Machine Characterization Based on an Abstract
High Level Language Machine

Rafael H. Saavedra-BJ(_zrrerail':t
Alan J. Smith'
Eugene Miya*

ABSTRACT

Runs of a benchmark or a suite of benchmarks are inadequate to either
characterize a given machine or to predict the running time of some benchmark
not included in the suite. Further, the observed results are quite sensitive to the
nature of the benchmarks, and the relative performance of two machines can
vary greatly depending on the benchmarks used. In this paper, we report on a
new approach to benchmarking and machine characterization. The idea is to
create and use a machine characterizer. which mzasures the performance of a
given system in terms of a Fortran abstract machine. Fortran is used because of
its relative simplicity and its wide use for scientific computation. The analyzer
yields a set of parameters which characterize the system and spotlight its strong
and weak points; each parameter provides the execution time for some primitive
operation in Fortran.

We present measurements for a large number of machines ranging from
small workstations to supercomputers. We then combine these measurements
into groups of parameters which relate to specific aspects of the machine imple-
mentation. and use these groups to provide overall machine characterizations.
We also define the concept of pershapes, which represent the level of performance
of a machine for different types of computation. We introduce a metric based on
pershapes that provides a quantitative way of measuring how similar two
machines are in terms of their performance distributions. This metric is related
to the extent to which pairs of machines have varying reiative performance levels
depending on which benchmark is used.

1. Introduction

One approach to comparing the CPU performance of different machines is to run a set of
benchmarks on each. Benchmarking has the advantage that since real programs are being run on
real machines. the results are valid. at least for that set of benchmarks; such results are much
more believable than estimates produced from models of the system, no matter how detailed. To
the extent that the benchmark set is representative of some target workload, the observed perfor-
mance differences will reflect differences in practice.

Considerable effort has been expended to develop benchmark suites that are considered to
reflect real workloads. Among them are the Livermore Loops [McM86], the NAS kernels [Bai85a.
Bai85b]), and synthetic benchmarks (e.g. Dhrystone [Wei84, Wei88|, Whetstone [Cur76]). Unfor-
tunately. there are a number of shorwommg< to benchmarking [Don87, Worg4j: (1) It is very

+ Computer Science Division, EECS Department, University of California. Berkeley, California 9472
+ Departamento de Ingenieria Electrica, Universidad Autonoma Metropolitana, México D.F., \{e‘qco
+ NASA Ames Research Center, Moffett Field. Mountain View. California.

2

difficult to explain the benchmark results from the characteristics of the machines. (2) It is not
clear how to combine individual measurements to obtain a meaningful evaluation of the various
systems. (3) Given that there is almost never a good model of the machines being benchmarked,
it is not possible to validate the results, nor to make predictions and/or extrapolations about
expected performance for other programs. {4) Unless the benchmarks are tuned for each machine
architecture, they may not take advantage of important architectural features. (5) The large
variability in the performance of highly optimized computers is difficult to characterize with
benchmarks. For example using benchmarks Harms et. al. found that the relative performance
between the Fujitso VP-200 and the CRAY X-MP/22, varied from 0.41 to 5.39 on individual pro-
grams |Har88): the ratio for the whole workload was only 1.12.

In this research, we present a new approach to characterizing machine performance. We do
this via "narrow spectrum” benchmarking, by which we measure the performance of a machine on
a large number of very specific operations, in our case, primitive operations in Fortran. This set
of measurements characterizes each specific CPU. We separately analyze specific programs,
ignoring at this stage of our research compiler optimizations and vector instructions. We can then
combine the frequency of the primitive operations with their running times on various machines to
predict the running time of any analyzed program on any analyzed machine. This approach also
gives us considerable insight into both the machines and the programs, since the effects of indivi-
dual parameters are immediately evident.

In this paper. we provide an overall presentation of this work. but concentrate on the
specific issue of machine characterization: prediction of the execution time of benchmarks is done
in [Saa88, Saa89]. Section 2 gives a somewhat more detailed overview of our research. In section
3. we describe the machine characterizer, and also the program analyzer. The parameters used to
characterize a machine are explained in section 4. The methodology used to make measurements
is presented in section 5, and the parameters derived from a number of machines are given in sec-
tion 6. A comparison of machines is also provided in that section. The concepts of performance
distributions (pershapes) and pershape distances between machines are given in section 7. Some
unresolved issues are considered in section 8.

2. System Characterization and Performance Evaluation

The idea behind our approach is to distinguish between two different activities often igrored
in machine evaluation: these are svstem characterization and performance evaluation. We define
system characterization as an n-value vector where each component represents the performance
of a particular operation (P.). This vector (<P, Py - -~ ,P,,>) fully describes the system at
some level of abstraction. The parameters we use are a set of primitive operations. as found in
the Fortran programming language, and are defined in section 4. We measure the values of the
parameters using a system characlerizer. which runs a set of ‘software experiments’, which detect,
isolate and measure the performance of each basic operation. Using software experiments to
measure each svstem allows us to validate our model and measurements by making predictions
and checking the results with the execution of benchmarks and workloads. This approach is in
contrast to studies which use a low-level machine architecture based model [Peu77].

The performance evaluation of a group of systems is the measurement of some number of
properties during the execution of some workload. One property may be the total execution time
to complete some job. It is important to note that the results depend, and are only valid, for the
set of programs used ir the evaluation. The evaluation includes not only the machine, but also
the compiler, the operating system and the libraries. in this research we focus on the execution
time of computationally intensive programs as our metric for evaluating different architectures.

2.1. A Linear Model for Program Execution

Our research is based on the assumption that the execution time of a program can be parti-
tioned into independent time intervals, each corresponding to the execution of some operation of
an abstract Fortran machine. The abstract Fortran machine (AFM) is used as a general model
for all the machines, each executing the object code produced by their Fortran compilers. Thus,

each system represents a different implementation of the AFM. In this way, the AFM makes it
possible to compare different architectures. As is shown in [Saav88], and to a lesser extent later
in this paper, this assumption is reasonably accurate.

Svstem designers use a similar approach, but at the hardware level, when they evaluate dif-
ferent implementation of the same architecture. In this case the model of the machine is defined
by its instruction set, and they are interested in the mean instruction execution time [Mac84].
This quantity is equal to the sum of the mean nominal execution time, the mean pipeline delay
caused by path conflicts and data dependencies. and the mean storage access delay caused by
cache misses of instructions and operands. In our case. instead of having one single machine
instruction to measure, we have a group of instructions corresponding to an abstract parameter.
How each abstract parameter is implemented in each machine depends on its instruction set, com-
piler, and libraries. In fact, normally there will be several sequences of instructions implementing
each parameter. Which particular sequence is generated by the compiler depends on the context
in which the operation appears in the source program.

Our model of the total execution time is the following: Let Py = <P, P, - ,P,> be the
set of parameters that characterize the performance of machine Al Let
Ca= <C,Cy - .Cy> be the normalized dynamic distribution of operations in program A,

and let C\ denote the total number of operations executed in program A. We obtain the
expected execution time of program .4 on machine M

Tant = Croat &L CiPi = Cotat CaAPmM (1)

=]
where

n

V=1

=]
In general, given machines M, M. ... M. with characterizations Py Py, - Py, 2nd 2
workload W formed by programs A, A, ---.A; with dynamic distributions Cp . Ca, * - Ca,

the expected execution time of machine M on workload W is

TW,M. = ___: CtouzAjCA,'PMi (2)

=1

-,

where Cyy, Is the total number of operations executed in program Aj;. Twag provides a way to
2

make a direct comparison between several machines with respect to workload W. The expected
execution time of workload W on machine Af; is less than that of machine Af;, if Twar, < Twa,

Using this model it is possible not only compare two different machine architectures using
any workload. but also to explain their results in terms of the abstract parameters. Let
Ppa= <&, 00 -0, > be the normalized distribution of the execution time for program A
executed on machine Af. Define:

CA.x'P.\fk',

T TP

Vector &y decomposes the total execution time in terms of each parameter and makes it possi-
ble to identify which operations are the most time consuming. We would expect that different
machines will have different distributions. even for different implementation of the same architec-
ture or/and different compilers. Once we have the machine characterizations, it is possible to
study the effect of changes in the normalized dynamic distribution without writing real programs
that correspond to these distributions. and in this way detect which parameters have a significant
impact in the execution time for some machines.

An advantage of this scheme is that the {-m machine-program combinations only require

that each machine be measured once to obtain its characterization, and aiso that each program be
analyzed once. Making an evaluation using normal benchmarking techniques requires the

execution of [-m programs. Moreover, once the machine has been measured, its characterization
can be used at any time in the future for additional evaluations, in contrast to benchmarking in
which access to the machine (same model. operating system, compiler, libraries) is needed for each
new set of benchmarks.

2.2. Limits of the Linear Model

The only way in which the linear model can give acceptable results is if the following condi-
tions hold: (1) The experimental measurements are representative of ‘typical’ occurrences of the
parameters in real programs. (2) The errors caused by the low resolution and the intrusiveness of
the measuring tools are small compared to the magnitude of the measurements. (3) Variability in
the execution mean time caused by data dependencies. external concurrent activity. and nonrepro-
ducible conditions is small, and therefore does not significantly affect the results. In some cases,
the above conditions cannot be satisfied. especially in highly pipelined machine where the execu-
tion time when there is a register dependency conflict is several times greater than the execution
time without this delay. An example of this is the CYBER 205, where an add or multiply can
take as little as 20 ns to execute, when the pipeline is full, or as much as 100 ns in the worst case
[Ibb82]. If we consider the following two statements

((X1 + X2) * (X3 + X4)) + ((X5 + X6) * (X7 + X8))
((X1 + X2) » X3 + X4) = X5

X9
X8

we find that the execution of the first statement takes approximately 360 ns, while the execution
time of the second takes 400 ns. A simple linear model will estimate that the execution of the
second statement will be less than that of the first statement, unless the model contains informa-
tion on how the execution time is affected by data dependencies. Branching and interrupts also
prevent the pipeline from working at peak speed. Although it is difficult to detect and measure
how each machine will execute different statements, it is always possible to create new parameters
that take into account data dependencies and measure the extra penalty in the execution time. In
practice, the number of parameters cannot be expanded without limit.

2.3. Fortran and Other Programming Languages

The model presented above can also be applied to other general purpose languages. We
chose Fortran instead of other programming language for the following reasons: 1) most large
scale scientific computation, accounting for most of the CPU time on supercomputers. is done in
Fortran; 2) the number of language constructs in Fortran is small; and 3) the execution time of
most of the operations in Fortran does not depend on the value of the arguments. [t is therefore
natural to experiment first with a less complex programming language and test whether it is pos-
sible to make acceptable predictions. Most of the differences between Fortran and other general
purpose languages do not prevent building an abstract machine model. although a model with a
larger number of parameters and better experiments would be required.

3. Description of the System

In the last section we showed what we need in order to characterize machines using the
linear model and how to use this information to make predictions about the execution time of pro-
grams. We have implemented (a) a system characterizer and assembled a library of machine
characterizations {Pyp); (b) a program analyzer that generates the dynamic distribution {CA) and
the total number of operations (Cy) of Fortran programs; and (c) an execution predictor that
takes Py, Ca and Cyy and estimates the expected execution time of the applications. The com-
plete process, characterization, analysis. and prediction is shown in figure 1. In the next two sub-
sections we give an overview of the program analyzer and the execution predictor. A more in
depth presentation of the syvstem characterizer follows.

<

Characterization L Analysis
) S
(/ System \\ .) Source .
Scai-2 -
| |
| r I
.___“'-——] : : Y
! Muchine | Lo Program !
i i : Analy zer i

: | o .
e Lo S S

+ ;
T . . N

/Pv;::ne \\ : : Program ~N

__Oharactenzation,/ . Statistics

i

Execution

Predictor

o . Bstimate
Prediction

.................... -

Figure 1: The process of characterization. analysis and prediction.

3.1. Program Analyzer

The program analyzer (PA) decomposes Fortran programs statically and dynamically in
terms of the abstract parameters. This provides a uniform model for the execution of different
applications. In addition both models. the performance model associated with machines, and the
execution model associated with the applications are identical. Thus, it is possible using the
dynamic distribution to compare different programs. putting the emphasis not on their syntactic
or semantic properties, but in how they affect the performance of different systems.

The PA is basically the front end of a Fortran compiler. It takes as its input a Fortran pro-
gram and after making a lexical and syntactical analysis, it outputs an instrumented version of
the original program, from which we obtain the dynamic statistics. In addition, the PA also gives
the static statistics for each parameters for each basic block. The operation of the program
analyzer is shown in figure 2.

Let us number each of the basic blocks of the program j=1,2,---.m, and let
8;; ({=1.2,--- .n) designate the number of static occurrences of parameter P; in block Bj.
Matrix SA=[3,-J-] of size n Xm represents the complete static statistics of the program. Let
A=<y o, Ll > be the number of times each basic block is executed, then matrix
Da=|d;;]=|ujs:,] gives us the dynamic statistics. Matrix S and vector w4 are obtained by
parsing and instrumenting the source code. Vector C, (§ 2.1) and matrix D4 are related by the

following equations
m
S divi

C;= J—='l— {3
C(olal)

. /\\
- / :
j Source [Data |
Code // \ !
\\//l ‘\.r//
: |
! |
! |
| Program ’ Modified ‘ ! i i
! ———{ — 3 Compie ——— Execution |
‘ .

Analyzer | |, Program ; v ;
1 . , ; i
(U -v_, H

!
s
i
|

P) /'ﬁ\\
T TR bl
| Statistics / | Statistics /)
\\.// _/

Figure 2: The static and dynamic statistics are obtained by parsing and instrumenting the source program.

and

d
1

Ctolal = 1,7

ISt
VL3

1=l

The dynamic statistics are independent of the code generated by each compiler, and they only
depend on the source code and the data used in the execution.

3.2. Execution Predictor

The execution predictor (EP) combines the machine characterization Py with the dvnamic
statistics C 5 to obtain estimates of the expected execution time of programs, using equations (1)
and (3). The execution time is computed for each statement of the program, and this makes it
possible to compute estimates for different parts of the program. In our system, this is done by
inserting two special comments at the beginning and end of the particular region in which we are
interested. There is no limit to the number of these regions as long as they are either disjoint or
one is contained in the other. In addition to the expected execution time, the EP also reports the
variance of the estimate, and the expected execution time per parameter along with its variance.
This is done by measuring vector 0°Py= <0°P,.c"P,. -+ ,c"P,> with the system character-
izer.

4. The Fortran Abstract Machine

By using a common parametric model. we are able to compare the performance of different
architectures and make a fair comparison between them with respect to their execution of Fortran
programs. How many parameters the system should have depends on how accurate we want our
predictions to be, although this is limited by the resolution of our measuring tools; at some point
increasing the number of parameters does not have any effect in improving our predictions. We
are also limited in our accuracy by the fact that we do not analyze the code generated by the
compiler. nor use information that is not contained in the source code of the program. In the next
subsection we present the set of parameters in our model, and give a brief description of what
they measure.

