Comparative Performance Evaluation
of
Garbage Collection Algorithms

Benjamin G. Zorn

Computer Science Division
Department of Electrical Engineering and Computer Sciences

University of California
Berkeley, California 94720

December 1989

Comparative Performance Evaluation of Garbage Collection Algorithms
Copyright (©1989 by Benjamin G. Zorn.

This research was funded by DARPA contract numbers N00039-85-C-0269 (SPUR) and
N00039-84-C-0089 (XCS) and by an NSF Presidential Young Investigator award to Paul N.
Hilfinger. Additional funding came from the Lockheed Corporation in the form of a Lock-
heed Leadership Fellowship and from a National Science Foundation Graduate Fellowship.

Abstract

This thesis shows that object-level, trace-driven simulation can facilitate evaluation of
language runtime systems and reaches new conclusions about the relative performance of
important garbage collection algorithms. In particular, I reach the unexpected conclusion
that mark-and-sweep garbage collection, when augmented with generations, shows com-
parable CPU performance and much better reference locality than the more widely used
copying algorithms.

In the past, evaluation of garbage collection algorithms has been limited by the high
cost of implementing the algorithms. Substantially different algorithms have rarely been
compared in a systematic way. With the availability of high-performance, low-cost work-
stations, trace-driven performance evaluation of these algorithms is now economical. This
thesis describes MARS, a runtime system simulator that is driven by operations on program
objects, and not memory addresses. MARS has been attached to a commercial Common
Lisp system and eight large Lisp applications are used in the thesis as test programs.

To illustrate the advantages of the object-level tracing technique used by MARS, this
thesis compares the relative performance of stop-and-copy, incremental, and mark-and-
sweep collection algorithms, all organized with multiple generations. The comparative eval-
uation is based on several metrics: CPU overhead, reference locality, and interactive avail-
ability. Mark-and-sweep collection shows slightly higher CPU overhead than stop-and-copy
collection (5%), but requires significantly less physical memory to achieve the same page
fault rate (30-40%). Incremental collection has very good interactive availability, but imple-
menting the read barrier on stock hardware incurs a substantial CPU overhead (30-60%).
In the future, I will use MARS to investigate other performance aspects of sophisticated
runtime systems.

iii

Acknowledgments

There are many people that deserve my heartfelt thanks. I only regret that I cannot
mention them all by name here.

First, I want to thank Paul Hilfinger, my research advisor, who with care and diligence,
helped me understand the nature and substance of quality research and guided my research
along that path. His comments improved the initial drafts on this work considerably.

I’d also like to thank the other readers, Richard Fateman and Phil Colella. By providing
a different perspective on the writing, they helped me make the contents more accessible to
all readers.

This thesis is a direct result of my involvement with the SPUR project and in partic-
ular, my participation in the design and implementation of SPUR Lisp. I'd like to thank
Jim Larus for building the SPUR Lisp compiler and for his help with the design of the
runtime system. I'd like to thank Kinson Ho for his comments on the thesis text, which
were especially relevant coming from someone who was quite familiar with aspects of the
implementation discussed.

Part of efficient garbage collector design involves an intimate understanding of com-
puter architecture. George Taylor, one of the designers of the SPUR architecture, was an
invaluable resource to me. By working closely with him on the SPUR simulator, I learned
more things about the SPUR architecture than I thought I'd ever want to know. Shing-Ip
Kong, another SPUR architect, helped me understand the inherent tradeoffs in architecture
design.

Garbage collection is all about memory management, and any algorithm must be written
with an understanding of the underlying memory system provided by the hardware. I'd like
to thank David Wood and Susan Eggers for helping me whenever I needed to know more
about caches. Garth Gibson helped me by answering questions about the cache/main
memory interactions. Finally, I am in debt to Mark Hill for allowing me to use his Dinero
and Tycho cache simulation tools.

Between the program runtime system and the hardware lies the operating system. Mem-
bers of the Sprite operating system team helped me understand the kinds of OS support
the runtime system should count on. Brent Welsh, Mary Gray Baker, and John Ousterhout
provided me with information about Sprite protection faults. Mike Nelson helped me un-
derstand the Sprite virtual memory system. I'd also like to thank Fred Douglis and Andrew
Cherenson for their help with my questions.

I have also received help from people outside the university. I am indebted to Doug

iv

Johnson of Texas Instruments for the benefit of his wide-ranging knowledge about Lisp
applications and implementations, and his specific knowledge of Lisp machine garbage col-
lection. I am greatly indebted to all the people at Franz, Inc. for letting me use their
Common Lisp system in my research, and for giving me valuable feedback about specific
aspects of my thesis.

The preparation of a thesis is a complicated process requiring knowledge of such diverse
tools as awk, csh, latex, S, postscript, idraw, gremlin, and make. I'd like to thank Luigi
Semenzato for explaining some of the more subtle interactions between these tools to me.
I’d also like to thank Ken Rimey and Edward Wang, for their inspiring discussions and their
large Common Lisp programs. Dain Samples was helpful by providing me with mache, a
tool for greatly compressing simulation trace files.

Finally, I'd like to thank my parents, both for reviewing parts of the text, and for giving
me the education and motivation to write this thesis in the first place.

Contents

Introduction

1.1 Automatic vs Explicit Storage Reclamation

1.2 Garbage Collection and Reference Counting

1.3 Techniques for Garbage Collection
1.3.1 1960’s — Mark-and-Sweep Collection
1.3.2 Early 1970’s — Copying Garbage Collection.
1.3.3 Late 1970’s — Baker Incremental Garbage Collection
1.3.4 1980’s — Generation Garbage Collection
1.3.5 1990’s — Systems of the Future
1.4 Overview of the Thesis

1

2
2.1
2.2
2.3

3

3.1
3.2
3.3
3.4
3.5
3.6

Performance Evaluation of Garbage Collection

Goals of Performance Evaluation

Metrics of Garbage Collection Performance

Previous Evaluation Studies« e e

2.3.1 Implementation Reports,

2.3.2 Analytic Evaluations

2.3.3 Evaluation through Simulation

A New GC Evaluation Method

Overview of MARS i i e e e e e e e e e e e e e

Shadow Memory Simulation,

Measuring Time with References

Reference Locality Based on Heap References

Other Tools . .

Test Programs

vi

W I & O =W W N =

10
10
11
13
13
14
15

18
18
19
21
23
24
24

3.7

3.6.1 The Allegro Common Lisp Compiler (ACLC)
3.6.2 Curare — A Scheme Transformation System
3.6.3 The Boyer-Moore Theorem Prover (BMTP)
3.6.4 A DSP Microcode Compiler (RL).
3.6.5 Programsin Appendix A oL
Characterizing the Test Programs
3.7.1 Object Allocation by Type
3.7.2 Object References by Type
3.7.3 Object Birth and Death Rates

Algorithms for Garbage Collection

4.1

4.2

Garbage Collection Policies,
4.1.1 Heap Organization i
4.1.2 Deciding Whento Collect
4.1.3 Traversing Reachable Objects
4.1.4 Preserving Reachable Objects
4.1.5 Promotion. i e e
The Algorithms Simulated o oL,
4.2.1 Stop-and-Copy Collection
4.2.2 Incremental Collection
4.2.3 Mark-and-Deferred-Sweep Collection

Garbage Collection CPU Costs

5.1
5.2
5.3
5.4
5.5

Costs Basedon Events o 0o,
Implementing the Write Barrier
Implementing the Read Barrier
Base Costs of Garbage Collection
Total Overhead o i i e e

Reference Locality

6.1
6.2

6.3

Memory Hierarchy Characteristics
Measuring Miss Rates i i e
6.2.1 Stack Simulationo o o oL
6.2.2 Partial Stack Simulationo 0oL L
6.2.3 Measuring CPU Cache Miss Rates
Locality of Garbage Collected Programs

vii

34
34
34
37
38
39
39
40
41
41
42

44
45
46
51
56
61

6.4 Main Memory Locality it
6.4.1 PageFault Rates
6.4.2 Memory Requirements

6.5 CPU Cache Locality it neene..
6.5.1 Direct-Mapped Caches,

Availability

7.1 Pause Histories 0 i i i i e e e e e

7.2 Object Lifespans v i i i i it e e e e e e e e e e e

7.3 Discrete Interval Simulation

7.4 Newspace Collection 0 i i i i i i ittt it it oo
7.4.1 PauseLengths
7.4.2 CPUOverhead iieen..
7.4.3 PromotionRates

7.5 Collection of Older Generationso...

Faster Processors and Multiprocessors

8.1 Faster Processors o o i i i i i e e e e e e e e
8.2 Lomnger Lifespans e
8.3 Multiprocessorst i e e e e e e e e e e e e e e e e e e
8.3.1 The Stateofthe Art Lo
8.3.2 Multiprocessing and Bus Contention
Conclusion
9.1 Simulation. e e e e
9.2 Garbage Collection e e e
9.3 Future Work e

Instruction Sequences

Al
A2
A3
A4
A5
A.6

The Hardware Write Barrier Trap Handler
Handling Write Barrier Traps
Implementing the Write Barrier with Software Tests
Implementing the Read Barrier with Software Tests
Allowing Fromspace Aliases and Modifying Eq
Estimating Collection Overhead
A6.1 Copying Collection e

viii

71
72
72
75
77

82
82
84
86
87
88
88
90
93

99
100
102
107
108
110

116
116
118
119

A.6.2 Mark-and-Sweep Collection .

B Formal Algorithm Definitions
B.1 Copying Algorithms
B.1.1 Stop-and-Copy Collection . .
B.1.2 Incremental Collection
B.2 Mark-and-Deferred-Sweep Collection

C Four More
C.1 RSIM

Programs

C.2 A Prolog Compiler (PC)

C.3 Weaver

C.4 The Perq Microcode Assembler (PMA).

D Tables

ix

144
145
145
150
153

160
160
161
161
161

220

List of Figures

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

5.1
5.2
5.3
5.4
5.5
5.6

6.1
6.2
6.3
6.4
6.5
6.6
6.7

7.1
7.2
7.3
7.4

MARS Organization. o i e e 19
Shadow Memory Mapping. o i vt it it i 20
Reference Rate Distributions for Several Programs. 22
Object Allocations for Test Programs (by type and size). 28
Object Allocations for Test Programs (by type and number). 28
Object References by Type for Test Programs. 29
Program Allocation Rates as a Function of Time. 31
Net Allocation Rates as a Function of Time. 32
Object References by Instruction Type for Test Programs. 46
CPU Overhead for Write Barrier Implementations. 52
CPU Overhead for Read Barrier Implementations. 57
Cumulative CPU Overhead for Copying Collection. 59
Cumulative CPU Overhead of Mark-and-Sweep Collection. 60
Cumulative CPU Overhead for Three Algorithms. 62
Partial Stack Simulation Pseudocode 66
Age Distribution of Objects Referenced by Object Type. 70
Page Fault Rates for Different Collection Algorithms.. 73
Memory Sizes Required for Different Collection Algorithms. 74
Cache Miss Rates for Stop-and-Copy Collection. 78
Cache Miss Rates for Mark-and-Sweep Collection. 79
Cache Miss Rates for Three Collection Algorithms. 80
GC Pause Lengths as Function of Time. 83
Survival Distribution of Objects Referenced by Object Type. 85
Pause Lengths for Three Applications 89
Relative CPU Overhead for Three Applications 91

7.5 Promotion Rates for Three Applications 92

7.6 Second Generation Collection Frequencies for Four Applications. 95
7.7 Second Generation Pause Lengths for Four Applications 96
8.1 Performance for Two Applications with a Faster CPU. 101

8.2 Performance for Two Applications with Longer Lifespans and Faster CPU’s. 103
8.3 Second Generation Metrics with Longer Running Programs and Faster CPU’s.104
8.4 Third Generation Metrics with Longer Running Programs and Faster CPU’s. 106

8.5 Instruction Cache Miss Rates for Four Applications. 110
8.6 Total Cache Miss Rates for Three Collection Algorithms. 112
8.7 Maximum Effective Uniprocessors for Different Miss Ratios. 113

8.8 Maximum Effective Uniprocessors for Different Algorithms and Threshold

A.1 Extended SPARC Instruction Sequence for a Hardware Write Barrier Trap

Handler e 123
A.2 Instruction Sequence for Word Marking 125
A.3 Software Test Write Barrier Instruction Sequence 126
A.4 Complete Write Barrier Test Function 128
A.5 Software Test Read Barrier Instruction Sequence 129
A.6 Read Barrier Relocation Function 130
A.7 Modified Eq Instruction Sequence 132
A.8 Instructions Preventing Stores of Fromspace Pointers. 133
A.9 Stop-and-Copy Allocation Sequence ou... 134
A.10 Flowgraph for Computing Stop-and-Copy Execution Time 135
A.11 Stop-and-Copy Scanning Inner Loop (page 1) 137
A.12 Stop-and-Copy Scanning Inner Loop (page 2) 138
A.13 Mark-and-Sweep Allocation Sequence 139
A.14 Mark-and-Sweep Sweeping Inner Loop 140
A.15 Flowgraph for Computing Mark-and-Sweep Execution Time 141
A.16 Mark-and-Sweep Marking Inner Loop (page1) 142
A.17 Mark-and-Sweep Marking Inner Loop (page2) 143
B.1 Stop-and-Copy Pseudocode (page 1) 146
B.2 Stop-and-Copy Pseudocode (page2) 147
B.3 Stop-and-Copy Pseudocode (page 3) 149

xi

B.4 Incremental Pseudocode (page 1) oo oo 151
B.5 Incremental Pseudocode (page2) o i 152
B.6 Mark-and-Deferred-Sweep Pseudocode (page1) 154

(
B.7 Mark-and-Deferred-Sweep Pseudocode (page2) 155
B.8 Mark-and-Deferred-Sweep Pseudocode (page3) 156
B.9 Mark-and-Deferred-Sweep Pseudocode (page4) 158
B.10 Mark-and-Deferred-Sweep Pseudocode (page5) 159
C.1 Object Allocations for Test Programs (by type and size). 162
C.2 Object Allocations for Test Programs (by type and number). 163
C.3 Object References by Type for Test Programs. 164
C.4 Object References by Instruction Type for Test Programs. 165
C.5 Program Allocation Rates as a Function of Time. 167
C.6 Net Allocation Rates as a Function of Time. 170
C.7 CPU Overhead for Write Barrier Implementations. 172
C.8 CPU Overhead for Read Barrier Implementations. 174
C.9 Cumulative CPU Overhead for Copying Collection. 177
C.10 Cumulative CPU Overhead of Mark-and-Sweep Collection. 179
C.11 Cumulative CPU Overhead for Three Algorithms. 181
C.12 Age Distribution of Objects Referenced by Object Type. 183
C.13 Page Fault Rates for Different Collection Algorithms.. 185
C.14 Memory Sizes Required for Different Collection Algorithms. 187
C.15 Cache Miss Rates for Stop-and-Copy Collection. 190
C.16 Cache Miss Rates for Mark-and-Sweep Collection. 192
C.17 Cache Miss Rates for Three Collection Algorithms. 193
C.18 Survival Distribution of Objects Referenced by Object Type. 196
C.19 Pause Lengths for Three Applications 198
C.20 Relative CPU Overhead for Three Applications 200
C.21 Promotion Rates for Three Applications 202
C.22 Second Generation Collection Frequencies for Four Applications. 204
C.23 Second Generation Pause Lengths for Four Applications 206
C.24 Performance for Two Applications with a Faster CPU. 209

C.25 Performance for Two Applications with Longer Lifespans and Faster CPU’s. 211
C.26 Second Generation Metrics with Longer Running Programs and Faster CPU’s.213
C.27 Third Generation Metrics with Longer Running Programs and Faster CPU’s. 215

xii

C.28 Total Cache Miss Rates for Three Collection Algorithms.
C.29 Maximum Effective Uniprocessors for Different Algorithms and Threshold

xiii

List of Tables

3.1 Frequency of Memory Reference Operations. 23
3.2 General Information about the Test Programs. 25
5.1 Pointer Stores and Write Barrier Trap Ratios. 47
5.2 Pointer Stores into Oldspace. v ..., 49
5.3 Relative Frequency of Qutcomes of EQ Tests. 54
5.4 Average Stack Depth for Several Lisp Programs. 55
6.1 [Effectiveness of Partial Stack Simulation. 67
C.1 General Information about Additional Test Programs. 160
C.2 Object Allocations for Test Programs (by type and size). 162
C.3 Object Allocations for Test Programs (by type and number). 163
C.4 Object References by Type for Test Programs. 164
C.5 Object References by Instruction Type for Test Programs. 165
C.6 Object Allocation Rates as a Function of Time. 166
C.7 Object Allocation Rates as a Function of Time. 168
C.8 Net Allocation Rates as a Function of Time. 169
C.9 Net Allocation Rates as a Function of Time. 171
C.10 CPU Overhead for Write Barrier Implementations. 173
C.11 CPU Overhead for Read Barrier Implementations. 175
C.12 Cumulative CPU Overhead for Copying Collection. 176
C.13 Cumulative CPU Overhead of Mark-and-Sweep Collection. 178
C.14 Cumulative CPU Overhead for Three Algorithms. 180
C.15 Age Distribution of Objects Referenced by Object Type. 182
C.16 Age Distribution of Objects Referenced by Object Type. 184
C.17 Page Fault Rates for Different Collection Algorithms.. 186
C.18 Memory Sizes Required for Different Collection Algorithms. 188

xiv

C.19 Cache Miss Rates for Stop-and-Copy Collection. 189

C.20 Cache Miss Rates for Mark-and-Sweep Collection. 191
C.21 Cache Miss Rates for Three Collection Algorithms. 194
C.22 Survival Distribution of Objects Referenced by Object Type. 195
C.23 Survival Distribution of Objects Referenced by Object Type. 197
C.24 Pause Lengths for Three Applications 199
C.25 Relative CPU Overhead for Three Applications 201
C.26 Promotion Rates for Three Applications 203
C.27 Second Generation Collection Frequencies for Four Applications. 205
C.28 Second Generation Pause Lengths for Four Applications 207
C.29 Performance for Two Applications with a Faster CPU. 208

C.30 Performance for Two Applications with Longer Lifespans and Faster CPU’s. 210
C.31 Second Generation Metrics with Longer Running Programs and Faster CPU’s.212
C.32 Third Generation Metrics with Longer Running Programs and Faster CPU’s. 214

C.33 Total Cache Miss Rates for Three Collection Algorithms. 216
C.34 Maximum Effective Uniprocessors for Different Algorithms and Threshold

2 219
D.1 Object Allocations for Test Programs (by type and size). 220
D.2 Object Allocations for Test Programs (by type and number). 220
D.3 Object References by Type for Test Programs. 221
D.4 Object References by Instruction Type for Test Programs. 221
D.5 Object Allocation Rates as a Function of Time. 222
D.6 Object Allocation Rates as a Function of Time. 223
D.7 Net Allocation Rates as a Function of Time. 224
D.8 Net Allocation Rates as a Function of Time. 225
D.9 CPU Overhead for Write Barrier Implementations. 226
D.10 CPU Overhead for Read Barrier Implementations. 227
D.11 Cumulative CPU Overhead for Copying Collection. 228
D.12 Cumulative CPU Overhead of Mark-and-Sweep Collection. 229
D.13 Cumulative CPU Overhead for Three Algorithms. 230
D.14 Age Distribution of Objects Referenced by Object Type. 231
D.15 Age Distribution of Objects Referenced by Object Type. 232
D.16 Page Fault Rates for Different Collection Algorithms.. 233
D.17 Memory Sizes Required for Different Collection Algorithms. 234

XV

D.18 Cache Miss Rates for Stop-and-Copy Collection. 235

D.19 Cache Miss Rates for Mark-and-Sweep Collection. 236
D.20 Cache Miss Rates for Three Collection Algorithms. 237
D.21 Survival Distribution of Objects Referenced by Object Type. 238
D.22 Survival Distribution of Objects Referenced by Object Type. 239
D.23 Pause Lengths for Three Applications 240
D.24 Relative CPU Overhead for Three Applications 241
D.25 Promotion Rates for Three Applications 242
D.26 Second Generation Collection Frequencies for Four Applications. 243
D.27 Second Generation Pause Lengths for Four Applications 244
D.28 Performance for Two Applications with a Faster CPU. 245

D.29 Performance for Two Applications with Longer Lifespans and Faster CPU’s. 246
D.30 Second Generation Metrics with Longer Running Programs and Faster CPU’s.247
D.31 Third Generation Metrics with Longer Running Programs and Faster CPU’s. 248

D.32 Total Cache Miss Rates for Three Collection Algorithms. 249
D.33 Instruction Cache Miss Rates for Four Applications. 250
D.34 Maximum Effective Uniprocessors for Different Miss Ratios. 250

D.35 Maximum Effective Uniprocessors for Different Algorithms and Threshold

xvi

Chapter 1

Introduction

Garbage collection is a technique for automatic reclamation of allocated program storage
first suggested by McCarthy [60]. Other techniques for storage reclamation exist, most
notably explicit programmer-controlled reuse of storage (used in Pascal, C, etc.) and refer-
ence counting [23]. In this thesis, the term garbage collection refers to the automatic storage
reclamation technique in which storage is reclaimed by a periodic traversal of the program
objects to identify those that can be used further and those that cannot. Objects in this
latter category are referred to as garbage. The non-garbage objects are identified by starting
from a special set of object references (the root set) and transitively traversing all program
objects reachable from the root set. The methods for traversing objects and noting them
as reachable (preserving them) differ widely between algorithms, but all garbage collection
algorithms operate with the same basic goal of periodically traversing and re-partitioning
storage.

1.1 Automatic vs Explicit Storage Reclamation

Many languages require the programmer to explicitly release objects that are no longer in
use (e.g. the free function in C and Pascal). Explicit programmer management of storage
leads to two very common and insidious bugs: memory leaks and duplicate releases. A
memory leak occurs when objects are allocated but then not released when they are no
longer necessary. Eventually, such a leak can cause a long running program to consume the
entire virtual address space and fail. Even if the program does not fail due to the memory
leak, the locality of reference can suffer greatly as the objects in use get spread across a large
virtual address space. Although tools exist to help detect memory leaks [8, 95], leaks are easy
to create and difficult to locate. Programmers may have a hard time correctly identifying
when an object is no longer in use because such a decision requires global information about
the program data, and in large systems with many implementors, this global information
may be unavailable.

If a programmer uses free carelessly, he can cause the other insidious bug, the duplicate

release, which occurs when an object that is still reachable from other program objects is
released. Such a release causes an inconsistency when the released object is reallocated
because the same memory location is then being used to represent two distinct objects. This
inconsistency is difficult to detect because the program may fail long after the inconsistency
is created and the connection between the duplicate release and the program failure may
not be obvious.

The problems involved in explicitly managing storage have caused language designers to
redesign languages to include automatic storage reclamation. For the language Mesa it was
estimated that developers spent 40% of the development time implementing memory man-
agement procedures and finding bugs related to explicit storage reclamation [71]. Cedar, the
language defined as a successor to Mesa, includes automatic storage reclamation. Likewise,
Modula-3, a successor to Modula-2 defined at DEC Western Research Lab, incorporates
automatic storage reclamation [16]. Many other modern languages incorporate automatic
storage reclamation including CLU [56], Prolog [20], Smalltalk [37], and of course, Common
Lisp [76]. Efforts are even being made to incorporate “conservative garbage collection” in
C programs.

1.2 Garbage Collection and Reference Counting

Reference counting is another widely used technique for automatic storage reclamation. In
this approach, a count is stored with each object recording the number of references to the
object. When a copy of the object reference is made, the count is incremented. When a
reference to the object is destroyed, the count is decremented. When the count reaches zero,
no more references to the object exist and the object can be reclaimed. Reference counting
has the advantage that storage is reclaimed incrementally as references to objects disappear.
Furthermore, Deutsch and Bobrow introduced a deferred reference counting technique that
reduces the distributed overhead of maintaining the count [27].

Unfortunately, reference counting has fundamental disadvantages. First and foremost,
reference counting algorithms do not reclaim storage allocated in circular structures. Mod-
ifications to the traditional algorithm have been suggested to overcome this problem [15],
but the performance of the modified algorithm is unacceptably slow. As a result, reference
counting algorithms are augmented with traditional garbage collection algorithms. A sec-
ond disadvantage of reference counting is that space is required to maintain the count. A
simple implementation associates a 32-bit count with each object and increases the size of
each cons object (the most common object type) by 50%. More complex implementations
reduce this overhead but do not entirely eliminate it. A third disadvantage of reference
counting is that it fails to reorganize or compact objects in memory and is thus unable
to improve the locality of references to those objects. By using generations, garbage col-
lection can significantly improve reference locality, as this thesis shows. Finally, the most
significant advantage of reference counting, that of incrementally collecting storage, has also
been achieved with garbage collection algorithms using incremental [6] and generation [55]

techniques.

Because of these disadvantages, reference counting is not often used in modern Lisp
and Smalltalk implementations. Recently, however, research with distributed memory com-
puters has sparked renewed interest in reference counting algorithms because they allow
storage deallocation based on local information, instead of the global information required
by garbage collection [10, 38]. This dissertation focuses entirely on techniques for garbage
collection and does not consider reference counting any further.

1.3 Techniques for Garbage Collection

Having established that other storage reclamation techniques have serious drawbacks, I now
discuss the need for comparative performance evaluation of garbage collection algorithms.
While all collection algorithms incorporate the basic ideas of traversing and preserving
reachable objects, the implementation of these ideas has changed dramatically since the
first algorithm was proposed in 1960 by John McCarthy [60]. Effective algorithms have
necessarily adapted to changes in the hardware and software systems in which they are
implemented. Historically, algorithms have traditionally remained effective only over a
period of a few years because of rapid changes in technology. Looking at the development
of algorithms from a historical perspective, we can see past trends and understand the need
for effective evaluation techniques to provide answers about the effectiveness of algorithms
in future systems.

1.3.1 1960’s — Mark-and-Sweep Collection

The original algorithm proposed by McCarthy was a simple mark-and-sweep collection. As
the name implies, collection is divided into two phases: the mark phase, in which reachable
objects are traversed and marked, and the sweep phase, in which the memory is scanned
and garbage objects are collected for reuse. An optional phase, called the compaction phase,
relocates objects so they are packed close together in memory. Marking is accomplished by
reserving a bit in each object to indicate that it has been marked. In traversing reachable
objects, a mark stack is usually necessary to allow the algorithm to backtrack and follow
each pointer contained in an object.

The systems for which mark-and-sweep collection was originally designed contained
small (by current standards) physically addressed memories. At the time, the execution
cost of scanning the entire memory was negligible. Of more direct importance was the
need to preserve space in the memory for the mark stack, which in principle requires space
proportional to the size of the entire memory. Schorr and Waite developed a clever algorithm
that avoided the need for the mark stack by reversing pointers during the traversal [72].

Mark-and-sweep collection has distinct drawbacks that become apparent when consid-
ering larger virtual memories. Its primary drawback is that collection time (sweeping in
particular) is proportional to the size of the memory. As memory sizes increase, garbage

collection overhead increases proportionally. A second disadvantage of mark-and-sweep
collection is that variable-sized objects (e.g., vectors and strings) require special handling
during collection. Either objects must be compacted to squeeze out holes between objects
or the holes reclaimed by collection must be allocated with a policy such as first-fit or
best-fit that could result in loss of memory to fragmentation. Although neither of these
disadvantages is insurmountable, a new technique for collection was introduced in the early
1970’s and it gained wide acceptance.

1.3.2 Early 1970’s — Copying Garbage Collection

In 1969, Fenichel and Yochelson suggested the first copying collection algorithm [30]. In
1970, Cheney suggested a modification to their algorithm that avoided the need for an
auxiliary stack [18]. The so-called Fenichel-Yochelson-Cheney (FYC) copying algorithm
has remained the basis for effective garbage collection algorithms ever since. Fenichel and
Yochelson suggested dividing the program memory into two semispaces. Objects are allo-
cated in one semispace until a garbage collection is required (i.e., all the space has been
allocated). During garbage collection, as objects are traversed, they are copied to the other
semispace. In addition, a forwarding pointer is left behind so that additional references to
the object can be updated correctly. When garbage collection is over, all reachable objects
are now located in the other semispace and allocations now take place in that semispace.
Thus the “from” and “to” semispaces change roles after a garbage collection “flip.” Cheney
improved this algorithm by indicating how the transported objects could also serve as the
stack of objects being traversed.

The FYC copying algorithm traverses, preserves, and compacts objects in time pro-
portional to the number of reachable objects and not the size of the memory. The term
“garbage collection” is somewhat of a misnomer in this case, since what happens is really
non-garbage compaction.

The biggest cost of copying garbage collection is that half of the address space is unavail-
able for allocation of objects. A major reason for the success of copying garbage collection
was that virtual memory increased the size of address spaces so that such a flagrant loss
of address space was acceptable. Even though copying garbage collection requires a larger
address space, the inherent compaction it performs can actually provide better locality of
reference than a non-compacting mark-and-sweep algorithm.

By the late 1970’s, systems technology had changed enough that new algorithms for
garbage collection were required. Computers became faster, memories became larger, and
Lisp programs, such as MACSYMA!, became significantly larger. As program data in-
creased from tens of kilobytes to tens of megabytes, the time required to collect the data
increased. Since Lisp is part of an interactive programming environment, fast response time

'MACSYMA is a symbolic algebra program written in Maclisp. The source of MACSYMA contains over
100,000 lines of Lisp.

is important to its users. By the late 1970’s pauses resulting from garbage collection could
last tens of seconds or more.

1.3.3 Late 1970’s — Baker Incremental Garbage Collection

In 1978, Henry Baker at MIT suggested a technique that solved two important problems
caused by garbage-collection-induced pauses [6]. First, Lisp was being used for AI program-
ming and garbage collection interfered with real-time uses of Lisp for applications such as
robot control. Second, Lisp was an interactive language and increasingly long garbage
collection pauses disrupted interactive users.

To solve these problems, Baker introduced a technique he called incremental garbage
collection to augment the traditional FYC copying algorithm. Baker’s idea was to avoid
copying all objects at flip time and instead incrementally copy objects from the other
semispace as new objects are allocated. This is possible by maintaining the illusion that
objects have all been copied at the time of the flip. This illusion is maintained through
implementing what is called the read barrier. Whenever a pointer is loaded from memory, it
is first checked to determine if it points into the semispace being copied from (fromspace). If
so, the object being referenced is immediately transported (copied) to the current semispace
(tospace) and the reference to it is updated. This action maintains the invariant that all
pointers in machine registers point to objects in tospace. To guarantee that all objects
in fromspace are eventually transported to tospace, whenever an object is allocated some
objects are transported into tospace as well. By associating transporting with allocation,
the garbage collector can guarantee that tospace will not be exhausted before all objects
have been copied from fromspace. Because only a small number of objects are copied at
each flip (when fromspace and tospace change roles), there is no perceptible pause associated
with garbage collection.

In analyzing his algorithm, Baker concludes that the execution cost is nearly identical
to the cost of traditional copying garbage collection because the same objects are trans-
ported, except that they are transported at different times and in different orders. The
additional overhead of incremental garbage collection lies in maintaining the read barrier.
With hardware support like that provided by the Symbolics and TI Explorer Lisp ma-
chines, the overhead of maintaining the read barrier is negligible and incremental collection
has been effectively implemented [25, 61]. However, without hardware support, implement-
ing the read barrier can be very costly since a large fraction of memory references are
loads. Hybrid forms of incremental collection have been implemented successfully on stock
hardware [29], but Baker incremental collection has never been implemented successfully
without hardware support.

While incremental garbage collection solves problems associated with long garbage col-
lection pauses, it is not necessarily an appropriate solution for general purpose computers,
and it fails to solve other problems associated with large Lisp systems. In particular, by
the early 1980’s Lisp systems had become so large they could not fit comfortably in the
available physical memories.

1.3.4 1980’s — Generation Garbage Collection

In the early 1980’s, work with large Lisp programs, such as MACSYMA, led to suggestions
for new garbage collection techniques [32]. Because the Lisp images were larger than physical
memories, garbage collection could cause intense thrashing of the virtual memory system.
In 1983, Lieberman and Hewitt proposed generation garbage collection, in which a small
part of the heap is collected independently of the rest of the heap [55].

The main purpose of generation garbage collection is to focus the effort of collection on
a subset of the total heap. Empirical measurements show that most objects become garbage
shortly after they are created, and so the most effective subset of the heap to collect is the
youngest [74]. Lieberman and Hewitt divided the memory into areas by age and called these
areas generations. Generations containing the youngest objects are collected frequently.
Generations containing older objects are rarely collected. Objects that survive long enough
in a particular generation are promoted to an older generation and thus are collected less
frequently.

Throughout this thesis, the youngest generation is referred to as newspace and the older
generations are collectively referred to as oldspace. In this text, oldspace and newspace are
never used to distinguish between the semispaces of a copying collector, as they sometimes
are in the literature. The terms fromspace and tospace are used exclusively for that pur-
pose. Newspace is also called the first generation and the next oldest generation (to which
newspace objects are promoted) is called the second generation.

While Lieberman and Hewitt specified a particular process for collecting and promoting,
the basic idea of generation garbage collection has been adapted and applied in different
forms. Ungar showed that a very simple variant which he called generation scavenging
could be effective in Smalltalk [84]. Moon demonstrated a variant called ephemeral garbage
collection on the Symbolics [61]. Variants of generation garbage collection have also been
implemented on stock hardware [33, 75].

Being able to collect a single generation requires that all reachable objects in the gener-
ation are identifiable. In particular the traditional root set, which would normally include
the machine registers and runtime stack, must be augmented to include pointers stored
in other generations that point into the generation being collected. To allow collection of
any generation independently of another, a generation algorithm needs to record all inter-
generational pointers. In practice, if the algorithm collects a generation and all younger
generations at the same time, then it only needs to record pointers forward in time—that
is, pointers stored in older generations that point into younger generations.

Generation garbage collection has been very successful in improving the locality of refer-
ence of garbage collection in large Lisp systems. In addition, because the generations being
collected are relatively small, collection times for a generation can be short and potentially
non-disruptive to interactive users. Nevertheless, there are additional costs for generation
collection. Maintaining the locations of pointers forward in time requires special checks
when pointers are stored. These checks are sometimes referred to as maintaining the write

barrier. Frequent short collections may result in non-disruptive behavior, but may also
increase the total CPU overhead of garbage collection. The copying of long-lived objects
can be avoided by promoting them, but overzealous promotion leads to accumulation of
garbage in older generations. Collection of older generations can be disruptive because they
are traditionally large and contain significant amounts of reachable data. Such collections
have the poor virtual-memory behavior and disruptive interactive response that generation
collection was designed to avoid.

In the past two years generation garbage collection has been added to two commercial
implementations of Common Lisp [33, 75]. It has also been proven effective in Smalltalk [17,
84] and ML [3]. While generation garbage collection appears effective in today’s computer
systems, changing systems technology will almost certainly require new garbage collection
algorithms.

1.3.5 1990’s — Systems of the Future

Two significant technology trends have developed recently that represent potential chal-
lenges to existing garbage collection technology. The first trend is the availability of high-
performance RISC architectures and workstations based on this technology. These systems
will place increased performance demands on garbage collection algorithms in the absence
of hardware support. For example, where today’s MC68020 processors are capable of allo-
cating 100,000 bytes per second, new processors, such as the Intel 860, may be capable of
10-50 times that rate. While cache memory speeds will also increase, the delivery rate of
large main memories is likely to remain relatively slow. In addition, the latency of magnetic
disks is likely to remain as it has for that past ten years (i.e., from 10-30 milliseconds). Fast
processors will place a greater demand on the memory system, and as garbage collection is
intimately tied to memory system performance, garbage collection algorithms will need to
adapt to best fit the technology.

Another obvious technology trend is the commercial availability of shared-memory mul-
tiprocessors. In this thesis, the term multiprocessor refers exclusively to shared-memory
systems. Multiprocessors require significant changes in garbage collection technology for
two reasons: first, garbage collection algorithms must be parallelized to take advantage of
multiple processors, and second, multiple processors introduce new constraints in the mem-
ory system. In particular, shared communication resources (such as a shared-memory bus
or disk I/O channel) introduce new potential bottlenecks to performance. Little about Lisp
applications running on multiprocessors is known. Several dialects of Lisp with features for
multiprocessing have appeared [36, 40, 97|, but the behavior of large applications in these
dialects has not been studied because the systems have not been available for serious use,
and/or are incomplete.

In the past, the proposal and analysis of new garbage collection algorithms has been
ad hoc. Algorithms have been proposed when problems with existing algorithms became
obvious in practice. With rapid changes in technology, precise evaluation of new algorithms
is of great value. This thesis describes an effective technique for evaluating garbage collection

algorithms and uses this technique to compare several important collection algorithms.

1.4 Overview of the Thesis

One major tenet of this thesis is that previous evaluation studies of garbage collection
algorithms have been limited in scope, especially with respect to controlled comparison of
algorithms. Chapter 2 describes qualities of a good evaluation study, introduces metrics
on which evaluations should be based, and describes previous work in evaluating garbage
collection algorithms.

Chapter 3 introduces a trace-driven evaluation technique called object-level tracing that
can used to evaluate the performance of garbage collection algorithms, and, more generally,
the performance of runtime systems. Object-level tracing provides extensive information
about all aspects of the performance of the algorithms simulated. Performance metrics
of interest include CPU overhead, the distribution of disruptive pauses, and the effect of
garbage collection on the reference locality of the program. Chapter 3 also introduces the
test programs used in the performance studies reported in the thesis.

One advantage of object-level tracing is that it allows controlled comparisons of very
different garbage collection algorithms. Chapter 4 describes the three garbage collection
techniques being evaluated: stop-and-copy, incremental, and mark-and-deferred-sweep col-
lection, all defined with extensions for generation garbage collection. In implementing each
algorithm, several design decisions must be made about their configuration. Chapter 4
defines the design parameters of interest and indicates their impact on performance.

Having defined the evaluation method and the measurements of interest, I examine
different performance aspects of each of the algorithms in Chapters 5, 6, and 7. Chapter 5
investigates the CPU overhead needed to implement each algorithm, considering the base
cost of each approach, and the additional costs necessary to maintain invariants such as the
read and write barriers. Alternative implementations are considered to determine the lowest
cost approach. I conclude that incremental collection on stock hardware can be expensive,
but that increasing the semispace size can considerably reduce the overhead of certain
implementations. Furthermore, I find that mark-and-sweep collection with generations can
be implemented with approximately the same CPU overhead as stop-and-copy collection.

Chapter 6 examines the reference locality of different algorithms both in the main mem-
ory (macro locality) and in the CPU data cache (micro locality). Using stack simulation
techniques, I measure the page fault rate and miss ratio for a large number of memory
and cache sizes in a single pass of the reference string. One important conclusion is that
small generations can significantly improve cache miss ratios at a cost of larger execution
overhead. In computers where the memory system is a bottleneck, small generation sizes
may be very effective. Another surprising conclusion is that the locality of reference of
incremental garbage collection is not significantly different from normal copying collection
for reasonable cache and memory sizes. Finally, the results in Chapter 6 indicate that mark-
and-sweep collection provides significantly better reference locality than copying collection,

and requires 30-40% less total memory to achieve the same page fault rates.

The third performance aspect of garbage collection examined is the pause length, and
as a related subject, the amount of data promoted during collection. Pause length is related
to the number of reachable objects in the semispace and pause frequency is related to rate
of allocation and the amount of time taken to fill the semispace with data. The promotion
rate determines how fast older generations fill with data, and since the time needed to
collect these older generations is substantial, promotion greatly impacts the interactive
performance of Lisp systems. Chapter 7 presents the lifespan distribution of objects as a
function of object type and application. Using this information about object lifespans, I
predict the duration and frequency of garbage collection pauses for a variety of collection
parameters including promoting policy and semispace size. Because incremental algorithms
avoid long pauses, an important question this chapter addresses is whether or not non-
incremental algorithms will provide adequate interactive performance in Lisp systems of
the future.

Having looked at performance of algorithms in existing systems, Chapter 8 considers
collection performance in systems ten years in the future. These systems will probably
have processors 100 times faster than today’s Sun4 workstations, and multiprocessors will
have up to 100 processors or more. Chapter 8 examines what demands these new systems
will place on garbage collection algorithms. In particular, faster systems show a greatly
increased memory demand and the advantages of mark-and-sweep collection appear more
important in these systems.

As mentioned, multiprocessor technology represents major challenges to existing garbage
collection designs. Chapter 8 surveys Lisp language extensions for multiprocessing and pro-
posed methods for using multiple processors for garbage collection. Currently, experimental
results from multiprocessor Lisp systems are scarce. Due to the limited nature of the ex-
perimental data, conclusions about such systems are necessarily weak. In this chapter, I
indicate how object-level simulation could be used when more robust multiprocessor Lisp
systems are available, and discuss what conclusions can be reached based on data that is
currently available.

Chapter 9 summarizes the conclusions reached in the thesis and evaluates the method-
ology used. It also proposes additional performance studies that would enhance the results
of the thesis and discusses extensions of object-level simulation for examining other aspects
of runtime system performance.

Chapter 2

Performance Evaluation of
Garbage Collection

The evaluations contained in the rest of this thesis are based on a new evaluation method
described in the next chapter. Performance evaluation studies are carried out with the
goal of improving aspects of performance. This chapter describes the particular goals of
the evaluation methods and the performance metrics of interest when evaluating garbage
collection algorithms. One conclusion of this thesis is that previous evaluation studies of
garbage collection have been limited in scope and have not adequately characterized the
performance of widely used algorithms. This chapter describes previous evaluation efforts
and indicates the limitations of these results.

2.1 Goals of Performance Evaluation

The performance evaluations in this thesis were conducted with three major goals: to
make controlled comparisons so that the performance effects of isolated parameters can be
determined, to allow easy exploration of the design space so that parameters of interest can
be quickly evaluated, and to provide information about parts of the design space that are
not easily implementable.

As with other experimental sciences, hypotheses about performance can only be tested
if experimental conditions are carefully controlled. For example, to accurately compare
non-incremental with incremental copying garbage collection, other algorithm parameters,
such as semispace size, promotion policy, allocation policy, and copying policy must be held
constant. Furthermore, the Lisp systems in which the algorithms are implemented must be
identical. Comparing incremental collection on a Lisp machine to stop-and-copy collection
on a RISC workstation would provide little information.

A second characteristic of an effective evaluation method is its ability to allow easy
exploration of the space of design possibilities. In the case of garbage collection evaluation,

10

new algorithms should be easy to specify, parameterize, and modify. Parameters that govern
the behavior of the algorithms should be easy to introduce and change. Examples of such
parameters include semispace size, physical memory page size, promotion policy, and the
number of bytes in a pointer.

A good evaluation method will answer questions about systems that do not exist or are
not readily implementable. If technology trends indicate certain systems are likely to be
of interest, performance evaluation should help guide future system design. In the case of
garbage collection, several trends have already been noted. In particular, garbage collection
evaluation techniques may help guide computer architects in building effective memory
system configurations. In the case of multiprocessors, evaluation methods that predict
an algorithm’s performance without requiring its detailed implementation on a particular
multiprocessor will save much implementation effort. If a technique for evaluating garbage
collection algorithms can provide these capabilities, then a much broader understanding of
the performance tradeoffs inherent in each algorithm is possible.

2.2 Metrics of Garbage Collection Performance

In traditional evaluation studies, total throughput or time to completion is the most impor-
tant performance measure. With garbage collection algorithms, throughput is related to
two important metrics: CPU overhead and program locality of reference. Reference locality
is a significant metric because poor locality can cause memory systems to thrash, greatly
reducing overall performance. In addition to throughput, Lisp systems have to provide
reasonable interactive response, so in evaluating garbage collection algorithms, interactive
response must also be considered.

The CPU overhead of garbage collection can be broken down into three parts:
Tgc = Tbase + Trefs + Trep

Thqse is the time required to traverse and preserve reachable objects. T, is the additional
time required to maintain garbage collection invariants with each reference. For generation
collection, T, includes the time to maintain a list of intergenerational pointers (the write
barrier), and for incremental collection, Ty ¢, includes the time to transparently transport
objects from fromspace (the read barrier). T, is the additional execution time caused by
a choice of object representation convenient for garbage collection. In particular, the mark-
and-deferred-sweep algorithm described in this thesis represents a vector as a fixed-sized
header with a pointer to a variable-sized body (similar to the KCL garbage collector [93]).
This representation requires an extra level of indirection in references to the contents of a
vector.

