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ABSTRACT

This dissertation examines the solutions, based on software, adaptive backoff algorithms, to two
computer network problems and a shared-memory multiprocessor problem. For each problem we
define a cost metric against which we adjust the adaptive backoff algorithm. This dissertation’s
unifying theme is that, when possible, backoff algorithms should tune themselves to their environment.
The algorithms that we propose are software remedies to hardware shortcomings; they do not require
changes to the hardware, however warranted these changes might be, but they may require that we
periodically measure certain expected values or probability distributions.

We devote the majority of this dissertation to studying buffer overflow as it occurs during
reliable, local area network, multicast. We develop a multiple round, soft real-time algorithm that
trades latency for computational overhead: an n-round multicast is slower but suffers less
computational overhead than an (n+1)-round multicast. Our prototype system measures the buffer
service time distribution and employs it to calculate the algorithm’s retransmission timeouts. We
develop a preemptive, limited buffer queueing model that accurately models an operating system’s
communication protocol processes.

We study a memory contention problem that occurs during synchronization of bus-oriented,
shared-memory multiprocessors with snoopy, invalidation-based caches. The contention occurs when
such multiprocessors cache lock variables, lack advanced synchronization instructions, and
synchronize with a test-and-set instruction embedded in a busy waiting loop. This type of
synchronization structure has been dubbed a spin-lock. When a spin-lock is released, the cache
invalidation signal can cause a burst of memory activity that we call an invalidation storm. Remedies
for invalidation storms can waste memory cycles. Our spin-lock backoff algorithm wastes twenty to
fifty percent fewer cycles than a recently proposed algorithm.

We consider how to calculate remote procedure call retransmission timeouts on lossy networks
and on tariff-bearing networks with selectable grades of service. We develop an expression to
calculate the optimal retransmission timeout and network service grade that minimizes a cost function
composed of computational overhead, round trip service time, and network tariffs.

Domenico Ferrari, Committee Chair



“‘For a successful technology, reality must take precedence
over public relations, for Nature can not be fooled™’.
--Richard P. Feynmann [30]
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CHAPTER 1

INTRODUCTION

This dissertation examines three problems and their solutions, based on software, adaptive back- '
off algorithms. Of these problems, two deal with computer networks and one with multiprocessor
computer architectures. We consider how to tune each problem’s adaptive backoff algorithm to its
environment. This dissertation’s unifying theme is that, when possible, backoff algorithms should tune
themselves to their environment, which may require that we periodically measure certain expected
values or probability distributions. This principle is not new; for example, countless papers have sug-
gested that we change CSMA/CD hardware to measure the number of colliding stations and to select
the backoff interval accordingly. The algorithms that we propose are software remedies to hardware
shortcomings; they do not require changes to the hardware, however warranted these changes might
be.

Colloquially, as a consequence of the Ethernet’s success, we say that the binary, exponential
backoff algorithm is adaptive. Much effort has been spent showing that it meets various definitions of
stability [35]. One common definition of stability is that the system’s state eventually renews. The
other common definition is that, regardless of the system’s load, the system efficiently makes progress.
System builders now incorporate binary exponential backoff into their software communication proto-
cols [4, 12] because binary exponential backoff’s stability assures that their systems will avoid server
or network congestion. However, an algorithm that is adaptive in one situation, may not be adaptive,
or may adapt incorrectly, in another. When, for example, we know a priori the number of participants
that obey the backoff algorithm, stability is less of an issue than efficiency, which, like stability,
requires definition.

We tune, or optimize, our backoff algorithms with respect to a cost metric that we define, and
for whose quality we are alone responsible. The metrics used in this dissertation are functions of an
operation’s elapsed time and computational overhead. There exists no single, ideal operating point,
appropriate for every problem. As, for example, at times we endure paying a premium for overnight
delivery of our conference submissions that we would not pay for our annual new year’s cards. There-
fore, for each problem, we must define its cost metric and assign relative weights to its elapsed time
and computational overhead.

This dissertation consists of seven chapters. The next three chapters, 2, 3, and 4, address the
three problems mentioned above. Chapter S discusses how to make high resolution timing measure-
ments. Chapter 6 proposes avenues for future work, and Chapter 7 reviews this dissertation’s contri-
butions. Chapters 2 through 6 are self-contained. Each chapter consists of an introduction to the prob-
lem, a survey of previous work, and conclusions. Below, we briefly highlight each chapter.

1.1. Outline

In Chapter 2, we examine memory bus contention due to spin-lock synchronization on shared-
memory multiprocessors with snoopy, invalidation-based, caches [54]. For critical sections guarded
by spin-locks, we improve the performance of a recently published backoff algorithm [3,4,6,7].
When implementing barrier synchronization with spin-locks, we give an algorithm which performs
much better than any published algorithm to date. For instance, it yields a three-fold performance
improvement for a sixteen processor barrier.

In Chapter 3, the dissertation’s central and longest chapter, we develop a LAN, multiple round,
reliable multicast algorithm, and derive and experimentally justify an analytical expression for the dis-
tribution of buffer overflows suffered by the multicast’s initiator. The algorithm’s latency decreases
with the number of rounds, but the algorithm’s overhead increases with it. We replace the sender’s



traditional retransmission timeout with a timeout table, tuned to the sender’s measured service time
distribution, which the sender transmits with the multicast. The multicast’s recipients backoff over this
timeout to reduce the severity of buffer overflow.

In Chapter 4, we investigate the effects of network service grade on protocol retransmission

timeouts. The era of slow, free!, long-haul computer networks is coming to a close, and the era of fast,
tariff-bearing networks offered by public providers is emerging [31]. These new networks will offer a
spectrum of service grades, and will charge tariffs accordingly. Certainly, two principal service grade
parameters will be the network’s transmission delay and probability of message loss. For such an
environment, we propose a cost metric and derive an expression for simultaneously selecting remote
procedure call retransmission timeouts and network service grade that optimize the cost metric.

In Chapter S, we document a microsecond resolution timer that we built to take certain measure-
ments presented in Chapter 3, and we derive the number of measurements needed to report perfor-
mance times to a given precision as a function of the clock resolution with which measurements are
taken, as well as of the desired degree of confidence. The derivation is based on the DeMoivre-
Laplace limit theorem.

In Chapter 6, we propose extending the multiple round LAN multicast algorithm that we
developed in Chapter 3 to internetwork multicast, and we propose extending the work developed in
Chapter 4 to rate-based flow control algorithms for gigabit, tariff-bearing, virtual circuit networks.

In Chapter 7, we consider our work’s relevance, recognizing that our problems arose from
recognized hardware shortcomings: advanced hardware synchronization support could eliminate the
contention caused by spin-waiting on shared-memory multiprocessors with snoopy, invalidation-based
caches; additional buffer memory could eliminate buffer overflow due to LAN multicast; and faster
and more reliable wide area networks could diminish congestion and the importance of protocol
retransmission timeouts.

Free, at least, to the academic world.



CHAPTER 2
BUS CONTENTION DUE TO SPIN-LOCKS

Broadcasts can initiate contention, regardless of whether the medium on which they propagate is-
a hardware bus or a computer network. The broadcasts’ recipients, upon trying to respond, compete
for exclusive access to the medium. On CSMA/CD networks, for example, a broadcast can cause a
flurry of collisions, which has been called a broadcast storm. In this chapter we investigate a similar
bus contention problem suffered by shared-memory multiprocessors.

We restrict our attention to bus-oriented, shared-memory multiprocessors with per processor
snoopy caches [25,54] that cache synchronization variables and that, upon updating an item shared
across more than one cache, achieve consistency by invalidating the item from all other caches but the
cache at which it is written. (It does not matter whether the caches are write-through or write-back).
With such caches, when a processor writes a shared item, it broadcasts an invalidation signal to the
other processors’ snoopy cache controllers which then invalidate, rather than update, their copies of
the itemn.

Since it is this invalidation signal that initiates the contention problem we are studying, we call it
the invalidation storm problem. Processors that lack advanced synchronization support such as
fetch_and_op instructions [24] implement synchronization locks from a busy waiting loop that exits
when a test-and-set instruction succeeds. Such locks have been called spin-locks. Busy waiting pro-
cessors generate very little memory bus traffic while the lock is locked; their own caches satisfy their
memory references. When a processor releases the lock, and invalidates the spinning processors’
cached copy of the lock variable, each spinning processor reads, or faults, the new value of the lock
variable into its cache, discovers that the lock is unlocked, and attempts to lock it. Except for the first
attempt, which succeeds, these attempts fail. However each attempt invalidates the lock variable, and
causes those processors that have already resumed spinning to fault the lock value again. Given that n
processors were spinning, this can lead to (n—2)(n—1)/2 extra reads. We call any read or write to a
lock variable that passes over the shared-bus a contention cycle.

A backoff algorithm proposed by Anderson [4] significantly reduces the number of contention
cycles. Anderson’s algorithm, however, introduces wasted, or idle cycles, during which no spinning
processor attempts to acquire an available lock. We describe a spin-lock backoff algorithm that
achieves a similar reduction in contention cycles, and demonstrate through simulation that it reduces
these idle cycles twenty to fifty percent. We propose a barrier synchronization algorithm, and demon-
strate that, for a sixteen processor barrier, it can yield a three-fold improvement in contention and idle
cycles over Anderson’s solution. We also identify a possible problem with Anderson’s performance
evaluation.

2.1. Introduction

In this chapter we investigate a synchronization related bus contention problem suffered by bus-
oriented, shared-memory multiprocessors that employ snoopy caches that achieve consistency by
invalidating, rather than updating, items shared across caches, that cache synchronization variables,
but provide only a test_and_set (or atomic_exchange) synchronization instruction. Such processors,
like the Sequent Symmetry [54], implement synchronization locks from a busy-waiting loop that exits
when a test-and-set instruction succeeds, indicating that the lock has been acquired. This type of lock
is called a spin-lock, and permits two operations: Acquire_Lock and Release_Lock (see Figure 2.1).



Acquire_Lock ( Lock *L }
{
for ;i) |
while ( *L == LOCKED ); /* spin — do nothing */
if ( test_and_set ( L, LOCKED ) == UNLOCKED ) break;

Release_Lock ( Lock *L )
{

Lock = UNLOCKED:
}

Figure 2.1. Implementation of a spin-lock on a bus-based, shared-memory, multiprocessor with
only a test_and_set instruction for synchronization. A processor spins within its cache while the
lock is LOCKED, reflected by the while loop. Executing fest_and_set invalidates the lock variable
from the other processors’ caches, regardless of whether or not the lock’s value changes. Busy
waiting processor generate very little memory bus traffic while the lock is locked; their own caches
satisfy their own memory references. However, the processor that releases the lock invalidates the
spinning processors’ cached copies of the lock variable, which all fault in the lock’s new value.

2.1.1. Invalidation Storms

When a processor tests-and-sets a spin-lock, the cache consistency protocol invalidates the other
processors’ cached copies of the lock variable. Due to the cache consistency protocol we are consider-
ing (see above), processors that are busy-waiting, attempting to acquire the lock, fault the lock’s new
value into their caches and consume a bus cycle each. As we explain below, releasing a lock can ini-
tiate a flurry of invalidations and faults which we dub an invalidation storm. We show that if n pro-
cessors are executing Acquire Lock, an invalidation storm can consume up to (n—2)(n—1)/2 bus
cycles. We call any reference to a lock variable that passes over the shared-bus a contention cycle.

Consider what happens when n processors are spinning inside Acquire_Lock as coded in Figure
2.1, and the lock holder releases the lock, invalidating the other n processors’ copies of the cached
lock variable. All n fault in the lock variable’s new value, see that the lock is unlocked, and execute
test_and_set. One of these successfully acquires the lock, invalidates the other processors’ caches,
and enters its critical section. One of the remaining n~1 processors, the next to execute test_and_set,
and resumes spinning. One of the remaining n—2 processors, the next to execute test_and_set invali-
dates the cached lock variables again and resumes spinning. This invalidation causes the processor
that had resumed spinning to fault in the lock variable. One of the remaining n -3 processors, the next
to execute test_and_set , invalidates the other processors’ caches once again. This causes the two pro-
cessors that have resumed spinning to fault in the lock variable. This storm of invalidations and faults
continues until all the processors have executed fest_and_set once. Along the way, besides the » ini-
tial faults and test_and_set instructions, S, more faults may occur:

S, =1+2+ - +(n-2)=(n -2)(n - 1)/2.



Suppose, for example, a dozen processors are spinning inside Acquire_Lock as might occur dur-
ing barrier synchronization (see Figure 2.6). Each time the lock is released an invalidation storm
ensues. Therefore the sum of the number of bus cycles lost to this barrier is Sy, + - - - + 8, =220,
and grows cubicly.

2.1.2. Related Work

Recently, two research groups independently proposed [3] and implemented [4] Ethernet-like
backoff algorithms to reduce the severity of invalidation storms. Their algorithms introduce a certain
number of cycles during which, even though many processors are trying to acquire the lock, no proces-
sor executes test_and_set. We call these wasted cycles idle cycles. In this chapter we introduce a
backoff algorithm of our own, and compare it to the recently published backoff algorithm of Anderson
4,7.

2.1.3. Outline

In the next section we review Anderson’s algorithm and introduce ours. We contrast their rela-
tive performance via simulation in Section 2.3. In Section 2.4 we review implementing barrier syn-
chronization from spin-locks!, explain why one should not depend on spin-lock backoff alone, explain
our barrier backoff algorithm, and examine its performance. We discuss a possible flaw in Anderson’s
performance metric in Section 2.5, and, in Section 2.6 we review our conclusions.

2.2. The Two Backoff Algorithms

In this section we present Anderson’s backoff algorithm and our backoff algorithm and explain
the rationale behind them. We start with Anderson’s algorithm.

2.2.1. Anderson’s Backoff Algorithm

Contrast Anderson’s Acquire_Lock algorithm, Figure 2.2, with the basic Acquire_Lock algo-
rithm presented in Figure 2.1. Anderson implements, in essence, the CSMA/CD collision backoff
algorithm which has been proven stable under any load [35]. (Of course, the basic algorithm also
meets this definition of stability because some processor acquires the lock whenever it is released). A
processor spins within its own cache while the lock is locked. When the lock is released, the processor
waits a random number of cycles, chosen uniformly over the backoff range m. On one hand, if some
other processor acquires the lock during this time, the processor faults in the lock’s new value and
does not execute the test_and_set, nipping the invalidation storm in the bud. It then doubles its back-
off range m and resumes spin-waiting. On the other hand, if the lock is still free after backoff, the pro-
cessor executes test_and_set, and, either acquires the lock and exits the loop, or fails to acquire it and
doubles its backoff range m, and resumes spin-waiting. The algorithm eliminates propagating invali-
dations at the expense of the extra test before the test_and_set. Since m~1 is zero on the first time
through the loop, the algorithm is partial to new arrivals, and, like all exponential backoff algorithms,
is unfair [58].

The backoff range m grows with the number of processors that are simuitaneously executing
Acquire_Lock. The number of processors is a random variable that can not exceed the number of pro-
cessors. Regardless of the number of processors that simultaneously execute Acquire_Lock , the stabil-
ity of exponential backoff guarantees that, after the backoff range has grown sufficiently, the invalida-
tion storm will be eliminated.

'Barrier synchronization on the Sequent Symmetry does not need spin-locks because its special atomic synchronization in-
struction fock permits one to construct a barrier that does not suffer from invalidation storms. In this regard, certain comments in
[4] were misleading.

J——



2.2.2. Our Backoff Algorithm

Contrast our backoff algorithm, Figure 2.3, with Anderson’s algorithm, Figure 2.2. Again, a
processor spins within its own cache while the lock is locked. Instead of backing off, it immediately
attempts the test_and_set, only backing off if this fails. We also employ exponential backoff, and
benefit from its stability guarantee.

We limit the maximum value of the backoff range to promote fairmess between new and old
arrivals, and direct the compiler to set mMin to an estimate of the minimum duration of the critical
section that the lock guards. The intent of mMin is that, all processors spin silently during the time
that invalidations take place.

Our algorithm backs off after executing test_and_set , rather than before executing it, to reduce
the number of idle cycles wasted before a processor acquires the lock. Reducing idle cycles, in turn,
reduces the effective duration of the critical section that the lock guards and decreases contention for
the lock.

Acquire_Lock ( Lock *L )
{
int m = 1;

for (;:) |
while ( *L == LOCKED )}; /* spin — do nothing */
backoff ( uniformInteger ( 0, m-1) );
{f { *L == UNLOCKED )
if ( test_and_set ( L, LOCKED ) == UNLOCKED ) break;

m *= 2;

}

Figure 2.2. Anderson’s lock backoff algorithm [4].

Acquire_Lock { Lock *L )
{
int m = mMin;

for (;:) {
while ( *L == LOCKED }; /* spin — do nothing *~/
i1f ( test_and_set( L, LOCKED )} == UNLOCKED )} break;
backoff { uniformInteger( 0, m) };
1f (m <= mMax) m *= 2;

}

Figure 2.3. Our lock backoff algorithm.




2.3. Contrasting the two Backoff Algorithms via Simulation

In this section we report our simulation-based performance comparison between our algorithm
and Anderson’s algorithm. We assume that processors generate lock requests independently of each
other, with identical geometricly distributed interarrival times, and that processors hold locks for ident-
ical geometricly distributed periods. (We do not present our results for uniformly distributed periods,

but they differ little from the results for geometricly distributed periods). Below, we describe our

model of the background memory bus traffic, and define the term critical section load. When proces-
sors are executing parallel programs (e.g., FFT), lock requests may arrive in clumps separated by long
periods during which no processor tries to acquire the lock [3]. Anderson called this self-organizing
program behavior [4,7]. We consider spin-lock performance to this type of non-independent lock
requests in Section 2.4 where we examine barrier synchronization.

We simulated a representative cache coherency protocol (the Sequent Symmetry’s [54]) and
counted the number of contention and idle cycles generated by Acquire_Lock for fifty thousand
Acquire_Lock IRelease_Lock pairs. (Note that an Acquire_Lock — Release_Lock pair, in the absence
of contention, contributes three contention cycles: one to fault in the lock, one to lock it, and one to
release it). It was necessary to model the memory bus cycles generated by processors not spin-
waiting. Because this is program dependent, we modeled that any given memory bus cycle is con-
sumed by these other processors with a probability that we call the bus load v.

2.3.1. Critical Section Load

We define a critical section’s load p, 0 < p < 1, as the expected fraction of time that a processor
is executing within it:

. ny
p—mm[ V) 1] , 2.1)

where 1 is the critical section’s expected duration, n/A is the net arrival rate of processors at the criti-
cal section, and Vv is the fraction of shared-memory bus cycles consumed by other processors. When a
critical section’s load is near one, lock contention is high; backoff values grow large; and the unfair-
ness of exponential backoff [58] may cause some processors to experience starvation. We call a criti-
cal section with p = 1 highly loaded. However, highly loaded critical sections indicate that either the
degree of parallelism is too high or that the grain of locking should be made finer. Since highly loaded
critical sections limit parallelism, in practice they are recognized as performance bottlenecks and tuned
until they are lightly loaded, usually done by splitting locks that guard resources into two or more
locks.

