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Abstract

We present a computational model of human texture perception. The model consists of
three stages: (1) The image is convolved with a bank of even-symmetric linear filters
followed by half wave rectification to give a set of responses (models outputs of V1 simple
cells). (2) Inhibition, localized in space, within and among the neural response profiles
which results in the suppression of weak responses when there are strong responses at the
same or nearby location (models intracortical inhibition in V1), and (3) texture boundary
detection using peaks in the gradients of the inhibited response profiles. Unlike previous
attempts along these lines, our model is precisely specified, equally applicable to grey
scale and binary textures, and is motivated by detailed comparison with psychophysics
and physiology. We interpret experimental results on phase discrimination to show that
in stage (1) responses of (a) center-surround mechanisms of differing widths, and (b)
directional filters of differing orientations and widths which are even-symmetric about
their axes are necessary and sufficient; and that odd-symmetric mechanisms are not used
in human texture perception.

A computer implementation of this model has been tested on a large number of the
‘classic’ stimuli from psychophysical literature. Our model makes predictions about the
degree of discriminability of different texture pairs which match very well with experi-
mental measurements of discriminability in human observers due to Krose and Gurnsey
& Browse.

From a machine vision point of view our scheme is a high quality texture edge detector
which works equally well on images of artificial and natural scenes. The algorithm makes
use of simple, local and parallel operations which makes it potentially realtime.



1 Introduction

Major theories of texture perception due to Julesz [7,17] and to Beck [2,3]
attribute preattentive texture discrimination to differences in first-order
statistics of stimulus features such as orientation, size and brightness of
constituent elements. These theories have typically been constructed for
black and white dot or line patterns and are not directly applicable to grey
scale images (though see Voorhees & Poggio [32] for a definition of textons
for grey-scale images). Experimental results critical of these theories have
appeared [13,15]. An alternative approach [10,29,6] has been to exploit the
linear mechanisms (psychophysically observed spatial frequency channels
and neurophysiologically observed blob, bar- and edge- sensitive neurons)
which have been used to explain a range of phenomena in early spatial
vision. Some experiments [6,4] suggest that this approach may explain tex-
ture perception better than the more symbolic, feature based approach of
Beck and Julesz. However no scheme in this framework has been fully spec-
ified, implemented and successfully tested. The crucial experimental test
is the following: Does the model correctly predict the texture boundarnes
found preattentively by human observers, both in images of natural scenes
and the synthetic stimuli from psychophysics literature? Even better, does
it correctly predict the degree of discriminability for different texture pairs
as measured by psychophysical experiments?

We develop such a model in section 2. In section 3 we argue that only
even-symmetric mechanisms are used in texture perception. In section 4 we
present some experimental results. We conclude with a critical discussion
of our model in section 5 and its relevance to machine vision in section 6.

2 A model for texture perception

Seeking to construct the ‘simplest’ such model, we examine three succes-
sively more elaborate schemes (1) a purely linear model (2) a model based
on half-wave rectified responses of linear mechanisms (3) a model with half-
wave rectification and nonlinear intracortical inhibition. Models (1) and (2)
prove inadequate; model (3) successfully passes the experimental test. All
these models share the implicit assumption that texture discrimination is
based on comparing spatially averaged responses [ ff; R(z,y) dz dy]/| Area



of T) over textured regions T1, T;. R is expected to be some simple, locally
computable function of the image. It can be seen [21] that this assump-
tion is another way of expressing the insight (due to Beck and Julesz) that
in preattentive texture perception, precise positional relationships between
the textons are irrelevant; only texton densities matter.

To see that a theory based purely on linear mechanisms is inadequate,
consider two textures T), T, which have identical mean brightnesses i.e..
identical spatial averages. Convolving them with a linear filter F' results in
responses Rr,(z,y) and Ry, (z,y) with identical spatial averages. (The value
of the power spectra at 0 are identical). Now we know that humans can
preattentively discriminate some textures with identical spatial averages.
An example is the even-odd pair from [18], or indeed any discriminable
texture pair with identical first order global statistics. A generalization of
this observation to n'* order statistics and n'® order polynomial operators
may be found in Kube [21].