A second metric of interest is locality of reference. This thesis investigates reference
locality at two levels: macro locality in the main memory and micro locality in the data
cache. Because Lisp systems are traditionally memory intensive, locality of reference has
always concerned garbage collection algorithm designers. In the past, main memory locality

11

has received the most attention. This thesis shows that locality in both the cache and main
memory can contribute significantly to performance.

There are several ways to characterize the macro locality of an algorithm. The page
fault rate indicates the frequency of page faults for a specific memory size. The working set
size measures the number of distinct pages referenced within a certain number of references.
The working set characterizes what the program needs, the page fault rate characterizes
how a program performs given particular constraints. This thesis uses both of these metrics
to evaluate the locality of collection algorithms in the main memory.

Traditionally, macro locality has strongly influenced the design of garbage collection
algorithms. Because the cost of a page fault is several orders of magnitude larger than
an ordinary memory reference, significant computation to avoid page faults can be cost-
effective. Close interaction between the Lisp memory management system and the oper-
ating system virtual-memory manager can reduce page fault rates, as shown for the Sym-
bolics [61]. Fateman suggested that user hints about page replacement strategies would
improve the virtual-memory performance of garbage collection in Franz Lisp [32]. Shaw has
also suggested small modifications to traditional VM systems that improve the interaction
of garbage collection and virtual memory [73].

But generation collection techniques have greatly improved the performance of garbage
collection algorithms [61, 57, 84]. While macro locality is still important, it does not rep-
resent the performance bottleneck it was ten years ago. Since then, processor performance
has increased tremendously while memory systems have become much more sophisticated
in order to deliver the instructions and data to the processor fast enough.

The locality of reference in the CPU data cache is also of interest when designing garbage
collection algorithms. Locality measurements at this level of granularity revolve around the
transactions between the cache and the main memory. The most common metric, the
cache miss ratio, is the fraction of references to the cache that require access to main
memory. Each cache miss results in a bus transaction that delivers a new cache block to the
cache. Other characterizations of micro locality include bus utilization (especially important
in determining performance of shared-memory multiprocessors), the bus traffic ratio, the
bus transfer ratio, and the transaction ratio [83]. Because the miss ratio is intuitive and
translates almost directly into additional execution time (each miss requires a fixed number
of cycles to service), this thesis uses it as the primary cache locality metric.

The micro locality of garbage collection algorithms has been almost entirely ignored.
One reason for this lack of interest was that the cost of poor main memory locality (10-30
milliseconds per page fault) is much larger than the cost of poor cache locality (typically 1-
10 microseconds per bus transaction, depending on block size and bus speed). In addition,
with the small cache sizes prevalent ten years ago (e.g., the VAX 11/780 has a 512 byte
mixed instruction and data cache), garbage collection algorithms could make little difference
in cache performance.

But cache locality is now of much greater interest for the following reasons. First,
generation garbage collection algorithms have significantly improved the macro locality of

12

programs so that macro locality is not necessarily a bottleneck any more. Second, cache
sizes have grown significantly in recent years to the point that a garbage collection algorithm
can significantly affect cache performance. Finally, and most importantly, bus utilization is
a severe bottleneck in the performance of shared-memory multiprocessors with a shared-bus
architecture. This thesis investigates the effect of micro locality on overall performance and
determines if micro locality is an important consideration in garbage collection algorithm
design.

A final measure of interest is the interactive response of an algorithm. The degradation
of interactive response can be characterized by the frequency and duration of pauses caused
by garbage collection actions. Unlike throughput, which is a purely objective measure, what
is considered acceptable interactive response is quite subjective. For example, a strong po-
sition might hold that any noticeable pauses are unacceptable. A more reasonable position
relates the frequency and duration of collection pauses. If pauses are frequent (e.g., every
ten minutes or less), they should be fast enough that the user does not notice them. If
pauses are less frequent (e.g., every hour of so), they may be noticeable, but should last
less than a second. Pauses that last a minute or more should occur very infrequently (once
a week perhaps). This thesis predicts the duration and frequency of several generation col-
lection algorithms and determines if the interactive response provided by these algorithms
is acceptable by some reasonable standards.

2.3 Previous Evaluation Studies

Previous evaluation studies of garbage collection fall roughly into three categories: imple-
mentation reports, analytic studies, and simulation-based evaluation. This section reviews
the work done in each category and indicates why previous work is incomplete.

2.3.1 Implementation Reports

This category is the most common form of garbage collection algorithm evaluation. A
particular algorithm is implemented in the context of particular hardware and software,
and a report is written to confirm that the implementation of a proposed algorithm was
successful. There are many examples of such reports. This section mentions a few of the
more recent studies.

Several implementation reports describe the observed performance of particular imple-
mentations of generation garbage collection. Ungar describes the performance of generation
scavenging in Smalltalk [84]. His performance metrics include CPU overhead, pause length
and resident set size. The performance of ephemeral garbage collection is described for
the Symbolics 3600 [61], LMI Lambda [57], and TI Explorer [25] Lisp machines. In these
studies, CPU overhead and paging performance is measured. Pause length is not of interest
because of the incremental nature of ephemeral garbage collection. Implementation reports
of garbage collection on conventional architectures have also been published. Sobalvarro

13

describes an implementation of generation garbage collection for the MC68020 [75]. Appel,
Li, and Ellis describe the performance of a hybrid incremental garbage collector for ML
using stock hardware [2]. Shaw describes a generation scheme that uses easily implemented
hooks in a traditional VM system [73]. These reports consider CPU overhead and VM
performance.

In helping to understand garbage collection algorithms, implementation reports have
both advantages and disadvantages over other approaches. The greatest advantage of mea-
suring an actual implementation is that real performance is measured. Commonly-used
programs can be executed and timed and the results are unequivocal. Any other perfor-
mance evaluation technique must make a set of assumptions, and the more assumptions
made, the more likely some assumption will break down in practice. If the assumptions are
incorrect, conclusions based on the assumptions may also be incorrect.

Evaluation through implementation has severe disadvantages as well. First, comparative
evaluation through implementation is time-consuming and almost never done. Implement-
ing a sophisticated garbage collection algorithm in the context of a Lisp system, operating
system, and hardware configuration is difficult for the same reasons that explicit manage-
ment of memory is difficult (outlined in Chapter 1). In commercial systems, new algo-
rithms are typically implemented several years after being proposed.! Correct comparative
evaluation requires fully implementing several very different algorithms. No comparative
evaluations of significantly different garbage collection algorithms have ever been done with
implementation studies.

Another inherent limitation of implementation reports is the restricted range of system
parameters that may be explored. Because the implementation is specific to a particular
hardware and software configuration, exploration of parameters outside the scope of the
particular system is impossible.

A final problem with implementation evaluation lies in the restricted forms of evaluation
that are possible. With respect to measures of locality, implementations can give only a
number of page faults or the time spent handling page faults. Cache performance is often
totally inaccessible to the user. Analysis through simulation (discussed below) offers much
more complete evaluation over a wide range of cache and memory configurations.

2.3.2 Analytic Evaluations

Another less common technique for performance evaluation of garbage collection uses ana-
lytic models of the algorithms to predict performance. Analytic evaluation is very different
from evaluation through implementation. Instead of writing detailed implementations of al-
gorithms, evaluators construct high-level mathematical models of the operations performed
during garbage collection. Instead of running actual Lisp programs, evaluators make as-
sumptions about how programs normally behave. Analytic studies are typically conducted

! Generation garbage collection was implemented in Franz Allegro Common Lisp and Lucid Common Lisp
in 1988, five years after the idea was published by Lieberman and Hewitt.

14

to determine gross characteristics of algorithms such as worst-case memory usage or ex-
pected cost of collecting a memory cell. Sometimes lower bounds on CPU overhead can be

be established.

Analytic results were used in the early 1970’s to determine “reasonable” semispace sizes
for copying collection algorithms. Hoare computes the cost of collection as a function of
the store size (9) and the average memory in use (k) [45]. He shows that a particular ratio
of S/k has optimal cost. Arnborg solves a similar problem in greater depth and mentions
that the model was validated, but gives no data [4].

Baker’s paper on incremental garbage collection considers the effect of the scanning
parameter (k) on the maximum memory requirements of the program [6]. He concludes
from this analysis that the maximum memory requirements of incremental collection are
significantly larger than traditional copying algorithms and proposes “cdr-coding” as a
mechanism to regain some of the lost address space.

Wadler examines algorithms for real-time on-the-fly garbage collection in the style pro-
posed by Dijkstra [87]. He concludes that the worst case performance of such a system is
only two times the overhead of traditional garbage collection algorithms. Hickey and Cohen
investigate the performance of proposed on-the-fly algorithms by describing allocation and
collection processes in terms of conditional difference equations [41]. They conclude from
this analysis that mutator/collector pairs would exhibit one of three types of qualitative
behavior. The values of a few system parameters such as ratio of active to total stor-
age (similar to Hoare’s parameter S/k) can be used to determine the efficiency of parallel
collection.

In all of these studies, a measure of the program’s locality of reference is not included as
part of the model. This incompleteness is a characteristic of analytic performance studies.
Because gross properties of the system are captured as parameters to the model (e.g., rate
of reference, rate of allocation, etc.), effects that result from microscopic actions (like a
memory reference) are impossible to predict. In practice, only one aspect of performance,
either CPU overhead or memory utilization, is modeled in each study.

A second problem with analytic performance evaluation is the number of simplifying as-
sumptions made. Typical assumptions include a constant rate of allocation, a constant rate
of deallocation (i.e., a steady-state amount of memory allocated), a constant marking rate,
etc. In practice, such assumptions are often incorrect. While not completely invalidating
the results, these assumptions decrease one’s confidence that the results are correct.

2.3.3 Evaluation through Simulation

The most promising approach to evaluating garbage collection algorithms is through trace-
driven simulation. Occupying the middle ground between implementation and analytic
models, simulation provides believable results without the high cost of implementation. In
addition, simulation allows flexible parameterization of the execution environment to allow
diverse exploration of the space of design parameters. Surprisingly, simulation has been

15

the least common evaluation technique for garbage collection. Furthermore, only a handful
of the limited simulation results are based on trace-driven simulation. Thus, simulation
appears to be an effective and underutilized tool for performance evaluation of garbage
collection algorithms.

Simulation of garbage collection using synthetic workloads has been used sporadically
for many years. Baecker describes the evaluation of a page-based copying algorithm for an
Algol-like language [5]. His synthetic workload consisted of randomly adding and deleting
elements from a two-way linked list. Newman and Woodward describe a simulation of
Lamport’s algorithm for on-the-fly multiprocessor garbage collection [65]. Their synthetic
workloads vary from sets of dense linear lists to highly-interconnected, sparsely-allocated
graphs.

Davies combines an analytic approach with a simulation [26]. His study investigates the
relationship between cell size and object lifetime in a non-compacting marking algorithm.
Davies first describes his model of memory occupancy and then tests his model with com-
puter simulations based on synthetic allocation of objects with familiar lifespan and size
distributions (e.g., exponential, hyperexponential). His research predicts memory system
requirements under these conditions.

Cohen and Nicolau use simulation to predict the effectiveness of compaction in several
mark-and-sweep algorithms [22]. In their simulations, they construct time-formulas for
each algorithm to predict the CPU overhead of the algorithm based on counts of different
operations, such as additions, comparisons, and assignments. Cohen and Nicolau compare
the CPU overhead of the algorithms, and they do not investigate other aspects of perfor-
mance at all. Furthermore, they limit their comparisons to compacting mark-and-sweep
algorithms, and do not consider copying, generation, or incremental algorithms.

Most recently, Ungar has evaluated the performance of generation scavenging strategies
based on trace-driven simulation [85]. In his study, Ungar collects lifespan information about
objects allocated over several four hour interactive sessions and writes this data to a file. He
then uses the trace file to predict the effectiveness of different policies for promoting data in
the context of generation scavenging. The CPU overhead and pause length are estimated.
No estimate of the locality of reference is attempted.

Evaluation based on trace-driven simulation has great potential. Comparative evalua-
tion is possible, system parameters can be varied easily, reference data is easy to collect and
evaluate, and evaluation can be based on the execution of any interesting program so that
few simplifying assumptions need to be made. Results based on trace-driven simulation are
currently sparse. Until very recently, no one has used trace-driven simulation to study the
reference locality of garbage collection algorithms. The reason for the lack of research in
this area lies in the computational cost of trace-driven performance evaluation.

Evaluation based on reference traces requires that actions be taken at every memory
reference event. In the execution of programs, tens of millions of such references take place.
Until recently the computational cost of performing an analysis of 10® events has been
high. Recent breakthroughs in processor and memory technology, which have provided

16

high-performance, low-cost workstations, have significantly reduced the cost of simulation.
The next chapter describes a trace-driven simulation technique that allows comparative
performance evaluation of garbage collection algorithms.

17

Chapter 3

A New GC Evaluation Method

This chapter describes an effective technique for comparing the relative performance of
garbage collection algorithms over a wide range of parameter values. The technique is trace-
driven simulation at the program object level using a tool called MARS (Memory Allocation
and Reference Simulator). This chapter outlines the design of MARS and describes the
test programs that are used in this thesis to compare the performance of several garbage
collection algorithms.

3.1 Overview of MARS

Trace-driven simulation based on program address references has been used for many years
to investigate hardware and software support for memory systems. Such studies collect
program address references and feed these traces through a simulator to predict memory
system performance. While raw address traces are sufficient to investigate the performance
of cache configurations and page-replacement algorithms, trace-driven simulation of garbage
collection must be carried out at a higher level because garbage collection manipulates
program objects and not raw addresses. MARS traces events as they occur to program
objects, and not memory addresses. In particular, object allocation, deallocation, reference,
and assignment events drive the garbage collection simulation.

MARS is a tool that attaches to an existing Lisp implementation (called the “host”
Lisp system). Figure 3.1 illustrates its components. MARS avoids interfering with the
execution of the host Lisp system, except that it considerably slows program execution
and increases the size of the virtual memory image. Because the host Lisp system is not
disturbed, any program that will execute in the host system can be used as a test program for
MARS. MARS requires small modifications to the host Lisp implementation so that when
interesting events occur (e.g., car, aref, or cons), information is passed to the simulator.
This implementation interface is intended to be quite small (in Franz Allegro Common
Lisp the total interface is about 300 lines of Lisp and C source code).

18

application software

Lisp implementation

monitor interface

hardware info : reference data

GC agorithm lifespan data

|
! |
|

|
! |
| |
|
; event monitor |

|
! |
|

|
! |
! |
! |

,,,

Figure 3.1: MARS Organization.

Unlike many trace-driven simulators, which store the reference events being traced in
a file, MARS simulates and evaluates garbage collection algorithms on-the-fly. There are
several reasons to avoid creating large trace files for garbage collection evaluation. First,
there are tens of millions of reference events in a typical Lisp program execution. Storing a
trace of all such events would require creating a large trace file (hundreds of megabytes) for
each program of interest. Second, connectivity information (i.e., what objects point to what
other objects) available in the executing program is needed by MARS to accurately simulate
the behavior of garbage collection algorithms. If only reference data were written to a file,
connectivity information would be lost. Finally, trace files often are needed to record the
behavior of a difficult to reproduce workload (like a multi-user operating system). With
MARS, programs are used to generate the traces, and so the traces are very reproducible.

3.2 Shadow Memory Simulation

MARS simulates garbage collection without any interference with the host Lisp system by
maintaining its own view of how program objects are allocated in memory. This simulator
view of memory is called the shadow memory because operations on objects in the host
Lisp system are “shadowed” in the simulator’s view of memory (Figure 3.2). By separating
the host implementation’s view and the simulator’s view of where objects are allocated in
memory, the simulator is free to allocate and transport objects in the shadow memory inde-
pendent of the host Lisp system. In reality, the shadow memory is not actually implemented

19

object mapping

Allegro Common Lisp

shadow memory

actual memory

Shadow Memory Mapping.

Figure 3.2:

20

except as a mapping from host Lisp objects to shadow memory addresses and vice versa.
In MARS, the shadow memory is implemented as a pair of large hash tables pointing to a
collection of structures containing shadow memory locations, object size and type, object
time of birth, and a count of the read and write references to the object. Because a Com-
mon Lisp implementation will normally have 200,000 or more objects active at any time,
maintaining the shadow memory and related data can be quite memory intensive. All eight
test programs described in this thesis had virtual images larger than 40 megabytes.

Shadow memory simulation is also CPU intensive. Every Lisp program object reference
(e.g., car, symbol-value, aref) needs to be translated to a reference in the shadow memory
for correct simulation. Thus, an operation that would normally require a single memory
reference now requires several function calls and a hash table lookup. On top of that, if
stack simulation is being used to measure locality of reference, each reference can be slowed
even further.

3.3 Measuring Time with References

One problem that arises in many experiments is interference between the measuring appa-
ratus and the events being measured. Even at larger than atomic scales, an “uncertainty
principle” takes effect. Clearly if shadow memory simulation slows execution time by a
factor of twenty or more, program CPU seconds cannot be used to measure time. Reported
CPU time has other inherent limitations. Often the resolution of processor time available
from the operating system is not very fine (15 milliseconds) and the durations of interest
(such as an object lifespan) can be much smaller. As an alternative, Shaw measures ob-
ject lifespans by noting how many garbage collections an object survives [73]. Assuming a
constant rate of allocation, this technique can only provide coarse-grained measurements
since at most few garbage collections happen each second. Memory allocation, however, is
highly dependent on the program being executed, so that the assumption of a constant rate
of allocation may be invalid. Later is this chapter, I show that the rate of allocation in my
test programs varies widely in a non-random fashion.

As an alternative, a count of heap memory references provide a good standard unit of
time and have been used as a unit of time in many performance evaluation studies. Using
individual references as a unit of measure allows measurements with microsecond resolu-
tion, and the assumption that references occur at a constant rate is experimentally sound.
Figure 3.3 shows the rate of heap references per instruction for three large programs and
several small benchmarks. While the rate of reference is not a constant, the variance
about the mean is quite small compared to the variance in the rate of allocation. The small
benchmarks, taken from the Gabriel benchmark suite [34], indicate how these benchmark
programs show almost no variation in rate. The small benchmarks show little variance
because they perform the same task repeatedly, which is not how larger programs normally
execute. Even though the larger test programs show more variance, the variation is suffi-
ciently small that an assumption of a constant reference rate is reasonable. Furthermore,

21

Application Reference Rates

1
o
ad
0O
S T | . . O -
\
g | 0 0
S \
Re)
S o | | ==
2 o |
g T = :
0
g O % B
S ~ | - _E_
s {
13 \
I \
- \ é
“ \
o | 1 E
g
o
o

RSIM Weaver SLC traverse frpoly boyer puzzle browse fft

Application

Figure 3.3: Reference Rate Distributions for Several Programs. The distributions are presented
using box plots. The box indicates the 25th, 50th (center line), and 75th percentiles. The lines
extending above and below each box indicate values in a 1.5 interquartile range. Points outside this
range are considered outliers and marked individually.

22

the variation indicates that the programs are exhibiting a variety of behavior in their ex-
ecution. The rest of this thesis assumes that programs show a constant rate of reference
to the heap and durations are calculated based on the assumption that a count of memory
references can be used as a clock.

3.4 Reference Locality Based on Heap References

The single event type that MARS uses to predict all other performance metrics is the heap
memory reference. Lisp programs also reference memory to load instructions and access the
stack. Table 3.1 breaks down memory accesses by type for four SPUR Lisp applications.
The relative frequency of instruction fetchs, heap reads and writes, and stack reads and
writes is shown.

Memory Access Type RSIM | Weaver | SLC | PMA
Instruction fetch (%) 86.5 87.5 | 83.1 | 83.2
Heap reads (%) 7.7 10.6 | 12.2 | 10.6
Heap writes (%) 0.8 06 | 14 1.3
Stack reads (%) 2.1 0.6 | 1.7 2.4
Stack writes (%) 2.4 0.6 | 1.7 2.5
Heap accesses / instruction (%) 9.8 12.8 | 16.4 | 14.3
Ifetches / Heap Reference 10.2 78| 6.1 7.0

Table 3.1: Relative Frequency of Memory Reference Operations for four SPUR Lisp Applications.
RSIM, Weaver, and PMA are described in Appendix A. SLC is the SPUR Lisp compiler.

MARS simulation does not track instruction fetches because, while they account for a
lion’s share of the memory traffic in a program (> 80%), their reference locality is very
different from the reference locality of heap references. Furthermore, garbage collection
techniques have little effect on the reference locality of instruction fetches. Many systems
take advantage of this difference by providing separate caches for instructions and data
(e.g., the MIPS R3000 architecture [50]). The micro locality studies presented later in the
thesis assume a processor with separate instruction and data caches.

Accesses to the runtime stack are not of interest for similar reasons. It is accessed
differently from the heap, and garbage collection strategies have little or no effect on accesses
to the runtime stack. Furthermore, commercial systems have been designed to minimize
stack-related memory references through efficient use of registers to store stack values [49,
42, 79, 88]. Table 3.1 shows that the SPUR register windows are effective at minimizing
runtime stack references. In general, the effectiveness of minimizing stack-related memory
traffic depends entirely on the architecture and compiler. In my simulations, I assume that
runtime stack references have been entirely eliminated. In any event, stack-related memory

23

references have much better locality of reference than heap references, so my reference
locality results would be uniformly improved by including stack references. By leaving out
such references, I simply provide a slightly more conservative estimate of the locality.

Shadow-memory simulation does not preclude also measuring stack and instruction
memory references, but because garbage collection will not affect the locality or occurrence
of these references, they were not deemed important enough to measure.

3.5 Other Tools

In addition to the heap reference-level results collected with MARS, another simulator was
used to collect instruction-level results. BARB is an instruction-level simulator for the
SPUR architecture [42] that was used to develop and to debug SPUR Common Lisp and to
predict the performance of the SPUR architecture [81]. Because BARB has relatively good
performance (50,000 simulated SPUR instructions per second on a VAX 8800), it was used
to gather some of the instruction-level measurements provided in this thesis. More details
about BARB are available with a description of the SPUR Lisp implementation [96].

3.6 Test Programs

The results in this thesis were collected by attaching MARS to Allegro Common Lisp
executing on a Sun4/280 computer with 32 megabytes of memory. Modifications were made
to the Allegro Common Lisp compiler and runtime system to intercept the necessary events
(e.g., car, cdr, cons, aref). The test programs were compiled with low optimization and
high safety settings to force certain operations to be performed out-of-line. Except where
the compiler might have optimized away temporary numerical objects (such as intermediate
floating point values), the speed and safety settings of the test programs should have no
effect on the gathered data.

The programs used as test input were gathered from a variety of sources. The main goal
in collecting these programs was to find large programs that represent a variety of program-
ming styles, programming paradigms, and application areas. Computational programs were
favored over interactive programs because they allocate more intensively; and with the goal
of understanding the performance of garbage collection, I was most interested in stressing
the performance of the garbage collector with compute-intensive programs. Furthermore,
with the goal of understanding the performance characteristics of systems of the future, I
am interested in compute intensive programs because they are the programs that need the
performance provided by multiprocessors and fast workstations.

My eight test programs represent a range of programming styles from Maclisp programs
converted into Common Lisp, to recently written Common Lisp programs that use hash ta-
bles, sequence operations, and user-defined structures. The programming paradigms include
rule-based expert systems, object-oriented programming using CLOS (Common Lisp Object

24

System), data-driven pattern-matching, and also normal procedural programs. Applications
include a theorem prover, a compiler, a circuit simulator, and a program transformation
system.

Results from eight test programs are inherently difficult to display. Graphs with eight
sets of lines are confusing, eight separate graphs do not fit on a page, and tables with eight
columns are too wide. To solve this problem, in the body of the thesis, results from only
four of the test programs are presented. A description of the four additional programs and
related results are available in Appendix C. Furthermore, since graphical data is easier
to understand than tabular data, the body of the thesis presents results graphically when
possible. A tabular form of the results for all eight test programs is available in Appendix D.

The four programs used in the thesis body are the largest and most diverse of the eight
test programs. Information about these programs is summarized in Table 3.2.

Resource Description ACLC | Curare | BMTP | RL
Source lines 46500 | 45000 | 21500 | 10200
Execution time (sec), w/o monitor 410 242 211 477
Execution time (sec), w. monitor 6591 4708 6644 | 9202
Monitor factor slowdown 16 19 31 19
Program references (millions) 83.7 57.9 69.3 | 108.1
Objects allocated (millions) 5.1 1.43 1.3 7.8
Bytes allocated (millions) 59.9 16.9 11.1| 81.8

Table 3.2: General Information about the Test Programs.

3.6.1 The Allegro Common Lisp Compiler (ACLC)

The Allegro Common Lisp compiler is the largest test program, containing approximately
47,000 lines of Common Lisp source code. The compiler is a widely used commercial com-
piler and is written in a “modern” style, using all the functions available in Common Lisp.
The compiler reads the source input, generates an abstract syntax tree, generates “quads”
from the tree, and then optimizes the quads. The test input for the compiler is three large
files containing 8,300 lines of source code. The three large programs cause the compiler to
allocate about 60 megabytes of data.

3.6.2 Curare — A Scheme Transformation System

Curare is a source-to-source program transformation system that parallelizes Scheme code
for execution on a multiprocessor [54]. It is written in an object-oriented style and uses
the Common Lisp Object System (CLOS) [12]. Curare reads a Scheme program, computes

25

dependence information through both intra- and inter-procedural dataflow analysis, com-
putes the program alias graph, which embodies structural conflict information, and applies
a series of transformations that eliminate conflicts and parallelize the code. While the in-
put program is small (less than 100 lines), Curare allocates 17 megabytes of data while
transforming it.

3.6.3 The Boyer-Moore Theorem Prover (BMTP)

The Boyer-Moore theorem prover is a large Lisp program originally written in Interlisp,
converted to Maclisp, and finally converted to Common Lisp [14]. It should not be confused
with the Boyer benchmark program fragment reported in Gabriel [35] and widely used in
estimating the performance of Lisp systems. The Boyer benchmark is a small fragment (150
lines of source) of the complete Boyer-Moore theorem prover (21,500 lines of source). The
theorem prover builds a database of patterns and proves theorems by matching the theorem
to be proven against known patterns. Because this program was written in an older dialect
of Lisp, lists are used almost exclusively throughout the program. This program is of interest
because it exemplifies two things—an application containing an Al search algorithm, and a
large program written in an older style that can be contrasted with modern Common Lisp
programming styles. The test input to the theorem prover is part of a proof of the Church-
Rosser theorem. The proof requires significant computation, but allocates less memory than
the other test programs (11 megabytes).

3.6.4 A DSP Microcode Compiler (RL)

RL is a microcode compiler for a class of digital signal processing architectures with hor-
izontal microcode [70]. It is written with modern Lisp programming techniques and data
structures. RL is unlike other compilers in that its main job is to schedule different func-
tional units horizontally in the microcode being generated. It does this using a network flow
algorithm on a graph representing function units and time. RL is also interesting because
it makes heavy use of structures to represent the graph it is analyzing. Its network flow
algorithm is representative of applications that manipulate large graphs. The computation
performed is very memory intensive, allocating almost 82 megabytes of data while compiling
two input files with a total of approximately 100 lines of text.

3.6.5 Programs in Appendix A

Data for four more programs is presented in Appendix C along with a description of each
program. I briefly introduce these programs here so the reader is aware of their presence.
The programs are: RSIM, Weaver, a Prolog compiler, and the PERQ microcode assembler
(PMA). RSIM is a transistor-level circuit simulator simulating a simple counter [82]. It was
selected because it has been used in other empirical studies [74] and because, of the test
programs, it makes the heaviest use of floating point numbers. Weaver is a routing program

26

written as a set of OPS5 rules. It exemplifies another common Al programming paradigm:
rule-based programming. The Prolog compiler compiles a Warren abstract machine (WAM)
representation of Prolog into instructions for a RISC architecture (SPUR). This compiler
performs several optimization phases by pattern matching components of a tree representing
the program. PMA is the PERQ microcode assembler for the Spice Lisp system [89].

3.7 Characterizing the Test Programs

This section presents general data gathered using MARS that characterizes the behavior
of the test programs. By first understanding their general behavior, we can then better
understand how garbage collection will affect this behavior.

3.7.1 Object Allocation by Type

Previous studies have measured large Lisp programs and found that cons cells were the
most frequently allocated object [19, 74, 78]. Shaw expressed concern that the programs
he measured did not represent the most up-to-date Common Lisp programming practices,
including use of the wide variety of data types available in Common Lisp. Most of the
programs were written by programmers who were fully aware of the data types available in
Common Lisp. Most contain user-defined structures. Of the four programs presented, only
the Boyer-Moore theorem prover was not originally written in Common Lisp.

Figures 3.4 and 3.5 present allocation information for each test program broken down
by type. Figure 3.4 show the fraction of total bytes allocated for each class of types. Fig-
ure 3.5 shows the fraction of objects allocated for each class. These figures (and subsequent
ones) break down types into five categories: cons cells; symbols; vectors, which include ar-
rays, vectors of general objects, and user defined structures; numbers, which include floating
point numbers, bignums, complex numbers and ratios; and other, which includes all other
data types, but most significantly strings and function objects.

Cons cells represent more than 50% of total space allocated, even in programs written
in a “modern” style. Vectors and structures account for the second largest share, ranging
from 15-30% of total bytes allocated (excluding the theorem prover). Cons cells account for
more than 80% of the objects allocated in all cases. This data indicates a garbage collection
algorithm should optimize the reclamation of cons cells and a storage allocation algorithm
should optimize the allocation of cons cells.

This data also points out similarities and differences between the test programs. None
of the programs use significant amounts of numerical data. Symbols and strings are in-
frequently allocated. The Boyer-Moore theorem prover is clearly different from the other
programs in its lack of types other than cons. Curare, while written in an object-oriented
programming style, makes relatively infrequent use of instance objects (represented as vec-
tors), probably because of the high overhead associated with manipulating instance objects
in CLOS as compared with operations on regular Lisp data types. A large part of the “other”

27

=S

100 -
B
y
t 80 |-
e
S

60 [~
A
: 40 |-
)
c 20 |~
a
t
e O
d

Lisp Compiler Curare Boyer Moore TP RL
Lisp Application

| | cons [symbol [] vector [number [Jjj other

Figure 3.4: Object Allocations for Test Programs (by type and size).

%
(@]
b 100
j
e 80
C
t
s 60
';‘ 40
|
o 20
C
a
t 0
e
d

Figure 3.5:

Lisp Compiler Curare Boyer Moore TP RL
Lisp Application

| | cons [} symbol [| vector [number [Jjj other

Object Allocations for Test Programs (by type and number).

28

component in Curare is due to dynamically defined code objects allocated by CLOS. The
Lisp compiler and RL both show a healthy use of Common Lisp structures, although vectors
still represent a small fraction of the total bytes allocated.

3.7.2 Object References by Type

Figure 3.6 breaks down references to objects by object type for the four test programs.

B0
%
R 80| i
fo60 [ffre B e
e
r
e 40 | R e B
n
C Al o N
e 20
N N

o — I) B

Lisp Compiler Curare Boyer Moore TP RL
Lisp Application

| | cons [} symbol [| vector [Jj number] other

Figure 3.6: Object References by Type for Test Programs.

Again, cons cells represent the large majority of object references, although many refer-
ences to symbols are also noted. Symbol references represent accesses to the symbol value
of the symbols, either retrieving the value of a global variable, or saving and restoring the
value during binding and unbinding of special variables. Many Lisp systems also access
the function cell of a symbol at each function call to implement function call indirection.
These accesses are not included in this data because they represent an artifact of the imple-
mentation. In another paper, I describe the effectiveness of direct function calls in SPUR
Lisp [94].

Because cons cells remain the most frequently allocated and referenced data type, the
effectiveness of a garbage collection strategy depends heavily on how that algorithm interacts
with the observed lifespan behavior of cons cells. Chapter 7 presents a more detailed look
at the lifespan distribution of objects. For now, I will help characterize the behavior of
the test programs by looking at the rate of birth and death of object types throughout the
execution of the program.

29

3.7.3 Object Birth and Death Rates

Rates of object allocation and deallocation are extremely application-dependent. While
looking at the object birth rates for four applications does not allow us to make general
conclusions about such rates, it does provide us with a better understanding of the programs
being measured. Figure 3.7 presents the allocation rates of objects by type for the four test
programs. Execution times presented do not correspond with measured execution, but to
the normalized time as measured using program references.

Looking at the changes in allocation rates, the behavior of the programs becomes more
apparent. The Lisp compiler was measured compiling three files. The birth rates show a
decrease in cons allocation and an increase in number allocation when the compiler finishes
compiling each file. Numbers are allocated when the FASL file is written because the
32-bit instructions are represented as bignums (arbitrary-sized integers). RL was used to
compile two files of different sizes. The allocation rates clearly indicate two similar execution
sequences. Curare allocates a large dependence graph in its early stages, and then allocates
very little for most of its execution. Curare’s author carefully tuned it to remove unnecessary
memory allocation. In all cases, the birth rates indicate that the programs showed a complex
time-dependent allocation behavior, where the rate of allocation varied dramatically over
the execution of the program. In contrast, smaller benchmarks, such as those in the Gabriel
benchmark suite [35], show a near-constant rate of allocation as a function of time because
they represent small programming tasks repeated hundreds of times. Such simply-behaved
programs are not suitable for effective trace-driven simulation studies.

Another conclusion we can draw from these graphs is that while average allocation rates
on the order of 500 kilobytes per second should be expected, peak rates several times higher
can be sustained for periods of several seconds or more.

In addition to allocation rate, deallocation rate is also of interest to designers of storage
reclamation systems. Figure 3.8 shows the net allocation rates for the four test programs
as a function of time. The net allocation rate is measured as the difference between the
number of bytes allocated and bytes deallocated in a particular time interval. Objects are
assumed to be deallocatable immediately after the last reference to them occurs before they
are reclaimed.

Many analytic models of garbage collection assume allocation and deallocation are in a
steady state (i.e., equal), which means the net allocation rate is zero. The figure shows that
such an assumption is false if the time interval considered is sufficiently small (on the order
of a few seconds). The figure indicates that periods of rapid heap growth are often followed
by phases of heap contraction. Furthermore, the contractions tend to be more extreme
than the expansions. Intuition suggests that extreme contractions will occur at stages in
the program where a task has been completed and the memory allocated for it is not longer
needed. These results enhance this intuition in two ways. Contractions do occur, but are
not as extreme as one might guess (see the Prolog compiler in Appendix C for the most
extreme case). Also, before contractions, periods of intense expansion often occur.

30

kbytes / second

kbytes / second

100 150 200 250 300 350

50

40 60 80 100 120 140 160

20

Lisp Compiler

Object Type
— — — other
— — — — number
—————————— vector

— COns

User Time (sec)

Boyer Moore TP

User Time (sec)

RN < P N NP2 W L~
L 1 1 1 1 1 1 J
0 20 40 60 80 100 120 140

kbytes / second

kbytes / second

100 150 200 250 300 350

50

100 150 200 250 300 350

50

Curare

0 20 40 60 80 100 120

User Time (sec)

RL

User Time (sec)

Figure 8.7: Program Allocation Rates as a Function of Time.

31

kbytes / second

kbytes / second

100

50

-50

-100

20 30

10

-40 -30 -20 -10

-50

Lisp Compiler Curare

50
1

kbytes / second
-50

- o
o
Object Type F.'
— — — other
— — — — number
—————————— vector
— cons ‘
|
C 1 | |] 3 1 1 1 1 1]
i
0 50 100 150 200 0 20 40 60 80 100 120
User Time (sec) User Time (sec)
Boyer Moore TP
L
LB
(&)
()
= 2]
[}
[0)
s
Qo
* 4
= L L L L L L | 8f L L L L |
0 20 40 60 80 100 120 140 0 50 100 150 200 250
User Time (sec) User Time (sec)

Figure 3.8: Net Allocation Rates as a Function of Time.

32

Garbage collection during an expansion is less effective because much of what has been
allocated remains reachable. Collecting after a contraction is more cost-effective because
more storage is reclaimed. Using a technique called “opportunistic garbage collection,”
Wilson suggests basing collection on factors such as stack depth [90]. If a low stack depth
corresponds with periods of contraction, such a mechanism could be effective in enhancing
the performance of collection.

33

Chapter 4

Algorithms for Garbage Collection

This chapter introduces the policies and parameters of interest when evaluating garbage col-
lection algorithms and then describes the three algorithms used for the evaluation studies
in the following chapters. Collection policies involve decisions about traversal, preserva-
tion, promotion, allocation, and garbage collection invocation. Three algorithms described
later in this chapter that use these policies are: simple stop-and-copy collection, incremen-
tal collection, and mark-and-deferred-sweep collection. Each algorithm is augmented with
generations.

4.1 Garbage Collection Policies

Policies for garbage collection can be split roughly into two groups: allocation policies,
including how the heap is organized and when reclamation is invoked, and reclamation
policies, including how to traverse reachable objects and how to preserve them once they
are discovered. Deciding when to promote an object is an important policy for generation-
based collection algorithms. This section discusses each policy in detail and suggests why
some policies are of particular interest.

4.1.1 Heap Organization

Heap organization has many different facets, all of which affect the performance of garbage
collection. The section discusses three aspects of heap organization: impact of data types
on organization, organization of individual generations, and the relationship between gen-
erations.

Data types strongly influence heap organization. To obtain various performance bene-
fits, objects of the same type have been allocated together in many systems [31, 13, 21, 93].
Interlisp allocated pages of cons cells and kept per-page free lists [13]. Recognizing that
the value cell of a symbol is accessed more often than the other components, Cohen sug-

34

gested separating the different components of symbols and putting them in different parts
of memory [21]. Shaw reaffirmed the advantages of this representation [74].

Objects are often segregated by type to facilitate type identification. In systems where
the upper bits of a pointer are used as a type descriptor (high tagging), as in Spice Lisp [89],
objects of different types exist in different parts of the address space. Pages of objects are
sometimes allocated together and a single descriptor for the page types all the objects in
it, as in Franz Lisp [31]. This so-called Big-Bag-Of-Pages (BiBOP) method allows type
descriptors to be maintained without using address bits. The disadvantage of storing the
descriptor in memory instead of with the pointer is that a memory reference is required to
identify the type of any pointer. An alternative tagging mechanism stores the tag for the
most common data types (cons cells, symbols, fixnums, etc.) in the low bits of a pointer (low
tagging). Recent commercial Lisp systems use low tagging to implement type descriptors
(e.g., Franz Allegro Common Lisp [33]). Low tagging does not require a memory reference
for type determination of most pointers, and does not reduce the size of the address space by
using up the upper bits of pointers. Furthermore, low tagging eliminates the need to group
objects by type. Because low tagging appears to be the most effective tagging mechanism
for stock hardware, this thesis assumes low tagging is used to type pointers in the algorithms
simulated.

Objects are also segregated by type to make garbage collection easier or more effective.
Non-compacting mark-and-sweep garbage collection becomes complicated when data types
with variable size (e.g., vectors) are allowed. If all object types are allocated together, room
must be found for objects of arbitrary size. The fragmentation that results from best-fit or
first-fit allocation policies may be unacceptable. If fixed-size objects of the same type (such
as cons cells) are allocated in groups, then fragmentation for objects of that type can be
eliminated. To minimize fragmentation even further, vector objects can be allocated in two
parts: a fixed-size header that points to a variable-sized body allocated in another part of
the heap. KCL organizes vectors in this way [93]. The header is reclaimed with a mark-
and-sweep technique and garbage in the region of the heap containing the body is reclaimed
using copying collection. While this method avoids fragmentation, it has the disadvantage
that references to vector bodies must be made indirectly through the header. Because non-
compacting mark-and-sweep algorithms seldom transport objects (except vector bodies),
they exhibit potentially higher locality of reference. One of the algorithms considered here,
mark-and-deferred-sweep collection, uses such an allocation policy.

The heap may also be organized to facilitate the scanning phase of a copying collector.
The collector has to linearly scan memory and traverse pointers it finds during the scan.
Some architectures, such as the Symbolics [62], maintain a bit per word of memory indicating
whether the word contains boxed data (a pointer) or unboxed data (non-pointers, e.g., an
instruction or floating point number). On stock hardware, the collector must maintain
enough information about objects to make this decision. A standard header that indicates
the size of the object can be placed with each object, so that successive objects can be
identified. This method wastes memory if the header is required in small objects such as
cons cells (typically 8 bytes). Often, objects are segregated by type to facilitate scanning.

35

Because cons cells are so common, separating cons cells from other objects and attaching a
header to all types except cons cells is an effective way to facilitate memory scanning.

Increased algorithm complexity is a concern that balances the benefits of segregating
types in the heap. In many cases, type specific organization represents a tuning of algorithms
to improve performance. A simpler approach allocates objects of all types together in
the heap (a mixed heap). For copying collection algorithms, because there are so many
policies to consider, I limit investigations to consider a mixed heap, the simplest organization
policy. The simulated mark-and-deferred-sweep algorithm groups objects by type to avoid
fragmentation, as described above. Further studies are needed to determine if a more
complex type-based organization of the heap significantly improves copying collection.

Another important consideration in heap organization is how to organize the genera-
tions and semispaces in the heap. With generation collection, several important questions
immediately arise. One important parameter is the number of generations used. While
Ungar maintains only two are generally necessary and more can be difficult to tune [85],
Caudill reports on a Smalltalk system with seven generations and concludes that seven
generations appear sufficient, although probably not necessary [17]. The SPUR processor
provides hardware support for four generations and SPUR Lisp uses only three of these [96].
In my simulations, four generations are sufficient because not enough data is allocated by
the test programs to require any more than three.

The way in which the operating system supports large, sparse address spaces affects the
layout of generations in the heap. Many older operating systems do not support arbitrarily
large holes in the address space (e.g., Unix 4.2 BSD and Ultrix). With this constraint,
several large unfilled generations may be impractical. However, modern operating systems,
such as Sprite [63] and Mach [69], support sparsely-populated address spaces, where widely
separated areas of the heap can be mapped and referenced efficiently. For the purposes
of these studies, I assume each generation resides in a separate part of the address space,
generations are sufficiently far apart that they do not overlap, and each generation can grow
independently of the others.

A common implementation of generation garbage collection divides generations into
semispaces. To avoid premature promotion, an object is first copied back and forth be-
tween semispaces within a generation before being promoted. After a certain number of
copies, the object is known to have existed long enough and is promoted. To correctly
implement this policy, called copy count promotion, a copy count must be maintained with
each object. Smalltalk implementations tend to use per-object copy counts because ob-
jects are often large anyway (Ungar reports the average size of a Smalltalk object is 50
bytes [84]). In Lisp, the most common objects, cons cells, are small and a per-object copy
count is less practical. There are several alternatives to per-object copy counts. A crude
method promotes all objects in a generation after a particular number of copies, and is
called en masse promotion. The disadvantage of en masse promotion is that young objects
are promoted with older ones. Other approaches group objects with similar ages together.
Shaw suggests maintaining multiple semispace regions per generation and advancing objects

36

from region to region as they are copied [74]. In this “bucket brigade” method, objects in
the oldest region are promoted to the next generation. Wilson suggests that only a couple
of such regions are necessary [91]. These approaches complicate the structure of the heap
and the implementation significantly. To determine if copy counts are necessary, this thesis
compares the relative effectiveness of copy count and en masse promotion strategies.

4.1.2 Deciding When to Collect

Traditionally, garbage collection is invoked whenever it is needed. In a two semispace
configuration, when a semispace fills, a collection is invoked. If copied objects fill 90% of
the “to” semispace after collection, then another collection will be invoked after allocating
from the remaining 10% of the semispace. If 90% of tospace is filled after each of many
collections, then frequent garbage collections will consume a large fraction of the CPU.
This thrashing behavior resulting from rigid semispace boundaries is a source of instability
in collection algorithms with fixed semispace sizes. Fixed semispace sizes may result from
operating system constraints that prevent the heap from growing. With the belief that
modern operating systems will allow expansion of arbitrary regions of the heap, I assume
each semispace in each generation can grow arbitrarily if the collector decides to let it. Thus,
decisions to begin a garbage collection are based not on need, but on a policy determining
when collections are most appropriate. In particular, my algorithms perform a collection
after a specified number of bytes have been allocated (the collection threshold).