4.1. Parameters in the System Characterizer

Each parameter of the model can be classified in one of the following broad categories: arith-
metic and logical, proccdure calls, array references, branching and iteration, and intrinsic func-
tions. We decided wiiich parameters to include in our model in an iterative manner. Initially we
associated parameters with obvious basic operations, and after a first version of the system was
running, new parameters were incorporated to distinguish between different uses and execution
times of the ‘same’ abstract operation in the program. This was mainly the result of detecting a
significant error between our predictions and real execution times. Although every basic operation
in Fortran is characterized by some parameter, we have made some simplifications with some
operations which were rarely executed in the benchmarks we used. It is straightforward to include
new parameters in the model. and to write new experiments for the system characterizer. The
parameters are classified in eighteen different groups according to the semantics of the operation;
tables 1 and 2 present the 102 parameters.

4.2. Global vs. Local Variables

Most operators are characterized by several parameters, depending on the operand types
and sizes, and storage class {common / local). Global variables in Fortran (COMMON) are some-
times treated differently from local variables. In some compilers, variables stored in CONMMONSs
are treated as components of a structure using a base-descriptor for each COMMON block which
points to the first element of the COMMON. An operand is loaded by first adding an offset to
the base-descriptor and then loading the operand. This way of treating simple variables makes

the execution slower when they are allocated as global variables as opposed to local.

4.3. Arithmetic and Logical Operations

Fortran is a language for scientific and numeric applications. For this reason the richness of
the language lies in the arithmetic operators that it supports. In addition to the arithmetic opera-
tors, Fortran also provides six relational and six logical operators. Table 1 (groups 1-8) gives the
fifty-six arithmetic parameters grouped by data type (real, complex, or integer). size {single or
double precision) and storage class (local or global). Not all combination are included; there is no
double precision for integers or complex variables. In table 2 we find the logical and conditional
parameters (groups 9-10). Each arithmetic mnemonic is formed by appending the first letter of
the operation with the first letter of the data type (R, C, or 1), plus a letter identifying the size of
the operand (S or D). and at the end the first letter of the storage class (L or G).

The arithmetic operators defined in the system characterizer are: addition, multiplication,
division (quotient), and exponentiation. The addition operator also includes subtraction. Addition
(subtraction) between an array index and a constant is treated as a special parameter: most com-
pilers add, at compile time, the constant to the base-descriptor of the array and eliminate the
addition (see 4.6). In the case of exponentiation using a real base. we distinguish between two
cases: one when the exponent is integer and the other when the exponent is real. When the
exponent is integer, the result is computed by either executing the same number of multiplications
as in the exponent (when this is small), or by binary decomposition. In the case of a real
exponent, the result is computed using logarithms. If the base is integer, we have two cases, one
with the exponent equal to two and another when the exponent is greater than two. Given that
the number of exponentiations executed in most programs is small, these simplifications are suffi-
cient. ’

Two groups of parameters require further expianation. One is the set of parameters that
measure the overhead of the store operation (SRSL, SCRL, SISL, SRDL, SRSG, SCSG, SISG. and
SRDG), and the other, what we calied memory transfer parameters (TRSL, TCSL, TISL. TRDL,
TRSG. TCSG. TISG, and TRDG). In Fortran loading an operand is not a separate operation,
and so the time for a load is included in the execution time of the corresponding arithmetic or log-
ical operation. A store. however. is a visible operation whose time can be measured. In some
cases, the time for a store is negligible. {part of the store operation overiaps with the execution of
the previous or/and following operationj, while in other cases the time can be significant.

Table 1: Parameters in the system characterizer (part 1 of 2)

1 real operations (single, local)

4 real operations (single, global)

01 SRSL
02 ARSL
03 MRSL
04 DRSL
05 ERSL
06 NXRSL
07 TRSL

store

addition
multiplication
division
exponential (X)
exponential (X)
memory transfer

29 SRSG
30 ARSG
31 MRSG
32 DRSG
33 ERSG
34 XRSG
35 TRSG

store

addition
multiplication
division
exponential (X7)
exponential (XY)
memory transfer

2 complex

operations, local operands

5 complex

operations, global operands

08 SCSL
09 ACSL
10 MCSL
11 DCSL
12 ECSL
13 XCSL
14 TCSL

store

addition
multiplication
division
exponential (X7)
exponential {X)

memory transfer

36 SCSG
37 ACSG
38 MCSG
39 DCSG
40 ECSG
41 XCSG
42 TCSG

store

addition
multiplication
division
exponential (X7)
exponential (X7)
memory transfer

3 integer operations, local operands

6 integer operations, global operands

15 SISL
16 AISL
17 MISL
18 DISL
19 EISL
20 XISL
21 TISL

store

addition
multiplication
division
exponential (/%)
exponential (I7)
memory transfer

43 SISG
44 AISG
45 MISG
46 DISG
47 EISG
48 XISG
49 TISG

store

addition
multiplication
division
exponential (77)
exponential (I7)
memory transfer

T real operations (double, local)

8 real operations (double, global)

22 SRDL
23 ARDL
24 MRDL
25 DRDL
26 ERDL
27 XRDL
28 TRDL

store

addition
multiplication
division
exponential (X7)
exponential (X7)
memory transfer

50 SRDG
51 ARDG
52 MRDG
53 DRDG
54 ERDG
55 XRDG
56 TRDG

store

addition
multiplication
division
exponential (X1
exponentiai (A7)
memory transfer

Table 1t The set of parameters measured by the system characterizer {part 1 of 2). Arithmetic

operations are classified taking into account the type, width and storage class of their

operands.

Loads are visible and must be accounted for in one case. In 3 memory transfer statement
where there are no operators on the right hand side of the equal sign, the execution time of the
statement cannot be explained just by the store operation. For these kind of statements we use
the memory transfer parameters to distinguish them from normal statements that include expres-

S10MS.

Table 2. Parameters in the system characterizer (part 2 of 2)

9 logical operations (local) 10 logical operations (global)
57 ANDL | AND & OR 62 ANDG | AND & OR
58 CRSL compare, real. single 63 CRSG compare, reali, single
59 C'CSL compare, compliex 61 CCSG compare, real. deuble
60 CISL compare. integer. single 65 CISG compare, integer, single
61 CRDL | compare, real. double 66 CRDG | compare. real. double !
11 function call and arguments 13 branching parameters
67 PROC | procedure call 69 GOTO | simple goto
68 AGRS | argument load i 70 GCOM | computed goto
12 references to array elements i4 DO loop parameters
71 ARR1 array 1 dimension 75 LOIN loop initialization {step 1)
72 ARR2 | array 2 dimensions 76 LOOV loop overhead {step 1)
73 ARR3 array 3 dimensions 77 LOIX loop initialization {step nj
74 IADD array index addition B 78 LOOX loop overhead (step n)

15 intrinsic functions (real) j 16 intrinsic functions (double)
79 LOGS logarithm &7 LOGD logarithm
80 EXPS exponential 88 EXPD exponential
81 STNS sine 89 SIND sine
82 TANS | tangent 90 TAND tangent
83 SQRS square root 91 SQRD square root
84 ABSS absolute value 92 ABSD absolute vaiue
85 MODS | module 93 MODD | module
86 MAXS | max. and min. 94 MAXD | max. and min. i

17 intrinsic functions (inte;;:;—)_j [1% intrinsic functions (complex} 1

95 ABSI absolute value 98 LOGC | logarithm
96 MODI | module 99 EXPC | exponential
97 MANXI max. and min. 100 SINC sine

101 SQRC | square root
102 ABSC | absolute value

Table 23 The set of parameters measured by the system characterizer (part 2 of 2). Each stan-
dard intrinsic function in FORTRAN is represented by one parameters. For example, sine
and cosine functions are characterized by the same parameter SINX (x can be S. D or C.

depending on the data type of the argument].

4.4, Procedure Calls and Arguments

Function and subroutine call overhead also significantiy affect the executwn time of pro-
grams This overhead can be identified with three actions: passing the arguments between pro-
cedures, transferring controi from the calier to the callee, and returning the result and control
from the callee to the caller. In Fortran all the arguments are passed by reference including
values computed by expressions, so the argument passing overhead is limited to setting up the
reference.

10

We use two parameters which characterize function and procedure calls: the first measures
the joint execution of the prologue and epilogue of the call (PROC), and the second the time it
takes to load the address of an argument, either into registers, the static environment of the callee
subprogram or in the execution stack (some systems use the execution stack or registers to pass
arguments between subprogram units).

4.5. Branch and Loop Control

Branches (table 2, group 13) affect the execution of a program in several ways. In pipelined
machines, a penalty must be paid when a branch is taken and the target instruction has not been
previously fetched!, since all partially executed instructions in the pipeline must be discarded and
the new stream of instructions must be fetched [LEE84]. For a machine with a cache memory, a
branch to an instruction that is not in the cache may increase the miss ratio by changing the
locality of execution [SMI82].

Although Fortran has three different types of GO TO statements: unconditional, assigned,
and computed, we characterize all three with only two parameters. We make a distinction
between a direct jump (GOTO) and a computed jump (GCOM). In the first case the target of
the jump is known by the compiler and it is normally implemented as an unconditional jump. In
the second case the target depends on the value of some expression and it should be computed
before the branch can be executed. In our model, parameter GOTO is used for unconditional GO
TOs, and GCOM for computed and assigned GOTOs.

DO loops {group 14) are flow of control constructs that are widely used in scientific pro-
grams. The overheads incurred by this instruction are the time to set the initialization, limit and
step of the control index, and the time it takes to update the index and check if the number of
iterations has been completed. In addition, some machines implement loops with unit step dil-
ferently from non-unit step loops. In some cases the loop is transformed to a loop with a unit
step, which sometimes increases the execution time in non-unit loops. Four parameters (LOIN,
LOOV, LOIX, LOOX) characterize loops with unit and non-unit increment.

Although Fortran has three different types of IF statements. neither of these has been found
to need special parameters for their characterization. The block IF and the logical IF are decom-
posed in two parts: the evaluation of the predicate (arithmetic-logical expression) and a direct
branch. The arithmetic IF is different only in the way it branches. We handle the branching part
as a computed GOTO (GCOM).

4.86. Array References

Array variables in expressions are treated as ordinary variables plus an additional overhead
to compute the address of the element. We have three parameters (ARRI1, ARR2, and ARR3)
that characterize the dimension of an array reference (group 12). The overhead for variables in
four and five dimensions is computed in the execution predictor using a linear combination of the
three basic parameters. We found that most of the applications we examined had very few arrays
with more than three dimensions and no examples of more than five.

As we mentioned in section 4.2, integer addition between a variable and a constant in an
array index is considered a special operation. Initially we treated them as normal integer adds,
but the predictions thus obtained were off significantly from the measured times. We fixed this
problem by creating a new parameter (IADD) that measures the execution time of an add using
an index and a constant as operands.

! Even in machines that have some kind of branch prediction circuitry, 2 penalty is incurred when the pred-
iction is incorrect.

11

4.7. Intrinsic Functions

Intrinsic functions form the last subset of parameters (groups 15-18). Although the number
of times these instructions are executed in a program is small, and they only occur in some work-
loads, their execution times tend to be very large compared with that of a single arithmetic opera-
tion. We have twenty-four parameters in four groups which represent the intrinsic functions most
used in scientific programs.

The execution time of an intrinsic function is not always constant and normally depends on
the magnitude of the arguments. As an example, consider how the IBM 3090/200 computes the
sine function [IBM87]. In the computation, the execution time of several steps depends not only
in how large is the argument, but also in how small is its difference from the nearest muitiple of .
Depending on the magnitude of this difference, a polynomial of degree one, three, five, or a table
and additional arithmetic is needed to compute the result. The frequency of intrinsic functions is
generally low, and the arguments unpredictable, and we have found that our assumption of con-
stant execution time is a good enough approximation.

5. Machine Characterizer

The machine characterizer (MC) consists of 102 ‘software experiments’ that measure the
performance of each individual parameter needed to completely characterize a Fortran machine
(see table 1). The MC is written as a Fortran program and runs from 200 seconds, on machine
with good clock resolution, to 2000 seconds on machines with 1/60°th second clock resolution. We
have run the MC on several machines ranging from low-end workstations to supercomputers.
Each experiment tries to measure the execution time that each parameter takes to execute in
‘typical’ Fortran programs. This ‘typical’ execution time was obtained by looking at real pro-
grams and also by modifying those experiments that were identified as generating the biggest
error in our predictions.

5.1. Experiment Structure

Timing a benchmark is very different from making a detailed measurement of the parame-
ters in the system characterizer. For some benchmarks the system clock is enough for timing pur-
poses, and repetition of the measurements normally yields an insignificant variance in the aver-
aged results. On the other hand, the measurement of the parameters in the system characterizer
is more difficult due to a number of factors:

o The short execution time of most operations (20 ns - 10 us)

. The resolution of the measuring tools (> 1 us)

) The difficulty of isolating the parameters using a program written in Fortran
. The intrusiveness of the measuring tools

. Variations in the hit ratio of the memory cache

o External events like interrupts, multiprogramming, and I/O activity

. The need to obtain repeatable results and accuracy

v

Most of our primitive operations have execution times of [rom ten to thousands of
nanoseconds, and are implemented with a single or a small number of machine instructions. For
this reason direct measurement is not possible. especially since our tests should work for many dif-
ferent architectures. In addition, the need to isolate an operation for measurement normally
requires robust tests to avoid optimizations? from the compiler that would eliminate the operation

2 Even when we compile without optimization, compilers try to apply some standard optimizing techniques,
like constant folding, short-circuiting of logical expressions, and computing the address of an element in an ar-
ray.

from the test and distort the results [CLA8G]. Different techniques must be used, in particular
avoiding the use of constants inside the test loops; using IF and GO TO instructions instead of the
DO LOOP statements to control the execution of the test; and initializing variables in external
procedures to avoid constant folding. Separate compilation of variable initialization procedures is
used to make sure that the body of the test does not give enough information to the compiler to
eliminate the operation being measured from inside the control test loop.

5.2. Test Structure and Measurement

The measurement tools we have are the system clock and the repeated execution of a
sequence of statements. The resolution of the clock, the overhead of the timing routine and the
overhead of the statements that control of measurements are the sources of error that we can
control or work around. Variations in the hit ratio of the cache, interrupts, multiprogramming
and I/0 activity are more difficult to eliminate and measure (see § 8).

We use three different methods to measure the execution time of the parameters. The first
is by direct measurement, i.e. executing some operation for some number of times and in different
contexts. The second is with a composite measurement. In this case we execute a number of dif-
ferent operations and subtract the execution time of the known parameters to obtain the value of
the one that is unknown. The third possibility is with an fndirect measurement. Some parame-
ters of the model are ‘coupled’; it is not possible to execute one without executing the other. The
way to measure one of the parameters is to run two or more tests with a different number of
operations; the solution of a set of linear equations gives the correct result. Figure 3 shows the
basic structure of our tests. This same structure is used in all the tests.

LIMIT = LIMITO * SPEEDUP » (TMAX — TMIN) / 2.
DO 4 X = 1, REPEAT

1 COUNTER = 1

TIMEO = SECOND ()

IF (COUNTER .GT. LIMIT) GO TO 3

~y

body of the test

"COUNTER = COUNTER + 1
G0 10 2
3 TIME! = SECOND ()
IF (TIME! — TIMEO .GE. TMIN .AND. TIME1 — TIMEO .LE. TMAX) GO TC 4
LIMIT = .5 » LIMIT * (TMAX — TMIN) / (TIMEl — TIMEO)
GO TO !
4 SAMPLE(K) = TIME1l — TIMEO
CALL STAT (REPEAT, SANPLE, AVE, VAR)

Figure 3: The basic structure of an experiment. The statement IF (TIME1 — TIMEO enforces the execu-
tion of each test for more than TMIN and less than TMAX seconds. If the execution is outside this

interval a new value of LIMIT is computed and the test is repeated.