Next we try a model based on the responses of linear mechanisms fol-
lowed by half-wave rectification. This is perhaps the most obvious choice
of nonlinearity-V1 cortical cells have low maintained discharge rates and
are unable to respond with a decrease in firing rate as required by a nega-
tive response. Two different cells are needed to represent the positive and
negative parts of the response. This gives the following model: the image
I(z,y) is convolved with a bank of linear filters F; followed by half-wave
rectification to give a set of 'neural’ responses R}(z,y) (the positive part
of the response) and R; (z,y)(the negative part). A texture T can be
preattentively discriminated from T, if and only if one of these 'neural’
responses, say R;—L, after spatial averaging is ’sufficiently’ different for T,
and T,.

2.1 Choice of the filters

To specify a functional form for the filters F;, we follow Young [33] and
use radial and directional Gaussian derivatives which give excellent fits to
cortical receptive field data. This choice is convenient but not critical—
Gabor filters could have been used instead. The radially symmetric filter
classes DOG1(o) and DOG2(s) (Fig 1-(a),(b)) model non—oriented simple
cells. Directionally tuned filters DOOG2 (o,r, ) with an even-symmetric
cross section perpendicular to their axes (Fig 1-(c)) model bar—sensitive
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Figure 1: The point-spread functions of some of the filters used in our
simulation. The filters were designed after Young [33] summing gaus-

sian functions G(zo,¥o,0z,0,) = ﬁe_((%)u(!—vs)ﬂ)?). (a) DOG2(0)
- Linear combination of three circular ‘concentric gaussian functions, a -
G(0,0,0;,0;) + b- G(0,0,0,0) + ¢ - G(0,0,0,,0,) with variance 0; : 0 : 0,
in aratioof 0.62 : 1 : 1.6 anda : b : cin aratioof 1 : =2 : 1. (b)
DOG1(0) - Linear combination of two circular concentric gaussian func-
tions, a - G(0,0,0;,0;) + b - G(0,0,0,,0,), with variance o; : ¢ : 0, in a
ratio of 0.71 : 1 : 1.14 and coefficients a : b in a ratio of 1 : —1. (c)
DOOG2(o,r,6) - Linear combination of three offset identical gaussian func-
tions a - G(0,¥a,0x,0,) + b- G(0,4,0z,0y) + ¢ - G(0,Yc,0,,0,). Variances
o,=0,0, =710, offsets y = ~y. =0, p =0, coefficients a : b : c1in a
ratio of —1 : 2 : —1 for the filter with axis of symmetry along the x direction
(6 = 0). The other DOOG2() filters are obtained by rotation about the cen-
ter of the middle gaussian. The scaling coefficients a poc: : apoa:2 : apooc2
were in a ratio of 3 : 4.15 : 2 designed to equalize the dynamic range of the

respective responses.



simple cells. In our simulations we used 6 equally spaced orientations 6
and a constant aspect ratio r = 3. Implicit in the Gaussian derivative
model is the assumption that receptive field profiles in the direction per-
pendicular to their axes are either odd-symmetric or even-symmetric, and
not of intermediate phase. Psychophysical studies on phase discrimina-
tion [14,9] provide strong evidence for this assumption. We make the claim
that only even-symmetric mechanisms (Fig. 1-(a),(b),(c)) play a role in tex-
ture perception; we ignore the DOOGL filters of Young [33] which model
odd-symmetric mechanisms which respond optimally to appropriately ori-
ented edges. Justification for this is provided in Section 3. The ¢ parameter
of the three filter classes used corresponds to a nominal spatial frequency
in c/deg (given the viewing distance and size of image). To sample ade-
quately the mid spatial frequency range around the peak of the luminance
contrast sensitivity function, all integer values of the frequency between 3
and 14 ¢/deg were used. This gives 96 filters F; which result in 192 ‘neural’
responses R}, Ry . We will refer to these 192 responses as ‘channels’.

Representative examples of these responses for some textures may be
found in Fig. 2.