We say that a flurry of lock requests followed by a long period of no lock requests is a tran-
siently loaded critical section. We will use this term when discussing self-organizing programs in Sec-
tion 2.4,

2.3.2. Simulation Study

We now report the results of our simulation study. In Figure 2.4 (a) we contrast idle cycles for
the two algorithms as a function of the arrival rate of lock requests A. The three pairs of curves
correspond to three different critical section durations. Notice how our algorithm experiences fewer
idle cycles when the is lightly loaded. In Figure 2.4 (b) we contrast the algorithms as a function of the
critical section’s duration p. Notice how our algorithm suffers fewer idle cycles well past the point
where the critical section becomes highly loaded at duration 56. We suffer more contention cycles
above duration 40, but at high loads, it is desirable to decrease the number of idle cycles at the expense
of contention cycles because limited parallelism has already decreased the shared-bus load. In Figure
2.5 (a) we see that moderate shared-memory bus loads v < 0.75 do not affect the relative performance
of the two algorithms, and, in Figure 2.5 (b) we examine the dependence on the number of processors



that share the critical section when we hold the net arrival rate constant. Our algorithm performs

slightly better as the number of processors increases.
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In general, our algorithm suffers fewer contention and idle cycles than Anderson’s algorithm for
lightly loaded critical section. While the difference in contention cycles does not warrant much atien-
tion, the difference in idle cycles is worth exploiting.

2.3.3. Explanation

For lightly loaded critical sections, few processors simultaneously attempt to acquire the lock.
Think of the critical section as the service center of a lightly loaded, limited customer queuing system
(with a distributed queue). The expected number of customers enqueued is small. We suffer fewer
idle cycles because we backoff only after the test-and-set fails. Experiencing fewer idle cycles reduces
the effective duration of the critical section, which decreases the critical section’s load. Since conten-
tion cycles decrease with critical section load, we experience fewer contention cycles. Also, since our
algorithm eliminates the second test performed by Anderson’s algorithm, for lightly loaded critical
sections, we save a handful of contention cycles. For highly loaded critical sections, Anderson’s
second test reduces the intensity of the invalidation storm, therefore suffering fewer contention cycles.
If one must operate under high loads, increasing the minimum backoff period mMin eliminates unfair-
ness and reduces both contention and idle cycles.

2.4. Barrier Synchronization

In this section we propose a barrier synchronization algorithm [62] based on spin-locks, contrast
its performance with the algorithm to which [4] alludes, and use it to evaluate our spin-lock backoff
algorithm’s behavior to transiently loaded critical sections (as defined in Section 2.3). We begin by
describing a spin-locked based barrier synchronization algorithm.

The purpose of a barrier is to synchronize some number of processors, 7, such that they exit the
barrier in unison. The algorithm in Figure 2.6 implements barrier synchronization. It employs spin-
lock L for synchronization to the barrier variables. Barrier variable BV is set when the n processors
can leave the barrier. Barrier variable Cn¢ counts the number of processors that need to enter the bar-
rier before the n processors can be released. Barrier variable race prevents recently released proces-
sors from slipping back into the barrier before all n processors have left the barrier.

The n processors try to exit the barrier simultaneously when the while statement is satisfied.
They compete with one another to acquire the barrier lock and create an invalidation storm. Since the
spin-lock backoff range grows each time a processor acquires the lock, the last few processors through
the barrier may experience a large number of idle cycles before they are released.

Our barrier synchronization algorithm consists of the original algorithm (Figure 2.6) plus the
three commented-out lines. Each processor grabs a numbered ricket when it enters the barrier, and,
when the barrier variable B is set, waits a backoff interval proportional to its ticket number,
ticket* DELAY , before executing Acquire_Lock . This disperses the flurry of lock requests at the second
critical section.

The second critical section’s execution time depends on the shared-memory bus load v and the
critical section’s duration |t. The compiler, with minimal effort, should set DELAY to the expected
duration of the critical section, p/(1-v). This serializes the lock requests of processors leaving the bar-
rier and avoids an invalidation storm.

Conceivably, a lock holder could be descheduled within the critical section by the termination of
a time slice or an interrupt, defeating our scheme. However, in this event, our algorithm performs no
worse than the original.

2.4.1. Performance Analysis

We simulated one thousand iterations of our barrier synchronization algorithm with the same
model of shared-bus background load used in Section 2.3. We plot the number of idle cycles,
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Barrier( )

{
static Lock *L; /* to synchronize barrler variables */
static BV = 0; /* barrier gate */
static Cnt = n; /* number of ocutstanding processors */
static race = 0; /* avold race condition */

/*int ticket;*/ /* processors assigned exiting position */

while (race) spin(); /* wait until all processors
through previous barrier */
Acquire_Lock(L);
-=Cnt;
/** ticket = Cnt; **/
if (Cnt == 0) {
race = 1; /* prevents race condition */
cnt = BV = n; /* release processors */
}
Release_Lock (L);

while (!BV} spin{(); /* wait for all processors */
/* nop{ ticket * DEILAY }; */

Acquire_Lock(L});
if { ——BV == 0 ) race = 0; /* re-enable barrier */
Release Lock(L);
}

Figure 2.6. Implementing barrier synchronization out of spin-locks. Procedure nop (j) makes the
processor wait j cycles. Enabling the commented-out lines generates our algorithm.

contended cycles, and the total time through an n = 16 processor barrier in Figure 2.7. The original
algorithm is equivalent to DELAY =0, which defeats the attempt to serialize the exiting processors.
Notice the three-fold reduction in the time to pass through the barrier when DELAY = 5.5 (Figure 2.7
(b)). This performance improvement increases with the number of processors participating in the bar-
rier, because the invalidation storm’s intensity increases with the number of processors.

2.4.2. Transiently Loaded Critical Sections

In Figure 2.7 we plotted the performance of Anderson’s and our spin-lock backoff algorithms to
compare performance under high transient critical section load. Transient load is maximal when
DELAY =0, and decreases with increasing DELAY. We see that Anderson’s backoff algorithm
suffers more idle and contention cycles, just as it does with lightly loaded critical sections.

Since critical section durations are usually short, on the order of ten or twenty microseconds,
critical section loads are ordinarily low. However, if an interrupt caused a lock holder to remain inside
the critical section for a much longer time, a long queue of Acquire_Lock requests could develop.
Since such a long queue resembles the queue of processors exiting a barrier, our spin lock backoff
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algorithm should still suffer fewer idle and contention cycles.

2.5. Highly Loaded Critical Sections and Performance Metric

In Section 2.3 we argued that highly loaded critical sections are less interesting than lightly
loaded ones because they limit parallelism, degrade performance, and, in practice, get split into lightly
loaded ones. Although Anderson [4] argues that his algorithm outperforms other backoff algorithms
for large numbers of processors, his benchmark is suspect. In his early experiments, processors did
nothing but compete for a lock, increment a shared variable, and release the lock. In his later experi-
ments [6], he added idle time, equal to five times the critical section’s duration, to this loop. Above
five processors, of course, the critical section’s load becomes one. Therefore, in all of his experiments,
critical sections were highly loaded.

We argue for a diagnostic critical section mode in which each critical section tracks the average
number of attempts a processor tries to acquire the lock. If this number grows, then the critical
section’s load is high and the program requires tuning.

2.6. Conclusions

We have demonstrated that our backoff algorithm eliminates invalidation storms at least as well
as Anderson’s algorithm and suffers twenty to fifty percent fewer idle cycles for both lightly loaded
and transiently loaded critical sections. Our modified barmrier algorithm can dramatically reduce the
time to pass through a barrier.

More recently, Anderson extended his work to interconnection network-based shared-memory
processors [6,7]. However, his performance comparison methodology retains this basic flaw: that
algorithms are only compared for highly loaded critical sections. We believe that highly loaded locks
occur infrequently in practice, and that we should optimize for the common case. Recently (7], Ander-
son recommended imposing a backoff limit mMax to achieve faimess. Our experience indicates that
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introducing a minimum backoff value, mMin, rather than limiting mMax, achieves fairness and
reduces contention and idle cycles for heavily loaded critical sections. A hybrid algorithm, one that
tests the lock before executing test_and_set when the backoff range m has grown sufficiently large,
would perform well under both low and high loads.

Better support for synchronization such as fetch_and_op instructions and update-based rather
than invalidation-based cache consistency make these spin-lock algorithms moot.

Backoff algorithms balance overhead and latency, which is this dissertation’s common thread.
We will see this in Chapter 3 when we consider multicast retransmission timeouts.

g



CHAPTER 3

FINITE BUFFERS AND MULTICAST TIMEOUTS

When many or all of the recipients of a multicast respond to the multicast’s sender, their
responses may overflow the sender’s available buffer space. Buffer overflow can be a serious problem
of broadcast-based protocols, and can be troublesome when as few as three or four recipients respond.
We develop analytical models to calculate the distribution of the number of buffer overflows, which
can be used to calculate the number of buffers that an application may need. We develop a backoff
algorithm that recipients can use to randomly delay their responses, and consider how to tune its
parameters to increase the minimum spacing between responses, reduce CSMA/CD collisions, and
decrease the sender’s buffering requirements. We define the muiticast’s latency as the elapsed time to
reliably deliver the multicast to all of the recipients, including the time for retransmissions. The sender
may need to retransmit if it fails to receive all of the responses before some timeout. Given the
number of times it is willing to retransmit the multicast, the sender uses the algorithm to minimize the
multicast’s latency by selecting the recipient backoff times from a precalculated table. It transmits the
backoff value with the multicast, and recipients backoff accordingly. The sender transmits the backoff
value because this value is sender specific, load dependent, and changes with each additional
retransmission. Recipients do not have sufficient knowledge of all the senders’ states to calculate the
timeouts. Once we accept that retransmissions are inevitable and explicitly choose to transmit more
than once, we may use much shorter backoff intervals and significantly reduce a multicast’s total
latency. This is due to the backoff interval’s dependency on the number of recipients. Permitting
buffer overflow on the first transmission significantly reduces the expected duration of the second
transmission’s backoff interval, and the sum of the first and second backoff intervals is shorter than a
much longer single backoff interval. On a purely theoretical note, we show that uniform backoff does
not minimize buffer overflow over a given backoff interval.

3.1. Introduction

A multicast is a message broadcast to a selected group of recipients. The term multicast is a
euphemism for broadcast implying that only the multicast group members receive the broadcast,
although in practice this filtering is often implemented in software. When a recipient site receives a
multicast, it formulates and forwards its response to the sender of the multicast. These numerous,
closely spaced responses may overflow buffers in the sender’s network interface or operating system,
or, if the operating system implements protocol processing in the user’s address space [18], in the user
process that initiated the multicast. We illustrate these overflow points in Figure 3.1. The user process
reading the responses may not empty the buffers quickly enough because, for example, it has suffered
a page fault, or competing processes have prevented it from receiving adequate processor time.

Since real systems have finite memory, they have finite buffers. Most finite buffer queueing
analyses apply only to stationary, homogeneous arrival processes; few analyses of finite buffer systems
[32,50] deal with non-stationary, non-renewal, heterogeneous arrival processes. Standard blocking
system analyses [42,52] do not apply to this problem because they deal with stationary arrival
processes. The arrival process of a multicast’s responses is neither stationary nor homogeneous. It is
not homogeneous since the responses come from both fast and slow machines; it is non-stationary
since the arrival rate changes as responses are received. In this chapter, we calculate the expected
value and the distribution of the number of buffer overflows due to responses from multicast transmis-
sions, and we describe a retransmission algorithm that minimizes the time to receive all the responses
to a multicast given that the sender is willing to retransmit a specific number of times. In the
remainder of this section we define terminology, present several situations for which multicast is
appropriate, review related work, and describe our model of the network.

13
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Figure 3.1. Buffer overflow may occur in the sender’s network interface, operating system'’s protocol buffers, or
user process protocol buffers.

We say that the sender sends a multicast to the recipients and that each recipient responds with
its response. The elapsed time between the instant the sender transmits the multicast and the instant
the recipient transmits its response is the recipient’s response time. The probability distribution func-
tion of the recipient’s response time is the response time distribution. The probability distribution
function of the time devoted by the sender to process a response and free the buffer in which it is
stored is the sender’s service time distribution. The additional time that a recipient holds its already
calculated response before sending it to the sender is the recipient’s backoff time. The number of times
the sender retransmits the message is the number of multicast rounds. The time window associated
with each round during which the sender collects responses is the round’s timeout (see Figure 3.2).
We disregard the possibility that a response arrives after the round’s timeout expires. The elapsed time
between the sender’s initial transmission of the multicast and the end of the last round is the multicast
latency. We do not measure time in seconds, but treat it as a unitless quantity. However, the service
time and response time distributions must be expressed in identical unit systems.

3.1.1. The Uses of Multicast

Multicast is an essential part of reliable, distributed computing. Its effect can be achieved
through broadcast primitives implemented by the data-link layer hardware, or through sequential, uni-
cast message transmission. Many common distributed algorithms depend on multicast, or can benefit
from it. For example, to update replicated data managed by the available copies algorithm [10], a
writer must acquire write locks at all sites which replicate the data, must write the update to all these
sites, and must release the acquired locks. All three of these steps benefit from multicast. Distributed
transaction processing and transaction-based file systems are an integral part of distributed computing
[60,61,64,68]. Replicated files are commonly built atop transaction-based file systems [41,47,49].
The two-phase commit algorithm, used to implement transactions, contains two multicasts [46] (see
Figure 3.3). The atomic broadcast algorithms of ISIS require two rounds of multicast {11]. The file
name resolution and the load balancing algorithms within the V kemel depend on multicast [17,63].
Most clock synchronization tools depend on multicast [43]. Coordinator election algorithms, run after
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Figure 3.2. An example of a three round multicast from a single buffer sender. Responses that arrive while the
buffer is full are lost and must be resent the next round. After the round’s timeout expires, the sender retransmits
if it has not yet received each recipient’s response.

the detection of site failure, employ multicast [37]. Finally, the front-end processors of many database
machines employ multicast to send their queries simultaneously to several back-end processors [21].

3.1.2. Model of the Operating System and Network

Our analyses apply to buffer overflow in the network interface and in communication protocol
processes. We assume that messages may be corrupted and some recipients may not receive transmis-
sions received at other sitess. We assume that recipients transmit equally sized responses to the
multicast’s sender, and that all recipients respond if only to acknowledge receipt. Through Section
3.3.7 we assume no background traffic shares the buffers that we are studying. When applied to
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Figure 3.3. Database transactions can use multicast in both phases of the 2-phase commit algorithm. The multi-
casts must proceed quickly so that resource contention is minimized and database performance does not degrade.
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protocol process buffers, we assume overflow does not occur at the network interface. In Section 3.6.2
we model protocol processing buffers and the impact of preemptive process scheduling on buffer
overflow.

Through Section 3.3.8 our analyses implicitly assume messages do not collide excessively on
CSMA/CD networks and the network possesses infinite bandwidth. These assumptions cause us to
overestimate the number of buffer overflows experienced in practice. As discussed in Section 3.3.8,
the probability that a CSMA/CD network drops a message due to excessive collisions is extremely
low, and the CSMA/CD collision backoff algorithm increases the spacing between messages. The
infinite network bandwidth assumption permits responses to arrive closer together than the network’s
message transmission time permits. Our measurements indicate that these assumptions do not degrade
our calculations.

3.1.3. Why Overflow is Important

Speed mismatches at the interfaces of system layers cause buffer overflow. The bit rate of opti-
cal fiber networks exceeds the rate at which data can be copied into the memory of most computers
and definitely exceeds the rate of computer communication protocol processes. These speed
mismatches will always exist. Although various proponents of broadcast-based protocols believe that
the problem of buffer overflows is solved in practice, this is not true. Let us review their arguments.

Although many existing network interfaces cannot keep pace with the network, some argue that
interface technology is improving and buffer overflow at the interface will not be a problem in the near
future. They cite the Ethernet LANCE chip as an example of a successful interface. While true for the
slow Ethernet, we argue that, as interface technology advances, network speeds are advancing much
faster, and these problems will soon reappear. FDDI [53], a 100 Mb/s ring network, exceeds the
memory access speed of most existing computers. Since a multicast’s responses come from many
computers, and their arrival rate outstrips the rate at which a single computer can send messages, these
responses will have to be buffered in the interface; consider, for example, AMD’s Supernet FDDI net-
work interface [1]. The cost of high speed buffer memory will limit the buffer size within these inter-
faces, and buffer overflow at the interface will again be a problem. Historically, interface technology
has lagged behind new network technology (see Figure 3.4). Regardless of network bit-rate, the vari-
ous computers on a network will always have disparate speeds and buffering capacities. Fast comput-
ers must communicate with slow computers.

Some argue that the number of acknowledgements can be reduced. The ordered broadcast algo-
rithms of Chang and Maxemchuk [16] eliminate most acknowledgements because recipients do not
respond to the sender. The number of acknowledgements is a tunable parameter. However, these
algorithms suffer from long latency times, are complex, and do not apply to situations where the reci-
pients must respond by transmitting data to the sender.

Others argue that acknowledgements can be missed. An early version of the V kemnel determin-
istically missed two out of four and one out of three responses [17], though its author, Cheriton, argued
that this was not a problem as he needed only the first response. Clearly, not all applications need only
the first, or the first few responses.

We must understand the fundamental statistics behind buffer overflow to address the problem
adequately, whether it occurs in network interfaces as reported by Cheriton, or in the operating
system’s protocol processing buffers. For example, the 4.3 BSD UNIX implementation of DARPA’s
TCP/IP [26} protocol devotes, by default, only four kilobytes to protocol buffer space [14], and such a
small buffer can easily overflow. Throwing memory at the problem wastes resources and may not be
possible in small systems found, for example, on factory floors.
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Figure 3.4. The evolution of the Ethernet interface took place over a decade. This figure represents three genera-
tions of interfaces. The original interfaces, like the 3-Com interface depicted here, had one or two receive-buffers.
The next generation, like the DEC Deuna interface, had many buffers and was suitable for remote file systems. Fi-
nally, interfaces like the AMD Lance chip emerged that moves the bytes through a FIFO directly into computer
memory.

3.1.4. Contrast to Previous Work

Our problem resembles the automatic repeat-request (ARQ) retransmission algorithms studied
exhaustively in the communications literature {45,65,67]. This literature contrasts stream flow control
algorithms based on Go-Back N and selective-repeat retransmission schemes. For example, the
TCP/IP window based flow control protocol [26] is a Go-Back N scheme. Upon failing to receive an
acknowledgement, a sender retransmits the N blocks subsequent to the last acknowledged block. The
NETBLT protocol [19], a selective repeat protocol, only retransmits unacknowledged blocks. Our
finite buffer, multicast retransmission algorithm differs sufficiently from the ARQ problem that it
requires its own analysis.