The sequence of statements to measure correspond to the ‘body of the test’. These state-
ments are executed for some number of times (LIMIT) and the execution time is measured (func-
tion SECOND). This time is called an observation. TMIN, and TMAX control the minimum and
maximum time that each observation should run (ty, <time;—timeg<tmy). The two state-
ments before the GO TO 1 enforce this condition. The DO loop is used to get several (REPEAT)
observations to obtain a meaningful statistic. Because we don’t know a priori how fast or slowly
an operation executes in an arbitrary machine, we extrapolate by using the time it takes to run
the test in the CRAY N-MP/48 and multiplying by their relative speeds. This is done using
LIMITO, which is the number of times the test runs in the CRAY X-MP/48, and SPEEDUP that

13

gives the relative speed of the machine. The relative speed is computed by running a small test at
the beginning of the characterization.

5.3. Experimental Error and Confidence Intervals

There are many known sources for the variability of the CPU time [Cur75, Mer83| and con-
sequently in our measurements. Some of these factors are: timer resolution of the clock, improper
allocation of CPU cpu for I/O interrupt handling, cycle stealing, and changes in cache hit ratios
due to interference with concurrent tasks. Small errors in the measurements have considerable
impact in the predictions we make, and we must measure and compensate for them. We will
proceed to derive expressions for the variance and the confidence intervals of the measurements.
The following definitions are used in the analysis:

TJ- .= CPU time before the observation (TIMEO}

TJ- ;= CPU time after the observation (TIME1})

C prerhead := overhead involved in the timing function

IF yertead = overhead involved in the if-loop control

Niimit w== number of times the body is executed (LIMIT)
]\"',.e,,eat == number of observations in the experiment (REPEAT)
Qj .= observation j, equal to TIME1 — TIMEO

0] ;= sample mean of each observation {measurement)

B = sample mean time of one ‘body of the test’ execution
f),- ;= sample mean of parameter ¢

c* = variance operator

We know that each observation O; is equal to

0;=T;-T;
then the mean value (O) and variance of these observations are
. 1 N rereat 1 N eyt .
O0=——Y 0;; 0== Y (0;=0) (4)
[\'repeaf i=1 “\nm(-1 j=1

Now the mean value of each observation is equal to the time it takes to execute the body of
the test Ny times, plus the overhead of the timing function (Corerhead)» and the extra instruc-
tions that control the test (IF, erhead)-

O = Nijnit (B + IF, onerhead) + Corerhead
where B is the mean time it takes to execute once the body of the test. We can compute this
value and the variance with the equations
- o - Couerlwud o 00 + U-Comrhead

N — IF yerhead i o-B = = 7 + 0" IF gierhead (3)
Niigmt Niimit

To obtain the mean value of parameter P; we need to know if the test is direct, composite
or indirect. Let /N be the number of times parameter P; is executed inside the body of the test,

then the mean value and variance of parameter P; in a direct test are

- B o UZB
Pi==: o Pi=— 6
N : N: (6)
In a composite test we have
poo Bty L B
AN N-

where W . is the additional work inside the body of the test or in the second test. In an indirect
test P, is a function of several measurements.

Pi = f(él:BZ' e ,én)
The normalized 90% confidence intervals are given by the expression

o 2 o
PO [SO Kl
i —lgs Nrepeat v 95\ 57

1/2
(7)

repeat

where ¢ g5 corresponds to the 95% percentile of the Student’s ¢ distribution. Looking at equations
4-7 we see that by increasing N, Ny, and Nyeper, We can reduce the variance in our measure-
ments.

5.4. Is the Minimum Better than the Average?

The measurements are obtained by computing the average of a number of observations.
The sample represeént the ‘effective’ execution time of the experiment plus an additional random
variable that represents the ‘noise’ produced by concurrent activity and the resolution of our
measuring tools. The error produced by the clock can be modeled as a random variable with
mean zero and standard deviation of 1/G times the resolution of the clock. The concurrent
activity is a positive random variable that depends on the load of the system. The ‘effective’ exe-
cution time must be less than or equal to (ignoring clock resolution) any observation in the sam-
ple. Therefore instead of taking the average as our measurement, it might be better to take the
minimum of the sample. However. what we are trying to characterize is the execution time of
programs under real conditions. and in this case the average would correspond better to these
‘normal’ conditions.

Table 3: Estimates taking the average and the minimum

Machine Real Time || Average Error Minimum Error
Convex (-1 543 sec 5531 sec | 1.47 % 109 sec 8.10 ¢

We decided which approach was better by using both schemes (minimum and average) in
the system characterizer and using the measurements for the prediction of the execution time of a
set of ten programs. The results (table 3) for one of the machines tested showed that using the
average produces a better estimate. The programs and both system characterizers were run under
similar conditions.

5.5. Reducing the Variance

Measuring small execution times from Fortran programs is difficult, especially for parame-
ters that are measured using indirect tests. In a direct or composite test it is relatively easy to
increase the number of operations executed inside the body of the test. and in this way reduce the
variance (eq. 6). In the case of an indirect test. the parameters measured are coupled with other
parameters and we cannot increase the execution of one without also increasing one or more of
the others.

An example is the address computation for an array clement. This parameter is measured
by running some code using simple variables and then subtracting the running time from the exe-
cution time for the same code using array elements. Increasing the number of array elements in
the test also increases the number of operations executed in the test. Moreover the variance of
the difference of two random variables is the sum of the individual variances. Therefore for some
parameters this produces an increase in variance, not a reduction. The way to reduce the vari-
ance in these cases is to increase the number of observations (Nppeat) and/or the number of times
the body is executed (N). How difficult it is to control the variance of some parameters can
be seen in the following example. In this case parameters LOIN (loop initialization) and LOOV
(loop overhead) are computed from the results of three tests using equations 8 and 9. Each B,
represents the result obtained in one of the three tests used in the measurement of LOIN and
LOOV. Even when the sample standard deviation is small {< 5%) for the B;s. in the case of the

i5

Table 4: Mean and Standard Deviation
Parameter | Mean (g) | Std. Dev. {o) | o/u (%)

B, 69.9 us 1.49 us 2.13

B, 127.3 ps 5.74 us 4.51

B, 107 .4 ps 4.53 s 4.22

LOIN 12.5 us 9.11 us 729

LOOV 1.99 us 0.73 us 36.8

Table 4: Relative magnitude of the standard deviation compared to the sample mean for parameters LOIN
and LOOV. The B;s are experimental results used to computed the value of LOIN and LOOV.

Each test consists of 5 observations executed for 1 second on a VANX-11/785.

DO loop parameters it is very large with respect to the mean. The three B; represent the perfor-
mance in each of the three experiments used to obtain parameters LOIN and LOOV,

LOIN = 2.8, = B, o*LOIN = 40°B, + ¢°B, (8)
3 B-'-—Bg - . UQB-_»‘*(T‘JB:;
LOOV = ——— ¢*LOOV = E (9)

5.8. The Effect of N\, and N, on the Variance

One question we haven't answered is what should be the magnitude of Nyt and Nyepeat tO
obtain measurements which give a small o/u ratio. These parameters are system dependent and
are mainly affected by the resolution of the clock, the concurrent activity on the system, and the
particular parameter being measured. We ran several experiments using different values for
Nyepeat and Ny in several machines. Figure 4 shows the normalized confidence interval of ten
parameters for values of Ny, such that the each test is run for at least 0.1. 0.2, 0.5, 1.0. 2.0 and
4.0 seconds on a Vax-11/780. We also obtained measurements for N\, equal to 5, 10 and 20
observations.

We see that for a fixed value of Ngp, the width of the confidence interval of our measure-
ments decreases as the time of the test increases, but for small values of N repeat. there is a limit to
how much we can decrease the confidence interval by only increasing the time of the test (Nt
The reason for this is that by increasing the length of the test we reduce the variability due to
short term variations in the concurrent activity of the system. However the probability of a
change in the overall concurrent activity of the svstem increases with a larger test. This change
may produce a greater variance if the size of the sample statistic is small. We see that the best
results are obtained for 20 observations and 1 to 2 seconds for the duration of the test. In
machines with good clock resolution acceptable results are obtained with 10 observations and .2
seconds for each test.

8. Measurements and Some Results

We have run the system characterizer on the machines shown in table 5. Of the fifteen sys-
tems, four are supercomputers, each implementing single precision floating point with 64 bits. On
the other systems singie precision variables are allocated using 32 bits. We gathered two sets of
measurements for the SUN 3/260, one using the 68881 co-processor to execute floating point
arithmetic. and another emulating the same functions in software. We also measured the effect of
using different Fortran compilers, the VMS FORT compiler and the UNIX BSD F77 both running
on the VAX-11/785. in both cases with Ultrix as the operating system. By using the characterizer
we can quantify how much each parameter is affected by the addition of a new hardware feature
or by changing the compiler.

16

MRL
N
| arcD
aF :ARRI
]Loov
2k

Olser 023 OSmsx 10ser 20s3er 403er

Olsec O2sec OBsc 108 20m 40sec

(a4

Q0 peroent condicdence intervals { normaliaed)

20 masuraTEs in ach el

{by

Q0 peroat f ich I valn (normalised

a confidence inteval of iaxsh two i
{one unit exch side} represent the !
magrutude of the Messurament i

t————
- (X}

; v

|

|

|

|

e
L

.
2
T

| 'PROT
3.+ 1 Qs 3.
' DRDL
AL
Olsec O02sec OSax 1.0sec 20se NSL PROC GOTO
(e d

Figure 4: Normalized confidence intervals for ten different parameters. In {a). (b). and {c) we show how
the length of the test (Nj;,,¢) and the number of observations (x\r,epm,) affect the confidence inter-
val of the measurements. taken on a VAX 11/780. For a fixed number of observations. an increase in
the execution time of the test tends to reduce the length of the confidence interval. Figure (d} shows
for three parameters all their confidence intervals plotted together. All confidence intervals are nor-
malized with respect to parameter P,.

The measurements of all parumeters are presented in the appendix in tables 10-14. The
parameters are grouped according to tables 1 and 2, with all magnitudes in units of nanoseconds.
Entries with magnitude ‘<1’ represent parameters that were not detected by the characterizer.
This happens when the execution time of the parameter is so small that most of its the execution
overlapped with other operations; the total execution time of the program does not depend signifi-
cantly on the occurrence of these parameters.

We can see some characteristics of the machines by looking at the results. For example, it
is clear from the tables that the performance of the four supercomputers on the execution of dou-
ble precision arithmetic is significantly lower than that for single precision. Single precision arith-
metic operations and intrinsic functions take one order of magnitude less time to execute on these

17
Table 5: Characteristics of the machines
Machine Name/Location Operating Compiler Memory | Integer Real

System version single | single | double
CRAY Y-MP/8&32 revnolds.arc.nasa.gov UNICOS 4.0.8 CFT77 3.0 32 Mw 46 64 128
CRAY-2 navier.arc.nasa.gov UNICOS 4.0.6 CFT77 3.0 128 Mw 16 64 128
CRAY X-MP/48 NASA Ames COS 1.18 CFT 1.14 8 Mw 46 84 128
1BM 3000/200 cmsa.berkeley.edu VM/OMS rd FORTRAN v2.3 32 MB 32 64 128
MIPS/1000 cassatt.berkeley.edu UMIPS-BSD 2.1 F77 v1.21 18 MB 32 32 64
SUN 4/2680 rosemary.berkeley.edu SunOS r.4.0 F77 32 MB 32 32 64
VAX 8800 vangogh.berkeley.edu 1'NIX 4.3 BSD F77 v1.1 28 MB 32 32 84
VAN 3200 atlas.berkeley.edu Ultrix 2.3 F77 vi.1 8 MB 32 32 84
VANX-11/785 (fort) pioneer.arc.nasa.gov Ultrix 3.0 Fort v4.7 16 MB 32 32 64
VAN-11/785 ([77) pioneer.arc.nasa.gov Ulrrix 3.0 F77 v1.1 16 MB 32 32 64
VAX-11/780 wilbur.arc.nasa.gov UNIX 4.3 BSD F77 v2 41 MB 32 32 84
SUN 3/260 (f) picasso.arc.nasa.gov UNIX 4.2r3.2 F77 vl 16 MB 32 32 64
SUN 3/260 picasso.are.nasa.gov UNIN 4.2r.3.2 F77 v1 18 MB 32 32 64
SUN 3/50 baal.berkeley.edu UNIX 4.2 132 F77 v1 4 MB a2 32 84
IBM RT-PC/125 loki.berkeley.edu ACIS 4.3 F77 v1 1 MB 32 32 64

Table &: Characteristics of the machines. The size of the data type implementations are in number of bits.
SUN 3/280 (f) uses the BRER1 as a co-processor running at 20 MHz, while the CPU executes at 25
MHz. For the VAN-11/785 we used two FORTRAN compilers, the VAX FORT 4.7 and the Berkeley
BSD 1.1.

machines than double precision. The greatest difference occurs on the IBM 3090/200 with double
precision division. This operation takes almost 700ns using 64-bit operands. while the same opera-
tion with 128-bit operands takes around 75500ns. In contrast, the same operation takes less than
8000ns in any of the three CRAY's.

By looking at the results of the SUN 4/260 and SUN 3/260 (f), we can see the main differ-
ences between them. The greatest performance gap is found in floating point (real and complex)
arithmetic, intrinsic functions, procedure calls and parameter passing. For integer arithmetic this
difference is smaller.

It is also possible to compare our resuits with the numbers reported by manufacturers.
However, this is no easy task given that our parameters may not map directly to a particular
sequence of instructions and that there are many factors affecting the execution times of instruc-
tions. For example. on the 68020 the effective address calculation can take from zero to twenty-
four cycles depending on the addressing mode and whether a prefetch instruction or/and an
operand read is needed [Mot85, Mat8T7]. Nevertheless, tabie 6 shows timing estimates for four
intrinsic functions (single precision) and also for the sequence of instructions implementing a pro-
cedure call. Included in the table are the measurements obtained with the system characterizer.

Table 6: Execution estimates vs. characterization results

units | LOGS | EXPS | SINS | TANS | PROC
Timing Est. cvles 672 598 482 574 113
nsec 33600 | 29900 | 24100 | 28700 4420
Measurement nsec 43799 | 28548 | 25790 31478 5034

Error 30.5% | 4.5% | 7.0% T 1 13.9%

For the intrinsic functions we assumed that the cycle time was 50 nsec (20MHz), and for pro-
cedure call 40 nsec (25MHz). We made some simplifying assumptions that are not necessarily
valid for the SUN 3/260. We see that except for the logarithm function, our measurements are
sufficiently closed to the timing estimates. This large difference is easily explained by looking at
the code generated by the compiler; several additional instructions are included to determine, at

1&

execution time, whether to compute log(z). or log(r +1).

