyj&)
p(xj*&\
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(2.3.1)

4 = -*$ + v *>0

The center manifold is represented by %- h(xy,z). Utting v=F(x,y,z£), we get that A

satisfies the following:

DA(x,y,z)

-y+/&W.A(x,y,z))

x+g(xyjMxjj)) = -*A(x,y,z)+ F(x,y,z,A(x,y,z)) (2.3.2)

A(0) = 0 ; DA(0) = 0

As before, using Theorem 1.2.3, we approximate the center manifold up to terms of 0(3),

that is:

A(x,y,z) = a^+bf+cz^dxy+exz+lyz +0(3) (2.3.3)

Next we choose the following form for the feedback law F:

F(x,yj&) = o*2+Py2+T22-Kixy+Tixz+u.yz (2.3.4)

Using (2.3.3) and (2.3.4) in (2.3.2) and equating the coefficients of the 0(2) terms we get:

k 0 0 1 0 0 a a

0*0-100 b P
0 0*0 00 c Y

-2 2 0 k 0 0 d
*"

a

0 0 0 0 k \ e t\

.0000-1*. I. R

(2.3.5)
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For* * 0, (2.3.5) implies that [ajb,...] can be arbitrarily assigned by a choice of the control

parameters [ct,p,...]. Thus the control law determines a center manifold up to 0(3) terms.

Next we wish to determine what choice of [ajb,...\ renders an asymptotically stable equili

brium point for the center manifold system:

0-10

1 0 0

0 0 0

/(x,y,z,A(x,y,z))
S(x,y,z,A(x,y,z))
p(x,y,z,A(x,y,z))

(2.3.6)

This is done in the next theorem, where as before [f^^f denotes the vector field obtained

from \fgj>)T after removal of the 0(2) terms.

Theorem 2.3.1: The zero solution of (2.3.6) is not stabilizable unless:

DjZ+D^O (2.3.7a)

Dlp +DJp^O (2.3.7b)

D2p = 0 (2.3.7c)

Furthermore if (2.3.7) is satisfied, then the zero solution of (2.3.6) is asymptotically stable

provided that:

Dlf + D>g' +Dy + Dleyg'<0 (2.3.8a)

D3p'<0 (2.3.8b)

DU +Dl„g'<0

D\xJ>' +DyyJ>' <0

Conditions (2.3.8c) and (2.3.8d) may be replaced by the single condition:

sgn(DLr +£>3„g0 = - sgnPljy' +D]yj/)

(2.3.8c)

(2.3.8d)

(2.3.8c)
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Remark 2.3.1: We may use Corollary 1.3.1 to express (2.3.8) in terms of the vector field

\f&4>?> The resulting expressions, although extremely involved, would consist of the terms

appearing in (2.3.8) plus additional terms involving various second order partial derivatives

of \fg#]T. The stabilizability conditions on faff, however, can be determined from

(2.3.8) alone, since the control can only affect the 0(3) terms in If^gj}]7.

Proof: In R3 we have:

*

x2 y2 z2 xy xz y*

0 0 0 0 0 0

loj loj loj lojLoj loj
H2 - span*

0 0 0 0 0

X2 y2 z2 xy xz y*

loj loj Loj loj loj loj

0 0 0 0 0 0

0 0 0 0 0 0 '

v\ W w xy. xz. yzj

And for the system in (2.3.6):

L(xyj) =

Thus:

» >

-y

ad L (Hi) = span

f
f «

2xy -2ry 0 [y2-*2] yz -xz

X2 f z2 xy xz yz

Lojlo Jloj I 0 Jloj loj

M M PI -xy' -xz -yz

2xy -2xy 0 f-x2 yz -xz

Loj 1 o JLo J1 o Jloj loj

0 0 0 r o ] 0 f°l
0 0 0 0 0 0

2xy. l-2xyj loj bM yz rzx)



It is easy to show that a complementto adL (H£ is given by:

G2 = span

f
f «

xz

» «

yz r o ]f°l
yz -xz 0 0

lojloj bvJ

Therefore the 0(2) normal form associated with (2.3.6) is of the form:

x = -y + fixz + eyz

y = x + 6yz-exz + 0(3)

z = X(x2+y2) + pz2

23

(2.3.9)

where, 6=-j(D2/+D2Ig), z=±(D2f-D2„g), X=j(D2j> +D2?), and p=jDfa Now

transforming the normal form in (2.3.9) to cylindrical coordinates we get:

r = 6rz + OQrrf)
z = Xr2+pz2-+ 0(M3)
0=1 + Odr.zl2)

(2.3.10)

It is easy to show that the zero solution of (2.3.10) is not asymptotically stable for any

nonzero values of SX and p. Therefore conditions (2.3.8) are necessary for stabilization.

Note also that e does not appear in (2.3.10).

Next, assuming (2.3.8) is satisfied, we consider the 0(3) terms in the expansion of the

vector field in (2.3.6). We have:

x3 y3 z3 xh x*z A /z z*x * xyz

//3 = span* 0 0 0 0 0 0 0 0 0 0

Loj loj loj loj loj loj loj Loj loj Lo J

f°l fol fol fol fol fol fol fol fol 0

x3 y3 z3 xh x2z fx ?z z2x zb xyz

Loj loj Loj Lo JLoj LojLojLoj Lojloj

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

w w lz3J w w A, w L^xJ Vy) xyz)



Then we get:

M f-Sxy2] fol 'ixf-x? 2xyz

X3 y3 z3 *y x2z

Lo JI o JLoj L 0 Jlo J
ad L (HJ = span*

fy3-2xV| -Txyz fol \-ft] yz-irz

y*x t* A ft xyz

I o JI o Jloj loj 1 o J

M
r 31

-y PI f-x*yl f-x^l
Sx^ -Sxy2 0 2xy2-x3 2xyz

lo JI o JLoj L 0 Jlo J

-•f-x -/z -z^x -z^y -xyz

y3-2x2y -2xyz zb -A y^z-xf-z
1 o JL 0 Jlo Jlo J1 o J

0 f o 10 f 0 1 0

0 0 0 0 0

\&y\ Uxf) Loj Liry2-^ l.2xyzj

0 0 0 0 0 '
0 0 0 0 0

ly3-^ .-2*yz Vy\ r^x. yWzJ

It can be shown that a complement to ad L (//3) is given by:

x*+xy2 y+xy xz2' M 0

«

bl

G3 = span * y3+x^ -x*-xy2 yz2 xz2 0 0

. 0 . . 0 . .0. .0 . fr+fz. .z3J

Then the 0(3) normal form of (2.3.6) can be written in the form:

x=-y¥eyz+aXx3+xy2)+fi,(y3+x2y)+Yxz2-r\yz2
y =x-exz+af(yi+x2y)-fi,(xi+xy2)+'/yz2+^xz2 + 0(4)
z = a'(x2+y2)z-Hi/z3

where with some algebra we may find:
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(2.3.11)



a' =̂ / +̂ '+/«/ +̂ ')16

P' =Js<rDlg' +D3/ - />V +Dlf)

Y=j(Dif +Dlag')

\S~\d\p'

Next transforming (2.3.11) into cylindrical coordinates we get:

f = a'r3+'Yrz2 + 0(\rat)
z^oVz+uV + 0(\rat) (2.3.12)
9=1 + 0(M2)

Now we know that the local stability properties of (2.3.12) coincide with those of its 3-jet

because the vector field in the 3-jet of (2.3.12) is a homogeneous polynomial vector field

[17]. Therefore we only need to prove the theorem for the 3-jet of (2.3.12). To this end

consider the following Lyapunov function candidate:

v=LRr2+±Sz2
2 2

where R and S are positive constants. Differentiating V we have:

V= fla'r4 +tfyW +SoVz2 +S\i'zA

Therefore for a'./.o', and \i* all negative, or for cfyi' negative and sgn(Y) = - sgn(aO, the

equilibrium point of (2.3.12) is asymptotically stable.

•

25
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Corollary 23.1: The zero solution of (2.3.1) is stabilizable by the control

v=a^+pyVyz^xy+Tjxz+uyz provided (2.3.7) is satisfied, D%p *0, and either Dfy* 0 and

D%g * 0, orEfy* 0 and Dfe * 0.

D

Proof: In view of the Remark 2.3.1, we see that with £>J^ * 0 (2.3.8b) and (2.3.8d) can

be satisfied by making D3*?, and D\j> or D\yj> arbitrarily negative with a proper choice of

the parameters c , and a or b of the center manifold. Furthermore with Dfy^O and

Btyg * °» we see that (2.3.8a) and (2.3.8c) may be satisfied through the parameters a and /

by making D3/ and D\„g arbitrarily negative. In addition (2.3.8a) and (2.3.8c) may be

satisfied with Dfy* 0 and Dfy * 0 in a similar fashion.

•

2.4. Case of Two Pairs of Imaginary Eigenvalues

Here we consider the case whereAneR4x4 and has the following form:

An =

0-100

10 0 0

0 0 0-6

0 0 5 0

where we assume 6 * {±l*,±142,±3}. Rewritting (2.1.3) for this form of An we get:

0-100 X /(x,y,z,w£)
10 0 0 y g(x,y,z,w£)

0 0 0-6 z
+ p(x,y,z,w£)

0 0 6 0 w q(x,y,z,w&)

4 =-*$+v

Letting v= F(x,y,z,w) and representing the center manifold by £=/i(x,y,z,w) we get:

(2.4.1)



Dh(xjjtw)

-y+flxy^wMxyw))
x+g(x,y,z,H\/Kx,y,z,w))

Sw+p(xyjtwJi(xjJW))
Sz+q(xyfSvMxyj,w))

= - kh(xjj,w) + F(xyj,w)

A(0) = 0;D/t(0) = 0

Choosing the following form for the control law F:

F(xy*tw) = cu^^y2+7z246H^4^T|xy+uxz+pxHH-

Xyz+vyMH-£zw
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(2.4.2)

(2.4.3)

and approximating the center manifold up to terms of 0(3) as:

h(x,yj,w) = ax2+fey2+cz2-H/w2+exy+icz+mxw+

nyz+syw+tzw + 0(3) (2.4.4)

Using (2.4.3) and (2.4.4) in (2.4.2) and equating the 0(2) terms we find that for nonzero

values of k there is a one to one correspondence between the control parameters (a,p,...)

and the center manifold parameters (ajb,...) regardless of the value of 6. Thus again the

control law determines a center manifold completely up to terms of 0(3). Now in relation

to the stability of the center manifold system:

/(x,y,z,w,/i(x,y,z,w))

g(x,yj,w,h(xyj,w))
p(x,y^,w,A(xj^,w))

q(xyjtwji(xyj,w))

0-100 X

10 0 0 y

0 0 0-6 z
+

0 0 6 0 w

we have the following theorem:

Theorem 2.4.1: The zero solution of (2.4.5) is asymptotically stable if:

Dlf +Efc +Dlyf +Dltg'KO

Dip' + Eiq' + Djw>' +DU < 0

DU +DL/ +Djag' +D3wwg' <0

(2.4.5)

(2.4.6a)

(2.4.6b)

(2.4.6c)
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DLp* +D>' +Dl^jq' +D3^ <0 (2.4.6d)

Conditions (2.4.6c) and (2.4.6d) may be replaced by the single condition:

sgn (Z>L/ +DU +D\\£ +D3^) =

- sgn (DLp'+D3^' +Di^'+D^ (2.4.6e)

Proof: We give a short sketch of the proof since the details, although quite similar to the

proof of Theorem 2.3.1, are extremely lengthy and tedious. Calculating adL(H£ and

ad L(H3) for the system (2.4.5) we can show thatall 0(2) terms of the vector field may be

removed and that the 0(3) normal form can be written as:

x = -y+(a'x+P'y)(x2+y2Hyx4<y'y)(x2+y2)
y = x+(a'y-P'xX^+y2Hyy-cy/^)(x2+y2)
i =-&wHv'w'w)(z2+M^'zWw)(x2+fjHJ{' K' ' }
w= 6z^Ti'w-^/z)(z2+w2Hp'w-v/z)(x2+y2)

where:

a'=±(D3S+D3g'+D3J+D33iyg')

P' =±(D3/-Dh'+D3xf-D3yyg')

i =|tf>L/+^L/+^/+^3^0

cT =̂ (Dtf+DlvJ-Dlvg'-DL^O

H' =̂ (Dlp'+Diq'+Dl^'+Dl^

* = TzV&'-Dlq'+D^'-Dl.J)
16

p' =j(D3^+D3yy^'+D3x^f+D3ywq')

v={(/>Lp'+/>>'-d '̂-d3,*-)
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Now transforming (2.4.7) into cylindrical coordinates we obtain:

r\ =a'r\+irxr\ +OQhSif)

r'i =p'rlr^'rl +OQrxSit)
e, = i +oari/2i2)

e2 =5 +Oar,/2l2)

Conditions (2.4.6) are now clear by considering a Lyapunov function candidate of the form

V=Rr\+Sr\ for some positive constants R and 5.

D

Corollary 2.4.1: The zero solution of (2.4.1) is stabilizabje by the control law in (2.4.3) if

D2^, Dfy are not both zero, and Dfyp, Di^q are not both zero.

D

The proof is very reminiscent of that of Corollary 2.3.1 and will, therefore, be omitted.

23. Robustness Considerations

In the previous sections we gave conditions under which the equilibrium point of a

system with degenerate linearization can be stabilized. Since it is often the case that some

inaccuracies exist in a model of a physical system, it is important to know what effects

modeling errors have on the stability properties of the system. Thus, in this section we

investigate the effects of perturbations in the vector fields on the stability properties of the

system after a stabilizing control has been implemented. We consider unperturbed systems

of the form:

x=f(x) xet/cR" (2.5.1)

where we assume thaty(0) =0 and x =0 is a locally asymptotically stable equilibrium point

of the system with U as its domain of attraction. As the class of perturbed systems we con

sider all veaor fields J(x) which are e-C° close to/(x), that is all?(x) satisfying:
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sup|?(x)-/(x)|<e (2-5.2)
xe U

Thus we may write any perturbed system as:

x=A*) +e6(x) (2.5.3)

where 5(x) is any vector field whose C° norm is less than one.

We point out that the class of perturbations considered here is quite large in that it

contains all bounded perturbations of size e. Since our system is not exponentially stable,

however, we cannot expect to have bounded states for large values of e. Nevertheless, we

will show that for e small enough the states will remain bounded. More precisely, we will

show that there exists an open ball centered at the origin which remains attractive in the

presence of perturbations and whose size depends on e. The following theorem is to this

effect

Theorem 2.5.1: Let the equilibrium point of the system (2.5.1) be locally asymptotically

stable with domain of attraction U c R\ Let the class of perturbed systems be given by

(2.5.3). Then there exists e* >0 and a monotone increasing function r() with r(0) =0, such

that for all e < £*, and all 6(x) with sup 16(x) | < 1, there exists a ball of radius r(z) centered

at the origin which contains the ©-limit set of all trajectories of (2.5.3) starting in U.

U

Proof: By assumption the equilibrium point of (2.5.1) is locally asymptotically stable.