Although many distributed systems employ broadcast and multicast, researchers have lent little
attention to ‘‘backoff’’ algorithms. Cheriton [17] employed uniform backoff to eliminate buffer
overflow at network interfaces, but did not study the underlying statistics. We analyze his problem,
and develop an algorithm for selecting the backoff interval. We minimize the expected time to collect
all responses to a multicast, explicitly introducing the number of times the sender may retransmit the
multicast. The system designer chooses the number of broadcast-based retransmissions that the system
must endure. We say *‘endure’’ because additional broadcasts extraneously interrupt recipients whose
responses were not lost to overflow. Knowing the number of rounds, the number of buffers, and the
sender’s service time distribution, we derive each round’s optimal timeout. Recipients choose their
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backoff functions so that, when added to their natural response time distribution, the effect is uni-
formly distributed. The sender transmits a bit-map of successfully acknowledged sites with each
retransmission so that recipients can discard duplicates. We have implemented this process in a proto-

type system.

3.1.5. Multicast by Successive Unicast

When the network lacks physical broadcast, we can obtain the effect of broadcast by sending
point-to-point, unicast, messages to each recipient. At times we may choose successive unicast over
multicast because we do not wish to interrupt some of the group members. For example, dead-site
detection usually proceeds by successive unicast (see Figure 3.5). A common misconception is that
multicast addressing permits messages 0 be sent to a subset of the multicast group members.
Transmitting to a subset of the multicast group would require either changing the group membership or

creating a new group, operations that would require transmitting messages to each site!. Buffer
overflow is not a problem with successive unicast when it involves few recipients. We discuss it no
further.

3.1.6. Chapter’s Outline

In the next section we consider overflow of single buffer systems, usually called back-to-back
message loss. This illustrates the statistical methods we will use to analyze overflow of multiple buffer
systems. In Section 3.3 we derive expressions for the exact distribution of overflows for several multi-
ple buffer multicast systems, and derive an important approximation for uniformly distributed response
times. We also consider background traffic, finite network bandwidth, and extensions to non-reliable
multicast systems. In Section 3.4, we discuss our recipient backoff algorithms. In Section 3.5 we
show how to find optimal round timeouts, and apply the concept to several example problems. In Sec-
tion 3.6 we present our experimental validation of these ideas. In Section 3.7 we show that uniform
backoff is not the optimal common arrival distribution that minimizes the expected number of buffer
overflows during a round of multicast. For two recipients, exponential buffer service time, and a one
buffer system, we derive the exact optimal response time distribution that minimizes the expected
number of overflows for a given round timeout. Finally, in Section 3.8 we review our findings and
outline avenues for future research.

Timeout 1 Timeout 2

Loeoep hoeocp fmcech

NN

First Round Second Round  Unicast Rounds for
Dead Site Detection

Figure 3.5. The rounds of broadcast-based multicast are occasionally followed by several rounds of unicast to
detect failed sites.

!An interesting idea would be dynamic multicast groups where the network could permit a handful of destination ad-
dresses, filled in at transmission time. Would the performance gains outweigh the hardware costs?
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3.2. Buffer Overflow of Single Buffer Systems

The distribution of the number of buffer overflows depends upon the recipients’ response time
and the sender’s buffer service time distributions. We restrict our analysis to single buffer systems in
this section because they are easier to analyze than multiple buffer systems, and because we can
express their expected number of buffer overflows in closed form. We devote this section to analyzing
multicast systems with independent, identically distributed (i.i.d.) response time distributions. Single
buffer systems suffer overflow if the interarrival time between subsequent responses, the back-to-back
inter-message time, is less than the buffer service time. Borrowing the notation of queueing theory, we
denote a multicast to n recipients, that respond with common response time distribution R, to a b-
buffer server with service time distribution S, as an R*/S/1/b system. In contrast, we denote a multi-
cast to n recipients, that respond with interarrival time distribution I, as an 1,/S/1/b system. This dis-
tinction is very important to understand. By common response time distribution, we mean that every
recipient independently draws a response time from the same distribution. For these systems, the
interarrival times between responses depends on the system’s previous behavior. To illustrate this
point, consider the common uniform response time distribution on 0, t, and suppose that the fourth of
nine responses arrives at time /3. The interarrival time distribution between the fourth and fifth

responses is then
5
1— X
u3)|

Specified interarrival time distributions systems, I,/S/1/b, can occur when recipients transmit their
responses in order. For example, a deterministic interarrival time distribution system results when we
specify that recipient / transmit its response at time i A.

We analyze constant buffer service time systems here, deferring the analysis of general buffer
service time distributions to Section 3.3, where we discuss multiple buffer systems. Constant buffer
service time accurately models network interfaces that buffer entire messages, because the time to
copy a message from the network interface into memory is the sum of the interrupt service latency and
the time for the DMA transfer. For equally sized responses, this time is nearly constant. (This argu-
ment does not hold for interfaces that do not buffer entire messages but buffer a few bytes at a time in
a hardware FIFO [48].)

3.2.1. Upper Bound for M"/D/1/1 Systems

An M™/D /1/1 system results when n recipients independently draw their response times from a
common, exponential distribution. Thus, each recipient i responds at instant y; independently of other
recipients, where y; is drawn from the exponential distribution with mean 1/A:

Pr(y;<t)=1-e7,

We employ order statistics [52] to calculate the expected number of buffer overflows. Briefly,
the order Statistics Y1y, ¥(2)» --» Y(ny Of 7 i.i.d. random variables yq, y2, ..., Ya are the y;’s sorted in
increasing order:

Yon<Yo< T <Yur

Recall that the minimum of exponentially distributed random variables is itself exponentially
distributed with rate equal to the sum of the individual rates. Immediately after the multicast, but
before any recipient responds, the responses arrive at rate nA. After the first response, this drops to
(n—1)A, and each subsequent response decreases the future arrival rate by A.

If the initial expected interresponse time, 1/n A, is not significantly larger than the constant buffer
service time B, responses arrive closely spaced and overflow the buffer. The expected time to receive
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all n responses is the expected value of the slowest of the n independent response instants, the har-
monic series

Elyml=A" 1+27 4. 407,
the maximum of » i.i.d., exponentially distributed random variables.

Since responses require buffer service time B, the buffer overflows if any interarrival interval is
shorter than . The probability F(r ) that no two responses arrive within time 3, that is the probability
that no response overflows, is the product of the probabilities that all n—1 interarrival times exceed B.
Since yy; 41y arrives with rate (n—i)A, the probability that the interval between y;y and y ., exceeds
the service time B is

P’D’(i+1)"‘Y(i)>B]=e'("'mﬂ- 3.1
Probability F o(n) is the product of the probabilities that each interarrival interval exceeds B:
Fo(u)=ﬁe'pj"=e'sl”("")’2. (32)
j=1

We discover that the mean response time 1/A must grow quadratically with n to prevent many
overflows.

The expected number of interarrival intervals shorter than B bounds the expected number of
buffer overflows, L,. We employ the method of indicator variables to derive a convenient upper
bound.

Let the indicator variable I; () be

i (Yo = Yr) S B,
1;(B)={ 1 if(Yaey—=Ye) SB 33)

0 otherwise.

The expected number of overflows, L,, is bounded above by the expected number of short inter-
vals:

n—~1

n=1 n-1
L<EIXIL@®=F ELPEI=X Priysy—yn<Bl
i=1 i=1

i=1

n-1 . —-pr _ ,~Bakr
<y (l_e-llﬁ)=n-1_e___e._
j=

e (34)

Note that Pr [(y ;+1) — Y ¢y) < Bl is given by (3.1). The upper bound in (3.4) grows tighter as the
number of overflows decreases. Keep in mind that the exponential distribution’s tail extends to
infinity, and that the sender may treat as losses responses that arrive after the round’s timeout expires.

3.2.2. Exact Distribution for M"/D/1/1 Systems

We can calculate the exact number of overflows for the M"/D/1/1 system, foreshadowing the
techniques we will use in the next section. We start by finding the transition probabilities p; ;, where
p;; indicates the probability that j of i responses arrive and are lost to buffer overflow during the
current service interval. Because each response arrives independently of the others, these probabilities
are distributed binomially:



21

; . i
Pij =[;] et [1-e4)". (3.5)

Denote the expected number of overflows by L, when n responses remain outstanding and the
buffer is unoccupied. During the interval B following the first arrival, during which the server is busy,
more responses could arrive and be discarded. Summing over the number of responses i that are lost
during the service interval, we arrive at a recursive expression for L,,:

n-1

Lu = zpn—li [i +L”_"_1] ’and L0=0.
i=0

We can also calculate F,;(n), the distribution of overflows, for the M"/D/1/1 system. (In Sec-
tion 3.3.4 we calculate F;(n) for the U”/M /1/b system.) Denote by F;(n) the probability of losing [
responses given n outstanding responses and no responses in service:

n-1

Fi0)="F, Py [Fra(n—i=D)] ,and F\@)=1.
i=0

We plot this distribution in Figure 3.6 for a particular service time and arrival rate. Notice its similar-
ity to the binomial distribution. The expected number of losses is so high because this is a one buffer
system (check (3.4)).

Probability

0.30

0.25 — —

0.20 — L

0.15 —

0.10 -

0.05 —

0.00 T I I

0 3 6 9 12
Number of losses

Figure 3.6. Notice how the distribution of the number of overflows suffered by the M®/D/1/1 system appears bi-
nomial. This distribution corresponds to A B = .05.

I 7% |
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3.2.3. Upper Bound for U"/D/1/1 Systems

In this case, each recipient i responds at instant y; drawn independently from the uniform distri-
bution on the interval 0, T. The expected time to receive all n responses is the expected value of the
n™ order statistic y (,y:

n1t
Eyel= n+1’

The probability of no buffer overflow, F(n, ), equals the probability that all n—1 interarrival
intervals exceed B, and can be found by solving the recurrence relation®

T n-1
2 | Fon-1,x-P) [Kﬁ—] dx
T -1p T if p<t/(n-1)
0 otherwise
The variable of integration corresponds to T — the arrival time of the last response. The proba-
bility that the remaining n—1 arrive no closer to the first than § accounts for the quantity raised to the
n-1. From induction, the solution to this recurrence is

Fo(n,t)=[l—[n—l} %] , p<t/(n-1). (3.6)

Employing indicator variable /;(B), defined in (3.3), we can bound the expected number of
buffer overflows by the expected number of interarrival intervals shorter than [3:

n-1 n-1

LSE[TSLPN =X Priyem-Ys)<B1. 3.7

i=1 i=l

We exploit a trick based on the symmetry of a circle to evaluate these probabilities. Consider
placing n+1 points uniformly on a circle of circumference T. Cut the circle at an arbitrary point and
unroll it into a line segment of length T. This leaves n points on the line segment. The probability that
any two of these points are separated by P is simply (1 — B/t)". The probability that two points arrive
more closely together than B follows immediately:

P"[)‘(i+1)"}'(i)Sﬁ]=1"[1—%] . (3.8

Substituting (3.8) into (3.7) and adding up terms, we find that the expected number of closely
spaced responses, an upper bound on the number of overflows, is

L,s(n—l)[l—[l—%} } (3.9)

We calculate the exact, but extremely tedious, solution to the U"/D /1/b system in Section 3.3.5.
In Figure 3.7, we contrast this upper bound with the exact solution and with the expected number of
buffer overflows for the U3/M /1/1 system. Notice the apparent paradox that deterministic service is
lossier than exponential service with identical first moments. This occurs because there is a nonzero
probability that the exponential service times are shorter than the the deterministic service times.

2 This is an application of de Finetti’s theorem (see [27], problem 24, Section L13).



Under deterministic service, when the service time reaches one, only the first response is processed;
the remaining four responses are lost. However, under exponential service, when the mean service
time is one, the probability that the actual service time is less than one is 1 — e!

3.2.4. Summary of Single Buffer Systems

Let us interpret these expressions in terms of back-to-back message losses where n recipients

respond to a multicast and each response is processed in constant time B. If the common response time
is uniformly distributed on 0, 7, then from (3.8) we obtain the probability that we lose at least one
response to buffer overflow, and (3.9) gives an upper bound on the expected number of overflows. In
Section 3.4 we associate the backoff interval and the round timeout with T.

A few one buffer network interfaces exist, but these are historical remnants rather than the pro-
duct of parsimonious design. (Note, however, the similarity between contention for single buffers and
contention for a shared memory bus as analyzed in Chapter 2). We are now ready to analyze the more
interesting multiple buffer systems.

3.3. Overflowing Multiple Buffers

We begin this section on multiple buffers by finding the expected number and distribution of
overflows when both the recipient’s response time and the sender’s buffer service time are exponen-
tially distributed. Next we derive recursive expressions for the expected number and distribution of
overflows for general i.i.d. response time distribution, exponentially distributed buffer service times,
and specialize this to the uniform response time distribution. We investigate a semi-Markov, approxi-
mation to uniform recipient response time distribution that we use throughout the rest of this chapter.
Lastly, we extend the calculations to include background traffic.

E}gect.ed Number of Buffer Overflow Losses

= U%D/1/1 upper bound

—— U%D/1n exact

—UNHi exact

%050 0z 0% 06 08 10 12 14 16 18 20

Mean Buffer Service Time
Figure 3.7. Contrasting (3.15), the expected number of overflows for US/M/1/1, and (3.16), the expected number
of overflows for U%D/1/1 systems. Notice that upper bound (3.9) is nearly tight for less than 1.6 overflows. The
five responses arrive uniformly on 0,1.
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We devote this section to deriving expressions that predict curves like the ones in Figure 3.8,
where we contrast the number of overflows suffered by M"*/M/1/b and U"/M/1/b systems with rates
selected such that the expected n order statistic E [y )] were equal:

1 1
nt (1+2+ +n)

n+l A
This operating point means that the expected time for the last recipient to reply is equal for both sys-
tems, and is, we believe, the fairest way to compare the systems. It is equivalent to comparing the sys-
tems under the same server load. In the figure, notice how the response time distribution significantly
affects the expected number of overflows, and how this effect increases with buffer size. We begin
with preassigned response times, where the recipients respond sequentially, and proceed to common,
i.i.d. response times.

3.3.1. Preassigned Response Times, D /M/1/b

If we assign a group membership number to each site as it joins the group, and reassign these
numbers when a member leaves the group, we can give recipient i a unique time i A at which it should
respond to the multicast sender. Theoretically, the interarrival times should be a constant A, but, real-
istically, deadline scheduling is impossible at the necessary time scale, and we do not achieve the con-
stant spacing we desire (see Section 3.4, Figure 3.13). (Preassigned response time is roughly
equivalent to multicast by successive unicast, because in the latter case the recipients tend to respond
in the order that they receive the unicast messages).

Besides requiring maintaining a group list, this scheme can be unduly restrictive. To illustrate
this last point, consider the problem of finding a lightly-loaded site for load sharing. Theimer [63] sug-
gests that sites backoff their responses for a time proportional to their loads and not respond if they are
unwilling to accept more jobs. Despite these reservations, we now analyze this multiple buffer sys-

1% pected Number of Buffer Overflows
Yoo

1209

1001
UM is
[, U®uMino
209 ,
601
w-
204

04 v gy .
0.0 01 02 03 04 05 0.6 07 08 09 1.0
Mean Buffer Service Time

Figure 3.8. Expected buffer overflows for M*YM/1/5, M*®/M /1110, UM 11/5, UM /1/10 systems. Note
that we selected the exponential arrival rate A and the uniform interval T to make the server’s expected load equal.



tem? because, at the least, it serves as a lower bound.

We calculate the expected number of overflows suffered by b-buffer systems by observing that
an overflow occurs if all » buffers are occupied when a recipient responds. Let L, (s) be the expected
number of overflows when n recipients respond, s buffers are occupied, and the first of the »
responses arrives immediately:

s+1

Ln (S) = z Lu—l (S+l-i ) Ps+1,i (A) ’
i=0

b
Lu(b) =1+ E Ln-l (b—l)pb,t(A) ’
i=0

Lo(S) =0.

Guyers iy LSS
Psi(x)= -1 (3.10)
1- Z P;,k(x) i=s.
k=0

In these expressions, we sum over the number of buffers i that the server empties during the
time interval A before the next arrival. When the next arrival occurs, s+1-i buffers are full: s+1 for
the number of full buffers at the start of the interval, and i for the number of buffers served during the
interval. The probability that i, i <s+1, buffers are emptied is the probability that i Poisson events
occur during interval A. The probability that all s+1 buffers are emptied is not the probability that s+1
Poisson events occur, but the probability that at least s Poisson events occur.

We can similarly calculate the distribution of losses, F;.

s+1

Fy(n,s)=Y Fi(n-1,5+1-i) p,y;(4),
i=0

b
Fi(n,b)=3 Fi(n-1,b-i)p, ;(4),
i=0

F[ (O,s)=l.

We should note that it is difficult to extend this calculation to general service time distributions
[55], but since the Erlang distribution E, approaches the constant distribution for large &, we can
approximate the deterministic arrivals, general service case as closely as we like with an embedded
Markov chain. We consider this further in Section 3.6.7.

3.3.2. M"/M/1/b Systems

It is easy to find the number of buffer overflows given both exponential response and service
time distributions (and gen_eral service time distribution as well). Consider a two-dimensional Markov
chain, where state (i ,j) means i responses are outstanding and j buffers are full (see Figure 3.9).

3 From a renewal and indicator variable argument, a single buffer, exponentially distributed server with service rate |l ex-

periences 3, e F = (n-1) e -AR gverflows. This is the expected number of buffer service time intervals longer than A.
j=
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When & =1, we can write the expression for the expected number of buffer overflows by
inspection:
n-1 )"
L=y L.
» El A

When b > 1, we can write a recursive expression to count the expected number of buffer
overflows.

L 5= Pa.s) acss+D)+ (1= Pa.s) LaGs-D 3.1y

Ly ®)=[pas) [1+L0a®)] +[1-p0s) La®-D.

Lo(S)=0.

nh\

Pn.s = nA+u(s-Du

Note that u (x) is the unit step function: one if x > 0 and zero otherwise. Of course, the distribu-
tion of overflows can be calculated similarly:

Fi(n,$)=pug] Fin1os40) + [1=pas) Filn,s-1),

Fi(n,8)=(pas) Fita=1, )+ [1=pa,,) Fitn,5-1),

FO(O,S)= 1.

3.3.3. G"/M/L/b Systems

This calculation is reminiscent of the G/M/1/b loss system analysis of queueing theory. Let
L, (s,t) be the expected number of overflows given that s of the b buffers start full, the last arrival
occurred at time ¢, and n additional arrivals remain outstanding. L, (s,¢) is an integral over the
arrival time, x, of the next interarrival time. Since the arrival times are drawn from a common
response time distribution, we can easily express the probability density function, f,, of the next
arrival.

Since the remaining n responses remain independent, their arrival time distribution function
conditioned on the arrival time ¢ of the last arrival, F (y |y >1),is

P(y<sx) _ _F)
Py>t) 1-F@)~

Pr(ysxly>t)=

Similarly:
P(y>x) _1-Fx)
P >x | t)= = .
r(y>xly>0=3030 - 1-F@)
The probability density function of the next arrival time is then the product of this density and the pro-
bability that the remaining n—1 responses arrive later, ail multiplied by n, the number of ways to select
the first arrival:
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Figure 3.9. The Markov chain that corresponds to the M2M/1/3 system. Whenever the chain takes a transition
labeled ‘*loss’’, a buffer overflow occurs. This counts as a response. A round begins in state (0,0), and ends when

the chain reaches state (20,0).