The effect of different compilers can be seen in the results for the VAX-11/785. The FORT
compiler produces code that is significantly faster for complex arithmetic and intrinsic functions,
especially single precision intrinsics. There are some strange results in the case of the exponential
operator. \While the F77 code is between 2 and 5 times faster using a real base and an integer
exponent, the FORT compiler is more than 4 times faster in the case of a real base and a real
exponent. A similar situation occurs when the base is integer.

The fact that procedure calls are expensive operations on the VVAX architecture can be cor-
roborated when we compare the time it takes to execute this instruction on the VAX 8600 against
either the MIPS/1000 or the SUN 4/260. A procedure call is approximately six times slower on
the VAN 8&600. This large gap is also found in the other VAN implementations, if we make the
comparison against the SUN 3 or IBM RT-PC. This agree with previous studies done on the
VAN-11/780 that found that procedure calls take on the average 45.25 cycles to execute, while
the average VAN instruction takes only 10.6 cyeles [Eme82]. On the Whetstone benchmark
212 of the instructions executed are procedure calls and they represent 139 of the total execu-
tion time [Cla82].

6.1. A Reduced Representation of the Performance Measurements

The measurements obtained with the system characterizer makes it possible to compare dif-
ferent machine architectures either at the level of the parameters or by predicting the execution
times of a set of programs using their parametric dynamic distributions. Predicting the execution
time of a program is equivalent to reducing the set of basic measurements to a single number (the
execution time) with the dynamic distribution acting as a weighting function. These two types of
comparisons represent different extremes. On one side we have too much information with the
raw measurements: it is difficult to identify those parameters that most affect performance
without making reference to some particular workload. On the other extreme, a single number
representing the execution time gives an illusion of precision by hiding the multidimensional
aspects of program execution.

Therefore, it is convenient to represent the parameters in some ‘reduced’ form, in which
overall performance is represented using a small number of dimensions, each associated with dif-
ferent aspects of the computation. In this way it is not only possible to compare the performance
of a single operation or the overall performance with respect to a given workload, but also to
focus on some particular mode of execution.

8.2. Combining Measurements and Selecting Weights

The two major issues when we reduce a large number of parameters into a smaller set are
how to group the basic measurements. and how much weight to assign to each element.

For the first part we identified a small number of performance ‘dimensions’, each represent-
ing either a hardware or a software feature. These ‘dimensions’ should be as independent of each
other as possible, and should reflect distinct components of the machine. A good selection of
these new parameters will help us to better understand the behavior of the system. We use
hardware, software and hybrid parameters. Integer addition is representative of the first group;
trigonometric functions of the second: and floating point arithmetic. which in some machines 1s
executed using special hardware and on others by software routines, belongs to the hybrid group.

The second issue, assigning weights to basic purameters, is a more difficult task, given that
the impact of a parameter in the performance of a system is a function of the workload. However
this workload dependency is not as serious a problem as in the case of reducing all parameters to
a single number. The relative proportion of integer and floating point operations varies greatly
from one program to another. but if we focus only on floating point, the relative distribution of
these operations does not show the same degree of variability. We selected the weights based on
extensive statistics of Fortran programs reported in the literature complemented with other siatis-
tics produced with our program analyzer [Knu71, Weid4, Saa88|.

S

[——

Table 7: Reduced Parameters

| memory bandwidth (single) 2 memory bandwidth (double)
TRSL 125 | TISL 125 TCSL 125 | TRDL 125
TRSG 125 | TISG 125 TCSG 125 | TRDG 125
3 integer addition 6 floating point addition
AISL 500 | AISG 500 ARSL 500 | ARSG .500
4 integer multiplication 7 floating point multiplication
MISL 500 | MISG 500 MRSL .500 | MRSG .500
5 integer arithmetic { 8 floating point arithmetic

DISL 400 | DISG .400 DRSL .400 | DRSG 400
EISL .090 | EISG .090 ERSL .090 | ERSG .090
XISL .010 | XISG .010 XRSL .010 | XRSG .010

9 complex precision arithmetic 10 double arithmetic
ACSL 325 | ACSG 325 ARDL 325 | ARDG 325
MCSL 125 | MCSG 125 MRDL .125 | MRDG 125
DCSL .040 | DCSG .040 DRDL .040 | DRDG .040
ECSL .008 | ECSG .008 ERDL .008 | ERDG .008
XCSL .002 | XCSG .002 XRDL 002 | XRDG .002
11 intrinsic functions (single) 12 intrinsic functions (double)
LOGS .166 | TANS 166 LOGC .100 | LOGD .100
EXPS .166 | SQRS .166 EXPC .100 | EXPD .100
SINS .166 | MODS .166 SINC .100 | SIND .100
SQRC .100 | SQRD .100
TAND .100 | MODD .100

13 logical operations 14 pipelining
ANDL 2250 | CISL 250 GOTO .900 | GCOM 100
CRSL .250 | CDRL 125 15 procedure calls
CCSL 25 CALL 750 | ARGU 250
16 address computation l 17 iteration

ARRI1 .600 | ARR3 100 LOIN 060 | LOIX .030
ARR2 .300 LOOV 605 | LOOX 305

Table 7: The seventeen reduced parameters. including basic measurements and their respective weights.
With the exception of memory bandwidth, the sum of weights for each reduced parameter equals one.
The sum of memory transfer weights equal .5, because the operation involves loading from memory

and writing the results.

In table 7 we present the set of raw measurements and weights that formed each of the
seventeen reduced parameters. Parameters characterizing hardware functional units are: integer
addition and multiplication, logical operations, procedure cails, iooping, and memory bandwidth
(single and double precision). Software characteristics are represented by trigonometric functions

(single and double precision). Floating point, double precision and complex arithmetic, pipelining,
and address computation belong to the hybrid class.

5

4
7

L7 :l;\ NO\2
o ["\',\..-l
S A

1

1B 14 1 13 14

CRAY X-MP/48 1BM 3090/200

'(3 %
g7

P)) 14
SUN 4/260 VAX 8600

SUN 3/260 IBM PC-RT/125 SUN 3/50

Figure 5: Performance of composite parameters. The three concentric circles represents 50, 500, 5000 and
50000 nanoseconds. Each Kiviat graph shows how different machines distribute their nerformance

along different modes of execution.

8.3. Reduced Measurements and Kiviat Graphs

We present the same experimental measurements shown in tables 10-14 in the appendix in
terms of the reduced parameters in figures 5 and 6. These results are also given in tables 15-17.
In the tables. in addition to the magnitude we give the resuit normalized with respect to the shor-
test time, the CRAY Y-MP/832, and the VAX-11/780. For the VAX-11/780 we report the
reciprocal. Both Kiviat graphs are logarithmic, with each circle representing a change of one
order of magnitude with respect to its nearest neighbor. In figure 5 values are in units of
nanoseconds with the circle closest to the center representing 50 nanoseconds. Quantities smaller
than 50 nanoseconds are plotted in the direction of the center.

Sometimes it is convenient to express the performance distribution of the machine in terms
of another machine which we defined as our standard unit of measure. The VAX-11/780 is usu-
ally arbitrarily rated as a 1 MIPS machine, and the performance of other machines is given in
units of VAX-11/780 MIPS [Mip88]. We applied a similar transformation to the graphs in figure
5 to produce the Kiviat graphs of figure 6. Each dimension is normalized with respect to the
VAX-11/780. In this case the smallest circle corresponds to a performance equal to one tenth of a
VAX-11/780. As in figure 5, two adjacent circles have a separation of one order of magnitude.

L. 65 6 5 6 5
7 ™. 7 - 7. L . 7.2 s
N <L N AN
R \2)) . \2 SUCT, .2
10, ® : xoR b SUEETIN o ~ I Sy,
m\ /17 }%\A/n “// A y /m\/ It
g BN N L Q" h e Y) ‘N-?
hé 2 Y] Y -2 18 IR T R - 18
127 “"'Ts 12 xT‘_“/"’ XW" 12 \E_-__,/ls
CRAY Y-MP/832 CRAY-2 CRAY X-MP/48 1BM 3090/200

LA (3
LI ‘ﬁ N \. O/:; - \\‘\j‘\}
9»/§\Mé“}\}z‘ c/{ W& ‘\2
B N7 5/
YR “.‘ P

N, S
g T
MIPS/1000 SUN 4/260

[LI L] L

7//"_\ R 7 ,/"\ a

,,,/‘./——\ ™ /,»

8/ SO e ,/-\\
(e e

2 I o 1 },
ol g L el E"L'z
“ / / K S/ /.
1?‘«4@")11 K n\\\‘i /nv\;// ll
::M ° BN °
T 4
VAN-11/785 fort VAX-11/785 177 SUN 3/280 (f)
6 8 6 S e 8
7 7 4 - e 100 VAX: 11780
£ B R N ///‘/’“\\\\ . 10 VAX11/780
VS Y il R
R AR AN T v
i g g. T] E 3‘ -) —— a1 VAN /T™
Loy I - [(YR JER
° DY S =
o A N A 1 y
uh N i& "//:o w \.'.;____;//.I 16
>~ L 1/5 R v‘/xs/ —
13 14 13 14 13 14
SUN 3/260 IBM PC-RT/125 SUN 3/50

Figure 6: Performance of the reduced parameters with respect to the VAX-11/780. The concentric circles
represents .1, 1, 10, and 100 times faster. The closest a performance shape (pershape) is to a circle,
the closest the machine is to a2 VAX-11/780 in terms of how both machines distributed their perfor-

mance along different computational modes.

Using the results from figures 6-7, and tables 15-17, we can identify several differences and
similarities between the machines. The memory bandwidth results indicate that the only
machines that show the same performance in single and double precision memory bandwidth are
the CRAY Y-MP, the CRAY-2, and the CRAY X-MP. Although the single precision memory
bandwidth in the IBM 3090 is faster than the CRAY Y-MP (34ns vs. 45ns), for doubie precision
this situation is reversed (63ns vs. 40ns)®. The memory bandwidth reported here does not

3 The difference between the memory bandwidth measured for the CRAY Y-MP/832 between single and
doubie precision is a result of the measuring tools and the small execution times.

3]

[3]

necessarily match the numbers given by the manufacturer. Our measurements characterize the
execution time of a memory transfer assignment in a Fortran program, and for an arbitrary sys-
tem this transfer is affected by the availability of registers, data cache, write buffer, and other cir-
cuitry that improves the data transfer between the CPU and memory.

We can see the effect of different compilers on the VAX-11/785. The difference in perfor-
mance between the code produced by the two compilers is less than 10S% in the cases of memory
bandwidth with single precision, integer arithmetic, and DO loops. The FORT compiler code is
307 faster for real multiplication, 90% percent for complex arithmetic, 1309 for real division and
exponentials, and more than 3 times faster in intrinsic functions. On the other side, the F77 com-
piler code is less than 15% faster for integer division, and address computation. For intensive
floating point programs, the code of the FORT compiler clearly outperforms the F77 compiler.

The effect of the floating point co-processor in the SUN 3/260 is also clear by looking at the
results. Using the 68881 increases the performances of intrinsic functions by a factor of more
than thirteen, and for floating point arithmetic by a factor from two to five.

The CRAY Y-MP/832 has the fastest times for floating point and complex arithmetic opera-
tions, function calls, array references, branching and single precision intrinsic functions (fig. 8 and
tables 11-13). In particular, access to array elements is almost six times faster in the CRAY than
in the IBM 3090/200 and 127 times faster than in the VAX-11/780. The CRAY machines are
highly optimized for those parameters that are extensively used in scientific programs. The IBM
3090 is the fastest machine in double precision trigonometric functions, single precision memory
bandwidth, and logical operations. The CRAY-2 shows similar performance to the CRAY X-MP
and Y-MP in integer arithmetic (except integer addition), complex arithmetic, and procedure calls,
but memory bandwidth shows a larger difference in both single and double precision.

A comparison between the MIPS/1000 and the SUN-4 shows better performance for the
SUN-4 only in memory bandwidth and address computation, and the difference in all cases is less
than 15%. The MIPS/1000 has an advantage of more than 75% in integer multiplication and
arithmetic, floating point and complex arithmetic, intrinsic functions,

Floating point performance on the IBM RT-PC and SUN-3 (50 and 260) is slow compared
with other machines and although a co-processor provides a significant improvement, their perfor-
mance doesn’'t match the performance of comparable minicomputers. For example, the IBM
3090/200 is less than 12 times faster than SUN 3/50 (15 MHz) in integer addition, but 60 times
faster than the SUN 3/260 {25 MHz) with 68881 (20 MHz) in floating point addition. The SUN
3/260 is between 4-6 times faster than the VAX-11/780 on procedure calls and array references,
but the VAX-11/780 outperforms the SUN 3/260 on single precision floating point addition and
multiplication.

7. Similar Performance Distributions (Performance Shapes)

Consider two machines Ay and Afy- that are identical except for the clock rates. These
machines have the property that for any benchmark A their performance ratio (the execution
time on one machine divided by the execution time on the other machine) is always a constant;
thus, only one benchmark is sufficient to evaluate one against the other. For two arbitrary
machines. however, this performance ratio can vary significantly for different benchmarks; it is
possible to obtain a wide variety of performance ratios by running a sufficient set of benchmarks.
Therefore it is important to quantify how different is the performance distribution of an arbitrary
pair of machines and in this way determine how large we can expect the variability in the perfor-
mance ratio to be when running a large sample of programs. Thi: metric should group machines
according to their performance ‘shapes’ and not by the magnitude of their performance parame-
ters. A performance shape (pershape) is the Kiviat graph representing how performance is distri-
buted along the different computational modes (reduced parameters). A pershape tells us not how
large a parameter or set of parameters is with respect to other machines but how different
machines distribute their performance. In the next subsection we present a metric that measures
how similar are the absolute and normalized pershapes of two arbitrary machines.

7.1. A Metric for Performance Shapes

We would like a metric that captures the notion of similarity explained in the previous para-
graph. By looking at figure 5 or 6, we clearly see that the pershape of the CRAY Y-MP/832 is
very different than the pershapes of the VAX-11/780 or the SUN 3/50. But if we compare the
CRAY Y-MP with the CRAY X-MP, or the VAX 8600 with the VAX 3200, we find that except
for their relative sizes, the figures are very similar. It is this informal notion of similarity that we
try to capture with the pershape distance.

First, there are several properties that we like our metric to satisfy in addition to the obvi-
ous properties required for distances. The pershape distance must be greater or equal to zero, and
the distance from any machine to itself must be zero. It should satisfy the triangle inequality. It
should be symmetric: the distance from A to B must be equal to the distance from B to A. One
essential property for our metric is that if the performance of one machine is increased or
decreased by the same quantity in all the dimensions the new distance does not change. By allow-
ing two different pershapes vectors to have distance zero, we make the pershape distance a semi-
metrict |[Gil§7]. Every parameter should have the same weight and any arbitrary permutation of
the dimensions in both machines should not affect the distance. This means that our metric
should be a function only of the relative performance of the machines and not of how we plot
them. Making each dimension equally important intends to make the distance workload indepen-
dent. The last property that we require is that if the performance in one dimension is changed in
both machines by the same factor. their relative distance should not be affected.