2.2 Half-wave rectification is insufficient

The model of texture discrimination suggested above successfully explains
human performance on a number of examples. However 1t cannot explain
the easy segmentation of the texture in Fig. 3. Consider the channel cor-
responding to the positive half-wave rectified response to a vertical bright
bar tuned DOOG2(o, 7, 7/2) filter. One might expect this to give maximum
response to the bright bars in the left region and minimum response to the
dark bars on the right. Not so. As shown in Fig. 4, the spatially aver-
aged responses are identical. The area under the response to the bright bar
(Fig. 4(b)) is equal! to that under the response to the dark bar (Fig. 4(c)).
We’ll refer to the bright bar as the optimal stimulus for the channel (gives
peak response for a given norm of the stimulus)-the dark bar is an example
of a non-optimal stimulus which gives a spurious response in this channel.

This example is merely an instance of a general phenomenon with linear

11n fact, this is true for any texture pair where the constituent micropatterns M;, M,
have zero DC values and satisfy My = — M,



Figure 2: Some textures (top row) and half-wave-rectified response of one of
the filters to each (bottom row). The point-spread function of each filter is
shown at the bottom-right corner of the response image. The filter shapes
are as in Figure 1 ; the frequency parameters correspond to a 4° X 4° image.
The response images are composed of two square regions, an upper one
depicting R*, the positive part of the response, and a lower one showing
R-. (a)Texture from [15], fig. 6, pair 2.2 (top); response of a 8 ¢/deg DOG1
filter (bottom); ¢ = 0.5x(length of texel line segments). (b)Texture from
[15], fig. 6, pair 2.1 (top), response of a 5 c¢/deg DOG1 filter (bottom);
o ~ 2x(width of texel line segments). (c)Arrow-Triangle texture (top),
the arrow texel is obtained from the triangle by shifting one of its legs;
response to a 5 ¢/deg DOG?2 filter (bottom); o ~ 0.3x(length of triangles’
hypotenuse). (d)Texture from [31], fig. 4.2b (top); response to a 13 c/deg
DOOG?2 filter (bottom); g, ~(width of bars), o, : g, = 3 and orientation
120°.



Figure 3: An easily segmentable texture pair. The micropatterns Mi(z,y)
on the left are bright bars DOOG2(s,r,n/2) from Fig.lc, and on the
right Ma(z,y) are dark bars —-DOOG2(a,r,7/2). M(z,y) and My(z,y)
have the same average brightness. Let the responses of these micropat-
terns to the filter DOOG2(o,r,n/2) be RY(z,y) and R%*(x,y) respec-
tively. Now R!(z,y) = —R%(z,y) = DOOG2(o,r,n/2) * DOOG2(0,r,7/2)
= G(20,0,V/20, V2ro) — 4G(0,0,v/20,/2r0) + 6G(0,0,v/20,v2rc) —
4G(-0,0, V20,y/2ra) + G(—20,0, V20,4/2rc). Note that [f R'dxdy =0
which means that the area under the positive part of R, R!* is equal to the
area under R!~. Note also that R~ = R**. It follows that the spatially av-
eraged responses in the bright bar channel (positive half-wave rectification)
are the same for the two micropatterns.

filters. A vertical bright bar of width ¢ would give responses on bar channels
of other orientations and width o’s, and also on the channels corresponding
to the radially symmetric DOG1 and DOG2 filters. The peak values on
the non-optimum channels are smaller, but linear spatial summation of the
diffuse spurious responses can give similar or even exactly equal results.
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Figure 4: Cross-sections along the z-axis of the graphs of three functions:
(a) M (bright bar), (b) R'* the response to M, in the bright bar channel,
(c) R?* the response to the dark bar M, in the bright bar channel (equiv-
alently R~ the response to M in the dark bar channel). The areas under
(b) and (c) are equal.



2.3 Nonlinear inhibition

A theory of texture perception must therefore consider other cortical non-
linearities—half-wave rectification alone is insufficient. In our theory we
rely on intracortical inhibition. A nonlinear aggregated contrast response
function (for individual neurons see [1]) would be another option; the dif-
ficulty would be in coming up with a principled choice of the nonlinearity.

Inhibitory connections and interactions (some nonlinear) among the’
neurons in primary visual cortex V1 have been well documented [26,27,
12,25]. A number of functional roles have been attributed to these, includ-
ing the generation or sharpening of orientation and length selectivity.