By thinking about two measures of garbage collection performance—collection duration
and frequency—I can show how a threshold-based policy is preferable to a fixed-size policy.
Consider the two parameters that determine the frequency and duration of collection: object
birth rate and death rate. Assume constant rates over a number of collections. When the
birth rate equals the death rate, the system is in equilibrium, and the two collection policies
show the same behavior. However, if births outnumber deaths, while the frequency of
collection using a threshold policy remains constant, the fixed space policy causes collections
with increasing frequency, resulting in potential thrashing. Over the lifespan of a program,
object births and deaths are generally equal, but if the semispace size is too small, there
is a high probability that the rates of birth and death are very different, as illustrated in
Figure 3.8. When the net allocation rate varies widely, threshold-based collection policies
are more stable than fixed-size semispace policies.

Collections in each generation can be triggered by thresholds for that generation if
promotions to a generation are counted against the generation’s threshold. The threshold
parameters (one per generation) have a tremendous impact on the performance of a system,
and are one of the major parameters of interest throughout this thesis. Threshold sizes
determine the locality, frequency, and duration of collections and, indirectly, the rates of
promotion.

37

4.1.3 Traversing Reachable Objects

All garbage collection algorithms identify reachable objects by starting from a special set
of pointers (the root set) and proceeding transitively to each reachable object. The root set
includes the machine registers, runtime stack, binding stack, global variables, and intergen-
erational pointers if generation collection is performed. Because the root sets are similar
for every algorithm, there is little variation between algorithms in traversing the root set.

Before discussing the different traversal policies for copying and non-copying collectors,
I will mention the actions that must be taken by any traversal algorithm. In traversing
reachable objects, any algorithm will visit each object and read every pointer in that object.
Furthermore, some action must be taken to indicate the object has been visited (the mark
operation) and each object must be tested when it is visited to determine if it has been
marked.

Whatever algorithm is used, every pointer in a reachable object must be tested for
several things. If the pointer is actually an immediate value, it is ignored. If the pointer
points to a generation that is not being collected, it is ignored. Finally if a pointer indicates
an object in the current generation, the mark for the object must be accessed to determine
if the object has been traversed. Thus, there are many similarities in the algorithms that
traverse reachable objects.

The major difference in traversal policies between copying and non-copying collectors
arise from the recursive nature of traversal. Because objects contain more than one pointer,
a record must be maintained to indicate which pointers of an object have been traversed.
For example, as one pointer in a cons cell is followed and objects reachable from it are
identified, the other pointer must be stored somewhere so the algorithm can eventually
follow it as well. In a non-copying algorithm, the record is maintained by placing the
pointers yet to be followed on a stack. Implementations of the stack vary, but the minimum
cost of maintaining the stack is one push and one pop operation per object traversed.

Copying collectors use tospace as a list of pointers yet to be traversed. Two addresses in
tospace are maintained: copy, which indicates where the next object in fromspace should
be copied, and scan, which indicates the current address being scanned. Addresses between
the base of tospace and scan have been scanned and the objects pointed to by pointers in
this range have been copied. Pointers in addresses between scan and copy have yet to be
traversed. When scan equals copy, all objects in fromspace have been transported.

The other difference between copying and non-copying algorithms lies in the way in
which objects are marked as visited. Non-copying algorithms only need a single bit to
indicate if an object has been visited. A bitmap can be used for this purpose. Because
copying algorithms must also relocate pointers to the objects that have been transported,
the new address of the object must also be retained somewhere. This forwarding pointer
is typically stored with the old copy of the object in such a way as to indicate that the
object has been transported. Another cost in copying collectors not associated with non-
copying collectors is the updating of pointers to transported objects. In 1977, Clark and

38

Green showed that most objects have a reference count of one [19], indicating the cost of
relocating pointers to transported objects is approximately one store per object transported.

4.1.4 Preserving Reachable Objects

I have just outlined how a copying algorithm preserves reachable objects by transporting
them to tospace. Non-copying algorithms do not copy reachable objects, but instead mark
them and then collect the unreachable objects. Objects are non-reachable if their mark bit
is not set during the mark phase. As mentioned, clearing the mark bits and scanning for all
unmarked objects requires time proportional to the size of memory. However, by combining
generational collection with a bitmap representation of the mark bits, the execution time
for maintaining the mark bits and sweeping the table can be made reasonable.

Generational collection allows a small fragment of the total heap to be marked and swept
independently. By representing mark bits in a bitmap, the memory needed to maintain
marks for a generation is compressed by a factor of 64 (1 bit per minimum sized object, an
8-byte cons cell). For generation sizes of 1-2 megabytes, the mark table is relatively small
(64 kilobytes or less), and the cost of sweeping the mark table is not prohibitive.

A further enhancement to mark-and-sweep collection can improve interactive response.
Instead of reclaiming unmarked objects immediately after the mark phase, the sweep phase
can be deferred and performed incrementally. Sweeping can be tied to allocation, as in
incremental copying collection, so that, for example, every 30 allocations the mark bits are
checked and 30 more objects are collected. The noticeable pauses of mark-and-deferred-
sweep collection can be tied to the mark phase alone.

4.1.5 Promotion

Policies for promotion interact closely with heap organization policies. This section discusses
policies intended to prevent premature promotion, what can be done if premature promotion
occurs, and how promotion policies interact with a non-copying generation algorithm, such
as mark-and-deferred-sweep collection.

A collection algorithm benefits from promoting a long-lived object as soon as possible
so that the object is not copied back and forth in newspace unnecessarily. Approximate
information about object age can be maintained with the objects (copy count promotion),
with a group of objects (Shaw’s bucket brigade), or with the entire generation (en masse
promotion). In my simulations, I explore the two extremes: copy count and en masse
promotion. I believe maintaining per-group counts is probably the most effective strategy,
but investigating the extremes provides the broadest range of information.

Data type is used in generation collectors as a basis for making decisions about promo-
tion. Function objects, known to be mostly long-lived, are often allocated in areas separate
from other types and never collected. Ungar and Jackson indicate that segregating bitmaps
and large strings reduces premature tenuring in Smalltalk [85]. Ungar and Jackson also

39

propose a sophisticated mechanism they call “demographic feedback” to further reduce
premature promotion. This policy uses information about space size and rate of copying to
prevent promotion when the prevention does not interfere with interactive response. Un-
fortunately, the allocation rates and object lifespans in Lisp are significantly different from
those in Smalltalk. Algorithms with two generations, such as generation scavenging, do not
allow the flexibility required to efficiently manage data allocated at a high rate. Chapter 7
looks at the rates of promotion observed for the three algorithms and investigates what
policies can effectively manage data allocated at the rates expected for Lisp running on a
high performance workstation.

One clear solution to the problem of premature promotion is to provide multiple gen-
erations and collect the intermediate generations as they fill. The greatest problem with
multiple generations is designing them so that the collection of older generations is infre-
quent, or if frequent, then at least non-disruptive. Incremental collection provides the most
attractive solution to the problem of disruptive collection of older generations. One of the
goals of this thesis is to investigate incremental collection and determine if it is appropriate
for this purpose. If incremental collection is not cost-effective, then exploring policies to
allow non-disruptive collection of intermediate generations will be even more important.

A final aspect of promotion relates to implementing non-copying mark-and-sweep collec-
tion with generations. Although generation collection algorithms where objects never move
can be envisioned, this thesis investigates a non-copying mark-and-sweep algorithm where
objects are relocated when they are promoted. Unfortunately, because grouping objects by
age is not feasible with a non-copying collector (since they never move and are reallocated
as they die), either approximate lifespan information must be kept with each object, or the
entire generation must be promoted together. The space overhead of maintaining a 1-4 byte
copy count with each cons cell is unattractive. As an alternative, a count bitmap can be
used, where several bits per object are used to maintain a small copy count per object. This
approach trades off the space of a larger count with the execution time required to extract
two to three bits from a word. Because I am interested in understanding the overhead of
en masse promotion, and because it is the simplest policy to use in a non-copying collector,
I investigate a mark-and-sweep algorithm that uses en masse promotion.

4.2 The Algorithms Simulated

The following chapters of this thesis present a comparative performance evaluation of three
garbage collection algorithms: simple stop-and-copy collection, incremental copying collec-
tion, and mark-and-deferred-sweep collection. All algorithms are enhanced to include four
generations. I have mentioned many of the policies I am exploring earlier in this chap-
ter. This section provides an overview of each algorithm. In Appendix B, a pseudo-code
implementation of each algorithm is provided.

40

4.2.1 Stop-and-Copy Collection

This is a simple copying algorithm augmented with four generations. Because of its sim-
plicity and ease of implementation on stock hardware, this algorithm provides baseline data
that the other algorithms can be compared against. If the performance of this algorithm
is adequate, the more complex mechanisms of incremental and mark-and-deferred-sweep
collection become unnecessary.

The algorithm is very simple. Each generation is broken into two extensible semispaces.
A threshold of bytes allocated or promoted triggers a garbage collection. Copy count pro-
motion is the promotion policy used. The scanning algorithm is exactly as described in
section 4.1.3, implemented in pseudocode in Appendix B, and depicted as a flow diagram
in Appendix A.

4.2.2 Incremental Collection

This is a variation of the previous stop-and-copy algorithm with enhancements to make
it incremental. By making the two algorithms as similar as possible in most respects,
the variations in performance directly related to incremental collection can be determined.
The generations in incremental collection are organized just as in stop-and-copy collection,
except that each semispace contains a separate region where newly allocated objects are
stored. New objects are segregated from the areas being incrementally scanned because the
new objects are known to contain pointers into tospace, and do not need to be scanned.
Objects are promoted just as for stop-and-copy collection and a flip is invoked based on
an allocation threshold, except when the flip is delayed because tospace has not been fully
evacuated.

Scanning is performed in a manner similar to stop-and-copy collection, except that
tospace is scanned incrementally—k words are scanned at every object allocation. The
parameter k controls how rapidly fromspace is evacuated. When semispaces have a fixed
size, k must be carefully chosen so that fromspace is evacuated before tospace is exhausted.
If I assume flexibility in the size of tospace, that is, if I allow tospace to grow as needed,
then the parameter k can be chosen to provide the best performance. Large values of k force
fromspace to be evacuated quickly and cause incremental collection to perform more like
stop-and-copy collection. Small values of k (< 1) distribute the process of evacuation more
widely over the allocations and cause more objects to be faulted across the read barrier.
By setting k& to 0 for a period of time, Courts reports that the locality reference in the
generation is significantly improved because objects are clustered together in tospace as
they are referenced [25]. In this thesis, I assume that k& = 4, the value suggested by Baker
in the original paper on incremental collection.

41

4.2.3 Mark-and-Deferred-Sweep Collection

The final algorithm considered, mark-and-deferred-sweep collection with four generations,
has not been previously implemented in any Lisp system. The closest available implementa-
tion is the garbage collector found in Kyoto Commeon Lisp, which also uses a non-relocating
mark-and-sweep approach [93]. My algorithm enhances that one by adding a mark bitmap,
generations, and deferred sweeping. The mark-and-deferred-sweep algorithm is much more
complicated than either incremental or stop-and-copy collection because it avoids trans-
porting objects until promotion. To accommodate vectors and types with variable size, it
allocates headers separately from the variable-sized body of such objects. All pointers to
the object point to the header, which does not move until it is promoted. The bodies of
such objects are allocated in a separate two semispace region, and are collected and com-
pacted as necessary. Since all pointers point to the non-moving headers of these objects,
their bodies can be transported without relocating any pointers.

Because the mark-and-deferred-sweep algorithm is the only mark-and-sweep algorithm
and the only non-copying algorithm considered in this thesis, the terms mark-and-sweep
collection algorithm and non-copying algorithm will be used henceforth to unambiguously
refer to the algorithm described in this section.

Each generation in the mark-and-sweep algorithm contains a bitmap, a fixed-size object
region and a variable-sized object region (the relocatable region). The fixed-size region is
divided into areas. Each area contains the objects of a single type. Thus, a one kilobyte
area might contain 128 two-word cons cells, 51 five-word symbols, or 64 four-word vector
headers. Initially, all areas in a generation are unallocated and linked together in a list of
free areas. As storage is needed, areas are allocated and assigned a type. A list of allocated
areas is maintained for each type.

When a collection occurs, the bitmap for the generation is cleared and objects are marked
using the algorithm in section 4.1.3. The bodies of vectors allocated in the relocatable region
are also copied and compacted using the two semispaces. For each type, a short vector is
used to note the locations of n free objects of that type. After n allocations of a type, the
bitmaps for areas of that type are swept for n more objects. In this way, the bitmaps are
swept incrementally.

The mark-and-sweep algorithm is complicated even further because occasionally objects
must be promoted. Because promotion requires relocating pointers and transporting ob-
jects, it requires a copying collection algorithm as well as a mark-and-sweep algorithm. As
mark-and-sweep collection is implemented, when a promotion is needed, all objects in a
generation are transported to the next generation.

Because it is so complex, the mark-and-sweep algorithm must show significant perfor-
mance advantages over stop-and-copy collection for it to be preferred. There are several
possible advantages. Because objects are infrequently transported during collection and
the mark phase of collection touches only reachable objects, I expect the reference locality
of mark-and-sweep collection to be better than that of the copying algorithms. Second,

42

because objects do not move during collection, for multiprocessor garbage collection the
mark-and-sweep algorithm may require less synchronization between processors during col-
lection.

43

Chapter 5

Garbage Collection CPU Costs

This chapter investigates the CPU costs of the garbage collection algorithms described in
Chapter 4. CPU costs fall into three categories: the base cost, or the cost of traversing and
preserving objects; reference costs, including cycles needed to maintain the read and write
barriers; and representation costs, which are the costs of referencing a data representation
convenient for garbage collection. The evaluation of these costs is based on a model in which
events of different types are counted and assigned a fixed CPU cost (measured in processor
cycles). Costs are reported as a percentage of additional time required to execute the test
programs. This chapter does not consider the effects of reference locality on performance.

These investigations attempt to answer three questions: what implementation tech-
niques are most effective for generation collection, what is the minimum overhead required
to implement Baker-style incremental collection on stock hardware, and is the mark-and-
sweep algorithm competitive in CPU costs with a simple copying algorithm. Because the
newspace threshold size has the greatest affect on performance of the generation thresholds,
references to “the threshold parameter or size” in this chapter implicitly refer to the news-
pace threshold unless otherwise noted. The threshold parameter strongly influences the
pause length, reference locality, and promotion rate of algorithms, and so CPU overhead is
evaluated for a range of threshold sizes.

Throughout this chapter, costs of basic algorithm operations are estimated in machine
cycles. These estimates are based on the instruction sequences required by a RISC-style
architecture such as SPUR, MIPS, or SPARC. These architectures have single load/store
addressing operations, one-cycle instruction execution, and delayed transfers of control.
Appendix A contains the SPARC instruction sequences that were used to estimate the
operation costs in this chapter. Explanations of the sequences are also provided in the
appendix.

44

5.1 Costs Based on Events

The following comparisons estimate CPU costs of different implementations based on a
count of events. One important event is a heap memory reference, which is an effective
unit of temporal measure (see Chapter 3). Measurements of SPUR Lisp programs (see
Table 3.1) indicate heap references account for approximately 12% of total machine cycles
(i.e., approximately eight cycles per heap reference). Simulation of eleven large C programs
on the MIPS R3000 architecture, involving hundreds of millions of instructions, show a
range from 4.7-23.2 cycles per heap reference, with a mean of 7.8 [80]. Ungar reports a
ratio of 5.2-8.8 instructions per data reference (including stack references) with a mean
of 5.9 for seven Smalltalk programs executing on SOAR, a RISC processor with register
windows [86]. If stack references are not counted, the mean ratio would again be close to
eight instructions per heap reference. Based on this evidence from several sources, I assign
a fixed cost of eight cycles to a program heap reference. Total user time (in cycles) is then
measured as Tyser = Euser Cuser, Where FE, e, are the number of user program references
and Cy ., = 8.

The base costs of garbage collection can be measured by breaking down each algorithm
into a flow graph of basic operations and assigning each operation a cost in cycles. When
the algorithm is simulated, a count of the number of occurrences of each basic operation
is maintained and by multiplying the cycles per occurrence by the number of occurrences,
the total cycles per operation can be determined. The cost of collection, Tycpqse, is the sum
of the costs of the basic operations. The cycle counts and operation flow graphs used are
described in Appendix A. With the base cost of collection known, the overhead of collection
is calculated as:

Ogcbase = gcbase/Tuser

While this cost model does make simplifying assumptions, this chapter investigates com-
parative performance (not absolute) and estimates are sufficient for accurate comparisons
because the simplifying assumptions apply equally to all algorithms compared.

Beyond the references necessary for program execution and collection, certain reference
events require additional cycles. Stores of pointers into objects require that action is taken
when an intergenerational pointer is created. Similarly, pointer loads require checks to
implement the read barrier. Figure 5.1 indicates the relative frequency of different kinds of
references for the four test programs (not including garbage collection references).

The five types of references indicated are: loadp, a load of a pointer; load, the load
of an unboxed word; storep, the store of a pointer; store, the store of an unboxed word,
and storei, a store to initialize an allocated object. The graph shows that pointer loads are
the most common memory reference operation. Stores of all types are uncommon, except
stores to initialize objects. Stores of pointers that can cause write barrier traps are quite
infrequent (< 10% in all cases). Stores to initialize (storei) can never cause a write barrier
trap because a newly created object cannot have a generation older than the pointer being
stored in it.

45

LO0
%
R SO
o -

f et 1
e

r
@ AQ [
n
c nl 1l
P 41' fl
S

Lisp Compiler Curare Boyer Moore TP RL
Lisp Application

| |loadp [Jj load [| storep [store

Figure 5.1:

B storel

Object References by Instruction Type for Test Programs.

5.2 Implementing the Write Barrier

This section investigates possible implementations of the write barrier. For the collection
algorithms considered, only pointers forward in time (from older generations to younger
generations) need to be recorded. Maintaining the write barrier requires that action is
taken whenever a pointer to a younger generation is stored into an object in an older
generation. This event is called a write barrier trap. The cost of a write barrier trap can
be simply modeled as:

Twritebarrier = Estorepcstorep + E’wbtrapcwbtrap

where T'yritebarrier T€PTEsents the total cycles required to maintain the write barrier, Fiorep
and FEprqp are the number of pointer stores and write barrier traps, respectively, and
Cstorep and Ciyptrep are the costs of these events in cycles. In all cases, Eyptrap < Estorep <
Eyser- The ratios Rsiorep = Estorep/Euser and Ruyptrap = Fuwbtrap/ Euser determine how
costly each pointer store and write barrier trap can be before they dominate the execution
time of the program. Taylor reports values of 1-20% for R,iorep and 0.0-0.64% for Rypirap
assuming a newspace semispace size of 500 kilobytes [81]. Taylor fails to distinguish between
pointer stores to initialize and pointer stores to update, hence his results are unnecessarily
conservative. My results, summarized in Table 5.1, indicate R,topep ranges from 2-8% for
larger programs.

46

Event Ratio | ACLC | Curare | BMTP RL
Riorep (%) 5.6 2.4 7.7 8.1
Rybtrap (%) | 0.007 0.002 | 0.010 | 0.190

Table 5.1: Pointer Stores and Write Barrier Trap Ratios. Write barrier trap ratios were mea-
sured with a 512 kilobyte threshold size assuming stop-and-copy garbage collection with copy count

promotion after three copies.

For a newspace threshold of 500 kilobytes, write barrier traps occur with less frequency
than is reported by Taylor. Taylor’s largest value for Ryptrap, 0.64%, was measured for
the FFT benchmark, which stores newly allocated floating point numbers into a long-lived
array that is quickly promoted to an older generation. Taylor’s one large benchmark, RSIM,
has Ryptrap = 0%. The values reported here (0.002-0.020%) are probably more indicative
of large programs. Rpirqp depends heavily on how quickly objects get promoted (which in
turn depends on the collection threshold size). This section measures the write barrier trap
overhead for a range of threshold sizes and considers three possible implementations of the
write barrier.

A hardware implementation of the write barrier provides the best available performance.
The Symbolics implements the write barrier in hardware and completely eliminates the
overhead (i.e., Cstorep = Cubtrap = 0) [61]. The SPUR hardware eliminates the per-store
overhead but includes overhead on the trap [81]. This chapter concentrates on RISC archi-
tectures and so considers trap hardware similar to that provided by SPUR, which attempts
to only provide hardware that significantly improves performance.

The cost of a write barrier trap can be further subdivided: Cyptrap = Ctrap + Cwbhandier-
The cost of getting back and forth from the trapping instruction to the trap handler, C,qp,
depends on the hardware and operating system support for machine traps. Cybrandier, the
cost of servicing the trap once inside the hander, depends on what actions are required by

the handler.

The trap cost depends on what hardware support is provided by the architecture and
whether or not the trap requires a context switch to the operating system. Hardware-
supported write barrier traps do not require a context switch to the kernel, since all actions
taken can be performed in user mode. If an architecture provides hardware for the write
barrier, it probably supports fast traps. Johnson describes modifications to the SPUR
architecture that would significantly reduce trap handler overhead [47]. The sequence,
presented in Appendix A, simply transfers control, sets up operands for the handler, and,
when the handler is through, returns. This cost of the sequence is seven cycles (Cipqp = 7).

The cost of handling a write barrier trap, Cyphandier, depends on the representation
used to record the locations of intergenerational pointers. Simple representations maintain
a sequence of addresses (typically as a vector), where each trap adds the address of the
intergenerational pointer to the sequence [3, 86, 96]. One problem with a sequence repre-

47

sentation is that the same address can occur in the sequence many times. Such redundancy
wastes space and also time when the sequence is scanned during garbage collection. The
advantages of a sequence representation are simplicity of implementation and speed of trap
handling. Sobalvarro describes an organization, called word marking, where a bitmap is
used to indicate the memory locations of intergenerational pointers [75]. The write barrier
trap handler simply sets a bit in the bitmap. This technique avoids the redundancy of
a sequence representation at the memory cost of the bitmap. Another alternative, which
Sobalvarro calls card marking, uses a bitmap to indicate if an intergeneration pointer is
stored in a region of memory (the card). The Symbolics uses such a method where the
card is a hardware page [61]. Card marking is less desirable than word marking because at
collection time each marked card must be scanned to locate the intergenerational references.

Sobalvarro describes a ten instruction sequence for the MC68020 architecture that imple-
ments write barrier word marking. The same sequence in the SPARC architecture requires
16 instructions, due to the simpler instructions and lack of indirect addressing modes (see
Appendix A). Because word marking avoids the redundancy of the sequence represen-
tation and because its handler is sufficiently fast, word marking is the assumed method
for recording intergenerational pointers and Cyprandier 1S assumed to be 16 throughout
this chapter. Combining the estimated costs of a hardware write barrier, the result is
Cstorep = 0 (the test for intergenerational pointers is done in parallel with the store) and
C’wbtrap = Ctrap(7) + C’wbhandler(]-G) =23.

An alternative to a special hardware implementation of the write barrier is to perform
software checks before every pointer store. The sequence of instructions required to perform
the check depends on the encoding of generations. Possible encodings include generation
tag bits stored with every pointer, as in SPUR, or maintaining knowledge about the address
range that each generation occupies and comparing pointers with the ranges to determine
inclusion. The address range check is more suitable for stock hardware because after en-
coding types in pointers there is no room left for generation tags.

The correct implementation of the write barrier software check combines a single fast
inline test to handle the most frequent case (pointer stores into newspace) with a function
call that performs the other tests. The cost model for this implementation is

Twritebarrier = Enewstorepcnewstorep + Eoldstorepcoldstorep + Ewbstorescwbhandler

where E,cystorep is the number of pointer stores to newspace, Egigstorep is the number
of pointer stores to oldspace, and FEpstores is the number of stores that cause a write
barrier trap. The instruction sequence for this method can be found in Appendix A. This
implementation avoids the code expansion of putting all the generation range checks (30
instructions) inline at every pointer store. If generations are designed so that newspace
occupies higher (or lower) addresses that oldspace, then the inline test is just a single
compare of the pointer being stored into against the base of newspace (Chrewstorep = 3)-
The function that handles other cases must check for an immediate being stored and then
look at the relative generations of the pointers. From the appendix, this cost, Coigstorep, is
estimated at 13 cycles. As with the hardware implementation, Cyppandier is 16 cycles.

48

A different implementation of the write barrier does not use special hardware, but
instead uses the page protection mechanisms provided by most operating systems. This
approach write-protects oldspace so that when a pointer is stored to a protected page, the
operating system fault handler is used to handle the write barrier trap. Two variations
of the basic approach are considered: one variation that is unacceptable and one that is
attractive.

A naive implementation using operating system traps write-protects oldspace and forces
an operating system trap on every pointer store into oldspace. The evaluation model is:

Twritebarrier = Eoldstorepcoldstorep + E’wbtrapcwbtrap

where Eojgstorep is the number of pointer stores into oldspace and Coigstorep is the cost of
the protection fault caused by the store. Coigstorep does not include the cost of handling the
write barrier trap, since that cost is included in Cyptrap. Similarly, Cypirap does not include
the fault overhead, and so Cyptrap = 16, the cost of the handler.

The effectiveness of this implementation depends on two factors: what fraction of total
pointer stores store into oldspace and how fast protection faults can be serviced by the
operating system. The relatively small fraction of write barrier traps observed (0.002-
0.020%) suggests that pointer stores of any type into oldspace are infrequent. The only
additional pointer stores that would cause traps, if all stores to oldspace trapped, would
be stores of oldspace pointers into oldspace objects. Surprisingly, the frequency of oldspace
pointer stores into oldspace is quite high (possibly caused by stores that are binding the
values of special variables). Table 5.2 indicates the fraction of total pointer stores that are
stores of pointers into oldspace for the four test applications. Contrasted with the small

Ratio ACLC | Curare | BMTP | RL
Eoldstorep/ Estorep (%) 9.0 5.0 61.7 | 12.7

Table 5.2: Fraction of Pointer Stores into Objects in Oldspace.

fraction of stores causing write barrier traps, we see that up to half of all pointer stores
can be to oldspace objects. Fortunately, most of these stores do not cause write barrier
traps that need to be handled. The high frequency of such stores makes the cost of an
implementation that traps on every pointer store into oldspace unacceptable (overheads in
the 100’s of percent).

Instead of trapping on every pointer store into oldspace, a more clever implementation
will only trap once per oldspace page that is stored into. If the oldspace pages written
between garbage collections are correctly noted, they can be scanned for intergenerational
pointers at the time of collection. Shaw suggests that small modifications to the virtual-
memory user interface of traditional operating systems would allow this information to be
maintained very cheaply [74]. Without operating system changes, the collection algorithm

49

must maintain its own dirty-bit information, at the cost of one protection fault per oldspace
page written.

Using this approach, after a garbage collection all pages in oldspace are write-protected
and the dirty bits are cleared. Between collections, if a page in oldspace is written, the dirty
bit for that page is set and the page is made writable. When the next garbage collection
occurs, all the dirty pages are scanned for intergenerational pointers. Each intergenerational
pointer discovered is recorded (using a sequence or word-marking) so that its exact location
is known during subsequent collections. The cost of this approach is estimated with the
following model:

Twritebarrier = Emakedirty(cmakedirty + Cscanpage)

where E,, kedirty is the number of initial pointer writes to oldspace pages, Cirgkedirty is the
cost of handling the write protection fault and marking the page as dirty, and Cscanpage
is the cost of scanning a page for intergenerational pointers. C,cqnpage Tequires scanning a
page containing 1024 words, looking for newspace pointers. The per-word cost of scanning
is five cycles, resulting in Cscanpage = 5120. The cost of writing an oldspace page can also
be broken down: Ciakedirty = Copsys + Chandier- The handler that marks a page as dirty
can be very fast, so Crandier 1s small, perhaps five instructions. The other source of cost is
the operating system.

The operating system must do two things when a protected page is written. First, it
must detect the fault and transfer control to the user fault handler. Second, the user will
ask the operating system to change the protection of the page, making it writable. The cost
of fielding a protection fault depends on whether the fault handler is executed by the kernel
or not. Because protection faults are typically initially captured by the kernel for security
reasons, if the handler is executed in user mode, it requires two context switches (from user
to kernel and back). Context switching is very machine dependent, but always requires
instructions to save and restore state. In the Sprite operating system on the SPUR and
SPARC architectures, a context switch requires an absolute minimum of 70 instructions [7].
If a fault is handled in the kernel, the switch to the fault handler requires a minimum of 35
instructions.

On top of the context switch overhead, the write barrier trap must make the protected
page writable. This action is also very architecture dependent, since protection changes
may invalidate data stored in a virtually-addressed cache. If the cache requires flushing,
as it will with the SPUR and SPARC architectures, many instructions may be required
(256-512 stores, depending on page size).

Another estimate of the cost of a protection fault is found in an analysis of the cost of
faults used to implement a copy-on-write policy for process forking. In the Sprite operating
system, Nelson estimates a copy-on-write fault in the SPUR architecture would require 500
instructions to implement with the handler executing entirely in the kernel [63]. Nelson
supplies a similar estimate for the Mach operating system copy-on-write protection fault.

The conclusion to reach from this discussion is that the operating system cost of the
write barrier trap will be at least a couple of hundred instructions, and possibly as many as

50

one thousand. Because there is a range of possible costs, I consider two values for Copsys-
A well-designed operating system might have C,,,,s = 200 and I call this implementation
“fast OS trap”. A typical operating system will not support fast protection faults (assuming
they are infrequent and cause by program errors) and might have Cyp,sys = 1000 (“slow OS
trap”).

Figure 5.2 shows the predicted overhead of maintaining the write barrier as a function of
threshold size using the three techniques suggested (and two possible operating system costs
for protection faults). A stop-and-copy algorithm is used for these results, but the results
for the incremental and mark-and-sweep algorithms are similar. Overhead decreases as
threshold size increases because larger thresholds cause fewer collections and fewer objects
are promoted. Since promoted objects cause write barrier traps when pointers to newspace
objects are stored in them, fewer traps occur when fewer objects are promoted, hence the
decrease in overhead. In the absence of other considerations, a larger threshold size is
clearly better. The figure also shows that the operating system trap methods are much
more sensitive to threshold size than the software or hardware methods. This sensitivity is
caused in part by the high operating system overhead (200-1000 cycles), but mostly by the
high cost of scanning a page (5120 cycles).

Assuming threshold sizes larger than 125 kilobytes, we see that the write barrier imple-
mented with protection faults is faster than a software test implementation, even with slow
operating system traps. For large threshold sizes, where very little data gets promoted, we
see that the protection fault implementation is sometimes comparable to the hardware im-
plementation, whose overhead is negligible in all cases. The protection fault implementation
does not show great sensitivity to the cost of the operating system trap, and so does not
require fast traps because the page-scanning overhead dominates the cost of this method.

While the cost of a software test implementation is also relatively small in most cases,
the protection fault implementation appears more effective for larger thresholds. The major
disadvantage of the protection fault implementation is that it requires cooperation from the
operating system, which must allow the user to set protections for regions of memory and
handle protection violations in these regions. Commercial vendors of Lisp systems, who
port their product to many different systems and architectures, may find the increased
portability of software tests outweighs its additional overhead.

5.3 Implementing the Read Barrier

Because incremental collection avoids pauses associated with collecting large spaces, it is an
attractive alternative to stop-and-copy collection. While hardware has been used to min-
imize the overhead of incremental collection, Baker-style incremental collection has never
been implemented cost-effectively on stock hardware. This section discusses possible imple-
mentations of incremental collection on stock hardware and provides cost models for their
performance.

As with the write barrier cost, the read barrier cost is modeled by assigning costs to

51

Lisp Compiler Curare

& r ®
o |
\ ~ =
\ \
© L \ \
- NN L \
N © \
o S NN Implementation Method = \
S - NN > \
< \ — — software test < \
E N A — — - write trap/slow OS % o - N
- [N .
E * m ***** write trap/fast OS E A
o . 5 “
\ hardware trap Y
> o g .
o - [\ 3 <
= S
2 o
5 o =
g B IS
o a o
2] RN
= © = AN
2 2 B
[RN
S ~
< F F—-——H-—f—
B—fg
IO
=T e
o~ -

olF—f—Hf—f—+Hf o lF

125 250 500 1000 2000 125 250 500 1000 2000
GC threshold (kbytes) GC threshold (kbytes)
Boyer Moore TP . RL
< ~
S8 -5 -0
ol
N L © \
— \
\
o L
- - Fou
g AT g
o o WA
I © A\
g o - %) g r 5
o 5 A
> > W\
s s
9 9 o W\
E o | E ™ N
7. g
L N 2 D N
S < - RN = QFr O
E\\ EI-——E__E\\
[~
~ F St \?B\ —
o L o L
125 250 500 1000 2000 125 250 500 1000 2000
GC threshold (kbytes) GC threshold (kbytes)

Figure 5.2: CPU Overhead for Write Barrier Implementations. Stop-and-copy is the garbage

collection algorithm used in all cases.

52

events. The read barrier requires that every load of a pointer checks if the loaded pointer
points into fromspace. A simple cost model for the read barrier is:

Treadbarrier = Eloadpcloadp + Erbtrapcrbtrap

where Ejy.q4p is the number of pointer loads, and E,ptrqp is the number of loads of a pointer
into fromspace.

With a hardware implementation, every load of a pointer performs a hardware check
to determine if the loaded pointer points into fromspace. One would expect a pipelined
architecture could perform the check in parallel with executing subsequent instructions,
and hence completely eliminate the overhead of the test. But when the hardware test
traps it must prevent any subsequent instruction from completing (to prevent copies of the
loaded pointer from propagating). In the best case, the instruction following a pointer load
is constrained not to manipulate the loaded pointer. In the worst case, the load takes an
extra cycle. If we assume the worst case (Cloqdp = 1), we will see that its cost is not large.

Every pointer load that traps must transfer control to a handler that transparently
relocates the object in fromspace. As with the write barrier traps, the overhead of the
trap depends on the architecture, but in the best case requires approximately seven cycles.
Finally, the relocation of the object requires cycles, but these cycles are not counted as a
cost of the read barrier, since they must be performed by a copying collector anyway. For
a hardware read barrier, Cioedp = 1 and Crptrap = 7.

Software tests can also be used to implement the read barrier. As with the write
barrier, an inline check is combined with a function that handles pointers into fromspace.
Appendix A contains the instruction sequences for the test and the handler. The one-
comparison test possible for the write barrier will not work for the read barrier because
flipping changes the relative positions of fromspace and tospace in memory. Depending
on the pointer, a fromspace test takes an additional three or six cycles. The average,
Cloadp = 4.5, is assumed. This implementation disallows multiple generations from being
collected simultaneously because tests for inclusion in multiple fromspaces would be required
at each load, significantly increasing Cjoadp. When a fromspace pointer is found, there is
little overhead other than the call to and return from the handler function, and C,ptrqp = 9.5.

Because so many of the memory references performed by a program are pointer loads (see
Figure 5.1), a software implementation of the read barrier introduces a large overhead. As
alternatives to inline checks on stock hardware, two read barrier implementations that use
operating system traps to maintain the read barrier should be considered. These methods
remove the invariant that fromspace pointers are not allowed in machine registers (which
is what the read barrier is designed to prevent). Instead of checking for fromspace pointers
as they are loaded, the pages of fromspace are read and write protected, and objects are
transported only when the memory they contain is referenced and causes an operating
system trap. When the trap occurs, the object is relocated into tospace and the pointer to
it is updated. Because fromspace pointers are allowed in registers, a copy of a fromspace
pointer can be created before its object is referenced and relocated. Such object “aliases”

53

must be either recognized or removed. Furthermore, aliases must be prevented from being
stored in memory. Both operating system trap implementations of the read barrier add
checks around pointer stores to prevent fromspace pointers from being stored in memory.
Inline checks around pointer stores (including initializing stores) similar to those around
pointer loads in the software implementation accomplish this goal (with a cost of three
cycles).

There are two implementation alternatives if fromspace aliases are allowed. The first
alternative allows aliases to exist in registers, but must insure that aliases are recognized as
being the same object. The eq operation, which tests for identical pointers, is modified to
consider aliases as follows. First, the pointers are checked for being identical. If they are
identical, no further action is needed because no aliases were involved. If the test fails then
there are two possibilities. First, if one argument is known to be nil or a fixnum immediate
(as generated by the compiler), then the test fails and no aliases were involved because
nil and immediates cannot have aliases.! The only case where aliases need be be checked
occurs when both arguments are not recognized by the compiler and the eq test fails. In
this case, the pointers must be checked for being aliases to each other. Table 5.3 indicates
the relative frequency of eq tests and heap references and the frequency of outcomes of eq
tests for several large test programs.

Operation RSIM | Weaver | SLC | PMA | Average
Eq true, total (%) 52.1 36.6 | 27.3 | 36.2 38.1
Eq false, total (%) 47.9 63.4 | 72.7 | 63.8 61.9
Eq false, with nil (%) 24.6 274 | 414 | 31.0 31.1
Eq false, with immediate (%) 8.6 25.1| 0.8 7.8 10.6
Eq false, 2 unknown args (%) | 14.8 10.8 | 30.6 | 25.0 20.3
Eq tests / heap access (%) 11.4 42.0 | 36.9 | 19.7 27.5

Table 5.3: Relative Frequency of Outcomes of EQ Tests. RSIM, Weaver, and PMA are described
in Appendix A. SLC is the SPUR Lisp compiler.

The table indicates that while a majority of eq tests fail, only a relatively small fraction
of the tests (10-30%) would require tests for object aliases. Appendix A shows the modified
instruction sequence for eq tests if fromspace aliases are allowed. The added cost of false
eq tests with two unknown arguments is 12 cycles. The total cost model of implementing
the read barrier with aliases and a modified eq test is:

Treadbarrier = EeqfalseZunkCeqfalsEZunk + Eallstorepcallstorep + Erbtrapcrbtrap

where Cegtaiseaunk = 12, the cost of a false eq test with two unknown arguments, Cojistorep =
3 and Crptrap = Copsys T Chandler- Chandier = 0 because the relocation is required anyway.

!Nil is stored in the oldest generation and not incrementally transported.

54

As with the write barrier, C,p,y, varies widely depending on the architecture and operating
system. Again, two costs for Copeys, 200 cycles (fast OS trap), and 1000 cycles (slow OS
trap), are considered (see the discussion in Section 5.2).

An alternative to allowing aliases to appear freely in the stack and machine registers
is to remove all fromspace aliases when an object is relocated. This method requires scan-
ning the stack and registers at relocation time and avoids any special actions on eq tests.
Unfortunately, the cost of scanning the stack and registers varies greatly with architec-
ture. Furthermore, the cost is strongly related to the average depth of the stack, which is
very application-dependent. I have measured the average stack depth for several large Lisp
programs and the results are presented in Table 5.4.

Metric RSIM | Weaver | SLC | PMA | Average
Stack depth (frames) 7.0 33.4| 25.2 | 21.6 21.8
Average register usage 3.8 34| 6.5 6.6 5.1

Table 5.4: Average Stack Depth for Several Common Lisp Programs. The frames measured are
the register window frames in the SPUR architecture. RSIM, PMA, and Weaver are described in
Appendix A. SLC is the SPUR Lisp compiler.

One influence machine architecture has on stack scanning is the register model of the
architecture. Register windows, as defined in SPUR and SPARC, allow fast function calls
but assign a fixed minimum number of registers per stack frame (the register window size).
A general register model, as found in the MIPS architecture, allows compilers to allocate
stack frames containing only as many registers as are needed. Register windows increase the
cost of stack scanning because the average register usage (3.8—6.6 registers) is significantly
smaller than the typical register window size (16). This section estimates the cost of stack
scanning with and without register windows, and then uses the register-window estimate
for comparison with other methods because it is the more conservative estimate.

Using the register-window model, the cost of scanning a stack frame can be estimated
as the register window size times the average stack depth. The cost of stack scanning is
estimated as:

Cstackscan = CscaanramesizeDavgstackdepth

where Ciiockscan 18 the cost of stack scanning, C, 4y, is the number of cycles to scan one stack
element, and N¢pqmesize is the number of registers per register window and Dgygstackdepth
is the average stack depth of the application (in frames). For both SPUR and SPARC,
Ntramesize = 16. Cieqp is Toughly 6, counting loop overhead and the test for a fromspace
pointer. Using the average from the applications in the table, the average stack depth is
assumed to be 22 frames. Thus, the cost of scanning a register-window stack is estimated
as 2112 cycles. Assuming a general register model, Nf,gmesize can be estimated from the
table as 5.1. This reduces the scanning cost to 673 cycles. Nevertheless, the conservative

55

estimate is used because the scanning costs are very application dependent, and should not
be underestimated.

Having estimated the cost of stack scanning, the total cost of implementing the read
barrier with stack scanning can be modeled as:

Treadbarrier = Eallstorepcallstorep + Erbtrapcrbtrap

As before, Cojistorep = 4 and Chrptrap = Copsys + Cistackscan- We have just estimated that
Cistackscan With register windows would average 2112 cycles. For the operating system trap
overhead (Copsys), two alternatives, 200 cycles and 1000 cycles, are considered.

Overheads of four implementations for the read barrier are presented in Figure 5.3.
Both slow and fast operating system (OS) trap implementations are considered for the
alias and scanning methods. As with the write barrier, the read barrier overhead decreases
as threshold size increases. Fewer objects are faulted across the barrier when fewer flips
occur. The hardware implementation adds 9-11% to the cost of execution and the software
implementation adds 40-50% overhead, both implementations being relatively insensitive
to threshold size. Methods using OS traps to support the read barrier show a huge range
of overheads (7-700%). These methods are only effective with large threshold sizes which
minimize the number of objects copied across the barrier. The method that allows aliases
and modifies eq tests appears to be the best of the OS trap implementations. Even with
slow OS traps, this approach performs better than software checks in many cases, and
significantly better in some (four times better for the Boyer Moore theorem prover). For
a two megabyte threshold, the overhead of the modified eq method (with slow OS traps)
varies from 13-63%.

Even with a conservative estimate, the stack scanning method with slow OS traps also
shows better performance than software checks in some cases. Surprisingly, this approach
performs better than the hardware implementation in the theorem prover. Unfortunately,
this approach is very sensitive to stack depth, which can vary greatly between applications.
For the applications measured, the stack scanning approach appears effective, but because
it does not offer significant performance improvements over the modified eq method and is
more sensitive to applications, the modified eq method should be preferred.

In any event, the overhead of incremental collection without hardware support is signifi-
cant (10-50%), but not necessarily unacceptable. Furthermore, using OS traps to implement
incremental collection is contingent on large threshold sizes. The additional read barrier
faults caused by small threshold sizes add tremendous overhead in all OS trap implemen-
tations.

5.4 Base Costs of Garbage Collection

After having looked at the overhead of various implementations of the read and write
barrier, this section compares the base costs of different collection algorithms. This section

56

Lisp Compiler Curare
*[g "=
g; [\ Implementation Method 8 [~ \
\ scan stack/slow OS h
—— - scan stack/fast OS
f\g § [Q \\\ — — modified eg/slow O: ’\3 8 [~ Q -------- 7777777777 E 7777777777 E ---------- D
< — — - modified eg/fast OS] < \
g o \ v) e software test E ° \ \\\
g g r \ —— hardware trap % < [E \S ~
8 \ 3 N N
g gl _ Bg B g \
5 ° SN : g B
- N
R NS g o B -—g\\
4 g [\\ \\B\ dx N [O
N ~ H----g-_
: SN e
ST 5 - _ \ﬁ -
e |\:} I i T] ° T I I I J
125 250 500 1000 2000 125 250 500 1000 2000
GC threshold (kbytes) GC threshold (kbytes)
Boyer Moore TP o RL
o _ Sr
O [[e L L { ¥ Ek
n o N
< 8 r \
o L
< § L \E
€8 r g B\\ N
= = o
3 g & Ny N
28 2 SN
5 5 o .
8 o L 8 S N .
s o} \, g Ng B
g R BN\ g 3)
Qo o n -
3 <Eo 3 7| Bo ~g._ U
$ v L N < ~ ~
&) - E - — - _] N — —_ &) o E\ \D
E —F— T e
@ p BT -8
= — —
—=f e
—= o
[To I v E'*‘ i [it i et Lo St
= = = E t]
o L o L =] =]
L L L L | L L L L |
125 250 500 1000 2000 125 250 500 1000 2000
GC threshold (kbytes) GC threshold (kbytes)

Figure 5.3: CPU Overhead for Read Barrier Implementations. The results indicate the overhead

of the read barrier for an incremental copying algorithm.