The following discussion will give the rationale for allowing different pershapes vectors to
have distance zero. It is important to understand that we are not trying to measure the differ-
ence in performance between (wo machines. but something completely different. We are
interested in the variability of their expected performance. How fast one machine is compared to
the other is always a function of the workload we use to evaluated them. What the pershape dis-
tance tries to measure is how large is the spectrum of possible comparative performance results
when we use any possible workload composition. Therefore, given that two machines have a dis-
tance d, if in one machine we increase the performance of every dimension by the same factor ().
the distance should not be affected. Obviously. the machine will be faster or slower depending on
whether)\ is greater or less than 1, but the distribution of its performance remains the same.
Therefore. its distance to any possible machine should not change. A similar situation happens
when we add a constant to a random variable; the mean is affected, but the variance does not
change.

Formally. let X'=<z, 70 .2,> and Y=<y, y2. " " - .Y, > be two performance vec-
tors in (0.oc)® representing the pershapes of machines 3y and M,-. The metric
/2
- x- 1 I T 1 & z; |
dX.Y) = |——=Y\ [log(—)=— Y log(—= (10)
n-—1 =1 Yi Jj= 7

satisfies the following set of axioms:

i) dX.Y)>0
i) d{N.Y)=0 iff X =X} and A>0
i) d(N,Y)=d().X)
iv) d(X.Y) < d(X.Z)+ d(Z.Y)
v d(X, Y, =d(X.Y) for any arbitrary permutation ¢
Vi) d(<AT)Ta T, > <MY Y Y > = d(X,Y)

Note that equation (10) is not the only possible distance satisfying the axioms: there are an infin-
ity of different distance metrics with the same basic properties. The only metric property which

4 In some textbooks, this is called a pseudo-metric [Keig5. Boug9]. We will not use the prefix "semi-" or
‘pseudo-" and simply refer to it as a metric.

24

provides any difficulty to verify is the triangle inequality. To verify axiom iv) we first rewrite
equation (10) as follows:

/2
R N L& L&, '
dX,Y) = =\ log(z:)— w2, og(z;}| - T log(y:)— " og(y;) (11)
then consider the mapping ¢ : (0,00)" — R defined by
#(z) = ——|logtzi)= = X log(z;)|.
(n—1)"* n =1
Now, if we replace ¢(X) and ¢(}’) in equation (11)
n 1/2
d(X.Y) = lS('ﬁ(T{)—é(ys))e (12)
=1

we obtain the Euclidean metric for R®, and the verification of the triangle inequality follows
directly from the Cauchy-Schwarz inequality [Gil87].

In our presentation of the pershape distance, we did not specifv whether vectors X" and Y
represent absolute or normalized pershapes. Computing a function on a normalized set of values
does not always preserves some elementary properties. The output of the function may change
when we normalize the inputs. It is important to see how our metric behaves when we normalize
the set of reduced parameters.

Let \" be an absolute pershape vector and X'z a normalized vector obtained by dividing
each component z; of X' with the same element in Z

- T Te Tn
\y=<— = . —
SR n

In linear algebra terms, normalizing vector X' with respect to vector Z means applying a linear
transformation T to vector X . such that the transformation matrix associated with T is diagonal.
The matrix is zero everywhere except in the diagonal, with 1/z; as the diagonal element t. Now
the normalized distance is given by

- - - - T In U - -
AT N TY) = d(Xz.Yz) = d(<—. - .—_—>,<§f-‘-, Co L, ==>) =d(XLY)
“1 “n “1 “n

If we substitute the normalized parameters in equation (10), we see that the distance does not
change. It is also easy to see that this property is enforced by axioms v) and vi). Thus, we say
that distance d(X',Y) is isometric with respect to diagonal linear transformations.

In addition to measuring the distance between two performance vectors, the metric also
gives information on which parameters will most affect the benchmark results between two
machines. By ordering the terms inside of the first summation in equation (10), we find that the
largest terms will be the ones that will contribute more to the summation, and therefore to the

distance.

7.1.1. Similarity Results

Pershape distances were computed for all pairs of machines to detect which were the most
and least similar machines. The most and least similar 25 are reported in table 8 The table
shows that the most similar machines are the VAX 8600. VAX 3200. and the VAXN-11/785, all
using the F77 compiler. Other machines that are also close to each other are the SUN 3/50 and
the SUN 3/260. both running without the G8281. The differences between these two machine are

i
}

the clock, the cache and the memory. The SUN 3/50 runs at 15 MHz, does not have a cache and
uses standard memory chips. The SUN 3/260 runs at 25 MHz, has 64 Kbyte of virtual address
write-back cache, and uses ECC for memory.

Most Similar Machines Least Similar Machines

machine machine distance machine machine distance
001 || VAX 8800 VAX 3200 0.187 105 | CRAY-2 SUN 3/200 1.753
002 || VAX 8800 VAX-11/785 {f77) 0.214 104 || CRAY X-MP/48 SUN 3/200 1.725
003 [l VAX 3200 VAX-11/785 (f77) 0.235 103 || MIPS/1000 SUN 3/200 1.881
004 || SUN 3/50 SUN 3/200 0.201 102 || CRAY X-MP/48 SUN 3/50 1.848
005 | VAX 3200 VAX-11/780 0.425 101 }i CRAY-2 SUN 3/50 1.847
006 || VAN-11/785 (f77) | VAX-11/785 (fort) 0.432 100 || MIPS/1000 SUN 3/50 1.501
007 || CRAY Y-MP/832 | CRAY X-MP/48 0.454 088 || CRAY Y-MP/832 | SUN 3/200 1.582
008 || MiPS/1000 VAN-11/785 {fort) 0.478 098 || VAX-11/785 (fort) | SUN 3/200 1.523
008 || MIPS/1000 SUN /200 0.463 097 || CRAY Y-MP/832 | SUN 3/50 1.503
010 || VAX 8800 VANX-11/780 0.408 008 [l VAX-11/785 (fort) | SUN 3/50 1.445
011 |I VAN 3200 VANX-11/785 (fort) 0.500 095 || IBM 3000/200 SUN 3/200 1.434
012 || VAX 8000 VAN-11/785 (fort) 0.518 004 | IBM 3000/200 SUN 3/50 1.421
013 || CRAY-2 CRAY X-MP/48 0.518 083 || CRAY-2 SUN 3/200 (f) 1.420
014 || VAX-11/785 (f77) | VAX-11/780 0.519 002 || SUN /200 SUN 3/200 1.345
015 || IBM RT-PC/125 SUN 3/200 (f) 0.522 001 || CRAY X-MP/48 SUN 3/200 (f) 1.303
016 || CRAY Y-MP/832 | CRAY-2 0.532 000 || VAX-11/785 (f77) | SUN 3/200 1.300
017 || CRAY Y-MP/832 | IBM 3040/200 0.581 089 || VAX 8600 SUN 3/200 1.208
018 || SUN 4/200 VAN-11/785 {fort} 0.663 088 || SUN 4/200 SUN 3/50 1.288
019 || VAX-11/785 (fort) | IBM RT-PC/125 0.872 087 !| CRAY-2 VAN-11/780 1.284
020 || SUN 4/200 IBM RT-PC/125 0.684 086 || VAX 8600 SUN 3/50 1.250
021 {| SUN 4/200 VAN 3200 0.712 085 || CRAY Y-MP/832 | SUN 3/200 1.242
022 || SUN 4/200 VAX 8600 0.717 084 || IBM RT-PC/125 SUN 3/200 1.233
023 || SUN 4/200 VAN-11/785 (77) 0.738 083 || VAX-11/785 (77) | SUN 3/50 1.231
024 |l MIPS/1000 VAX-11/785 (f77) 0.743 082 || IBM 3080/200 SUN 3/200 (f) 1.228
025 || MIPS/1000 VAN 8600 0.752 081 || VAX 3200 SUN 3/200 1.203

Table 8: Pairs of machines with the smallest and largest pershape distance.

It is possible to use the results in table 8 to identify not only pairs of machines with similar
pershapes. but also clusters of machines. Figure 7 illustrates one possible diagram showing for all
the machines a bidirectional arrow joining the machines that have a distance less than 0.7. Dif-
ferent arrows are used to show how close the machines are. In the diagram we see three con-
nected components, one formed by the supercomputers, another by the small workstations
without floating point co-processors. and a large component mainly formed by two groups having
a common neighbor. The closest of the two groups is formed by the machines implementing the
VAN architecture and using the F77 compiler. The other group is formed by fast workstations.
The VAN-11/785 using the FORT compiler acts a bridge between the two groups.

7.2. An Application of Pershape Distances

By using equation 10. it is possible not only to compute the distance between two machines
but also to quantify which ‘composite” parameters contribute most to unbalance the overall per-
formance ratio between the two machines. In table 9 the execution times of nine programs are
given for four of the machines. The table also includes the performance ratio between them, the
maximum. minimum and geometric mean of their performance ratios, the maximum ratio of their
relative performance and their pershape distance.

The programs used as benchmarks have different execution distributions and can be grouped
in the following way: Shell. Erathostenes, and Baskett are integer programs: Alamos [Gri84,
Sim87]. Linpack [Don85. Don88]. Livermore [McM86). and Mandelbrot are floating point intensive
programs: Whetstone [Cur76] is a floating point and intrinsic function program: and the Smith
benchmark {Smi89] mixes floating point. integer and logical operations. Baskett also executes a
large proportion of function calls.

26

VAX-11/780 VAX-11/785 ({77) CRAY X-MP/48 CRAY-2
- // wcom R
v %

VAX-11/785 (fort) i

n |
P , \\‘ 1BV 3090/200
IBMRT-PC/125 % \ MIPS/1000

-
Y et dix,y) < 300
*\ ——— dixy) < 550
\\ —— d{xy) < .700

\

.l

SUN 3/260 (f) SUN 4/260 SUN 3/50 @eemmmmmmmemd SUN 3/260

Figure 7: All machines with performance distance less than .700 are joined by a double arrow. The

pershape distance identifies clusters of machines with similar performance distributions.

The results in the table show the relation between the pershape distance and the interval of
possible benchmark results we can obtain when running a group of benchmarks. The pershape
distance between the SUN 3/260 (without 68881) and the SUN 3/50 is only 0.29 and the interval
of benchmark results is just 1.41. The difference between the smallest ratio (1.59) and the largest
(2.25) is 41%. The same small distance is found between the IBM RT-PC and the SUN 3/260
(which uses a co-processor). Machines with large distance pershapes also give a large interval in
the benchmark results, but the relation is not as clear as in the other cases. A possible explana-
tion is that our program sample is not large enough. and certain types of operations that contri-
bute to a large distance are not present in a large enough proportion to skew the benchmark
results. The results do show that the SUN 3/50 can be 1.6 times slower than the SUN 3/260
(with 68881) in a predominantly integer benchmark. but 7.2 times slower in a benchmark with a
high number of intrinsic functions. This is consistent with the performance ratios of the parame-
ters representing integer operations and intrinsic functions. By looking at the distances between a
group of machines, it is possible to identify which characteristics of the benchmarks will give a
more complete evaluation of the systems. In contrast, programs that only exploit one of two
characteristics will give skewed results.

8. Weak Points in the Characterizer

The current (new) version of the characterizer incorporates several additional parameters
that were previously ignored. This has increased the number of parameters from 76 to 102.
Complex variables and a better characterization of intrinsic functions form most of the new
parameters. Even in this extended model there are several factors that have not been character-
ized.

i) Locality and Cache Memory: code that exhibits different locality than our experiments
affects the cache hit ratio and in consequence the access time for data and/or instructions.
Measuring how the access time will be affected by different parts of the program will prob-
ably not be possible using a machine characterizer. By running some experiments with dif-

ferent degrees of locality we have found a variation of between four to ten percent.

iii)

iv)

vi)

9.

e ld
-t

SUN 3/260 IBM RT-PC SUN 3/50 execution ratios
program (N1 1 Il v 1/t Ly v/l /1 l v/ v/
Alamos 1547.8 s | 28389 s 3881.9 s 8273.2s || 1.83 2.51 4.05 1.37 2.21 1.82
Baskett 3.92 s 3.88 s 6.20 s 7.08 s || 0.99 1.58 1.80 1.80 1.82 1.14
Erathostenes 0.84 s 0.64 ¢ 1.10 s 0.80s | 1.00 | 1.72 | 1.58 1.72 1.50 0.3
Linpack 184.8 s 3385 s 473.9 s 783.7s || 1.83 | 2.56 4.13 1.40 2.28 1.61
Livermore 507.1s | 1103.1 s 1610.1 s 2457.0s || 2.18 | 3.18 | 4.85 1.46 2.23 1.53
Mandelbrot 41.88 s 75.88 s 105.43 s 163.94 s || 1.81 2,52 3.02 1.39 2.18 1.56
Shell 1.88 s 1.92s 4.68 s 3.14s || 1.02 | 2.7 1.87 2.72 1.83 0.87
Smith 338.3 s 406.7 s 545.10 s 9148 s || 1.20 1.681 2.7 1.34 2.25 1.68
Whetstone | 4.94 s 15.28 ¢ 12.05 s 34.24s |1 322 | 254 7.22 0.76 2.24 2.84
minimum 0.09 1.58 1.58 0.79 1.59 0.67
geom. mean || 1.55 | 2.27 | 3.18 1.48 2.05 1.40
maximum 3.22 | 3.18 | 7.22 2.7 2.268 2.84
max/min 328 | 2.01 | 453 | 3.46 1.41 1.23
d(x.y) 0.96 | 0.52 | 0.643 1.23 0.29 1.13

Table 9: Execution ratios between pair of machine and comparison against their performance distances.
Machines with a small performance distance have less variability in their relative speed. The max-
imum and minimum entries correspond to the ratio of largest and smallest execution ratios. We give
results for the SUN 3/200 with co-processor {(f) 1). and without it (II}. The roman numerals denote

Branching: The size of the branch affects the execution time by modifving the locus of exe-
cution. If the target of the branch is to a nonresident page this may involve a page fault
and a context switch. A context switch normally involves flushing the cache and this forces
a 'cold’ start on cache references.

Hardware and/or Software Interlocks. In pipelined machines the time to produce a new
result depends on the context in which the instruction is executed. This normally depends
(in addition to the effective execution time) on the functional and data dependencies with
respect to previously scheduled instructions. As in the previous two factors this is difficult
to measure from a high-level program.

Machine Idioms. Special cases of some instructions are optimized to improve execution time.
These idioms are used by the compiler whenever possible. Without knowledge of the archi-
tecture and the compiler. it is not possible to detect which are the idioms of a given
machine. In machines with auto-increment and auto-decrement addressing modes. these
modes may be used in statements like 1 = 1 + 1.

‘Random’ Noise Produced by Concurrent Activity. Although we address this problem in §§
5.5 and 5.6, there is still a problem left when we run in a loaded system. A small increase in
the load of the svstem tends to affect the measurements of some parameters. in particular
array address computation, branches and loop overhead.

Optimization. In this study we only considered unoptimized code; the characterizer was com-
piled and run with optimization disabled. Even when it is not difficult to detect which
optimizations are applied by the compiler. it is not clear how we can modifyv the execution
time model to include optimized programs. Parsing a program and detecting which optimi-
zations are possible and deciding for these which ones are going to be applied by a particular
compiler. seems to require a ‘super-optimizer’. It is outside of this research to write such
program; we will try to develop other techniques to characterize optimization in the future.