1-F{x)

[ &)

fax)=n [ I—F ()

-

1-F(@)

We insert this into the recursive integral expression of L,( s, ¢):
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Ly 6.0y = [ £20) T (L5410 1) oy - 0] s, (3.12)
t i=0

- b
L 6,0= | 70 T Laa b+1-0. 1) pustx =0)] +

i=l

(a6, )+ D))

Lo(S,l)=0.

We integrate over the next response’s arrival time x, summing over i, the number of buffers ser-
viced through time x. This leaves n—1 outstanding responses and s + 1 —i buffers occupied. This
number of buffers are occupied because s buffers were previously occupied, one buffer is occupied by
the new arrival, and i buffers were freed during interarrival time x.

When all b buffers are full, an overflow occurs with probability p, o, the probability that no
buffers are emptied before the next response arrives. Although formidable in appearance, we can
integrate expression (3.12) for many response time distributions because the service time is exponen-
tial. For example, we now apply (3.12) to the case of uniformly distributed response times.

3.3.4. U"/M/1/b Systems

It is easier to calculate the solution to (3.12) for uniformly distributed response times than for
any other response time distribution. Exploiting the fact that the arrival time distribution of the remain-
ing responses is uniform when it is conditioned on knowing the arrival time of the most recent
response, we redefine L, (s, ¢) to be the expected number of overflows when n responses remain out-
standing, given that s buffers start full and the remaining responses arrive uniformly on 0, .

t n-l1 B
Ln (S, l) = %J' [ d :x] Z L,,_I(S—i+1, t_x)p:,i(x)] dx , (3.13)
0

i=0

i=l

n-1 b
H d —x] S Ly (b-i+l, t—x) py ; (x)

(ULt 0 g @)

Lo(s,t)=0.

We can similarly calculate the exact distribution of overflows:
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el ‘- 181,
Fi(n,s,t)= lj X 3 F,(n—l.s+1—i,t—x)px_i(x)} dx , (3.14)
tol L ¢t ) 2
nif[-x]""2
Fi(n,b,t)= TJ t T Fy(n=1, b=i+1,t-x) p, ; (x)
oL )=

+ Fia(n=1,b, t-2) py o)) d .

Fo(o,s,t)= 1.
Although (3.13) does not have closed form solutions for arbitrary numbers of buffers, we can
always integrate it in polynomial time. For example, the expected number of overflows experienced
by the U*/M /1/b system on 0, 1 are

b=1: 12 (u‘1—3u'2+6u'3—6u'4)+e""(6u‘4)].

b=2: 12| @u -6 3+4u™ +e"‘((3u)'1+2u'2+2u'3—4u'4)].

b=3: 12| Qu -6 +e* m-2+4u-3+6u-4)] .
b=4: 0.

Equation (3.13) has closed form solutions for two systems. The single buffer system on 0, T has
solution

ety oyt 3 & e e (3.15)
ni(n-1)< (u1) Z‘o 1) + (=1)" e (ur)y™p. .

The n-1 buffer system on 0, T has solution

n !(n-l){ (n-1D(n-2) )" * ™ = (n-1)! (ur)y™

n-1
+ D e™Y MO il dyiiaer s
n—1—i n—1

i=1

where

ij Fa 51 ifi ,j21,
ai'j

1 otherwise.

Although we observe and are confident that it can be proved that the uniform response time dis-
tribution suffers fewer overflows than the exponential distribution with identical E [y, ], it does not
minimize buffer overflow. The i.i.d. response time distribution that minimizes the number of buffer



30

overflows depends on the service distribution, the number of buffers, the number of responses, and the
number of buffers that start full. We consider this further in Section 3.7.

3.3.5. U"/D/1/b Systems

We include this section to demonstrate that exact analysis of these problems is tricky. Denote
the number of overflows that this system suffers by L, (T, s), where s indicates the number of empty
buffers, and service has not yet begun.

(P s—=1
L(ts)= | { ' P;(x) Lyys( tx-B, s—i) + (3.16)
0 i=0

n-1 n

Z P;(x) [L,‘_l_,- (—x-B, D+ (i+1—-s)} dx +(n —s)[ E—}

where

n! dx : —x—ﬁ mi
P"(")d’”{(n-l—i)zizu] [T] [%] [T T } :

Note that (x), = max (x, 0). The variable of integration x represents the first response’s arrival
time. Probability P;(x)dx corresponds to the event that the first response arrives at time x, i more
responses arrive during deterministic service time 8, and n—i—1 remaining responses arrive after ser-

vice completes. This can be computed using an O[(-g-)“] algorithm given by Ott and Shanthikumar
[571.

The term outside of the integral is a necessary endpoint condition, accounting for overflows that
occur when all n responses arrive within B of 7. The first sum inside the integral accounts for
responses that arrive and occupy available buffers during the service time B. The second sum accounts
for responses that overflow the buffer.

Although this recursive computation is exact, it is difficult to evaluate. Approximating the con-
stant service time with an Erlang distribution, or the uniform arrival time distribution with an exponen-
tial interarrival time distribution works well. We consider this second approximation next.

3.3.6. M/G/1/b System with Exceptional First Service

When the interarrival time between the recipients’ responses is exponentially distributed we can
efficiently calculate both the expected number and the distribution of overflows. Recall that the nota-
tion M, indicates that the responses’ interarrival times are exponentially distributed. We have seen that
calculating the U"/G/1/b system’s expected number or distribution of overflows requires solving
(3.12), a difficult system of equations. Fortunately, the M,/G/1/b system behaves remarkably like the
U"/G/1/b system. We now introduce the key approximation that we will use from now on. We can
approximate the U"/G/1/b system’s distribution and expected number of overflows with the
M_/G/1/b system’s distribution and expected number of overflows. We must simply set the arrival
rate equal to n/t.

Denote the sender’s normal buffer service time distribution by G (x) and its first service time

distribution by G, (x). We calculate L, (s), the expected number of overflows given that n recipients
respond with a Poisson interarrival time distribution, that s buffers are occupied, and that service has
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just begun.

b-s n
)= F L =140 pai+ 3 pas[Las6-D+i=G-5) . @1
i=0

b-s+1
b-1 n—1
L@ =8 Luceet O gacts + T ducrs[Laia® = D+i =G - 1)
i=0 b

L,(s)=0, ifn+s<b.

i i

- | Ax| e -Ax “ {dx| e -Ax
Pai=] 5 d1G®), =[G ), (3.18)
0 ¢ 0 .
n-1 n-1
Pan=1- an,i ’ Grp=1- E qn,i - (3.19)
i=0 i=0
The distribution of overflows follows immediately:
b—r n .
Fi(n,5)=3 pp; Fi(n—i,s+i-1)+ ¥ ppiF1gpspn—i,b-1), (3.20)
i=0 i=hb-g+1
b-1 o n-1 .
Fi(n,0)=Y guyi Fi(n=1-i,0)+ T, qu_y;iFig@pin—1-i,b-1),
i=0 i=h

Fo(0,0)=1.

In practice (and we believe it can be shown analytically), the approximation’s expected value is
stightly high; its distribution is slightly skewed towards the higher number of buffer overflows. The
differences, for our purposes, are immaterial. We contrast the approximation, (3.17), with the exact
solution, (3.16), for the U%/D/1/3 system in Figure 3.10. (Note that we don’t need all of this
machinery to approximate the U"/M /1/b system; a simple modification to (3.11) suffices.)

3.3.7. Including Poisson Background Traffic

We now address the effect of background traffic incident to the same buffers that the multicast’s
responses occupy. Background traffic is unavoidable when considering overflow at network inter-
faces. We continue to assume that the network possesses infinite bandwidth, and to denote the buffer
service time distribution as G. Since characterizing the background traffic’s interarrival time distribu-
tion is a significant feat in itself, and as we have already made several approximations, we model it as
Poisson with rate y. We define the buffer occupancy distribution at the time the multicast is sent as By.
Although this is a quantity easily measured in practice, here we model B, as the equilibrium queue
length distribution of the M /G /1/b queue [42] composed of the Poisson background traffic and general
service time distribution with mean (L.

3.3.7.1. U"/M/1/b Systems

When the buffer service time distribution is Poisson, we denote the load of the background
traffic by p=1Y/, and calculate the buffer occupancy distribution as distribution of an M /M/1/b
queue:
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Figure 3.10. Probability distribution, M 5/D /1/3, (3.16), arrival rate A=1, expected service time p=.025. The ap-
proximation, (3.17), is shaded. In this example the first service and normal service distributions are identical.

~1-p

By = 1- pb +1 p
The multicast’s n responses arrive over some interval 0,%. Since the background traffic is Pois-
son with rate v, we can express the probability I'; that i background messages arrive during interval T:

T, =(y) e Y%l

We condition the calculation of the number of overflows on knowing i, the number of back-
ground messages that arrive with the n responses over interval T. Having conditioned the i Poisson
events to occur over an interval T, from elementary statistics, we know these events are uniformly dis-
tributed on 0 1. We multiply L,.;(k,T) (3.13), the total number of overflows (responses plus back-
ground), by n/(n-+i), the fraction of the total arrivals that are responses.

k=0 i=0

L,= 2 By Z L, k70 [ n] , (3.21)

Under practical loads (p < 0.5), the T'; approach zero quickly as i grows. (In practice, finite network
bandwidth and minimum network packet size limit the number of background arrivals.)

3.3.7.2. M,/G/1/b Systems

It is easy to add background traffic to our M,/G /1/b, exceptional first service approximation to
the U™/G/1/b system on 0,t. To do so, substitute (3.21) for (3.13), and calculate By from the
M /G /1/b queue composed by the Poisson background traffic and general server.

A |
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3.3.7.3. Distribution of Overflows with Background Traffic

We can calculate the distribution of overflows given background traffic. Recall the hyper-
geometric distribution describes the distribution of choosing r balls such that [ of them are red from a

set of n red balls and i white balls:

Denote the multicast’s n responses by red balls and the i background messages by white balls.
The probability that of | of r overflows are recipient responses is exactly the hypergeometric probabil-
ity just given. Employing (3.20) for the total distribution of overflows, then the distribution of

overflows that correspond to recipient responses is:

Hlr-l

g

Let it suffice to say, we have taken these analyses to their practical limits.

b o A+
F,=Y By S T;(0) 3 F, (n+i,k)
k=0 i=0 r=l

3.3.8. Including Finite Network Bandwidth

Recall our other assumption, that the network possesses infinite bandwidth. This is equivalent to
assuming instantaneous, collisionless, message transmission. In this section we relax this assumption
by solving the tandem system illustrated in Figure 3.11. We approximate the expected number and
distribution of overflows for the simplest, Markov case. More sophisticated models of the network are
best evaluated through simulation. Since CSMA/CD collisions are resolved in microseconds and
waste negligible network bandwidth, we will continue to ignore them here and focus on message
transmission time and competing network background traffic.

Other network traffic competes with the responses for exclusive access to the network. A multi-
cast recipient may have to hold its response until the network goes idle. We model this as variations in

......................

Figure 3.11. Accurately modeling the network’s bit-rate is difficult, as is modeling how collisions affect response
interarrival times. Here we attempt to model the network’s characteristics with a tandem queue.
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the responses’ transmission time. Given that the network carries background traffic some fraction p of
the time and that responses have average transmission time x, we model message transmission time as
exponentially distributed with rate

r=l12P
x

Let the n responses arrive with rate Y= n/t and the buffers be serviced at rate |1 The state space

(n,r,s), indicates that n responses have yet to enqueue at the network, r responses are enqueued at
the network, and s responses occupy buffers at the multicast sender. The expected number of
overflows L, is:

L,(r,s)=

(- U, p) AL, (r~1,s+1) ugp A [L,.(r—l,b)+ 1]
[ u()A+u@)p+uln)y u(ryh+pu+u(@n)y

[ u(s)pLa(r,s-1) #(n) YLnoy(r+1,5)
ku(r)k+u+u(n)y * u(M)A+u(s)u+y|’

Ly(0,5)=0.
Note that u(x) is the unit step function: one if x 20 and zero otherwise; and u,, is the

Kronecker delta function: one if s=b and zero otherwise. We compute the derivation of the distribu-
tion of overflows similarly.

Fl(n,r,s)=[(l-us.b)A-Fl(n,r—l,S"‘l)} + [ u-!',b lF,_x(n,r_l,b)] .

u(P)A+u(s)p+un)y u(r)yA+u+un)y

u(s)_RFi(n,r,s-1) u(n)yYF,(n-1,r+1,s)
u(r)A+p+uln)y * u(P)A+uls)u+y |

Fi0,0,5)=1.

3.3.9. Conclusions

Throughout this section we derived analytic expressions for the distribution of buffer overflows
which we will use in subsequent sections. Some of these expressions were easily evaluated, while oth-
ers were not. The remainder of this chapter is much more experimental in nature.

3.4. Two Recipient Backoff Algorithms

Frequently a multicast’s recipients transmit their responses to the sender nearly in unison,
overflowing the sender’s buffers. In this section, we consider two recipient backoff algorithms that
significantly reduce buffer overflow. The first algorithm attempts to transform each recipient’s
response time distribution onto the uniform* distribution on 0, t. The second algorithm preassigns a
response time on 0, T to each recipient. We first present measurements of the response time distribu-
tion taken from several computer systems without backoff, then discuss the two backoff methods, and
finally present measurements of the response time distribution with backoff. In Section 3.5 we identify

4 In Section 3.7 we show that the uniform distribution does not quite minimize the expected number of overflows on 0, 7.
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7 as the round’s timeout and consider how to select it.

Recall our definition of the recipients’ response time in Section 3.1. We assume that each reci-
pient i can measure its response time y; and schedule its response with clock granularity A mil-
liseconds. We implemented both algorithm on a network of Sun workstations. We will see that,
because existing workstations tend to have coarse clock granularity, the deterministic backoff algo-
rithm does not attain its intended effect unless the backoff interval is large. '

3.4.1. Measuring the Response Time Distribution

Even when similarly configured recipients perform identical calculations, each recipient’s
response time distribution is unique, depending on its workload. The distribution approaches a con-
stant when the node is lightly loaded, but its tail can grow quite long when the node is heavily loaded.
We illustrate this with representative measurements of the response time distribution of several UNIX
computers (see Figure 3.12 (a)). We should note that a given machine’s response times are essentially
iid. and uncorrelated. We plot their autocorrelation function in Figure 3.12 (b). We see that even
one lag away (see Figure 3.12 (b)). We do note that the distribution drifts with load; compare
ucbernie’s response time distribution when its load is less than three (the line labeled emie.1t3) with its
response time distribution when its load is greater than three (the line labeled ernie.gt3).

The response time distribution is sensitive to changes in the system load. We plot ucbernie's
response time distribution when the load average was under three and over three separately. Node
snow was always lightly loaded, so its response time distribution was nearly a constant. When the
response times of many machines are nearly constant, their responses arrive closely spaced, and buffer
overflow is likely.

ili Autocorrelation
1,009 Probability (£ < T) 1.007
sno
0901 0904 ——emie
0.804 0807 ~—"—snow
0701 or0f il
0.604
0.604
0504
0.504
0.404
0,401
0304
0301
0.204
0.101
0.00 e e g———— v 0,10y gy g ey—
0 10 20 30 40 50 60 70 80 90 100 0 S 10 15 20 25 30 35 40 45 50
a) Response Time t in milliseconds b) Lag Number

Figure 3.12. (a) Recipient response time distributions of several machines sending 592 byte responses. Note how
ucbernie’s response time depends on its processor load. Lines ernie.g3 and emnie.lt3 corresponds to service times
when the load is greater than 3 and less than 3. Snow is a lightly loaded Sun file server. Ucbernie and Ji are
moderately loaded VAXes. (b) Autocorrelation function of the response time distributions.
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3.4.2. Predetermined Backoff

The obvious backoff algorithm is to divide the backoff interval into n—1 equally spaced intervals
and assign response times accordingly. This is easily done when we assign each recipient its group
membership number i € 0,.,n—1 . We assign response time T i/(n—1) to member i. Member i, after
receiving a multicast and computing its response at time y;, waits an additional time Y;:

Y,-=ma.ximum(i‘t—}’.',0). (3.22)

We implemented this backoff strategy and measured the interarrival times it generates. Notice
that the interarrival times are not constant, but closer to exponential® (see Figure 3.13). We computed
the standard deviation o and found it to be 81% of the mean (¥ =8.94, 6 =7.23). This is due to the
twenty millisecond clock and scheduling granularity of Sun workstations.

As noted in Section 3.3.1, this scheme requires that each site be assigned a group membership
number upon joining a group, and that sites change these numbers when members leave the group.

3.4.3. Uniform Backoff

We now describe a backoff algorithm that transforms a recipient’s response time distribution
into the uniform distribution on 0,7. We cannot do this perfectly because, on occasion, a site’s
response time may exceed T, and it is never less than some minimum. Also, coarse timing and
scheduling granularity A distorts our transformation.

We assume that each site has measured its response time distribution and placed it in an array
H k-

Hk =Pr[y‘- SkA] .

We exploit our observation that response times are nearly i.i.d. as follows. Each recipient meas-
ures its response time before backoff. This falls into bucket k if its value is between k-1 A, kA,
The fraction H, — H,_; of response times fall into bucket k. We compute backoff time ¥;(k) so that,
after backoff, responses cover this same fraction of the uniform interval 0,

Y; (k) = uniform [1 Hy_; — (k-1)A, T H, —kA] . (3.23)

We note that, if the recipients’ are unloaded, then their response times fall into a single bucket,
and our unifarm backoff algorithm is equivalent to always adding a uniform 0, T backoff value.

3.4.4. Conclusions

In Figure 3.13 we plot the interarrival time distributions as collected from 13 Sun 3/50 recipients
with predetermined and uniform backoff on 0, 100mS. Most of the workstations were idle during the
experiment. Despite our attempt to preorder the responses so that the interarrival times were constant,
the workstations’ coarse clock granularity randomizes them. The conclusion that we draw from this
experiment is that predetermined backoff does not lead to constant interarrival times (although we will
see later that it does suffer fewer buffer overflows than uniform backoff).

Now that we know how to make recipients arrive uniformly over an interval 0, 7, we consider
next how to best choose 1.

S\What is the variance of this scheme’s interarrival times? We would like to know the variance value to model the interar-
rival time with an Erlang distribution.
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Figure 3.13. Interarrival time distribution of thirteen Sun 3/50 recipients after backoff onto 0, 100mS transmitting
592 byte responses. The Sun 3/50’s scheduling resolution is 20 milliseconds.