Therefore by a converse theorem of Lyapunov [16] there exists a locally positive definite

dVfunction V(x) whose derivative along the flow of (2.5.1), that is -jj(x)/(x), is locally nega

tive definite. Now using this function for the system (2.5.3) we have:

V=-g(x)y(x) +e-^(x)6(x) (2.5.4)

Since — (x)fix) is locally negative definite, we can find a class-K function a() such that:
ox
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4^(x)/(x)£-a(M) V xeU (2.5.5)
ox

Furthermore, let:

I -T-(X) II:=sup-^L_ (2-5.6)
xeU \x\

Then using (2.5.5) and (2.5.6) in (2.5.4) we get:

V£-a(W) + eLW (2-5.7)

where we have also used the fact the C° norm of 6(x) is less than one. Now, let R be the

radius of the largest ball centered at theorigin which is contained in U. Then define:

£* •= «(£l (2.5.8)
E * LR

From the monotone increasing property of a() we can see that for all e <e\ there exists a

monotone increasing function /•(•) with r(e*) -R and r(0) - 0, such that:

o(W)-eLM£0 V r(e)<\x\<R (2.5.9)

Then it is clear that for all e < e* any trajectory of (2.5.3) starting in U will converge to the

ball of radius r(z) centered at the origin.

D

2.6. Discussion and Examples

The previous sections were based on several seemingly restrictive assumptions. Here

we will show the extension of the previous results to more general cases. In Sections 2.1

through 2.4 we considered systems of the form 4=<KSH&". L^ us mv/ consider the more

general case of systems of the form:



where <K0) = 0. Letting b := y(0), we may define V(%) by:

^(0-v(0-fr

Then, rewriting (2.6.1) using the above notation we have:

i=m + bu + V($)u

Now letting A := ZtyKO) and transforming the system as in Section 2.1 we have:

An 0 0 ii ♦1© 0 V16)

0 A22 0 \i + fa(S> + *2 W + ¥2©

0 0 A22 %3 fa<S> *3 VS<&>

Representing the centermanifold by (£2 &) = (/»2(£i) Mh\)) we get:

Z>M^i)[An^i + 0i^iArftO^sSi)) +ViftiMOAffii)) «] =

A22A2G1) + 4*2(^1^2(^1)^3(^1)) +*2" +V&iJ&iXfcfti)) u

*M*S<£l) + ♦sftl^2<Sl)^(Sl)) +*3 " +¥sfti^Ki)^s(Si))M
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(2.6.2)

(2.6.3)

(2.6.4)

(2.6.5)

Assuming the control u is a smooth function of the £'s , it is clear that the terms y/i's are

at least of 0(2) and will, therefore, have no effect on the 0(2) expansion of the center man

ifold. The flow on the center manifold, on the other hand, is now determined by

ii =A„$,+*i<£iMti)M$i)) +¥1(^1^2(^1)^3(^1)) u (2.6.6)

Since the stability of the zero solution of (2.6.6) is determined by the quadratic and higher

order terms, the presence of ¥1" wiU onty relax me stabilizability conditions by adding

more flexibility in satisfying the conditions of Theorems 2.2.1, 2.3.1, and 2.4.1 . In other

words the special class of systems 4=<K£) +bu represents a least controllable situation.

We next present two illustrative examples. The first example demonstrates the control

design procedure and the effects of perturbations on the stabilized system. The second

example involves the case where the controllable part of the system is not a scalar.
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Example 1: Consider the system:

x = y-j?+x?-2&
y =x3+x| (2.6.7)

With usO, a center manifold for (2.6.7) is given by $s0. The flow on ^s center manifold

is governed by:

i-yf+rf (2.6.8)
y = j?

The origin of (2.6.8) is unstable as shown in Fig. 2.1 by the phase portrait of the system.

To stabilize the system we choose the control as in (2.2.4) and represent the center

manifold by (2.2.3). Then the flow on the center manifold is governed by:

i='^iy'^T^ +0(4) (2.6.9)y = r+xfajr+bxy+cf)

From Theorem 2.2.1 we see that a choice parameters of the centermanifold which stabilize

theorigin of (2.6.9) is given by: a=-2,6=0, and c=0. Using (2.2.6), the corresponding con

trol parameters are given by: ct=-10, p=-4, and *>=0. Thus a stabilizing control law is given

by:

tt= -10x2-4xy (2.6.10)

Fig. 2.2 shows the phase portrait of the stabilized system (2.6.9) for the above choice of

parameters.

Next we introduce a linear perturbation in the original system. The perturbed system

is given by:

x = ex+y-o^+xy^yS
y = ey+x3+x^ e>0 (2.6.11)

4 =-5$+k
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10.0

5.0 —

0.0

-5.0

-10.0

-10.0 -S.0 0.0 5.0 10.0

Figure 2.1 Phase portrait on the center manifold of the unstable system.
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10.0

5.0

0.0

-5.0

-10.0

-10.0 -5.0 0.0 5.0 10.0

Figure 22 Phase portrait on the center manifold of the stabilized system.
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10.0

5.0 -

0.0

-5.0 r-

-10.0

-10.0 -5.0 0.0 5.0 10.0

Figure 23 Phase portrait on the invariant manifold of the perturbed system.
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Clearly the origin of (2.6.11) is unstable irrespective of the control u. From Theorem 2.5.1,

however, we expect that for e small, using the control (2.6.10) the trajectories of the sys

tem converge to a small ball centered at the origin. To demonstrate this we compute the

center manifold of the suspended system obtained from (2.6.11). This is given by:

A(xo\e) =- 2X2 +0.8EX2 - 0.32exy +0.0646V2 +0(4) (2.6.12)

Then the flow on this invariant manifold is determined by

x =ex+y-x3+xy2-2y/»(x,y,e)
y = ey+x3+xh(x^jt)

(2.6.13)

The phase portrait of (2.6.13) is shown in Fig. 2.3 for e=0.5. Comparison of Figs. 2.2

and 2.3 shows that as c changes from zero, the stable equilibrium point at the origin bifur

cates into a stable periodic orbit around the origin and an unstable equilibrium point at the

origin.

Example 2: In this example we consider a system whose hyperbolic portion is not a

scalar. Since the approach to all higher dimensional problems is identical, we consider a

two dimensional example. Thus consider the system:

$1 =

^2 = -^2+«

$3= -2^3+"

Representingthe center manifold as:

X

y\~
0 l]
o oj

X

A+
x3^xyl-x%2

^2+X^3+X2V>

= *(x,y) =
h2(x,y)

A3(x,y)

a^+bxxy+Cxy2

a2x2+b2xy+C2yz
+ 0(3)

we have that with the control u=ax2+$xy+yy1, h(x,y) satisfies:

(2.6.14)

(2.6.15)



Dh(xj)
y+x3+xy2-xA2(x,y)
x2y+yh2(xty)+xh3(x1y)

-axJ-biXy-c^+wP+Vxy+yy2
-2a2x2-262ry-2c2y2+ar2+pxyfY>2J +0(3)

Now equating the 0(2) terms we get:

1 0 0 <*i 2 0 0 a2 a

2 1 0 bi = 2 2 0 bi = P

P 1 1. Cl P 1 2
?2.

.Y.

The flow on the center manifold is given by

iH-(l-a1)x3+(l-c1)xy2-fr,x2y
a2x3^(ax+b2+\)x2y^b^c%3V-H:iy' +0(4)
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(2.6.16)

(2.6.17)

(2.6.18)

Then from Theorem 2.2.1 the zero solution of (2.6.18) is asymptoticaUy stable if a2<0 and

3(l_fllyffll+&rfl<0. Thus for example choosing (axJbxfi\)=ir2-\42) and (a2^2^2)=(-l-8-2)

satisfies (2.6.17) and the above inequalities. Then we get that the control law:

u=-2r2-18xy-12y2 (2.6.19)

stabilizes the zero solution of (2.6.18) and thus that of (2.6.14).

It is clear from (2.6.17) that although the control law does not determine the center

manifold completely, it does give us the same number of degrees freedom in choosing the

center manifold as was available in the case with a scalarhyperbolic state.



Chapter Three

Output Tracking in the Presence of Uncertainties
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3.1. Introduction

The output tracking problem involves the design of a control law which causes the

output of a system to follow a desired trajectory. This problem is now a classical one in

linear control theory and has been studied from several viewpoints (see e.g. Callier and

Desoer [10] for an algebraic approach, and Wonham [38] for a geometric approach). It is

well known that the solvability of the tracking problem is closely related to the invertibility

of the input-output map. The invertibility problem was studied by Brockett and Mesarovic

[8], and Silverman [32], in the context of linear systems, and by Hirschom [19], Isidori et

al [24], Claude [13], and Nijmeijer [30], in nonlinear systems. In his work, Hirschom

introduced some regularity conditions under which the techniques of Silverman in linear

systems can be generalized to nonlinear systems. Later, the same philosophy was adopted

by Byrnes and Isidori [9] for input-output linearization of a nonlinear system. Invertibility

of an input-output map, and thus the construction of a tracking control law, involves exact

cancellations of nonlinearterms which requires complete knowledge of the dynamics of the

system. This presents a limitation to the theory in that in the presence of modeling errors

exact cancellations are no longer possible.

In this chapter we study the problem of output tracking of a desired trajectory for

SISO nonlinear systems when the dynamics of the system are not completely known. In
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Section 2 we review the basic theory and present the tracking control law in the ideal case

where the dynamics are completely known. In Section 3 we will characterize the nature of

the uncertainties that we will deal with in this chapter. We will introduce two classes of

uncertainties: those satisfying a generalized matching condition, and those arising from

linear parametric uncertainties. In Sections 4 and 5 we present modifications to the basic

tracking control law of Section 2 in order to achieve robustness with respect to the first

class of uncertainties. In Section 6 we present an adaptive control scheme in order to deal

with the second class of uncertainties. Finally, in Section 7 we close the chapter with

some concluding remarks.

32. Output Tracking in the Ideal Case

Consider a single input-single output nonlinear system of the form:

x-f(xy+g(x)u

y = h(x)

where xeJR" , ueR, yelR, f() and g() are smooth vector fields on an open set UcJRn,

f(0y=O, and h() is a smooth function on U. We are interested in the problem of finding a

control input u which would result in asymptotic convergence of the output y to a desired

function of time yd. In view of the results in linear control theory, it is clear that the prob

lem may be solved if there exists a control of the form:

u=o(x) + p(x) v (32.2)

which results in a linear map from v to y. The form of the control (3.2.2) is attractive since

the affine structure of the control in (3.2.1) is preserved under this form of feedback. The

existence of such a linearizing feedback is in turn guaranteed if the system (3.2.1)

possesses a so called "relative degree" from u to y. We will next define this term which

was first introduced by Hirschom [19] in the context of invertibility of nonlinear systems
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and later used by Isidori [23] in linearization theory.

Definition 3.2.1: The system (3.2.1) is said to have a relative degree at xq (from u to y) if

there exists a positive integer 1 £ v < «> such that:

Lgh(x) = 0

LgLfh(x) = 0

y/-2A(x) =0

for all x<=B(xq), an open ball centered at Xq. and

LgLf^Kxo) * 0

In this case we say the system has relative degree v. A point xq at which the system has a

relative degree is called a regularpoint of the system.

•

Definition 322: The system (3.2.1) is said to have strong relative degree v in an open set

D, if there exists a positive integer 1 < v < «» such that the system has relative degree v at

every point Xq<eD.

•

Remark 3.2.1: The term "relative degree" is used here in analogy with the terminology

used in linear systems theory. Let H(s) represent the transfer function of an SISO linear

system, then the relative degree of H(s), the difference between the degrees of the denomi

nator and the numerator polynomials in H(s), is precisely the number of times the output

must be differentiated before the first appearance of a control term..For the nonlinear sys

tem, it is clear from the above definitions that the control u first appears in the vth deriva

tive of y, and hence v is called the relative degree from u to y.

D
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Remark 3.2.2: We point out that nonlinear systems for which no relative degree may be

defined are considerably more complicated than those with relative degrees. Furthermore

no general theory as yet exists for treating them.

D

We make the following assumption throughout; this assumption is central to the

development of the theory presented here.

Assumption 3.2.1: (Regularity) The system (3.2.1) has a strong relative degree in its

domain of definition, namely U.

D

Assumption 3.2.1 allows us to find a diffeomorphic coordinate transformation in U,

resulting in a normal form for the system (3.2.1) which is particularly suited for the input-

output linearization of the system. The following two propositions concern the construc

tion of such a transformation.

Proposition 3.2.1: Let v be the strong relative degree of the system (3.2.1). Then the set

of 1-forms:

dh(x)

dL/i(x)

dL/~lh(x)

is a linearly independent set for all xe U.

•

To prove the proposition we need the following lemma.

Lemma 3.2.1: Let v be the strong relative degree of the system (3.2.1). Then the following

relations hold:

v* r rv-l

v-/d(Lfv-'h(x)yL/g(x) =
(-I)* LgLf-'Kx) i = k+\
0 *+K/<v <3'23)
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for all k - 0....V-1 and for all xe U.

D

Proof: Clearly for fc=0 the assertion is true by the definition of v. Now suppose (3.2.3) is

true for k=*o <v-1. We will show that it is true for k= Atf-1. Now, for k=*o+l we

have:

d(ZfA(*)) •lp>+lg(x) =diV}Mx)) •L$g{x)
=rf[rf(Lf/i(x))-L^)]./(x)
- d[d (L^Kx)) •fix)) •#g(x) (3.2.4)

where the second equality follows from the definition of a Lie bracket of two vector fields

given in (1.1.2). Rewriting (3.2.4) we have:

d(ifKx)) •L^+lg(x) =d[d (LfKx)) •Lfg(x)] •/(*)
-d(Lf-MKxy)*L?g(x) (3.2.5)

Since, by assumption, (3.2.3) is true for k=*q, the right hand side of (3.2.5) is zero for all

/ > Icq+2. And for / = Aq+2 we have:

d{L^~2h{x)) •L^gix) =-d {L^~lh(x)) •l!fg(x)
=- {-YpL^Kx) =(-D^LgLj-'Kx) (3.2.6)

where the second equality in (3.2.6) follows from (3.2.3) for / = *b+l. This proves the

lemma.
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Proof of Proposition 3.2.1: Consider the following matrix multiplication performed point-

wise for each r.

dh(x)

dLjh(x)

dL?-2h(x)
dlf^Kx)

\{-irlL}-lg(x), (-ir2Lj-2g(x) *(*)] =: A(*)

It is easy to see from Lemma 3.2.1 that A(x) has the following form:

A(x) =

Ux) 0

* Ux)
* *

0

0

0

Ux)

where Ux) := LgLf~lh(x) and **s denote other terms which are possibly nonzero. Since the

system (3.2.1) has strong relative degree v in the set U, the matrix A(x) is nonsingular for

all xeU. This proves the proposition since the nonsingularity of A(x) implies the linear

independence ofthe 1-forms dlJfh(x), k=Q,... ,v-l.

•

Proposition 3.2.2: Let v be the strong relative degree of the system (3.2.1). Then we can

find n-v functions r\pL) ,/=l n-v, with the following properties:

0 dr\j{x)*g(x) =Q Y*s£/,V>=1 n-v.

ii) The set of n 1-forms {drt/x), dL}h(x) | j=l,. . . ,n-v , fc=0,. . . ,v-l} is a linearly

independent set for all xe U.