Conclusions and Summary

In this paper we have presented a model for machine characterization based on a large

number of high-level parameters representing operations for an abstract Fortran machine. This
provides a uniform model in which machines with different architectures can be compared on
equal terms. It is possible to detect differences and similarities between machines with respect to

individual parameters. In addition, we have presented a set of composite parameters that provide
a more compact way of representing the effect of hardware or software features in the execution
time of programs. Based on these composite parameters we presented the concept of performance
shape to show how different machines distribute their possible performance in different ways. We
defined a metric to measure the similarity between two pershapes and show how this distance can
be used to classify machines and the metric's relation to the variation in benchmark results.

Using the characterization results or the reduced parameters, it is possible to make estimates
for the execution time of programs and in this way study the sensitivity of the execution time
with respect to variations in the workload. This last aspect will be presented in a forthcoming
paper [Saa89]. We think that our approach will advance the state of the art of performance
evaluation in several ways.

(1) A uniform ‘high level’ model of the performance of computer systems allows us to make
better comparisons between different architectures and identify their differences and similar-
ities when the systems execute a common workload.

(2) Using the characterization to predict performance provides us with a mechanism to validate
our assumptions on how the execution time depends on individual components of the system.

(3) With a uniform model that can be used for all machines sharing a common mode of compu-
tation, it is possible to define metrics that permit more extensive comparisons and in this
way obtain a better understanding of the behavior of each system.

(1) We can study the sensitivity of the system to changes in the workload. and in this way
detect imbalances in the architectures.

(5) The results obtained with the system characterizer give insight into the implementation of
the CPU architecture. and the machine designers can use the results to improve future
implementations.

(6) Application programmers and users can identify the most time consuming parts of their pro-
grams and measure the impact of new ‘improvements’ on different systems.

(7) For procurement purposes this is a less expensive and more flexible way of evaluating com-
puter systems and new architectural features. Although the best way to evaluate a system
is to run a real workload. a more extensive and intensive evaluation can be made using sys-
tem characterizers to select a small number of computers for subsequent on-site evaluation.

In the last thirty years we have scen an explosion of new ideas in many field of computer
science, but one problem that hasn't received much attention is how to make a fair comparison
between two different architectures. Given the impact that computers have in all aspects of
society we cannot afford to continue characterizing the performance of such complex systems
using MIPS, MFLOPS or DHRYSTONES as our units of measure.

Acknowledgements

The material presented here is based on research supported in part by NASA under consor-
tium agreement NCA2-128 and cooperative agreement NCC2-550, the Mexican Council for Sci-
ence and Technology (CONACYT) under contract 49992, the National Science Foundation under
grants CCR-8202591 and MIP-8713274, by the State of California under the MICRO program,
and by the International Business Machines Corporation, Digital Equipment Corporation, Tan-
dem, Hewlett-Packard. and Philips Research Laboratories / Signetics.

References
[Bai85a] Bailey. D.H., Barton, J.T., “The NAS Kernei Benchmark Program”, NASA Technical
Memorandum 86711, August 1985.

[Bai85b] Bailey. D.H., “NAS Kernel Benchmark Results”, Proc. First Int. Con/. on Supercom-
puting, St. Petersburg, Florida, Decemper 16-20, 1985, pp. 341-345.

[Bou89]
[C1a85]

[Cla85)

[C1286]

[Cur?5
[Cur76]

[Don83)

[Don87]

[Dongs)

[Eme84]

(Gil87]
[Grig4]
[Ibbg2]
IBMS87]
[Kel87]
[Knu71]
[Lee84]

[Mac84]

[McM86]

[Mer83|

[Mip88]

Bourbaki, N., Elements of Mathematics: General Topology, Springer Verlag, 1989.
Clark, D.W., and Levy, “Measurement and Analysis of Instruction Set Usage in the
VAX-11/780", Proc. 9th Symposium on Computer Architecture, April 1982. Trans-
lation Buffer: Simulation and Measurement”, Transactions on Computer Systems,
Vol. 3, No. 1, February 1985, pp. 31-62.

Clark. D.W., and Emer, J.S. “Performance of the VAX-11/780 Translation Buffer:
Simulation and Measurement”, Transactions on Computer Systems, Vol. 3, No. 1,
February 1985, pp. 31-62.

Clapp, R.M., Duchesneau, L.. Volz, R.A., Mudge, T.N.. and Schultze T.. ** Toward
Real-Time Performance Benchmarks for ADA", Communications of the ACM, Vol.
29, No. 8, August 1986, pp. 760-778.

Currah B., “Some Causes of Variability in CPU Time", Computer Meagurement and
Evaluation, SHARE project, Vol. 3, 1975, pp. 389-392.

Curnow, H.J., Wichmann, B.A., “A Synthetic Benchmark”, The Computer Journal,
Vol. 19, No.1, February 1976, pp. 43-19.

Dongarra, J.J.. “Performance of Various Computers Using Standard Linear Equations
Software in a Fortran Environment", Computer Architecture News, Vol. 13, No. 1,
March 1985, pp. 3-11.

Dongarra, J.J., Martin, J., and Worlton J., “Computer Benchmarking: paths and pit-
falls”, Computer, Vol. 24, No. 7. July 1987, pp. 38-43.

Dongarra. J.J.. “Performance of Various Computers Using Standard Linear Equations
Software in a Fortran Environment”, Computer Architecture News, Vol. 16, No. 1,
March 1988, pp. 47-69.

Emer, J.S. and Clark, D.W., “A Characterization of Processor Performance in the
VAX-11/780", Proceedings of the 11th Annual Symposium on Computer Architec-
ture, Ann Arbor, Michigan, June 1984.

Giles, J.R., Introduction to the Analysis of Metric Spaces, {Australian Mathematical
Society, lecture series 3; Cambridge University Press, 1987).

Griffin, JH., Simmons, M.L., “Los Alamos National Laboratory Computer Bench-
marking 1983, Los Alamos Technical Report No. LA-10151-MS, June 1984.

Ibbett, R.N., The Architecture of High Performance Computers (Springer-Verlag,
New York, 1982}

IBM 8090 VS Fortran v.2 Language and Library Reference, SC26-4221-02, 1987.
Kelley, J.L., General Topologu. GTM: 27, Springer-Verlag, 1985.

Knuth, D.E.. "An Empirical Study of Fortran Programs’, Software-Practice and
Ezrperience, Vol. 1, pp. 105-133 (1971).

Lee, JJK.F.. Smith. A.J., “Branch Prediction Strategies and Branch Target Buffer
Design'', Computer, Vol. 17. No. 1. January 1984, pp. 6-22.

MacDougall, M.H., “Instruction-Level Program and Processor Modeling™, Computer,
Vol. 7 No. 14, July 1982, pp. 14-24.

McMahon, F.H., *The Livermore Fortran Kernels: A Computer Test of the Floating-
Point Performance Range’”, Lawrence Livermore National Laboratory, UCRL-53745,
December 1986.

Merrill, HW., “Repeatability and Variability of CPU timing in Large IBM Systems’’,
CMG Transactions, Vol. 39, March 1983.

MIPS Computer Systems, Inc. “Performance Brief CPU Benchmarks’, Issue 3.5,
October 1988.

[Mot85]
[Mot87]

[Peut7]

[S2a88]

[Saa89)
[Sim87]
[Smi82]

[Smig9]
[Weis4)

[Wor84]

30

Motorola, Inc, MC68020 32-Bit Microprocessor User's Manual, Prentice-Hall, Inc,
1985.

Motorola, Inc, MC68881/MC6S882 Floating-Point Coprocessor User’'s Manual,
Prentice-Hall, Inc, 1987.

Peuto, B.L. and Shustek, L.J., “An Instruction Timing Model of CPU Performance’’,
The fourth Annual Symposium on Computer Architecture, Vol. 5, No. 7, March
1977, pp. 165-178.

Saavedra-Barrera, R.H., “Machine Characterization and Benchmark Performance
Prediction’’, University of California, Berkeley, Technical Report No. UCB/CSD
88/437, June 1988.

Saavedra-Barrera, R.H., and Smith A.J., “'Scalar CPU Performance Evaluation via
Benchmark Prediction”, paper in preparation.

Simmons, M.L. and Wasserman H.J., “Los Alamos National Laboratory Computer
Benchmarking 1986", Los Alamos National Laboratory. LA-10898-MS, January 1987.
Smith. A.J., “CPU Cache Memories’, ACM Computing Surveys, Vol. 14, No. 3, Sep-
tember 1982, pp. 473-530.

Smith, A.J.. paper in preparation.

Weicker, R..P., “Dhrystone: A Synthetic Systems Programming Benchmark”, Com-
munications of the ACM. Vol. 27, No. 10, October 1984.

Worlton, J., “Understanding Supercomputer Benchmarks’’, Datamation, September
1, 1984, pp. 121-130.

10. Appendix

Group 1: Floating Point Arithmetic Operations (single, local)

machine SRSL | ARSL | MRSL | DRSL ERSL | XRSL TRSL
CRAY Y-MP/832 13 16 111 210 660 4150 08
CRAY-2 39 70 101 250 78 4180 112
CRAY X-MP/432 82 78 154 357 01 5035 281
IBM 3000/200 1< 82 140 684 129 1652 60
MIPS/1000 87 260 437 076 543 53018 499
SUN 4/280 104 755 788 2406 4724 80430 533
VAX 8800 72 425 575 1810 1097 217676 508
VAX 3200 262 805 999 2013 1847 361866 587
VAX-11/785 fort 283 1282 1524 3778 18305 82006 1760
VAN-11/785 (77 246 1371 1624 4034 3740 648082 2085
VAX-11/780 1086 3215 6739 9322 11041 2066420 1508
SUN 3/260 () 1078 5543 8700 11304 15008 58001 1283
SUN 3/260 1< 13580 10118 23003 31812 2205175 .| 1288
SUN 3/50 1< | 26420 40246 46478 60818 4743815 3078

IBM RT-PC/125 3630 5684 10715 12304 12437 231989 6235

Group 2: Floating Point Arithmetic Operations {complex. local)

machine SCSL | ACSL | MCSL DCSL ECSL XCSL TCSL
CRAY Y-MP/832 30 8> 267 W7 818 10468 147
CRAY-2 32 110 221 386 48 17167 109
CRAY X-MP/432 83 124 271 511 1< 13188 319
IBM 3000/200 26 215 878 3218 2040 13012 97
MIPS/1000 121 028 g 12025 9004 72791 1007
SUN 4/260 1< 2034 11808 20356 7561 130805 863
VAX 8600 275 1438 3523 30419 178786 326309 974
VAX 3200 702 2287 6925 47240 30134 510817 1072
VAN-11/785 fort 531 2853 7542 53238 26842 314924 3514
VAN-11/785 77 1074 4717 10206 88085 83278 966246 4703
VAX-11/780 1319 67 38202 328270 | 170337 3584506 3706
SUN 3/260 (f) 438 | 27270 83710 353726 | 133222 446378 1382
SUN 2/280 1< | 31812 | 100547 804151 | 183405 5417755 1085
SUN 3/50 265 | 63460 | 231185 | 1233008 | 453373 | 11405138 8310 -
IBM RT-PC/125 471 | 2069069 47408 104262 | 183060 67877 5101

)

Group 3: Integer Arithmetic Operations (single, loca

machine SISL | AISL | MISL DISL EISL XISL TISL
CRAY Y-MP/232 1< 3¢ 106 271 1113 1131 82
CRAY-2 - 1< 61 62 324 1268 131 114
CRAY N-MP/432 1< 01 114 T 398 755 320
IBM 3000/200 1< 78 143 439 163 358 73
MIPS/1000 1< 207 045 2577 1111 2146 475
SUN 4/260 1< 286 1634 3018 5882 7970 219
VAX 8600 1< 357 628 1501 896 1883 162
VAN 3200 1< 490 805 2208 1273 2502 750
VAN-11/785 fort 1< 1002 1815 7292 1760 28028 2259
VAN-11/785 77 1< 1088 1789 7053 2309 5142 2182
VAN-11/780 1< 1327 8024 10502 7776 15803 2186
SUN 3/260 (f) 1< 208 2212 4011 | 13679 17174 303
SUN 3/260 1< 237 2280 4119 | 14708 17308 251
SUN 3/50 1< 813 3808 7030 | 29262 36348 856
IBM RT-PC/125 1< 1447 3438 8837 4063 7581 2478

Table 10: Characterization results for Group 1-3. A value 1< indicates that the parameter was

not detected by the experiment.

Group 4: Floating Point Arithmetic Operations {double. local)

machine SRDL | ARDL | MRDL DRDL ERDL | XRDL TRDL
CRAY Y-MP/832 2 917 1626 5473 4304 108121 13
CRAY-2 1< 1674 2752 7355 2072 194054 1<
CRAY X-MP/432 69 1122 1812 8392 1073 138645 208
IBM 3090/200 1< 424 064 75656 1493 48282 154
MIPS/1000 117 348 581 1556 838 40780 832
SUN 4/260 200 086 1228 4665 70468 13357 1058
VAX 8600 220 754 1725 5812 2841 208984 878
VAX 3200 276 1387 1806 40683 3258 353750 1178
VANX-11/785 fort 1047 2280 4243 7008 23356 177403 3020
VANX-11/785 (37 920 2803 5460 8921 4517 636736 5637
VAX-11/780 1142 10589 24687 48235 33181 2044644 5483
SUN 3/260 (f) 2159 5819 0272 11942 17763 112601 2610
SUN 3/260 1172 23804 10458 73051 46323 248222 1364
SUN 3/50 2068 54245 | 100594 132284 | 110522 5504681 8682
IBM RT-PC/125 5765 BR&G 8125 12811 14110 200054 4823

Group 5: Floating Point Arithmetic Operations (single, global)

machine SRSG | ARSG | MRSG | DRSG | ERSG | XRSG | TRSG
CRAY Y-MP/832 13 16 1 210 660 4150 96
CRAY-2 05 124 218 392 72 3811 508
CRAY N-MP/422 90 73 152 354 83 5052 287
IBM 3000/200 12 80 129 685 152 4001 80
MIPS/1000 7 268 435 973 536 50784 364
SUN 4/260 145 77 855 2573 4730 80387 573
VAX 8600 254 183 598 1600 1040 215030 108
VAX 2200 400 &78 1078 2150 1770 361567 554
VAN-11/785 fort 098 | 1244 1501 3619 | 18318 81404 1430
VAX-11/785 37 219 1378 1028 4040 3727 851381 2070
VAN-11/780 1517 | 3304 8646 9530 | 10649 | 2036123 1184
SUN 3/260 (f) 1948 | 5618 8045 11662 | 16018 58321 1157
SUN 3/260 1< | 13433 | 18020 20885 | 31453 | 2130622 716
SUN 3/50 1< | 26043 | 40586 47035 | 58863 | 4871805 | 5002
IBM RT-PC/125 3156 | 5620 0684 12287 | 13054 230580 6626

Group 6: Floating Point Arithmetic Operations (complex. global)

machine SCSG | ACSG | MCSG DCSG ECSG XCSG TCSG
CRAY Y-MP/832 30 85 267 97 818 10466 147
CRAY-2 92 167 303 513 18 16738 512
CRAY NX-MP/432 78 17 285 511 1< 13177 335
IBM 3060/200 o7 230 682 3162 2083 136885 102
MIPS/1000 121 w27 1730 12048 8042 73007 1101
SUN 4/260 63 §027 | 12078 20703 7573 130148 864
VAN 8600 551 1544 3802 38787 | 17812 326228 115¢
VAX 3200 519 2854 7334 46018 | 31358 511323 1599
VAN-11/785 fort 1055 2210 8R27 2768 | 24348 208078 1303
VAN-11/785 [77 1144 4665 | 10030 87745 | 83640 082812 4680
VAX-11/780 1684 9778 | 35853 | 322237 | 168501 | 3676780 3207
SUN 3/260 (f) 1< | 27075 | 83103 | 352636 | 134477 453818 1519
SUN 3/260 3665 | 20210 | 107202 | 586288 | 161020 | 5307737 1<
SUN 3/50 2383 | 63526 | 231888 | 1233524 | 448207 | 11356785 8016
IBM RT-PC/125 555 | 26048 | 47435 | 197036 | 182374 843827 5218

Table 11t Characterization results for Group 4-6. A vaine 1< indieates that the parameter was

not detected by the experiment.