3.5. Multiple Round Multicasts and Multicast Timeouts

When communicating by multicast, computers with slow network interfaces, slow CPU’s, and
limited memory may suffer buffer overflow. Because sites usually consist of older and newer machines
and lower-end and upper-end machines, we need a multicast protocol whose parameters each machine
can tune. In this section we describe a multiple round multicast algorithm, and consider criteria for
selecting the round timeouts. Each sender chooses its timeouts to minimize the latency, the expected
time to reliably deliver the multicast to all the recipients, given that it must meet a certain constraint
with probability ®. Each sender must also choose the number of rounds. The multicast’s latency, the
time between the initial transmission and the end of the last round, drops with each additional round
and approaches the expected time to service n responses. The computational overhead imposed by the
extra interrupts and retransmissions increases with each additional round. A sender seeks to limit over-
head or to achieve a given latency, and selects the number of rounds accordingly. Soft real-time sys-
tems are systems that meet a deadline with some probability. When this probability is one, the system
is called a hard real-time system. Ours is a soft real-time algorithm. With probability ® the sender
meets its constraint by the end of the last round, and with probability 1 — @ it fails to meet it. In prac-
tice, senders usually select one or two rounds, and, on occasion, three rounds. Each multicast sender
selects the current round’s timeout from its own, precalculated, timeout table. We precalculate the
timeout table from the sender’s measured service time distribution to meet the real-time constraint with
the desired degree of confidence. The sender transmits the timeout in the message header, and the
recipients use it as their uniform backoff interval.

In this section we consider the algorithm’s details, describe how to calculate the timeout table,
briefly consider how to set timeouts for dead-site detection, and conclude by extending the algorithm
to where we only know the distribution rather than the exact number of recipients that respond.

3.5.1. Discarding Duplicates

Given that the multicast and responses may be transmitted more than once, we must take meas-
ures so that recipients can discard duplicate multicasts. Consider the message format:
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Serial Numb Sender-Id | Ti Count | Bit-map | Data

The message’s bit-map field indicates which group members should reply to this transmission.
Using a bit-map rather than a list requires that the group members agree on their group membership
numbers. Before transmitting a round, the sender adjusts the bit-map. If the sender does not receive all
the required responses after the last round, it enters the protocol’s dead-site detection phase which we
discuss later in this section. As an optimization, the sender need only transmit the message’s data field
during the first round. If a recipient receives a subsequent round but not the initial round, it can
request that the sender retransmit the data. As a further optimization, if few recipients remain out-
standing, the sender can transmit to these via successive unicast rather than broadcast, eliminating
extraneous interrupts at the other recipients.

3.5.2. The Timeout Table

Whether we choose the number of rounds to meet a real-time deadline or to limit the overhead,
we must calculate the timeout table’s entries. The table’s columns correspond to rounds; the table’s
rows correspond to the number of unacknowledged recipients. We compute the last round’s entries to
meet the sender’s constraint with probability ®. The constraint that we use is that with probability ®,
after the last round, we have received the responses from all sites, which we express in terms of F,
the probability we experience no overflows:

Fo(n,0,m)2®. (3.24)

In Figure 3.14 we see a two-round timeout table calculated for a multicast sender with five
buffers and exponentially distributed buffer service time. The table’s last round timeout is computed
by solving (3.24), where F ; comes from (3.13) and constraint ® is set to 0.99. We will discuss how to
calculate the next-to-last round’s timeout shortly (see (3.25)). The table’s fourth column lists the
expected two-round latency, which is the sum of the first round’s latency and the expected value of the
second round’s latency.

3.5.3. Selecting Multiple Round Timeouts

Selecting multiple round timeouts is a standard optimization problem. On one hand, if we set
the timeouts too short we suffer lots of overflows. On the other hand, if we set them too long, we
needlessly increase the multicast’s latency. Below, we demonstrate how to select good multiple round
timeouts, and apply the procedure to several examples. We call the last round’s timeout 1,, the next-
to-last round’s timeout T, ..., and the first round of a k-round multicast T, .

We must satisfy the constraint during the last round with probability ®. Therefore, regardiess of
how we arrived to the last round with a certain number of outstanding responses, we choose the last
round’s timeout solely on the number of outstanding responses. To minimize the latency, we select the
next-to-last round’s timeouts so as to

minimize E{ T+ ‘cl}, (3.25)

where the last round timeouts T, are fixed, chosen to satisfy the constraint. This problem reduces to
selecting the optimal next-to-last round timeouts T, so as to:

minimize{ T(n) + 2": Fe(n,s,1(n)) 11(k)}, (3.26)

k=0
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Number of | Next-to-lastRound | LastRound | Expocted
Recipients Tizmoout Ty Timeont Ty | Latency
6 0 73 0.0
7 0 120 0.0
8 0 168 0.0
9 ] 210 0.0
10 ] 250 0.0
11 33 294 38
12 37 343 51
13 438 388 68
14 62 4“2 85
15 75 49.0 101
16 88 532 1.7
17 101 584 132
Ed 115.0 $62.5 1377
98 1162 5704 1393
99 1174 5713 1409
100 1186 5842 1426

Figure 3.14. This two-round timeout table was calculated for a 5-buffer, exponential, unit mean server and is good
for up to 100 recipients. The table is calculated so that with probability ninety-nine percent responses do not
overflow the second round.

where F,(n,s,T,) is the probability that k responses overflow, e.g. (3.20). Intuitively, a three-round
multicast consists of an initial round followed by an optimal two-round multicast. Whatever the
number of overflows experienced during this initial round, we must still satisfy the constraint as
quickly as possible in the remaining two rounds, which is the problem we just finished solving. We
calculate T, given the solution to (3.26), the expected latency of a two-round multicast, just as we cal-
culated T, from 7,. We proceed like this until all of the timeout table’s columns are complete.

Except in the simplest systems where we can employ calculus to find the solutions to (3.24) and
(3.26), ordinarily we find their solution by searching.

3.5.3.1. Multiple-Round Multicast, U'*/M/1/5

We compute this system’s distribution of overflows, from either the exact solution, (3.14), or
from the approximation discussed in Section 3.3.6. We set the arbitrary degree of confidence to
ninety-nine percent. The table is computed for unit expected service time. The lower the degree of
confidence, the smaller the timeouts. In Figure 3.15 we plot the necessary one-round latency, t,, that
satisfies constraint (3.25), and the minimum two-round and three-round latencies. We have already
presented this system’s two-round timeout table in Figure 3.14. The latency does not significantly
drop beyond three rounds, but approaches the expected minimum: the expected service time of n
responses.
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Figure 3.15. Minimum latency one-round, two-round, and three-round multicasts, UriM s, d&=99,u=1. The
common uniform arrival distribution is achieved through backoff.

3.5.4. Collecting a Subset of Replies

A related problem, practicaily solved already, is collecting a given fraction or number of
responses. This could occur, for example, while searching for an idle machine. Suppose we want to
collect m responses from n recipients. We simply substitute constraint equation (3.24) with

n-m
Y Fp(n,s,%)29,
k=0

and proceed as before.

3.5.5. Dead-Site Detection

The multicast’s sender may not receive a recipient’s response for several reasons: the recipient
did not correctly receive the multicast; its response was lost; or it failed before responding. The sender
could conclude that any recipient that fails to respond to several unicast transmissions has failed,
although this conclusion might be erroncous.

We say a multicast has completed when we have received responses from all functioning reci-
pients. If a recipient fails to respond to several transmissions, the sender assumes that the recipient has
failed and removes it from the group membership list. Since site failures are infrequent, dead-site
detection timeouts are not terribly interesting. With no knowledge of the response time distribution
H (¢), these timeouts should be set to a few seconds and be increased with each retransmission. How-
ever, when we know the response time distribution, this section shows how we can identify dead sites
more quickly.

The timeouts for these rounds depend on the response time distribution’s tail. We choose the
number 1} of dead-site detection rounds such that we are satisfied with probability 1 - € that the reci-
pient has failed:

lT"I[l—H(':,-)] >21-¢.

i=1
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For example, consider the response time distributions plotted in Figure 3.12. Given the distribu-
tion of response times that we collected, three 200 millisecond dead-site detection rounds would
misidentify a working site as failed once in five million times.

3.5.6. Multicast to an Unknown Number of Recipients

Can we apply our method when we do not know the identity or number of recipients that will
reply? Yes, but we must take steps to convince ourselves that we have collected responses from every
operational site, because we do not know which recipients will respond. We must retransmit the multi-
cast until no more recipients respond to satisfy ourselves that all operational recipients have responded.
Then, we must undergo several dead-site detection rounds to assure ourselves, with probability ¢, that
all operational sites have responded. We assume that we know P;, the distribution of the total number
of recipients, but not the exact number. We consider two cases below. In the first case, we assume
that the operating system and network interface count and return the number of overflows experienced
during a round. In the second case, we assume they do not.

Our goal is to minimize the latency of a k-round multicast given that we know the distribution of
the number of recipients. After the k primary rounds, we must issue several dead-site detection
rounds. Paralleling reliable multicast, we calculate the last-round timeouts from the constraint equa-
tion.

We select the optimal next-to-last round timeout such that the sum of the next-to-last timeout
and the expected value of the last timeout is minimized:

minimize {‘tz +E [’51]} . 3.27)

Since the network interface and the operating system tell us how many responses were lost dur-
ing a round, we know the number of responses we must receive during the last round. Therefore we
use the last round’s timeout table that we have calculated in (3.24), and we need only optimize over
the next-to-last round’s timeout. Denoting the probability of losing j responses to buffer overflow by
F;, we must minimize

T+ X P 3 ul)F; (i,s,1).
izl j=0
This expression’s only unknown is T, (we know P; and 1, and can calculate F;). We minimize this
expression with respect to T, and construct a timeout table. We ignore the possibility that a recipient
might fail to respond on the first round but responds to subsequent rounds, because this occurs infre-
quently.

When the hardware and operating system do not count the number of overflows, then we do not
know how many recipients remain outstanding, and we must calculate the last round’s timeouts dif-
ferently. Define P,)(j) as the distribution of k, the number of recipients that overflowed during the
next-to-last round given that j responses were received:

o ey
PGy = —F—.
I_ZP.
i=l

With this we can express the last round’s timeout as a function of the number of successfully received
replies during the next-to-last round:
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,‘Z_{Pk“)(i) Folk,s,u(j)29.
k=0

We can perform a binary search to quickly find the value of 7,(j) satisfying this expression. With
these timeouts in hand, we reconsider equation (3.27). The probability that we successfully receive j
of i responses is identical to the probability of losing i—j responses given i recipients responded:

minimize {Tz+ iP, iTIU)Fi—j (i,S,Tz)}.

i=1 j=0

We operate as we did above, searching for the value of 1, that minimizes this expression. These
timeout calculations depend on the service time distribution, which we must measure. We investigate
this next.

3.6. Implementation, Instrumentation, and Experiments

We implemented our multiple round multicast algorithm and instrumented the UNIX operating
systems of several DEC and Sun computers to measure and model real buffer service time distribu-
tions, and to explore the accuracy of our calculations. In this section we discuss how to model the
buffer service time, present our service time measurements, and we describe our UDP buffer overflow
experiments. But first, we review our instrumentation and experimental setup.

3.6.1. UDP Protocol Layer Instrumentation

Our multicast sender runs as a user process. It broadcasts a UDP datagram, and reads and dis-
cards the recipients’ responses, also UDP datagrams. Since the sender process may compete with
other processes for timeslices, DMA transfers may absorb part of the backplane’s bandwidth, and dev-
ice interrupts may preempt the processor, UDP buffer service times are random and workload depen-
dent. Their minimum value depends on the message'’s size and processor’s speed.

What happens when a recipient responds? Once the sender’s network interface receives the
response, it posts a processor interrupt. When the sender’s interrupt priority level is sufficiently low,
the sender fields the interrupt, and if space permits enqueues the message on the IP protocol input
queue, schedules a software interrupt and returns from interrupt. When it fields the software interrupt,
it dequeues the message, passes it to the IP layer which, in turn, passes it to the UDP layer. The UDP
layer, if space permits, enqueues the message at the appropriate UDP socket where it can be read by
the sender process. Newly arriving responses preempt the sender process, are processed by [P and
UDP, and eventually are enqueued at the socket. The sender does not run during this processing. We
will need to account for this preemption in our model of the service ime. Figure 3.16 illustrates the
path responses take through the operating system.

We instrumented the Ethernet device driver to record a time stamp (7S,) the moment a packet
arrival interrupt occurs. We reserved a particular UDP port number for our experiments. For UDP
datagrams destined to this experimental port we write TS, into one of the message’s fields. We instru-
mented the UDP network code to write a timestamp (7S ,) into another of the message’s fields just
before the call to the scheduler that indicates that a message had been placed in the UDP socket’s
buffer and awaits the sender process. Hence the sender process finds these two time stamps in the
response that it reads. It determines the response’s residence time by subtracting the current time
(TS ;) from the datagram’s first timestamp (this is the service time if the buffer was previously empty).

The Sun’s poor clock resolution hampered our efforts to measure the buffer service time distri-
bution: our Sun 3/50 workstation’s clock has twenty millisecond resolution. To accurately calculate
the service time distribution we designed, built, and installed a microsecond resolution clock in one
workstation. The clock can be read both inside and outside the kernel, and is documented in Chapter
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Figure 3.16. The responses flow from queue to queue within the operating system. Server U, is preempted while

server |1, and i, run. In this section, we are studying the UDP socket buffers.
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Figure 3.17. Microsecond timestamps generated when recipients send a 592 byte response to a multicast. The

fourth column is the responses’ resident time in syster, and is composed of its service time and delay waiting for

service to start.

5. We used our clock to gather the data shown in Figure 3.17.

We added a device driver option to the Sun’s kernel that sets the amount of buffer space allo-
cated to a UDP socket, a quantity normally compiled into the kernel. We treat this as if it set the
number of buffers rather than the number of bytes in the buffer, because each response consumes a
fixed number of bytes. For example, if responses are 1,024 bytes and we allocate 4,500 bytes of
memory, we say that we allocated four buffers (protocol layering adds about a hundred bytes to

responses).

= |



3.6.3. Modeling the OS’s Service Time

Let us examine the UDP buffer service time. It consists of the time for the UDP packet to
traverse the operating system’s networking code, the sender process’s scheduling latency and service
time, and the service time lost to preemption by high priority peripheral device events. The time to
traverse the networking code and sender process depends on the contention for the backplane’s finite
bandwidth. The scheduling latency depends on the length of the run queue and the processor’s’
scheduling policy. Time lost to preemptive service depends on the peripheral devices and their work-
load. When the processor is lightly loaded, the scheduling latency and preemption times disappear
leaving constant buffer service time. When it is heavily loaded, both scheduling latency and device
servicing can cause large variations in the service time. Scheduling latency only affects the first
response served during a busy period. Therefore a busy period’s first service time is drawn from a dif-
ferent, more widely varying distribution than other service times. We account for this by employing

the exceptional first service model® introduced in Section 3.3.6.

Since the Ethernet driver runs at hardware interrupt priority and UDP protocol processing runs
at software interrupt priority, newly arriving responses preempt the sender process. The sender pro-
cess resumes only when every message enqueued at the network interface has wound its way through
the operating system and into the UDP socket’s buffer. One can see this by reviewing the timestamps
in Figure 3.17. Notice how the first response does not reach the user program (7S 3) until the first four
responses have all gotten to the UDP socket’s buffer (TS,;). We must model this queueing process and
find an expression for its distribution of overflows given that the n recipients employ uniform backoff.
We invoke the Poisson approximation from Section 3.3.6, and treat the interarrival times of the n
responses as Poisson with parameter

A=nnt.

We analyze the UDP protocol with (3.17) and (3.20). To do so, we must first find new expres-
sions for the transition probabilities p, ; and g, ; that model the effects of preemption, and model the
service time distribution. Recall that p, ; and g, ; are the probabilities that i of n responses arrive dur-
ing a regular or first service interval respectively. These new arrivals occupy and possibly overflow
the UDP socket’s buffers. First service times, whose distribution is G, (x), consist of a constant time
D to traverse the networking code plus a hyperexponentially distributed time that accounts for the
variations in the service time which are mainly due to processor scheduling. Regular service times,
whose distribution is G ;(x), consist of a constant time D and a hyperexponentially distributed time to
account for variations in the service time that are mainly due to interrupts and DMA devices [56].
Regular service times exclude the time spent traversing the networking code since we account for this
time as a preemption of time A to the current service. These distributions are:

G(x)=u(x -D) (1 —qe D _(_we “"D)’*'] (3.28)

where u(x) is the unit step function: one if x >0 and zero otherwise. We discuss how we evaluate G,
and G, in Section 3.6.6.

How many responses arrive during a service interval? This number depends on the length of the
service interval. Since arriving responses extend the service interval’s length by time A, each subse-
quent arrival spawns its own M/D/1 busy period during which other responses arrive. Let v? be the
distribution of the number of arrivals during an M/D/1/ busy period, and let v be the distribution of the
number of arrivals that occur during the service interval, excluding preemption. The distribution that
we need to know is the convolution of v and v% (see Figure 3.18).

SAltemnatively, this is equivalent to exhaustive service with service vacations and preemptions.
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Figure 3.18. Consider what happens when responses y;.; and y;., arrive during the service interval of response y,.
These two responses each preempt y,'s service interval for time A, and, since the remaining responses interarrival
times are Poisson, spawn their own M/D/1 busy periods during which more preemptions may occur.

Let v, ; (G) be the probability that i of n responses arrive due to a service interval with distribu-

tion G:
i |AD| e r 1 ux
i @)= 8 X %) TR | T+

n-1

Van (G)=1-3 v,; (G).
i=0

Note that we have defined a=¢; and oy =1 -0

Each of these i responses engenders its own M/D/1 busy period during which still more
responses may arrive. Recall the distribution of the number served during an M/D/1 busy period.
Denote the probability that i responses are served during the busy period by v,{’ﬁ (A):
(iM)l'—le —-iAA

va% (8) = 5

(3.29)
where i > 1 since a busy period contains at least one job. Let v ®) be the distribution of the k* con-
volution of (3.29), and r,, ; denote the probability that i of the n outstanding responses arrive during a
service interval with distribution G :

n-1

rn,i(G)= i vn,v (G) vll:,pl ® (A) 4 rn,u(G) =1- 2 rn.,i (G)' (3-30)
v=0 i=0

The transition probabilities we seek are g, ; =r,; (Go) and p,; =71, (G1), and we can apply
(3.20) to compute the distribution of overflows. In the next section we relate our experience with this
model’s predictions.

3.6.4. Overflow Experiments

How well can we predict the expected number and distribution of overflows with this model of
the service time distribution? To investigate this we collected first and normal service time distribu-
tions and measured A for ucbarpa, ucbernie, monet, and figaro. In Figure 3.19 and Figure 3.20 we
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Host || Preemption First Service G, Normal Service G|

Name A{mS] ||D{mS] @ x;ImS] x;[mS1||D[mS] a x;[mS} xy[mS]
ucbarpe 13 339 973 129 37.5 2.08 927 013 10.4
ucbemie 23 438 .880 2.25 20.2 2.10 980 1.25 70.4
ucbernie 23 4138 97 243 34.1 2.10 989 3.2 196
ucbernie 23 4.38 967 6.25 246 210 981 3.63 205
figaro 2.05 2.89 987 403 40.0 1.56 998 22 152
monet 35 793 958 0.62 49.1 443 974 413 16.7

Figure 3.19. UDP buffer service model parameters for 592 byte responses. Time A is the duration of the service
preemption caused by a new arrival. The three different ucbernie models correspond to three different days of the
week. Notice the difference in variability between first and normal service times.