We claim that another consequence of intracortical inhibition is the
suppression of ‘spurious’ responses. A rigorous justification of this claim
requires quantitative models of the relevant inhibitory circuits—current
experimental data is inadequate to support such an exercise. We are left
with the option of proposing a computational model and arguing for (a) its
functional adequacy, and (b) its biological plausibility. For biological plau-
sibility, we imposed three design constraints on the inhibition model: a neu-
ral implementation should (1) require only local connections (in the same
or nearby V1 hypercolumns) (2) require only a few neural time steps—in
preattentive processing there is time for just a few spikes (3) not demand
unduly specific interconnection strengths between arbitrary pairs of neu-
rons.

Our scheme is simple: Thresholds T:(zo,yo) for neurons belonging to
channel i with retinotopic coordinates zg,yo are computed

tTi(l‘ﬂv yO) = max max ajiRj(zv y)
J  zy€lji(xo.y0)
Here I;; is the neighborhood of (o, yo) in which neurons in channel j are
able to inhibit neurons in channel ¢, a j; is a measure of the effectiveness of
this inhibition. The post-inhibition response PIR;(zo,¥o) is given by

1
max
z,y€Si(zo.w0) 1 — Qg4

PIRi(zo, %) = [Ri(z,y) ~ Ti(z, )]

This results in a suppression of responses below the threshold. S ;(zo, Yo) is
a sampling neighborhood from which the strong responses in channel i are
selected for subsequent processing.



il j — || DOG1(s) | DOG2(0) | DOOG2(0,r,8)
DOG1(o) 0.2 0.25 0.15
DOG2(0) 0.25 0.25 0.20
DOOG2(a,r.0) 0.15 0.20 0.65
Figure 5: Inhibitory coeflicients o ;
il j — | DOG1(¢) | DOG2(¢) | DOOG2(0,r,0)
DOG1(o) 20 1.50 1.250
DOG2(0) 20 1.50 1.250
DOOG2(o,r,0) 20 1.50 1.25¢0

Figure 6: Radii of inhibition neighbourhoods I ;.

I;; and aj; are chosen by the design criterion of eliminating ‘spurious’
responses. As an example, consider channels ¢, j corresponding to the pos-
itive and negative responses of the filter DOOG2(0). Figs. 4(b)-(c) shows
the responses in the two channels to a bright bar. The peaks in the negative
(spurious) response are approximately 0.65 times the positive central peak
and are displaced by 1.250 from it. This prompts a choice of a j; = 0.65 and
L; to be a disk of radius 1.25¢ in order to ensure a suppression of the nega-
tive response. This procedure can be repeated for all the 192 x 192 pairs of
channels. However this violates our third criterion for biological plausibility
as specific interconnection strengths are required between arbitrary pairs of
neurons. We can however exploit the known clustering: non-orientationally
tuned neurons tend to occur in the V1 blobs, and neurons sharing similar
orientation preference occur together. This clustering leads us to form 8
groups of channels in our framework (2 radially—symmetric + 6 oriented ).
I; and aj; are identical for all channels ¢ in one of these groups, these values
having been computed from the spurious responses in the channel ¢ with
the same o parameter as channel j. The actual values used in our simula-
tions are tabled in Figures 5 and 6. No attempt has been made to optimize
these numbers. We believe our model of inhibition to be too tentative a
guess of the biological reality to justify such an exercise.
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2.4 Computation of the texture gradient

Our model for texture discrimination is now in its final form: two tex-
tures Ty, T, are discriminable if their spatially averaged responses in some
channel PIR; are ‘sufficiently’ different. To construct a scheme for finding
texture boundaries in images from the post-inhibition responses, we note
the experimental findings of Nothdurft [22]. The visual system responds to
a texture gradient, rather than absolute differences. We define the texture
gradient to be max; V(PIR; % Gy)(z,y) where G, is a radially symmetric
Gaussian function with standard deviation ¢’ and the index 7 ranges over
all channels. Biologically, the computation of the gradient of the smoothed
post-inhibition response in each channel can be done using odd-symmetric
oriented mechanisms similar to the edge-sensitive cells in V1. Of course,
the mechanisms responsible for computing the texture gradient have large
RFs (o’ is a measure of the size) and presumably occur in some extrastriate
area. Texture boundaries are marked at local peaks of the texture gradient
magnitude. An alternative way of defing the texture gradient would be as
the sum of the gradients in the separate channels, instead of the maximum.
We have not yet experimented with this option.