57

investigates whether the cost of mark-and-sweep collection is competitive with the costs of
the more traditional copying techniques.

Figure 5.4 illustrates the different parts of the overhead for a copying collector as a
function of threshold size. The costs are broken down into allocating, scanning, forwarding,
transporting, and updating. The allocation cost is independent of threshold size and ranges
from 1.5-5.3%. Small variations in the allocation overhead result from interactions between
MARS and the host Lisp system. The scanning cost includes dereferencing and testing each
word in tospace looking for fromspace pointers. Scanning is a large part (about 50%) of
the non-allocation cost of copying collection. The forwarding cost, a small part of the total,
includes type determination and checks for forwarding pointers. The transport cost, the
second largest source of copying collection overhead, includes cycles to determine if an object
needs promotion and memory references to transport the object. Finally, the update cost
includes cycles to install forwarding pointers and relocate pointers to transported objects.
Because the two largest sources of overhead, scanning and transporting, are necessary in
any copying algorithm, it seems unlikely that the base cost of copying collection can be
reduced significantly below the overhead measured.

The figure also indicates how the copying overhead varies with threshold size. While the
total overhead varies by an order of magnitude between applications, the overall relationship
between threshold size and overhead is similar for all test programs. Large thresholds (two
megabytes) provide approximately a factor of three improvement over small thresholds (128
kilobytes). Overhead for large thresholds is small (<20%). Because the allocation cost is
independent of threshold size, it provides a lower bound on the total overhead associated
with copying collection.

Next, we look at the observed overhead in a mark-and-sweep collector. Figure 5.5 shows
the cumulative overhead for the four test programs. This overhead is broken into six parts:
allocating, sweeping, stack operations, type checks, marking, and vector transports. As
with copying collection, the cost of allocation is independent of threshold size. Non-copying
allocation is slightly more costly than copying allocation, especially for vector objects.
The sweeping cost includes the overhead of sweeping the mark bitmap, and is also largely
independent of threshold size (i.e., approximately one bit swept per object allocated in a
sparsely-marked bitmap). Sweeping is slightly less expensive than allocating, but because
it is also independent of threshold size, sweeping raises the minimum overhead achievable
with very large thresholds. Still, this minimum overhead is relatively small, from 1.7-12.1%
(compared with 1.2-5.3% in copying collection).

On top of sweep costs, the costs of object marking are roughly evenly divided between
stack operations (pushing and popping addresses), type and generation checking, and ac-
cessing the mark bitmap. Relocating vector bodies incurs minimal cost, especially when
few vectors are allocated, as in the theorem prover. Even though bitmap testing is a rela-
tively expensive operation with a RISC architecture (12 instructions in SPARC), the testing
overhead is not prohibitive. The overhead is low because mark tests are only performed on
newspace pointers, and there is approximately one newspace pointer per newspace object

58

Lisp Compiler (stop©) Curare (stop©)

[To B ©o

[Te} —

o L

o Q Overhead Source < L Ii

o | E]\ — update - IIJ \

~ \ — — transport

\ o LN\
—~ o L \ — — — forward —_ = [N\
Q\o, N \\\ ———————— scan 5 \
T \ ——— alloc T \
) L s O L ~
g g - B
S I NELNN : Bl \E
0 ~

el N £ o g AR
‘_é o L H % Lé © - F- - \E
3 « EL\\\ \\:@\\ 3 T -0 TR
0 v L S S —= ¢} B N _\D
Q i B \j\\.%§‘—% O < D

S - T

[SV 3; M | M
o B—8—8—~8—07F A R B

0
T

0
T

L 1 1 1 | L 1 1 1 |

125 250 500 1000 2000 125 250 500 1000 2000
GC threshold (kbytes) GC threshold (kbytes)
o Boyer Moore TP (stop©) o RL (stop©)
n
o L
© éll o L %\\
0 | \ © N
< AN \\
~ 2 L \\ ~ o \\
SN \E\\ S \
IR SN 7 SN
£ R 5 Srp N
q>) o | B\\ \ \\g\\ q>_) < B \\ }
R - | oo B
Q2 1n I RN]
Far BBl Beg Eal e N
3 5 (B H E [SRR
E o R s I E oD
3 R 3 - s
S o & r B0~ ~
o H‘E\B\D O R S
o L \E
- o L
0 —
S| [——m— H t]
o
ST I I I J ° T I I I J
125 250 500 1000 2000 125 250 500 1000 2000
GC threshold (kbytes) GC threshold (kbytes)

Figure 5.4: Cumulative CPU Overhead of Copying Collection. The algorithm used is

stop-and-copy collection. Results for incremental copying are similar.

59

GC cumulative overhead (%)

GC cumulative overhead (%)

15 20 25 30 35 40 45 50 55

5 10

0

Lisp Compiler (mark&sweep)

L Overhead Source
-+ relocate
L \\ —— — marking
\ \ — — type
L \\ — — — stack
\ ———————— sweep
Q O —— alloc
N
NN
\ NN
N
- B Sa oy
! -6
L -~ _ ‘B— . —_— E|
L Beegeg TTHITH
N H H H—]
T I I I |
125 250 500 1000 2000

GC threshold (kbytes)

Boyer Moore TP (mark&sweep)

125 250 500 1000 2000

GC threshold (kbytes)

Figure 5.5:

60

GC cumulative overhead (%)

GC cumulative overhead (%)

12 14 16

10

60

50

40

30

20

10

Curare (mark&sweep)

250 500 1000 2000

GC threshold (kbytes)

RL (mark&sweep)

« N\
o H
B,\\ NS
. \EL\ N
H- ~
F T T
= il S

250
GC threshold (kbytes)

500 1000 2000

Cumulative CPU Overhead of Mark-and-Sweep Collection.

(i.e., approximately one mark test per object transported).

The total overhead of mark-and-sweep collection ranges from 2.5-58%. For small thresh-
olds, mark-and-sweep collection has lower overhead than stop-and-copy collection, and
for large thresholds the reverse is true. This turnabout occurs because the overhead of
mark-and-sweep collection has two components: marking, which is very threshold depen-
dent, and sweeping, which is threshold independent. Apparently, the mark phase alone is
slightly faster than the entire copying algorithm. For small thresholds, the overhead from
the threshold-dependent part of the algorithm dominates and mark-and-sweep is slightly
faster. But as the threshold-dependent overhead decreases, the total overhead is dominated
by the threshold-independent costs, which are higher for mark-and-sweep collection. Using
bitmaps and deferred sweeping, the mark-and-sweep algorithm shows slightly worse perfor-
mance than copying algorithms. While the mark-and-sweep algorithm has disadvantages
(increased complexity and increased promotion rate), it also has definite advantages over
copying collection, as the next chapter shows.

5.5 Total Overhead

In conclusion, the predicted overheads are combined to arrive at a total cost of collection for
the three algorithms using the most cost-effective implementations for the read and write
barriers. The write barrier is assumed to be implemented with oldspace write protection
faults. The read barrier is assumed to be implemented with fromspace read protection faults
and the method that allows fromspace aliases and modifies the eq test. In both cases, slow
operating system faults are assumed, as they are likely to be found in current operating
systems. Figure 5.6 shows the different parts of the total overhead for the three algorithms
on two of the test applications.

For large threshold sizes, the write barrier adds about 10% to total overhead. The read
barrier adds considerably more, from 30-60% to the overhead of incremental collection.
Indirect vector references only add a small percentage to the overhead of mark-and-sweep
collection. While stop-and-copy collection and mark-and-sweep collection have roughly
comparable costs (with mark-and-sweep collection showing relatively increased overhead for
larger thresholds), incremental collection on stock hardware is considerably more expensive,
even with the cheapest implementation of the read barrier. With architectural and operating
system support for fast traps, this overhead could be significantly reduced. For very low
overhead incremental collection, small amounts of additional hardware appear necessary.
This chapter has considered the CPU costs of garbage collection independent of the locality
of reference. Very fast algorithms with bad reference locality can perform poorly. The next
chapter investigates the effect of garbage collection on locality of reference.

61

GC cumulative overhead (%) GC cumulative overhead (%)

GC cumulative overhead (%)

50 100 150 200 250 300 350

0

0O 10 20 30 40 50 60 70

70

10 20 30 40 50 60

0

Lisp Compiler (incremental)

N Overhead Source

\ — — - read barrier

r . write barrier
\ —— base overhead

125 250 500 1000 2000

GC threshold (kbytes)

Lisp Compiler (stop©)

r Overhead Source
R S write barrier
—— base overhead

125 250 500 1000 2000

GC threshold (kbytes)

Lisp Compiler (mark&sweep)

SN Overhead Source
N — — - indirect vectors

N e write barrier
N —— base overhead

S 1 1 1 J

125 250 500 1000 2000

GC threshold (kbytes)

GC cumulative overhead (%) GC cumulative overhead (%)

GC cumulative overhead (%)

80 120 160 200 240

40

0O 20 40 60 80 100 120 140

40 60 80 100 120

20

RL (incremental)

- N Overhead Source

N — — - read barrier
N s write barrier
h3| —— base overhead

125 250 500 1000 2000

GC threshold (kbytes)

RL (stop©)

Overhead Source
—————— write barrier
——— base overhead

125 250 500 1000 2000

GC threshold (kbytes)

RL (mark&sweep)

Overhead Source

N — — - indirect vectors
------ write barrier

—— base overhead

125 250 500 1000 2000

GC threshold (kbytes)

Figure 5.6: Cumulative CPU Overhead for Three Algorithms.

Chapter 6

Reference Locality

Locality is a property of the spatial and temporal pattern of a program’s references to
the memory. Spatial locality indicates how tightly grouped references are—references to
addresses that are close together have high spatial locality. Temporal locality indicates the
distribution of references in time. If the same group of objects is referenced repeatedly over a
period of time, the temporal locality of these references is high. The degree of temporal and
spatial locality of references determines the effectiveness of techniques devised to “buffer”
or “cache” parts of a program’s address space. Because we are most interested in the
effectiveness of these caching techniques, the cache miss rate is an important measure of
the combined spatial and temporal locality of reference in a program.

This chapter quantifies the strong influence that garbage collection algorithms have on
a program’s locality of reference. The first section describes the important characteristics
of memory hierarchies and introduces the simulation techniques that are used to measure
reference locality. The next section discusses the general reference characteristics of Lisp
programs, and the final sections present locality results for the three collection algorithms
being studied.

6.1 Memory Hierarchy Characteristics

Memory hierarchies have become complex and now often include on-chip instruction buffers
and data caches, chip-to-board datapaths, board-level caches, memory buses, main mem-
ories, I/O channels, disk drives, and potentially larger secondary storage devices such as
optical disks. This chapter focuses on how well programs fit in the board-level cache and
main memory.

Each level (or slice) of a memory hierarchy has three basic parameters that determine
its performance: capacity, latency, and bandwidth. The capacity of a slice depends on
several factors, but most importantly on economics. In particular, faster memories are also
more expensive. Bit for bit, cache memory is more expensive than main memory which in

63

turn is more expensive than disk storage. In general, a user wants to minimize the cost
of his system, and so prefers the minimum capacity that offers acceptable performance.
Other capacity considerations include the amount of board space available for cache chips,
the number of backplane slots for memory boards, or the amount of disk space available
for a swap partition. Of the configuration parameters, capacity is the parameter that
users can most readily control. My studies look at program performance over a variety of
slice capacities to determine the cost/performance tradeoffs for different configurations and
algorithms.

The latency of a slice is a parameter over which users have little or no control. Disk I/O
latency has remained in the tens of milliseconds for more than a decade. The parameter
that is changing, however, is the ratio of processor speed to latency. While disk latencies
have remained unchanged, processors have increased in performance from 10-100 times and
will continue to speed up. Additional CPU computation to avoid extra page faults becomes
more and more cost-effective. Generation garbage collection provides the ideal mechanism
to match the memory requirements of an application with the existing system’s CPU to
disk latency ratio. By decreasing the newspace threshold size, at a cost of increasing the
frequency of garbage collection, any desired page fault rate can be achieved.

The interconnect bandwidth is another important characteristic of a slice. In uniproces-
sors, the memory bus and I/O channels are designed so that channel bandwidth is typically
not a bottleneck in performance. But bandwidth is also dependent on existing technology,
and although the technology exists to speed processors up by a factor of 100, or to add 100
processors to a memory bus, technologies that increase bus bandwidth by a factor of 100
do not exist yet. Therefore, in systems of the future, the bandwidth of the memory hier-
archy will be increasingly important. Because interconnect bandwidth is most important
in multiprocessor systems, further discussion of interconnect bandwidth will be postponed
until Chapter 8.

More complex factors, such as cache and memory management policies and configuration
also affect performance. Cache set-associativity affects cache cost and effectiveness. Cache
block (or memory page) size and replacement policy also affect performance. Because there
are so many variations, it impossible to look at every parameter in detail. To simplify the
analysis and focus more on the effect of the garbage collection algorithm on performance, I
assume certain common policies, such as a write-back cache and an LRU replacement policy.
Furthermore, the cache block size is fixed at 32 bytes and the cache is assumed to be direct-
mapped. These parameters closely resemble those of the SPUR system [42]. Trace-driven
simulation research associated with the SPUR project concluded that the memory system
parameters chosen were effective for a wide variety of test programs [44].

6.2 Measuring Miss Rates

Because similar techniques are used to measure the miss rate in the CPU cache and main
memory, the term “cache” is often used to refer to both when discussing simulation tech-

64

niques. In this section, a cache is any slice in the memory hierarchy used to buffer chunks
of memory from the next larger slice. When talking specifically about the on-board CPU
cache, I will use the term CPU cache.

The technique used to measure locality of reference in this thesis is stack simulation, first
described by Mattson and others [59]. Stack simulation allows the miss rate for any number
of cache sizes to be calculated with only one pass over the reference string. Because the
hardware configuration and replacement policies differ between the CPU cache and main
memory, the stack simulation techniques used to measure locality of reference also differ.

6.2.1 Stack Simulation

Stack simulation will only provide miss rate information if the replacement algorithm on a
cache miss is one of a class of algorithms called stack algorithms. While not all replacement
algorithms are stack algorithms (FIFO replacement is not), some of the most effective (such
as LRU replacement) are. I will assume LRU replacement throughout this thesis. Stack
simulation works because of the inclusion property of stack algorithms: all entries in a
smaller cache will also be present in a larger cache. With this property, the simulation simply
needs to determine, for every reference, the minimum cache size for which the reference will
cause a hit. All smaller caches will miss and all larger caches will hit.

Stack simulation maintains the blocks referenced as a stack. With LRU replacement,
when a block is referenced, the stack is searched. If the referenced block is located in the
stack it is moved to the top of the stack, while the blocks now below it are shifted down one
slot. The depth of the referenced block in the stack is the stack distance of the reference.
If the block has never been referenced and is not found when the stack is searched, the
reference has distance infinity and the new block is placed at the front of the stack. For a
cache of size k blocks, all references with distance k 4+ 1 or greater will cause a miss. By
maintaining a count of the stack distances derived from the reference string, the number
of misses for any cache size can be determined with one pass over the reference string. A
more comprehensive description of stack simulation is provided by Thompson [83].

6.2.2 Partial Stack Simulation

The stack simulation technique described above works well for determining page fault rates
in main memories of any size. A straightforward implementation of the algorithm maintains
the LRU stack as a linked-list of blocks which is repeatedly searched. The greatest drawback
of stack simulation implemented in this way is that the stack distance must be computed
for every one of tens of millions of references. Determining the distance of a block in a stack
implemented as a linked-list of blocks requires time proportional to the average depth of
the stack. With good reference locality, the average stack depth may be relatively small
(Thompson reports a mean depth of 33 from an address trace simulation). But because
garbage collection itself introduces significant non-locality, the mean stack depths I observe
are larger (from 50 to 100).

65

Several techniques have been suggested to improve the efficiency of stack simulation.
Bennet and Kruskal implemented stack simulation by creating a tree with size proportional
to the length of the reference string [9]. Each node in the tree corresponds to a distinct ref-
erence to a block. Using their approach, the cost of computing the stack distance of a block
reference is logarithmic in the distance. Olken extended their technique by reducing the
space requirements [67]. Thompson investigated the performance of these algorithms and
hybrid algorithms, which use different representations for different parts of the stack [83].
Interestingly, comparing the performance of the various methods, Thompson found the
simple linked-list implementation was the most effective for address traces. Only when the
mean stack depth became large (300-400) did the tree implementations show significantly
better performance than the linked-list implementation.

In an effort to improve the performance of the linked-list implementation, I have modified
it to perform faster at a cost of information loss. Recognizing that miss rate information
about small caches is not interesting (few people will run Lisp on machines with 64 kilobytes
of main memory), I modified the linked-list implementation by splitting the LRU stack into
two parts. The new algorithm is called partial stack simulation. 1 define a parameter,
N, and modify the algorithm so that stack distances smaller than N are not determined
precisely. The elements of the stack are thus divided into those within the top IV entries,
and those below the top N entries.

The simple observation that makes this approach possible is that references to the top
N blocks have no effect on blocks farther down in the stack. Only the relative positions of
the top N entries changes. By eliminating the distance computation for blocks within the
top IV entries, many stack operations are avoided.

My partial stack simulation algorithm is formally defined in Figure 6.1. The pseudocode

function referenceBlock(block) is

LastRefTime(block) «— CurrentTime

if (block € TopNSet) then
return I

else
distance «— N + findStack(block, BlockStack)
removeStack(block, BlockStack)
newBlock «— {b € TopNSet such that LastRefTime(b) is oldest}
TopNSet «— TopNSet — newBlock + block
pushStack(newBlock, BlockStack)
return distance

endif

end

Figure 6.1: Partial Stack Simulation Pseudocode

66

used in the figure follows the conventions described in Appendix B. The stack data structure
used in the figure, along with the normal popStack operation, supports findStack, which
locates a block in a stack of blocks and returns its distance, and removeStack, which removes
a block from a stack. Associated with each block is the attribute LastRefTime, which
indicates when the block was last referenced. The global variables used in the algorithm
are TopNSet, a set containing the N blocks that would traditionally be found at the top of
the simulation stack, BlockStack, a stack of blocks containing the blocks found below the
top IV in the simulation stack, CurrentTime, an integer representing the current time, and
N, a constant integer indicating how many elements are found in TopNSet. The 4+ and —
operations performed on a set denote the union and deletion operations, respectively.

The function referenceBlock takes a block identifier as an argument and returns the
distance of the block in the simulation stack. Blocks within the top N entries of the
traditional simulation stack are reported as having distance one. All other distances are
correctly reported.

Using this approach, the parameter N determines the tradeoff between speed and infor-
mation loss. When N = 1, the algorithm is just traditional stack simulation and the results
are identical. As N increases, the miss rate of smaller caches is lost. Table 6.1 shows the
performance of a simulation with N ranging from 1 to 250. For these simulations, N = 250

Stack Entries Ignored N=1|N=20| N=50| N=100 | N =250
Execution Time (seconds) 177.9 126.3 109.1 103.7 98.2
Percent of full analysis 100.0 71.0 61.3 58.3 55.2
Speedup over full analysis 1.0 1.4 1.6 1.7 1.8
Percent of total list operations — 62 48 35 21

Table 6.1: Effectiveness of Partial Stack Simulation. The execution time is the amount of time
spent doing partial stack simulation for one of the test programs (the Lisp compiler). Percent of total

operations indicates the fraction of total list cells that needed to be scanned with partial analysis.

corresponds to a main memory size of one megabyte, the minimum memory size of interest.
As the table shows, increasing N to 250 speeds up the stack distance calculation by almost
a factor of two. For N = 250 only 20% as many stack elements are scanned as for full
analysis, but the simulation still requires 55% of the time. This discrepency is explained by
the fixed costs per reference, which include function call and bookkeeping overhead (e.g.,
recording the current reference time for each reference). Almost doubling the speed of the
stack distance computation, partial stack simulation is a simple technique that significantly
decreases the overhead of stack simulation.

67

6.2.3 Measuring CPU Cache Miss Rates

The measurements of the CPU cache miss ratio for a variety of cache sizes (and potentially
different associativities) were computed using a cache simulator, Tycho, written by Mark
Hill [43]. Using a technique called all-associativity simulation, Tycho can determine miss
ratios for a number of cache sizes and associativities with one pass over the reference string.
A complete description of the technique and its performance is provided in Hill’s thesis [44].

All-associativity simulation makes certain assumptions about the cache. There must be
a single cache block size for all caches simulated (in this case, 32 bytes). Associative caches
must use LRU block replacement. Furthermore, block prefetching and cache sub-blocks are
not allowed.

6.3 Locality of Garbage Collected Programs

In a program that employs garbage collection, there will be two distinct patterns of reference:
those of the program itself and those of the collection algorithm. To help distinguish
between the different phases of execution, program locality refers to the locality of the
user program, collector locality refers to the reference locality during garbage collection,
and overall locality refers to the combined locality of the program and collector. This
section discusses the reference patterns one would expect to see with a program running a
generation-based garbage collection algorithm. Surprisingly, much can be said about the
patterns of reference without considering specific applications.

The executing program references three distinct classes of objects: temporary objects
allocated as intermediates for short computations, longer-lived program objects that survive
a significant fraction of the entire computation, and Lisp runtime system objects (e.g., sys-
tem packages and symbols) that have indefinite lifespans. A well-tuned generation garbage
collection algorithm that promotes longer-lived objects will locate each class of objects in a
different generation. The pattern and frequency of reference to each class (and generation)
is distinctly different.

Program references to the newest generation include initializing stores. As we saw
in Chapter 5, initializing stores account for a large fraction of all writes into the heap.
Furthermore, initializing stores have the property that the previous contents of the allocated
memory is known to be uninteresting. Peng and Sohi suggest a special “allocate” cache
operation that tells the cache not to bother fetching the block being allocated since its
contents will immediately be overwritten, avoiding unnecessary bus traffic [68]. Such an
operation would also be helpful to the operating system when zeroing or copying virtual
memory pages, actions that are common when a parent process forks a child process. The
allocate operation would also be helpful to a copying collector, where copying proceeds
sequentially through tospace. The allocate cache operation would be less useful for non-
copying algorithms, where only parts of cache blocks are typically allocated. Other program
references to the newest generation are less predictable, although if the generation is kept

68

relatively small a certain amount of spatial program locality is guaranteed.

References to the older generations are mostly loads, as most stores are initializing
stores. Because older program objects get compacted as they are promoted, references to
these objects should show good spatial locality. Premature promotion of data that dies
quickly will dilute the spatial locality of references to the second generation and should be
avoided. In the following sections, we will see the negative effect of premature promotion.
System objects, on the other hand, are often widely distributed in the oldest generation,
which is typically megabytes in size. Reorganizing these objects for better locality can
be effective in improving program locality, especially if the reorganization is intended for
the execution of a specific set of applications. Courts’ training-band approach shows how
successful the reorganization of system objects can be [25].

In summary, program references fall into two very distinct categories: newspace refer-
ences, which are local and include predictable stores to initialize, and oldspace references,
which are more diffuse and include few stores. Figure 6.2 presents the frequency distribu-
tion of the ages of objects referenced for the four test programs. In the figure, we see that
the age distribution is bimodal. There are many references to very young objects, but there
are also a large number of references to old objects. References to system objects, which
account for 18-28% of all references, are not shown. This result suggests that even if the
entire newspace can be placed in the cache or main memory, references to older generations
can significantly reduce the program locality. One solution, as explored in this chapter, is
to make caches and main memories large enough to include both newspace and the active
objects in oldspace.

By its nature, poor collector locality is somewhat unavoidable because garbage collection
algorithms must reference every reachable object in the generations being collected. This
pattern of reference shows both poor spatial and temporal locality. Beyond these necessary
references, copying and non-copying algorithms make additional references.

Copying algorithms transport every object, resulting in a series of allocate operations
in tospace. They must also write into the fromspace copy of objects to mark the forward-
ing address and update pointers to relocated objects. Furthermore, the tospace copies of
objects must be scanned. Essentially, copying algorithms require reads and writes to every
object in fromspace and two sequential writing scans (first to copy and then to relocate) of
objects transported to tospace. The advantage of copying algorithms is that the reachable
objects are compacted as they are copied and newspace spatial reference locality should
be improved. If, however, newspace fits entirely in the cache or memory, this effect is not
significant.

The order of traversal in a copying algorithm affects the locality of garbage collection, as
discussed by Moon [61]. Courts’ reports that approximate depth-first traversal was shown
to decrease page fault rates by 10-15% over breadth-first traversal in the TI Explorer [25].

Among copying algorithms, incremental algorithms reference memory in a very different
pattern from stop-and-copy algorithms. Instead of separating program and collector refer-
ences into distinct groups, incremental collection finely intermingles collector and program

69

Fraction of references (%)

Fraction of references (%)

80

70

60

50

40

30

20

10

40

30

20

10

Lisp Compiler Curare

Object Type
—— —— - total
— — — other
77777 number
——————————— vector
cons

30
T

Fraction of references (%)
20
T

10
T

1 0.0001 001 01 1 10 100 1000 1 0.0001 001 01 1

Age (sec) Age (sec)

Boyer Moore TP RL

Fraction of references (%)
30 40 50 60
T T T

20

10
T

10 100 1000

1 0.0001 001 01 1 10 100 1000 1 0.0001 001 01 1

Age (sec) Age (sec)

Figure 6.2: Age Distribution of Objects Referenced by Object Type.

70

10 100 1000

references. The result should be a decrease in overall locality because of interference be-
tween the two kinds of references. Collector references dilute the program locality and vice
versa. The degree of this dilution is measured later in this chapter.

Non-copying algorithms, such as mark-and-sweep collection, have significantly better
collector locality than copying algorithms. In particular, non-heap references are made to
a stack and a mark bitmap, both data structures that have good locality characteristics.
Furthermore, objects in the heap are not modified at all. Intuition suggests that if the
entire newspace fits in the cache, non-copying collection will require a smaller cache than
copying collection to achieve the same miss rate.

6.4 Main Memory Locality

This section investigates the locality of reference in the main memory for the three garbage
collection algorithms described in Chapter 4. The primary measure of locality in the main
memory is the page-fault rate, the number of page faults generated by a program in a second.
Since page faults require 10-30 milliseconds to handle, page fault rates on the order of 10
faults per second are the highest tolerable rates (adding 10-30% to the execution time of
the program). This section examines the advantages and disadvantages of each algorithm
over a variety of space sizes and estimates each algorithm’s memory requirements. Of
greatest interest is the relative locality of incremental and stop-and-copy collection (intuition
suggests that stop-and-copy should have better locality), and the relative locality of copying
and non-copying collection (intuition suggests non-copying should have better locality).
Before presenting the results, I discuss the limitations of a simulation-based approach for
measuring main memory locality.

Generation garbage collection greatly improves the locality of reference for all the al-
gorithms measured. In fact, eight megabytes of physical memory is sufficient to insure
that none of the test programs will cause a page fault even with a two megabyte newspace
threshold. This result suggests that main-memory locality is unimportant for programs us-
ing generation garbage collection. Historically, however, Lisp programs have quickly grown
to use all the physical memory that is available. Even existing programs challenge the cur-
rent relatively large physical memories. I have been informed of an existing Lisp application
for CAD that has a 200-megabyte working set [48].

The results presented must also be considered with this caveat in mind. I assume that
the allocation and reference behavior of larger and longer running programs is similar to that
of the programs I have measured so that the memory sizes considered and page fault rates
will scale accordingly. Furthermore, my results only apply to the performance of a single
program. Another source of paging not considered here results from transitions between
programs, causing large changes in the working set. To investigate the VM performance
under these conditions, interactive workloads would have to be captured and fed into MARS.

71

6.4.1 Page Fault Rates

The page fault rates (faults per second) for the three collection algorithms are presented
in Figure 6.3, where memory sizes from three to six megabytes are considered. The figure
shows results from the two programs that required the most memory, the Lisp compiler
and RL. The figure shows that as the newspace threshold increases, the fault rate also
generally increases. Memory configurations that show acceptable performance are much
larger than the newspace threshold. For the copying algorithms, the page fault rate tends
to remain acceptable while the physical memory is about two times the threshold size plus
2-3 additional megabytes to contain oldspace data. For non-copying collection, a good “fit”
results when the memory is as large as the threshold size plus 2-3 megabytes. From this we
see that the non-copying algorithm shows much better reference locality than the copying
algorithms. In particular, thresholds up to 500 kilobytes produce acceptable fault rates
in a three megabyte memory for the mark-and-sweep algorithm, but not for the copying
algorithms. Mark-and-sweep collection shows lower fault rates in almost all cases, except for
the smallest threshold size with smaller memories. In these cases, the additional promotion
caused by en masse promotion increases mark-and-sweep references to the second generation
and dilutes reference locality.

Comparing stop-and-copy with incremental collection, the two methods appear to have
similar fault rates. The interleaving of collector and program references appears to have
little effect on reference locality in most cases. For small threshold sizes, where more objects
are being incrementally transported from fromspace, the stop-and-copy algorithm does show
better locality. Interestingly, for large thresholds, incremental collection shows slightly lower
fault rates than stop-and-copy collection. This difference may be due to a slightly decreased
rate of copying caused by the transport delay of incremental collection, which gives objects
slightly longer to die, and hence transports fewer objects.

The figure shows a clear advantage for mark-and-sweep collection. With a smaller
newspace size (i.e., no semispaces), more oldspace pages can permanently reside in memory,
reducing the fault rate of this algorithm. Semispace compaction, which is intended to
improve reference locality, actually decreases locality by increasing the size of newspace.

6.4.2 Memory Requirements

Another way to understand the main-memory locality of our algorithms is to determine
the amount of physical memory required to achieve a particular fault rate as a function of
algorithm and threshold size. Figure 6.4 shows the physical memory requirements of the
algorithms for fault rates ranging from zero to twenty faults per second. Interestingly, the
relationship between memory needed and threshold size is relatively flat, where one would
expect to see the memory requirements steadily increasing with threshold size. There are
conflicting forces that tend to flatten the relationship between threshold size and the mem-
ory needed. As threshold size increases, fewer collections occur and less data is promoted,
causing fewer second generation references, thus decreasing the demand for memory in the

72

Page faults per second Page faults per second

Page faults per second

100 120

40 60 80

20

0 20 40 60 80 100 120 140

30 50 70 90

10

Lisp Compiler (incremental)

Memory Size
— — — — 6 megabytes
5 megabytes

r /
/
/
L /
/
al
______ s
L B—o A e T al // Va
[R - L i
== *ffD\\\\:é/
- L L -]
125 250 500 1000 2000

GC threshold (kbytes)

Lisp Compiler (stop©)

125 250 500 1000 2000

GC threshold (kbytes)

Lisp Compiler (mark&sweep)

125 250 500

1000

2000
GC threshold (kbytes)

Page faults per second Page faults per second

Page faults per second

140

0 20 40 60 80 100

30 50 70 90 110

10

20 30 40 50 60

10

RL (incremental)

125 250 500

1000

2000
GC threshold (kbytes)

RL (stop©)

L B‘ g /ID///
P

- B___‘_E—_—__ﬂ’/ I)
125 250 500 1000 2000

GC threshold (kbytes)

RL (mark&sweep)

1000 2000

GC threshold (kbytes)

Figure 6.3: Page Fault Rates for Different Collection Algorithms.

Memory Needed (4K pages) Memory Needed (4K pages)

Memory Needed (4K pages)

1200 1600 2000

800

400

3000

2000

500 1000

0

400 800 1200 1600 2000

0

Lisp Compiler (incremental)

[Fault Rate Allowed
— — — — 20 faults/sec
[| —=—===- 10 faults/sec
,,,,,,,,,,,,,, 5 faults/sec
L 0 faults/sec
L 1 1 L .
125 250 500 1000 2000

GC threshold (kbytes)

Lisp Compiler (stop©)

SoL 1 1 1 J

125 250 500 1000 2000

GC threshold (kbytes)

Lisp Compiler (mark&sweep)

L 1 1 1 J

125 250 500 1000 2000

GC threshold (kbytes)

Memory Needed (4K pages) Memory Needed (4K pages)

Memory Needed (4K pages)

1200 1600 2000

800

400

400 800 1200 1600 2000

0

600 1000 1400 1800

0 200

RL (incremental)

L 1 1 1 J

125 250 500 1000 2000

GC threshold (kbytes)

RL (stop©)

L 1 1 1 J

125 250 500 1000 2000

GC threshold (kbytes)

RL (mark&sweep)

L 1 1 1 J

125 250 500 1000 2000

GC threshold (kbytes)

Figure 6.4: Memory Sizes Required for Different Collection Algorithms.

second generation. This decreased demand balances the increased demand for newspace
memory caused by a larger newspace threshold. Sometimes the effect of the decreased
promotion rate is dramatic, as for the copying collectors with thresholds of 125 and 250
kilobytes. The 250-kilobyte threshold significantly reduces the promotion rate and the mem-
ory demand. Above 250 kilobytes, increasing thresholds tend to cause increased memory
demand.

This figure also shows more clearly the relative memory requirements of copying and
non-copying collectors. Typically, the mark-and-sweep collector uses 30-40% less memory
to achieve the same page fault rate as stop-and-copy collection. Incremental and stop-and-
copy collection have similar memory demands, differing by less than 10% throughout. The
overall memory demand of the programs examined ranges from 4-8 megabytes depending
on the algorithm and parameters.

In summary, these page fault rate measurements indicate that the page locality of stop-
and-copy collection and incremental collection for reasonable memory sizes is similar. Fur-
thermore, mark-and-sweep collection shows significantly better main-memory locality, show-
ing lower fault rates and typically requiring 30-40% less memory than copying algorithms.

While the evidence from these test programs suggests that compaction associated with
copying collection does not significantly improve reference locality, preliminary evidence
from another source suggests otherwise. Doug Johnson has informed me that copying
compaction in older generations appears to improve reference locality in a large CAD appli-
cation [48]. In his application, Johnson noted that almost all promoted data remains alive
for a large part of the program lifespan (tens of hours). Using Courts’ algorithm, which uses
incremental collection and delays copying, thus letting the reference pattern determine what
is copied, Johnson found that a program with a 200-megabyte working set could execute in
a 24-megabyte physical memory with relatively low paging overhead (approximately 7%).
These preliminary results suggest that Court’s copy-on-demand technique may significantly
improve reference locality in older generations for some large applications. Further experi-
mentation is required to determine the extent of the effect. This effect, not measured in my
simulations, which are too short to generate large quantities of promoted data, may reduce
the relative locality benefits of non-copying collection algorithms.

6.5 CPU Cache Locality

The effect of garbage collection on cache locality differs significantly from its effect on main-
memory locality because caches are managed very differently from main memories. First,
the replacement unit is much smaller. I investigate 32-byte cache blocks—sixteen times
smaller than the 4096-byte virtual memory pages. Second, a direct-mapped cache has a
different replacement policy from an LRU-managed main memory. In a direct-mapped
cache, block replacement is based entirely on the address referenced. No effort is made
to determine which block to replace because only one qualifies for replacement. In such
a cache, collision avoidance becomes important because two frequently-accessed addresses

75

that map to the same cache block can cause many cache misses.

Caches are also typically much smaller than main memories, although cache sizes have
increased significantly in recent years. Typical cache sizes are now 64 to 128 kilobytes and
they will grow as memory chips become more dense. Their size limits the possibility of
newspace fitting entirely in the cache, but does not preclude it. Finally, cache latency on
a miss is usually measured in tens of cycles, so a cache miss incurs a much smaller penalty
than a page fault. Acceptable cache miss rates are generally from 1-5%, depending on
possible system bottlenecks like the memory bus.

As we have seen, instruction fetches account for about 85% of the total memory requests
in a program. These simulations assume that the instruction and data caches are separated,
so collisions between instruction and data fetches do not arise. The high locality of instruc-
tion fetches tends to ameliorate the relative poor data cache locality for garbage-collected
programs. This section only examines the miss rate in the data cache. The total miss rate
is considered in Chapter 8.

In the past, caches have been too small for garbage collections algorithms to have much
influence on cache performance. My results show that when the cache is much smaller
than the threshold size, threshold size has little effect on miss rate. The combination of
generation garbage collection and large caches has introduced the possibility that garbage
collection algorithms can affect cache performance. Very recently, Peng and Sohi have
considered possible modifications to the cache to enhance cache performance in a garbage
collected heap [68]. They conclude in their analysis that an allocate cache operation (men-
tioned earlier) and a biased-LRU replacement policy for an associative cache will strongly
enhance cache performance and lower bus utilization. Biased-LRU replacement identifies
and replaces cache blocks that are known to contain garbage. This policy requires that
garbage in the cache is detected soon after it becomes garbage. They suggest that reference
counting algorithms have this property and should be preferred if the cache provides the
recommended hardware support.

While Peng and Sohi’s cache enhancements would improve performance, their analysis
is limited in several ways. First, the programs they measure are small benchmarks, mostly
from the Gabriel suite, that perform on the order of 20,000 to 200,000 heap references.
They conclude that a fully-associative cache of 3640 words should be large enough to cap-
ture the locality of the programs. The cache sizes they investigate range from 512 bytes
to 64 kilobytes. Finally, they fail to investigate generation collection algorithms that pro-
vide a significant enhancement to locality. My results, which focus on the effect of garbage
collection algorithms in a relatively simple cache, differ significantly from Peng and Sohi’s.
In particular, the long reference strings from the programs I measure (20,000,000 refer-
ences) require larger caches to capture the program locality, even with generation garbage
collection. The major reason for the difference is that non-benchmark programs use large
long-lived data structures and reference system objects with higher frequency than small
benchmark programs. These objects behave much differently than the short-lived objects
measured by Peng and Sohi.

76

6.5.1 Direct-Mapped Caches

Figure 6.5 shows the data cache miss rates for different cache sizes and threshold sizes
with the stop-and-copy algorithm. For caches that do not fully contain newspace, we see a
small improvement (roughly 1%) by doubling the cache size. When the cache does contain
newspace, however, the fit improves dramatically. For a two megabyte cache, the effect
of threshold size on miss rate is pronounced, suggesting that for sufficiently large caches,
generation garbage collection can be used to improve data cache locality to the point of
almost entirely eliminating cache misses. This result is significant because in systems of
the future, as CPU speeds continue to increase, memory accesses may become the major
bottleneck to system performance. I conclude that generation garbage collection can be
used to effectively tradeoff CPU speed with memory system capacity to achieve balanced
performance.

The figure also shows the large difference between the performance of a one megabyte
cache and a two megabyte cache, even when they both fully contain newspace. The differ-
ence in miss rate is probably caused by a failure of the one megabyte cache to contain many
objects frequently referenced in oldspace. Even with newspace fully contained, oldspace
references play a major role in cache performance.

Figure 6.6 shows the cache miss rates for the mark-and-sweep algorithm. Overall, the
cache sizes needed to obtain the same miss rate as the stop-and-copy algorithm are smaller.
As expected, using a non-copying algorithm provides approximately the same miss rate as
a copying algorithm in a cache of half the size. Since cache memory chips are expensive,
this result suggests that non-copying algorithms are significantly more economical than
copying algorithms in the presence of generation collection. Interestingly, however, for large
caches and small threshold sizes, the stop-and-copy algorithm performs better than mark-
and-sweep, again because the mark-and-sweep algorithm is promoting more objects that
decrease cache locality.

Another difference between mark-and-sweep and stop-and-copy collection is the differ-
ence in miss rates for one and two megabyte caches. While the stop-and-copy algorithm
shows a big difference, there is hardly any difference in the miss rate for these cache sizes
with mark-and-sweep collection. One explanation for this similarity is that mark-and-sweep
collection places objects of the same type on a page. In particular, symbols in oldspace
have much better spatial locality in the mark-and-sweep algorithm. In the stop-and-copy
algorithm, symbols are distributed evenly throughout oldspace. Because many oldspace
references are made to to symbols (particularly for special variable binding), these refer-
ences will be less likely to miss in a direct-mapped cache if oldspace symbols are grouped
together.

Finally, Figure 6.7 compares the cache miss rates for the three algorithms for several
cache sizes. As with page fault rates, the miss rate of the incremental algorithm is very close
to that of the stop-and-copy algorithm. Non-copying collection clearly offers the best cache
miss rate. These results suggest that the effect of garbage collection algorithm and threshold
size is pronounced enough that the CPU cost versus locality tradeoff should be evaluated in

77

Cache miss rate (%)

Cache miss rate (%)

10

04 06 08 10 12 14 16 1.8

0.2

0.0

Lisp Compiler (stop©)

- Cache Size
——-—— 2 megabytes
—— —— — 1megabyte
L _—— 512 kilobytes
77777 256 kilobytes
128 kilobytes
————— 64 kilobytes

125 250 500 1000 2000
GC threshold (kbytes)

Boyer Moore TP (stop©)

- g Heeg o
: A _B-_
e o g

g
-
T]]]]
125 250 500 1000 2000
GC threshold (kbytes)

Figure 6.5:

Cache miss rate (%)

Cache miss rate (%)

Curare (stop©)

ey
I gt
g0
///E'——ﬂ_EI\\\\EI
L B---3 g _
F-—g=——0- —B-—4

g E—H==F

125 250 500 1000 2000

GC threshold (kbytes)

RL (stop©)

- L .0
E| __________
e =]
L /,B--»_,,/~
d----a""
i B-_g——f
| B-—g o7
L /B’/’
S
L B"”
125 250 500 1000 2000

GC threshold (kbytes)

Cache Miss Rates for Stop-and-Copy Collection.

Cache miss rate (%)

Cache miss rate (%)

10

1.2 1.4 1.6

1.0

0.8

0.6

0.2 0.4

0.0

Lisp Compiler (mark&sweep)

- Cache Size

2 megabytes
1 megabyte
512 kilobytes
256 kilobytes
128 kilobytes
64 kilobytes

125 250 500 1000 2000

GC threshold (kbytes)

Boyer Moore TP (mark&sweep)

N : -
s
G| A
-7 4
- e a7

H--- g o /;S

[/E / .

g o —H
125 250 500 1000 2000

GC threshold (kbytes)

Curare (mark&sweep)

Cache miss rate (%)

125 250 500
GC threshold (kbytes)

RL (mark&sweep)

Cache miss rate (%)

1000

2000

125 250 500
GC threshold (kbytes)

1000

Figure 6.6: Cache Miss Rates for Mark-and-Sweep Collection.

79

2000

Cache miss rate (%)

Cache miss rate (%)

10

04 06 08 10 12 14 16 1.8

0.2

0.0

Lisp Compiler

Algorithm (Cache Size)
_— = incremental (1M)
mark-and-sweep (1M)
stop-and-copy (1M)
incremental (256k)
mark-and-sweep (256k)
stop-and-copy (256k)
incremental (64k)
mark-and-sweep (64k)
stop-and-copy (64k)

L 1 1 1 |

125 250 500 1000 2000

GC threshold (kbytes)

Boyer Moore TP

L -//’\\—_\> — _
— I S

_ -

~
N
— =
T]]]]
125 250 500 1000 2000
GC threshold (kbytes)

Cache miss rate (%)

Cache miss rate (%)

10

Curare

-
L e
_——=Z
= —— ==
- T
T I I I J
125 250 500 1000 2000

GC threshold (kbytes)

RL

L 1 1 1 J
125 250 500 1000
GC threshold (kbytes)

2000

Figure 6.7: Cache Miss Rates for Three Collection Algorithms.

systems where cache performance is important. In Section 8.3.2, the effect of cache locality
on total performance for both uniprocessors and multiprocessors is discussed. For now, we
can conclude that mark-and-sweep collection offers clear advantages over copying collection
algorithms for most cache, memory, and threshold sizes.