Host Preemption First Service G, Normal Service G,

Name amS] DimS] a x,(mS] xyImS] || DimS] o x[mS] x;[mS]
ucbernie 2.8 5.95 920 198 30.3 3.20 990 3.05 794
ucbernie 2.8 5.95 913 5.76 114 3.20 956 1.26 99.6
figaro 31 3.10 993 2.16 54.4 1.75 992 719 113

Figure 3.20. UDP buffer service model parameters for 1392 byte responses. The ucbemnie parameters were taken
for different days of the week.

tabulate the preemption time A, first service distribution G, , and normal service distribution G,. For
example, we plot ucbernie’s measured first service distribution and our model of it in Figure 3.21.

We predicted the expected number of buffer overflows through our service time model and con-
ducted a series of experiments using figaro, our instrumented Sun 3/50. Examine Figure 3.22; notice
the close agreement between our predictions and measurements. The model and measurements
diverge near zero backoff time because the Ethernet’s exponential backoff policy disperses the
responses over an interval longer than the backoff time. At asymptotically high backoff times, we find
another discrepancy. The expected number of losses that we measured was asymptotically about one
half the value that we predicted. We conjecture that the recipient’s coarse, 20 millisecond scheduling
granularity prevents us from achieving perfect uniform backoff.

Our measurements of ucbernie diverge badly from the model (see Figure 3.28) because
uchernie's network interface is excruciatingly slow. Messages are first buffered in the interface’s
large buffers, and then, as backplane bandwidth permits, are copied into memory. This requires that
we explicitly model the network interface, although the rest of the model remains intact. We discuss
this further in Section 3.6.7.

3.6.5. Fragmentation

If the recipients’ responses become fragmented by the network, then each fragment preempts the
server. Because other network traffic and other responses may be interleaved with a fragment, the
total preemption time is much more variable than with unfragmented responses. Our measurements of
four kilobyte responses, transmitted as four fragments, show the total preemption time to be uniformly
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Figure 3.21. Measured (dashed) and modeled distributions of first service times for ucbernie. This distribution
depends on processor type and workload (response size 592 bytes).
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Figure 3.22. Figaro's measured and modeled expected number of buffer overflows depends on the backoff time.
The UDP socket contained buffer space for three responses. Ten recipients replied.

distributed between some non-zero minimum and a maximum time. The IP layer buffers fragments
until reassembly is complete, after which it passes them to the UDP layer, where they may cause
buffer overflow.

We treat the sum of the preemption times as a constant, and reuse our M/D/1 busy period model.
In Figure 3.23 we contrast the theoretical and measured numbers of overflows for the measured

—_—
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parameters listed in Figure 3.24.

3.6.6. Timeout Table’s Sensitivity to Workload Variations

As our timeouts are statically calculated, one is prompted to ask about their sensitivity to varia-
tions in the workload, e.g., the three entries for ucbernie in Figure 3.19. In this section we suggest two
approaches to calculating timeouts.

In production multicast systems, a timeout calculation server could periodically recalculate the
timeout table based on the recently measured service time distribution. Since the service time’s con-
stant portion and preemption time do not drift with workload, they need be measured once. The sender
could estimate and periodically send G, and G, to a timeout calculation server (see Figure 3.25). The
server could calculate a new timeout table, and return it to the sender. In the next section we show
how to evaluate the parameters of the service time distribution’s hyperexponential portion from the
service time's measured moments.

Alternatively, for a two round multicast, one could avoid measuring the service time distribution
by designing a control system that slowly adjusts the last round’s timeouts so that the constraint is
satisfied. This creates the difficulty that we can not calculate optimal next-to-last round’s timeouts.
From our experience, we believe that a good operating point for next-to-last round’s timeouts is to

, Number of Buffer Overflows

\~ i~ figaro.modél

(]

w

0 S0 100 150 200 250 300 350 400
Backoff Time

Figure 3.23. Figaro’s measured and modeled expected number of buffer overflows for fragmented responses. We
allocated 15 Kbytes of UDP socket buffer space, enough for three responses. Ten recipients sent 4184 byte
responses.

Host || Preemption First Service G, Normal Service G,
Name | AlmS] ||[DmS] o x(mS] xSl || DimS] o x[mS] x3(mS)
figaro 7.0 88 | .88 | 111 | 838 33 |95 85 | 10

Figure 3.24. UDP buffer service model parameters for 4184 byte fragmented responses.
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select them so the server utilization is one. This simply requires that we measure the mean service
time, rather than the distribution. We have not tried to evaluate the performance degradation that this
entails.

3.6.7. Evaluating the Hyperexponential’s Parameters

In the previous sections we modeled the UDP service times with a constant plus a hyperex--
ponential distribution. We can easily measure D, the constant part that corresponds to the minimum
service time, and x*, the moments of the service time’s variable portion (the service time minus D). In
this section we show how to calculate the parameters of the hyperexponential from these moments.

Hyperexponentials can model distributions with large variances. The density function of the
hyperexponential distribution H , has three parameters x1, x5, and o

Prt<t=1-oe ™ —(1-o)e "™ (3.31)

We can use the first three moments of the measured service time x, x2, and x° to evaluate the H 2
distribution’s three parameters by solving three nonlinear equations in three unknowns.

x=1 [ax1+(1—a)x2}
x—i=2! [ax12+(1—a)x22}
x3=3 [ax13+(1—a)x23]

We solve each equation for g set the resulting equations equal to one another; and eliminate o.

Timeout Table Server
Muiticast Sender New
Timeout Table
- Calculate
Timeout Table New
‘ Timeouts
e 3
W ; Service f_z ;z
. HE = Time x
T ER ST Moments =5 ]
Moments =X

Figure 3.25. A timeout calculation server could compute a timeout table from the measured service time distribu-
tion.
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x2-2%(x, +x5) +2%,x,=0
x3(x1 +X9)— 312(112+X1X2+x22) + 6x12x22= 0

Notice that these are equations in x, + x, and x;°x,, for which we substitute y, and y, respec-
tively.

X2-2Xy,+2y,=0
1 -322 (32 —y;) +6y.2=0

We easily solve this pair of equations for y, and y,.

y =3i';i-—-x_3 y =-—;2-+25y1
' 6x2-322 2 2

Substituting backwards we find x;, x5, and &,

Y1=Vyi2=4y, i+ Vy-4y, go %2

Xo = =
2 2 2 X, - Xy

x = (3.32)

We can now derive hyperexponential parameters from the first three moments of the measured
UDP buffer service time’s variable portion. We tabulate the measured moments and calculated
hyperexponential models of several computers in Figure 3.26.

3.6.8. Predetermined Backoff and Slow Interfaces

We must extend the model that we have just constructed to model buffer overflows as suffered
when recipients employ predetermined backoff or when they employ uniform backoff but the sender’s
network interface is slow. It is possible to model these two problems similarly.

Let us first consider slow network interfaces. Our instrumentation of ucbernie and ucharpa indi-
cates that a 592 byte message spends 2.5 milliseconds buffered at the network interface before it is
completely transferred into memory. A 1392 byte message spends 5.0 milliseconds. When added to
the transmission time on a 10 Mby/s Ethemet, this gives 3.0 and 6.1 milliseconds respectively. These

Host Measured Moments Hyperexponential H 5
Name  Type || ElmS] xiAmS? x2[mS% | o xi(mS] xylmS)
ucbarpa VAX 785 224 78.2 8.43e3 973 1.29 375
uchemie VAX 785 6.53 282 2.91e4 .901 3.27 36.5
figaro Sun 3/50 1.08 310 4.26e3 993 0.75 459
monet VAX 750 2.68 206 3.02e4 958 0.62 49.1

Figure 3.26. Moments of the UDP buffer service time’s variable portion and hyperexponential model for 592 byte
responses. Contrast this figure with Figure 3.19.
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values are randomized by background traffic and the interrupt service latency. We see, therefore, that
the network interface acts like an M, /D /1/b system (see Figure 3.27). Without recipient backoff, the
interdeparture process of the network interface is roughly constant. With recipient backoff, the inter-
departure times are either constant, or constant plus an exponential. Competing network traffic and
background traffic addressed to the network interface randomize these interdeparture times.

With a few approximations, we can solve the problem analytically. Since the minimum interar-
rival spacing exceeds both the preemption time A and the constant portion of both G, and G, we can
eliminate both of these constants and the busy period calculation altogether. We can model the net-
work interface’s service time with an Erlang, determining its order from measurements. Its departure
process drives the exceptional first service server. In summary, we must solve a tandem queue system,
where the first queue has Poisson arrivals and Erlang service, and the second queue has hyperexponen-
tial, exceptional first and normal service, and is a system that we can solve exactly.

Predetermined backoff suffers fewer buffer overflows than uniform backoff (Figure 3.28). Asa
lower bound, we can ignore the variations in the responses’ interarrival times that we observed in Sec-
tion 3.4.2, and treat the interarrival time as constant. We can calculate the distribution of overflows by
making a discrete approximating to the buffer service time distribution, and proceed to solve the
D,/G/1/b system. Alternatively, we could try to model the responses’ interarrival time with an Erlang
distribution. The difficulty is calculating the variance of the arrival process from which we can calcu-
late the Erlang’s parameters. Recall that poor scheduling resolution adds variability to the recipients’

A —A-). We but leave this

response times. Recipient i’s response arrives at time it/n + uniform(— 23

problem unsolved.

3.7. The Dynasty Problem

Finding the common i.i.d. arrival time density of n recipients over an interval 0,  that minim-
izes buffer overflow of a b-buffer, exponential server is, we believe, an unsolved problem. We call
this the Dynasty Problem and begin this section by solving it for the special case of two recipients, one
buffer, and exponential service time. The solution is composed of a uniform density and a bimodal
density, and our studies suggest that the Dynasty problem’s solution has this shape for any number of
recipients and buffers. We conclude the section by summarizing our attempts to arrive at a general
solution.

L “Network Interface " . " Mulicast §c;d;:
| Recipicnts M.D /b, | t
| Roplics Lk.-‘ Pl |
jod ST ) P )
o i e~ ! — 1
! Y 0! W i
! Overflows | | Overflows |
L e e e e e == JEI U -

Figure 3.27. The VAX must copy the response from the network interface buffer across its slow bus into the
operating system. Buffer overflow is possible at both the network interface and at the socket buffer.



52

Number of Buffer Overflows _ Number of Buffer Overflows
5k‘\ —- 500 otdered
P bt LY
\ N - 1396 ordered

=

\_

1 j\ \ ‘\\ \
. N
\\ 1 \ s
X A\ N
T~ SRS
VO 306090120150180210%02703& "0204060501001201401230180200
(a) Backoff Time (b) Backoff Time

Figure 3.28. (a) Here we plot the number of UDP buffer overflows that ucbernie suffered. Ten recipients replied
with 592 byte responses. We allocated three UDP buffers. Notice that, even at zero backoff time, the number of
overflows does not reach seven. This is the result of the long time to copy messages from the Ethernet interface
into memory. Contrast the shape of this curve with the shape of figaro’s curve in Figure 3.22. The VAX must
copy responses from the Ethemet interface across a slow backplane. (b) When recipients order their responses,
the sender suffers fewer overflows. Here we plot the number of overflows suffered by a three buffer sender when
the ten recipients order their responses. Contrast with Figure 3.22.

Consider the two response, single buffer, exponentially distributed server with mean 1/u
Dynasty problem. Find the common i.i.d. response time density 2(y) on 0, 1 that minimizes buffer
overflow. Or equivalently, find 4 (y) that minimizes the probability that the first response is still in ser-
vice when the second arrives. For if it is, the second response overflows the buffer. We want to

11

minimize { 2 [ [ €~ h(y,) h(y1)dysdy; ¢ (3.33)
0y

where h( y) must satisfy

11
2 hyD hG)dyrdy,=1,

0y
and
h(y)=0, 0<y<I.

Although this appears solvable by the calculus of variations [69], the optimal distribution A(y )
does not have continuous first and second derivatives, a requirement for that technique. Instead, we
transform (3.33) into a discrete optimization problem. We subdivide 0, 1 into M identical subinter-

IFY |
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vals, and apply the method of Lagrange multipliers [8] to find the optimal, discrete distribution’.
Denote the number of overflows by L (p), where p is a vector composed of the probabilities p; .

M M M .
LP)=Y p*+23 3 pip;e “U-heM
i=1 i=l j=i+l
We introduce Lagrange multipliers to incorporate the constraint equations:
M
IpA)y=L(p)+A {( Xp)- 1]

i=1
v, I(pA)=0.
Vil =0.

We solve this system of M + 1 linear equations for the discrete solution p:
eW”
n(e*-1)+2’
ePM _ 1
M@E"M-1)+2°

br=pu=

P2= " =PMa =

Taking the limit as integer M becomes large and substituting (1+w/M ) for e, we find the
weight at the interval’s endpoints is conserved:
= = L
P1=Pum 12
and the probability density of the interior points remains uniform. The optimal i.i.d continuous density
function is

h(}’)= 5@)‘*'::'25(1-)’) ,

where 8(y) is the Dirac delta function. We call (3.34) the Dynasty distribution.

We see that A (y) is the superposition of a uniform distribution and two impulses, one at either
endpoint. As the mean service time 1/ decreases, the optimal distribution approaches the uniform
distribution. As the mean service time increases, the uniform portion disappears, and the optimal dis-
tribution approaches the bimodal distribution with equal weights of one half at 0 and 1, the interval’s
endpoints.

We carry out integral (3.33), substituting (3.34) for A(y), and find the expected number of
overflows:

(3.34)

2
24+
We plot the expected number of overflows for the optimal distribution (3.34), the uniform distri-
bution, and the bimodal distribution with probability one half at each end point in Figure 3.29.

7 Simons solves a different problem similarly [59].
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Figure 3.29. The Dynasty distribution minimizes overflows given two responses, one buffer, and exponential
buffer service times. We plot overflows versus the Dynasty, the uniform, and the bimodal response time distribu-
tions.

3.7.1. Approximate Solutions to the Dynasty Problem

The Dynasty distribution outperforms the uniform distribution when b>1, i.e., in multiple buffer
systems, but we have not proved it is the optimal distribution. The Dynasty problem is of theoretical
interest only; in practice, uniform backoff performs indistinguishably from Dynasty backoff.

We can try to solve the exponential service, multiple buffer Dynasty problem with Lagrange
multipliers as we did above, treating the discrete result as a piecewise linear approximation of the con-
tinuous solution. Unfortunately this generates a system of nonlinear equations which we must solve to
find the discrete solution. We investigated an iterative fixed point technique to approximate the solu-
tion to this system of nonlinear equations [20]. Unfortunately, the sufficient conditions for conver-
gence were not satisfied, and convergence was not guaranteed. In the future we hope to find a general
solution to the Dynasty problem, and extend it to the case where some buffers start non-empty.

3.8. Conclusions

When the sender of a multicast does not have enough buffer space for the responses that the
multicast generates, some of these responses may overflow the available buffer space and be lost. In
this chapter we propose a multiple round multicast algorithm (illustrated in Figure 3.2) that the sender
executes to collect all the replies as quickly as possible. The sender chooses a round’s timeout based
on the number of outstanding responses, its buffer service time distribution, and its criterion (3.24) that
the multicast completes by the last round. The criterion depends on the distribution of buffer
overflows (3.20), which, in turn, depends on the buffer service time distribution. The sender calculates
its table of timeout values, illustrated in Figure 3.14, from (3.26). The recipients, upon receiving a
multicast, execute one of the two backoff algorithms given in (3.22) and (3.23).

Buffer overflow can occur at the network interface or within the protocol processing stack of the
operating system and user program (see Figure 3.1). We illustrated the process of calculating the
buffer service time distribution within the operating system by measuring and modeling it (see Figure
3.19) for the UDP protocol implementation of several VAX and Sun computer systems (3.28). This
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distribution accounts for both the minimum and variable time to process a response because it is the
sum of a constant and an H, hyperexponential. It is also exceptional first service because first service
times are highly variable due to processor scheduling latency. Process scheduling latency is the princi-
pal contributor to buffer overflow in the operating system, just as the processor’s interrupt service
latency is the principal cause of interface layer overflow. We used this model to calculate the number

of responses that arrive during a service time. This is complicated by the fact that newly arriving -

responses preempt the processor, initiating their own busy period during which buffer service is
suspended. The result of this model are the transition probabilities (3.30) needed to calculate the distri-
bution of buffer overflows (3.20). Given the distribution of overflows, we can calculate a multiple
round timeout table for UDP multicast. The close agreement between our theoretical model and meas-
urements of UDP buffer overflow gives us confidence in our model (see Section 3.6.3).

We chose to model the highly variable part of UDP buffer service times with an H; hyperex-
ponential distribution. To do this, we derived the relationship (3.32) between the first three moments
of the measured service time distribution and the three parameters of the model H , distribution (3.31).

The distribution of buffer overflows is all that is necessary to calculate optimal timeout tables.
We demonstrated how to calculate this distribution (and expected number) for various single buffer
systems in Section 3.2 and for various multiple buffer systems Section 3.3. Single buffer systems yield
simple expressions, and solving these systems lead to the techniques used with multiple buffer sys-
tems.

Our results can help system designers to choose the number of buffers to dedicate to a sender,
and decide the cutoff point between hardware broadcast and successive unicast transmissions. They
place selection of the retransmission timeout on firm mathematical ground.

In Chapter 6 we propose extending this work to study overflow at network gateways and LAN
bridges caused by internet multicast [22].

The reader will have noticed the similarity of this problem to the invalidation storm problem
presented in Chapter 2. A cache invalidation corresponds to the transmission of a multicast. The vari-
ous processors attempting to acquire the spin-lock correspond to the multicast’s recipients. In both
cases these agents employ backoff to reduce computational overhead. We were better able to tune the
multicast’s backoff intervals because we knew, a priori, the number of multicast recipients. This leads
us to propose two alternate ways to implement spin-lock backoff. We could track the number of spin-
ning processors, and have them employ fixed backoff from a table, or have them order their lock
requests in the order in which they executed acquire_lock. These strategies both require a secondary
spin-lock, and should probably be reserved for highly loaded locks.



CHAPTER 4
SELECTING NETWORK GRADE OF SERVICE

We predict an explosion in the number of public utilities that sell virtual circuit digital network
service (e.g., Telenet and Tymnet). When this happens, we will routinely make requests to servers
across town and across the nation, paying for the messages that we send. Out of real time require-
ments borne by video and audio data, these networks will offer a spectrum of service grades from
which to choose, permitting us to request specific bandwidths, loss rates and distributions of delay.
We envision that nonreal-time traffic will absorb the residual bandwidth of virtual circuits established
for real-time video and audio traffic, and that this residual bandwidth will be priced inexpensively
because its service quality is relegated behind the service quality of higher tariff traffic. In this chapter
we suggest that applications simultaneously tune their communication protocols and select their net-
work service grade to minimize a cost function that they define. We illustrate this process by develop-
ing an algorithm to select remote procedure call (RPC) retransmission timeouts for lossy, tariff-bearing
networks.