3 Odd-symmetric mechanisms are not used

Our model used only channels corresponding to even-symmetric filters.
This choice was based on an interpretation of some experimental results
of Rentschler, Hubner and Caelli [23] who found that textures composed
of mirror-image compound Gabor signals were indistinguishable even when
the individual micropatterns were easily discriminated. There was no diffi-
culty in discriminating textures composed of non-mirror-image compound
Gabor signals. A simplified version of the phenomenon can be seen by
comparing Fig. 3 (easily segmentable) and Fig. 7 (not preattentively seg-
mentable). We attribute the failure to discriminate preattentively textures
of mirror-image micropatterns to a lack of utilization of channels corre-
sponding to odd-symmetric filters.

First some definitions: micropatterns M, and M, are said to be y-
mirror-symmetric (y-ms) if M;(z) = My(—z) and zy-mirror-symmetric (zy-
ms) if My(z) = —My(—=z). Examples of y-ms pairs are Figs. Z2a, 2c in
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Ref. [23] and the two micropatterns in our Fig. 7; Fig. 3 contains a zy-
ms pair. Consider any two y-ms patterns M;, M;. Now, the following
operations (or any composition thereof) preserve y-mirror-symmetry: (a)
halfwave rectification (b) convolution with any even-symmetric filter (c)
nonlinear scaling I — g(I). Consequently, responses R;(M,), R;(M;) in any
channel i corresponding to an even-symmetric filter are also y-ms. In fact,
so also are post-inhibition responses PIR (M), PIR(M,) if only inhibition
from channels j corresponding to even-symmetric filters is considered (for
any such j, R;(M;), R;j(M,) are y-ms, resulting in T;(M;), T;(Ma) the
respective thresholds being a y-ms pair). Now any two patterns which are
a y-ms pair have identical spatial averages; from the preceding argument so
must post-inhibition responses in even-symmetric channels. In other words,
to segment a texture composed of M; from one composed of M; using
spatially averaged responses, we must rely on the channels corresponding
to odd-symmetric filters. Interestingly, for an zy-ms pair, the situation is
reversed: only even-symmetric filters are useful. To establish this, note
that convolving an zy-ms pair with an odd filter makes it a y-ms pair. Now
that we have identified texture pairs whose discrimination must rely on
exactly one of the two symmetry classes of mechanisms, deciding which of
these are used in texture perception becomes an empirical question. Clearly
odd-symmetric mechanisms are not utilized; even-symmetric are.

A second argument against the use of odd-symmetric mechanisms is
based on data on how our ability to discriminate textures scales with eccen-
tricity of viewing direction (from fovea to periphery). Saarinen, Rovamo
and Virsu [24] showed on a number of textures that if the stimuli were
M-scaled (scaled to make them equally visible at all eccentricities, a mag-
nification approximately the inverse of the density of retinal ganglion cells
as a function of eccentricity), then texture discrimination was equally pos-
sible at all eccentricities. Bennett and Banks [5] carried out compound
grating phase discrimination experiments at a range of eccentricities. They
found that the data could be explained by assuming that the sensitivity
of even—symmetric mechanisms is constant, but that of the odd-symmetric
mechanisms falls dramatically with eccentricity. This accounts, in their
opinion, for the reduced ability to encode phase peripherally. This decline
in sensitivity of the odd-symmetric mechanisms seems to suggest that they
are not utilized in texture segmentation in an essential way-if they were
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Figure 7: A texture pair composed of y-mirror-symmetric micropatterns.
Segmentation is not preattentive. Compare with Figure 3 and see text.

our ability to discriminate textures should decline at a similar rate.

4 Experimental results

We carried out two series of tests on our model. For all simulations the
values of the parameters a;; and I;; were as specified in the tables of Fig. 5
and 6.

The first series of tests was to verify whether our model does indeed
correctly predict the texture boundaries found by human observers. In our
algorithm, texture boundaries are marked at local peaks of the texture gra-
dient magnitude which are above some threshold. In our implementation,
the Canny [11] edge—detector is used for this step, with ¢’ = 8 or 16 pixels
in our simulations. S; , the sampling neighborhoods, were chosen to be
disks of radii o- the size tuning parameter of channel i. Figure 8 and 9
show the texture boundaries extracted on some images.