Therefore defining:

%2:=Lfi{x)

Sv^LpKx)
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we have that *(*):= (£,n) is a diffeomoiphic change of coordinates in the set £/, where

5 := Ri. •••>SvfandTj := [T|i i\*-vf-

D

Proof: By assumption g(x) is a nonzero vector field for all xe U. Therefore by Frobenius'

theorem [7], the annihilator of g(x) , denoted by Q(x), has dimension n-1 and is spanned

by a set of n-1 exact 1-forms. That is:

Cl(x) = span{ dr\t{x) | t=l n-1}

In addition, from the definition of v we know that:

dLfax) e Cl(x) h=0 ,v-2

Since dLfh(x)'s are in fact linearly independent, they form a partial basis for Cl(x) which

may be completed with the addition of n-v of rfn,{x)*s which are linearly independent of

the dL}h(xys. Relabeling these ti.'s from 1to n-v we have that:

fl(x) = span{ dL}h(x), dn/x) I JH),. .. ,v-2,/=l n-v}

Fmally since dLj~lh(x) • g(x)*0 Yxe I/, we conclude that dL}~lh(x) is linearly independent

of Q(x) and this proves the proposition.

•

Proposition 3.2.2 enables us to transform the system (3.2.1) into the following normal

form:

42 =$3

4v-, = Sv (3-2-7)

4» = KS.1) +aft.T1) "

11 = 9(5.1)
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where:

K^n):=L}ho<ir\%ft\)

^.ti) := dt\*fix)o <tTl&t\)

moreover 0(£,n)*O, V(5,T|)e 0»(t/).

The choice of the linearizing control law is now apparent from the normal form

(3.2.7). Since a(&,i\) is bounded away from zero, its inverse is well defined and the con

trol law:

u=-jr-H*tTl) +v] (3.2.8)

which is of the form (3.2.2), results in the system:

4i =52

:. (3.2.9)

Thus the dynamics governing the state variables fc are that of a linear system. In fact, the

new control v affects the output y=£i through a chain of v integrators. This new control

can now be designed in a number of ways to achieve output tracking.

The control law (3.2.8) also makes the state vector ti completely unobservable at the

output Since we are interested in achieving stable tracking, we require that ti remains

bounded for bounded £. However, we can see from (3.2.9) that %can be thought of as an

external input vector with respect to the dynamics of r\. Since £ is expected to track arbi

trary time functions, it is clear that boundedness of r\ is entirely dependent on the vector

field q{-, •), which belongs to the tangent space to R""*. The dynamics
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11 = <7(0,T1) (3.2.10)

is referred to as the zero dynamics [9], since it corresponds to the dynamics of the system

(3.2.1) restricted to the submanifold

S:=[&r\)\tt =0} = {x\h(x) =Ljh(x)= ••• =L}-lh(x) =0)

The stability properties of the zero dynamics are extremely crucial since they determine

whether or not i\ remains bounded when a tracking control is applied. At this point we will

introduce some further terminology.

Definition 3.2J: The system (3.2.1) is said to be a minimum-phase nonlinear system if the

equilibrium point T| = 0 of the zero dynamics (3.2.10) is asymptotically stable.

•

Remark 323: The above definition was made in analogy with linear systems and was

first introduced by Byrnes and Isidori [9]. In the case of linear systems it can be shown

that the zero dynamics are linear with eigenvalues equal to the zeros of the transfer func

tion from u to y. If the transfer function zeros are all in the left half plane, the system is

called minimum-phase. Thus for minimum-phase linear systems the dynamics (3.2.10) are

asymptotically stable, and the above definition for nonlinear systems parallels this property

of linear systems.

•

For purposes of stable tracking, however, we require that the dynamics:

f| = <7&Ti) (3.2.11)

be bounded-input bounded-state (BIBS) stable. It is easily shown that asymptotic stability

of (3.2.10) is not sufficient to guarantee BIBS stability of (3.2.11), and stronger stability

criteria are needed. The difficulty with extending the asymptotic stability of (3.2.10) to

BIBS stability of (3.2.11) arises from some cases in which the linearization of (3.2.10) has
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eigenvalues on the Joo-axis. A sufficient condition for the BIBS stability of (3.2.11) is the

exponential stability of (3.2.10). We have the following definition to this effect

Definition 3.2.4: The system (3.2.1) is said to be a hyperbolically minimum-phase non

linear system, if its corresponding zero dynamics are exponentially stable.

D

The following theorem is our basic stable tracking theorem when we have complete

knowledge of the vector fields Rx) and g{x) in (3.2.1). In the theorem ^ denotes the

(*-l)st derivative of the desired tracking signal yjf) for k=1, .. . ,v, and Z? := (£f 5v) •

Theorem 3.2.1: Let the system (3.2.1) be hyperbolically minimum-phase, and the control u

chosen according to (3.2.8) with:

v= %+a^v) + *2(&HU-i) + ••• + Ovffif-W (3.2.12)

such that the polynomial:

sv + a^1 + • • • + Ov (3.2.13)

is a Hurwitz polynomial.

Then there exists a positive constant c* and an open set £2 c ®(U), such that if

|£d| < c*. then for all initial conditions in Q asymptotic output tracking is achieved with the

trajectories remaining in the set O(iT) for all time.

D

Proof: With the control v given by (3.2.12), the system (3.2.9) can be written as:

ex = e2

h = e3
; (3.2.14)

ev = -a\ev-a2ev-i~ '' ' <*v*i

11 = <7(tn)
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where ek := $k - %*. Since the polynomial in (32.13) was chosen to be Hurwitz, it is clear

that ek->0 as t-**> V*. Thus it remains to show that there exists a constant c > 0 such

that for Rfl <c*f the vector T| is also bounded and in addition (Ejit),i\(t))e&(y), V t. The

system is hyperbolically minimum-phase by assumption, therefore by a converse theorem

of Lyapunov [16] there exists a positive definite function V0(n) satisfying the following

inequalities:

o2|ril2SVo(Ti)<c1|Til2 (3.2.15a)

4^(0,n)£-X,hll2 (3.2.15b)

h£| ^X^lnl (3.2.15c)

where Oi,02t^it and X2 are positive constants depending on ?(0,ti). Differentiating V0(t\)

along the trajectories of (3.2.14) yields:

Wo *
Vo(T1) =ln ^,n)

=3T *fcl> +3T WtH) " ¥M>] (3-2.16)

Using (3.2.15) in (3.2.16) we obtain:

VoOl) <S - X, h|2+ ^ mi I<7&T1) " ^(0,ti)| (3.2.17)

Recall that tiie original system is defined in an open set U c R". Thus the system (3.2.9)

is defined in <P(U). Then define:

L:= ^ KfrP - ¥P-VJH (3.2.18)

We will assume that L is finite. This is certainly true if the system is analytic and U is

bounded. We will say more about this later. From (3.2.17) and (3.2.18) we conclude that

for all (5.Tl)e $>(£/) we have:

VoOl) £ - X, N2 +*2 *- Ml fil (3-2.19)
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Thus VQ £ 0, whenever

mi >¥• © (3-2-20)

Therefore, we can see that T| is bounded whenever £ is bounded. On the other hand, we

observe that J; is bounded if Zf* is bounded. Thus, we conclude that r\ remains bounded for

all bounded tracking signals §rf. However, we also need to guarantee that both %and tj

remain in £>({/). So let:

Oc := (n IWl) * c) (32-21)
£(r) := inf{C \Br c Clc) (3.2.22)

where £r denotes a ball of radius r centered at the origin. It is easily seen that if V0 £ 0 for

|ti|> K, and if ti(0) e C1q{K), then:

Ti(r) e 1^,, Yf (3.2.23)

On the otherhand from the error dynamics we know that there exists a constant M>\

such that:

\e(t)\ < M \e(0)\ * Vf (3.2.24)

In addition, we can write:

fi(f)| <|e(t)| +1^(01 <M\e(0)\ +|rtf)| (3.2.25)

where the second inequality follows from (3.2.24). Now letting gd\ <c and |e(0)| <2c, we

define:

c, := (2Af+l)c

C2 := M(2Af+l)c (3.2.26)
A,!

G(c)?={(tTi)|l5l<c;Ti6n£(C2)}

Then from (3.2.24) and (3.2.25) we conclude that for all initial conditions in G(c), we have
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that:

(3.2.27)

Finally let:

c* :=sup {c | {(5.T1) IB«i ; 11* %<:,)} c *W ) (3-2.28)

Then the theorem is proved with \£f*\<c* and CI := G(c*).

D

Remark 3.2.4: We point out that if the domain of definition of the system (3.2.1), namely

the open set U, is the entire IRB or an unbounded subset, then L as defined in (3.2.18) may

in fact be infinity. However, in that case for every open and bounded subset of U, U, con

taining the origin we may give an upper bound for |^| such that output tracking is possible

with the trajectories of the system remaining in the set U.

•

3.3. Characterization of Uncertainties

In this section assume that the system (3.2.1) is not completely known and that the

true system is a perturbation of the known model in the following form:

x =Kx) + g(x)u + Afar) + Ag(x)u
y=h(x) C }

wherexeIRB, uelR, ye!*,/(•), g(), Aft), and Ag() are smooth vector fields on an open set

U c Rrt,y(0) = 0, and h() is a smooth function on U. We wish to modify the tracking

control laws of the previous section in order to reduce or eliminate the effects of the per

turbation vector fields, Aft*) and Ag(x)t on the tracking error. The extent to which we will

be successful in robustifying our tracking scheme will, of course, depend on the charac

teristics of the perturbation vector fields. The following definition introduces a terminology
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for classification of perturbations.

Definition 3.3.1: Let the unperturbed system (3.2.1) have a strong relative degree v. A

vector field <K*) is said to have an index y with respect to the system (3.2.1) if

<K*) e Ker {dh(x), dLfi{x)t • , dLph{x)) (3.3.2)

•

It is clear from the above definition that the index of a perturbation vector field with

respect to an unperturbed system is simply the number of times the system output must be

differentiated with respect to time before the first appearance of the perturbation terms.

Thus the following facts are rather obvious.

Fact 3.3.1: Let the unperturbed system (3.2.1) have strong relative degree v. Then this

relative degree is unchanged by the addition of perturbations if the perturbation vector

fields d&x) and Ag(x) have indices largeror equal to v-1.

•

Fact 332: Let the unperturbed system (3.2.1) have strong relative degree v. If the pertur

bation vector fields Aftc) and Ag(x) have indices equal to v+1, the system with the control

law (3.2.8) and (3.2.12) is completely robust with respect to these perturbations provided

that the stability properties of the zero dynamics are preserved in the face of the perturba

tions.

D

In addition to index considerations, we will differentiate between those perturbations

arising from linear parametric uncertainties and all other perturbations. Hence in this

study, we consider perturbations which satisfy one of the following two assumptions.

Assumption 3.3.1: (Generalized Matching Assumption) The perturbations Aft*) and Ag(x)

are smooth vector fields with indices "ft and y2 and
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min {Yi,Y2} £ v-1 (3.3.3)

D

Assumption 332: The perturbation vector fields are the result of linear parametric uncer

tainties in the vector fields of the model (3.2.1), and are of the form:

Wx)=Z(<Xi-atf{x)

M (3-3.4)
AgO0=I(tf-Pite/*)

In addition:

N

Kx) = Zaffx)

" (3.3.5)
g(x) = ZVjgj<x)

where /jOO's and $/x)'s are known veaor fields and the scalar quantities a4-*s and P/s are

our estimates of the parameters a*'s and pj's, respectively. The parameters a*'s and pj's

are constant unknowns which lie in known open intervals. That is:

a*e(/aj,/!ai) i=l,..JV
(3.3.6)

for some known scalars /a.'s, /i^'s, /p.'s, and Zip's.

It is worth pointing out that Assumption 3.3.1 is a generalization of the so called

"matching condition" which is the basis for the current state of robust tracking and regula

tion for nonlinear systems. We shall state the matching assumption here for completeness

and comparison with our assumption.
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Matching Assumption: The system (3.3.1) is said to satisfy the matching condition if the

unperturbed system is completely feedback linearizable and the perturbation vector fields

satisfy:

A/(x) and Ag(x) e span{g(*)} (3.3.7)

D

In our Assumption 3.3.1, the system need not be completely feedback linearizable; it

is only required to have a strong relative degree. Moreover, the condition (3.3.3) is

satisfied if (3.3.7) holds. However, it is easy to see that (3.3.7) is a much stronger condi

tion than (3.3.3). In fact the two conditions coincide only when the relative degree of the

system, v, is equal to n, that is the system is feedback linearizable. For all relative degrees

v < n, the set of perturbations satisfying (3.3.7) are a proper subset of the set of perturba

tions satisfying (3.3.3). Thus Assumption 3.3.1 is a significant generalization of the match

ing condition and is much less restrictive.

As robustifying techniques, we will use high gain and the sliding mode control

methodologies for perturbations satisfying Assumption 3.3.1. For perturbations which

satisfy Assumption 3.3.2, we will use adaptive control. In high gain and sliding mode

control strategies we will treat the perturbations as disturbances and will try to reduce their

effect on the tracking error. For systems satisfying Assumption 3.3.2, on the other hand,

due to the parametric nature of the uncertainties we are able to use adaptive control tech

niques to update our model of the system in order to achieve zero or small tracking errors.

These tasks will be carried out in the next three sections.
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3.4. Robust Tracking Using High Gain Control

Consider the system (3.3.1) and let the perturbation vector fields satisfy Assumption

3.3.1. Then using Proposition 3.2.2 we may transform the system to the following form:

4i-fe

where:

4v = KS.T1) + a&r\)u + 8 &,r\) + 6 2&ti>

ti. = q&V)
y = $i

a(^r\):=Ljg-lho<ir%j\)
q&T\) :=dt\ • (T+A/)o •rlft.n)

5ift.n)^AvITI*o*rl&TD

Now using the control (3.2.8) in (3.4.1) we have:

4v =V+SifeU) +52&T1)V

ii = «x6,ii)

where:

5,ft,ri):=5i(tTl)-62ft,Tl)
flfi.il)

8z(6.n) - * 2&T1)
flfi.n)

(3.4.1)

(3.4.2)

(3.4.3)

Let yjj) be the desired tracking signal and let %d(t) denote the v dimensional vector

whose fan component is the (A-l)th derivative of yJit). Define ek := £* - %k. Then rewriting
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(3.4.2) in the error coordinates, we obtain:

ex = e2

e2 = e3

: (3.4.4)

«v =v+51fi,Ti) +52fi,Tl)v-^

TI = flfi.Tl)

In order to reduce the effects of the unknown perturbation terms 5i(§;n) and 82(4,11) on the

tracking error e, we will choose a large gain in the control v which decomposes the error

dynamics into a fast and slow part. Then it will be seen that the perturbations formally

appear only in the fast dynamics and the slow dynamics will be independent of the pertur

bations. Thus in the overall dynamics the effect of the perturbations on the tracking errors

will be of the order of the time scale separation between the slow and the fast dynamics.

This design is carried out in detail in the foUowing theorem. We will give a direct proof

here which does not rely on the standard results in singular perturbation theory. This has

the advantage of providing estimates on the size of the domain of attraction and bounds on

the norm of the error vector as time tends to infinity. Before stating the theorem we give

the following definitions:

£i := MsuR,J5^*1&Tl)eW)
.s ,e m (3.4.5)

Theorem 3.4.1: Let the system (3.3.1) be hyperbolically minimum-phase and the control

law chosen according to (3.2.8). Let %, as defined in (3.4.5), be less than 1. Let the con

trol v be chosen as:

v =4v(0 - — [«v + fli«v-i + • • • + flv-i«il (3-4-6)
e

where e is a small positive constant and the polynomial j*""1 +axsy~2 + ••• +Oy-i is

Hurwitz. Then there exists a positive constant e*, a set D c IR2 containing the origin, and
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an open set Qc <&(£/) such that for all e<e# and |̂ (r)| <c, and l4v(')l <d for all t with

(c/l) eD and all initial conditions in Q, the trajectories of the system remain in the open

set &(U) and the tracking errors converge to an e-neighborhood of the origin.