4.1. Introduction

In the near future, public utility operated networks will offer a spectrum of service grades and
will charge us according to the number — and grade of service — of the messages we send [33, 391.
In this chapter we investigate the relationship between tariffs, service grades, and communication pro-
tocol parameters. We consider how to simultaneously select protocol parameters and network service
grade to minimize a cost function that we define. We illustrate this method by developing an expres-
sion for remote procedure call (RPC) retransmission timeouts for use over lossy, wide area, tariff-
bearing networks.

4.1.1. Remote Procedure Call Timeouts

Consider an RPC between a requestor site and a server site. Since the network or the server
may lose the request, and the network or the requestor may lose the reply, both the requestor and the
server must be prepared to retransmit their respective messages. Most RPC implementations are
designed for LAN environments and implicitly assume that message loss occurs at the server, rather
than in the network. This assumption no longer holds: traffic in extended local area networks
overflows bridge buffers; internetwork gateways drop packets due to congestion caused by stream pro-
tocols; satellite links lose messages due to noise; and, motivated by lower tariffs, we may purposely
specify lossy grades of service.

Let us review how the Birrel-Nelson RPC protocol selects retransmission timeouts {12]. The
Birrel-Nelson protocol sets the initial RPC retransmit timeout to exceed the expected value of the sum
of the network’s round trip message delay and the RPC server’s service time, and doubles it after each
retransmission (to a maximum of five minutes). Except for the initial transmission, the server ack-
nowledges each subsequent retransmission to inform the requestor that it has not failed. It sends the
results to the requestor as soon as they are computed. The server keeps a copy of the RPC’s results in
case the reply message is lost. These copies are eventually garbage collected and discarded.

Except for the way retransmission times are calculated, we employ the Birrel-Nelson protocol
(see Figure 4.1). On lossy networks, doubling the retransmission timeout after each retransmission can
work poorly because, as it may require many transmissions to successfully deliver a message, decreas-
ing the frequency of retransmission can significantly raise the expected round trip service ume. We
modify the server so that its acknowledgements return an estimate of the RPC request’s remaining ser-
vice time. The requestor employs the server’s new estimate of the remaining service time, x, when

56
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Figure 4.1. Our RPC algorithm’s behavior.

calculating the next retransmission timeout. For backwards compatibility, if the server does not return
this estimate with its acknowledgements, then the requestor defaults to doubling the remaining service
time estimate after each retransmission.

4.1.2. Model of the Network and Server

We denote the bidirectional probability that the network loses a message by p, and assume that
message losses are independent. For convenience, we define ¢ =1-p. We denote the operating
system’s cost of sending a message by K, and the cost of receiving a message by X, , e.g., if a message
is sent and delivered the total cost is K; + K,. We denote the network’s mean transmission delay by y,
and assume that requests and responses experience the same delay. Regardless of whether or not a
message is delivered, the network charges tariff M (y, p) to send it. We denote the retransmission
timeout before receiving the first acknowledgement by 7,,,, the retransmission timeout after receiving
the first acknowledgement by 7", , the server’s service time probability density function by f (x), and
the server’s expected service time by x.

4.1.3. RPC Cost Function

One can gain fundamental insight into the requirements of an application by defining its cost
function. Here we describe our RPC cost function. It is the weighted sum of the expected round trip
service time or latency, the expected transmission and reception costs as borne by the requestor’s and
server’s operating systems, and the charges that the network imposes for transmitting messages. We
denote the latency by 7, the expected number of message sent by 7, the expected number of messages
received by #,, and the cost function by L.
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L=a-T+b- K, n,+K, n)+c -M(y.,p) n,. 4.1

Notice that the weights a, b, and ¢ scale each component of this sum into some common unit of
cost, say dollars. With this definition, a and b depend on the rate at which we value our time. Since
we can express K,, K,, M (y,p), and 7 in the same units, without loss of generality we set a=b=c=1.

4.1.4. Outline of the Chapter

In Section 4.2 we calculate optimal timeouts for tariff-free, local area networks. In Section 4.3
we extend this to calculation to wide area networks. In Section 4.4 we construct an algorithm to select
optimal network service grade and protocol retransmission timeout simultaneously. We illustrate this
with a network with selectable loss and delay parameters. Assuming that slow messages cost less than
fast messages and less reliable messages cost less than more reliable messages, we simultaneously
minimize the RPC cost function over the retransmission timeout, network transmission delay, and net-
work loss parameter. In Section 4.5 we discuss stability and how to incorporate our results into distri-
buted systems, and we draw conclusions in Section 4.6.

4.2. LAN Retransmission Timeouts

In this section we calculate the RPC cost function for a local area network (zero network delay).
We develop it piecewise. Since we assume that transmissions are delivered with probability ¢ (and
lost with probability p) and that network losses are independent, the distribution of the number of
times the requestor must retransmit its RPC before the server receives it is geometricly distributed.
Each lost retransmission increases the retransmission costs by K, and the RPC’s latency by 7 (the
period between retransmissions). The initial request costs K,. When the server eventually receives the
request, it experiences cost K,. Together, this contributes

o i T
K +DXipiq + K +K)=L+a+ L)k +k, @2)
j=0 q9 q
The server’s first result transmission costs K, and the requestor receives it with probability q.
This contributes

K, + gk, 4.3)

In the case that the server’s results are delivered successfully on the first transmission, the
expected latency is simplr the RPC’s expected service time, x. If the service time is ¢, then the

requestor retransmits | ¢/t| times. The server, with probability ¢, receives a retransmission and gen-

erates an acknowledgeme'r‘lt at cost q(K, +K,), which, with probability ¢, reaches the sender at cost
q°K, . Together, this contributes

qff(z)[w f} (K,+q(K,+K,)+q2K,)] d=gf (14K, +ak) 1+ (44)
0

The server’s first result transmission is lost with probability g. The number of retransmissions
send through time ¢, when the result transmission is sent and lost, is it/r . This contributes

D jf(t)l%J {1:4-KJ +q(K, +K,)+q2K,] dt = px [1+(Kx +4kK,) (1+q)/1:] 4.5)
0

We now need to calculate the expected latency and retransmission costs that accrue between the
the time that the result transmission is lost and the time that the requestor’s retransmission and the
server’s reply are both successfully delivered (which occurs with probability q?). The requestor must
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retransmit until it receives the server's reply. Each retransmission contributes latency T and cost
K, + q(K, +K,) + ¢°K,. This contributes

pEi(k+a® +K)+ K+ -V o[+ + ] B g

j=1
Putting together (4.2), (4.3), (4.4), (4.5) and (4.6), the local area network cost function L is
L ~{x +‘c(L+£)} +K, {2+ (1 +1q)x (1+;1)p} + 4.7
q

K, (l+q){ -qtz }

We minimize this quantity by setting dL /ot to zero and solving for t. This value of 1 is our
optimal retransmission timeout T, :

x (K; +4qK,)
g L @)

After receiving the server’s acknowledgement that it has received the request and is computing,
we know that the can drop the component of the cost function that accounts for the cost to reliably
send the request to the server (4.2). We employ the server’s estimate of the remaining service time, x,.,
transmitted with its acknowledgement. Our post-acknowledgement optimal timeout T, is

1+ g)x, (K, +49K,)
1-¢ ’

4.9)

v opt =4
This concludes our section on LAN retransmission tirneouts.

4.3, WAN Retransmission Timeouts

We are now ready to account for the network transmission delay of wide area networks. We
assume cach message experiences constant message transmission delay y. To derive the optimal
timeout 7, , we proceed piecewise as we did above.

We calculate the expected latency 7 first. Just as in the LAN case (4.2), it may require numerous
retransmissions to successfully pass the request to the RPC server. This requires, on average, p/q
retransmissions, contributing p t/¢ to the RPC latency (and pK/q to the retransmission costs). When
the server’s result is not lost, the RPC’s expected latency is the sum of the expected time to inform the
server, the round trip network delay, and the expected service time. This contributes

q(tplq +2y +X). (4.10)

When the server’s result transmission is lost, the RPC’s expected latency is t/q? (4.6) greater
than the expected arrival time of the acknowledgement just prior to the lost result transmission, contri-
buting

p(tplg +1 _ff(t) 215—'—“ dt +1ig¥)=p(plq + 2y + X +1g>). 4.11)
0

The retransmission costs are the sum of the minimum transmission costs 2K, + (1 =q) K, (see
(4.2) and (4.3)), the expected initial transmission cost K;p/q, the retransmissions sent through the
moment the server’s response should arrive, and, in the case that this reply is lost, the expected number
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of retransmissions needed to collect the server’s response (see (4.6)):

2K, +(1+q) K, + pIq)K, + (K, +q (K, +K,) +¢K,) Jf(t)[2y+tJdt+% 4.12)
q

y+x 2y +%
=K@ +plg + HETE+ BN+ K (4 ) g G+ 5.
We collect (4.10), (4.11) and (4.12) to express the WAN RPC cost function:

= 21(1+-l-)+2y +x| +K,
q q

24 plg + (I+q)( X :f + ;’%)] + 4.13)

(1+q)(1+q(2y” —q%»].

In (4.13), the first parenthesized component corresponds to 7, the second to n,, and the third to
77 (see (4.1)). We set the L /ar to zero, replace p by 1 — ¢, and solve for the optimum timeout T:

2y +x)(K + gk, )
Tope = q’\/ — 4.14)

After receiving our first acknowledgement, we drop the component of the cost function that
corresponds to reliably transmitting the request to the server and recalculate the post-
acknowledgement optimal retransmission timeout T, :

(1+4) (2y + X)X, +4K,) (4.15)
1-¢ '

v

opt =4

In Figure 4.2 (a) and (b) we plot the cost function and its standard deviation for several sets of
parameters and service time distributions. Note that the standard deviation o, calculated by simulation,
grows when the timeout exceeds T,,,. In Figure 4.2 (c) we plot the exact cost function L for uniform,
exponential, and constant service time distributions, as evaluated numerically without ignoring the
floor operators within the integrals. We indicate 1,,, as calculated from (4.14). We see that having
ignored the floors within integrals (4.11) and (4.12) negligibly affects t,,,.

4.4. Selectable Grade of Service and Retransmission Timeouts

In this section we investigate how to simultaneously select network service grade and the
retransmission timeout. We assume that the network charges us for each message we send, charges
more for service grades with decreased transmission delay and lower loss probability, and lets us
specify our desired service grade parameters [5]. We assume the network lets us specify the mean
transmission delay y, y =yq, and loss probability p, p 2 po, and charges us a per message cost
M(y,p) =0, differentiable and decreasing in both y and p, where y, and p, are the minimum net-
work delay and probability of message loss. Our retransmission timeouts depend on the service grade,
because, for example, if we specify lossy service to reduce our per message costs, T,, decreases
4.13).

We now derive the optimal retransmission timeout T,, and service grade (Y, Pop ) that
minimize our RPC cost function subject to the constraints T>0, y 2y, and p 2 p,. Assume again
that M(y,p), K,, K,, and T are expressed in identical units. We form the cost function L (4.1) from
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Total Cost + Latency

= y=cons (100)

Total Cost + Latency
¢=8,K=5,7=15,y =10
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Figure 4.2. In these three figures, we plot the RPC cost function versus the retransmission timeout. We set
K, =K, =K. Contrasting graphs (a) and (b), notice that the cost function’s standard deviation, as calculated by
simulation, increases with decreasing loss rate. (a) The cost functions’ standard deviations are indistinguishable
despite the order of magnitude difference in the network transmission time. (b) The cost function's standard devia-
tion is relatively insensitive to the network transmission delay distribution. (c) We plot the exact cost function for
exponential, constant, and uniform service time distributions. The curves are nearly indistinguishable, indicating
that ignoring the floor operators in the integrals negligibly affects the cost function.

T, n,,and n, as identified in the paragraph following (4.13), and must minimize itover T, y, and p.

Since we have assumed that M ( y, p) is differentiable, we can apply the Kuhn-Tucker algorithm
(8] to find the service grade ( Y,pr, Pope) and retransmission time T,, that minimize the cost function
(note that the cost function’s Hessian must be positive definite [8]). We make concrete by considering
a possible message cost function:

a
M(}’,P)=—-
y

We must introduce constraint equation g, and its their corresponding Lagrange multiplier A, .
The Kuhn-Tucker conditions reduce to

8 =¥ =Y020,
i[ } -
= |4 =0

3

SLEm0) -0

A g =0,

where120,andy 20.

Since p is given, the optimal pair (T, Y,p) is the solution to the unconstrained problem except
for when this solution violates the constraint y,,; 2 yo. In this case y,, = yo and T,,, 1s given by (4.14)
and 17, by (4.15), substituting M ( yo, p) + K, for K.
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In Figure 4.3 we plot the optimal timeout and transmission delay as a function of the propor-
tionality constant a. We see that as operating system retransmission costs increase, the retransmission
timeout increases and we request a lower delay, higher tariff network grade of service.

4.5. Stability

Our timeout calculation is easily implemented, but it requires that we cache estimates of servers’
service time and network loss probabilities and round trip delays. We can update the cached estimates
upon completing an RPC, so that the estimates for frequently used sites should be good. We guarantee
stability by having the server return an estimate of the expected completion time with each ack-
nowledgment. For example, if our request is enqueued pending the outcome of four other requests, the
server acknowledges with an expected service time of x = 5 X, where X denotes the expected service
time of a single request. The complication to the server, which needs to perform queue look-ahead, is
balanced by the increased stability.

4.6. Conclusions

RPC developed as a local area network protocol and employed either large, constant retransmis-
sion timeouts or exponentially increasing timeouts values because they assumed that network losses
were rare. Although exponential backoff is adaptive, it may not adapt correctly, and requires that sys-
tem programmers exhibit excellent intuition. For example, Sun Microsystem’s NFS file system suf-
fered from premature timeouts because, although they employed Birrel-Nelson style retransmission
timeouts, the initial timeout value was chosen too small [38]. Although billed as an adaptive backoff
algorithm, it did not adapt the base of the retransmission timeout. Real systems should estimate the
network’s round trip time, server’s service time, and network’s loss probability and employ these esti-
mates to calculate truly adaptive timeouts. Our expressions for the optimal retransmission timeout
(4.14) and (4.15) behave correctly as the network loss rate increases.

Our retransmission timeout grows for two reasons. It grows after we receive the server’s first
acknowledgment because we know that the server is computing, and it grows as our estimates of the
remaining service time grows. Our timeouts shrink as our estimate of the probability of message loss

100y Optimal 5, and y,,

809

604
¢=8,K=45, x=15

——¢=8,K=5,x=15
—— 9=5,K=75, x=45

Yope

200 400 600 800 1000
Constant of proportionality O

Figure 43. Retransmission timeout T, and transmission delay y,» are functions of the transmission delay cost
function M (y,p)=a/y. Wehaveset K, =K, =K.
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increases. The effect of these three factors is that our timeout grows less quickly than Birrel-Nelson’s
timeout but quickly enough to remain stable despite server congestion, and to minimize excess compu-
tational overhead. The RPC cost function explicitly considers the load on the server that retransmis-
sions generate. Our timeout selection can be made backwards compatible with existing RPC imple-
mentations.

We believe our RPC cost function reflects the tradeoffs that protocol designers make, but the

optimal retransmission timeout that we calculate is only as good, of course, as the estimates that drive
it. Reasonable values for K, and K, must be measured (on Sun 3/50 UNIX systems, this number is 2-5
milliseconds). Implementation should measure and cache the average service time X, network loss
probability p and round trip delay 2y.

With selectable service grade networks we will have to select both the RPC retransmission times
and the network service grade parameters, €.g., transmission delay and loss probability. We solve this
problem by adding the cost per transmitted message into the RPC cost function and then minimizing
the cost function over the timeout and selectable parameters.

Implicitly, we have assumed that RPCs are not the cause of network congestion and that mes-
sage losses are independent of each other. Since our algorithm decreases the retransmission timeout
when the loss probability p increases, we may add to network congestion. We believe this is reason-
able since applications that employ RPC do not exchange large quantities of data, as do, for example,
file transfer protocols. Tariffs will reduce the incentive to be greedy and cause congestion. An area
for future research is understand the relationship between tariffs and congestion.

Our approach can be applied, for example, to rate-based bulk-data transfer protocols and to
other request-reply protocols. In Chapter 6 we propose additional work along these lines.



CHAPTER 5

High Resolution Timing with Slowly Ticking Clocks

When tuning operating system and network code, profiling programs, analyzing message interar--
rival times, and accurately measuring device characteristics, a high resolution clock is often indispens-
able, as one cannot measure service time distributions without one. This chapter describes a

microsecond clock that we designed and built for Sun 3 and Sun 4 workstations!. One can measure
average service times without a high resolution clock. This chapter explains how to measure average
times with high precision in the absence of such a clock. We pose and answer the question: “‘how
many measurements are needed to report timing data to three significant digits?"’

5.1. Introduction - Who Needs a Microsecond Clock

Beginning with its Sun 3 workstations, Sun Microsystems substituted an Intersil, battery backed
up, time-of-day clock chip for the microsecond resolution clock chip present in their earlier models.
The new clock interrupts the processor every ten milliseconds. By default, the Sun operating system
discards every other interrupt, degrading the clock resolution from ten to twenty milliseconds. Sun
kept an 1.C. socket for a data encryption chip (DES), but chose to leave it empty as well as sockets for
up to three machine-specific chips that are necessary to activate the DES socket. As we had no use for
the DES chip, we designed a high resolution clock circuit board that plugs directly into the DES chip’s
socket. To install the board, one only needs to insert it into the DES chip’s socket and any machine-
specific support chips into their respective sockets? and to add a device driver to the operating system.
In October 1989, we had three dozen of these clocks in use at U.C. Berkeley and other universities
and laboratories.

In the next section we describe our clock’s design. In Section 3 we derive the number of meas-
urements needed to accurately report average timing data as a function of the clock’s resolution. We
show that without a microsecond clock, it may require several hours or days to report average timing
data to three significant digits. We draw conclusions in Section 4.

5.2. Our Design

In this section we describe our clock’s design. Because Sun guards its workstation’s schematics,
we designed our clock to meet the timing requirements and eight-bit interface of the Advanced Micro
Devices (AMD) Am9518 DES chip (also known as the Zilog Z8068). We built the clock around
AMD’s Am9513a counter chip because its five 16-bit counters can be atomically saved with a single
instruction yet read over an eight-bit bus. While other counter chips have multiple sixteen-bit timers,
the Am9513a is the only chip that can save more than one timer with a single instruction. Although
the timer and DES chips carry similar designations, their pin assignments, interface protocol, and tim-
ing needs are quite different.

Both chips have a data port and a control port which can be written or read. The DES chip
selects the appropriate port with separate data-strobe and control-strobe pins. The timer chip’s single
strobe serves for both ports; its data/control pin selects between the two ports. The DES chip has a sin-
gle read/write pin; the timer chip has separate read and write pins. We placed a programmable logic

! Contact us to obtain the schematic diagram, SunOS device driver, or completed timer boards. Note that we cannot sup-
port Sun 3/80, 386i, or Sparc Stations, but Sparc Stations have an intemal microsecond timer.