81

Chapter 7

Availability

This chapter investigates the effect that garbage collection algorithms have on the interactive
availability of programs. In particular, because incremental collection avoids perceivable
pauses, this chapter focuses on the pauses caused by the stop-and-copy and mark-and-sweep
algorithms discussed in Chapter 4. The effect that threshold sizes and promotion policies
have on pause length, promotion rate, and collection overhead are considered. While large
threshold sizes always result in lower CPU overhead when enough memory is available,
the longer pauses associated with larger thresholds may be unacceptable. This chapter
quantifies the relationship between threshold size and pause length.

Collection pauses are a problem because I am assuming a model of use where a program-
mer starts a CPU (and allocation) intensive job (e.g., a compile) running in the background,
and then uses the same Lisp system for more interactive tasks such as editing or reading
mail. Because garbage collection of one Lisp process will interfere with all processes that
share the same address space, the interactive programs will be delayed by garbage collec-
tion, disrupting the user. This model, where Lisp processes share an address space, is a
common one for Lisp workstations.

7.1 Pause Histories

Before examining the relationship between pause length and collection parameters, I present
data illustrating the observed pauses for three of the four test programs. Figure 7.1 shows
the frequency and duration of collection pauses for the stop-and-copy and mark-and-sweep
algorithms with a pause history diagram.

The patterns of collection illustrate the basic problems of pause length and promotion
in a generation garbage collector. Each plot shows the collection patterns for three different
threshold sizes. The smallest threshold results in more frequent, shorter collections. How-
ever the smallest threshold also results in more rapid promotion of data, and so collections
of the second generation (possibly lasting several seconds) occur more frequently. While

82

1.0 12

0.8

0.6

Pause length (sec)
0.4

0.0

1.0

0.8

0.6

Pause length (sec)
0.4

0.2

0.0

1.5 2.0

Pause length (sec)
1.0

0.5

0.0

Lisp Compiler (stop©) Lisp Compiler (mark&sweep)

- e
Algorithm (Threshold Size) N
—_— - - stop-and-copy (1000 kbytes) ‘
[e stop-and-copy (500 kbytes) | i
stop-and-copy (125 kbytes) 0 I
-

Pause length (sec)
1.0

0.5

o
[}
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Normalized User Time Normalized User Time
) Curare (stop©) o Curare (mark&sweep)
—
©
o
9
L o
5 ©
2
[
= <
=)
>
T
o
~
o
<
o
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Normalized User Time Normalized User Time
) RL (stop©) o RL (mark&sweep)
N
I o |
= e

Pause length (sec)
1.0

0.5

0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Normalized User Time Normalized User Time

Figure 7.1: GC Pause Lengths as Function of Time.

83

average pause length is decreased with small thresholds, the frequency of noticeable second
generation pauses may actually increase with small thresholds unless care is taken to avoid
promotion.

In these pause histories, the promotion policy used by the stop-and-copy algorithm is
copy count promotion, where objects are promoted after they have been copied three times
during garbage collection. For the mark-and-sweep algorithm, the policy is to promote
the entire generation after three collections (en masse promotion). The figure illustrates
that second generation collections are more frequent for mark-and-sweep collection due
to increased promotion from the en masse promotion policy. Another effect of en masse
promotion is that collection times are less uniform, as illustrated best by Curare. With
en masse promotion, immediately after a promotion, newspace is empty and less data is
marked when the threshold is reached. When newspace is promoted, collection takes longer
because copying requires more time than just marking. This non-uniformity leads to the
slightly more spikey appearance of the mark-and-sweep pause history diagrams.

While the pause histories give us an idea of the overall patterns of collection, they do
not provide an exact understanding of the performance tradeoffs available over a range of
threshold sizes and promotion policies. The easiest way to explore this design space is to
use object lifespan distributions.

7.2 Object Lifespans

The distribution of object lifespans largely determines the duration and frequency of garbage
collection pauses given a particular promotion policy and threshold size. Using MARS, I
have measured the lifespans of program objects in units of program references, a fine-grained
unit of time. The lifespan of an object is defined to be the number of program references
between the first and last reference to the object, even though the object may remain
reachable for some time after the last reference is made. The object is assumed to be
garbage immediately after the last reference. Alternate assumptions, such as assuming the
object is dead only when it is actually reclaimed, are not fine-grained enough, as collections
are relatively infrequent. To determine the exact lifespan by traversing all objects and
noting the live ones after every reference would be prohibitively expensive to compute.

Figure 7.2 shows the survival rates (i.e., the fraction remaining alive beyond a particular
lifespan) for different object types in the four test programs. In addition to survival rates
for classes of types, the total survival rate for all objects is shown. Predictably, the total
is close to the cons curve because so many cons cells are allocated. Although the overall
shapes of the plots differ significantly, several trends are common to all programs. First, in
all cases the survival curves are quite steep. After one second less than 20% of all objects
remain alive in most cases—after ten seconds less than 5% of the objects remain alive.
Second, the curves decrease very steeply initially and then flatten out. Very short-lived
objects are probably temporary objects allocated only for the duration of an expression or
function call and then discarded. A second sharp decrease in the survival curve occurs after

84

Fraction surviving

Fraction surviving

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

Lisp Compiler Curare

o
- ~~ S r
| ' \ Object Type
| ; \ — — - total
| B — — — other
— [\ y \ ***** number @
I\ \ ——————————— vector ©
| \ cons
\ (o))
L £ o |
; o
>
0
c
i)
° <
L g S r
(TR
N
L S+
L o L
L] (S]
1 0.0001 001 01 1 10 100 1000 1 0.0001 001 01 1 10 100 1000
e-6 e-6
Time (sec) Time (sec)
Boyer Moore TP RL
o
- S r
[ee)
L @+
[«2)
L £ o |
; o
5
0
c
k)
o <
L g 3 r
(TR
N
L S+
L o L
L | o | |
1 0.0001 001 01 1 10 100 1000 1 0.0001 001 01 1 10 100 1000
e-6 e-6
Time (sec) Time (sec)

Figure 7.2: Survival Distribution of Objects Referenced by Object Type.

85

about one second in the compiler and RL programs. This decrease represents the deaths
of objects allocated for the duration of a program subtask. In the compiler, the subtask is
the compilation of a single top-level form. In RL, the subtask is instruction scheduling for

a basic block.

Interestingly, in both cases the subtask takes a few seconds or less to compute. 1
surmise that subtasks that last a second or less are commonly found in systems where
development takes place interactively. If the basic subtask took longer to compute, then
the pause required for that computation would interfere with the interactive flow of program
development. I investigate the consequences of this possibility in Chapter 8, which considers
how object lifespans may change when processor performance increases.

There are other interesting trends in Figure 7.2. The survival curves of different types
of objects are quite different. For example, numeric objects invariably have very short
lifespans and clearly represent temporary values generated as intermediates in arithmetic
expressions. Some curves also show rapid decreases at specific lifespans (in particular,
objects with type “other”). There are two reasons for these very sharp changes in survival
rate. The first reason is statistical. Classes of types of which few objects are allocated
(e.g., “other” objects) will show more variation in survival rate than classes where many
objects are allocated (e.g., cons objects) because the sample size is smaller. Another reason
for sharp decreases in the survival rate is that some objects are allocated for very specific
lifespans. These are objects allocated for a task with a fairly constant duration, like the
execution of an I/O operation or the evaluation of any function whose execution time is
independent of the value of its arguments.

7.3 Discrete Interval Simulation

DIS (Discrete Interval Simulator) is a program that I wrote to augment MARS. DIS takes
object lifespan and allocation information from a particular program as input and simulates
the behavior of garbage collection algorithms at a very high level. DIS works by breaking
up the program execution into discrete intervals. One input to DIS is a sequence of the
number of bytes the program allocated in each interval. A second input to DIS is the
lifespan distribution of the program’s objects. By knowing the number of bytes allocated
in any interval ¢, with lifespan information, DIS can predict how many of those bytes are
still in active use at any later interval j.

For each simulated interval, DIS maintains a count of the current number of active
bytes in all previous intervals. When an allocation threshold is reached, DIS simulates a
garbage collection. DIS maintains information about each time interval in addition to the
number of active bytes. The number of times the bytes have been copied, as well as the
generation in which they are currently stored is noted. When a new interval is simulated
(call it interval ¢), the values associated with the interval are initialized. The active byte
count is set to the number of bytes allocated, the generation those bytes occupy is newspace,
and the copy count is set to zero (the bytes have never been copied). As later intervals are

86

simulated, interval 7 ages, and the number of active bytes it contains decreases. Eventually,
a newspace garbage collection is simulated. Intervals stored in newspace are modified to
reflect that they have been copied (the copy number is incremented) or promoted (the
generation number is incremented). By recording how many active bytes are transported
or promoted, an estimate of the cost of the collection is possible.

Using this method, the frequency and duration of collections of all generations can be
predicted if the collection duration is assumed to be proportional to the number of bytes
collected. Furthermore, the promotion rate of objects to older generations can be measured.
DIS does not provide any information that is not also provided by MARS. Its advantage
over MARS is that the collection performance of an algorithm under a set of parameters can
be obtained in a matter of seconds instead of the hours required to obtain the information
using MARS. Therefore, it can be used to investigate garbage collection behavior for a
much longer period of time than is possible using MARS. In particular, the pause length
and frequency of collections of older generations can be measured.

The major drawback of DIS is that by assuming a uniform lifespan distribution and
breaking program execution into fairly large discrete intervals, subtleties of the actual pro-
gram are lost. For example, object lifespan may strongly depend on time—long-lived objects
may be allocated mostly at the start of a program. Lifespan may vary with allocation rate—
objects allocated during periods of rapid allocation may have shorter lifespans. While DIS
misses such dependencies, I will show that its predictions of performance are often close to
those measured using MARS.

The remainder of this chapter uses DIS to examine two things: how promotion rate,
pause length, and CPU overhead vary with promotion policy and threshold size in news-
pace, and how promotion rates influence the frequency and duration of collections in older
generations.

7.4 Newspace Collection

While the main focus of this chapter is processor availability and garbage collection pauses,
in this section we will see that overhead, locality, and pause length are all closely related.
Using results from DIS, we will first examine pause length, then CPU overhead, and finally
promotion rates caused by collections of newspace. Throughout this chapter, performance
is considered to be a function of threshold size and promotion policy. The promotion policy
is further divided into the promotion strategy (copy count or en masse promotion) and
the number of copies (or flips) performed before promotion takes place (the copy number
parameter). In these results, the stop-and-copy algorithm uses copy count promotion and
the mark-and-sweep algorithm uses en masse promotion.

One of the goals of this evaluation is to determine if en masse promotion is an effective
promotion strategy as compared to copy count promotion. If en masse promotion cannot
offer competitive pause lengths and promotion rates when compared with copy count pro-
motion, then the mark-and-sweep algorithm proposed may not be acceptable. Another goal

87

of the evaluation is to examine the space of design parameters to determine what parameter
values avoid noticeable collection pauses and offer low overheads.

7.4.1 Pause Lengths

Figure 7.3 shows the predicted pause lengths for three applications and two collection algo-
rithms where the copy number was varied from zero to ten over the range of threshold sizes.
In addition, the value obtained using MARS, where the copy number was set to three, is
provided to check the validity of the DIS results.

When objects are promoted immediately (i.e., the copy number is zero) there is no
difference between copy count promotion and en masse promotion. Immediate promotion
yields the shortest pauses because fewer objects are copied back and forth in newspace.
While what is “acceptable” for a pause length is subjective, pauses longer than half a second
are definitely noticeable to an interactive user and probably disruptive. Since newspace
collections are relatively frequent (all of the configurations shown collect more often than
once per minute), non-disruptive pauses are essential. So, while thresholds larger than two
megabytes may be attractive due to low CPU overhead (assuming enough physical memory
is available), they also carry the disadvantage of long pauses (one second or more). In
Figure 7.3 we see that even two megabyte thresholds cause noticeable pauses unless objects
are almost immediately promoted. At 500 kilobytes, pauses are typically half as long as for
the two megabyte threshold and for copy counts of three or less the pauses are short enough
to go unnoticed (0.2-0.3 seconds).

Comparing the mark-and-sweep plots with the stop-and-copy plots, we see the trends are
similar but mark-and-sweep durations are only about 80% of the stop-and-copy durations
given similar threshold sizes and copy numbers. As we noted in Section 7.1, en masse
promotion results in a greater variation in pause lengths, with a slightly lower average
due to the increased promotion. The average duration, as shown in the figure, may also
be somewhat misleading. Since collections that promote take longer than collections that
mark, and because collections that promote are relatively frequent, even though mark-and-
sweep has a lower average duration, the longer pauses experienced will be as long as the
average stop-and-copy pauses, and mark-and-sweep will have no advantage.

Finally, the MARS results indicate that, while the DIS curves are probably more uniform
than curves measured with MARS, they are not incorrect by more than 20% in most cases.

7.4.2 CPU Overhead

Having established that very large thresholds may cause unacceptable pauses, we now ex-
amine the relative CPU overheads for the same range of parameters. The overheads are
calculated as a function of bytes copied (or marked), assuming the collection cost is propor-
tional to the amount copied. For these overheads, the costs of maintaining the write barrier
are not considered. As the unit of comparison, I chose copy count promotion with a copy

88

Pause Length (sec)

Pause Length (sec)

Pause Length (sec)

06 08 10

0.4

0.2

0.0

1.6 2.0

1.2

0.4 0.8

0.0

1.0

02 04 06 038

0.0

Lisp Compiler (stop©)
2|

Copy Number /
copies = 3 (MARS)
— copies =10 (DIS) /

copies = 3 (DIS) /

copies = 1 (DIS) E(

N —— copies =0 (DIS) / //E

125 250 500 1000 2000

GC threshold (kbytes)

Curare (stop©)

125 250 500 1000 2000

GC threshold (kbytes)

RL (stop©)

125 250 500

1000

2000
GC threshold (kbytes)

Pause Length (sec)

Pause Length (sec)

Pause Length (sec)

0.2 0.4 0.6 0.8

0.0

1.6

1.2

0.8

0.4

0.0

0.2 0.4 0.6 0.8

0.0

Lisp Compiler (mark&sweep)

125 250 500 1000 2000

GC threshold (kbytes)

Curare (mark&sweep)

125 250 500 1000 2000

GC threshold (kbytes)

RL (mark&sweep)

125 250 500 1000 2000

GC threshold (kbytes)

Figure 7.3: Pause Lengths for Three Applications

number of three and a threshold size of 500 kilobytes because this combination appeared
to provide reasonable pause lengths (and low promotion rate, as we will see).

Figure 7.4 shows the relative overheads. For reference, each unit of overhead corresponds
to approximately 15-20% of total execution time, depending on the application. As with
pause lengths, immediate promotion results in less CPU overhead, sometimes more than
a factor of five less than promotion after ten collections. Even with small threshold sizes,
immediate promotion results in less overhead than the baseline configuration. The drawback
of immediate promotion is the high promotion rate, as we will see in the next section.

Looking at the CPU overhead, we see the cost being paid to avoid long pauses. If
threshold sizes are increased to two megabytes, overhead decreases to half the baseline
cost. Incremental collection offers the advantage of allowing large thresholds without the
long pauses, thus increasing the efficiency of collection. Unfortunately, for the threshold
sizes considered, the added overhead does not make up for the added cost of implementing
the read barrier with stock hardware. Still, with threshold sizes larger than two megabytes,
incremental collection may be very competitive with stop-and-copy collection, even on stock
hardware. Non-incremental collection carries the hidden cost of needing to size thresholds
to avoid long pauses. For these programs, that cost is about 10% CPU overhead with the
additional cost of extra promotion.

The figure also shows the CPU costs of increasing the copy number. Collecting objects
three times before promotion can more than double the CPU overhead when compared with
promoting objects immediately. The drawbacks of the increased promotion rate must be
evaluated carefully before the alternative of immediate promotion is discarded.

Comparing copy count promotion with en masse promotion, we see that en masse pro-
motion results in lower overheads. This is true for the same reason that a low copy number
produces lower overheads, because when objects are more rapidly promoted, they are no
longer copied within a generation as much and collections take less time. So far, we have
seen that en masse promotion and promotions with low copy numbers result in shorter
collection pauses and significantly less CPU overhead, both favorable conditions. The next
section examines the increased promotion rate caused by these approaches.

7.4.3 Promotion Rates

We now look at the promotion rates of the algorithms over the range of parameter values.
Figure 7.5 shows that the promotion rates vary widely in the design space, ranging from
less than 1% to 30% of all bytes allocated. The figure immediately shows the benefits of
allowing one copy before promotion for all threshold sizes (i.e., copy number = 1). The
relative benefit of increasing the copy number by two is less significant, but the relative
significance increases as threshold size increases. For large thresholds, the fraction of objects
that survive three copies is quite small. Increasing the copy number beyond three does not
appear to be cost-effective in preventing further promotion.

The figure clearly shows that promotion rates of 2-5% are almost unavoidable for the

90

Relative Overhead

Relative Overhead

Relative Overhead

2.0 3.0 4.0 5.0

1.0

0.0

00 05 1.0 15 20 25 3.0 35

4.0

3.0

2.0

1.0

0.0

Lisp Compiler (stop©)

Copy Number

copies = 3 (MARS)
copies = 10 (DIS)
copies = 3 (DIS)
copies = 1 (DIS)
copies = 0 (DIS)

125 250 500 1000 2000
GC threshold (kbytes)
Curare (stop©)
e
~
|- ~
\E\
~
L ~
N ~
~
L e
~
~

L ~0

5 - =

N

L B T =g _ -— 5

GRS i U
- L 1 1 1 J

125 250 500 1000 2000

GC threshold (kbytes)

RL (stop©)

125 250 500 1000 2000

GC threshold (kbytes)

Relative Overhead

Relative Overhead

Relative Overhead

00 05 1.0 15 20 25 3.0 35

2.4

2.0

1.2 16

0.8

0.0

00 04 08 12 16 20 24

Lisp Compiler (mark&sweep)

125 250 500 1000 2000

GC threshold (kbytes)

Curare (mark&sweep)

125 250 500 1000 2000

GC threshold (kbytes)

RL (mark&sweep)

125 250 500 1000 2000

GC threshold (kbytes)

Figure 7.4: Relative CPU Overhead for Three Applications

Promotion Rate (%)

Promotion Rate (%)

Promotion Rate (%)

25 30

15 20

10

18

14

0 2 4 6 8 10

18 22

14

0 2 4 6 810

Lisp Compiler (stop©)

Copy Number
—_— copies = 3 (MARS)

L — — — copies = 10 (DIS)
- === copies = 3 (DIS)
——————————— copies = 1 (DIS)
— DIS;

L oa

= E \\\

AN oL
N
L N ..
2
~ \\\S\\ - SRR
i it S - =
— -0
oL 1 1 1 |
125 250 500 1000 2000

GC threshold (kbytes)

Curare (stop©)

L 1 1 1 J

125 250 500 1000 2000

GC threshold (kbytes)

RL (stop©)

125 250 500 1000 2000

GC threshold (kbytes)

Figure 7.5:

Promotion Rate (%)

Promotion Rate (%)

Promotion Rate (%)

30

25

15 20

10

18

14

0 2 4 6 8 10

16 20 24

12

02468

Lisp Compiler (mark&sweep)

125 250 500 1000 2000

GC threshold (kbytes)

Curare (mark&sweep)

L 1 1 1 J

125 250 500 1000 2000

GC threshold (kbytes)

RL (mark&sweep)

125 250 500 1000 2000

GC threshold (kbytes)

Promotion Rates for Three Applications

threshold sizes examined. If thresholds of 500 kilobytes or less are used to avoid noticeable
pauses, promotion rates of 4-10% appear likely.

En masse promotion results in an increased promotion rate, promoting more that 20%
more data than copy count promotion with small thresholds, and up to 100% more data
with larger thresholds. Larger thresholds show a relatively increased promotion rate for en
masse promotion because en masse promotion always promotes some very young objects,
whereas copy count promotion can completely avoid promoting any younger objects. As
threshold sizes increase, copy count promotion becomes relatively more efficient because
fewer objects survive. A similar argument can be made comparing en masse promotion and
copy count promotion over a range of copy numbers. As we see, setting the copy number
to zero makes the two strategies behave identically. As the copy number increases, the
advantage copy count promotion has over en masse promotion also increases.

For a 500 kilobyte threshold with a copy number of three, en mass promotion promotes
50-80% more data than copy count promotion. One way to evaluate this difference is to
examine the tradeoffs that must be made to reduce the en masse promotion rate down to the
copy count level. The two ways to reduce the promotion rate are to increase the threshold
size (and hence memory usage and pause length), or increase the copy number parameter
beyond three. Leaving the copy number at three would require more than doubling the
threshold size to achieve the same promotion rate. Leaving the threshold size the same,
the copy number would have to be increased to more than ten to sufficiently lower the
promotion rate. A copy number of ten results in a CPU overhead more than three times
higher than that of a copy count strategy with the same promotion rate.

En masse promotion incurs a significantly higher promotion rate that either requires
more memory or more CPU cycles to reduce the rates to those of copy count promotion.
The next section examines the long term effects of a higher promotion rate on system
performance.

7.5 Collection of Older Generations

Because collections of the second generation are relatively infrequent, their CPU overhead is
negligible compared to the overhead of first generation collections. The problem with second
generation collections is that because promoted data tends to be relatively long-lived, much
of the data in the generation requires collection, resulting in potentially disruptive pauses.

To decrease the frequency of collection, the second generation is typically sized larger
than the first generation. By giving second generation objects more time to die, larger sizes
in the second generation can actually result in shorter collection pauses, as we shall see.
However, a larger second generation typically takes longer to collect and in addition will
cause greater disruption to the reference locality of the program, especially if the second
generation is too large to fit comfortably in the physical memory.

Because the test programs only execute for several hundred seconds, to gather data for

93

longer periods of time, the DIS simulation executed each test program as many times as
was necessary to cause at least 100 garbage collections of the second generation. In general
we expect k iterations of a problem of size IV to behave differently from one iteration of a
problem of size kN. By performing k iterations, the assumed behavior resembles the way
a developer might use a Lisp machine—repeatedly compiling or simulating the same file or
circuit. Chapter 8 discusses the consequences of longer running programs. In all cases, the
copy number used in newspace and the copy number in the second generation are assumed
to be three.

In the experiments conducted using DIS, generation sizes ranging from half a megabyte
to eight megabytes were examined. For each threshold size, four promotion rates from
newspace were considered: 2, 4, 10, and 20%. The 2% rate corresponds to a lower bound
better than almost all the rates predicted by DIS in the previous section. A 5% promotion
rate is typical for copy count promotion with a newspace threshold size of one megabyte. A
10% promotion rate is typical for en masse promotion with the same parameters. Finally,
a 20% promotion rate corresponds to a typical rate for a one megabyte threshold with
immediate promotion (copy number = 0). I include this rate to determine if such an
approach (which shows significantly short pauses and overhead) is viable. We will look at
predicted collection frequencies and pause lengths. In all cases, promotion rates to the third
generation are negligible.

Figure 7.6 shows the predicted collection frequencies as a function of promotion rate and
threshold size. With a promotion rate of 20%, collections occur every several minutes, even
with an eight megabyte threshold. Programs with a 20% promotion rate collected almost 20
times more frequently than programs with a 2% promotion rate because the lower promotion
rate gives more objects time to die between collections and makes collections more efficient.
Between the 5% and 10% promotion rates, the 10% rate causes collections about two and
a half times as frequently. For thresholds under eight megabytes, a 10% rate often requires
collections every several minutes or less. If these collections cause noticeable pauses, they
are probably unacceptable.

Increasing threshold size has a better-than-linear effect in decreasing collection fre-
quency. But even so, unless the promotion rate is very low, second generation collections
occur at least once per hour, even with eight megabyte thresholds. If the large thresholds
cause significant paging, even when the the actual CPU required for collection is small,
users may experience disruptive system behavior.

Given that promotion rates of 5% and more cause collections every fifteen minutes or
so, the duration of these collections is very important. Figure 7.7 shows the predicted
pause lengths for second generation collections. For 2% newspace promotion rates, the
predicted pause length appears to be relatively insensitive to threshold size and very short,
even for large thresholds. This behavior is a consequence of the lifespan data input into
DIS. All the programs measured ended after a matter of a few minutes. Object lifespans
measured were never longer than the program lifespan. Because the 2% promotion rate
causes second generation collections to be infrequent (relative to the program lifespan), no

94

Collection Frequency (min)

Collection Frequency (min)

20

15

10

100

80

60

40

20

Lisp Compiler

Newspace Promotion Rate

500 1000 5000 10000

second generation threshold (kbytes)

Boyer Moore TP

500 1000 5000 10000

second generation threshold (kbytes)

Collection Frequency (min)

Collection Frequency (min)

40

30

20

10

20

15

10

Curare

500 1000 5000 10000

second generation threshold (kbytes)

RL

500 1000 5000 10000

second generation threshold (kbytes)

Figure 7.6: Second Generation Collection Frequencies for Four Applications

95

Pause Length (sec)

Pause Length (sec)

3.0

25

15 2.0

1.0

0.5

0.0

25

2.0

15

1.0

0.5

0.0

Lisp Compiler Curare

o
- S -
n _— — —
i _F--10 o T B ——H--—
B /
/ g L /
/ /
i // Newspace Promotion Rate o 0w oL /
/ 77777 20% 8 N / e E]
D/ -/ £ . / I
- 2% c N - ﬁ ‘B Vs
/ _ JE o D g ~ -
s A" B B U 2 AZREEE
yavat ER P
s @ s
I o feoeeees L H e e
@" o
-
§ Te]
H H H H—1] °
o
1]]] [SI]]
500 1000 5000 10000 500 1000 5000 10000
second generation threshold (kbytes) second generation threshold (kbytes)
Boyer Moore TP o RL
- A
— o L —
o -84 3 g ——d
L y Y
/ 0 /
Va N /
% - 4
(&)
B /IZ| i"i o L /ZI
/ g ° /
2 /
/ S 5 /
g8 0 it 4 g---B-E
-] -
-7 T / PR v VO v RSSO
%/ e o 7 /E{ ------- H = a
a7
e e £ B g~ g— 5 —F—1>
Te]
= H H——H——-1] o [
o
1]]] [T]]]
500 1000 5000 10000 500 1000 5000 10000

second generation threshold (kbytes) second generation threshold (kbytes)

Figure 7.7: Second Generation Pause Lengths for Four Applications

96

matter what the threshold size, the objects collected are only from the current iteration of
the program execution—no very long-lived data accumulates because it was not measured.
As a consequence, for very infrequent collections, only a few objects are collected no matter
what the threshold size, hence the insensitivity.

This behavior is both a true consequence of running programs and an artifact of my
measurements. Most data allocated by a program is shorter-lived than the program itself.
However, Lisp systems typically have some program-generated objects that last for hours
and days. Because my methods do not measure these objects, I cannot predict the effect
they have on overall performance, but I suspect it is limited for a simple reason. Objects
lasting beyond a program execution are typically either results that are stored permanently
in a file (e.g., simulation results) or are integrated into the environment to become part of the
system (e.g., loading an object file). System data cannot grow too quickly or systems would
become unacceptably large. Objects stored permanently are then unnecessary and can be
discarded by the user to become garbage. The result is that data living across program
executions is typically either small or short-lived. If the test programs had taken longer to
execute, the results in Figure 7.7 would also be different. The next chapter explores the
consequences of programs that take longer to execute.

When second generation collections occur frequently enough that active program data
accumulates in the second generation, we can see the negative effect of threshold size on
pause length. If the trends are extrapolated (i.e., longer running programs with similar
lifespan distributions are considered), pauses of five seconds or more are possible with an
eight megabyte threshold. Even the programs measured show multisecond pauses for 10—
20% promotion rates and thresholds larger than two megabytes.

For programs with the lifespan distributions measured, the 5% promotion rate shows
very definite advantages over the 10% rate. While one second pauses are still noticeable,
if they occur every fifteen minutes or so, they do not constitute a serious disruption. Fur-
thermore, because the 5% rate is also relatively insensitive to threshold, larger thresholds
may not cause longer pauses, allowing the frequency to be decreased even more (if sufficient
physical memory is available).

The figure demonstrates that while immediate promotion (and hence a 20% promotion
rate) makes first generation collections more attractive, the second generation collections
are very frequent and definitely noticeable. The 10% promotion rate appears to border on
unacceptable (e.g., 1-2 second pauses every 5-10 minutes), even by fairly loose standards.
By significantly reducing the promotion rate, copy count promotion shows a clear advantage
over en masse promotion.

This chapter has shown the effect of threshold size and promotion strategy on collec-
tion CPU overhead, duration, and frequency in the first and second generations. Thresholds
larger than one megabyte greatly reduce promotion but produce noticeable pauses. Thresh-
olds less than 250 kilobytes result in increased overhead and promotion that interferes with
program reference locality, as we saw in Chapter 6. Thresholds near 500 kilobytes result in
CPU overhead of approximately 10-20%, half second collection pauses, and promotion rates

97

of 5-10%. Furthermore, en masse promotion results in promotion rates 50-100% higher
than copy count promotion, with the relatively higher rate coinciding with larger thresh-
olds. In the next chapter, we see how these performance metrics might change in systems
of the future.

98

Chapter 8

Faster Processors and
Multiprocessors

So far, this thesis has investigated various aspects of the performance of collection algo-
rithms executing on workstations using current processor technology. The processor speed
assumed is approximately that of a Sun4/280, the processor on which the studies were con-
ducted. This chapter considers the effects of possible future technology on the performance
of collection algorithms. As mentioned in Chapter 2, a performance evaluation tool should
help designers plan for future technology trends. This chapter uses MARS and DIS for this
purpose.

Two obvious technology trends require investigation. The first is a rapid increase in the
processor performance available in relatively inexpensive workstations. While the Sun4/280
is rated at approximately eight to ten MIPS, processors with significantly higher perfor-
mance are already available. Fabrication and semiconductor technology, as well as advances
in architecture design pave the way for even faster processors to appear in the years to come.
Section 8.1 examines the effects of faster CPU’s on the performance metrics we have used
to evaluate different collection strategies.

Another technology trend is the availability of commercial multiprocessors. While cur-
rent implementations of symbolic languages on multiprocessors are experimental and large
multiprocessor Lisp applications are non-existent, soon both quality implementations and
large programs will be available. Multiprocessors introduce constraints and challenges very
different from those of uniprocessors. Section 8.3 reviews existing ideas about multipro-
cessor garbage collection and shows how a tool such as MARS can be helpful in better
understanding the performance of such algorithms.

Many of the conclusions reached in this chapter are speculative. What processor speeds
will be like in ten years, how large memories will grow, and how multiprocessors will be
configured can only be projected based on existing technology. Nevertheless, intelligent
guesses based on existing data can be valuable in helping designers plan for and build
systems of the future. Of course, not all speculation proves immediately fruitful. In 1977,

99

Peter Bishop wrote a PhD thesis exploring how Lisp running in a 48—64 bit address space
should be configured [11]. In the 12 years since, address spaces have remained at 32 bits,
but his thoughts and ideas may prove relevant in the near future.

In this chapter, I hope to answer some very basic questions about what algorithms will
be appropriate to use and how well they will work. The need for incremental collection
comes into question with faster processors. Generation collection, based on an assumption
that most objects die young may break down if that assumption is invalidated. For multi-
processors, certain fundamental limitations prevent full utilization no matter what parallel
algorithms are used.

8.1 Faster Processors

Making reasonable predictions about performance improvements in processors is difficult.
Recent trends suggest that workstation CPU performance doubles every year or so, but
sooner or later fundamental limitations will decrease the rate of further improvement.
Furthermore, the designs that architects will use to achieve the higher performance (e.g.,
pipelined execution, a complex memory system, wide instruction words) are very difficult to
predict. The CPU performance considered in this chapter is 100 times that of a Sun4/280,
or approximately 1000 MIPS. Such systems are already being designed, albeit with very
expensive technology. It is not unreasonable to believe that such systems will be in wide
use by the end of the 1990’s.

With such a processor (which I will refer to as the M1000), garbage collection perfor-
mance considerations change dramatically. First, a faster processor implies faster allocation
and more frequent, shorter collections for the same threshold sizes. Figure 8.1 shows the
predicted pause lengths, frequencies and promotion rates for stop-and-copy garbage collec-
tion on the M1000 processor over a large range of threshold sizes. Pauses last only a handful
of milliseconds, even for 16—32 megabyte thresholds. Collections are frequent, every 100-
500 milliseconds. Promotion rates do not change from the M10 processor (our standard
Sun4/280) since object lifespans (in terms of memory references) have not changed, and
hence lifespans in absolute terms have become shorter.

The major constraint lifted by the M1000 processor is that collection pauses are no
longer noticeable, even for large threshold sizes. If the physical memory is available, thresh-
olds of 32-128 megabytes can be used without noticeable pauses. Alternately, even two
megabyte thresholds can be used if the eight megabyte second generation also fits in the
physical memory, since the second generation can also be collected without a noticeable
pause. I conclude immediately that incremental collection is completely unnecessary with
a fast enough processor. Incremental collection provides no advantage over stop-and-copy
collection when processor speed is fast enough to eliminate noticeable pauses.

The only drawback of a faster processor running my test programs is that it requires
more physical memory since either newspace must be enlarged to reduce promotion, or the
second generation must fit completely in the memory. Both first and second generation

100

Lisp Compiler (stop©)

10 12 14 16

6
T

Pause Length (msec)
8
T

50000

50000

Copy Number
777777 copies = 10 (DIS]
L2 copies = 3 (DIS)
——— copies =0 (DIS)
o r L L
1000 5000 10000
GC threshold (kbytes)
o Lisp Compiler (stop©)
—
o @ |
i"J’, o
3
c © |
g o
o
o
Los |
c o
RS
k3]
2«
§ o
o
O' C 1 1 J
1000 5000 10000
GC threshold (kbytes)
. Lisp Compiler (stop©)
S -
o |
g
Q
g ©r
o4
c
Re]
5 Y r
IS
<)
o
~
o t [y P |
1000 5000 10000

GC threshold (kbytes)

Figure 8.1:
Sun4/280.

50000

101

Collection Frequency (sec) Pause Length (msec)

Promotion Rate (%)

RL (stop©)

o
N
o |
—
o |
-
o F
o r L L]
1000 5000 10000 50000
GC threshold (kbytes)
o RL (stop©)
—
[ee]
@t
©
et
N
o
N
S+
o
d C 1 1 J
1000 5000 10000 50000
GC threshold (kbytes)
RL (stop©)
9
o |
©o |
<
N .
B__ O .
-~
ot Pl = T s s I
1000 5000 10000 50000

GC threshold (kbytes)

Predicted Performance for Two Applications. Predicted CPU speed is 100 times a

collections are so frequent that any amount of paging during collection will greatly reduce
performance. Faster processors appear to improve the effectiveness of garbage collection
at the small cost of requiring additional memory. If the test programs used were the only
programs being run on the M1000 processor, there would be little need for new or different
collection algorithms.

8.2 Longer Lifespans

The four test programs measured take several hundred seconds to execute on the M10
processor and several seconds to run on an M1000 processor. Actual programs running
on the M1000 processor are likely to take hundreds of seconds. If object lifespans increase
as processor speed increases then the effectiveness of collection algorithms changes. If
lifespans remain the same in terms of real time, then they are actually living for 100 times
as many memory references on the M1000 processor. This prediction for lifespan behavior
is not unreasonable. As I noted in Chapter 7, object lifespans may be tied to the length
of a program subtask, which in turn may be tied to the process of interactive program
development, where subtasks that take on the order of a second to complete are favored
by developers. Some fraction of object lifespans may be relatively independent of processor
speed. Validating such a prediction will require experience with faster processors.

If we assume that object lifespans increase with processor speed, the memory manage-
ment of such programs becomes a critical problem. By using DIS and scaling the object
lifespans by a factor of 100, I can predict the pause length, collection frequency, and pro-
motion rates for the M1000 processor. Figure 8.2 shows the projected metrics for a wide
range of threshold sizes up to 128 megabytes.

With an M1000 processor and increased object lifespans, the pause lengths associated
with large thresholds are much longer than they were for the M1000 processor with normal
lifespans. In this configuration, much of the allocated data is surviving even with very
large thresholds. Even these longer pauses (in the tenths of seconds) are not noticeable
until the newspace threshold is 100 megabytes or more. Newspace collections are also very
frequent—more than once every four seconds even for the largest threshold sizes.

The newspace promotion rate associated with longer-lived objects is much higher, even
for very large threshold sizes. Copying before promotion is effective for larger thresholds
especially, but even with a copy number of 10 and a 32-megabyte threshold, 7% of the data
allocated gets promoted to the second generation. For smaller thresholds and a lower copy
number, promotion rates of 20-40% are not uncommon in the compiler. The high promotion
rate causes the second generation to fill rapidly, even when the newspace threshold is large.
Like the M1000 processor with normal lifespans, fast collections of the second generation
are essential to performance.

Figure 8.3 shows the pause length, frequency, and promotion rate for collections of the
second generation. Again, a wide range of threshold sizes is considered, up to one gigabyte.
In this case, four newspace promotion rates are considered: 10, 20, 30, and 40%. The copy

102

3 Lisp Compiler (stop©) 3 RL (stop©)
S| S|
o A o 0
— 8 [Copy Number / — 8 [/
§ — — — — " copies =10 (DIS) /’ § , /
jes = 3 (DIS)
E gl 222:22:0(05) / E gl
c © / c ©
<) 5]
c e
s 81t 3 8t
o Y o <
(%] %]
> >
% o . o
e (o = o o
N N
o r J o r J
1000 5000 50000 500000 1000 5000 50000 500000
GC threshold (kbytes) GC threshold (kbytes)
L Lisp Compiler (stop©) o RL (stop©)
<
o o
§ ol g3t
> >
Q Q
c c r
E s
g~ g2t
L (TR
c c .
i) Re]
$ - § 27
[[
o o |
o r I g C J
1000 5000 50000 500000 1000 5000 50000 500000
GC threshold (kbytes) GC threshold (kbytes)
Lisp Compiler (stop©) RL (stop©)
8 8
o | o |
< N
g 9 2 w L
©c ™ © -
04 x
c c
2 Re]
s & 8 3
IS IS
o <
@ a
3t ot
o r 1 1 1 1 J o t 1 1 1 1 J
1000 5000 50000 500000 1000 5000 50000 500000
GC threshold (kbytes) GC threshold (kbytes)

Figure 8.2: Predicted Performance for Two Applications. Predicted lifespans are 100 times

those measured. Predicted CPU speed is 100 times a Sun4,/280.
103

Lisp Compiler (stop©)

RL (stop©)

o
S
r o
© Al
S agg
S |
g r /
F % o / oo
1] a 8 /D
\E/ 8 é N Z/
e I e
o 4
2 g | 2 g
g s g7
g | 8
N
o ¢ L L L L L L] o ¢ L L L L L L]
1000 5000 50000 500000 5 1000 5000 50000 500000 5
e6 e6
second generation threshold (kbytes) second generation threshold (kbytes)
5 Lisp Compiler (stop©) 5 RL (stop©)
ST ST
~ 3 ~ 3
< o < o
D8 D8
S o s 2
£ Ay g ar
s 8t s 8t
5 - o ;
2 2 S
S 3t 3 3t ‘,/;(’/D
LA
o |) o Lt T 1 1 |
1000 5000 50000 500000 5 1000 5000 50000 500000 5
e6 6
second generation threshold (kbytes) second generation threshold (kbytes)
5 Lisp Compiler (stop©) 5 RL (stop©)
2T 2T
o L o |
[e9] [e0]
L o L L o L
© © T ©
o4 @
s s
= o L = 9 L
o < =} <
§ §
— e oL
N N
o t J o r J
1000 5000 50000 500000 5 1000 5000 50000 500000 5
e6 e6
second generation threshold (kbytes) second generation threshold (kbytes)

Figure 8.3: Second Generation Metrics for Four Applications Assuming Longer Running Pro-

grams and Faster CPU’s. Object lifespan is assumed to be 100 times the lifespan actually observed.
104

numbers for the first and second generations are set at three.

Collections of the second generation typically take longer than collections of newspace,
even for the same threshold size because second generation data tends to live longer than
newly allocated data. Pauses lasting less than half a second require thresholds smaller
than 64 megabytes. Second generation collections using thresholds of 64 megabytes and
smaller occur every ten seconds or less, regardless of the newspace promotion rate. First
generation promotion rate has relatively little effect on the second generation pause length
and frequency metrics unless second generation thresholds are allowed to grow beyond 64
megabytes. For thresholds of 64 megabytes and smaller, the pauses are relatively undisrup-
tive and frequent enough that the second generation must fit comfortably in the physical
memory.

The promotion rates from the second generation to the third generation are much higher
than from newspace to the second generation because the data in the second generation
has already been alive for a while, and hence less likely to die before being promoted than
newly allocated data. For threshold sizes of 64 megabytes, 15-30% of the second generation
data is promoted to the third generation. As the first to second generation promotion rate
increases, the fraction of data promoted to the third generation decreases. Data promoted
with the 10% promotion rate has lived longer than data promoted with the 40% rate, and
hence is more likely to continue to survive.

We also see that with a 128 megabyte threshold and a 10% newspace promotion rate,
the second generation promotion rate drops dramatically. This drop occurs because the
first two spaces at this point are sufficiently large to contain the program data for the entire
lifespan of the program. The pause length with these parameters also flattens out.

From this analysis, it appears that even with a 10% newspace promotion rate, the second
generation must be 32-64 megabytes to avoid extensive promotion to the third generation
and to avoid noticeable pauses. Smaller thresholds will result in rapid promotion. Larger
thresholds will be disruptive.

We can now look at the third generation, which, it appears, will be filling up fairly often.
If we assume a 10% promotion rate from newspace to the second generation, we can consider
second to third generation promotion rates of 20, 40, 60, and 80% (corresponding to second
generation threshold sizes of approximately 100, 32, 7, and 3 megabytes, respectively, for
the compiler).

Figure 8.4 shows the third generation pause lengths and frequencies in such a configura-
tion. We again see that even for relatively large thresholds (i.e., 64 megabytes), collections
are relatively frequent—more than once per minute. These pauses last up to a second or
more, except in the cases where the threshold size is sufficient to contain the entire program
in the third generation, in which case the pause length levels out.

The figure indicates that one strategy for the third generation is to make it sufficiently
large that collections are infrequent. For example, with a second generation promotion
rate of 20% and a threshold of one gigabyte, third generation collections occur every 15-25
minutes. A one second pause every 15-25 minutes is probably acceptable. The biggest

105

Lisp Compiler (stop©)

1400
1

2nd Gen. Promotion Rate

/

1200

Pause Length (msec)
600 800 1000
T T

400
T

200
T

1000 5000 50000 500000

third generation threshold (kbytes)

Lisp Compiler (stop©)

1000 1200 1400 1600

Collection Frequency (sec)
600 800
T T

400
T

200
T

1000 5000 50000 500000

third generation threshold (kbytes)

Pause Length (msec)

Collection Frequency (sec)

1000 1200 1400 1600

400 600 800

200

600 800 1000 1200

400

RL (stop©)

L L L L J

1000 5000 50000 500000 5
e6

third generation threshold (kbytes)
RL (stop©)

L]

1000 5000 50000 500000 5
e6

third generation threshold (kbytes)

Figure 8.4: Third Generation Metrics for Four Applications Assuming Longer Running Programs

and Faster CPU’s. Object lifespan is assumed to be 100 times the lifespan actually observed.

problem with adopting a very large threshold size is the possible effect of paging during
collection. The amount of paging caused by a collection of the third generation is related
to the amount of live data being marked or copied. For large enough thresholds, increasing
the threshold size may not significantly decrease the reference locality.

An alternative to using very large thresholds is to use a medium threshold size (e.g.,
64 megabytes) and assume the third generation will also reside completely in the physical
memory. This approach results in pauses of 0.4-0.9 seconds every minute or so. Tuning
would be required to eliminate the longer (noticeable) pauses. Because the behavior in this
case is so close to being unacceptable, there is some doubt that stop-and-copy collection
would suffice at all.

In short, faster processors will require much more physical memory. In the programs
considered, the first, second, and probably third generations have to have thresholds of
approximately 64 megabytes each and fit entirely in the physical memory to prevent poor
reference locality from limiting performance. Depending on the algorithm used, each gener-
ation will use 1.5-2.0 times the threshold size for its data. It would appear that the M1000
processor will need approximately half a gigabyte of physical memory if lifespans scale with
processor speed.