D

Proof: With the control v given by (3.4.6), the system (3.4.4) becomes:

«1 = «2

e2 = e3

': (3.4.7)

ev = — [ev + axe^x + • • • + Ov.^] + 8,(g,ii) + S&jfiv
E

TI = flfi.Tl)

To prove the theorem, we will first assume that the system trajectories remain in the open

set <D(t/) so that the bounds given by (3.4.5) are valid. With this assumption we then

show that the tracking errors converge to an e-neighborhood of the origin. Later we will

show that for a proper choice of e and tracking signal y/t) the trajectories do indeed

remain in the set &(U).

Thus define:

Ex := axeyh.x + • • • + a^^

£2 := A2ev-1 + • • • + flv-1^2 _ fli^i

C:= ey + Ex (3.4.8)
7*

e := (ex,e2, • • • te^x)

e := (ex,e2, • • • .^v-iA)

Then (3.4.7) can be written as:

ex = e2

e2 = e3

e? =-H-«ii-«2fi.il)lC+ e5ifi.Tl) +e^&Tl^v + eE2
Ti = q&n)



Consider the following positive definite function in the (e,0 coordinates:

Vx(etQ =eTPe +̂ eyCt2

where P is chosen such that

PA + ATP = -l

and

A:=

0 1

0 0

0 0

-<lv-l -flv-2

0

0

1

-fll

58

(3.4.10)

(3.4.11)

and 7 is a positive scalar to be determined later. Differentiating Vj along the flow of

(3.4.9) we obtain:

Vx =nr|2 +2eTPbX9 - YO-efl^&TiK2

+^5^) +b&rti&t) +E2K 0A12)

where b := [CO,..,!]7^^1. With the assumption that the trajectories of the system

remain in the open set U% we can use (3.4.5) in (3.4.12) to obtain:

Vx < -\e\2- y (l-ez-ea^lCl2 + p^HCl +£7Cei+e2^+p2l^l)lCl (3-4.13)

where p! and p2 are positive constants such that \2eTPb\ < px\e\ and IE2I £ p2|e I. and we

have also used the bound |4J(f)| < d. Define:

cx := 1-62-efl!

c2 := y(ex+e2d)

p := pj+eypj

1-ej
e :=

2a,

(3.4.14)

By assumption, ej <1, thus e*>0 and for all e <e* we have that cx>0. Now using the
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inequality:

pun *7 0V1512 <3-4l5>

in (3.4.13) we conclude that:

V, S- 4 |el2 - (Tt,-pW +ec2|Cl (3.4.16)
4

If y is chosen such that ycx > p2, then it is easy to see from (3.4.16) that there exists

a positive constant R such that for all (?,Q outside of the ball of radius e/?, denoted by B&,

we have Vx < 0. Now let:

Oc := «fcO I Vx <; c)

£:=inf [c\Qc => B^}

Then it is clear that c_ is of 0(e) and that the trajectories will converge to the set Qr This

ends the first part of the proof. To complete the proof we need to show that for a proper

choice of the tracking signal the trajectories in fact remain in the open set $>(£/). Thus

consider the following Lyapunov function candidate for the system in (3.4.9):

V(e£,Ti.) =eTPe~+ ±ey1? +M01) (3.4.17)

where P is the solution of (3.4.11), VQ is a Lyapunov function for the zero dynamics and

satisfies the inequalities (3.2.15), and y and u, are positive constants to be determined later.

Differentiating V we have:

V=- \e[2 +2F7>&C - 7(1 - ea, - fc&Ti))?2

+eytfj&Ti) +̂fenXjCD+JSat +V^¥M> (3.4.18)

where b is defined as in (3.4.12). Using (3.2.15), (3.2.18), and (3.4.14) in (3.4.18) yields:

V<S - |et2 - TfC|(? + pHKl +ecJQ - |L X, mi2

+ \iX2LK\e\M + uXjLfoHCl + HM-cN (3.4.19)
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where AT is a positive constant such that \e\ <K|e|+lCl, and we have used \£,d\ <c. From

(3.4.19) and the inequalities:

uVJqelM <±m2 +\i2^L2K2\t\\2

\j^L\q\i\\<±\tf +\i2%L2\t\\2
(3.4.20)

we can write:

V<£ - l|e |2 - CYCi-p2—i.>|Q2 - \i(Xx - jiX^l+tfW

+ ec2|Cl + J02Lc|T1| (3.4.21)

Now it is clear that we can choose y and u, such that the square terms in (3.4.21) are all

negative. Thus for example take:

y=-i-(1.25+p2)
c\

u,=

2A2lL2(l+tf2)

Then (3.4.21) becomes:

v<-i|ri2 - ig2 - u^-mi2 +ec2ig +liXsLcmi (3.4.22)

Recalling from (3.4.14) that c2 depends on d (the bound for £v(0). we conclude from

(3.4.22) that for every e, c, and d there exists an rt(e,c,4) such that V is negative outside

the ball of radius R. Let:

Oc:={(£C.ti)|V<SC}

Q(c,d) := inf [C |Oc => %(e-.c/0 }

Then we can find a set D c {(c,d) | c £ 0 ; d £ 0} such that whenever (c4) g D we

have that

(F,C,ti> O^ =*> g,Tl)G O(U)
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Define:

G := {(tn) I&Tl)eO(l/) => QTM^VaeA .V (c4)eD)

Then with e < e*. \%d(t)\ < c, 4?° < d, and (c<*) g D, we have that for all initial conditions

in CI the system trajectories stay in the open set*(£/) and thiscompletes the proof.

•

3.5. Robust Tracking Via Sliding Mode Control

Consider the system (3.3.1) with the perturbations satisfying Assumption 3.3.1. For a

given desired tracking signal y^t) we have shown in the previous section that the system

(3.3.1) can be reduced to the system:

ex = e2

e2 = e3

: (3.4.3)

cv =v+5l(5,Ti) +52(5,Ti)v-4i

TI = <7(£,T1)

In this section we remove the restriction that the control input be smooth. Rather we

consider piecewise smooth inputs in order to achieve zero tracking errors despite the uncer

tainties present in our model of the system. Our objective is to choose a (v-1) dimensional

subspace in Rv with the property that the error dynamics restricted to this subspace are

asymptotically stable. It is clear that with the presence of uncertainties no subspace can be

made invariant with a smooth control. We will therefore use the discontinuities in the con

trol in order to force the dynamics to evolve on the chosen subspace. We will refer to this

subspace, made invariantvia discontinuous control, as a sliding surface. Thus define:

S := ey + fliCy-i + • • • + flv-i^i (3.5.1)

where the scalars ax through ayh.x are chosen so that the polynomial

5V_1 + a^2 + • • • + fly.! is Hurwitz. Clearly if the dynamics were forced to evolve on
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the surface characterized by S = 0, then ex(t) through e^i(f) would converge to zero as t

tends to infinity. Thus we will choose S = 0 as our sliding surface. The following theorem

states our result

Theorem 35.1: Let the system (3.3.1) be hyperbolically minimum-phase and the control

law be chosen according to (3.2.7) with v given by:

v= 4v - fli«v - ' ' ' - flv-i*2 " * sgn(5) (3.5.2)

where K is a positive constant. Let e* as defined in (3.4.5), be less than 1. Let 4v be

bounded. Then there exist positive constants tf* and c*. and a set CI c &(U) such that for

K> K* and |^| < c*. we have that for all initial conditions in CI the trajectories of the sys

tem remain in the set &(U) and the tracking errors tend to zero as f-*».

•

Proof: Using (3.5.1) and (3.5.2) we can, through a coordinate change, write (3.4.3) as:

ex = e2

e2 = e3

AC (3-5.3)
<?v-i = -fl^v-i - .• - ay,_xex + S

S = -K sgn(5) + 8,($,ti) + 52(5,Tl)v

ii = q&r\)

We will now show that if the states £ and T| remain in the set <!>(£/), then there exists a

constant K* such that for K > fC we have that e-»0 as /-*», where eis defined in (3.4.8).

To this end consider the positive definite function of S:

V,(S):=-Is2 (3.5.4)

Differentiating Vx along (3.5.3) we have:

Vx = S[-K sgn(5) + 5^) + oVS.TDv] (3.5.5)
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Then using the bounds for the perturbations inside the set &(U), as given by (3.4.5), in

(3.5.5) gives:

Vx £ -KW + (er+eaM) |5| (3-5.6)

From (3.5.2) we have that:

|v| £ d+K+A\e\ (3.5.7)

where d is the bound on |4vl» 2nd A is *© norm of the vector [alt.., Oy-i]- Let C be the

maximum of fil in <>(£/). Then since, by assumption, the trajectories stay in 4>(10. we

conclude that \tf\ < C. This implies that \e\ < 2C for all %e&(U). Then we have from

(3.5.7) that:

|v| £ d+K+2AC (3.5.8)

Using this bound in (3.5.6) we obtain:

Vx <S -[K-ex-B2(d+2ACy-E2K] \S\ (3.5.9)

Since fy < 1, we can define:

l-e2

It is clear from (3.5.9) that for K > K*t Vx will be negative definite and thus S will tend to

zero. In fact we can see from (3.5.3) that S reaches zero in finite time. To conclude that

5*->0 as *-*», we need only to look at (3.5.1). With 5=0, (3.5.1) describes a stable (n-l)st

orderhomogeneous differential equation which implies that e"tends to zero assymptoticaUy.

Thus in the error coordinates, the trajectories first reach the sliding surface 5=0 in finite

time, and then converge to zero exponentially on the sliding surface.

To show that the state trajectories of the system remain in the set U for all time, we

consider the following positive definite function as a Lyapunov function candidate:
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VQTJs\) =eTPe +*^- +̂ -) +HWl) (35-H)
2 4

where P satisfies (3.4.11), V0(r\) satisfies (3.2.15), and the positive constants y and u. will

be specified later. Then we have:

V=-|e |2 +2eTPbS + yQ+S3) [-Arsgn(5H5i(5.TlH52&Tl)v]

+VL%±¥M) (3.5.12)

where b := [0,0,..,1]tg1Rv"1. Then using (32.15) and (3.5.10) in (33.12) we conclude that

in the set &(U):

V<; -\e |2 + p|F||5| - 7(l-e2)(^-0(|5I-H5|3) - \iXx\t\\2

+ uVWI + uA2LG4+l)|g-||n.| + uV^M (3.5.13)

where p satisfies \2e~TPb\<p\e\. Next employing the inequalities:

p|e||5| <; J^- +p2|5|2
4

iiX2UA+\)\e Hul <; J^L +u^Lfy+l)2^2 (3.5.14)
4

u^LlTiJM ^ J3l +u2^L2|Til2

we obtain:

V<; -±\e\2 - ii[Xx-iiX22L2((A+\)2+\)] +(p2+|)|5|2
-y(l-e2)(A:-^)(|5M5|3) + u^LcM (3.5.15)

It is easy to see that:

-7(l-e2)(^-^)(l5M5|3) +(p2+^)|5|2<0 V5*0

if

yd-e^tf-tf*) >-j(P2+j)
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Thus choose:

0*i>
Y =

\L =

(l-C^tf-K*)
. (3.5.16)
^i

2X|L2(l+(i4+l)2)

Then letting Clc •= {(5-M) I VSC}, it is clear that with the above choices for y and u., we

can find £(c) > 0 such that V is negative outside of Clg. Furthermore £(0)=0. Thus letting:

c* :=sup {c | GT,5,Ti)e C1q(c) => &ti.)g Otf/)} (3.5.17)

we can find an open set CI c <P(lf) such that for all c<c and all initial conditions in CI the

trajectories of the system remain in 4>(l/).

D

3.6. Adaptive Tracking in the Presence of Parametric Uncertainties

We will now turn to the class of perturbations satisfying Assumption 3.3.2. Because

the perturbations in this case arise from parametric uncertainties in the vector fields, we can

see that the true system has the form:

N M

u\ '(3.6-1)y = h(x) x '

where/<)*s and g/O's are smooth vector fields in the open set Uc Rn,/;<0)=0, V i, and

h() is a smooth function. Moreover the scalars ot*'s and pj's are constant parameters

which are assumed to be unknown. Our model of the system then, is based on our esti

mates of these parameters, i.e., a,'s and p/s. Our approach here in dealing with the uncer

tainties is fundamentally different from those of the previous two sections. Because of the

special structure of the system, namely linearity in the unknown parameters, we will be

able to update our estimates of the parameters based on the observations of the tracking
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errors. Thus the controller parameters in this case are time varying rather than fixed. This

is in contrast to the controllers studied in Sections 3.4 and 3.5.

In our development we will first consider systems with relative degree one, and later

generalize the approach to higher relative degrees.

3.6.1. Relative Degree One Systems:

The system (3.6.1) can be transformed to its normal form according to Proposition

3.3.2. Thus in the new coordinates we can write:

y=£a*Lr^) +SP;VWtt
p=i y=i

(3.6.2)
Ti = q&V)

If the parameters were known, the control law:

u=ir-^ [-!# Lfhix) +yd- a(y-yj.t))) (3.6.3)
YfiLJix) "

would result in asymptotic tracking of the desired signal y/t) by the output, for a > 0. In

the absence of perfect knowledge of the parameters, however, we will replace them in

(3.6.3) with their estimates. Thus the actual control law is given by

u=ir-^ [-JX Lfh(x) +yd- a(y-yd{t))} (3-6.4)
hi

Because the system is assumed to have strong relative degree one, we know that the

function:

is bounded away from zero, and therefore its inverse is well defined for all xe U. Thus the

control law (3.6.3) is well defined for all xe U. However, the control law (3.6.4) may not
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be well defined, since the function:

YfrjLMx) (3.6.6)
z=i

may become zero for some choice of the parameter estimates P/s. To eliminate such a pos

sibility we shall restrict the parameter estimates to take on values which guarantee bound

edness of (3.6.6) away from zero. We make the following assumption to this effect.

Assumption 3.6.1: Let the bounds (3.3.6) be given. There exists a constant 8 > 0, such

that the function in (3.6.6) is bounded away from zero for all parameter estimates satisfy

ing:

p, g (fy-S , ApyfS) =: lh (3.6.7)

D

Thus Assumption 3.6.1 guarantees that whenever our estimates of the parameters lie

within the bounds (3.6.7), the control law (3.6.4) is bounded for all xe U. Now using this

control law in (3.6.2) we have:

N ip; v> N
y=2>* hh&> +^ 1- Za« hhV> +̂ - fl(y - y*>] (3.6.8)

w ' ZP;VW "

which can be written in the following form:

y=yd - a(y - yd) +£(a* - o$ Lfh(x) +X(Pj - Py) V(*> u (3A9)
«=i /=i

Define:

Ot :=[a]- alf.. . ,aj - a*,, $- ?! pj/- M
WT(x,t) := [L^Ot),. . . , Lft/i(x), Lgih(x)u, .... LJi(*)u]

Then (3.6.9) becomes:

(3.6.10)
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e = -ae + <DTW(jc,f) (3.6.11)

where ev=y- yjj).