The second series of tests was intended to compare the degree of tex-
ture discriminabilty predicted by our algorithm with psychophysical data
due to Krose[20] and Gurnsey and Browse[15]. Figure 10 shows 5 bipartite
textures with elements constructed after [20](Section 3.2, pp.34-39), and 1
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(d)-(e)-(£)

Figure 8: Texture boundaries found by our computational model on a set of
images. (a) a texture where second order statistics are different in the two
regions (b) a texture pair where the textons have differing orientations in
the two regions (from [31]) (c)is the even-odd texture pair from [18] which
can be segmented even though the left and right regions have identical
third-order statistics (d) and (e) Two stimuli constructed after Gurnsey
and Browse [15] who used them to criticize the original Julesz texton theory
(easily segmentable in spite of identical textons in left and right regions). (f)
the triangle-arrow texture pair. In our model, center—surround DOG2 filters
contribute most to the segmentation and their responses decrease when the
micropatterns are anisotropically steetched explaining the observations of
Enns [13].
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Figure 9: (a) A detail of the portrait of Adele Bloch-Bauer by Gustav Klimt
(left) and the texture boundaries found (right). The essential boundaries of
the 5 perceived groups have been detected. (b) A ‘naturalistic’ texture and
the boundaries found. The extra ‘spurious’ horizontal boundary detected
in the straw texture can be explained by a local texture gradient.
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Figure 10: Bipartite textures with elements designed after Krose. The
texure pairs are ordered (top to bottom, left to right) from most to least

discriminable.
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Figure 11: Texture gradient as a function of column number. The max-
imum value is expected to be at column 64 corresponding to the texture
boundary in our 128x128 images. S; constant. The R—mirror-R texture is
not discriminable.
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Texture pair Discriminability
Krose | Gurnsey & Browse | Malik & Perona

Plus-ell 68.6 0.736 232
P123-sq23 88.1 n.a. 201
Tri-arr 52.3 0.4-0.55 154
Plus-t1 37.6 0.496 136
Ti-ell 30.6 0.421 97
RR-RL n.a. n.a. 50

Figure 12: A comparison of the performance of our texture segmenta-
tion algorithm with psychophysical data from Krose [20] and Gurnsey and
Browse [15]. The value of the texture gradient at its central peak (Fig-
ure 11) is a measure of the predicted discriminability according to our
model. Because of differences in the scales used, the three columns should
be compared only by the rank ordering of discriminability. The Krose
data corresponds to &y (Table 3.1, pg. 39, SOA=320) and Gurnsey &
Browse data to mean overall discriminability (pairs 1.1, 1.2, 1.3, 3.1 in
their paper) averaged over foreground/background and different stimulus
durations. Note that the rank order of discriminability predicted by our
model matches Gurnsey & Browse’s ranking exactly, and that of Krose ex-
cept for the relative ordering of the Plus-ell and P123-5q23 textures. The
RR-RL texture pair is not segmentable, as a lateral peak of the gradient
exceeds the central peak.
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composed of R’s and mirror-image R’s (called RR-RL). For each of these
textures, the texture gradient (¢’ = 12 pixels, S; = constant) obtained by
our algorithm is plotted as a function of column number (see Figure 11).
The texture boundary (column 64) is associated with the central peak in
the gradient. The value of the gradient associated with this peak is taken
to be a measure of the discriminability predicted by our algorithm. In Fig-
ure 12, this data is presented in a more easily readable form and compared
with Krose (Table 3.1, pg. 39, SOA=320) and Gurnsey & Browse (pairs
1.1, 1.2, 1.3, 3.1) mean overall discriminability. Note that the rank order
of discriminability predicted by our model matches Gurnsey & Browse’s
ranking exactly, and that of Krose except for the relative ordering of the
Plus-ell and P123-5q23 textures. The discrepancy may be explained by
slight differences in the micropatterns used for building the stimuli, and
the stimuli arrangement (bipartite versus rings) which can lead to fore-
ground/background effects [15].