With faster processors and longer lifespans, the problem of fitting the program into the
physical memory becomes critical. A mark-and-sweep algorithm, with smaller working set
and better reference locality, must be preferred in these circumstances. While memories are
getting larger and cheaper per bit, the cost of memory is likely to always remain a large part
of the overall cost of a computer system. Algorithms that require less memory will always
be favored if their performance is roughly comparable to the best available performance.

Because we are looking at very large thresholds, the value of incremental collection again
arises. We saw that pause lengths of one second and more occur with thresholds of greater
than 100 megabytes. If physical memories large enough to support such large thresholds
are available, then incremental collection becomes valuable by allowing very large threshold
sizes without interactive disruption. From the simulations, however, there does not seem to
be any clear evidence to indicate that two generations with 128 megabyte thresholds would
be more efficient than four generations with 64 megabyte thresholds. Without a better
understanding of the likely sizes of physical memories for the M1000 processor, the question
of the value of incremental collection in such a system remains unresolved.

So far, we have considered one processor that is 100 times faster than current proces-
sors. The next section examines the performance of garbage collection algorithms on 100
processor multiprocessors.

8.3 Multiprocessors

The purpose of this entire chapter is to use MARS and DIS to explore the performance of
garbage collection algorithms on machines and systems that do not yet exist. While com-

107

mercial shared-memory multiprocessors do exist, production-quality multiprocessor Lisp
systems are just now becoming available. Due to the lack of working multiprocessor sys-
tems and applications, much of what can be said about multiprocessor garbage collection
is speculative.

There are many different performance aspects of multiprocessor garbage collection—
enough to fill an entire thesis. The goal of this section is to outline areas of interest,
noting when a tool such as MARS could be helpful is understanding the performance of
multiprocessor garbage collection. After surveying current ideas in the are, this section
focuses on the relationship between cache miss rate and bus utilization, and uses MARS to
evaluate the potential speedup available using different collection algorithms. This section
does not consider or propose new multiprocessor collection algorithms because without a test
bed of real multiprocessor applications to use to evaluate the algorithms, the results obtained
would be necessarily inconclusive. Throughout this discussion, only tightly-coupled shared-
memory multiprocessors are considered.

8.3.1 The State of the Art

This section briefly reviews the current state of the art in multiprocessor Lisp systems,
covering multiprocessor languages, collection algorithms, and potential performance bottle-
necks. Several multiprocessing dialects of Lisp have gained prominence in the last five years.
Multilisp [40], Qlisp [39], Mul-T [51], and SPUR Lisp [97] all extend Lisp or Scheme with
features for multiprocessing. These languages all provide mechanisms to create independent
threads of control that share a common address space. They differ mostly in the high-level
features provided to make the programmer’s job easier.

The ways in which control threads interact will profoundly affect the memory allocation
and reference patterns of multiprocessor Lisp programs. Currently, there is no consensus
on which programming paradigms are most effective for symbolic multiprocessing. This
lack of consensus prevents accurate prediction of likely patterns of allocation and reference.
Measurements of experimental systems, such as Multilisp [66], have been reported, but the
experimental nature of the systems limits the usefulness of the results because large-scale
commercial applications have never been ported and measured.

Recognizing how difficult it is to predict patterns of reference and allocation, the sim-
plest assumption to make about control threads is that they act independently (i.e., never
synchronize or share data). Independent control threads are the easiest to program because
they require no inter-task communication and coordination. The “task-queue” paradigm of
multiprocessing, where processors look for work from a central job queue, has processors
acting in a relatively independent manner.

Like multiprocessor language extensions, multiprocessor collection algorithms have also
been proposed. The algorithms fall roughly into two categories: “on-the-fly” algorithms,
which allow collector processes and user processes (mutators) to execute concurrently, and
“stop-and-cooperate” algorithms, which halt all processors during a collection and have

108

them cooperate in reclaiming garbage. Dijkstra and others first proposed an “on-the-fly”
algorithm as an interesting exercise in proving the correctness of parallel programs [28].
Lamport [53] and Kung and Song [52] provided modifications to the original algorithm to
generalize it and make it more efficient. Newman, Woodward, and others modified and
evaluated Lamport’s algorithm using simulation [65, 64]. The Japanese Synapse project,
which designed and built a multiprocessor Lisp machine, used a variation of Kung and
Song’s algorithm [58]. More recently, Japan’s TOP-1 project [46] used a modified version
of a real-time mark-and-sweep algorithm proposed by Yuasa [92]. Another approach to
on-the-fly collection was proposed by Guy Steele [77]. Steele presents a practical design for
multiprocessor mark-and-sweep collection that involves considerable distributed overhead.

On-the-fly collection has the advantage of providing real-time response because collection
is constantly taking place. The disadvantage of the approach is that mutators and collectors
must be careful synchronized to insure correctness. Dijkstra shows how difficult this syn-
chronization is by admitting that he attempted to prove a flawed algorithm correct several
times before finally discovering the correct algorithm. Collector/mutator synchronization
may also require a significant overhead for operations that modify pointers. Unfortunately,
the actual systems that have used on-the-fly algorithms have been experimental, and results
from them are inconclusive.

Algorithms based on the “stop-and-cooperate” model are simpler to design and easier
to implement. Butterfly Lisp used stop-and-copy collection where the root set was divided
among the processors and each object was locked as it was being copied [1]. Multilisp also
used a modified stop-and-copy algorithm [24]. Using incremental collection with multiple
processors can provide on-the-fly-like response without the normal complex synchroniza-
tion. In this configuration, processors stop and flip simultaneously, but then individual
processors copy objects across the read barrier independently, as they reference the objects.
By decoupling the copying from the flip, copying and allocation can go on simultaneously
without complex synchronization. Because incremental collection introduces an overhead
on every reference operation, the additional CPU overhead required to lock objects being
copied is negligible, although extra space is required to store the locks.

This combination of incremental collection with multiprocessing was exploited by Appel,
Ellis, and Li in an ML collector [2]. In their system, when mutators reference data in
fromspace, they block and a collector process copies the data for them. Collector processes
can also run concurrently with mutators, as long as they prevent mutators from accessing
the pages they are scavenging.

None of the multiprocessor algorithms actually implemented uses generation collection
techniques, although most could be extended to do so. As with on-the-fly algorithms,
stop-and-cooperate performance results reported are for experimental systems, and their
applicability to production-quality systems remains uncertain. Comparative results, where
different multiprocessor collection algorithms on the same system are evaluated, are non-
existent. Hence, the current state of the art of multiprocessor garbage collection is quite
primitive.

109

8.3.2 Multiprocessing and Bus Contention

We have already explored the data cache miss rates of different algorithms and programs
using MARS. I have delayed until now an analysis of the total cache miss ratio (combining
the miss rates of both the instruction and data caches). To compute the total miss ratio, the
instruction fetch miss ratio is needed. Unfortunately, in its current configuration, MARS
is unable to compute the instruction cache miss ratio for the test programs. Instead, I
have used programs running on the BARB simulator to gather instruction cache miss rate
results, shown in Figure 8.5.

o
" N
\
N
e L
N
—
R
S SPUR Lisp Program
% \ —— —— PMA
\
~ o
" - v = m === OPS5 (Weaver)
a - \ RSIM
v NG| e
E E \ S Lisp C il
2 O\ pur Lisp Compiler
o] .\
I \
S ol
g5 \\\\
© N
> \
=
5 \
= \
n oL
o
o L
o | |
10 50 100 500 1000 5000

Cache Size (kbytes)

Figure 8.5: Instruction Cache Miss Rates for Four Applications.

The caches investigated were direct-mapped caches with 32-byte blocks and a write-
back replacement policy. From the figure, we see that the instruction fetch miss rates are
much lower than the data fetch miss rates, especially for large caches. The figure shows
that the miss rate curves are quite similar despite large differences in the test programs.
Averaging the miss rates for each cache size, I can obtain an approximate instruction cache
miss ratio to combine with the data cache miss ratios collected using MARS to obtain
an approximate total miss ratio for each MARS test program and collection algorithm.
Another approximation made in combining the values is the assumption of a fixed ratio of
data references to instruction fetches. From Table 3.1 in Chapter 3, we see that the ratio
of heap to instruction references is approximately 7:1 and relatively constant for each test

110

program (ranging from 6:1 to 10:1).

Because instruction references are so frequent and hit so often, the total miss rate is
much smaller than the data cache miss rate. Figure 8.6 shows the total cache miss rate for
mark-and-sweep and stop-and-copy collection with three large cache sizes. In most cases,
mark-and-sweep shows a better total miss rate than stop-and-copy collection. In all cases,
the total miss ratio is less than 0.6%. The effect of total miss rate on execution time will
be negligible if the programs are run on a uniprocessor since a 1% miss rate corresponds
roughly to a 10% increase in execution time.

On a multiprocessor with a memory bus shared by the processors, the bus is a critical
resource divided between all processors and a potential bottleneck to performance. In such
systems, the bus is often one of the resources that limits the possible degree of multipro-
cessing available. To see how the total miss rate affects potential speedup, a simple MM1
queueing model can be used. An MM1 queueing model is one that assumes exponentially
distributed arrival and service times. If the tasks executing on each processor act indepen-
dently, the bus request workload is distributed exponentially. The model used assumes a
32-bit wide bus, that the bus and processor cycle at the same rate, and that the service time
for a cache miss is eleven bus cycles: eight cycles to deliver a 32-byte cache block and three
to setup the request (the latency before data is transferred). These assumptions correspond
to the design of the SPUR bus architecture. The total miss rate corresponds to the fraction
of requests that require a bus transaction.

Figure 8.7 shows the possible parallelism available for multiprocessors with different
numbers of processors given that each processor has a particular total miss rate. With a miss
rate as low as 1.5%, the possible parallelism is limited to approximately seven processors
due to bus saturation. To achieve near linear speedup beyond 30 processors, the total miss
rate must be kept below 0.3%. We have seen that for large caches, the instruction cache
miss rate can be lowered to well below 0.3%. The data cache miss rate is the metric that
limits our potential speedup. To fully utilize multiprocessors with 30 processors or more,
programs must show extremely good locality of reference in the data cache. In Chapter 6,
we saw that proper choices of algorithm, threshold size, and data cache size can provide
low data cache miss rates.

We have already seen the total miss rates of mark-and-sweep and stop-and-copy collec-
tion for several large test programs. With our queueing model, we can now see how the total
miss rates translate into potential speedups. This analysis is only accurate if we assume
that the different processors on a multiprocessor are executing independently. While such
an assumption is simplistic, the lack of more specific data makes it necessary.

Figure 8.8 shows the potential speedup curves given several threshold sizes for mark-and-
sweep and stop-and-copy collection, assuming that the instruction and data cache sizes are
fixed at one megabyte. The figure shows the potential user program speedup by reducing the
curves by the garbage collection overheads measured with MARS. Because mark-and-sweep
collection generally provides lower miss rates, the potential speedup is higher than for stop-
and-copy collection. Furthermore, smaller threshold sizes fit better in a one megabyte cache,

111

Total miss rate (%)

Total miss rate (%)

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.0

0.10 0.14 0.18

0.06

0.0 0.02

Lisp Compiler Curare

2000

2000

<
[V
- <]
Algorithm (Cache Size) B
r _—- mark-and-sweep (2M) o
—— —— — stop-and-copy (2M) N
— — — — mark-and-sweep (1M) o
L | - —-———-- stop-and-copy (1M)
—————————————— mark-and-sweep (512k) ™
—— stop-and-copy (512k)
©
-
L = o
e
> -
L § N
- L
8 o
[e N
el
L e &L
o
§ <
o
o
L e L
L 1 1 1 J o L 1 1 1 J
125 250 500 1000 2000 125 250 500 1000
GC threshold (kbytes) GC threshold (kbytes)
Boyer Moore TP ° RL
— ar
n
ar
< ///’****)'i --------
r o ~ o[SN---_--
- -7 g \
T T T T) AN :
r =- / ‘@ o AN /
P 8 o[S~ -
[~ _ - 7 . 1S —~ \///
-7 /S I TT—
- % 5 ——
r - - F oo r _— ~ T
— = _—
— _—
|
S r
L e L
L 1 1 1 J o L 1 1 1 J
125 250 500 1000 2000 125 250 500 1000
GC threshold (kbytes) GC threshold (kbytes)

Figure 8.6: Total Cache Miss Rates for Three Collection Algorithms.

112

100
\

o Total Miss Rate
[ee]
2
4
@
o
o ©
o
o
=
2
c
-]
(]
o
2 9
(&}
(]
=
i1}
o
N
o
0 20 40 60 80

Number of Processors

Figure 8.7: Maximum Effective Uniprocessors for Different Miss Ratios.

113

Lisp Compiler (stop©) Lisp Compiler (mark&sweep)

- (=T
N n
o 8 perBTHIETEE TR, g
<] F—a—F—F—1F o
9] 9]
n 0
8 w | 8 o
o — o] ™
s s
5 5
2 S g ¥
3] k3t
Q (9]
= Newspace Threshold s o
w w — — — - 2megabytes w 3
512 kilobytes
— 128 kilobytes
o E 1 1 1 1 I o 1 1 1 1 I
0 20 40 60 80 100 0 20 40 60 80 100
Number of Processors Number of Processors
5 Curare (stop©) 5 Curare (mark&sweep)
ST ST
3l
o 8 0 3
o o
9] 9]
%] %]
8 o 8 o
9 () E ©
2 2
5 5
2 ¥ 2 ¥
3] k3t
& £
o o
o 1 1 1 1 | o
0 20 40 60 80 100 0 20 40 60 80 100
Number of Processors Number of Processors
RL (stop©) RL (mark&sweep)
R 8
o | - HiTB - E R H=H
[T n D 4
5 2
& 2
Q Q
IS o
2 o 2
c c =) =) =) =) —
S S = = = = = t]
3] 3]
= = O
g g "
s 0 =
i} (IR
o 1 1 1 1) o 1 1 1 1)
0 20 40 60 80 100 0 20 40 60 80 100
Number of Processors Number of Processors

Figure 8.8: Maximum Effective Uniprocessors for Different Algorithms and Threshold Sizes.
Garbage collection induced overhead is taken into account.

114

and so smaller thresholds tend to show better speedups. Predictably, the increased overhead
caused by the smaller thresholds sizes lowers the potential benefit of these configurations.
Nevertheless, for programs such as the compiler, the lower miss rate provided by the smaller
threshold more than makes up for the additional overhead.

Smaller thresholds do not always produce larger speedups, however. Because the 125
kilobyte threshold causes the mark-and-sweep algorithm to promote more data, the 125
kilobyte threshold shows lower maximum speedups in Curare and RL. Tuning, by way of
increasing the copy number to reduce promotion, would probably result in higher perfor-
mance for the small thresholds. Figure 8.8 shows the magnitude of the potential benefit of
lowering the data cache miss rate on a multiprocessor. In the compiler, using mark-and-
sweep collection can increase the potential speedup by more than two times. With tuning,
garbage collection can be used to greatly enhance potential speedups in a shared-memory
multiprocessor.

115

Chapter 9

Conclusion

This thesis investigates two distinct fields of computer science: simulation and garbage
collection. The comparative evaluation of garbage collection has been used to demonstrate
the effectiveness of a general simulation technique, object-level tracing, which can be used to
explore a wide range of algorithms and implementations. Just as address-level, trace-driven
simulation is an effective tool for predicting the performance of cache and virtual memory
systems, object-level tracing may eventually be commonly used to evaluate programming
language implementations. In particular, the development of sophisticated runtime systems
will be greatly facilitated using tools like MARS.

Throughout this thesis, simulation techniques and collection algorithm performance
measurements have been intermingled. In this chapter, I separate them.

9.1 Simulation

Simulation as an evaluation tool has had mixed success through the history of computer
science. Useful simulations require precise duplication of the system being simulated, which
in turn often requires extraordinary computer resources. Simulation of computer systems is
especially resource-intensive, since the simulation often runs hundreds of times slower than
the system being simulated, and performance evaluation can require simulating hours or
days of execution. Being as resource intensive as it is, simulation must provide accurate
results to be of value. Programs that represent the actual workload that will be placed on
a system must be simulated.

MARS was designed to provide accurate results and at the same time allow a rapid
exploration of the space of design parameters. MARS has obvious strengths. Because
MARS is attached to a commercial Common Lisp system, simulations are driven by actual
programs and new workloads are trivial to evaluate. New collection algorithms can be
designed and incorporated into MARS in less than one week. Many algorithm parameters
can be changed just by modifying one line in an input file. MARS also provides a large

116

amount of performance information about the algorithms it is simulating, including CPU
overhead and reference locality measurements.

Overall, I believe that MARS is an important tool that has demonstrated the feasibility
of using simulation to evaluate runtime systems. But along with its strengths, MARS
has weaknesses. It is very resource intensive—simulation slows execution by 100 times
and doubles the physical and virtual memory requirements of the simulated program. In
particular, measuring stack locality through stack simulation incurs a hefty overhead on
every memory reference. Because the locality information provided by MARS is important,
turning off stack simulation is not an acceptable option. Partial stack simulation can be
used to cut the cost of stack simulation in half, but a large overhead remains.

DIS was created solely because MARS slowed programs too much to measure the long-
term behavior of collection algorithms. Because long-term behavior is of critical interest,
MARS must either be abandoned for this task, or accelerated significantly. While the initial
implementation of MARS is not highly optimized, its performance cannot be improved by a
factor of ten without using new hardware, such as a multiprocessor or perhaps a hardware
implementation of stack simulation. However the performance is improved, MARS would
benefit greatly if it only slowed test programs by a small factor (e.g., two to five times).

Another drawback of MARS is its ability to measure almost anything. While this would
appear a benefit, in fact I sometimes found myself lost in a sea of data collected while using
it. Being able to measure all aspects of performance has the drawback that the relative
importance of different aspects becomes less clear. This thesis has attempted to narrow
the possible metrics to reach interesting conclusions, but there are many other relationships
(e.g., the relationship between object size and lifespan), not explored in this thesis, that
might also have been interesting. The ability to collect data does not guarantee the ability
to reason about what has been collected.

Nevertheless, some of the results generated using MARS were surprising and informa-
tive. For example, the overall effectiveness of generation mark-and-sweep collection was
unexpected. The locality behavior of incremental collection, not largely different from
stop-and-copy collection, was not anticipated. The modified eq method of implementing
incremental collection also appears promising. By providing non-intuitive insights, MARS
has proven itself to be a valuable tool.

MARS also provided information about complex algorithms that are otherwise difficult
to implement and measure. Research in garbage collection has been going on for nearly
thirty years but little comparative evaluation has been attempted. Exploratory measure-
ment using a tool like MARS appears to be a convenient and cost-effective way to investigate
new algorithms. MARS will also be useful in exploring runtime system features other than
garbage collection. Simulators like MARS are an enabling technology that opens the doors
for the design and implementation of more sophisticated and effective runtime system tech-
nologies.

117

9.2 Garbage Collection

Much of this thesis has focussed on the performance of garbage collection implementations.
With MARS, I have examined the effectiveness of known algorithms to provide more insight
into their performance. In the preceding chapters, I reached definite conclusions about
performance based on simulation. I hope that the conclusions presented here will encourage
implementors to incorporate the ideas into actual systems and prove or disprove the validity
of my results.

The most important result, echoed in many of the chapters, is that generation mark-
and-sweep collection, as described in this thesis, is significantly more effective than copying
collection. For an allocation threshold of 500 kilobytes, which results in non-disruptive
pauses, the algorithms compare in the following way. The total CPU overhead of mark-
and-sweep collection is 1.5-4.7% greater than the overhead of copying collection, mostly
because of the threshold-independent cost of sweeping and the additional cost of indirect
vector references. At the same time, the physical memory needed by copying collection
is approximately 30-40% larger than the memory needed by mark-and-sweep collection to
achieve the same page fault rate (ten faults per second). Furthermore, the mark-and-sweep
algorithm often shows a lower cache miss rate, although the relative performance varies
widely with threshold size and cache size. The compacting effect of a copying collector,
important before generation methods reduced the memory demands of garbage collection,
offers no advantage if the entire newspace resides in memory. The greatest disadvantage of
the mark-and-sweep algorithm is its use of en masse promotion, which for a 500-kilobyte
threshold and a copy number of three results in 25-75% more promotion than copy count
promotion (promoting 9-12% of all objects allocated). Chapter 7 showed the negative
effects of a high promotion rate, both from decreased reference locality and from additional
second generation collections. En masse promotion is most natural for mark-and-sweep
collection, but copy count promotion is also possible if several bits per object (much like
the mark bitmap) are reserved to record a per-object copy count. The performance of this
solution needs to be explored further.

One reason for the continued use of copying collection is that the Baker incremental col-
lection algorithm requires copying between semispaces. This thesis attempted to evaluate
the performance of incremental collection on stock hardware. At the outset of this investi-
gation, I was expecting to find that Baker-style incremental collection was not cost-effective
on stock hardware. But in this thesis, I have proposed and investigated two implementation
methods of this algorithm that show low overheads (from 11-27% with reasonable operating
system support) when threshold sizes are large enough. In the future, I hope to implement
these methods to determine their actual performance. One aspect of incremental collection
that I once considered a potential problem—its reference locality—was by my measurements
not a problem at all.

Because incremental collection allows arbitrary growth of threshold size, these algo-
rithms are more important as physical memories grow. Mark-and-sweep algorithms, on the
other hand, become more valuable as applications place a greater demand on the available

118

memory. In the future, both memories and applications may become so large that a hybrid
incremental mark-and-sweep algorithm will be required. Developing such an algorithm is a
challenge for the future.

9.3 Future Work

One logical direction for future work is to evaluate new algorithms using MARS. To make
the workload for this thesis manageable, I reduced the algorithms considered to three ba-
sic ones. Many variations of these algorithms exist, as do many different algorithms. Of
particular interest are variations of mark-and-sweep collection, which showed promise in
this research. Yuasa proposed a realtime mark-and-sweep algorithm [92]. Extending the
algorithm with generations and examining its performance would be valuable. Several pro-
posals for non-copying generation mark-and-sweep algorithms exist (although nothing has
yet been published about them). By entirely avoiding copying, the possibility of fragmenta-
tion arises. MARS could be used to determine the overall reference locality, and the space
losses due to fragmentation in these algorithms.

Because premature promotion is a potential problem, several solutions to the problem
should be explored using MARS. First, Ungar’s demographic feedback promotion policy
should be investigated to determine its effectiveness for Lisp programs. Second, algorithms
that demote data (i.e., move it into a younger generation) might be effective in increasing
reference locality and reducing the number of write barrier traps. Also, techniques for
maintaining copy counts, such as Shaw’s bucket brigades should be more carefully evaluated.

Along with investigating new algorithms, MARS itself should be extended and opti-
mized. The locality of program and collector references should be separated to allow a
more complete understanding of the locality effects of algorithms (i.e., some may show bet-
ter collector locality, while others better program locality). If the performance of MARS
is substantially improved, longer runs would provide more information about longer-lived
data. The value of MARS as a tool is also related to the number of potential users who can
benefit from its information. If the performance of MARS is improved, smaller machines
with smaller memories would be able to run MARS, thus enabling more users to use it.

An alternative to substantially changing MARS is to upgrade DIS to use more infor-
mation about program execution, thus making its analysis more accurate. By collecting
a series of lifespan distributions throughout the execution of a program and feeding all of
them into DIS, time-dependent behavior could be more accurately reproduced.

In the future, MARS could be improved by redesigning the way that collection algo-
rithms are specified. Currently, the algorithms are just written in C, compiled, and linked
with the MARS object code. A better approach would be to design a simple, stylized
language for describing collection algorithms and build a translator that translates this lan-
guage into efficient C code. This language would further simplify and facilitate the rapid
development and evaluation of new collection algorithms.

119

Other avenues of research are inviting. If a production-quality multiprocessor Lisp im-
plementation was available, MARS could be used to evaluate the effectiveness of multipro-
cessor garbage collection algorithms. In addition to the data that MARS already collects,
including CPU overhead, pause length, and reference locality, a version of MARS simu-
lating multiprocessor garbage collection could be used to evaluate additional performance
tradeoffs.

In particular, different allocation strategies could be compared. Allocation can be a
source of contention if memory is allocated from a central pool. A better strategy allocates
medium-sized chunks of memory from a global pool to individual processors and gives the
processor exclusive access to the chunk once it is allocated. The effect of this strategy on
locality of reference, as well as the need for such a strategy could easily be determined.

Another important policy that needs investigation is the locking strategy employed by
processors that are cooperatively collecting. Different granularities of locking should be
examined and the contention for the locks should be measured. Fine-grained locks, as used
in Multilisp and Butterfly Lisp, require more space but reduce contention. The necessity of
per-object locks should be determined. Traversal strategies that minimize contention should
also be designed and evaluated. The great advantage of using a simulator to evaluate these
policies is that a simulator eliminates at least some of the complexity associated with a
multiprocessor garbage collection implementation. Practical experience has already shown
that efficient and correct implementations of policies on real multiprocessors is challenging
and time-consuming.

MARS could also be used to look at the tradeoffs between on-the-fly, stop-and-cooperate,
and incremental multiprocessing collection. On-the-fly collection is complex, but offers
potential real-time response. MARS could used to determine the exact overhead of this
approach and help us decide if the improved response balances the additional overhead. In-
cremental multiprocessor collection intermixes collector references and program references.
On a uniprocessor, we have seen that little dilution of reference locality occurs with incre-
mental collection. MARS could be used to determine if this intermixing actually improves
collection speedup by eliminating a potential bottleneck caused by poor locality during a
cooperative garbage collection.

Throughout this thesis, I have suggested a that tool like MARS could be used to explore
runtime system design alternatives. I believe that as CPU’s become faster, runtime systems
will become more sophisticated for two reasons: first, because faster CPU’s will impose
harsh constraints on an executing program (e.g., demand a fast memory system or require
the execution of multiple instructions per cycle). An adaptive, dynamic runtime system
may be necessary to meet these constraints and isolate the user from them. The details
of meeting the constraints can be hidden from the programmer by the runtime system,
just as the details of machine instruction sets are hidden from programmers by high-level
languages. Second, software development has become a critical bottleneck in the evolution
of computer systems. Very-high-level languages, which hide many of the details of their
implementation, are required to solve this problem. Adaptive runtime technologies (ART),

120

which can allow high-level user abstractions and efficient implementation of those abstrac-
tions will be necessary. Garbage collection is a perfect example of a work of ART. Garbage
collection gives the user an illusion of an infinite memory from which he can freely allocate,
while at the same time reorganizing the program objects so that they fit well in the avail-
able memory. The cost of garbage collection is 5-20% of the CPU. With increasingly fast
processors, many users will gladly trade some performance for a simplified programming
model.

Possible components of adaptive runtime systems include dynamically compiled, linked,
and relocated libraries, automatic procedure integration and optimization, automatic exe-
cution profile collection and system decision making based on the collected data. MARS
will be valuable in the future because it will provide a means of rapid evaluation of these
sophisticated systems. Currently, garbage collection algorithms are generally considered
esoteric and obscure, if also valuable. But only through such esoteric and sophisticated
methods can the full power of complex future computer systems be made available to large
numbers of unsophisticated computer users. MARS is one enabling tool that can allow this
breakthrough to occur.

121

Appendix A

Instruction Sequences

This appendix contains the instruction sequences mentioned in Chapter 5. Various SPARC
implementations of the write barrier and read barrier are presented. The instruction se-
quences in this appendix contain SPARC assembly code in the recommended style, also using
the pseudo-instructions defined in Appendix E of the SPARC Architecture Manual [79].

RISC instruction sequences can be confusing, especially so because of delayed transfers
of control. The SPARC architecture has two kinds of delayed branches. The normal kind
executes the instruction in the delay slot whether or not the branch is taken. The second
kind, called an annulled branch, only executes the instruction in the delay slot when the
branch is taken. If the branch is not taken, the instruction is not executed, and a nop
occurs for that cycle. Annulled branches are indicated with “branch,a” syntax in SPARC
assembler.

A.1 The Hardware Write Barrier Trap Handler

First, the code sequence for trap handling suggested by Johnson is presented [47]. With-
out a few hardware extensions, Johnson estimates that a user trap interface in SPARC
which preserves state, recovers operands, invokes the user trap, and returns, requires 106
instructions. John suggests extensions that include five special registers to record the op-
code, operands and the destination register of a trapping instruction. Opcodes must also
be added to read and write these new registers (the rd and wr instructions). With these
new instructions, the write barrier trap handler interface simply recovers the operands and
invokes the handler. Because the trap re-executes the trapping instruction and does not
need to update the destination register, the write barrier trap return is simpler than John-
son’s more general handler. With his recommended hardware extensions, the write barrier
trap interface sequence is reduced to the sequence in Figure A.1. This sequence requires
six instructions to execute, plus an additional delay instruction when the trap is taken,
resulting in a total of seven instructions per trap (i.e., Ctrqp = 7). The same sequence can
be used to implement a hardware read barrier trap handler.

122

read the object register
rd 0P1, Y%object

read the container register
rd 0P2, Y%container

read the program status word and enable user traps
rd PSR, Ypsr
or Ypsr, UTRAP_ENABLE, ’tmp

begin write barrier trap (i.e., word marking) here

return to the program, restoring the program status register

jmpl %o7,%0
wr J)psr, PSR

Figure A.1: Extended SPARC Instruction Sequence for a Hardware Write Barrier Trap Handler

123

A.2 Handling Write Barrier Traps

This section presents a SPARC instruction sequence for word marking as proposed by
Sobalvarro [75], who originally presented it in MC68020 code. The word marking algorithm
uses a two-level table structure to mark words of memory that contain intergenerational
pointers. The memory is divided into 64-kilobyte segments. The first-level table uses a
byte to indicate if a segment contains any intergenerational pointers. This table, called the
segment modification table (SMT), contains 16 kilobytes of entries to map a complete 32-bit
address space. Fach segment has a corresponding bitmap that indicates which locations in
the segment contain intergenerational pointers. Each bitmap is called the modification-bit
table (MBT) for the segment, and the table mapping segments to MBTs is called the MBT
map. Each bit in a segment’s MBT maps to a 4-byte word in the segment. A bit of the
MBT is set if the address it maps contains an intergenerational pointer.

When an intergenerational pointer is created, the corresponding byte of the SMT and
bit of the segment’s MBT must be set. Figure A.2 shows the SPARC instruction sequence
for this action. The following assumptions are made:

1. The Lisp system constants vector, which contains a pointer to the SMT and a pointer
to the MBT map, is stored in the global register J,g_sysconsts.

2. The object containing the intergenerational pointer is in register Jcontainer and the
offset of the pointer in the container is in %offset.

This code sequence is very similar to the sequence provided by Sobalvarro, except that
more instructions are needed because the SPARC lacks indirect addressing and bit opera-
tions. The cost of marking a word using this sequence is 16 instructions (Cybhandier = 16).
While a variety of temporary register names are used in the code, only four temporary
registers are needed at any one time.

A.3 Implementing the Write Barrier with Software Tests

Implementing the write barrier with software tests requires an inline test on each pointer
store and a function that is called for further tests. The following assumptions are made:

1. The boundary between newspace and oldspace is stored in the global %,g_gO1boundary.

2. The Lisp system constants vector, which contains the boundaries between the other
generations, is pointed to by the global %g_sysconsts.

3. The pointer being stored is located in register object.

4. The object being stored into is located in register Jcontainer.

124

markWord:
first, got the segment number of the pointer’s address
mov jcontainer + Joffset, J}segnum
s1l Ysegnum, 16, %segnum

get a pointer to the segment modification table (SMT)
1d ’g_sysconsts + SMToffset, Ysmt

set the byte in the SMT

stb -1, smt + Ysegnum

get a pointer to the MBT map, then get the MBT
1d g_sysconsts + MBTmap_offset, Jmbtmap

srl Ysegnum, 2, Jsegindex

1d /mbtmap + Ysegindex, Jmbt

calculate the offset in the mbt in bits
mov Ycontainer + joffset, /segoffset
and J/segoffset, Oxffff,)segoffset

convert byte address to bitmap offset (1 word / bit)
srl Ysegoffset, 2, Jbitoffset

calculate the byte offset in the MBT

srl Jbitoffset, 3, Jbyteoffset

goet the byte from the MBT
1db Ymbt + Ybyteoffset, J)bytecontents

calculate the bit offset in the byte

and Jbitoffset, 3, Jbitinbyte

create a mask to ‘‘or’’ with the contents
s11 1, Ybitinbyte, Jbitmask

or)bytecontents,)bitmask,)bytecontents
stb Jbytecontents, Jmbt + Jbyteoffset

Figure A.2: Instruction Sequence for Word Marking

125

pointer store without write barrier check:
st Jiobject, Jcontainer + offset

pointer store with write barrier check:
first, check for a container in newspace.
cmp Ycontainer, Jg_gOlboundary

test, performing the store in the delay slot (with annulling)
bgu,a done
st Jiobject, Jcontainer + offset

here, the container isn’t in newspace, so setup a

call to a function that checks other possibilities
move one of the arguments in the delay slot of the call
mov jobject, %00

mov Y%container, Yol

call writeBarrierTest

mov offset, %02

after the call, we are ready to perform the store
st Jiobject, Jcontainer + offset

done:

Figure A.3: Software Test Write Barrier Instruction Sequence

126

The test sequence is shown in Figure A.3. This instruction sequence results in three
additional instructions being executed when the container is in newspace (Chrewstorep = 3)-
If the container is in oldspace, the cost of the sequence is eight additional cycles plus the cost
of the function writeBarrierTest. That function is shown in Figure A.4. Because we know
that intergenerational stores are very infrequent, most of the time that writeBarrierTest is
called, it simply returns. This will happen if the object is an immediate or if the generation
of the object is greater than or equal to the generation of the container. Most often, the
generation of the object is 3, indicating it is a system object. A large majority of the
time, the function will exit at either return A (costing five cycles) or return B (costing
nine cycles). I estimate the cost of this function, assuming markWord is not invoked, as the
average of cost A and cost B, or seven cycles. The total cost of a non-marking oldspace
store is the sum of the function call setup and the function call cost, or 8 + 7 cycles (i.e.,

Coldstorep = 15)

If markWord is invoked, the cost is the cost of markWord, estimated above, plus the addi-
tional overhead of calling writeBarrierTest and determining if the word needed marking.
If we assume the most common cause of a write barrier trap is storing a pointer to a news-
pace object into an oldspace container, then the test at branch C is the most common path
through the function. The cost of this path is the cost of calling writeBarrierTest (eight
cycles) plus the cost of getting to branch C (11 cycles), plus the cost of markWord (16 cycles).
The total cost of a software write barrier trap is approximately 35 cycles (Cyptrap = 35).

A.4 Implementing the Read Barrier with Software Tests

The read barrier can also be implemented with software tests around every pointer load.
The code is divided into a test that is placed inline with each load and a function that
handles object transportation when it is required. The following assumptions are made:

1. The boundaries of fromspace are stored in globals j,g_fromspaceBase and /,g_fromspaceTop.
2. Transported objects are copied to the location specified by the global register jg_copy.

3. A pointer is being loaded into register %dest

The inline test is shown in Figure A.5. If the loaded pointer does not point into fromspace,
the one instruction sequence is replaced with either a four instruction or a seven instruction
sequence. Assuming they are both equally likely, the average added cost of (34 6)/2 cycles
is assumed (Cloadp = 4.5). There is also a small chance that the loaded pointer will be a
fixnum whose value is equal to an address in fromspace. Although we must test for this,
it is so unlikely that it does not affect the estimated cost. When a pointer does point into
fromspace, the function readBarrierlove is called at a total cost of nine cycles, including
the tests. In addition, time is spent in the function.

The function readBarrierMove is shown in Figure A.6. The added cost of this function,

127

assume %object == %00, %container == %ol, offset = %02

the notation g(’object) means ‘‘generation of’? Yobject

we don’t ‘‘save’’ because we don’t need new registers
writeBarrierTest:

first, check if %object is a fixnum (immediate)

assume the tag is in the lower 2 bits, and that a tag

of #b0O means a fixnum, which doesn’t require marking

and %object, 3, %o_tmp

bnz nextl

nop

retl # return A: type(%object) == fixnum
nop

nexti:
if (g(Y%object) == 3) return
1d %g_sysconsts + offset_g23, %o_g23boundary
cmp %object, %o_g23boundary
bgu next2
nop
retl # return B: gen(%object) == 3
nop

next2:
if (g(object) == 0) mark word
cmp %object, %g_gOlboundary
bgu markWord # branch C: gen(%object) ==
nop

1
I
(o]

next3:
if (g(Y%container) == 3) mark word
cmp Ycontainer, %o_g23boundary
blu markWord
nop

next4:
g(fobject) == {1,2}, g(%container) == {1,2}
if (g(%object) == 1) then
1d %g_sysconsts + offset_gl2, %o_gl2boundary
cmp %object, %o_gl2boundary
blu gobjecteq2
nop

if (g(Y%container) == 2) mark word
cmp Ycontainer, %o_gl2boundary

blu markWord

nop

else return

retl

nop

gobjecteq2:
since g(icontainer) <= 2, return
retl
nop

markWord:
<see previous figure>
retl
nop

Figure A.4: Completel ¥rite Barrier Test Function

pointer load without read barrier check
1d %object + offset, Jdest

pointer load with read barrier check
1d %object + offset, Jdest

next, test against the bottom of fromspace
cmp Ydest, Jg_fromspaceBase

blu done

nop

test against the top of fromspace
cmp Ydest, Jg_fromspaceTop

bgu done

nop

here, the new pointer points into fromspace

call a function to relocate the object and

update the pointer (the new pointer is in Yo1)
call readBarrierMove

mov Ydest, %00

mov Y%ol, Ydest
done:

Figure A.5: Software Test Read Barrier Instruction Sequence

129

assume Jobject == %00, the pointer into fromspace
we want to relocate it and return the new pointer in Yol

readBarrierlove:

first, check if the new pointer is really an immediate
and Ydest, 3, Yo_tmp

bnz more

nop

retl

mov %00, Yol

more:
next, check if type(lobject) is a cons (most common)
assume the tag is in the lower 2 bits, and that a tag
of 3 means a cons
and Jobject, 3, tmp
cmp Jtmp, 3
bne nonCons
nop

moveCons:
1d Yobject-3, Ytmp
st Jtmp, %g_copy
1d %object + 1, Ytmp
st Jtmp, %g_copy + 4
mov %copy + 3, Yol

retl
add Jcopy, 8, Jcopy

nonCons:
ot cetera

Figure A.6: Read Barrier Relocation Function

130

on top of the cost of transporting the object, which must be done anyway, is five cycles,
assuming that the pointer is almost never an immediate. This brings the total cost of
a read barrier trap not counting the object transport to nine cycles to setup the call to
readBarrierMove and five cycles in the function. That is, the cost of a software read
barrier trap is 14 cycles (Crptrap = 14).

A.5 Allowing Fromspace Aliases and Modifying Eq

If the read barrier is implemented by allowing fromspace aliases and modifying the eq
operation, every eq test will require the instruction sequence in Figure A.7. The cost of
this sequence depends on whether either of the pointers points into fromspace. Assuming
they are not eq and neither points into fromspace, which is the most common case, then
they are both likely to point either above or below fromspace (into tospace). The relative
positions of fromspace and tospace change frequently, so which test fails is likely to average.
The estimated cost of this sequence is 12 instructions (Ceqtalse2unt = 12).

In addition, since fromspace aliases may not be written to memory, in read barrier
implementations that allow fromspace aliases in registers, all pointer stores must be mod-
ified to the instruction sequence in Figure A.8. The average cost of this sequence is three
instructions (Caistorep = 3)-

A.6 Estimating Collection Overhead

To estimate the overhead of different garbage collection algorithms, we must look at the
inner loops of the collection algorithms and count the instructions required to perform
each basic operation. Event counts provided by MARS can then be combined with the
instruction counts to arrive at the overall cost in cycles. Because different algorithms
require different actions during allocation, I include the allocation cost in the overall cost of
each algorithm. Because the incremental and stop-and-copy algorithms are so similar, only
the stop-and-copy and mark-and-sweep algorithms are considered in this appendix. While
these algorithms are described in pseudocode in another appendix, the pseudocode and
instruction sequences in this appendix differ because the instruction sequences are tuned to
avoid any unnecessary overhead.

A.6.1 Copying Collection
Allocation

The instruction sequence for cons allocation with copying collection is given in Figure A.9.
Object initialization is not counted in the cost because all algorithms initialize in the same
way. The following assumptions are made:

131

EQ test without allowing aliases:
cmp Jpointerl, Ypointer2

EQ test with allowing aliases:
first, check if they are eq
cmp Jpointerl, Ypointer2

be eqtrue

nop

since they are not identical check for aliases

cmp Ypointerl, Yg_fromspaceBase
blu checkPointer2

nop

cmp Ypointerl, Yg_fromspaceTop
bgu checkPointer2

nop

relocate pointerl
call readBarrierMove
mov Jjpointerl, %00
mov %ol, Ypointeril

checkPointer2:
cmp Ypointer2, Yg_fromspaceBase
blu done
nop
cmp Ypointer2, Yg_fromspaceTop
bgu done
nop

relocate Ypointer2
call readBarrierMove
mov jpointer2, %o0
mov %ol, Ypointer2

done:
cmp Jpointerl, Ypointer2
eqtrue:

Figure A.7: Modified Eq Instruction Sequence

132

pointer store without fromspace test:
st Jiobject, Jcontainer + offset

pointer store with fromspace test:

test against the bottom of fromspace
cmp Jobject, Jg_fromspaceBase

blu,a done

st Jiobject, Jcontainer + offset

test against the top of fromspace.
cmp Jobject, jg_fromspaceTop

bgu,a done

st Jiobject, Jcontainer + offset

here, the pointer points into fromspace

call the function to relocate the object and

update the pointer (the new pointer is in Yo1)
call readBarrierMove

mov jobject, %00

mov Y%ol, Ydest

st Jiobject, Jcontainer + offset

done:

Figure A.8: Instructions Preventing Stores of Fromspace Pointers.

133

1. %g-allocated counts down the amount of the allocation threshold remaining to be
allocated before a garbage collection.

2. Jig-copy is the location where new objects are allocated.

3. The new cons is pointed to by %result.

update threshold count
sub %g_allocated, ConsSize, %g_allocated
bgz,a okay
mov %g_copy, jresult
call stcpCollect
nop
mov %g_copy, jresult
okay:
here, we’ve collected if needed
add J/g_copy, ConsSize, Jg_copy
or jresult, ConsType, %result
done:

Figure A.9: Stop-and-Copy Allocation Sequence

The cost of an allocation using this sequence is five instructions. An even shorter
sequence could be used if the allocation threshold was marked by placing an unwritable
page at the proper place in the address space and changing the protection-fault handler
to check for and perform the collection (as was envisioned for SPUR Lisp [96]). Using
a page trap reduces the cost to three instructions per allocation but makes the collector
more operating system dependent. The five instruction cost is used in the comparisons in
Chapter 5.

The Scanning Inner Loop

The cost of copying collection is largely determined by the cost of the scanning inner loop,
which scans copied objects, updating pointers and copying when necessary. Figure A.10
shows a simplified flow graph indicating the necessary basic operations and their cost in
cycles. This figure was used to compute the cost of copying collection used in Chapter 5.

Simplifications include the grouping of all non-cons, fixed-sized objects and all variable-
sized objects into two generic types. Instruction counts labeled as wvariable indicate that
the cost is related to the size of the object. By counting the number of occurrences of the
basic operations pictured in the flow graph, an estimate of the cost of the implementation
in cycles can be determined.

134

5

(copy)
variable

3instr

4instr
done «+— scanOver?

n
4instr y
fixnum?
n
4ingtr N
inFromspace?
y
2instr
cons?
| o
(variableSize) 3ingtr 5instr y
N fixedS ze?y _l forwardPtr?
n
5instr . .
forwardPtr? y getCopies+ 4 instr
' promote?
nl (copy) n y (promote)
getCopies + 4 instr 5instr 7instr
. promote?
instr CO| romote .
(p;; t ﬂ P iabl) setCopies
forwardPtr? variable variable .
3instr
n
setCopies
getCopies+ 4 instr P
promote
(promote)
L J variable
setCopies .
| a 4instr
installForward «———
l 2instr 3instr
updatePtr

Figure A.10: Flowgraph for Computing Stop-and-Copy Execution Time

135

The instruction costs in the figure were computed from the SPARC assembler code
sequences presented in Figures A.11 and A.12. This code sequence makes several important
assumptions.