Theorem 3.6.1: Let the system (3.6.1) have strong relative degree one and be hyperboli

cally minimum-phase. Let the control law (3.6.4) be chosen with the parameter update law

given by:

6 =-We V P,€/b; (3.6.12)

and the parameter resetting law given by:

P/ft =
lh if p/r) = /P;-8

hh if P/0-^+8 (3A13)

Let yjif) be bounded. Then there exists a positive constant c and an open set CI c $>(£/),

such that if \yj < c\ then for all initial conditions in CI output tracking of the desired sig

nalyjif) is achieved with the trajectories remaining in theset O(tT).

D

Remark 3.6.1: The parameter resetting law (3.6.13) is adopted from [14], where it was

first introduced in the context of adaptive control of robotic manipulators. The purpose of

parameter resetting is to keep the parameter estimates within the bounds (3.6.7) so as to

ensure the boundedness of the control u.

•

Proof: We consider the positive definite function:

V=c2 + Ot<E> (3-6.14)

We will first compute the change in Vdue to resetting of a single parameter, say P*. at

time t. We have:

AV(t) = V(f) - V(r)
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=«V) +£«*? - a*'4))2 +1$"H^t

- *v> - hi - <*»«»2 - I/ti - P/<»2 C3-6-15)
t»i >=i

It is clear from (3.6.11) that there will be no discontinuity in e as a result of a parameter

jump; thus e(t*) = e(f). In addition all parameters other than p* will remain unchanged at

r+. Therefore (3.6.15) becomes:

Ava)=$: - p^)2 - (p;- m? o-^q

Now using the resetting law (3.6.13) in (3.6.16) gives:

AV(r) =_«

-82-2(p;-/P4)8 if p*(0 =/p4-8

-82-2(APi-p;)8 if P*(r) =Ap4+8 (3'61?)

Therefore the change in V due to a parameter resetting is always negative since

pi - /p >0 and /ip4 - pi >0 by definition. Furthermore from (3.6.17) we can conclude

that for all parameter resettings:

AV(*)<£-82 (3.6.18)

Now, differentiating V along (3.6.11) and (3.6.12) we have:

V=- a e2 + £5(r - 0AVW) (3.6.19)
p=i

where f,'s are the instants of time at which resettings take place, s is the total number of

resettings, and 8() is a delta functioa From (3.6.19) it is clear that V is always negative

for e * 0. Therefor from (3.6.14) we conclude that, e and <P will be bounded. In addition,

with e and yd bounded, £ is bounded and thus from the minimum-phase property of the

system we know that T| remains bounded as well. Moreover from inequalities (3.2.15) and

the bounds on O we may find a constant c and an open set CI <=• O(tT) such that if

\yj <c*. then for all initial conditions in CI we have that (£,tt,) remains in the open set
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*(tf).

To show that e -» 0 as t -> «>, we note that boundedness of e, <J>, ti, and y^t)

implies that Wis bounded. This in turn implies that e is bounded. Therefor e is uniformly

continuous. Furthermore, since by (3.6.18) we know that |AV(fj)| is bounded away from

zero, and since V is positive, we may conclude that at most a finite number of resettings

may occur. Thus s < °°. So after all parameter resettings have occurred, that is t > tst we

have V=-ae2. Therefore J e2 dt <». This and the uniform continuity of eestablish con-

vergence of e to zero.

3.6.2. Systems With Relative Degree Larger Than One

Assume that the system (3.6.1) has strong relative degree v > 1. Then by Proposition

3.3.2 it can be transformed to:

41 =?2

42 =$3
; (3.6.20)

4V =L}Kx) +Lg.L]rlh(x) u
Ti = fl&Ti)

N M

where /(*) := £a* fix) and g\x) := J$ gpc).
t=\ /=i

In extending the straight forward approach of the previous subsection to the current

situation we encounter two sources of difficulties. First, the functions Vj»h{x) and

L .LTlh(x) are no longer linear in the unknown parameters when v > 1. They involve vari

ousproducts of these parameters. This can be seen from the following expressions:

L}h(.x) = Z «X •' •< hfa •••\*W <3-6-2,)
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Vf'A<*>= £ £<• •«U5hh,•• •hj** (3622)

This problem can be resolved by defining each of the products a,* c£ ♦ ••c£ and

ot,* •••al_ Py* as a new parameter which can be updated separately. Such a definition

would allow us to parallel the development of the previous subsection for the new parame

ters which now appear linearly in (3.6.20). Therefore, we define a new parameter vector

as follows:

e1* := [«xl)v, (a&^cg (%)v, (a^Pl «$)**&? (3.6.23)

So that (3.6.20) may be written as:

4i =52

42 =$3
: (3.6.24)

iv = Bl*T[Wx(x) +W2(x)u)
Ti = <7&T1)

where Wx(x)' and W2(x) are vectors whose components are the various successive Lie

derivatives of h(x) along the vector fields f/ix) and gfic), as they appear in (3.6.21) and

(3.6.22). Now, we use the control law:

u=—^ [- e'V^) +v] (3.6.25)
e1 W2{x)

where 81 is the estimateof 01*. Then with this control (3.6.24) becomes:

4l=$2

: (3.6.26)

4v =v+0,T[W1(x) +W2(jc)u]

Ti = q{%*\)

where O1 :=91* - 81.
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The second difficulty concerns the availibility of the ^ks for use in feedback. At this

point, to parallel the development of the relative degree one case, we need to use the ^'s

both in the control v and in the update law for the parameters. Recall that

%k := Lkfxh(x\ A=l,...,v. Since the vector field/(x) is afunction of the parameters, so are

the %ks. Therefore, in the absence of exact knowledge of the parameters, the %ks are also

unknown and can not be used in feedback.

As far as the control v is concerned, we can use the estimates of the states ^'s in the

control law and in doing so we will augment the parameter vector 01* with additional

parameters to be updated. The states Z,ks can be written as:

N

«1 '4-1

|t:= L^h(x) = £ a* •••<.,£,,,_ 1^ ••• LflJ(x), fc=2....,v (3.6.27)

Therefore we define the parameter vector:

. 92* := [at aJUai)2,^ (eft2 (*Nrl)T (3.6.28)

Using this definition in (3.6.27) we can write:

^ =e2*TV^(x), A=2 v (3.6.29)

where W2(x) through Wv(x) are vectors whose components are zeros and various Lie

derivatives of h(x) along the vector fields/{*), i=l,...,n.

The control v is chosen to be:

v=- Q2T[axWv(x) + a2W^x(x) + ••• +fly-i^CO +a^]

+*i5&> + fl2^-i(0 + ••• +flvtfO (36.30)

where 92 is the estimate of the parameter vector 02* and the coefficients ax through av arc

chosen so that the polynomial sv +a^1 + •• • + fli is Hurwitz. Defining

O2 := 92* - 62, we can write (3.6.30) as:
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v=-axev - o^v-i ~ ' ' * - «v«i +*?W3(x) (3.6.31)

where we have defined W3(x) by:

W3(x) := fliiVvW + • • • + flv-iW"2(x) (3.6.32)

Using (3.6.31) in (3.6.26) we obtain:

ex = e2

e2 = e3

cv_i — ev

ey = — ax ey — a2 eyh.x -

Ti = fl&Tl)

(3.6.33)

- flv ex +&T[Wx(x) +W2(x) u] +&TW3(x)

Defining:

8*T := [01*7 , 82"]
e7,:=[elT,e2r]
<D := 8* - 8

WT(x,t) := [WTx(x) +Wl(x) u , Wl(x))

we can write (3.6.33) as:

ex = e2

e2 = e3

^v-l ~" ^v

ev =- fl, ev - fl2 «v-i - *** - «v «t +QFWM
n = flft.n)

Therefore with the new parameter vector we can repeat the development of the relative

degree one case if we are able to update the parameters. However, the parameter update

law requires the use of the eks A=2,...,v, which are not available. We note, however, that

the eks are the successive derivatives of ex, which is available. Thus we can generate

approximate derivatives of the output £i in order to construct approximate eks for use in

(3.6.34)

(3.6.35)
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the parameter update law which would result in approximate output tracking of the desired

signal. The approximate derivatives will be generated by a v dimensional filter which is

discussed in the lemma below.

Lemma 3.6.1: Suppose the function y(t) and its first v derivatives are bounded, so that

Jyw| < Yk , *=0,...,v where Yks are positive constants. Consider the following linear sys

tem:

eCi = ?2

eC2 = C3
: (3.6.36)

sCv-l = Cv

etv=-«v-^v-i- ••• -Ci+yO>

where the parameters bx through bv_x are chosen so that sy +s^1 +...+1 is Hurwitz. Then

there exist positive constants Kk , fc=2,...,v and t* such that for all t>t* we have:

|-kA+1-y<*>|<eKA+1 H....V-1 (3-6.37)
er

Further the constants Kk are decreasing functions of the Yks.

•

Proof: We can use the last equation in (3.6.36) to find an expression for y. So that:

e e

Next using (3.6.36) in (3.6.38) yields:

1 b " y="€(Cv +Wv-i +•••+ViCi) (3-6.39)
e

Now differentiating (3.6.39) and using (3.6.36) we have:

-T t*+i - y{k) =" e&M) *=l,...,v-l (3.6.40)
e*

where S := £v +^iCv-i +••"•+ Viti- The Proof is comPlete if tnere exist constants tf*
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such that ]&k)\ £ Kt To show this, we note that the derivatives of the vector £ may be

computed as follows:

£<*>(*) =-L Ak ee K(0) +A-lby(0) +eA"2fry(0) + ••• +e^A-ty^O)]
e*

+±e« fe" e fcy(%)rfc (3.6.41)

where A is the matrix corresponding to the homogeneous part of (3.6.36) and

b := [0,0,...,1]T. Therefore for any 5>0, we may find a t* so that for all t> t* the first

term in (3.6.41) is bounded by 6Yk for each k. Further since y(k) is bounded by Yh there are

constants Dk such that the second term in (3.6.41) is bounded by DkYk for each k. Now fix

an arbitrarily small 8*. Then for t > t* we have that:

IS^I < B(Dk+S*)Yk =: Kk (3.6.42)

where B is the norm of the vector [ltbx,...J?v-Xl This completes the proof.

•

Having the filter in (3.6.36) we now define the approximate error vector, denoted by

e°, as follows:

* := [Si - y«(f), -i- fc - Ut) -^"Cv - yTX\t) f (3.6.43)

We will use e* in the parameter update law in place of e, the true error vector. Before stat

ing our result, however, we make a further assumption regarding the boundedness of the

control defined in (3.6.25) and the boundedness of the parameter estimates in the course of

adaptation. This assumption is the counterpart of Assumption 3.6.1 for the relative degree

one case. In this assumption, we use the bounds in (3.3.6) to compute bounds on the new

parameters 8;'s. That is we find scalar constants hQ. and /e. so that0,e(/e.. hQ).

Assumption 3.6.2: Let the parameters 8,-'s be known to lie in open intervals (/e., hQ).
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There exists a positive constant 8 such that the function 81 W2(x) is bounded away from

zero for all parameter estimates satisfying:

8|e(/ef-8,V5)=:/e|. (3.6.44)

•

We now present the main result of this subsection in the following theorem. In the

theorem b denotes the column vector [0,0,...,1]T and P is the symmetric positive definite

matrix which satisfies the Lyapunov equation PA + ATP = -/ with A being the matrix

corresponding to the errorvector field in (3.6.35) when O is zero.

Theorem 3.6.2: Let the system (3.6.1) have relative degree v and be hyperbolically

minimum-phase. Let the control law (3.6.25) be given with v specified by (3.6.31). Choose

the parameter update law:

6 =- ye^PbW V 8t- e 79j (3.6.45)

where y is a positive gain and the filter in (3.6.36) is turned on at t<-t*. Let the parame

ter resetting law be given by:

>+\-<Hn =

U if ei<f) = /9i~6
•r A^ «. c (3.6.46)

Then there exist an open set CI c $(£/) and positive constants c*, dx, d2, and tx such that

for |l;d| < c* we have that for all initial conditions in CI the trajectories remain in the set

&(U) and:

\e(t)\ < dx Vi, V t > tx (3.6.47)

fl*2 'Aprovided thaty > — and SJ is bounded.
e
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Proof: We will first assume that the trajectories remain in the open set O(CT). Then we

consider the following positive definite function of e and ti>:

V=eTPe+±<S>T® (3.6.48)
Y

We know from the proof of Theorem 3.6.1 that V will always decrease as a result of a

parameter resetting event. Now differentiating Vyields:

V=- \e\2 +2eTPb®TW - 2e*PW>TW (3.6.49)

Now we use the fact that e° = e-ep, where p is defined by:

pT := (0, §..... 5<v)) (3.6.50)

and S is defined in (3.6.40). This results in:

V=- \e? + 2epTPbQ>TW (3.6.51)

We know from Lemma 3.6.1 that Sf® are bounded if 5 and §v are bounded. Now in the

region O(IT), 5 is bounded and by (3.6.26), 4v *s bounded if 4v >s bounded. Furthermore

O remains bounded by the resetting mechanism. Therefore, we know that there exists a

positive constant £>, such that:

| 2pTPM>TW | < D , V £,T1) e <&({/) (3.6.52)

Thus in O(IT) we may write:

V< - \e\2 + e D (3.6.53)

Then adding on the effects of parameterresettings we have:

VZ- \e\2 + e D - - £8(r - 0 82 (3.6.54)
Yr=l

Since the parameters are bounded due to resetting, we can see from (3.6.54) that there is a

constant d3 such that outside the set G := {(*,<!>) I \e\2 < e D , IOI2 < d3), Vis strictly nega

tive. Thus we conclude that the system trajectories will enter and remain in the smallest set
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of the form Clc := {(e,<P) IV< c] which contains G. Thus define:

£ := inf {c | Clc z> G } (3.6.55)

To ensure that \e\ is small in the set Q£ we must have £ small. Now define:

1 Omin(^)
(3.6.56)

d 3

where cmax(P) and o^P) are the maximum and the minimum singular values of the

matrix P respectively. If y > —, then we can conclude that £ < 2zamax(P)D and thus we

have that:

\e\ <; dx-€, V«sfl£ (3.6.57)

To prove that the trajectories will remain in the open set0(£7) we use the Lyapunov

function:

Vx = eTPe +—OtO +uVoOl) (3.6.58)
Y

where /> is as in (3.6.48) and V0(y\) is the Lyapunov function for the zero dynamics and

satisfies the inequalities in (3.2.15). Differentiating Vx along the flow of (3.6.35) and using

(3.2.15) and (3.6.52) we obtain:

Vx <; - \e\2 - uX,|ti|2 + jiX2UnR| +eD (3.6.59)

Then using |£| £ \e\ + %d\ and \t,d\ < c, we conclude from (3.6.59):

Vx <> - |g|2 - u^ilTil2 + u^Llrillel + u^Lclnl+eD (3.6.60)

Using the inequalities:

\O^Lme\Zj\e\2 +\L2$L2\r\\2
(3.6.61)



in (3.6.60) we have:

V, s- Irf - nX,(l - 2n^-)hil2+±*+eD (3.6.62)
4 Kx 4

Then choosing u, small enough results in a negative coefficient in front of |T|| . Thus for

example choose:

*i = -~r (3.6.63)
* 4A&2

By virtue of the resetting mechanism we have |0|2 £ d3. Then with u, chosen in (3.6.63)

we can see that outside the set:

Gx := {(e,<D,Ti) |he\2 +±\Lkx\i\\2 <eD +^c2 ; |0|2 <d3} (3.6.64)
4 2 4

Vi is strictlynegative. Now define:

2r2

Clc := K«.*.T|) I Vt < C}

£:=inf{C|Qc => ^i)
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(3.6.65)

Then clearly all trajectories starting in CIq will remain in CIq for all time. From (3.6.65) we

can also see that Qis a function of e and c. Therefore for e small we can find c* such that

for all c < c* we have that:

(e,<M)e ClQic) ==> £,Tl)e <D(t/)

Therefore we can find an open set CI c &(U) such that for all %d{t) with \%d\ < c* and all

initial conditions in CI we have (£(f),T|(0)eO({/) , Vf.