Group 7: Integer Arithmetic Operations (single, global)

machine SISG AISG MISG DISG EISG NISG TISG

CRAY Y-MP/SS‘Z 1< 39 106 271 1113 1131 2

CRAY-2 1< 161 80 485 144 153 807

CRAY X-MP/432 1< 03 405 718 405 751 327

IBM 3000/200 1< 79 151 430 170 363 82

MIPS/1000 1< 227 942 2580 1110 2143 478

SUN 4/280 1< 421 1728 4022 8022 7972 252

VAX 8600 1< 522 608 1563 990 2010 822

VAX 3200 1< 504 1028 2202 1484 2852 828

VAN-11/785 fort 1< 113 1888 7428 1857 20838 2260

VAN-11/785 77 1< 1004 1788 7025 2279 5089 2167

VAX-11/780 1< 1816 7168 10731 8002 16036 21568

SUN 3/260 (n 1< 438 2118 4015 14158 17771 427

SUN 3/260 1< 381 2121 4050 14212 18824 218

SUN 3/50 1< 937 3537 8887 20760 38609 738

IBM RT-PC/125 1< 1458 3422 8885 3658 7553 2438

Group 8: Floating Point Arithmetic Operations {double, global)

machine SRDG | ARDG | MRDG | DRDG | ERDG | XRDG | TRDG

CRAY Y-MP/832 2 9317 1626 5473 4804 108121 13

CRAY-2 1< 2051 2858 7360 2283 202494 302

CRAY X-MP/432 1Y 1122 1821 6342 1108 138635 222

IBM 3090/200 1< 421 463 73307 912 41150 154

MIPS/1000 108 348 587 1561 854 58483 870

SUN 4/280 278 061 1167 4588 7078 1337686 1060

VAX 8600 252 708 1611 5905 2828 206974 817

VAX 3200 268 1513 2175 4238 3307 353007 1080

VAX-11/785 fort 1207 2202 4108 8044 23238 171685 3882

VAX-11/785 [77 068 2288 4498 7018 0192 836084 4461

VAX-11/780 1274 10848 24648 47710 34214 | 2024890 4551

SUN 3/280 (f) 2354 5700 0275 11817 18085 112638 2477

SUN 3/260 549 23648 40458 72612 45612 | 2562978 2664

SUN 3/50 2436 54740 100942 | 133431 110830 | 5495105 4048

IBM RT-PC/125 3790 6017 10228 13528 14088 203231 7812

Group 8,10: Conditional and Logical Parameters

machine | ANDL | CRSL | CCSL | CISL | CRDL || ANDG | CRSG | CCSG | CISG CRDG
CRAY Y-MP/832 14 287 315 282 335 14 287 315 a2 335
CRAY-2 38 a5 237 96 1873 85 317 430 337 1963
CRAY X-MP/432 45 226 335 229 1243 48 st 322 231 12568
IBM 3000/200 104 04 108 73 214 111 138 171 161 259
MIPS/1000 185 471 375 337 603 183 474 404 335 602
SUN 4/260 310 1217 3767 236 1568 455 1333 4168 855 1585
VAN 8600 304 853 680 164 R67 321 {68 001 743 1022
VAX 3200 384 1127 1205 767 1603 412 1207 1371 844 1802
VAN-11/785 fort 054 1378 1727 1033 2649 1013 1747 2348 1118 2264
VAN-11/785 {77 764 1037 1966 1467 2578 768 1909 1437 1477 2620
VAN-11/780 1001 2R 2768 1487 3014 1100 3057 3674 2481 4573
SUN 3/280 (f) 414 BXR14 16257 32¢ 7171 588 7063 15622 741 7057
SUN 3/280 304 A542 106438 332 10730 804 5728 11985 847 9765
SUN 23/50 803 13243 20047 554 22442 1309 14382 27969 1825 25800
IBM RT-PC/125 1005 16166 18033 2012 15019 1029 15430 15700 2130 15903

Table 121 Characterization results for Group 7-10. A value 1< indicates

not detected by the experiment.

that the parameter was

©2

%
!
L
!
i
|
i

Group 11,12: Function Call, Arguments and References to Array Elements

machine PROC | ARGU || ARRI | ARR2 | ARR3 | IADD
CRAY Y-MP/832 512 61 42 40 80 12
CRAY-2 74 40 122 159 200 1<
CRAY X-MP/432 583 73 59 104 148 2
IBM 3000/200 1182 70 128 410 746 17
MIPS/1000 707 139 523 1044 1592 1<
SUN 4/280 918 87 384 1004 1490 13
VAX 8600 4670 610 478 1223 2137 1<
VAX 3200 6691 957 688 1934 3318 1<
VAX-11/785 fort 11678 1515 1320 | 2807 5578 844
VAX-11/785 [77 18421 1528 995 | 2701 5057 32
VAX-11/780 16031 1783 2128 | 9502 | 18518 1<
SUN 3/260 (f) 5034 397 448 1861 2600 2
SUN 3/260 8548 504 090 | 3834 3484 1<
SUN 3/50 8R3E 1535 2042 6398 8759 100
IBM RT-PC/125 9305 091 2212 2406 4536 1<

Group 13,14: Branching and DO loop Parameters

machine GOTO | GCOM || LOIN | LOOV | LOIX | LOOX
CRAY Y-MP/832 1< 4086 1015 315 627 388
CRAY-2 15 692 1263 353 264 513
CRAY X-MP/432 25 483 968 180 | 1307 293
1BM 3000/200 38 160 660 130 052 353
MIPS/1000 137 1010 1938 417 1643 945
SUN 4/260 302 984 3378 1007 | 2320 1638
VAX 8600 262 1705 2540 306 6223 1070 .
VAX 3200 128 2117 3018 0975 5338 1834
VAN-11/785 fort 277 1691 || 13042 972 | 11747 3124
VAX-11/785 77 332 4262 || 8323 1821 | 7044 2788
VAN-11/780 588 4783 2525 2552 | 17383 4558
SUN 3/260 (f) 258 1742 2863 567 | 3258 1500
SUN 3/260 268 1694 1857 524 1957 1411
SUN 3/50 304 3001 6558 1976 | 5765 3776
IBM RT-PC/125 119 3305 || 11368 1238 | 5425 3398

Group 15: Intrinsic Functions (single precision)

machine EXPS | LOGS SINS TANS SQRS | ABSS | MODS | MANS
CRAY Y-MP/832 1453 1314 1423 1514 1038 1< 265 177
CRAY-2 1980 1855 2067 2136 266 25 383 328
CRAY X-MP/432 1826 1827 1846 1085 1356 1< 318 200
IBM 3000/200 2843 2887 2805 1119 2534 37 1064 435
MIPS/1000 6612 S8R0 5751 5156 745 61 7215 1470
SUN 1/260 13560 | 14167 12081 20338 | 14520 450 | 23141 4758
VAN 8600 67708 52587 412683 70577 23883 1285 26471 3295
VAN 3200 109786 | 77167 63001 Q0637 | 32436 | 2108 | 38300 1563
VAX-11/785 fort 27212 | 28438 30474 70464 | 22634 215 | 42421 4101
VAN-11/785 {77 201824 | 240223 | 109462 | 138871 | 58848 | 2006 | 8R4N7 R302
VAN-11/780 500106 | To560¢ | 468763 | 857151 | 177536 | 4230 | 186125 | 12234
SUN 3/260 (f) 43700 | 28548 25700 31478 | 12627 184 15571 | 15528
SUN 3/280 367032 | 443458 | 574151 | 686008 | 6150¢ 1< {0866 | 18708
SUN 3/50 770610 | QA08TR | 1272022 | 1512007 | 02447 4700 | 129632 | 47730
1BM RT-PC/125 27468 | 22327 23168 26511 7014 | 47189 | 170563 | 41101

Table 131 Characterization results for Group 11-15. A value 1< indicates that the parameter

was not detected by the experiment.

Group 18: Intrinsic Functions (double precision)

machine EXPD LOGD SIND TAND SQRD | ABSD | MODD | MAXD
CRAY Y-MP/832 51052 58111 32280 71188 8689 28 9581 2200
CRAY-2 88428 04268 67440 146937 12100 131 18506 1021
CRAY X-MP/432 70511 84014 7031 83390 9751 21 9459 727
1BM 3000/200 20471 21803 10390 28520 10163 7 78571 858
MIPS/1000 8565 7508 7967 7747 9330 39 6985 2385
SUN 4/260 22261 22220 21184 380986 27382 504 18095 6108
VAX 8600 87151 52267 41751 66792 23310 1755 24244 5083
VAX 3200 108020 70401 83237 101020 31103 3001 35793 7175
VAXN-11/785 fort 51621 51081 7932 158473 30384 803 71349 7050
VAN-11/785 [77 203491 238536 107806 137069 55608 56068 84380 17887
VAX-11/780 701033 776686 467842 8568357 | 1708558 7504 | 1706855 22079
SUN 3/260 (f) 46526 32003 28500 32619 13066 312 17058 19584
SUN 3/260 065293 | 1008555 | 1000146 | 1132512 04340 1< 60402 22428
SUN 3/50 2080362 | 2332882 | 2210543 | 2418819 | 175124 1< 150858 87713
IBM RT-PC/125 38028 34208 34753 37343 13601 11688 120334 44149

Groups 17,18: Intrinsic Functions {integer and complex)

machine | ABSI | MODI | MAXI EXPC LOGC SINC SQRC ABSC
CRAY Y-MP/832 76 563 127 6063 1478 5027 4282 1784
CRAY-2 51 545 202 9208 7827 9244 3781 1618
CRAY X-MP/432 58 1644 192 7013 755 8553 5020 2309
IBM 30¢0/200 93 541 309 6048 5384 7081 8188 2302
MIPS/1000 169 2807 1415 21638 20454 25382 17381 8955
SUN 4/260 1027 3261 2057 87132 46483 123282 73181 38489
VAX 8600 1381 2546 2083 168775 145238 282011 87857 47671
VAX 3200 1408 3640 3818 266255 233360 138331 | 118507 62425
VAX-11/785 fort 583 11022 3367 156762 81107 RRUUT 102148 54562
VAN-11/785 {77 2807 R070 RONE 458645 491650 760555 100835 | 113818
VAX-11/780 1262 16165 10716 || 1740767 | 1637101 | 2510877 826000 | 200780
SUN 3/260 (f) - 1665 3721 3R25 178628 196066 231844 232360 26185
SUN 3/260 3186 6529 3414 || 2722348 | 2339480 | 3656200 649508 | 188115
SUN 3/50 9053 15760 13886 || 5734016 | 5100053 | 7775319 | 1338078 | 364009
IBM RT-PC/125 2544 0232 R106 410201 233030 511218 380805 | 258205

Table 141 Characterization results for Group 16-18. A value 1< indicates that the parameter

was not detected by the experiment.

Parameter 1: Memory bandwidth (single precision)

36

Parameter 2: Memory bandwidth (double precision)

Machine value | m/f | m/eray | v780/m Machine value m/f | m/cray | v7i80/m
CRAY Y-MP/832 44.5 1.30 1.00 22.27 CRAY Y-MP/832 40.1 1.00 1.00 52.08
CRAY-2 167.4 1.87 3.76 5.42 CRAY-2 168.9 4.21 4.21 12.58
CRAY X-MP/48 151.8 4.41 3.41 8.53 CRAY X-MP/48 135.2 3.37 3.37 15.71
IBM 3000/200 34.4 1.00 0.77 28.80 IBM 3090/200 63.4 1.58 1.58 33.51
MIPS/1000 226.8 8.50 5.00 4.37 MIPS/1000 438.8 10.64 10.94 4.84
SUN 4/260 197.0 | 5.73 4.43 5.03 SUN 4/280 430.7 | 10.74 10.74 4.93
VAX 8600 250.1 7.27 5.62 3.98 VAX 8600 478.3 11.83 11.93 4.44
VAX 3200 330.5 9.87 7.83 2.02 VAX 3200 618.0 15.36 15.368 3.45
VAN-11/785 {fort) 960.8 | 28.10 21.74 1.02 VAX-11/785 (fort) 1662.7 4R.07 48.97 1.08
VAN-11/785 (f77) 1004.5 | 20.20 22,57 0.6 VAN-11/785 (f77) 2282.2 36.91 58.91 0.93
VAX-11/780 g00.8 | 28.80 22.27 1.00 VAX-11/780 21244 52.08 52.98 1.00
SUN 3/280 {f) 408.8 | 11.80 0.19 2.42 SUN 3/260 {f) 098.6 24.00 24.00 2.13
SUN 3/260 308.9 R.08 6.04 3.2 SUN 3/280 833.8 21.29 21.2¢ 2.49
13BM RT-PC/125 2203.3 | 84.63 40.696 0.45 IBM RT-PC/125 2R1R.R 70.29 70.29 0.75
Sun 3/50 1220.1 | 3547 27.42 0.81 Sun 3/50 33817 | 8433 84.33 0.63

Parameter 3: Integer addition Parameter 6: Floating point addition {single)

Machine value m/l | mferay | vIRO/m Machine value m/f m/eray | vI80/m
CRAY Y-MP/832 3.6 1.00 1.00 37.54 CRAY Y-MP/8&32 46.3 1.00 1.00 71.57
CRAY-2 110.8 2.RY 287 13.08 CRAY-2 97.0 2.10 2.10 34.:8
CRAY N-MP/48 910 | 23R 2.38 1557 CRAY X-MP/48 44 1.61 1.81 44.54
IBM 3090/200 773 2.00 2.00 18.74 IBM 3000/200 81.2 1.95 1.75 40.8)
MIPS/1000 2274 584 5.84 6.37 MIPS/1000 268.4 5.80 5.80 12.35
SUN 4/260 353.4 .18 4.16 4.10 SUN 4/260 788.3 18.55 18.55 4.32
VAX 8600 4306 | 11.3¢ 11.30 3.30 VAX 8600 154.0 .81 0.81 7.30
VAX 3200 5410 | 14.04 14.04 2.67 VANX 3200 841.3 1817 1R.17 3.64
VAN-11/785 (fort) 1057.3 | 27.3¢ 27.30 1.37 VAN-11/785 (fort) 1263.3 27.2 27.29 2.62
VAN-11/785 (f77) 1108.2 | 2871 28.71 1.31 VAN-11/785 (f77) 1381.5 30.06 30.08 2.38
VAX-11/780 14489 | 37.54 37.54 1.00 VAN-11/780 3313.8 71.57 71.57 1.00
SUN 3/260 (f) 367.9 0.53 0.53 3.04 SUN 3/260 () 3570.7 | 120.51 120.51 0.59
SUN 3/260 309.2 R.01 8.01 4.69 SUN 3/260 13506.7 | 201.72 291.72 0.25
IBM RT-PC/125 || 1477.0 | 3820 3820 0.0% IBM RT-PC/125 5656.3 | 12217 | 12247 0.50
Sun 3/50 R75.0 | 22.67 22.67 1.66 Sun 3/50 2B66R1.8 | 576.28 578.2R 0.13