1. This inner loop handles only collections of newspace where promotion goes to the
second generation. Since this is by far the most common it makes sense for the
collector to handle it with a special case.

2. The register }iscan points to the place in newspace where scanning takes place. Ob-
jects copied within newspace are copied to %g_copy and promoted objects are copied
to Ypromoted. When Jscan equals },g_copy, then the collection is finished.

3. The top and bottom of fromspace are delineated by %ifromspaceTop and ifromspaceBase,
respectively.

4. Fixnums have a type with value zero.

Only the instruction sequence for cons objects is provided for brevity. The code sequences
for relocating other objects are similar to the sequence shown.

In the figures, two pseudo-instructions are used, getCopies and setCopies. These
represent the instruction sequences that determine how many times each object has been
copied. Because this sequence depends on how the copy count data is stored, it is imple-
mentation dependent. If counts are associated with objects or groups of objects, accessing
the count requires a dereference and possible address arithmetic to determine the associated
group. I estimate that getCopies will require four instructions. Once the location of the
copy count is determined in getCopies, setCopies simply performs a store to the proper
location, at a cost of one instruction.

A.6.2 Mark-and-Sweep Collection
Allocation Cost

In mark-and-sweep collection, allocation requires removing an element from a free list of
objects of the particular type. This list may be empty, so a check must be made. After
the check, the next element of the list is accessed, and the list updated. In the instruction
sequence in Figure A.13, which allocates a cons object, the list is maintained as a vector and
the list is empty when the vector index reaches zero. The cost of allocating a cons object is
five cycles when no marking or sweeping is required. For fixed-size, non-cons objects, two
additional cycles are required, because the free list index and free list vectors will not be
accessible via global registers. For vector objects, eight additional cycles are required to
allocated the variable-sized part of the object and link the parts together. It is clear from
the sequence and discussion that mark-and-sweep allocation is slightly more expensive than
copying allocation.

136

again:
fixnum?
14 Yscan, Yref
and Yref, TypelMask, Jtype
bz scanOver?

inFromspace?
cmp jref, YfromspaceBase
blt scanOver?
cmp jref, fromspaceTop
bge scanOver?

cons?

cmp /type, ConsType
bne otherType

nop

forwardPtr?

1d Y%ref + ConsAdjust, %objo

and %objO, ForwardTypeMask, Jtmp
cmp Jtmp, ForwardType

bne nonForward

invert ForwardTypeMask, Yinvertmask
and %objO, %invertmask, %newloc
jmpl updatePtr

nop

nonForward:
decide to promote or copy
getCopies Yref, Ycopies

promote?

cmp Jcopies, CopyNumber
blt copy

nop

promote: # (see next figure)

Figure A.11: Stop-and-Copy Scanning Inner Loop (page 1)

137

promote:
st objO, Ypromote + O
1d Yref + ConsAdjust, %tmp
st Ytmp, Ypromote + CellSize
mov Jpromote, %newloc
add promote, ConsSize, Jpromote
setCopies Yref, 0
jmpl installForward
nop

copy:
st %objo, g_copy + 0
1d Yref + ConsAdjust, %tmp
st Jitmp, %g_copy + CellSize
mov %g_copy, /newloc
add J/g_copy, ConsSize, Jg_copy
setCopies Yref, Jcopies + 1

installForward:
invert ForwardTypeMask, Yinvertmask
and Ynewloc, Yinvertmask, Y% forward
or Yforward, ForwardType, /forward
st fforward, Yref + ConsAdjust

updatePtr:
or Ynewloc, ConsType, %newref
st Ynewref, Yscan

scanlOver?:
add Yscan, CellSize, Yscan
cmp Yscan, /g_copy
bne again
nop

done:

Figure A.12: Stop-and-Copy Scanning Inner Loop (page 2)

138

update threshold count

sub %g_allocated, ConsSize, %g_allocated

bgz,a noCollect

sub Yg_freeConsIndex, 4, ’g_freeConsIndex

call mdsCollect

nop

sub Yg_freeConsIndex, 4, ’g_freeConsIndex
noCollect:

check for need to sweep

bgz,a done

load %g_freeCons + Jg_freeConsIndex, Jresult

call deferredSweep

nop
load %g_freeCons + Jg_freeConsIndex, Jresult
done:
Figure A.13: Mark-and-Sweep Allocation Sequence
Sweep Cost

The cost of sweeping the mark bitmap can be computed by looking at the cost of investi-
gating a single bit. I assume that bitmaps are investigated a word at a time and all bits in
the word are scanned by unrolling a loop that looks at each of the 32 bits, reducing loop
overhead. A sequence of the unrolled loop that looks at a single bit in a cons bit vector
is shown in Figure A.14. The cost of this sequence is four instructions if the bit is set
and seven instructions if the bit is not set. Thus the cost of sweeping per object recovered
(approximately seven instructions if the bitmap is sparsely marked), is close to the cost of
allocation.

The Marking Inner Loop

The cost of marking is largely determined by the marking inner-loop, which continually
pops references off a stack, checks the type, generation, and mark of each object, and marks
the object if necessary. This flow of operations, with associated cycle costs, is illustrated in
Figure A.15. When compared with the copying flow graph, the figure illustrates how similar
the two algorithms really are. The instruction counts from the figure were computed from
the instruction sequences in Figures A.16 and A.17. Again, the code for non-cons objects
is omitted.

The largest cost in the inner loop is the testing of the mark bit in the bitmap. For
the SPARC processor, this test requires 12 instructions. Fortunately, once the byte loca-
tion in the bitmap is determined, setting the mark bit is an inexpensive operation (two

139

YbitsLeft contains the remaining bits in the bitmap word
and YbitsLeft, 1, %thisBit

bnz,a nextBit

add YcurrentRef, ConsSize, Y%currentRef

the bit is clear, so reclaim the word by putting its
address in the freeVector

st JcurrentRef, Jg_freeCons + Jg_freeConsIndex

add Jg_freeConsIndex, 4, Jg_freeConsIndex

add YcurrentRef, ConsSize, Y%currentRef

nextBit:
update JcurrentRef to reflect the bitmap position
srl YbitsLeft, 1, YbitsLeft

etc. for the remaining bits in the word...

Figure A.14: Mark-and-Sweep Sweeping Inner Loop

instructions). The code that immediately checks the cdr of a cons cell avoids the overhead
of pushing and then immediately popping the cdr, a considerable savings if most objects
marked are cons objects.

140

3instr

done <—y emptyStack? -

l n
3instr
popStack
3instr ll y
fixnum?
l n
3instr .
inNewspace?
l y
2instr
cons?
. n y
12 instr
n . : y y
(variableSize) fixedSize? j marked? —
n
12 instr 12 instr Linsr l
? ”
marked? marked? tMark
nl nl
1instr 1instr 3ing l
setMark setMark instr
pushCar
6 instr l 6 instr l 3inse l
ushVariable ushFixed
P P setupCadr
variable l

copyReloc
|

Figure A.15: Flowgraph for Computing Mark-and-Sweep Execution Time

141

emptyStack?:
cmp JstackPointer, JstackBottom
beq done
nop

popStack

1d YstackPointer, Yloc

14 Yloc, Yref

sub YstackPointer, 4, YstackPointer

checkCdr:
fixnum?
and Yref, TypelMask, Jtype
bz emptyStack?

inNewspace?

cmp jref, YfromspaceBase
blt emptyStack?

cmp jref, fromspaceTop
bge emptyStack?

cons?
cmp /type, ConsType
bne otherType

inNewspace: (see next figure)

Figure A.16: Mark-and-Sweep Marking Inner Loop (page 1)

142

inNewspace:
marked?
get area and bitmap from ref by shifting and masking upper bits
s1l Yref, LoghAreaSize, arealndex
and Yarealndex, AreaMask, %arealndex
1d YnewspacelAreas + Jjarealndex, JareaPointer
1d YareaPointer + BitmapOffset, JbitmapBase

calculate the bit and byte offset in the bitmap
and Yref, AreaBitMask, ’tmp

s11 Ytmp, 3, Ybitoffset

s11 Ybitoffset, 3, Jbyteoffset

create a mask with a 1 set in the correct place of a byte
and Jbitoffset, 3, Jbitinbyte
srl 1, Ybitinbyte, Jbitmask

get the byte and test the bit

1db YbitmapBase +)byteoffset, Jbyte
and Jbyte, Ybitmask, Jtmp

bnz emptyStack?

setMark
or)byte, Ymask, Ybyte
stb Jbyte, /bitmapBase +)byteoffset

pushCar

1d Yref + ConsAdjust, %tmp

st Ytmp, Y%stackPointer

add YstackPointer, 4, Y%stackPointer

setupCdr
add Yref, ConsAdjust, %loc
jmpl checkCdr
nop
done:

Figure A.17: Mark-and-Sweep Marking Inner Loop (page 2)

143

Appendix B

Formal Algorithm Definitions

This appendix contains formal definitions of the algorithms compared in the body of the
thesis. The naming conventions are as follows. Variables that are global to the computation
begin with a capital letter (e.g., Memory). Variables local to a function and function names
begin with a lower-case letter (e.g., result). All variables and function names are printed in
italic font (e.g., New). Constants are printed in san-serif font (e.g., CopyNumber). In this
section, the symbol “=" means “is defined as.”

A generation number, g, is the index of a generation, ranging from the youngest gener-
ation (¢ New), with index 0, to the oldest generation (¢Old) with some small integer index.
An address (or offset within a generation), a, is a non-negative integer. A location is defined
to be a pair of generation number and address, [= {g,a}. Two operations, address and
gen are defined on locations. If I = {g,a} is a location, address(l) = a, and gen(l) = g.

A type is any Lisp type. In general the set of all Lisp types, AllTypes, is implementation
specific, but must contain the following types: Fixnum, Cons, and Forward, which is the type
given to forwarding pointers.

A reference is a type, location pair. If » = {l,¢}, is a reference, then type(r) = t and
location(r) = I. Furthermore, address and gen are polymorphically defined on references
so that address(r) = address(location(r)) and gen(r) = gen(location(r)). The function
makeReference takes a location and a type and creates a reference.

A memory cell contains either a reference or binary data. The global variable Memory
is an two-dimensional array of memory cells indexed by generation number and location.
As a shorthand, if [is a location, Memory[l] = Memory[gen(l)|[address(l)]. A predicate,
bored?, when applied to a location, can be used to determine if the memory cell at that
location contains a reference or binary data.

A reference is either an immediate or refers to an associated object. The predicate
immediate?(r) = (type(r) = Fixnum), is used to determine if an object is an immediate.
If a reference, r, is not an immediate, then the function object(r) returns the associated
object. If r is a reference to an object, o, then location(o) = location(r). Furthermore, the

144

contents of an object at a particular offset, 7, can be obtained using the following definition:
contents(o,1) = Memory|location(o) + ¢]. Finally, objects have an associated non-negative
size, accessed using size(o).

B.1 Copying Algorithms

In addition to the standard definitions, the stop-and-copy and incremental collection algo-
rithms have other variables defined. To implement the allocation threshold, a variable (Allo-
cated) and a constant (Threshold) are associated with each generation (denoted Allocated,,
where g is the generation). Each generation also has associated variables defining the semis-
paces. ToBase, ToTop, FromBase, and FromTop, are addresses that define the extents of
the semispaces for each generation. Scan and Copy are variables used for allocation and
collection in each generation. New objects in generation g are allocated at the location
Copy,. During a collection, the location Scan, indicates where scanning is taking place.

B.1.1 Stop-and-Copy Collection

Figures B.1, B.2, and B.3 show the pseudocode needed to define a simple generation-based
stop-and-copy collection algorithm. In this description, the symbols “4++«” and “—«”
are used to indicate the increment and decrement operations, respectively, in a notation
borrowed from C. Pseudocode subroutines are one of three types: function, which returns
a value; procedure which is invoked for effect and does not return a value; and predicate,
which returns a boolean value.

The only routine made external by the stop-and-copy collection algorithm is stcpAllo-
cate, which is called to allocate a new object (shown in Figure B.1). That function simply
checks to see if the allocation threshold has been exceeded. If so a collection is initiated,
otherwise memory is allocated at the location Copy,y.,, and a reference to the new object
is created and returned.

When a collection is required, the sequence of events is simple. First, the generations
that need collection are determined. This implementation of generation collection requires
that if generation g needs collection, g and all generations younger must be collected (see
pickGenerations). Then, the semispaces in these generations must be flipped (flipSemis-
paces). Next, the root set must be scanned and transported if necessary (scanRootSet) ,
and finally the objects copied to tospace must be scanned and reachable objects transitively
transported (scanLoop).

The procedure transportAndUpdate takes a location and determines if the reference at
that location refers to an object that needs to be transported or has been transported. It
first checks for a forwarding pointer, in which case it recovers the location needed to update
the current reference. Next it checks if the object needs to be transported. If it does, the
object is transported and the reference to it is updated. The predicate forward? simply
checks for a pointer installed with the type Forward. The predicate transport? returns True

145

function stcpAllocate(type, size) is
if (size + Allocatedyne,) > Thresholdgne,, then
stepCollect()
endif
result «— Copy new
CopYyNew + size
Allocatedgye, ++— size
return makeReference(result, type)
end

procedure stcpCollect() is
CollectGens «— pickGenerations()
flipSemispaces()
scanRootSet()
scanLoop()

end

function pickGenerations() is
for g from ¢gOld to gNew do
if Allocated; > Threshold, then
return {0, ..., g}
endif
endfor
end

procedure flipSemispaces() is
for g € CollectGens do
swap(ToTop,, FromTop,)
swap(ToBasey, FromBasey)
Scang < ToBase,
Copy, < ToBase,
Allocatedy «— 0
endfor
end

Figure B.1: Stop-and-Copy Pseudocode (page 1)

146

procedure scanRootSet() is
for | € RootSet do transportAndUpdate(l)
end

procedure scanLoop() is
allScanned? «— False
while not allScanned? do
allScanned? «— True
for g € {gNew, ..., gOld } do
while Scan, < Copy, do
allScanned? «— False
if bozed?(Scany) then
transportAndUpdate(Scangy)
endif
Scang ++— 1
endwhile
endfor
endwhile
end

procedure transportAndUpdate(l) is
r «— Memory/[l]
if forward?(r) then
newloc «— location(contents(r,0))
else if transport?(r) then
newloc «— transport(r)
else
return
endif
newref «— makeReference(newloc, type(r))
Memory[l] «— newref
end

predicate forward?(r) is

if immediate?(r) return False

else return type(contents(r,0)) = Forward
end

Figure B.2: Stop-and-Copy Pseudocode (page 2)

147

if the reference is not an immediate and points to an object located in the fromspace of a
generation being collected.

The function transport first determines what generation the object should be transported
to using the function promoteDecision, which uses a copy count promotion strategy. Trans-
port then updates the allocation count in the assigned generation and allocates memory
for the copy. Each word of the object is copied, and then a forwarding pointer is installed,
indicating where the object has been copied. Finally, the copy count of the copied object is
either zeroed, when the object is promoted, or incremented, when it is simply transported.

148

predicate transport?(r) is
if immediate?(r) then
return False
else
g« gen(r)
return g € CollectGens and location(r) € [ToBasey, ToTop,]
endif

end

function transport(r) is
toGen «— promoteDecision(r)
o « object(r)
if toGen > gNew then
Allocatediogen +— size(o)

endif
newloc «— Copy;,cen
for i€ [0, ..., size(o) — 1] do

Memory[Copy,,cen] «— contents(o, i)
COpytoGen Fe 1
endfor
forward < makeReference(newloc, Forward)
contents(o, 0) «— forward
if toGen > gen(r) then
copyCount(o) < 0
else
copyCount(o) +«— 1
endif
return newloc
end

function promoteDecision(r) is
if copyCount(object(r)) > CopyNumber then
return min(gen(r) + 1, gOld)
else
return gen(r)

endif

end

Figure B.3: Stop-and-Copy Pseudocode (page 3)

149

B.1.2 Incremental Collection

Because incremental collection is a variant of stop-and-copy collection, many of the func-
tions defined for the previous algorithm can be reused. The major difference between the
algorithms lies in their behavior during allocation. Figures B.4 and B.5 contain pseudocode
for the incremental variation of a generation stop-and-copy algorithm. The entry point is
the function incrAllocate, which allocates an object of the require type and size and re-
turns a reference to it. Before allocating the new object, a fixed number of memory cells in
tospace are scanned as part of the incremental collection. A global variable, AllScanned?,
indicates whether further scanning is necessary. Incremental collection allocates new ob-
jects in tospace at a different location than where objects are copied because new objects do
not have to be scanned as copied objects do. New objects are allocated from the top of the
semispace growing downward. Copied objects are allocated at the bottom of the semispace
growing upward.

When scanning is required, scanKCells is called. This routine scans exactly ScansPerAl-
loc cells and then returns. The loop is similar to scanLoop in the stop-and-copy algorithm,
except that a count of the number of cells scanned is also maintained. When Scan equals
Copy in all generations, then no further scanning is necessary.

When the incremental algorithm flips, everything is done just like the stop-and-copy
algorithm, except that scanning of transported objects is deferred and done incrementally.
The major overhead of incremental collection is the cost of loading a pointer (function
incrLoadPointer), because tests must be made to guarantee the pointer does not refer to
fromspace. Fast implementations of this test are discussed in Chapter 5.

150

function incrAllocate(type, size) is
if not AllScanned? then
scanKCells()
endif
if (size + Allocatedyne,) > Thresholdgne,, then
incrFlip()
endif
New —+ size
Allocatedgye, ++— size
return makeReference(New, type)
end

procedure scanKCells() is
scanCount «— 0
while not AllScanned? do
AllScanned? «— True

for g € {gNew, ..., gOld} do
if Scany, = Copy, then
continue
else

AllScanned? «— False
while Scan, < Copy, and scanCount < ScansPerAlloc do
if bozed?(Scany) then
transportAndUpdate(Scangy)
endif
Scang ++— 1
endwhile
if scanCount = ScansPerAlloc then
return
endif
endif
endfor
endwhile
end

Figure B.4: Incremental Pseudocode (page 1)

151

procedure incrFlip() is
CollectGens «— pickGenerations()
flipSemispaces()
New — ToTopyy.,,
scanRootSet()
AllScanned? < False

end

function incrLoadPointer(r) is
if transport?(r) then
newloc «— transport(r)
return makeReference(newloc, type(r))
endif

end

Figure B.5: Incremental Pseudocode (page 2)

152

B.2 Mark-and-Deferred-Sweep Collection

This variation of a generation mark-and-sweep algorithm requires additional definitions,
functions, and variables. First, a special representation of objects introduces additional
functions and constants. The set of all types, AllTypes is partitioned into types with a
fixed size (e.g., Cons) and types whose objects can have different sizes (e.g., Vector). The
predicate fizedSize? takes a type and returns a boolean indicating whether objects of the
type have a fixed size.

Objects with a type of a variable size are divided into two parts, the header and the body.
The location of the body of a variable-sized object is stored at a constant offset (LinkOffset)
in the header. The size of the body is also stored at a constant offset (SizeOffset) in the
header. A reference to a variable-sized object contains the location of the header.

In addition to the new representation of objects, the mark-and-deferred-sweep algorithm
requires a number of additional global variables. Each generation is divided into two parts:
a part that contains fixed-sized objects and object headers, and a part that contains object
bodies. All references refer to the memory in the region containing fixed-size objects. The
memory that contains object bodies is split into two semispaces just like a copying algorithm.
The variables FromBase, FromTop, ToBase, ToTop, and Copy all refer to the memory used
to contain vector bodies.

The global variable FreeSet(type, gen) maps a type and a generation number to a set
references to free objects of that type in that generation. Defined set operations include
emptySet?, pushSet, and popSet. The memory for fixed-sized objects in each generation
is further subdivided into smaller units and each unit is assigned a specific type. These
regions, called areas, have an associated type (areaType) and bitmap (areaBitmap), which
is used to mark objects in the area. The global variable AreaSet(type, gen), contains the set
of areas in a particular generation of a particular type. Areas are allocated from an infinite
supply of free areas accessed with variable FreeAreaSet(gen).

The bits in a bitmap correspond to locations in the memory. The function bitmapOff-
setToLocation(bitmap, offset) returns the location that corresponds to an offset in an area
bitmap. The inverse function, location ToBitmapOffset(l), maps a location to an offset in an
area bitmap. Other operations on bitmap b at offset ¢ include the predicate bitSet?(d, i),
which indicates if an entry is set, setBit(b, i), which sets a bit, and clearBitmap(b), which
clears an entire area bitmap.

A final data structure, the MarkStack, is used to stack locations of cells yet to be
examined. Stack operations emptyStack?, popStack, and pushStack are defined.

With this introduction, the pseudocode can now be described. The entry point is md-
sAllocate, which allocates an object given a type and size. The size is only necessary for
variable-sized objects and indicates the size of the body. mdsAllocate checks the collection
threshold and then allocates the object. Fixed-sized objects are allocated in allocateFized.
Variable-sized objects have their headers allocated in allocateFized and their bodies allo-
cated in allocateBody, after which mdsAllocate sets up the size and link information and

153

function mdsAllocate(type, size) is

if (size + Allocatedyne,) > Thresholdgne,, then
mdsCollect()

endif

Allocatedgye, ++— size

if (fizedSize?(type) then
return allocateFized(gNew, type)

else
bodyLoc «— allocateBody(gNew, size)
header «— allocateFized(gNew, type)
contents(header, LinkOffset) «— bodyLoc
contents(header, SizeOffset) «— size
return header

endif

end

function allocateFized(gen, type) is

if not emptySet?(FreeSet(gen, type)) then
result «— popSet(FreeSet(gen, type))
mark(result)
return result

else
deferredSweep(gen, type)
return allocateFized(gen, type)

endif

end

function allocateBody(gen, size) is
result < Copy g,
CopYgen, + size
return result

end

Figure B.6: Mark-and-Deferred-Sweep Pseudocode (page 1)

154

returns a reference to the header.

The function allocate Body simply allocates the body in the memory region reserved for
vector bodies and returns the location. allocateFized attempts to remove an element from
the FreeSet associated with the type and generation, and returns the reference if the FreeSet
is not empty. Otherwise, it performs a deferred sweep of the bitmaps associated with areas
of the proper type and then returns the reference. The function deferredSweep sweeps

procedure deferredSweep(gen, type) is
sweepCount «— 0
for a € AreaSet(gen, type) do
for b € bitmap(a) do
if not bitSet?(b) then
sweepCount +<+— 1
newref «— makeReference(bitmapOffset ToLocation(offset(b)), type)
pushSet(newref, FreeSet(gen, type))
if sweepCount — SweepsPerAlloc then
return
endif
endif
endfor
endfor
pushSet(allocateArea(gen, type), AreaSet(gen, type))
deferredSweep(gen, type)
end

function allocateArea(gen, type) is
newArea «— popSet(FreeAreaSet(gen))
area Type(newArea) «— type
return newArea

end

Figure B.7: Mark-and-Deferred-Sweep Pseudocode (page 2)

the bitmaps associated with areas allocated to a particular type and generation, creating
references when it finds locations that are not marked. The constant SweepsPerAlloc controls
how often deferred sweeping takes place. If not enough objects are swept in all the areas
allocated, a new area of the proper type is allocated with allocateArea and the new area is
then swept.

The function mdsCollect performs the complex mark-and-deferred-sweep collection. The
generations needing collection are placed in CollectGens. Next, what kind of promotion is
necessary is decided. The function pickPromoteGen determines what the destination gener-

155

ation for promotion should be. The variable collectCount records the number of collections
that have been performed in each generation since the last promotion. The constant Collect-
CountThreshold determines how many collections before promotion. The oldest generation,
g, where CollectCount, > CollectCountThreshold, is oldest generation needing promo-
tion. All objects in that generation and younger ones are promoted to g + 1 (en masse
promotion).

Depending on whether promotion is needed at all, and which generation is the desti-
nation of promotion, either marking, transporting, or both are done. If no promotion is
necessary, then just marking is performed (by markPhase). If PromoteGen is bigger than
all the generations needing collection, then no marking is necessary because all collected
objects are promoted (using transportPhase). Otherwise, first objects need to be marked,
and then some of the generations need promotion (both phases).

procedure mdsCollect() is
CollectGens «— pickGenerations()
PromoteGen «— pickPromoteGen()
if PromoteGen = {} then
markPhase()
else if PromoteGen = (maz(CollectGens) + 1) then
transportPhase()
else
markPhase()
transportPhase()
endif

end

function pickPromoteGen() is
for g from ¢gOld to gNew do
if CollectCount, > CollectCountThreshold, then
return maz(gOld, g + 1)
endif
endfor
return {}
end

Figure B.8: Mark-and-Deferred-Sweep Pseudocode (page 3)

A mark phase marks all objects in the appropriate generations and copies and compacts
the relocatable bodies of vectors. First, the semispaces (for vector bodies) are flipped, as
in copying collection. Then the appropriate bitmaps are cleared. Finally, the root set is
marked and the mark stack is transitively examined. The inner loop of the algorithm pops

156

locations from MarkStack, dereferences them to obtain a reference, checks if the referenced
object has been marked, marks it if necessary, relocates bodies of vectors, and then pushes
all locations in the marked object onto the stack. This loop continues until the MarkStack
is empty.

An object does not need to be marked if it is an immediate, is not in the proper
generation, or has already been marked. An object is marked by setting a bit in the bitmap
which maps the area containing the object. A mark is tested by checking that bit. Finally,
relocation the body of a vector simply requires copying the contents of the body. In this
algorithm, references do not have to be relocated until the transport phase because all
references are to object headers or to fixed-size objects, which are not relocated until they
are promoted. The transport phase of this algorithm is not presented because it is similar
to the marking phase, except that instead of simply marking objects, they are copied and
forwarding pointers are left behind.

157

procedure markPhase() is
for g € CollectGens do
swap(ToBasey, FromBasey)
swap(ToTop,, FromTop,)
Copy, < ToBase,
endfor
for g € CollectGens do
for t in AllTypes do
for a € AreaSet(yg, t) do
clearBitmap (bitmap(a))
endfor
endfor
endfor
for [€ RootSet do
pushStack(l, MarkStack)
endfor
markFromStack()
end

procedure markFromStack() is
while not emptyStack?(MarkStack) do
I «— popStack(MarkStack)
if not bozed?(l) then
continue
endif
r «— Memory/[l]
if not needsMarking?(r) then
continue
endif
mark(r)
if not fizedSize?(type(r)) then
relocate Body(r)
endif
for [€ locations of references in r do
pushStack(l, MarkStack)
endfor
endwhile
end

Figure B.9: Mark-and-Deferred-Sweep Pseudocode (page 4)

158

predicate needsMarking?(r) is
return not (immediate?(r) or gen(r) & CollectGens or marked?(r))
end

procedure mark() is

a «— area containing location of r

b «— bitmap(a)

setBit(b, locationToBitmapOffset(location(r)))
end

predicate marked?(r) is

a «— area containing location of r

b «— bitmap(a)

return bitSet?(b, locationToBitmapOffset(location(r)))
end

procedure relocateBody(r) is
bodySize «— contents(r, SizeOffset)
bodyLoc «— contents(r, LinkOffset)
g« gen(r)
newloc < Copy,,
for i € [0, ..., bodySize — 1] do
Memory[Copy,] «— Memory[bodyLoc + i]
Copy, ++ 1
endfor
end

Figure B.10: Mark-and-Deferred-Sweep Pseudocode (page 5)

159

Appendix C

Four More Programs

This appendix presents the results measured in the thesis for four additional test programs,
including the data in a tabular form. Table C.1 summarizes the four programs. As the

Resource Description RSIM | PC | Weaver | PMA
Source lines 2800 | 4700 7200 | 5100
Execution time (sec), w/o monitor 294 | 92.6 94.7 | 90.6
Execution time (sec), w. monitor 3889 | 3446 2045 | 1586
Monitor factor slowdown 13 37 21 17
Program references (millions) 37.6 | 41.9 29.1 | 20.1
Objects allocated (millions) 6.9 3.9 0.08 1.1
Bytes allocated (millions) 57.2 | 35.2 0.69 | 14.8

Table C.1: General Information about Additional Test Programs.

table indicates, the additional programs are smaller, run for fewer references, and allocate
less data than the programs examined in the body of the thesis. One of the programs,
Weaver, an OPS5 application, allocates very little data. These programs are still larger and
more interestingly behaved than simple benchmarks, like those reported by Gabriel. This
appendix briefly describes the programs and then presents the measurements reported in
the body of the thesis as applied to these programs.

C.1 RSIM

RSIM is transistor-level circuit simulator described by Terman [82]. The simulator is mea-
sured simulating a simple 10-bit binary counter counting to 1000. RSIM is unusual in
that it allocates many floating point numbers—far more than any of the other test pro-
grams. Unfortunately, RSIM behaves very regularly on this input because in simulating a

160

counter, each count requires the same allocation and reference behavior. RSIM is similar
to a benchmark program in which a small core is executed 1000 times. Also, RSIM is not a
particularly interesting program for garbage collection studies because most of the floating
point objects it allocates are very short-lived, and so little garbage accumulates during its
execution. However, since it has been used in other studies (e.g., Bob Shaw’s thesis [74]),
RSIM is a good test program.

RSIM uses a relatively modern programming style, including structures. Most of the
structure objects are used to represent the circuit, and hence are allocated initially and
survive the duration of the program. The majority of the 60 megabytes of objects allocated
throughout its execution are floating point numbers and cons cells.

C.2 A Prolog Compiler (PC)

The Prolog compiler translates Warren abstract machine (WAM) instructions into SPUR
instructions, performing optimization. The optimization phase accounts for the largest
part of the execution. Optimization is performed by pattern matching subtrees of a tree
representing the program. The pattern matching is iterative and continues until no matches
are found, which for the test input takes three iterations. The test input is WAM for a
small Prolog program the calculates the Sieve of Eratosthenes. The Prolog compiler is very
memory intensive, and allocates many cons cells during the matching phase of optimization.
Part of the reason for the intense allocation is the program’s author felt that memory
allocation should be cheap and made no attempt to reduce the memory requirements of the
compiler.

C.3 Weaver

Weaver is a network routing program written in OPS5. The OPS5 interpreter was originally
written in Maclisp. The interpreter accounts for about 3700 lines of input with the OPS5
program representing the router requiring another 3500 lines of code. This OPS5 interpreter
is carefully written and painstakingly avoids allocation. The result is that the overhead of
garbage collection in this program is minimal in many cases. For large enough newspace
thresholds, garbage collection does not even take place. Still, Weaver is a significant program
representing a common use for Lisp—prototyping new languages.

C.4 The Perq Microcode Assembler (PMA)

This microcode assembler takes microcode descriptions of the Perq architecture and gener-
ates a down-loadable microcode image. The assembler files describe the microcode imple-
mentation of Spice Lisp. The assembler reads in the microcode and generates the executable

161

image after making several passes over the input. Both structures and cons cells are heavily
used in this program.

%
LO0 [
B -
y
t 80|~ 1
e
S
60 | S
A
: 4O |
0
C 20 [[l
a
: = il
e 0
d OPS5 (Weaver) RSIM Prolog Compiler PMA

Lisp Application

| | cons [symbol [] vector [number [Jjj other

Figure C.1: Object Allocations for Test Programs (by type and size).

Lisp Application Fraction of Bytes Allocated (%)
cons | symbol | vector | number | other
OPS5 (Weaver) | 92.90 0.07 6.42 0.01 0.59

RSIM 31.55 0.00 0.74 67.70 | 0.01
Prolog Compiler | 76.98 0.00 | 10.30 0.00 | 12.72
PMA 55.23 1.13 | 40.58 0.00 | 3.06

Table C.2: Object Allocations for Test Programs (by type and size).

162

S

| | cons [symbol | | vector [number] other

Figure C.2: Object Allocations for Test Programs (by type and number).

O 00 1
100 g

b f—

j

@ B0 [B e e

c

t

g 60 [N e [

'?‘ 40 | N e [

I

0 20 [B e e

c

a I [O

e OPS5 (Weaver) RSIM Prolog Compiler PMA

d Lisp Application

Lisp Application

Fraction of Objects Allocated (%)

cons | symbol | vector | number | other
OPS5 (Weaver) | 97.96 0.03 1.75 0.01 | 0.25
RSIM 32.68 0.00 0.31 67.01 | 0.00
Prolog Compiler | 87.56 0.00 | 10.00 0.00 | 2.44
PMA 89.90 0.62 7.88 0.00 | 1.61

Table C.3: Object Allocations for Test Programs (by type and number).

163

=S

W oOOS>SMm®—=m®—0D 0

T

BO |
BO ||
40 |

20 |

o

OPS5 (Weaver)

RSIM

Lisp Application

| | cons [} symbol [| vector [Jj number] other

Figure C.3: Object References by Type for Test Programs.

Prolog Compiler

PMA

Lisp Application Fraction of References (%)

cons | symbol | vector | number | other
OPS5 (Weaver) 90.19 8.86 0.08 0.00 | 0.03
RSIM 27.96 2.32 | 43.00 25.71 | 0.00
Prolog Compiler | 86.21 3.65 4.88 0.00 | 3.02
PMA 36.41 27.06 | 30.97 2.04 | 2.87

Table C.4: Object References by Type for Test Programs.

164

100

=S

80

60

40

20

W oOOSD®—=m®—0D 0

OPS5 (Weaver)

| |loadp [Jj load [| storep [store

RSIM

Lisp Application

Prolog Compiler

PMA

B storel

Figure C.4: Object References by Instruction Type for Test Programs.

Lisp Application Fraction of References (%)
loadp | load | storep | store | storei
OPS5 (Weaver) 93.94 | 0.02 5.44 | 0.01 0.59
RSIM 56.34 | 0.00 5.68 | 0.00 | 37.97
Prolog Compiler | 68.23 | 0.31 | 10.43 | 0.04 | 21.00
PMA 71.99 | 1.14 7.37 | 1.17 | 18.33

Table

C.5: Object References by Instruction Type for Test Programs.

165

RSIM Prolog Compiler

Time | Allocation Rate (kbytes/sec) Time | Allocation Rate (kbytes/sec)
(sec) | cons | vector |number| other (sec) | cons | vector |number| other

2.5 | 302.1 22.4 | 4254 1.3 2.7 | 2471 76.8 0.0 | 228.8

5.0 | 233.9 7.1 | 502.7 0.0 5.4 | 293.8 | 1754 0.0 51.5

7.5 | 231.0 5.7 | 503.2 0.0 8.1 | 365.8 40.8 0.0 55.1
10.0 | 231.8 4.8 | 505.3 0.0 10.8 | 347.7 45.3 0.0 50.8
12.5 | 232.1 5.0 | 508.0 0.0 13.5 | 382.7 37.1 0.0 51.2
15.1 | 231.7 4.8 | 504.8 0.0 16.2 | 367.4 40.6 0.0 51.7
17.6 | 230.8 4.9 | 504.0 0.0 18.9 | 364.3 35.5 0.0 56.0
20.1 | 231.3 4.6 | 507.8 0.0 21.6 | 331.1 41.5 0.0 54.4
22.6 | 231.8 4.8 | 506.1 0.0 24.3 | 360.7 42.3 0.0 50.0
25.1 | 231.3 5.0 | 504.8 0.0 27.0 | 346.8 44.2 0.0 51.6
27.6 | 231.9 4.8 | 504.5 0.0 29.8 | 246.1 50.8 0.0 29.1
30.1 | 232.0 5.0 | 506.6 0.0 32.5 | 362.5 41.5 0.0 54.6
32.6 | 231.8 4.8 | 505.6 0.0 35.2 | 349.6 45.3 0.0 50.2
35.1 | 231.5 4.8 | 503.5 0.0 37.9 | 373.0 38.3 0.0 51.7
37.6 | 232.2 5.0 | 503.2 0.0 40.6 | 373.7 37.7 0.0 54.1
40.1 | 230.8 4.6 | 506.5 0.0 43.3 | 353.2 37.0 0.0 55.5
42.7 | 231.2 4.7 | 507.1 0.0 46.0 | 331.6 41.7 0.0 54.7
45.2 | 231.7 5.0 | 504.0 0.0 48.7 | 358.1 42.7 0.0 49.6
47.7 | 231.6 4.8 | 504.6 0.0 51.4 | 351.3 43.5 0.0 52.3
50.2 | 232.0 5.0 | 506.5 0.0 54.1 | 287.1 30.7 0.0 38.3
52.7 | 231.8 4.8 | 504.6 0.0 56.8 | 344.4 45.0 0.0 54.1
55.2 | 231.9 4.8 | 505.0 0.0 59.5 | 366.3 41.3 0.0 48.9
57.7 | 232.1 5.0 | 502.6 0.0 62.2 | 356.7 41.2 0.0 53.4
60.2 | 230.6 4.7 | 505.7 0.0 64.9 | 374.4 32.9 0.0 58.0
62.7 | 231.8 4.7 | 504.8 0.0 67.6 | 347.8 41.6 0.0 51.0
65.2 | 231.6 4.9 | 504.9 0.0 70.3 | 345.3 41.9 0.0 53.0
67.8 | 231.5 4.7 | 504.5 0.0 73.0 | 343.1 43.3 0.0 51.3
70.3 | 232.2 5.0 | 504.5 0.0 75.7 | 259.5 29.7 0.0 34.1
72.8 | 232.0 4.8 | 503.7 0.0 78.4 | 141.4 2.5 0.0 12.8
75.3 | 230.9 4.8 | 498.0 0.0 81.1 | 116.5 1.5 0.0 10.3

Table C.6: Object Allocation Rates as a Function of Time.

166

kbytes / second

kbytes / second

200 300 400 500 600

100

15 20 25 30 35

10

RSIM
- /——"—“—'*"—7"\— ————————
/
! Object Type
! _—— other
77777 number
r | e vector
cons
[o
0 20 40 60 80
User Time (sec)
OPS5 (Weaver)
J
0 10 20 30 40 50 60

User Time (sec)

kbytes / second

kbytes / second

400

300

200

100

400

300

200

100

Prolog Compiler

20 40 60 80 100
User Time (sec)
PMA
J
10 20 30 40 50

User Time (sec)

Figure C.5: Program Allocation Rates as a Function of Time.

167

OPS5 (Weaver)

PMA

Time | Allocation Rate (kbytes/sec) Time | Allocation Rate (kbytes/sec)
(sec) | cons | vector |number| other (sec) | cons | vector |number| other

1.9 17.7 0.5 0.0 0.0 1.3 | 147.9 | 237.2 0.0 28.9

3.9 10.0 0.2 0.0 0.0 2.7 | 141.0 | 155.5 0.0 17.1

5.8 31.9 12.4 0.0 0.4 4.0 | 213.8 | 124.8 0.0 21.8

7.8 23.0 1.3 0.0 0.4 5.4 | 199.8 | 136.5 0.0 23.0

9.7 12.7 0.6 0.0 0.0 6.7 | 164.9 | 159.6 0.0 16.7
11.7 13.2 0.6 0.0 0.0 8.1 | 180.3 | 158.5 0.0 16.5
13.6 16.9 0.6 0.0 0.3 9.4 | 179.4 | 162.3 0.0 20.8
15.5 10.8 0.5 0.0 0.0 10.8 | 165.4 | 182.0 0.0 14.6
17.5 6.4 0.1 0.0 0.0 12.1 | 198.7 | 166.9 0.0 20.2
19.4 6.4 0.0 0.0 0.0 13.4 | 180.8 | 183.2 0.0 15.9
21.4 5.6 0.2 0.0 0.0 14.8 | 183.0 | 167.9 0.0 15.0
23.3 2.5 0.0 0.0 0.0 16.1 | 182.4 | 175.6 0.0 12.4
25.3 3.0 0.0 0.0 0.0 17.5 | 197.5 | 157.6 0.0 15.0
27.2 17.5 0.7 0.0 0.2 18.8 | 178.6 | 169.6 0.0 20.4
29.2 18.3 1.0 0.0 0.1 20.2 | 192.8 | 177.5 0.0 11.7
31.1 14.1 0.5 0.0 0.3 21.5 | 169.1 | 157.8 0.0 15.7
33.0 5.5 0.0 0.0 0.0 22.9 | 179.7| 161.2 0.0 17.7
35.0 6.1 0.0 0.0 0.0 24.2 | 193.4 | 153.1 0.0 18.6
36.9 3.8 0.0 0.0 0.0 25.5 | 190.1 | 155.1 0.0 20.4
38.9 1.4 0.0 0.0 0.0 26.9 | 207.5| 155.1 0.0 20.5
40.8 8.6 0.2 0.0 0.0 28.2 | 189.9 | 172.8 0.0 14.2
42.8 16.2 0.8 0.0 0.1 29.6 | 167.2 | 151.3 0.0 18.0
44.7 15.7 0.6 0.0 0.4 30.9 | 182.2 | 172.7 0.0 18.4
46.6 5.2 0.0 0.0 0.0 32.3 | 183.2 | 171.3 0.0 18.7
48.6 6.2 0.0 0.0 0.0 33.6 | 235.7 39.5 0.0 7.9
50.5 5.7 0.2 0.0 0.0 34.9 | 164.0 70.8 0.0 0.0
52.5 3.8 0.1 0.0 0.0 36.3 | 370.9 | 161.0 0.0 0.0
54.4 1.4 0.0 0.0 0.0 37.6 | 396.4 | 119.8 0.0 1.6
56.4 8.3 0.2 0.0 0.0 39.0 | 208.4 0.0 0.0 0.0
58.3 25.2 1.0 0.0 0.0 40.3 | 187.0 1.8 0.0 8.3

Table C.7: Object Allocation Rates as a Function of Time.

168

RSIM Prolog Compiler

Time Net Rate (kbytes/sec) Time Net Rate (kbytes/sec)
(sec) | cons | vector |number| other (sec) | cons | vector |number| other

2.5 4.0 14.8 3.1 0.0 2.7 55.7 2.4 0.0 0.5

5.0 0.0 0.0 -0.1 0.0 5.4 | 147.1 | 113.0 0.0 -0.0

7.5 0.0 0.0 -0.1 0.0 8.1 44.5 0.0 0.0 0.0
10.0 -2.1 -0.7 -2.2 0.0 10.8 30.3 0.0 0.0 0.0
12.5 -0.0 0.0 -0.5 0.0 13.5 84.4 0.0 0.0 0.0
15.1 0.0 0.0 -0.0 0.0 16.2 60.2 0.0 0.0 0.0
17.6 -0.0 0.0 0.1 0.0 18.9 56.0 0.0 0.0 0.0
20.1 0.0 0.0 0.2 0.0 21.6 12.5 -0.1 -0.0 -0.1
22.6 0.0 0.0 0.0 0.0 24.3 42.1 -1.9 0.0 -0.0
25.1 0.0 0.0 -0.1 0.0 27.0 | -345.2 0.0 0.0 0.0
27.6 0.0 0.0 0.0 0.0 29.8 | -57.3 | -36.0 0.0 0.0
30.1 0.0 0.0 -0.1 0.0 32.5 41.6 0.0 0.0 0.0
32.6 0.0 0.0 0.0 0.0 35.2 28.8 -0.0 0.0 0.0
35.1 0.0 0.0 0.1 0.0 37.9 61.0 -2.7 0.0 0.0
37.6 -0.0 0.0 -0.2 0.0 40.6 61.5 -8.7 0.0 0.0
40.1 -0.1 -0.5 0.1 0.0 43.3 42.1 0.0 0.0 0.0
42.7 0.0 0.0 0.3 0.0 46.0 11.0 -2.2 0.0 0.0
45.2 0.0 0.0 -0.2 0.0 48.7 50.7 -4.6 0.0 -0.0
47.7 0.0 0.0 0.0 0.0 51.4 | -318.4 0.0 0.0 0.0
50.2 -0.0 0.0 -0.2 0.0 54.1 26.5 -3.8 0.0 0.0
52.7 0.0 0.0 0.1 0.0 56.8 15.0 -1.3 0.0 0.0
55.2 0.0 0.0 0.1 0.0 59.5 66.5 -1.2 0.0 0.0
57.7 0.0 0.0 -0.3 0.0 62.2 39.7 -1.3 0.0 0.0
60.2 -0.1 -0.5 0.2 0.0 64.9 65.1 -0.6 0.0 0.0
62.7 0.0 0.0 -0.1 0.0 67.6 42.1 -0.7 0.0 0.0
65.2 0.0 0.0 0.1 0.0 70.3 29.0 -2.0 0.0 0.0
67.8 -0.1 -0.5 0.0 0.0 73.0 32.0 -0.8 0.0 0.0
70.3 0.0 0.0 -0.1 0.0 75.7 26.0 | -19.5 0.0 0.0
72.8 -0.1 -0.5 0.0 0.0 78.4 -6.4 | -21.1 0.0 -0.1
75.3 -1.6 | -12.3 -0.3 0.0 81.1 | -15.7 -0.0 0.0 -0.3

Table C.8: Net Allocation Rates as a Function of Time.