D

3.7. Concluding Remarks

In this chapter we have presented the basic output tracking control scheme for SISO

nonlinear control systems along with several techniques for robustifying the scheme with

respect to modeling errors. In Sections 3.4 and 3.5 we used high gain and sliding mode
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control schemes, respectively, in order to deal with the class of uncertainties satisfying the

generalized matching condition (3.3.3). Although this class of uncertainties was shown to

be significantly broader than the class of uncertainties satisfying the matching condition

(3.3.7), it does not encompass all uncertainties of interest. Thus, it is extremely desirable to

design schemes for dealing with uncertainties excluded by (3.3.3) as well. More work in

this direction needs to be done.

In Section 3.6 we presented a new adaptive scheme which is based on computing

approximate derivatives. This scheme should be compared with the augmented error

scheme of Narendra, Lin, and Valavani [29] for linear systems, and Sastry and Isidori [36]

for nonlinear systems. Although our scheme is considerably simpler to implement than the

augmented error scheme (the augmented error scheme requires as many filters as there are

parameters), it results in small rather than zero tracking errors. In addition, in our scheme

the filter which computes approximate derivatives must be turned on before adaptation

starts. This is done to keep the initial transient error in the filter from entering the adapta

tion loop.

In the following chapter we will focus on the issue of robustness to unmodelcd

dynamics. The analysis of the robustness properties of a tracking system is extremely

important from a practical point of view, in that it results in control design criteria which

must be met in order to ensure stability and adequate performance for the system.



Chapter Four

Robust Tracking with Unmodeled Dynamics

81

4.1. Introduction

In choosing a model of a physical system for the purpose of control design, one often

tries to find the least complicated model which is adequate for the control task at hand. It

is inevitable that tiie simplicity of the model comes at the expense of neglecting some

characteristics of the system in the model. Often the neglected effects correspond to the

part of the dynamics which is, in some sense, secondary with respect to the control task.

Such effects typically arise from time scale separations inherent in the system. In this case,

if the control variations are on the slow time scale of the system, the faster dynamics of

the system constitute a secondary effect and may be neglected in the control design pro

cess. In linear systems, this corresponds to neglecting high frequency effects of the system

which lie outside the bandwidth of the control input The neglected part of the dynamics

is generally referred to as "unmodeled dynamics" in the control literature.

Although by neglecting part of the dynamics of the system the control design process

is greatly simplified, we are left with the additional task of guaranteeing robustness of the

design with respect to the unmodeled dynamics. That is, we must guarantee that the use of

the control input which was designed on the basis of a simplified model, results in stability

and adequate performance in the true system.

This chapter is devoted to the analysis of the controllers of the previous chapter when
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they are implemented in the presence of unmodeled dynamics. One method of introducing

the unmodeled dynamics is through the use of a small singular perturbation parameter,

denoted by e, which multiplies the derivative of the state variables corresponding to the

fast dynamics in the system. In this case, the simplified model, which is referred to as the

reduced model, is computed formally by setting e equal to zero. We, therefore, assume that

the system (3.2.1) of the previous chapter corresponds to the reduced model of the follow

ing singularly perturbed system [12]:

x=fx(x) + Fx(x)z + gx(x)u

ez=/2(jc) +F2(x) z + g2{x) u (4.1.1)

y = Kx)

where jceIR", zeIRm, ueR, yeJR, fx(), f2(), gx(-)9 and g2() are smooth vector fields on an

open set U c Rn, /i(0) =0, /2(0) =0, Fx() and F2() are nxm and mxro matrices whose

columns are smooth vector fields on U, and h() is a smooth function on U. In (4.1.1) the

state variables z contain the fast dynamics of the system.

The basic assumption in singularly perturbed systems is the nonsingularity of the

matrix F2(x) for all xeU. This assumption is necessary for. the system (4.1.1) to exhibit a

two time scale behavior and possess a reduced model of dimension n. In our study, how

ever, we make a stronger assumption which also asserts the stability of the unmodeled

dynamics.

Assumption 4.1.1: (Stability of unmodeled dynamics) Let g(F2(x)) denote the spectrum of

F2(x) for each xe U. Then there exists a* >0 such that

Re(p(F2(x))) < - c V xeU

D

With this assumption we may compute the reduced model of (4.1.1) as follows: let

ting e = 0, we obtain:
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0 =f2(x) +F2(x) z+ g2{x) u (4.1.2)

Solving for z and denoting the solution by zs we have:

z, := - F2 -\x) \f2(x) + g2{x) ii] (4.1.3)

The subscript s in zs refers to the fact that (4.1.3) represents the slow component of the

state variables z. Substituting (4.1.3) in the first equation in (4.1.1) we obtain the follow

ing reduced model of the system:

x=/,(*) - Fx(x)F2 -\x) [fAx) + g2(x) u] + gx(x) u (4.1.4)

which can be written as (3.2.1) if we define:

fix) -/i(*) - Fx{x)F2 -W2C*)
g(x) := gx(x) - Fx(x)F2 ~\x)g2(x)

Following [12], we will define the fast component of the state z by:

Zf := 2 - z,

Then rewriting (4.1.1) in terms of zp we obtain:

x =fix) + g{x) u + Fx(x) zf

tif= F2(x) I,- &jtMx)) (4.L7)
y = Kx)

We note that in (4.1.7) the reduced model of the system appears explicitly and can be

obtained as the limit of (4.1.7) when e tends to zero. It is also clear from (4.1.7) that zf

represents the fast dynamics of the system and if Assumption 4.1.1 holds, it will converge

to zero as e tends to zero. To show the explicit dependence of the dynamics in (4.1.7) on

the control input u, we compute the derivative of zs(x) with respect to time. Therefore, wc

have:

(4.1.5)

(4.1.6)
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4Mx)) =- 4- <F2 -1(xMx)) \fix) +g(x) U+FX(X) Zf\
dx ox

- -I- (*2 ~l(x)g2(x)) [fix) +g(x) u+Fx(x) zf] u
dx

-F2-\x)g2(x)u (4.1-8)

To simplify the presentation throughout this chapter we define the following quantities:

rx(x):=^(F2-\xMx))M
r2(x) := ^(F2 -\xW.x)) g(x) +̂(F2 -\x)g2(x)) fix)
r3(x):=-$-(F2-\x)g2{x))g(x)

dX , (4.1.9)
U{x) := F2~\x)g2{x)

Rx{x):=^{F2~\x)f2{x))Fx{x)
R2{x) ^^(F2 -\x)g2(x)) Fx(x)

Using (4.1.8) and (4.1.9) in (4.1.7) yields:

x=fix) + g(x)u + Fx(x)zf

ei/= [F2{x) +eRx(x) +e^2(x) u] zf+ e[rx(x) +r2(x) u+r3(x) u2 +r4(x) ii](4.1.10)
y = Kx)

The system in (4.1.10) is in the appropriate form for our subsequent analysis of the

robustness properties of the controllers introduced in the previous chapter. It contains the

reduced model of the system, for which the controllers were designed, and it is explicitly

written in terms of the slow and the fast modes of the system.

42. Robustness of High Gain Control to Unmodeled Dynamics:

In Section 3.4 we applied high, gain control to the system (3.3.1) in order to reduce

the effects of the uncertainties of the system on the tracking errors. Here, we will assume

that (3.3.1) is the reduced model of a full order system of the form (4.1.10). Our goal is

to analyze the performance of the high gain controller when it is implemented in the full
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order system. Therefore, we start with the foUowing variation of (4.1.10) which contains

the uncertainties in the reduced model.

x =fix) + g(x) k + Aftc)+ *g(x) u + Fx(x) zf

ez}= [F2(x) +eRx(x) +eK2(;c) u] zf+ t[rx(x) +r2(x) u+r3(x) u2 +r4(x) u] (4.2.1)
y = Kx)

where, as in Section 3.4, we assume that Afix) and Ag(x) have indices larger or equal to

the relative degree of the unperturbed reduced system, namely v. By Proposition 3.2.2, we

can perform the change of coordinates ffi.Ti.z/) = (*(*).*/) to obtain:

i\ = *>2 + Xi(x)zf

4v-l =5v +Xv-i (x) zf
4v =b&K) +afen) u+8 jffi.il) +8 2ffi,n) u+Xv(*) */ (4-2-2)

T\ = <?ffi.Tl)+ £(*)*/
ez>= [F2(jc) +e/?!(x) +e/?2(x) u] zf+ e[rx(x) +r2(;c) u+r3(x) u2 +r4(x) li]
y = S,

where x*(*) := &>&) • FjCc) for *=l,...,v , %x) := rfnC*) • Fx{x), and aU other quantities

are as defined in (3.4.2). Next, given a desired tracking signal yjj), we choose the control

law given in Section 3.4, that is:

u=—f-r[-^ffi.Tl) +%- -for +ai*v-i + ••• +«v-i*il 1 (4.2.3)

In (4.2.3), ? is the high gain parameter ( which was denoted by e in Section 3.4 ) and

et := 5a- %k for fc=l,...,v where §( denotes the (*-l)st derivative of the signal y^t). The

parameters ax through ayh.x are chosen such that the polynomial

jv_1 + axsy-2 + •• • +Ovi is Hurwitz. Using (4.2.3) in (4.2.2) yields:
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ex = e2 + Xi(x) zf

<?v-i = ev + Xv-i(x) zf

ev =—J-[*v +axe^.x + ••• +Ov-i^] +5,(5,11) +82&TI) v+Xv(*) */ (4-2.4)
"e"

T| = ^ffi.Tl) + X(X) Zf
ez>=

where v is defined by:

v := 4v - —[«v +«t«*-t + • • • +0^1*1] (4.2.5)
e"

We now use the definitions given in (3.4.8) to transform (4.2.4) to the following system:

ex = e2 + %i(x) zf

ev_x = t)-Ex + Xv-i(x) zf

*£o - [l - a, _ 52ffi,Tl)K +n 8!ffi,Tl) +82ffi.ll) %+ XvW tf ] (4-2.6)

Tl = <7ffi.Tl)+%(*)*/
ei/= [F2(;c) +eRx(x) +eR2(x) u] zf+ e[rx(x) +r2(x) u+r3(x) u2 +r4(x) u]

Theorem 4.2.1: Let the reduced system of (4.2.1) have relative degree v and be hyperboli-

caUy minimum-phase. Let the perturbation vector fields in (4.2.1) have indices larger or

equal to v. Let e2, as defined in (3.4.5), be less than 1. Let the desired tracking signal and

its first (v+1) derivatives be bounded. Let the control law be specified by (4.2.3). Then

there exists a positive constant T*. a monotone increasing function e*(F), a set

D c { (c,<Wi)elR3 Ic>0 , d>0 4&0}, and an open set CI c 0(f/)xIRm such that for all

e" <e"*, aU e <e*( e"), all desired tracking signals satisfying |£(r)| <c, l4v(f)| ^ d, and

l^vl^^i for all t with (c,d)eD, and all initial conditions in CI, the trajectories remain

bounded and in &(U)xJRm ,V t and the tracking error wiU be of 0{ "E").

D

ei/= [F2(x) +eRx(x) +eR2(x) u] zf+ e[rx(x) +r2(x) u+r3(x) u2 +r4{x) u]
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Proof: To prove the boundedness of the solutions, we consider the foUowing positive

definite function as a Lyapunov function candidate:

V=eTPe +-itf2 +tiV0(Ti) +z/^>z/ (4'2/7)

where e := [ex e^f, P is defined in (3.4.11), V0(Tl) is a Lyapunov function for the

zero dynamics of (3.3.1) and satisfies (32.15), the scalars y and u. are positive constants to

be determined later, and P(x) is a positive definite matrix for all xe U and satisfies the fol

lowing Lyapunov equation:

P(x)F2(x) +F\\x)P{x) =- / (4.2.8)

where / is the mxm identity matrix. The existence of P(x) is guaranteed by Assumption

4.1.1. Differentiating V along the flow of (4.2.6) yields:

V=- \e\2 +2eTPbX, +2eTPx(x)zf-y[l-ea1-S2ffi,Ti)]C2

+̂[SiffiJl) +HM& +E2 +Xv(*)*/K +t-^&rt +̂ *(*)z/
- J-|z/ +z}[P(x)(Rx(x) +R2(x) u) +(Rx(x) +R2(x) u)TP(x)]zf

+zjF(x)[rx(x) +r2(x) u+r3(x) u2 +r4(x) it] +zjF(x)zf (4.2.9)

In (4.2.9) b denotes the column vector [0,0 lfelR*"1 and %(x) denotes the matrix

[x[(^)»—Xv-i(x)]T. At this point we give the foUowing definitions:

Pi := \2Pb\

|£2I
P2*-= sup —

l«isi \e\

p3 := sup om» [2Px(x)]

** , /m <4-2-10>p4 := sug IXvWI

p5 := sug amax [%(*)]

a* := sug amax [P(x)Rk(x) +Ri(x)P(x)] , A=l,2>77.a5/
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Using (3.2.15), (3.2.18), (3.4.5), and (4.2.10) in (4.2.9) we obtain:

V<; - \e\2 +PilflKl +PaFlty - ^(l-'&Zi-e2)lCl2

+y&\+zid) +iP2p"lKI +w*jlKI - M^itnl2 +A2Pft\n\ +M**Pslnlty

- -[l-eoj-eojv-el^^niz/

+|2P(*) [riCc) + r2(x) u+ r3(x) u2 + r4(x) u) | |zy| (4.2.11)

Now, from (4.2.3) we can conclude that there are positive constants / xand / 2 such that

M<l iCOHnD +"/** +— IQ (4-2-12>
e

where d is the bound on |4vl- Also, from (4.2.3) and (4.2.1) we can find positive constants

/ 3 through / 10 such that:

M&i 3(l5rHnD +~i 4 +7 5S +7 6dx +1 vtei+e**)

+-^KI +—W\ <4-213>

where dx is the bound on ||J|. From (4.2.12) and (4.2.13) we can conclude that for all

xe U we have:

|2f%c)[riCx) +r2(x) u+r3(x) u2 +r4(x) u)\ < lx\Z,\ +/2|Tll +l3d + l4S

+M+/6(e1+e2<0 +Ay +4l9+v,F| (4'2J4)
"e" e" e

for some positive constants lx through /10. From simUar computations we can find positive

constants px% p2t and p3 such that for aU xe U we have:

ax +o2|«| +|^(jc)| fS — +p2d +p3|zyl (4.2.15)
IT

We define K by the inequality £| £ *le MCH^I- Then using this inequahty, (4.2.14),

(4.2.15), and the bound gd\ < c in (4.2.11) yields:



V<; - \e\2 +(px+Wz)\e\\Q +(p3+lxK+—)\e-\\zJl - ^(l-T&i^lCl2
r e

+(7P^-A+/i)lCHz/l - H^ilnl2 +]iX2LK\e \\t\\ +(u*2p5*/2)|Tlllz/l
IT

+I^LICIM +-ytei+e^lQ +(lxc+l3d+l4a*+l5dx+l6(ex+e2d))ty

+ \iXJjc - -(1-e— - tp2d - ep3\zfi\zji2
e f

To simplify (4.2.16) we make the following definitions:

ci

c2

*3

c6

= \-Tax-z2

= Pi + 7P2

= /10+rp3+r/1^

= /9+rzyp4 +e"2/1

= hPs + -rh

= lxc + l3d + l4S+/s4 +/etei+e**)

Then using (4.2.17) in (4.2.16) we obtain:

V<- \e\2 - *cx\Q2 - \AM2 - -i(l - ^Pi - ep2d - ep3|z/l )l*/
r e r

+c2|e HQ +—UHzyl +̂iCllzyl +vX2LK\e M+\xc5H\4
+ u^LICIItiI +-Kei+e^lCl + c6\zj{ + uX2Lc

89

(4.2.16)

(4.2.17)

(4.2.18)

In order to obtain an estimate of the region outside which V is strictly negative, we

use the foUowing set of inequalities:
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c2ieiig<^i2 +̂ i2

|n,z^l|r|2+||z/
Jmci^ki2+||Z/
iiXzUCie IN <-ipf +^L2^2|tiI2

- (4.2.19)

i^Onisjitf+^'ini2

7(e1+e2rf)|Cl <F/We^2 +-^l2
4E

c6ty Sec£ +-£l*/

to obtain:

v<- l|?p - l(YCl --eti - 4 - t)I92 - ^it1 - ^(^2o+*2) +tin itii2
4 e* 2 4 A,i

e 4 "g"1 ^

+ vXtLc +eci+^(e^e^2 (4.2.20)

From (4.2.17) we can observe that there exists an Zx such that for aU F< Ft we have

1— p 4
that ci > -. Then we can choose y= . With this choice, we can find ~t\ such

1 2 1- e2

that for aU e < t\ we have that:

1C,-«j-i-f>^ (4.2.21)

Then letting:

tf =»min{*,,^} (4-2-22)

we conclude tfiat (4.2.21) holds for aU e"<e\ Furthermore, we can find a monotone
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increasing function e*( "e") such that for aU e<e*( F) we have:

2_^.[pir2+r3p2rf+̂2 +c2+r^)_Q73|2/,>l (4.2.23)

for aU ffi,T|)€0(i/) and z/with \z\ <-r-^—. FinaUy we can choose u, smaU enough so that
8ep3

the coefficient of hi2 in (4.2.20) wiU be negative as weU. So we choose:

m= \ r- (4.2.24)
2[X2£2(l+tf2) + cj]

Then, with the above choices of the parameters, we conclude from (4.2.20) that:

V*-\\e |2 - ^ICI2 - {^ilTll2 -±)rf
+ lO^Lc + ecl+rf(tx+e2d? (4.2.25)

for aU ffi,Tt)e &(U) and zf with \zj{ <—i—. Now we define the foUowing sets:
8ep3

G:= {(5iti,zj» Î \e\2 +̂ICI2 +-^ilnl2+̂1*/
<uX2Lc +e4 +Fjfei+M)2 }

O:= {(SCtv,) |ty< -^- }

Then we observe from (4.2.25) that V is strictly negative in O n Gc, where Gc denotes the

complement of G. Let:

Clc:={Ce&r\,Zf)\ViZC)

Q(e&c44x) := inf {C | Qc => G }

Clearly £ is an increasing function of e, r, c, d, and d^ Assuming that e and r are smaU

enough so that for c=d=dx=0 we can write:
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(T,;,T1,Z/) € n£(ej,0,0.0) =* feTl.ZyNOWX*

we can find a set D c {(cArf,) | c£0 ; <£0 ; ^£0 } such that:

(e.tn.z,) <= Qq^av => ft^«(^ .V «wW,) e D (4.2.26)

From (4.2.26), it is easy to see that there exists a set CI c 0(t/)xT such that for aU ini

tial conditions in CI and aU (c44x) e D the trajectories remain &(U)xW for aU time.

To conclude that the size of the tracking error vector, namely \e\, wiU be of 0{ e),

we need only to look at (4.2.6). From the dynamics of zfwe conclude that |zy| wiU be of

0(e). Therefore the dominant driving term in the dynamics of e is £ which is of 0{ e).

This implies that \e~\ wiU be of 0( e"). More precisely, we conclude that there are positive

constants tx and E such that:

\e\t)\<SEt \t>tx

•

Remark 4.2.1: Theorem 4.2.1 indicates that reducing the effects of uncertainties by the use

of high gain can only be done to the extent that the gain is not too high to excite the

unmodeled dynamics. Thus if we have a fixed e for the unmodeled dynamics, the gain of

the controUer (given by e) must be smaU enough so that we have: e <e*(e).

•

43. Robustness of Adaptive Controllers to Unmodeled Dynamics:

Adaptive control of linear systems in the presence of modeling errors has been the

subject of investigation by several authors. Rohrs, et al [32] demonstrated that an adaptive

control scheme based on the reduced model of a plant can become unstable in the presence

of stable unmodeled dynamics which are even outside the bandwidth of the control input.

The prime instabiUty mechanism was shown to be the slow parameter drift to infinity. It
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was observed that errors initially converged to a smaU neighborhood of the origin and then

slowly drifted to infinity along with the parameter estimates. Bodson and Sastry [6] later

showed the stabUity of the adaptive scheme is preserved if the control input satisfies the

persistency of excitation conditions. In the absence of persistency of excitation conditions,

Ioannou and Kokotovic [22] suggested a modification to the adaptive scheme by the addi

tion of a smaU term in the parameter update law proportional to the negative of the param

eter estimates. This modification guarantees the boundedness of the parameter estimates

and results in the stabUity of the adaptive scheme. It was shown, however, that the

modified scheme no longer resulted in zero tracking errors in the ideal case.

AU previous robustness results (in linear systems) in connection to output-error (the

input-error scheme of Bodson and Sastry [6] for linear systems does not rely on the Strict

Positive Realness of the system and can be applied to higher relative degrees than one)

adaptive schemes have been formulated for systems with relative degree one. Here we will

define an index, yu £ 0 for the unmodeled dynamics and we wiU show that if yu >v-2,

where v is the relative degree of the reduced model of the system, then our adaptive

scheme of Section 3.6 is robust with respect to unmodeled dynamics and the tracking

errors converge to a smaU neighborhood of the origin. To ensure the boundedness of our

parameter estimates we rely on the a priori bounds on the true parameters and the resetting

mechanism.

FoUowing Assumption 3.2.2 for the reduced model of the system (4.1.1), we consider

the foUowing system:

x=£<#;<*)+ifiUfiou+Fiv>zf
hi hi

ez>= [F2(x)+eRx(xy+eR2(x) u)zf+ e[rx(x) +r2(x) u+r3(x) u2 +r4(x) u] (4.3.1)
y = h(x)

where aU the terms appearing in (4.3.1) have been previously defined in. We have the fol-
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lowing definition as a way of classifying the unmodeled dynamics.

Definition 4.3.1: The unmodeled dynamics in (4.3.1) are said to have index yu if

d(LkMx)) • Fx(x) is zero for aU xeU and k < yu and is nonzero for k= yu.

D

Based on the developments of Section 3.6 we can transform (4.3.1) into the foUowing

system:

4l =$2 +Xl(x)Zf

4v-l =5v +Xv-l(x)Zf
iv = QimT[Wx(x) + W2(x)u) + Xv(x)Zf (4.3.2)

r\ = <7ffi>Tl) +%x)zf
ei/= [F2i.x}+ERx(x)+eR2(x) u]zf+ e[rx(x) +r2(x) u+r3{x) u2 +r4(x) u]

where 91* is defined in (3.6.23), Wx(x) and W2(x) are as defined in (3.6.24),

Xfc) := ^ • Fx(x\ and X(x) := *1 • ^iC*)- Now, given a desired tracking signal yjj), we

use the control law of Section 3.6, that is:

u=-^ [- &TWx(x) - axev - a2e^x - ••• - avex +<D2V3(x) - 4vl (4.3.3)
QlTW2(x)

where ek := %k-^k for fc=l,..,v, 5* denotes the (*-l)st derivative of the tracking signal y^f),

ax through fly are chosen so that the polynomial sv+axsv~l+ ••• +fly is Hurwitz, and &

and W3(x) are defined in (3.6.34). With this control law (4.3.2) can be written as:

ex = e2 + Xi(x)zf

ev-i = *v+ Xv-i(x)zf

ev = - axev — a2ev-i

li = tfffi.Tl) +%(x)zf

T (4.3.4)
ev= - axev - a2ev.x - • • • - avex + O'WX*,*) + Xv(*)z/

2ez/= [Fjfcd+^Gc}*^*) u^H- e[r,(x) +r2(x) u+r3(x) \t + r4(x) u]
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We now recaU Lemma 3.6.1 and the definition of e* from (3.6.43) which wtil be used

in the foUowing theorem.

Theorem 4.3.1: Let the reduced system of (4.3.1) have relative degree v and be hyperboli-

caUy minimum-phase. Let the unmodeled dynamics have index yu £ v-2. Let the desired

tracking signal and its first (v+1) derivatives be bounded. Choose the control law (4.3.3)

with the parameter update law:

6 =- ye°TPbW (4-3.5)

where y is a positive gain and the filter in (3.6.36) is turned on at t<-f. Choose the

parameter resetting law:

>+\^<e,<o =

/Gj if e,<i) =Je,-s
hQ{ if 9X0 =̂ +6 (4'3'6)

Then there exists a positive scalar e*, a set D c R2, a positive constant d2, and an open

set CI c ^(U)xJRmt such that for aU e <e*, aU tracking signals with \%(t)\ < c and

l4v(f)l <d for aU t with (c,d)eD, and aU initial conditions in CI, the trajectories remain

bounded in <&(£/)xRm for aU time and the tracking error wiU be of 0(e) provided that

7=^ J.

•

Proof: We wtil first prove the boundedness of solutions. Since yu > v-2, we know that

XaCO =0 for all xeU and Jk=l,...,v-2. We consider the following Lyapunov function candi

date:

V= fPe + -<DrO +uV0(ti) +nzjP(x)zf (4.3.7)
Y

where VqOi) is the Lyapunov function for the dynamics f| = <?(0,T|) and satisfies the ine-
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qualities (3.2.15), P(x) satisfies (4.2.8), and u. and n wtil be determined later. We know

from the proof of Theorem (3.6.1) that the change in V due to a parameter resetting event

is always negative. Now, differentiating V along the flow of (4.3.4) we have:

V=- |«|2 +2eTPbxXy,-X(x)zf+ 2eTPbXv(x)zf+ 2eTPb&W

- 2eaTPb&W+u^<?(5.Tl) +̂ ^X(*>z/
- —|z/ +nzJ\P(x)(Rx(x) +R2(x) u) +(Rx(x) +R2(x) u)TP(x)]zf

+2izzjP0c)[rx(x) +r2(x) +r3{x) u2 +r4(x) u) +KzjP{x)zf (4.3.8)

where bx := [0,0 l,0]reRv.

From Lemma (3.6.1) and (4.3.4) we know that:

efl =c--ep +^xv_,Wz/ (4.3.9)

where ? is the filter parameter from (3.6.36), and p := (0i^3) JSP*) with 5 defined by

(3.6.40). Using (4.3.9) in (4.3.8) we obtain:

V=- \e)2 +2eTP[bxxv-X(x) +bXv(x)]zf+ 2ZpTPbQTW

- 2bTPbQ>TWx^x{x)zf¥ H-^<7&T1) +̂ "^^)z/
- —|z/ +kzJ[P(x)(Rx(x) +R2(x) u) +(Rx(x) +R2(x) u)TP(x)]zf

+2nzjF(x)[rx(x) +r2{x) +r3(x) u2 +r4(x) u] +TtzjF(x)zf (4.3.10)

By virtue of the resetting mechanism, we know that O is bounded. Therefore from

(4.3.3) we can write:

\u\ <Tl x\e\ +1 2hll +"/ 3c +^ 4d V xe U (4.3.11)

for some positive constants 7 xthrough 74. In (4.3.11) c and d denote the bounds on |£*|

and |4vl respectively. From (4.3.3) we can also conclude that:

\u\<y{lx+l2\zfi + l3g\ + l4\r\\ + l5\zji + l6(c44x) V xeU (4.3.12)
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where lx through /5 are positive constants, dx is the bound on £v» and l6(c44x) is an

increasing function of its arguments with /6(0,0,0) = 0.

From (4.3.10) and (4.3.11) we can write:

|2r^x)[ri0c) + r2(x) u+ r3{x) u2 +r4(x) u)\ <£
(*i+Y*2)£l +(fe+Wfol +(*5+7^)|z/l +{^44^^^) (4.3.13)

where kx through k^ are positive constants and kj and k% are increasing functions of their

arguments with *7(0,0,0) = 0 and *8(0,0) = 0.

By assumption the filter (3.6.36) is turned on before the controUer loop is closed.

Therefore, we know that during the control process p is bounded by the bounds given in

(3.6.42) if ffi,T|)€ O(IT) and 4v »s bounded. Thus, we can find a positive constant Dx such

that:

\2pTPM>TW\^Dx V ffi,Tl)eO(£/) (4.3.14)

Similarly, we can find a positive constant D2 such that:

|2&rPW>rWXv-i(*)l <D2 V ffi,Ti)€0((/) (4.3.15)

Next, we define:

px := sug \2P(bxXv-X(x) +&Xv(*))l
p2:=sugom»GcW) (4.3.16)
ck:=sUir>omJP(x)RAx) + RTk(x)P(x)) A=l,2

where c^A) denotes the maximum singular value of the matrix A. Further from (4.3.1)

we can write:

\F(x)\<px+p2\u\+p3\zJl (4.3.17)

for some positive constants px through p3. Using (4.3.13) through (4.3.17) and the ine

quality £| < \e\ + c in (4;3.10) yields:



V<- |e|2 +p,|4ty +WX+ D2\zji - \iXx\r\\2 +|A*Lkllnl
+iO^Lc +uXiPzlTlllZyl - -[\-e(GX+pXMG2+P2>\^P3\2fi}Uji2

+niktfkdleWzJl +n(k3+Yk4)\t\\ty +"tts^J**/

+ ft(JM7*8)|z./l + rc(*i+Tfa)clz/l

To simplify the foUowing development we define:

£>2cx := —+k7^fks+kxc^yk2c

"^2P2 , .
c2 := ——+*3-Ky&4

K

c3 := -^+*i-Hy*2

Then using the foUowing inequalities:

^IzyU-^lzZ +SeTtc2

^2h||zy|<-j^|z/ +3e7Cci|Til2

Kc3\e\\zJ(<-g-\zJ[2 +3tncl\e\L
12e

|rt*L|e||nl <\e± +u^lnl2

in (4.3.18) we obtain:

2,2

V<_ (1 - 3e7tci)k|2 - uX,(l - u.--2- 3eicci)|TiI
4 A.]