Parameter 4: Integer multiplication Parameter 7: Floating point multiplication (single}

Machine value m/f | m/eray | vi®0/m Machine Il value m/f m/cray | v780/m
CRAY Y-MP/832 105.6 1.40 1.00 65.76 CRAY Y-MP/832 110.8 1.00 1.00 61.21
CRAY-2 5.7 1.00 0.72 #1.74 CRAY-2 158.2 1.43 1.43 42.87
CRAY X-MP/48 409.5 | 5.1 3.88 16.06 CRAY X-MP/48 153.0 1.38 1.38 44.33
IBM 3080/200 147.2 1.95 1.40 1718 1BM 3060/200 1345 1.22 1.22 50.43
MIPS/1000 043.9 | 1247 R.04 7.36 MIPS/1000 4136.0 3.94 3.604 15.58
SUN 4/260 1681.0 | 22.21 15.02 1.13 SUN 4/260 821.4 741 7.41 8.28
VAX 8600 817.1 815 5.84 11.26 VAX 8600 586.7 5.30 5.30 11.58
VAN 3200 961.6 | 12.50 Q.11 7.22 VAX 3200 1037.2 9.38 6.38 8.54
VAN-11/785 (fort) || 1751.4 | 23.14 16.50 3.47 VAN-11/785 (fort) 1512.8 13.65 13.65 4.48
VAN-11/785 (77 1810.2 | 23.91 17.14 3.84 VAN-11/785 ([77) 1952.5 17.82 17.62 3.47
VAX-11/780 6944.7 | 01.74 65.7 1.00 VAX-11/780 6782.1 61.21 81.21 1.00
SUN 3/280 () 2164.3 | 28.50¢ 20.50 3.21 SUN 3/260 () RR27.0 70.67 79.67 0.77
SUN 3/260 2200.8 | 20.07 20.84 3.16 SUN 3/280 100189 | 171.85 171.85 0.36
IBM RT-PC/125 3430.1 | 45.31 32.48 2.03 IBM RT-PC/125 10169.2 92.05 92.05 0.87
Sun 3/50 3717.4 | 4011 35.20 1.87 Sun 3/50 10418.1 | 384.77 364.77 0.17

Table 16: Parameter values, and performance ratios with respect to fastest machine (m/f), CRAY Y-
MP/832 (m/cray). and VAX-11/780 (v780/m)] for reduced parameters 1-8. Numbers in column 'value’

are given in nanoseconds.

P RS S I —

Parameter 5: Integer arithmetic Parameter 8 Floating point arithmetic {single}

Marhine value m/l m/feray | vI&0/m Machine value m/f mferay 1 vIR0/m
CRAY Y-MP/822 130.3 1.25 1.00 23.01 CRAY Y-MP/a22 384.4 1.08 1.00 133.02
CRAY-2 350.6 1.00 0.80 28R CRAY-2 350.1 1.00 0.95 140.38
CRAY N-MP/4gR 654, 1 1.8% 1.50 15.34 CRAY X-MP/48 400.7 115 1.06 | 122.63
IBA 3040/200 J8R.4 1.11 0.88 26.03 1BM 3000/200 6715 1.02 1.82 7318
MIPS/1000 2305.5 8.58 5.25 1.30 MIPS/1000 1914.7 5.47 5.18 25.86
SUN 1/260 1406.5 12,57 10.03 2.20 SUN 4/260 40873 | 1188 1107 12,02
VAX BS60 1482.1 4.23 3.38 682 VAX 8600 S803.7 16.58 15.71 847
VAN 3200 2065.6 584 4.70 1.80 VAX 2200 0226.6 26.35 24.08 3.33
VAN-1L/T85 (fort) 8201.1 14.40 15.4% 1.40 VAX-11/785 {fort} 75208 | 2151 20.38 B.53
VAN-TL/TRS (f77) 8286.0 17.43 14.31 1.61 VAN-11/785 [{77) 172682 14.33 i6.75 2RA
VAX-11/7R0 16108.7 28.83 23.01 1.00 VAX-11/7T80 401384 | 140,26 133.02 1.00
SUN 3/260 (1) 5062.3 17.38 13.87 1.66 SUN 3/260 () 132981 | 3742 35.94 3.70
SUN 3/260 B212.8 17.72 14.14 1.63 SUN 3/260 674711 192,72 182.65 0.73
IBM RT-PC/125 TUN3T 22.64 18.11 1.27 IBM RT-PC/125 16756.0 47 .86 45.38 2.03
sun 340 116120 33,12 26,43 0.87 Sun 3/50 142314.0 | 408.50 385.28 0.35

Parameter 0: Complex arithmetie Parameter 10: Doubie precizion arithmetic

Marhine Speed m/f mferay | v7E0/m Machine Speed m/T m/eray | v7%0/m
CRAY Y-MP /32 2064 1.00 1.00 261.687 CRAY Y-MP/g32 1844.2 1.00 1.00 12,63
CRAY-2 2428 1.18 [.ig L08R CRAY-Z 3.7 1.73 195 7.0
CRAY N-MP/48 205 8 1.0¢ 109 23076 CRAY X-MP/48 21277 1.15 1.15 10.96
IBN 2000/200 6618 3.20 3.20 R1.7H 1BM 3000/200 LI 3.5¢ 3.50 2.52
MIPS/1000 2360.0 11.45 11.15 2285 MIPS/1000 5731 0.37 0.7 34.85
SUN 4/260 11087.1 53.50 53.50 1.88 SUN 4/260 1841.4 1.00 1.00 12.67
VAN RI00 G205.2 20.43 30.43 R.60 VAX R600 20618 1.12 1.12 11.31
VAX 2200 0041.8 43.70 13,70 500 VAN 3200 28044 1.52 1.52 232
\".‘\..\'-11/785 {fort) 0547 .4 46.13 46,15 2.67 VA_X-II/TSTJ (fort) 4112.3 223 2,23 5.67
\'.-\..\'-1'1/785 (s 17514.6 YLBS R4.65 3.00 \"A}(—I]/TSF’ (177} 5775.0 3.13 3.13 4.04
VAN-11/780 541384 281.87 261.67 1.00 VAN-11/780 23323.1 12.83 12.63 1.00
SUN 3/260 (1) TOBRT.1 341.65 341.85 0.57 SUN 3/260 {f} THR.4 1.18 4.18 3.04
SUN 3/260 113826.0 550,15 550.15 0.48 SUN 3/260 410625 2273 20273 0.56
IBM RT-PC/125 50206.8 242,66 242,55 1.08 iBM RT-PC/125 RIRG.B 1.54 4.04 2.8
SUN 3/50 230806.0 | 115808 | 1158.08 0.23 SUN 3/30 RUBRI0 | 4842 48.42 0.28

Parameter 11: Intrinsic functions (single) Parameter 12: Intrinsic functions (double)

Machine value m/f m/eray | vTRO/m Machine value m/f mjeray | vig0/m
CRAY Y-MP/832 1167.9 1.00 1.00 | 41960 CRAY Y-MP /a2 25678.6 124 1.00 38.54
CRAY-2 1447.8 1.24 1.24 36267 CRAY-2 45881.1 2.28 1.83 21.08
CRAY X-MP/48 1402.2 1.28 1.28 351.74 CRAY X-MP/48 301167 1.49 1.20 32.08
IBM 2006/200 PRt | 2.3 233 12,410 1BM 3090/‘.’00 20262.7 1.00 0.81 47.89
MIPS/1000 6103.0 5.30 5.30 84.79 MIPS/ 1000 132967 0.66 0.53 72.68
SUN 4/260 16306.2 13.86 13.66 32.20 SUN 4/280 478215 2.8 1.61 20.21
VAN 8600 $7333.0 40.53 40.53 11.00 VAN 8600 04230.7 4.85 3.76 10.28
VAN 3200 TO0G54.6 5008 SH.GR 750 VAN 3200 147533.0 7.28 5.B8 6.55
VAN-11/783 (fort) 38445.3 32,02 ang2 13.66 VAN-11/785 (forl) BRORS.T 4,30 3.55 10.88
VAN-11/785 {[77) 145176.0 124,31 124,31 3.62 VAN-11/785 ([77} 28587 1.0 14.11 11.40 3.38
VAN-11/78C 525084.0 146.60 +40,60 1.60 \’AX-il/TSD 0BB4567.0 47.60 38.54 1.00
SUN 3/280 ([} 26302.2 4052 22,52 10.07 SUN 3/2(30 {r 101056.0 ER' 4,03 9.57
SUN 3/'."60 383871.0 311.39 311.3¢ 1.45 SUN 3/260 1372600.0 B87.74 54.74 6.70
IBM IBM RT-PC/125 47070.7 40.83 40.83 11.01 RT-PC.Alx 181562.0 8.08 7.24 5.32
SUN 3/50 TEE207.0 674.97 674.07 0.67 SUN 3/50 2031770.0 144.68 116.91 33

Table 18: Parameter values, and performance ratios with respect to fastest machine {m/f}. the CRAY Y-
MP/832 {m/feray], and the VAN-11/780 (vi®03/mj for reduced paremeters 7-12. Numbers in column

‘value are given in nanoseconds.

Parameter 5: Logical operations

Parameter & Pipelining

38

Marhine value m/f | m/eray | vT80/m Machine value m/{ mferay | VIRO/m
CRAY Y-MP/B32 207 2.10 1.00 g.22 CRAY Y-MP/R32 0.8 1.00 1.00 24.85
CRAY-2 3204 247 1.41 5.46 CRAY-2 83.1 2.05 2.05 12.14
CRAY N-MP/4F 322.2 248 1.42 6.92 CRAY X-MP/48 70.6 1.73 1.75 14.23
IBM 2090/200 108.0 1.00 0.48 20.64 IBM 3090/200 TY.8 1.97 1.97 12.64
MIPS/1000 3704 343 1.63 6.02 MIPS/1000 2242 5.22 5.52 4.50
SUN 4/260 1072 | 1025 4.88 2.01 SUN 4/280 370.6 6.13 .13 272
VAX 8600 5187 5.08 2.42 +.06 VAX 8600 103.8 10.00 10.00 2.48
VAN 3200 #33.1 B.54 4.11 2.30 VAX 3200 3270 808 8.08 3.00
VAN-11/785 (fort) 13883 | 1088 8.1 1.61 VAX-11/783 {fort) || 4t&6 | 10.31 10.31 241
VANSTL/TR (T LB L 15.0% .o 1.35 VANX-11/785 {{77)]0G.7 1672 16.72 1.26
Vax-11/780 2228 20,54 G.82 1.00 \'AX-]I/TSD 1608.2 24.8h 24.B5 1.00
SUN 3/260 {1} 4R17.7 | 4481 21.22 0.48 SUN 3/260 (f) 408.1 10.00 10.00 2.4R
SUN 3/280 £275.4 | 39,30 18.83 0.52 SUN 3/260 410.8 1 10.11 10.11 2.46
IBM RT-PC/125 RYRU.T | B1.30 38.70 0.25 IBM RT-PC/125 448.7 11.00 11.00 2.26
SUN 3/50 10087.6 | 03.40 $4.42 0.22 SUN 3/50 854.7 16.13 18.13 1.54

Parameter 15; Procedure calis Parameter 18. Address computation

Machine Speed m/f | m/eray | vTRO/m Machine Speed m/f m/rray | v780/m
CRAY Y-MP/832 309.3 1.00 | 1.00 a7 CRAY Y-MP/832 15.8 1.00 1.00 127.28
CRAY-2 440.1 1.10 i 1.18 34.50 CRAY-2 141.1 310 3.10 41.13
CRAY X-MP/48 4557 § 114 114 23.71 CRAY X-MP/48 B1.8 1.7% 1.79 71.13
1B 3000/200 g20.1 223 .03 17.28 1135 2000/200 2742 5.01 8.01 21.17
MIPS/1000 832.5 154 1.5¢ 2428 MIPS/1000 T8G.2 17.24 17.24 7.38
SUN /260 896.4 | 175 1.75 22,06 SUN 4/280 B80.6 | 14.03 14.03 8.53
VAN 8800 38535.0 .16 4.18 4.20 VAX 8600 BG7.6 19.03 19.03 6.89
YVAX 3200 2482.5 1393 13,73 280 VAX 3200 13124 28.78 28.78 4.42
VAX-11/785 (fort) B7065.3 | 21.45 21.95 1.75 VAX-11/785 (fort) |} 2219.0 4868 48.66 2.62
VAN-11/785 (I77) 12585.3 | 2147 31.47 22 VAX-11/785 ({77] 10418 4258 42.58 2.09
Vax. 780057 15356.3 § 3847 38,47 1.00 VAX-11/780 5RG4.0 VAR 127.2 1.00
SUN 3/280 {I) 38750 | 0.71 8.71 3.906 SUN 3/260 {f) 1027.1 | 2250 20 59 5.65
SUN 3/260 o054.5 12.67 12,67 3.04 SUN 3/260 20082.5 45.89 45.89 2.77
IBM RT-PC/125 T304 18.27 18.27 2.11 IBM RT-PC/125 25024 54.88 54.88 2,32
SUN 3/30 T012.4 | 17.56 17.56 2.19 SUN 3/50 10200 | 3R.18 88.18 1.45

Parameter 17: Iteration {DQ loops))

Machine vaiue m/f | mferay | vT80/m
CRAY Y.MP/ga2 3823 1.50 1.00 9.78
CRAY-2 403.8 1.79 1.1¢ '24
CRAY X-MP/48 205.3 1.16 0.57 12.66
1BM 3090,’200 2543 1.00 0.67 14.70
MIPS/1000 708.1 2.78 1.85 5.30
Sun 4/280 1380.9 5.43 3.61 271
VAN RG00 §05.3 3.56 2.37 4.13
VAN 3200 1482.2 5.83 3.88 2,52
VAN-11/785 (fort) 2675, | 1032 7.00 1.40
VAN-11/783 (£77) o] 27Ts2 | o104 7.28 1.35
VAX-11/780 3730.0 | 1470 678 1.00
SUN 3/280 (F) 1072.2 4.22 221 3.49
SUN 3/260 805.1 3.56 2.37 4.13
IBM RT-PC/125 2628.1 | 10.34 8.88 1.42
SUN 3/50 26136 | 11.46 7.82 1.28

Table 17: Parameter values, and performance ratios with respect to [astest machine {m/{], the CRAY Y-
MP/232 {m/cray). and the VAN-11/780 (vi®0/m} for reduced parameters 13-17. Numbers in column

‘value’ are given in nanoseconds.