5 Discussion

The results in the previous section illustrate the explanatory power of our
model and suggest that many of the essential aspects of texture perception
have been captured in our theory. In this section, we examine the theory
critically with the objective of suggesting areas where further experimental
and theoretical work is needed. Two major issues:

1. Our model of nonlinear inhibition is somewhat ad hoc, as it was con-
structed in the absence of detailed quantitative experimental data.
We hope that further research in physiology and psychophysics will
provide this data. The precise form of this stage ( sub-threshold sup-
pression) in our model should be viewed as a stopgap approximation;
that it worked so well in the absence of any effort at parameter ad-
justment suggests that our theory is robust with respect to different
models of this stage. From a modelling viewpoint, another alterna-
tive would be to appeal to a nonlinear scaling PIR; = g(R;) which
would emphasize peaks in the response. The difficulty here is in com-
ing up with a principled choice of g. For individual neurons, contrast
response functions have been measured (see [1]); however we do not
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know the aggregated contrast response functions of the neuron pop-
ulations in a particular channel.

2. Julesz, Treisman [28] and Gurnsey & Browse[15] have all pointed out
the asymmetries in various tasks in preattentive vision. It is most
clearly seen in the data from Gurnsey & Browse e.g. when a field
of Ls is embedded in a field of +s, its discriminabilty (0.93) is much
greater than for a field of +s embedded in Ls (0.53). We need to
provide a mechanistic explanation of this phenomenon.

Other aspects of our model which need further elaboration include

1. We set our channels to have identical sensitivity for the different fre-
quencies and filter classes. These should be tuned to match psy-
chophysical measurements.

2. The correct choice of ¢’ in the computation of the texture gradient.
In our simulations, this choice has been made by hand (8, 12 or 16
pixels).

6 Relevance to machine vision

Detecting texture boundaries in images is a very important problem in
machine vision. This is because most perceptually useful boundaries are
between differently textured surfaces. The usual technique in the machine
vision community is to detect step edges in image brightness at various
scales, and hope that at one of the coarse scales the texture boundary will
correspond also to a brightness edge. Clearly, this is not a robust method.
Image brightness step edges are valid abstractions only at the finest level
of detail, and except for shadow boundaries, step edges at coarser scales
are physically meaningful only when they happen to coincide with texture
boundaries.

There are very few algorithms in the literature for finding texture bound-
aries in real images in the absence of prior models of the specific textures
present. Two recent efforts are due to Voohees and Poggio[31,32], and
Kashyap and Eom [19]. Surveys of earlier work on texture, mainly focussing
on classification, may be found in Haralick [16],and Van Gool, Dewaele and
Oosterlinck [30].
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Voorhees and Poggio[31,32] compute ‘blobs’ by convolving the image
with a Laplacian of Gaussian of small o, find attributes of these blobs,
and then use a statistical test to distinguish local distributions of blob
attributes. While their technique gives acceptable results for some examples
where the blobs are relatively well defined, it is not evident that discrete
well defined blobs can always be found in grey scale images. Certainly
multiple scales would be needed, and spurious links between blobs may
result in significant errors in computed attributes. We believe that any
scheme where the first stage is intensity edge detection is going to suffer
from similar problems.

Kashyap and Eom[19] characterize textures by a long correlation model
with a small number of parameters. These parameters [c,d,a] are esti-
mated by a least squares method in the frequency domain, and the exis-
tence and location of texture boundaries estimated by a maximum like-
lihood technique. Good experimental results are shown on a number of
images composed of textures from [8]. The Kashyap-Eom scheme, indeed
any scheme which characterizes textures by parameters estimated from the
Fourier power spectrum, cannot be used to discriminate textures with iden-
tical Fourier power spectra. Now, some such textures can in fact be easily
discriminated by humans e.g. the even-odd texture from [18] or our bright
bar—dark bar texture { Fig.3).

As the results in Figures 8 and 9 show, our scheme constitutes a high
quality texture edge detector which works equally well on images of artificial
and natural scenes. The algorithm makes use of simple, local and parallel
operations which makes it potentially realtime.

Our framework can be extended to include the detection of bright-
ness/color step edges. For that one adds channels corresponding to odd-
symmetric directional Gaussian derivatives, which are the filters used in the
Canny edge detector. Nonlinear inhibition can be used to help select the
scale of the edge, not unlike the idea of non-maximum suppression in the
Canny scheme. We will be reporting on this unified boundary detection
scheme in a forthcoming paper.
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