- —[t " e(o1+p1-Ko2+p2)v+p3|zy|+/^y*6)]|z/
e 4

+H?! + 3znc\ + lO^Lc
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(4.3.18)

(4.3.19)

(4.3.20)

(4.3.21)

It is clear from (4.3.21) that if y<<—, then for e smaU enough the coefficient of \zji2 wiU
e

be negative. On the other hand, we recaU from Section 3.6 that in order for the tracking
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errors to converge to a small neighborhood of the origin, we need y to be as large as possi

ble. Thus with this fact in mind we choose:

Y=d2e"T (4.3.22)

where d2 is a positive constant to be determined later in the proof. This choice of y wiU be

justified shortly. Now it is easy to see that we can find e* >0 such that for all ee(0,e ]

we have:

-| - e^^pi-Kaj+p^v+psJzyl+^s+yfee) >-j (4.3.23)

for aU ffi,Ti)e <&(tf) and zfwith \zji < -—.
»ep3

From (4.3.19) we can see that with the above choice for y the constants cx through c3

.1 ±
wiU be of 0(e 3). Therefore we need to choose n smaU enough (of 0(e3)) so that the

products ncl for £=1,2,3 are smaU of 0(1). Thus choose it so that:

3ejccl<-7
4

-? 1
3ercc3< —

(4.3.24)

In addition we choose u such that we have:

^XjL2 <j_ (4 325)
Xx 4

With the above choices for it and u. we can conclude from (4.3.21) that:

V<-l|g|2 - i^i^l2 - JL|z/ +WX +3eitc2 +uX2Lc (4.3.26)

By the resetting mechanism we know that O remains bounded. Thus we can find a

positive constant d3 such that |<X>|2 <d3 for aU time. Now we define the foUowing sets:
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G:= {(eJi^tt) |{l^+^l1!!2^!2/ ^i+3«tc2+u.X2Lc ;|0|2 <d3]
0:={(e,Ti,z^)||z/|<-^-}

Then clearly V is strictly negative in O n Gc where Gc denotes the complement of G. Let

ting:

Oc:={(e,n,z/i<I>)|V<;C}

£(e;g,c,d) := inf {C | Qc => G)

it is clear that £ is an increasing function of e, E, c, and d. Now we assume that e and r

are smaU enough so that when c=rf=0, for aU the points inside C1q^^oj0) we have mat

ffi,ri)G <&(£/)• Then there exists a set D c {(c4) Ic £ 0 , d £ 0} such that:

(e.Ti^)6nCBEJ^^=*ft,Ti)e<Kt0 V (c,d)€D (4.3.27)

From (4.3.27) we can conclude that there exists an setCI c fl>((/)x¥ such that for all ini

tial conditions in CI and aU (c4)eD the trajectories of the system remain in the set

0(£/)x¥ for aU time.

To find an estimate of the size of the tracking errors, we consider the foUowing posi

tive definite function of e and <X>:

Vjo^fV +itffr (4.3.28)
Y

Differentiating V! along the flow of (4.3.4) we can write:

Vx<-]e\2 + px\e\\zJi+Wx (4.3.29)

By the boundedness of states we can conclude from (4.3.4) that there is a constant d4 such

that as t tends to infinity we have:

ty <d4yt (4.3.30)
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Using (4.3.30) in (4.3.29) we have:

Vx £ -\e\2 + d4yz\e\ +TDX (4.3.31)

From (4.3.31) we can conclude that:

VjS-Jrf +TVdj +ED, (4-3.32)

From (4.3.28) and (4.3.32), it is easy to see that when e" < e in order to minimize the value

of Vx on the smaUest level set of Vx which contains the set

{(e.O) | \e\2 £ 2'y2e24 + eDi; |0|2 < d3), we must choose y according to (4.3.22) for some

positive constant d2. With this choice it is easy to see that \e\ wtil be of 0(e3). That is,

there are constants tx and E such that:

\e(t)\<e1E, yit>tx
D

4.4. Concluding Remarks

In this chapter we have studied the robustness of the high gain and adaptive control

schemes, which were presented in Chapter 3, to unmodeled dynamics. The unmodeled

dynamics were represented by singular perturbations of the model of the system used in

the control design process. The result presented in Theorem 4.2.1 indicates that high gain

control can be used in order to suppress the effects of uncertainties, but the gain must be

smaU enough so that the controUer action wiU not excite the unmodeled dynamics. The

proof of this theorem also gives specific upper and lower bounds on the high gain parame

ter, E, when the singular perturbation parameter, e, is known. In Section 4.3 we gave con

ditions on the vector fields corresponding to the unmodeled dynamics under which the

adaptive scheme was shown to be robust. Theorem 4.3.1 indicated that in order to guaran-

tee that the controUer wiU result in asymptotically smaU errors of0(e3), we must resort to
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fast adaptation, that is large y. But at the same time y must be smaU enough so that the

adaptation process does not excite the unmodeled dynamics.

It is clear from Theorems 4.2.1 and 4.3.1 that a robustness result based on the singu

lar perturbation technique requires that the control action be on the time scale of the

reduced model, so that it does notexcite the fast part of the dynamics corresponding to the

unmodeled dynamics (though it is easUy seen that this condition is not in general sufficient

to guarantee robustness; e.g. the adaptive scheme is not robust without parameter resetting).

This is precisely why a result similar to the high gain and adaptive cases cannot be formu

lated for the sliding mode control scheme. The difficulty in formulating such a result stems

from the jumps in the control law, which corresponds to very fast action. Thus, in this case

we cannot argue on the basis of time scale separation, and the Lyapunov arguments of Sec

tions 4.2 and 4.3 wiU not be adequate. This does not, however, indicate that the sliding

mode scheme is not robust. In fact the results of Theorems 4.2.1 and 4.3.1 are merely

sufficient conditions.



Chapter Five

Conclusions and Open Problems

103

This thesis has dealt with two problems of importance in the design of controUers for

nonlinear systems, namely: local stabilization of an equilibrium point by smooth state feed

back, and local stable output tracking of a desired trajectory using state feedback. In each

case particular emphasis was placed on the robustness properties of controUers to modeling

errors and uncertainties. In particular, in cases where it was possible the controUer structure

was modified in order to reduce (or eliminate) the effects of uncertainties; in other cases

explicit bounds were given onperformance degradation due to modeling errors.

In the study of local stabilization of nonlinear systems, it was pointed out that the only

nontiivial cases are those of systems whose linearizations about the equilibrium point of

interest aredegenerate. In such cases weknow from thecenter manifold theory that the sta-

biUty properties of the system coincide with that of a smaller dimensional system defined on

the centermanifold of the system. Thusthecontrol design process consisted of the foUowing

steps: 1) computation of an approximate center manifold for the system and the subsequent

reduction of the stabitity problem to the stabUity of the system defined on the centermani

fold, 2) simplification of the vector field on the center manifold using the theory of normal

forms, 3) finding conditions underwhich the simpUfied vector field is asymptotically stable

and the construction of a stabilizing control law under these conditions. In connection to the

robustness of these control laws, a theorem was presented which stated that although the sta

bUity of theequilibrium point canbe destroyed in thepresence of perturbations, there exists a
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smaU neighborhood of the equilibrium point (whose size depends on the size of the perturba

tions) which remains attractive.

As was seen in Chapter 2, computing normal forms of the vector fields on the center

manifold requires working in the space of homogeneous polynomials of degree k in R",

denoted by Hk, where n is the dimension of the center manifold. The dimension of//* grows

rapidly with n. It can be shown that the dimension of Hk is given by the expression

nLX **' S• i- Tnus for examPle me dimensions of H3 , H3 , and //3 are 30, 80, and 175,

respectively. Therefore, extending the results of Chapter 2 to systems in which the dimen

sion of the degenerate part is large proves to be quite tedious and difficult. Thus, in such

cases we believe that it is more reasonable to apply the design methodology of Chapter 2 to

the specific system of interest rather than deriving general conditions such as the ones given

in Chapter 2.

The results of Chapter 2 can also beextended to lightly damped systems. In this case, if

a system has uncontroUable modes which are weakly stable (i.e. having eigenvalues with

smaU negative real parts), then by theuse of nonlinear terms in thecontrol law it maybe pos

sible to enlarge the domain of attraction of the equilibrium point

In Chapter 3, foUowing the presentation of the basic tracking theorem for minimum-

phase nonlinear systems, we introduced an index for theuncertainties which gave a measure

of their contribution to the input-output mapof the system. We were then able to determine

what classof uncertainties canbe dealt with by the use of high gainandslidingmode control

techniques. This class was identified as the set of uncertainties satisfying a generalized

matching condition. This condition was shown to be a significant generalization of the well

known matching condition in that the class of uncertainties satisfying the generalized match

ing condition is typically much larger than the class of uncertainties satisfying the matching

condition and the latter always contains the former.
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Extensions to the cases where the uncertainties do not satisfy any matching conditions

are highly desirable. Some relevant work in this direction (although the problem considered

is that of disturbance decoupling) is reported by Marino et al [27] where they construct a

multi-time scale system in order to reduce theeffects of uncertainties.

Linear parametric uncertainties were also treated in Chapter 3. Adaptive control tech

niques were employed in this case toupdate the estimates of the unknown parameters which

wereused in the control law. Parameter resetting wasused in orderto ensure the boundedness

of thelinearizing control law. In this setting, anew parameter update law was presented for

systems with relative degree larger than one. This scheme was shown to result in O(e) track

ing errors where e is a smaU design parameter.

The analysis in Chapter 4 dealt with the robustness properties of the high gain and

adaptive control schemes presented in Chapter 3 with respect to unmodeled dynamics. The

unmodeled dynamics were represented by parasitic dynamics evolving onatime scale which

is much faster than the dominant dynamics of the system on which the control design is

based. Thus, it was assumed that the model used for the purpose of control design is the

reduced model of a singularly perturbed system. In the case of the high gain control law it

was concluded that the gain of the controller can not bearbitrarily large and must bewithin a

bound specified by the unmodeled dynamics. In the case of adaptive control schemes an

index, yu, was defined for the unmodeled dynamics. Then it was shown that the adaptive

scheme of Chapter 3 is robust with respect to unmodeled dynamics if the index of the unmo

deled dynamics is larger orequal to v-2, where v isthe relative degree of the reduced model.

In particular, the scheme is robust for all systems withrelative degree oneortwo.

A worthwhile extension of the results in Chapter 4 wouldbe a robustness result for the

sliding mode control scheme. Due to the switching nature of the control law the arguments

whichare based on the time scale separation between the reduced model and the unmodeled

dynamics are no longer valid. Therefore, a robustness proof similar to the high gain and
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adaptive cases can not be used and other techniques must be employed to prove robustness if

in fact the scheme is robust

Inthe remainder of this chapter wewtil present an example of asimple physical system

for which the a controUer can not be designed using the theory presented in Chapter 3. Our

objective in presenting this example is to point out two major shortcomings of the theory

presented in Chapter 3. This example involves the control ofatwo segment robot arm which

is pinned at one end about which it can rotate. The control input istorque applied to the arm

at the end which is pinned. The two segments of the arm are connected by atorsional spring

which produces a torque proportional to the angle between the two segments. Such asystem

can be thought of as the crudest finite element approximation of a flexible arm. Higher order

approximations can be achieved by increasing the number of rigid segments connected by

torsional springs.

torsional spring

Figure 5.1 Arm configuration.

Figure 5.1 shows the configuration of the arm. The objective istocontrol the angle of the end

effector through the torque apptied at the base. With the angles 9! and 82 identified inFigure



5.1 we can write the equationsofmotion ofthe armas foUows:

-|+cos(82) -|-+cos(02)
{ +COS02) J

e,

82

T1 +Ysm(02X26i +62)^2

-k62-^(82)8?
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(5.1)

wherewe have assumed, for simplicity, that the two segments are symmetricuniform rods of

unit mass and length. Also k denotes the proportionality constant of the torsional spring. We

can write (5.1) as a set of first order differential equations in the standard form:

x =f(x) + g(x) u. Thus letting xx, x2, x3, and x4denote 8lt 82,8lt and 82 respectively, and

letting u denote xlt we obtain the foUowing expressions for thevector fields / (x) and g(x):

/(*) =

g{x) =

xz

x4

^[^sin(x2)(2x3+x£+(j+ycosCz^Xfct+ysinfr^2 ]
^-[(-7+4-cos(j:2))sin(x2)(2A:3+^4)x4 - (4+cos(x2))(fa:2+Tsin(^2)x32)]

L A 0 4 5 £

0

0

J_
3A

2 + ScosCc^

6A

(5.2)

(5.3)

where A denotes the determinant of the inertia matrix in (5.1) and is given by

A = — + —sin2(87) > 0. We are interested in controlling the angle of the end effector. Thus
36 4

define the output y to be:

x2
y=h(x):=xx + —

Then computing the Lie derivative of h(x) withrespect to/ (x) and g(x) we obtain:

(5.4)
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V<*>=o (55)
2 - 3cos(*2)

L8Lfh(x) = —

The first difficulty isnow apparent from (5.5). The function LgLfh(x) is neither identically

zero noris it nonzero for all values of*. In fact, this function goes through zero atvalues of

x2 corresponding to cosfri) =*r. More generaUy in asystem in which the first control term

appears in the vth derivative ofthe output the singularities of LgLf~xh(x) present amajor

limitation to the present theory in that as the trajectories approach the points of singularity,

the Unearizing control becomes unbounded. It is, therefore, necessary todevise an alternative

control strategy in a neighborhood of singular points (or the singular manifold) of

LgLf~lh(x). We believe that this problem is arather chaUenging one and asolution would

be a major contribution to the theory. An attempt in this direction has been made by Hir-

schorn and Davis [20]. Their approach relies on identifying the class of tracking signals for

which the control input remains bounded as the system trajectories pass through the singulari

ties. This impties that the initial condition can be chosen exactly so that the output of the sys

tem starts on the desired path. Such a scheme, however, is practically unstable since the

slightest perturbation or noise inthe system, which is unavoidable, results ininstabUity.

Continuing with our example, we note that we are interested in keeping x2 at zero,

which is far from the singular points of LgLfh(x). Thus, we can apply the construction in

Chapter 3 locaUy around x2 =0.To this end, define the new coordinates:

5i =*i+y*2

?2= x3 + -x4
(5.6)

Tli =x2

3
T|2 =(1 +yCOSCX2))*3 +*4

where t\x and T)2 are chosen so that Lgr\i =0, /=1,2. The inverse of this transformation is
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given by:

t 1*i =Si-2-Tii

*2 = Tll

4^2-2%
x3 =

2-3008(11!)

4n2- 2(2+acosCnJfe
2 - 3008(11!)

x4 =

2
Clearly, the above transformation is a diffeomorphism for aU x2 with cosQk^ > —. Now

computing the zero dynamics of the system we have:

4th
Tll = 2 - 3cos(T|,)

2 (5.8)
6sin(Ti!)Tif

ti2=-3A:t|1-i-
(2-3cos(ti1))2

Checking the stabUity of (5.8) we find that the Unearization of (5.8) about the origin has

eigenvalues at ±2^3* . Therefore, the zero dynamics ofthe system with respect to the output

function (5.4) are always unstable. Thus, we can not apply a tracking control law based on

the input-output linearization of the system since the internal dynamics of the system wiU be

unstable. This is the second limitation of the theory, that is the non-appUcabiUty of the

current theory to non-minimum-phase nontinear systems. Development of a theory for non-

minimum-phase systems would be amajor advancement of the present theory.

The foregoing example has pointed out some directions for future research. There are

many other aspects of nonlinear systems which require close attention as weU (e.g. extension

of the present theory to discrete time systems and multi input-multi output systems), and we

feel that the present work is part of an ongoing effort towards a better understanding and the

developmentof a comprehensive set of tools for nonlinear systems.
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