2 Here we list the missing, machine-specific chips: Sun 3/75, 3/140, 3/150, 3/160 systems require a 74ALS245 octal-buffer
and a PAL22V10. Sun 3/260 and 3/280 systems require a 74ALS245, 2 PAL16R4, and a PAL16R8. Sun 4/110, 4/150, 4/260,
4/280 systems require a PAL22V10. Sun 3/50 and 3/60 systems need no additional support chips.
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array (PAL) on our timer board that converts the DES chip’s control signals into the timer chip’s con-
trol signals. One cannot meet the timer chip’s data/control pin’s setup and hold requirements given the
DES chip’s published timing specifications. As we could neither modify the Sun’s hardware nor
firmware, yet wanted the board to work in all Sun 3 and Sun 4 processors, we chose a solution that
adds a few instructions to the sequence of instructions necessary to read the timer. We drive the
timer’s data/control pin from a set-reset flipflop built from two of the PAL’s gates. The data port is’
selected when this flipfiop is set and the control port when it is reset. We precede accesses to both
ports by appropriately setting or resetting this flipflop from the DES chip’s data strobe and read/write
signal.

The timer board’s device driver sets the timer chip’s fifth timer to divide the 4.0 megahertz
oscillator frequency by four, concatenates the timer chip’s lower four timers, and drives the lowest of
these with the output of the fifth imer. The board can return a simple binary count or a 64-bit UNIX
timeval structure. The timeval mode is useful for compatibility with the UNIX system call gettimeof-
day(). The clock appears as device /dev/tmr0 and can be read through the file system or through a sys-
tem call. It can also be mapped into the user’s address space, giving user programs quick access to the
timer’s registers and the microsecond time.

In Figure 5.1 we report the overhead associated with reading 32-bit timestamps and 64-bit
timevals. Note that a 3/50’s display steals cycles from main memory, as it does not have a separate
frame buffer. Hence we give two sets of overhead figures for it, one for when the display is blanked
and another for when it is active. When the display is active, the machine slows down by more than
twenty percent. The overhead varies a few microseconds from read to read due to the speed of the
memory and memory contention. Infrequently, when reading the clock from a user process, the pro-
cess may be descheduled within the instrumented code, resulting in large times. This is, unfortunately,
unavoidable, but easily detectable; any clock would suffer the same inconvenience. Interrupts can also
increase the measured time. Since user programs cannot disable interrupts they cannot read the clock
atomically when it is mapped into the user’s address space, and it may return nonsensical values if
other user processes or the operating system also read the clock. (User programs can always read the
clock atomically through the system call). This occurs because the competing process may read the
timer, which resets the timer chip’s internal pointer. The original process, when it resumes, will con-
tinue reading bytes from where it left off, unaware that these are not the bytes that it wants.

5.3. Profiling Code with a Low Resolution Clock

Perusing the operating system’s literature, we often see tables of performance measurements
collected on computers with poor clock resolution [9, 15,40,51]. The highest possible resolution of an

Timestamp Type 3/50 | 3/50Blanked | 3/60 | 37260
Kemel 32-bit 24.0 19.5 165 | 1L
Kemel 64-bit timeval 382 102 7. | 18
User 32-bit 14.0 113 1| 7
User 64-bit timeval 2710 23.5 21 | 13
System call 32-bit 238. 179. 140. | 87.
System call 64-bit timeval | 254, 190. 162 | 9L

Figure 5.1. Measured overhead in microseconds to read the high resolution clock (we do not state the precision
and degree of confidence of the measured overhead because overhead is machine dependent).
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IBM PC/RT is 125 microseconds; the clock resolution of microVAX-II workstations is 20 mil-
liseconds, and, as we have mentioned, the highest possible resolution of Sun 3 and Sun 4 workstations
is 10 milliseconds. Often practitioners report times as short as 10-300 microseconds to three decimal
places based upon the average of a few dozen to a million iterations through the code. Instrumenting
code and making measurements can be quite time consuming. For example, measurements of network
code are usually repeated for several sizes of messages, and measurements of transaction systems are
usually repeated for various numbers of participants. Let us consider the process by which we collect
measurements and then pose the following question. How many iterations suffice to report our meas-
urements to two or three significant digits given our hardware clock advances every A milliseconds?

We profile code by recording the difference in the clock’s values upon entering and exiting each
instrumented code segment. For example, these segments could correspond to the various layers of a
communication protocol stack. Since the clock time only advances every A milliseconds, it may not
advance between entering and exiting a code segment of duration less than A milliseconds. Without
loss of generality, assume that we want to measure a code segment of duration 8 < A milliseconds.
First we must assure ourselves that the measurements are not initiated by (or otherwise synchronous
to) clock ticks. During a code segment of duration § the clock advances with probability p = 8/A. If
the clock advances we record a one; if not, we record a zero. We define the event o; to be one if the
clock advances during iteration i and zero otherwise. After n iterations the clock advances S, ticks:

"
S,, = 2 c" .
i=1
After n iterations, the average time through this code segment is

S, A
S=pA="2—,
p n

and, in our research papers, usually report this value to two or three decimal places.

Let us consider the precision of measurements made in this manner. Notice that the G;’s
approximate the two possible outcomes of a sequence of Bernoulli trials [28]. We say approximate
because the outcomes of subsequent trials may not be totally independent. That is, if we know that the
clock advanced during the last measurement, this may increase the probability that the clock does not
advance during this measurement. Assuming independence, we want to know how many iterations are
required to report these times to two or three significant digits. Since our measurements result from
randomized experiments, we can only make probabilistic statements about their precision. Conceiv-
ably, but with low probability, we may never observe a single clock tick. Let 8 =p A be the true inter-
val length and & be our estimate of it based upon n observations. We would like to report our experi-
mental data as

P[—ES(S—S)Se} >a. (5.1)

That is, with probability o or greater our measurement is within € of the true value. We can apply the
DeMoivre-Laplace limit theorem to find the minimum number of iterations required to make such a
statement. The DeMoivre-Laplace theorem states

P{ zVnpq <S, - np < szinq} (5.2)

- D(z5) - D(zy),

where ¢ =1—-p and ®(x) is the normal distribution function. We will need the following identity
concerning P(x):
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O(-x)=1-Dx). (5.3)

We can combine (5.1), (5.2), and (5.3) into a single expression:

—&n £n
<S, - — 20(z)— 1.
P{ A S,—np < A}-—-) (z2e)

Equating en/A with z,Vnpq , we arrive at an expression for n:
2,2
24 A
n=2e"2 (5.4)
£
for which we must evaluate z,:
20z )~ 1=0a. 5.5)

For the remainder of this chapter, we use an arbitrary confidence level of o =0.95. We invert
(5.5) from tables of the normal distribution:

2.5 = 71(0.975)=1.96.

Below we summarize the number of iterations n, and n, required to report times to two and
three decimal places such that the least significant digit is within one unit of the true value with proba-
bility o = 0.95.

Consider the problem of instrumenting a UDP/IP protocol stack implementation. Conceivably
each iteration could take about 10 milliseconds. In Figure 5.2 we see that measuring to three
significant digits a code segment of about a millisecond duration requires about 7-10° iterations. At 10
milliseconds per iteration, we will need to run this experiment for about two hours. If some profiled
section of this code is on the order of a hundred microseconds, then the experiment could have to run
for an entire day!

5.4. Conclusions

Reporting performance data to two or three significant digits with high confidence may require
many iterations, depending upon the clock resolution. When we report performance numbers of inter-
vals shorter than our clock’s resolution, we should perform enough iterations to achieve a high
confidence level for the number of significant digits that we report (see (5.4)). Without a high resolu-
tion clock, this may require many hours of measurements.

When it is necessary to measure a distribution rather than an average, a microsecond resolution
clock may be essential. The microsecond resolution clock described in this paper will work in all Sun

5 na ny
1-10! pSec | 8107 | 810°
1-10¢uSec | 810% | 8104
1-10° pSec | 7-10° | 71¢°
1-10* uSec | 4:10* | 4102

Figure 5.2. Required number of iterations to measure code segments of duration 6 to three and two significant di-
gits given a clock with A = 20 millisecond resolution to a confidence level of & = 0.95.
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workstations equipped with the DES socket. A rudimentary device driver for the clock can be written
in three pages. Finally, we note that it is possible to build a clock like ours in place of non-essential
chips in other computers.



CHAPTER 6

PROPOSALS FOR FUTURE WORK

This chapter outlines two independent problems that we did not pursue in this dissertation, but
does not purport to offer their solutions. It can be read independently of the preceding chapters, and is
intended to serve as the basis for research proposals on flow control for internetwork multicast and
flow control for gigabit networks.

6.1. Internet Multicast

Researchers believe that the Internet should support multicast [44], and internetwork multicast
has been an active research topic this decade [13,22,66]. The greater part of this research has dealt
with multicast flooding algorithms and maintaining multicast group membership; therefore we assume
that solutions to these problems have been implemented [23]. While flow control algorithms exist for
communication streams, no flow control algorithm exists that the recipients of an internetwork multi-
cast can employ. Our goal is to design a such an algorithm.

6.1.1. Flow Control for Internetwork Multicast

Internetwork multicast’s principal users are distributed query and transaction systems, muld-
media teleconferencing, and network management. The literature differentiates open groups from
closed groups by whether or not non-group members can send multicasts to the group [44]. Without
loss of generality we limit our attention to closed groups, as non-members can always post multicasts
through a group member. Deering’s work [23] applies to unreliable, Internet Protocol (IP) multicast,
useful for resource location. In contrast, we are interested in reliable multicast, useful for text and
graphic transmission and distributed transaction systems. Reliability means that each group member
must acknowledge receipt.

One problem with intemetwork multicast is that it may initiate an implosion of replies that cong-
est the network. We say implosion rather than explosion because the replies are all sent to the
multicast’s sender. In contrast to the sender of a reliable stream that can reduce its window-size upon
detecting network congestion, the sender of an internetwork multicast can do nothing, and the reci-
pients’ replies may consume an enormous number of network buffers.

Active agents can summarize recipients’ responses if these consist of an acknowledgement bit
and little or no data. On one hand, active agents cannot summarize lengthy, unique responses. On the
other hand, since acknowledgements consume negligible buffer space, combining them may be neither
necessary nor efficient. Our flow control algorithm should employ active agents only where appropri-
ate.

6.1.2. Resource Reservations and Network Model

We must have a model of the network if we are to make quantitative statements about it. A con-
trol theory approach must adapt to our notion, which may be out of date, of the network’s state.
Instead of pursuing such an approach, we plan to pursue a resource reservation approach, because, if
multicasts are infrequent, a control system approach would have a poor knowledge of the network’s
state. If multicasts are periodic, then resource reservations permit better management of limited net-
work resources. Therefore we model an internetwork as a tree of limited-buffer gateways and nodes
whose leafs are recipients and whose internal nodes are gateways (see Figure 6.1). We assume that
gateway i agrees to provide j buffers with probability b;;, and to service these buffers with service
distribution G; (t). We know the delay 7; through the link to its parent. We assume that stations on a
LAN communicate instantaneously, and that we know the interarrival time distribution A (¢) between
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multicasts!.

6.1.3. An Internetwork Flow Control Algorithm

Let us generalize the multiple round LAN multicast algorithm developed in Chapter 3. Our
problem is to minimize the latency T to inform and collect responses from every recipient while meet-
ing some termination constraint ¢. We assign to each local area network i a backoff time x;, inserted
into the message header by the multicast router [23], over which the recipients schedule their
responses. Once sent, a response travels to its destination agent.

We must solve a nonlinear optimization problem with an equality constraint. We want to
minimize the multicast latency t(x) while meeting constraint ¢(x), where x is a vector composed of
each LAN’s backoff times. Unfortunately, it is not possible to find analytical expressions for ¢ and 7.
Wong and Gopal [36] needed several approximations to bound the latency of a broadcast to a tree of
nodes with infinite buffers.

We intend to estimate t and ¢ via simulation, and to assign x via a gradient optimization tech-
nique. Since simulation introduces noise into these functions’ estimates, the gradient technique will
need to be highly immune to noise.

6.1.4. Research Questions

We must answer several questions concerning congestion and resource reservations. For exam-
ple, does network congestion affect more than one gateway? Should we measure joint gateway arrival
time, service time, and queue length distributions to investigate their dependence? Should we employ
an adaptive backoff algorithm that does not employ reservations?

Server and arrival rate variability cause queue lengths to grow. From the data that we collected
in Chapter 3, we know that protocol service time distributions can be more variable than exponential,
and are preemptive. This preemptive nature increases the probability of buffer overflow. We propose
to measure the gateway interarrival process, queue length, and service time distributions at a set of

xv m-v 5(5(5&)

o 5068855588
bé)é)é RS RE s Gateway
BE pugper

Figure 6.1. An internetwork viewed as a tree of destinations and gateways.

1A token based synchronization scheme can limit the number of concurrent multicasts.
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gateways across a campus or regional network, synchronizing clocks from WWYV radio signals. Such
a set of joint distributions has not been published (hence very probably not collected) for the DARPA
Internet or for a campus network.

6.2. Gigabit Networks

The backbone of future networks will consist of gigabit per second (Gb/s) links, limited only by

the speed of electrical-optical interfaces [2] and the rate at which switches can forward packets.
Round trip transmission delays in North America will be under sixty milliseconds, and wavelength
division multiplexing leads us to anticipate essentially unbounded backbone bandwidth. Laboratory
researchers have placed over twenty different gigabit channels on a single optical fiber, and expect this
number will reach into the hundreds [34]. The backbone will be demultiplexed onto regional and local
area networks operating in the tens to hundreds of Mb/s [53]. To exploit these high bandwidths and
moderate delays in future internetworks, researchers must address several issues in switching, routing,
flow control, network management, and security [44]. While we can predict infinitesimal bit-error
rates and unlimited bandwidth within the network’s backbone, it will be many years before this tech-
nology reaches the regional and local area networks (see Figure 6.2).

6.2.1. Virtual Circuit Networks

Video and audio transmission require, on one hand, that the network statistically bound its delay,
delay jitter, and loss rate, properties of circuit switched networks. Efficiency requires, on the other
hand, that these circuits be statistically multiplexed. Statistically multiplexed, packet switched net-
works have been dubbed virtual circuit networks. Gigabit rates may force a shift to virtual circuit net-
works to make routing quicker and probabilistic performance guarantees possible?. These network’s
bandwidth-delay product is huge; a three thousand mile link requires a ten megabyte buffer. We plan
to investigate the combined performance of rate-based flow control [19] and statistical multiplexing to
share virtual circuit buffers. Since future network traffic will combine audio, video, text, and graphics,
each of which require different bounds on delay, jitter, and loss rate, a conversation’s component
traffic may travel different routes. We must design rapid, efficient connection establishment algo-
rithms to create routes and reserve network bandwidth. This requires that we characterize the various
traffic types’ service grades and arrival processes [29, 33], but how can we characterize what does not

I 1 Gb/s
LAN 10 Muvs 100 Mbs ? 10 Mivs LAN

Ganwry Gatoway
10 Mb/s ( ) 1 Glvs
Gatcway

Figure 6.2. Although the long-haul portion of the network operates at gigabit rates, the regional and local net-
works will not.

2We should note that a virtual circuit architecture does not exclude connectionless traffic.
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yet exist?

We must build multimedia prototype systems to begin characterizing the network’s traffic, and
experiment with communication software architectures and multimedia user interfaces. We hope to
build a common, multimedia platform cooperatively with our colleagues at other research institutions,
on top of which we will build tools for scientific visualization, cooperative problem solving, and very
large database query processing.

On the analytical front, we plan to investigate routing and channel establishment algorithms that
efficiently meet the requirements of gigabit networks. The channel establishment algorithm must route
a channel’s various text, graphic, video, and audio portions, and offer a discrete or continuous spec-
trum of service grades to meet the traffics’ requirements efficiently. While telephony employs statisti-
cal multiplexing because telephone channels have been precisely characterized, and permissible
telephonic loss rates are sufficiently high to yield efficient channel utilization, we do not yet know
enough about multimedia interfaces to characterize the traffic’s properties.

6.3. Conclusions

Flow control for internetwork multicast is a natural extension of the backoff algorithm
developed in Chapter 3. Rate-based flow flow control for gigabit, virtual circuit networks is an exten-
sion of the minimum cost method applied to RPC retransmission timeouts in Chapter 4.



CHAPTER 7

CONCLUSIONS

We have examined three problems that benefit from adaptive backoff: cache invalidation storms
due to contention for spin-locks, buffer overflow due to LAN multicast, and remote procedure call
retransmissions due to lost messages and slow or congested servers. We have used a similar approach
to each of these problems. In this concluding chapter we review and evaluate our research contribu-
tions and their relevance.

7.1. Relevance

Since limited buffer memory leads to buffer overflow and poor hardware synchronization sup-
port leads to cache invalidation storms, does this mean that our solutions to these problems have only
historical relevance? On one hand, fantastically large memories and state of the art synchronization
instructions will mitigate or eliminate these problems from the next generation of computer systems.
On the other hand, current computer systems suffer from these problems, and benefit from our solu-
tions. The bottom-end process control computers found in factories may survive ten or thirty years,
and, if Birman is right [11], they may communicate by LAN multicast. Since a multiprocessor
system’s lifetime probably ranges from three to five years, and manufacturers are still selling them
without additional synchronization support, our spin-lock backoff algorithm may be important for the
coming decade.

7.2. Contributions

Chapter 2’s contributions are a spin-lock backoff algorithm and a spin-lock based barrier syn-
chronization algorithm that reduce memory contention in shared-memory multiprocessors with
snoopy, invalidation-based caches. Our spin-lock algorithm loses slightly fewer cycles to memory
contention and reduces the number of memory cycles left idle due to excessive backoff by twenty to
fifty percent over a recently published algorithm [4]. Our spin-lock based barrier synchronization algo-
rithm outperforms the published spin-lock based solutions by a factor of three.

Chapter 3’s key contributions are its multiple round multicast timeout calculations and its UDP
service time model. With limited buffers, service preemptions exacerbate buffer overflow because they
extend the effective service time. Composing the service time distribution as a sum of a constant and a
hyperexponential distribution models the constant minimum time through the code and the variations
in the service time caused by device interrupts, scheduling latency, and memory contention.

Chapter 4 investigates the relationship between network service grade and protocol retransmis-
sion timeouts, and applies our approach to RPC retransmission timeouts. We anticipate that tariff-
bearing, selectable service grade, long-haul network will eventually dominate the current Internet. We
develop a method to simultaneously calculate protocol retransmission timeouts and select network ser-
vice grade, and propose an adaptive retransmission timeout algorithm that behaves properly on lossy
networks.

Chapter 5, a byproduct of the multicast work, makes both technical and methodological contri-
butions. It documents the microsecond resolution timer board that we used to measure timing data and
verify Chapter 3’s model of UDP buffer overflow, and it derives the relationship between clock resolu-
tion, measurement precision, and degree of confidence. Our derivation leads us to speculate that few
researchers perform enough measurements to report their performance data with a high degree of
confidence.
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7.3. Future Directions

In the future, we would like to extend our LAN result to internetwork multicast, instrument
Internet gateways in a manner similar to the way we instrumented the UDP protocol to derive a more
accurate model of the arrival process and protocol service times, build multimedia interfaces to charac-
terize the network traffic that they generate, and investigate flow control and routing algorithms for
virtual circuit, gigabit networks.
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