169

kbytes / second

kbytes / second

15

10

-10

-15

15

10

-10

-15

RSIM

Object Type
— — — other
,,,,, number
,,,,,,,,,,, vector
cons

1 1

0 20 40

User Time (sec)

OPS5 (Weaver)

1 1 1 1

60

|

80

|

0 10 20 30 40

User Time (sec)

Figure C.6: Net Allocation Rates

50

60

170

kbytes / second

kbytes / second

-400 -300 -200 -100 0 100 200

-500

100

50

-200 -150 -100 -50

-250

Prolog Compiler

0 20 40 60 80 100
User Time (sec)
PMA
1 1 1 1 J
0 10 20 30 40 50

User Time (sec)

as a Function of Time.

OPS5 (Weaver)

PMA

Time Net Rate (kbytes/sec) Time Net Rate (kbytes/sec)
(sec) | cons | vector |number| other (sec) | cons | vector |number| other

1.9 4.1 0.0 0.0 0.0 1.3 40.6 64.2 0.0 15.8

3.9 1.2 0.0 0.0 0.0 2.6 17.2 27.0 0.0 7.2

5.8 1.4 10.8 0.0 0.3 3.9 20.0 22.5 0.0 10.1

7.8 -1.3 0.0 0.0 0.0 5.2 22.0 14.1 0.0 10.6

9.7 1.6 0.0 0.0 0.0 6.5 13.7 19.9 0.0 7.3
11.7 1.1 0.0 0.0 0.0 7.8 7.6 19.1 0.0 4.4
13.6 3.0 0.0 0.0 0.0 9.1 12.9 22.5 0.0 8.0
15.5 -0.5 0.0 0.0 0.0 10.4 21.4 21.4 0.0 6.4
17.5 4.5 0.0 0.0 0.0 11.7 22.7 21.9 0.0 9.3
19.4 6.3 0.0 0.0 0.0 13.0 16.8 32.0 0.0 6.9
21.4 0.0 0.0 0.0 0.0 14.3 18.2 12.0 0.0 6.3
23.3 -6.3 0.0 0.0 0.0 15.6 17.0 19.7 0.0 6.2
25.3 -3.9 0.0 0.0 0.0 16.9 15.8 17.4 0.0 4.6
27.2 0.5 0.0 0.0 0.1 18.2 17.9 18.2 0.0 5.6
29.2 0.4 0.0 0.0 0.0 19.5 20.5 19.0 0.0 6.0
31.1 3.0 0.0 0.0 0.0 20.8 17.8 23.3 0.0 6.9
33.0 3.8 0.0 0.0 0.0 22.1 13.1 15.4 0.0 5.4
35.0 2.8 -0.0 -0.0 -0.0 23.4 5.0 17.5 0.0 3.3
36.9 -2.0 0.0 0.0 0.0 24.7 8.0 16.9 0.0 5.4
38.9 -6.0 0.0 0.0 0.0 26.0 4.7 16.6 0.0 3.1
40.8 -1.0 0.0 0.0 0.0 27.3 12.9 17.5 -0.0 5.4
42.8 -0.6 0.0 0.0 0.0 28.6 12.8 20.8 0.0 7.7
44.7 0.2 0.0 0.0 0.0 29.9 21.7 22.0 0.0 8.5
46.6 3.6 0.0 0.0 0.0 31.2 10.2 18.1 0.0 2.3
48.6 6.1 0.0 0.0 0.0 32.5 14.0 5.5 -0.0 0.9
50.5 1.4 0.0 0.0 0.0 33.8 | -14.5 -0.1 0.0 -5.7
52.5 -3.7 0.0 0.0 0.0 35.1 -5.9 0.0 0.0 0.0
54.4 -5.8 0.0 0.0 0.0 36.4 | -204.6 | -106.7 0.0 | -26.2
56.4 -1.5 0.0 0.0 0.0 37.7 -6.2 | -182.1 0.0 0.0
58.3 | -12.8 | -10.9 0.0 -0.5 39.0 | -86.6 | -220.3 -0.0 | -14.3

Table C.9: Net Allocation Rates as a Function of Time.

171

RSIM Prolog Compiler

0 <
- ~
© \\ S F
- [\ Implementation Method \ N
D\ — — software test Q F \
3 L \\ — — - write trap/slow OS ® |:| \\
L T B write trap/fast OS - [* \
g ﬁ L \\ hardware trap g ‘(_9‘ L N . A E
kS __ g kS RN
£ o VB_ A ——B‘_—B\\\D £ 3r \ N
g - R g S
) W 3 S r ~ H
2 °r 5oL S
g BT\ |
2 o | ‘\\\ @ o | \
§ \\ § L I v D e s
l ‘g ot B-——8-—1f Eﬁffm
DN v “H
~r Bl ~
- = - E | [|
o LE—H—H—t— o b—f—H—HF—+1
125 250 500 1000 2000 125 250 500 1000 2000
GC threshold (kbytes) GC threshold (kbytes)
OPS5 (Weaver) PMA
3 Rr
o B——8-——4 ol
\ - A
\ \
o + \
\ Sr D \\
~ @ r \ ~ < R
g \ SEENE \
3~ f \ 3 o \
g \ g M
[[[b
g | s 2 EN
g v r g N
5 \ 5 ® ~Er”’5‘*xﬂi‘—l}~\m
o o \ Qo D ~
E \ 2 \\\ \
= = [{e] = N
S o - \ 2 “T\\
o~ »@»\\\ Biiﬂ < \a
o L @\\ E\‘\ ~ L
\\“\\ |] -
© T I I ° - Q = T [, ﬂ
125 250 500 1000 2000 125 250 500 1000 2000
GC threshold (kbytes) GC threshold (kbytes)

Figure C.7: CPU Overhead for Write Barrier Implementations. Stop-and-copy is the garbage

collection algorithm used in all cases.

172

RSIM

Implementation Write Barrier CPU Overhead (%)

Method th =125 | th =250 | th = 500 | th = 1000 | th = 2000
hardware trap 0.3 0.3 0.4 0.3 0.3
write trap/fast OS 14.9 6.9 3.4 1.6 0.8
write trap/slow OS 17.1 8.0 3.9 1.9 0.9
software test 10.8 10.8 10.7 10.5 10.0

Prolog Compiler
Implementation Write Barrier CPU Overhead (%)

Method th =125 | th =250 | th = 500 | th = 1000 | th = 2000
hardware trap 0.2 0.2 0.2 0.2 0.1
write trap/fast OS 19.4 14.1 10.1 6.8 3.6
write trap/slow OS 22.3 16.2 11.6 7.9 4.2
software test 6.0 6.0 6.0 6.0 5.9

OPS5 (Weaver)
Implementation Write Barrier CPU Overhead (%)

Method th =125 | th =250 | th = 500 | th = 1000 | th = 2000
hardware trap 0.2 0.2 0.2 0.0 0.0
write trap/fast OS 2.2 1.4 1.1 0.0 0.0
write trap/slow OS 2.5 1.6 1.2 0.0 0.0
software test 10.3 10.3 10.3 2.4 2.4

PMA
Implementation Write Barrier CPU Overhead (%)

Method th =125 | th =250 | th = 500 | th = 1000 | th = 2000
hardware trap 0.3 0.4 0.3 0.2 0.2
write trap/fast OS 16.1 10.3 7.3 5.3 3.3
write trap/slow OS 18.5 11.9 8.4 6.1 3.8
software test 8.1 8.4 8.3 8.1 7.7

Table C.10:

collection algorithm used in all cases.

173

CPU Overhead for Write Barrier Implementations. Stop-and-copy is the garbage

RSIM Prolog Compiler

o o
0 [N -
—t} -
- -
o g B—f -y
8 L \
o L —
: 4
~ o L _ ~
g8 gp—H " —pg_ g g [N\
o o
g 8 = Implementation Method g o L \ \
£ - scan stack/slow OS £~ \ \
G>J o —— — scan stack/fast OS ﬂ>.> o h
°© o [— — modified eg/slow OS © © [\ _
P — — — modified eg/fast OS — ﬂ
a:) ——————— software test u:" o | E \
3 & F ——— hardware trap g L N _ _E| N
2 o a—— IS \
g vk B ﬂ— - _D 8 ~ B """" Y= R = AN S\\D
14 14 gk = ﬁ\ﬂ
o L _ =
- o | \\\EI————EI—~—_G___
«
oo~ -————q--- -—- -—— o L
= El 4 A] S rg = = = N
3 i ™ il
e - g [[L D ° T I I I J
125 250 500 1000 2000 125 250 500 1000 2000
GC threshold (kbytes) GC threshold (kbytes)
- OPS5 (Weaver) PMA
T
° [BB g
o } g L\
\ 3 \
g L
el ~elQ
£ g s \
78T FR \\ \
£ o L < o
3 °] SR\ \EL
8 F ; 5 L LN
s g L / H—— g g L IN \
3 /i 3 N N
c 9t s : SN N
9! [~ 8 [b E' ~ \B\\\\
= ~ \E\
© = e - |\] lT‘ T T]
125 250 500 1000 2000 125 250 500 1000 2000
GC threshold (kbytes) GC threshold (kbytes)

Figure C.8: CPU Overhead for Read Barrier Implementations. The results indicate the overhead

of the read barrier for an incremental copying algorithm.

174

RSIM

Implementation Read Barrier CPU Overhead (%)

Method th =125 | th =250 | th = 500 | th = 1000 | th = 2000
hardware trap 0.1 0.1 0.1 0.1 0.1
software test 0.1 0.1 0.1 0.1 0.1
modified eq/fast OS 4.6 4.7 4.7 4.6 4.4
modified eq/slow OS 16.2 16.8 17.0 16.3 16.1
scan stack/fast OS 33.6 35.0 35.5 34.1 33.6
scan stack/slow OS 45.2 47.1 47.8 45.8 45.3

Prolog Compiler
Implementation Read Barrier CPU Overhead (%)

Method th =125 | th =250 | th = 500 | th = 1000 | th = 2000
hardware trap 8.8 8.6 8.6 8.6 8.6
software test 38.7 38.5 38.5 38.5 38.4
modified eq/fast OS 25.4 22.0 21.9 20.6 20.3
modified eq/slow OS 51.3 34.7 34.0 27.6 25.7
scan stack/fast OS 85.7 47.3 45.8 30.8 26.6
scan stack/slow OS 111.7 59.9 57.9 37.8 32.1

OPS5 (Weaver)
Implementation Read Barrier CPU Overhead (%)

Method th =125 | th =250 | th = 500 | th = 1000 | th = 2000
hardware trap 11.7 11.7 11.7 0.1 0.1
software test 52.8 52.8 52.8 0.1 0.1
modified eq/fast OS 10.5 10.4 10.4 3.5 3.5
modified eq/slow OS 11.1 10.4 10.4 11.1 11.1
scan stack/fast OS 3.9 2.3 2.3 21.8 21.8
scan stack/slow OS 4.4 2.3 2.3 29.4 29.4

PMA
Implementation Read Barrier CPU Overhead (%)

Method th =125 | th =250 | th = 500 | th = 1000 | th = 2000
hardware trap 10.0 9.5 9.3 9.2 9.1
software test 41.1 41.0 40.8 40.7 40.6
modified eq/fast OS 52.9 35.2 27.2 22.8 20.5
modified eq/slow OS 191.1 104.8 65.4 43.6 32.4
scan stack/fast OS 409.6 210.9 120.0 69.7 43.8
scan stack/slow OS 547.8 280.5 158.3 90.6 55.7

Table C.11:

of the read barrier for an incremental copying algorithm.

CPU Overhead for Read Barrier Implementations. The results indicate the overhead

175

RSIM (stop©)

Overhead Cumulative CPU Overhead (%)

Source th =125 th = 250 | th = 500 th = 1000 th = 2000
alloc 13.6 13.7 13.6 13.5 13.3
scan 14.9 14.4 14.1 13.8 13.5
forward 15.2 14.6 14.2 13.9 13.5
transport 16.0 15.1 14.5 14.1 13.7
update 16.3 15.2 14.6 14.1 13.7

Prolog Compiler (stop©)
Overhead Cumulative CPU Overhead (%)

Source th =125 th = 250 | th =500 th = 1000 th = 2000
alloc 6.9 6.9 6.9 6.8 6.7
scan 23.5 22.3 18.7 18.2 16.4
forward 29.4 28.0 23.1 22.3 20.1
transport 41.6 39.3 31.7 30.7 27.3
update 45.6 43.0 34.6 33.4 29.7

OPS5 (Weaver) (stop©)
Overhead Cumulative CPU Overhead (%)

Source th =125 th = 250 | th = 500 th = 1000 th = 2000
alloc 0.2 0.1 0.1 — —
scan 0.4 0.3 0.1 — —
forward 0.5 0.3 0.2 — —
transport 0.6 0.4 0.2 — —
update 0.7 0.4 0.2 — —

PMA (stop©)
Overhead Cumulative CPU Overhead (%)

Source th =125 th = 250 | th = 500 th = 1000 th = 2000
alloc 4.7 4.3 4.2 4.0 3.7
scan 35.3 22.1 16.4 13.4 11.1
forward 39.2 24.8 18.7 15.5 13.0
transport 48.6 31.6 24.3 20.6 17.5
update 51.1 33.4 25.7 21.8 18.6

Table C.12: Cumulative CPU Overhead of Copying Collection. The algorithm used is

stop-and-copy collection. Results for incremental copying are similar.

176

GC cumulative overhead (%)

GC cumulative overhead (%)

12 14 16 18

10

0.7

0.6

0.5

0.2 0.3 0.4

0.1

0.0

RSIM (stop©)

Overhead Source
— — update
— — transport
— — — forward
] e scan
— alloc
Tl I I I J
125 250 500 1000 2000
GC threshold (kbytes)
OPS5 (Weaver) (stop©)
L I I I J
100 200 300 400

GC threshold (kbytes)

Figure C.9:

Cumulative CPU Overhead of Copying Collection.

500

GC cumulative overhead (%)

GC cumulative overhead (%)

15 20 25 30 35 40 45 50

10

10 15 20 25 30 35 40 45 50 55

5

0

Prolog Compiler (stop©)

=
H=SEN
‘B\\

B \\\G\\—EL
—— “\EL\\
. ~‘\\\ \H
| Beg Beeeal
L -‘Zl. __________ =~
k g
B—8—8—fF—1
125 250 500 1000 2000

GC threshold (kbytes)

PMA (stopé©)

“&

[B E

i a— = H——rf]
Tl I I I J
125 250 500 1000 2000

GC threshold (kbytes)

The algorithm used is

stop-and-copy collection. Results for incremental copying are similar.

177

RSIM (mark&sweep)

Overhead Cumulative CPU Overhead (%)

Source th =125 th = 250 | th = 500 th = 1000 th = 2000
alloc 15.6 15.6 15.5 15.2 14.6
sweep 21.5 21.4 21.1 20.7 19.9
stack 22.0 21.7 21.3 20.8 20.0
type 22.9 22.1 21.6 21.0 20.1
marking 23.7 22.6 21.9 21.2 20.2
relocate 23.8 22.7 21.9 21.2 20.3

Prolog Compiler (mark&sweep)

Overhead Cumulative CPU Overhead (%)

Source th =125 th = 250 | th = 500 th = 1000 th = 2000
alloc 9.2 9.1 9.0 8.6 8.3
sweep 17.3 16.8 16.2 15.5 14.7
stack 22.4 21.8 20.8 19.6 18.4
type 30.8 30.1 28.4 26.5 24.7
marking 38.3 37.4 35.3 32.6 30.6
relocate 39.1 38.2 36.0 33.2 31.1

OPS5 (Weaver) (mark&sweep)

Overhead Cumulative CPU Overhead (%)

Source th =125 | th =250 | th =500 | th = 1000 | th = 2000
alloc 0.2 0.1 0.0 0.0 0.0
sweep 0.3 0.1 0.0 0.0 0.0
stack 0.4 0.1 0.0 0.0 0.0
type 0.6 0.1 0.0 0.0 0.0
marking 0.7 0.1 0.0 0.0 0.0
relocate 0.8 0.1 0.0 0.0 0.0

PMA (mark&sweep)

Overhead Cumulative CPU Overhead (%)

Source th =125 th = 250 | th = 500 th = 1000 th = 2000
alloc 4.8 4.4 4.3 3.9 3.4
sweep 9.2 8.1 7.8 7.1 5.8
stack 22.1 15.5 12.7 10.6 8.1
type 42.1 26.8 20.5 15.9 12.0
marking 59.5 36.1 26.9 19.9 15.3
relocate 61.5 37.7 28.3 21.1 16.4

Table C.18: Cumulative CPU Overhead of Mark-and-Sweep Collection.

178

GC cumulative overhead (%)

GC cumulative overhead (%)

10 12 14 16 18 20 22 24

6 8

4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.0

RSIM (mark&sweep)

Overhead Source

-- relocate
—— — marking
- — — type
— — — stack

———————— sweep

— alloc

L 1 1 1 |

125 250 500 1000 2000

GC threshold (kbytes)

OPS5 (Weaver) (mark&sweep)

125 250 500
GC threshold (kbytes)

1000 2000

Figure C.10: Cumulative CPU Overhead

GC cumulative overhead (%)

GC cumulative overhead (%)

179

15 20 25 30 35 40

10

70

60

Prolog Compiler (mark&sweep)

L B-—g_ -
= TH

V ~—q

E“-—EI“\E\

V TE---g

B B g

L 1 1 1 |

125 250 500 1000 2000

GC threshold (kbytes)

PMA (mark&sweep)

125 250 500
GC threshold (kbytes)

1000 2000

of Mark-and-Sweep Collection.

Prolog Compiler (incremental)

Overhead Cumulative CPU Overhead (%)

Source th =125 th =250 | th =500 | th = 1000 th = 2000
base overhead 39.0 30.4 28.0 26.1 22.4
write barrier 59.4 50.7 42.0 35.9 28.1
read barrier 110.7 85.4 76.1 63.4 53.8

PMA (incremental)
Overhead Cumulative CPU Overhead (%)

Source th =125 th =250 | th =500 | th = 1000 th = 2000
base overhead 46.8 29.3 21.7 17.4 13.9
write barrier 66.8 42.6 31.3 24.3 18.1
read barrier 257.9 147.4 96.7 67.9 50.5

Prolog Compiler (stop©)
Overhead Cumulative CPU Overhead (%)

Source th =125 th =250 | th =500 | th = 1000 th = 2000
base overhead 38.6 36.1 27.7 26.6 23.1
write barrier 60.9 52.3 39.4 34.5 27.2

PMA (stop©)
Overhead Cumulative CPU Overhead (%)

Source th =125 th =250 | th =500 | th = 1000 th = 2000
base overhead 46.4 29.0 21.6 17.8 14.9
write barrier 64.9 40.9 29.9 23.9 18.7

Prolog Compiler (mark&sweep)
Overhead Cumulative CPU Overhead (%)

Source th =125 th =250 | th =500 | th = 1000 th = 2000
base overhead 39.1 38.2 36.0 33.2 31.1
write barrier 54.5 49.5 44.9 39.5 35.9
indirect vectors 54.8 49.9 45.3 39.9 36.2

PMA (mark&sweep)
Overhead Cumulative CPU Overhead (%)

Source th =125 th =250 | th =500 | th = 1000 th = 2000
base overhead 61.5 37.7 28.3 21.1 16.4
write barrier 77.4 48.0 35.1 26.1 19.8
indirect vectors 80.0 50.6 37.7 28.7 22.4

Table C.14:

Cumulative CPU Overhead for Three Algorithms.

180

GC cumulative overhead (%) GC cumulative overhead (%)

GC cumulative overhead (%)

60 80 100 120

40

20

10 20 30 40 50 60 70

0

30 40 50

20

0 5 10

Prolog Compiler (incremental)

r Overhead Source
A — — - read barrier
—————— write barrier

T~ - —— base overhead

125 250 500 1000 2000

GC threshold (kbytes)

Prolog Compiler (stop©)

verhead Source
-~ write barrier
——— base overhead

SoL 1 1 1 J

125 250 500 1000 2000

GC threshold (kbytes)

Prolog Compiler (mark&sweep)

Overhead Source
T — — - indirect vectors
- write barrier
. na§ overhead

~g

L 1 1 1 J

125 250 500 1000 2000

GC threshold (kbytes)

Figure C.11:

GC cumulative overhead (%) GC cumulative overhead (%)

GC cumulative overhead (%)

100 150 200 250 300

50 60 70 50

10 20 30 40

0

0 10 20 30 40 50 60 70 80 90

PMA (incremental)

N Overhead Source

\ — — - read barrier
—————— write barrier
—— base overhead

125 250 500 1000 2000

GC threshold (kbytes)

PMA (stop©)

Overhead Source
—————— write barrier
——— base overhead

125 250 500 1000 2000

GC threshold (kbytes)

PMA (mark&sweep)

N Overhead Source
N\ — — - indirect vectors

A N write barrier
* —— base overhead

125 250 500 1000 2000

GC threshold (kbytes)

Cumulative CPU Overhead for Three Algorithms.

RSIM

Prolog Compiler

Age Fraction of references (%) Fraction of references (%)

(sec cons | vector |number | other total cons vector | number | other total
0.000004 43.9 0.3 95.6 20.6 38.2 21.1 46.0 55.6 16.5 22.1
0.000008 21.2 0.1 2.2 10.3 6.7 8.9 1.8 22.2 8.2 8.5
0.000016 15.1 0.1 2.2 19.9 4.9 1.9 2.7 22.2 16.2 2.4
0.000032 6.0 0.0 0.0 39.1 1.7 2.7 3.1 0.0 31.9 3.7
0.000064 0.1 0.0 0.0 9.8 0.0 2.8 0.1 0.0 24.0 3.3
0.000128 0.0 0.0 0.0 0.0 0.0 3.7 0.2 0.0 0.6 3.4
0.000256 0.1 0.0 0.0 0.2 0.0 3.7 0.8 0.0 0.9 3.5
0.000512 0.1 0.0 0.0 0.0 0.0 6.3 0.3 0.0 1.3 5.8
0.001024 0.0 0.0 0.0 0.0 0.0 7.4 1.0 0.0 0.2 6.9
0.002048 0.0 0.0 0.0 0.0 0.0 1.1 0.7 0.0 0.2 1.1
0.004096 0.0 0.1 0.0 0.0 0.0 2.8 0.3 0.0 0.0 2.6
0.008192 0.0 0.0 0.0 0.0 0.0 7.1 0.3 0.0 0.0 6.6
0.016384 0.1 0.0 0.0 0.0 0.0 8.6 0.2 0.0 0.0 7.9
0.032768 0.1 0.0 0.0 0.0 0.0 3.2 0.4 0.0 0.0 2.9
0.065536 0.1 0.0 0.0 0.0 0.0 0.9 0.5 0.0 0.0 0.9
0.131072 0.2 0.1 0.0 0.0 0.1 0.4 0.6 0.0 0.0 0.4
0.262144 0.0 0.0 0.0 0.0 0.0 0.4 0.8 0.0 0.0 0.4
0.524288 0.2 0.1 0.0 0.0 0.1 0.9 1.7 0.0 0.0 0.9
1.048580 0.3 0.1 0.0 0.0 0.1 1.3 2.3 0.0 0.0 1.3
2.097150 0.5 0.5 0.0 0.0 0.4 2.6 3.2 0.0 0.0 2.6
4.194300 0.3 1.4 0.0 0.0 0.7 3.8 3.4 0.0 0.0 3.6
8.388610 0.3 2.8 0.0 0.0 1.3 2.4 6.5 0.0 0.0 2.5

16.777200 0.7 5.6 0.0 0.0 2.7 1.5 7.0 0.0 0.0 1.7
33.554400 1.3 11.2 0.0 0.0 5.4 1.6 1.2 0.0 0.0 1.5
67.108900 2.7 22.4 0.0 0.0 10.8 1.3 5.5 0.0 0.0 1.5
134.218000 5.4 44.5 0.0 0.0 21.4 1.0 6.2 0.0 0.0 1.2
268.435000 1.3 10.6 0.0 0.0 5.1 0.5 3.1 0.0 0.0 0.6

Table C.15:

182

Age Distribution of Objects Referenced by Object Type.

Fraction of references (%)

Fraction of references (%)

100

80

60

40

20

20 30 40 50 60

10

RSIM

Object Type
—— total
L — — — other
— — — — number
——————————— vector
cons
s
L 1 1 1 1 1
1 0.0001 0.01 01 1 10 100 1000
e-6
Age (sec)
OPS5 (Weaver)
|
|
Lo
|
|
|
|
o
|
|
|
|
o
|
Ll
I‘- L hl
| - l-I \
D |
Lo /\
L)
'" /\ / \ ',‘
L \ ‘:.l J N |/
VA
L : ~TN
L | 1 1 1 1 1
1 0.0001 0.01 01 1 10 100 1000
e-6

Age (sec)

Figure C.12:

Fraction of references (%)

Fraction of references (%)

60

50

40

30

20

10

15 20 25 30 35 40

10

Prolog Compiler

L
1 0.0001 001 01 1 10 100 1000
e-6

Age (sec)

PMA
L]
1 0.0001 001 01 1 10 100 1000
e-6

Age (sec)

Age Distribution of Objects Referenced by Object Type.

183

OPS5 (Weaver)

PMA

Age Fraction of references (%) Fraction of references (%)

(sec) cons | vector |number | other total cons vector | number | other total
0.000004 1.5 25.9 55.6 9.5 1.6 32.5 3.1 0.0 8.8 17.3
0.000008 0.6 13.0 22.2 4.7 0.6 10.4 1.5 0.0 3.8 5.8
0.000016 0.0 13.2 22.2 7.2 0.1 3.5 2.5 0.0 7.4 3.1
0.000032 0.1 0.8 0.0 8.2 0.1 2.7 3.9 0.0 9.2 3.4
0.000064 0.1 1.4 0.0 7.7 0.1 2.1 7.4 0.0 7.1 4.6
0.000128 0.1 1.8 0.0 9.0 0.1 1.8 4.2 0.0 9.9 3.2
0.000256 0.3 2.6 0.0 13.1 0.3 1.5 0.1 0.0 11.9 1.3
0.000512 0.7 4.7 0.0 10.7 0.7 1.7 0.6 0.0 5.9 1.4
0.001024 1.2 7.8 0.0 9.2 1.2 2.0 3.2 0.0 7.1 2.7
0.002048 2.1 5.1 0.0 19.5 2.1 1.0 5.2 0.0 6.2 3.1
0.004096 3.2 9.2 0.0 1.3 3.2 1.1 2.5 0.0 1.0 1.7
0.008192 3.8 14.5 0.0 0.0 3.8 0.9 2.0 0.0 1.0 1.4
0.016384 3.5 0.0 0.0 0.0 3.5 0.7 1.8 0.0 1.6 1.2
0.032768 3.2 0.0 0.0 0.0 3.2 0.8 1.8 0.0 0.8 1.2
0.065536 2.7 0.0 0.0 0.0 2.7 1.1 3.0 0.0 0.7 1.9
0.131072 1.8 0.0 0.0 0.0 1.8 1.1 3.8 0.0 0.7 2.3
0.262144 2.3 0.0 0.0 0.0 2.3 1.5 2.6 0.1 0.7 1.9
0.524288 2.7 0.0 0.0 0.0 2.7 2.8 3.4 0.1 0.9 2.9
1.048580 3.0 0.0 0.0 0.0 3.0 5.4 7.2 0.1 1.5 5.9
2.097150 2.8 0.0 0.0 0.0 2.8 7.3 10.4 0.2 2.6 8.3
4.194300 3.8 0.0 0.0 0.0 3.8 7.6 11.6 2.1 3.5 9.0
8.388610 5.7 0.0 0.0 0.0 5.7 2.3 8.8 5.2 3.1 5.3

16.777200 10.1 0.0 0.0 0.0 10.1 1.3 0.5 9.8 0.2 1.2
33.554400 12.5 0.0 0.0 0.0 12.4 2.0 2.4 20.6 1.0 2.7
67.108900 19.1 0.0 0.0 0.0 19.1 3.5 5.3 35.2 2.4 5.3
134.218000 13.1 0.0 0.0 0.0 13.1 1.5 1.0 26.7 0.9 2.0

Table C.16: Age Distribution of Objects Referenced by Object Type.

184

Page faults per second Page faults per second

Page faults per second

140

0 20 40 60 80 100

80 120 160 200 240

40

120 160 200 240

80

40

Prolog Compiler (incremental)

3

Memory Size
— — — — 6 megabytes
5 megabytes

—————————————— 4 megabytes
r \——— 3 megabytes jal
yal
L /
/
L
[oa S A
.- : Vz
r Ve
- B)
125 250 500 1000 2000

GC threshold (kbytes)

Prolog Compiler (stop©)

125 250 500

1000

2000
GC threshold (kbytes)

Prolog Compiler (mark&sweep)

—_ -4

. g
125 250 500 1000 2000

GC threshold (kbytes)

Page faults per second Page faults per second

Page faults per second

160

120

0 20 40 60 80

140

0 20 40 60 80 100

10 20 30 40 50 60 70 80

0

PMA (incremental)

125 250 500 1000 2000

GC threshold (kbytes)

PMA (stop©)

;o
L — g J
125 250 500 1000 2000

GC threshold (kbytes)

PMA (mark&sweep)

125 250 500

1000

2000
GC threshold (kbytes)

Figure C.13: Page Fault Rates for Different Collection Algorithms.

Prolog Compiler (incremental)

Memory Page faults per second
Size th =125 th = 250 th = 500 th = 1000 th = 2000
3 megabytes 159.0 5.0 10.2 92.3 145.2
4 megabytes 34.5 0.0 0.0 12.3 99.9
5 megabytes 1.0 0.0 0.0 0.2 71.4
6 megabytes 0.0 0.0 0.0 0.0 38.7

PMA (incremental)

Memory Page faults per second
Size th =125 th = 250 th = 500 th = 1000 th = 2000
3 megabytes 0.0 0.4 10.6 112.5 179.9
4 megabytes 0.0 0.0 0.1 19.4 106.5
5 megabytes 0.0 0.0 0.0 0.5 79.7
6 megabytes 0.0 0.0 0.0 0.1 38.4

Prolog Compiler (stop©)

Memory Page faults per second
Size th =125 th = 250 th = 500 th = 1000 th = 2000
3 megabytes 243.0 5.9 8.9 97.6 131.9
4 megabytes 8.7 0.0 0.0 24.8 97.7
5 megabytes 0.4 0.0 0.0 0.1 67.1
6 megabytes 0.3 0.0 0.0 0.1 32.1

PMA (stop©)

Memory Page faults per second
Size th =125 th = 250 th = 500 th = 1000 th = 2000
3 megabytes 0.0 0.5 11.7 103.4 142.1
4 megabytes 0.0 0.1 0.1 32.7 91.3
5 megabytes 0.0 0.1 0.0 0.4 63.9
6 megabytes 0.0 0.1 0.0 0.1 37.9

Prolog Compiler (mark&sweep)

Memory Page faults per second
Size th =125 th = 250 th = 500 th = 1000 th = 2000
3 megabytes 83.8 10.4 3.5 28.1 231.0
4 megabytes 7.3 0.6 0.0 0.1 73.8
5 megabytes 0.0 0.0 0.0 0.0 9.4
6 megabytes 0.0 0.0 0.0 0.0 0.1

PMA (mark&sweep)

Memory Page faults per second
Size th =125 th = 250 th = 500 th = 1000 th = 2000
3 megabytes 0.5 0.9 1.9 22.7 71.4
4 megabytes 0.0 0.0 0.0 2.1 29.0
5 megabytes 0.0 0.0 0.0 0.1 6.3
6 megabytes 0.0 0.0 0.0 0.0 1.1

Table C.17: Page Fault Rates for Different Collection Algorithms.

186

Memory Needed (4K pages) Memory Needed (4K pages)

Memory Needed (4K pages)

800 1200 1600 2000

400

1200 1600 2000

800

400

600 1000 1400

0 200

Prolog Compiler (incremental)

FauTt Rate Allowed

20 faults/sec
10 faults/sec
5 faults/sec
0 faults/sec

L 1 1 1 J

125 250 500 1000 2000

GC threshold (kbytes)

Prolog Compiler (stop©)

L 1 1 1 J

125 250 500 1000 2000

GC threshold (kbytes)

Prolog Compiler (mark&sweep)

L 1 1 1 J

125 250 500 1000 2000

GC threshold (kbytes)

Memory Needed (4K pages) Memory Needed (4K pages)

Memory Needed (4K pages)

1200 1600 2000

800

400

1200 1600 2000

800

400

1200 1600 2000

800

400

PMA (incremental)

L 1 1 1 J

125 250 500 1000 2000

GC threshold (kbytes)

PMA (stop©)

L 1 1 1 J

125 250 500 1000 2000

GC threshold (kbytes)

PMA (mark&sweep)

125 250 500 1000 2000

GC threshold (kbytes)

Figure C.14: Memory Sizes Required for Different Collection Algorithms.

Prolog Compiler (incremental)

Tolerance Memory Needed (4K pages)
Level th =125 th = 250 th = 500 th = 1000 th = 2000
0 faults/sec 1533 1024 1028 1359 2053
5 faults/sec 1237 800 840 1062 1911
10 faults/sec 1183 769 830 1058 1911
20 faults/sec 1132 686 772 1046 1841

PMA (incremental)

Tolerance Memory Needed (4K pages)
Level th =125 th = 250 th = 500 th = 1000 th = 2000
0 faults/sec 713 855 1031 1364 1907
5 faults/sec 546 657 886 1190 1746
10 faults/sec 513 602 831 1148 1729
20 faults/sec 470 556 778 1103 1701

Prolog Compiler (stop©)

Tolerance Memory Needed (4K pages)
Level th =125 th = 250 th = 500 th = 1000 th = 2000
0 faults/sec 1866 1053 1019 1208 1970
5 faults/sec 1116 807 837 1103 1904
10 faults/sec 1066 790 826 1093 1904
20 faults/sec 1016 687 744 1071 1806

PMA (stop©)

Tolerance Memory Needed (4K pages)
Level th =125 th = 250 th = 500 th = 1000 th = 2000
0 faults/sec 696 852 1028 1361 1906
5 faults/sec 570 669 865 1170 1757
10 faults/sec 538 633 837 1144 1741
20 faults/sec 493 589 784 1106 1714

Prolog Compiler (mark&sweep)

Tolerance Memory Needed (4K pages)
Level th =125 th = 250 th = 500 th = 1000 th = 2000
0 faults/sec 1176 1075 959 1027 1551
5 faults/sec 1083 890 798 959 1389
10 faults/sec 1058 842 744 914 1344
20 faults/sec 978 775 694 861 1279

PMA (mark&sweep)

Tolerance Memory Needed (4K pages)
Level th =125 th = 250 th = 500 th = 1000 th = 2000
0 faults/sec 934 977 1070 1330 1830
5 faults/sec 546 622 725 1009 1458
10 faults/sec 499 553 689 952 1342
20 faults/sec 445 517 644 886 1198

Table C.18: Memory Sizes Required for Different Collection Algorithms.

188

RSIM (stop©)

Cache Size Cache miss rate (%)
th =125 | th =250 | th =500 | th = 1000 | th = 2000
64 kilobytes 7.30 7.34 7.14 7.13 7.14
128 kilobytes 6.09 6.03 6.00 5.99 5.97
256 kilobytes 3.05 5.38 5.40 5.39 5.39
512 kilobytes 3.03 3.85 5.02 5.08 5.08
1 megabyte 3.02 3.85 4.30 4.84 4.91
2 megabytes 1.11 0.58 0.43 0.76 4.75

Prolog Compiler (stop©)

Cache Size Cache miss rate (%)
th =125 | th =250 | th =500 | th = 1000 | th = 2000
64 kilobytes 4.72 4.77 4.90 5.07 5.37
128 kilobytes 4.32 4.41 4.60 4.79 5.07
256 kilobytes 2.86 4.05 4.28 4.46 4.77
512 kilobytes 2.54 3.02 3.90 4.15 4.40
1 megabyte 2.12 2.76 3.15 3.80 4.03
2 megabytes 0.72 0.83 1.05 2.00 3.56

OPS5 (Weaver) (stop©)

Cache Size Cache miss rate (%)
th =125 | th =250 | th =500 | th = 1000 | th = 2000
64 kilobytes 2.96 2.89 2.83 2.99 2.93
128 kilobytes 1.59 1.70 1.85 1.94 1.91
256 kilobytes 0.95 0.95 1.11 1.20 1.18
512 kilobytes 0.58 0.57 0.73 0.78 0.77
1 megabyte 0.32 0.29 0.33 0.33 0.33
2 megabytes 0.20 0.17 0.24 0.24 0.24

PMA (stop©)

Cache Size Cache miss rate (%)
th =125 | th =250 | th =500 | th = 1000 | th = 2000
64 kilobytes 7.31 6.43 6.18 6.12 6.45
128 kilobytes 6.29 5.67 5.48 5.47 5.71
256 kilobytes 4.83 4.85 4.77 4.88 5.09
512 kilobytes 3.94 3.80 4.09 4.23 4.43
1 megabyte 3.65 3.47 3.32 3.69 3.92
2 megabytes 1.89 1.42 1.22 2.01 3.35

Table C.19: Cache Miss Rates for Stop-and-Copy Collection.

189

Cache miss rate (%)

Cache miss rate (%)

10

3.0

25

2.0

1.5

1.0

0.5

0.0

RSIM (stop©)

- Cache Size
——-—— 2 megabytes
—— —— — 1megabyte
512 kilobytes
256 kilobytes

‘\B—_‘B/‘/ﬂ

125 250 500 1000 2000

GC threshold (kbytes)

OPS5 (Weaver) (stop©)

L - . = 0
B
_g--B-O
- g----[-
_ -5 --8
L BF-——8"
125 250 500 1000 2000
GC threshold (kbytes)

Figure C.15:

Cache miss rate (%)

Cache miss rate (%)

00 05 10 15 2.0 25 3.0 35 40 45 50 55

Prolog Compiler (stop©)

L 1 1 1 |

125 250 500 1000 2000

GC threshold (kbytes)

PMA (stop©)

"g---8---g---3-- 4
g-_g--H 20
EL\E\\B//E /,D

125 250 500
GC threshold (kbytes)

1000 2000

Cache Miss Rates for Stop-and-Copy Collection.

RSIM (mark&sweep)

Cache Size Cache miss rate (%)
th =125 | th =250 | th =500 | th = 1000 | th = 2000
64 kilobytes 5.35 5.35 4.94 5.38 4.25
128 kilobytes 1.60 2.54 3.13 3.20 3.12
256 kilobytes 1.40 0.88 1.89 2.76 2.71
512 kilobytes 1.27 0.70 0.68 1.63 2.52
1 megabyte 0.05 0.05 0.08 0.31 1.44
2 megabytes 0.05 0.05 0.08 0.13 0.24

Prolog Compiler (mark&sweep)

Cache Size Cache miss rate (%)
th =125 | th =250 | th =500 | th = 1000 | th = 2000
64 kilobytes 5.16 5.03 5.15 5.21 5.09
128 kilobytes 3.73 4.44 4.72 4.80 4.71
256 kilobytes 2.50 2.87 4.23 4.45 4.40
512 kilobytes 1.82 1.57 2.68 3.98 4.03
1 megabyte 1.52 1.09 1.42 2.39 3.62
2 megabytes 1.25 0.90 1.04 1.49 2.08

OPS5 (Weaver) (mark&sweep)

Cache Size Cache miss rate (%)
th =125 | th =250 | th =500 | th = 1000 | th = 2000
64 kilobytes 3.07 3.23 3.58 3.54 3.27
128 kilobytes 1.91 1.92 2.31 2.29 1.96
256 kilobytes 1.13 1.10 1.43 1.44 1.05
512 kilobytes 0.59 0.60 1.01 0.97 0.63
1 megabyte 0.28 0.30 0.71 0.68 0.36
2 megabytes 0.12 0.14 0.55 0.52 0.21

PMA (mark&sweep)

Cache Size Cache miss rate (%)
th =125 | th =250 | th =500 | th = 1000 | th = 2000
64 kilobytes 6.69 5.85 5.68 5.58 5.58
128 kilobytes 5.84 5.06 4.91 4.93 4.97
256 kilobytes 4.26 4.12 4.22 4.29 4.37
512 kilobytes 2.43 2.66 3.23 3.59 3.82
1 megabyte 1.08 1.47 1.97 2.57 3.15
2 megabytes 0.87 1.18 1.46 1.92 2.31

Table C.20: Cache Miss Rates for Mark-and-Sweep Collection.

191

Cache miss rate (%)

Cache miss rate (%)

10

1.0 1.5 2.0 25 3.0 3.5 4.0

0.5

0.0

RSIM (mark&sweep)

- Cache Size

2 megabytes
1 megabyte
L 512 kilobytes
256 kilobytes

128 kilobytes
64 kilobytes

- H—AE(_{ I -"_JE|

125 250 500 1000 2000

GC threshold (kbytes)

OPS5 (Weaver) (mark&sweep)

O
PG a
i EF---E
30 g O

125 250 500
GC threshold (kbytes)

1000 2000

Cache miss rate (%)

Cache miss rate (%)

00 05 1.0 15 20 25 3.0 35 40 45 50 55

Prolog Compiler (mark&sweep)

: g g g =
L //E’(B————D
o K / ya
/ /
, Y, /

L / / /D
E - e
B> e

k ‘\ _/B

T I I I J

125 250 500 1000 2000

GC threshold (kbytes)

PMA (mark&sweep)

L 1 1 1 |

125 250 500 1000 2000

GC threshold (kbytes)

Figure C.16: Cache Miss Rates for Mark-and-Sweep Collection.

Cache miss rate (%)

Cache miss rate (%)

10

1.0 1.5 2.0 25 3.0 3.5 4.0

0.5

0.0

RSIM

Algorithm (Cache Size)

_— = incremental (1M)
mark-and-sweep (1M)
stop-and-copy (1M)
incremental (256k)
mark-and-sweep (256k)
stop-and-copy (256k)
incremental (64k)
mark-and-sweep (64k)

op-and-copy (6:

L 1 1 1

125 250 500 1000
GC threshold (kbytes)

OPS5 (Weaver)

2000

125 250 500 1000

GC threshold (kbytes)

2000

Cache miss rate (%)

Cache miss rate (%)

Prolog Compiler

L 1 1 1 |

125 250 500 1000

GC threshold (kbytes)

PMA

L I I I |
125 250 500 1000

GC threshold (kbytes)

Figure C.17: Cache Miss Rates for Three Collection Algorithms.

193

2000

2000

RSIM

Algorithm (Cache Size)

Cache miss rate (%)

th =125 th = 250 | th =500 | th = 1000 | th = 2000
stop-and-copy (64k) 7.30 7.34 7.14 7.13 7.14
mark-and-sweep (64k) 5.35 5.35 4.94 5.38 4.25
incremental (64k) 7.20 7.17 7.11 7.16 7.09
stop-and-copy (256k) 3.05 5.38 5.40 5.39 5.39
mark-and-sweep (256k) 1.40 0.88 1.89 2.76 2.71
incremental (2561{) 3.35 5.32 5.43 5.40 5.41
stop-and-copy (1M) 3.02 3.85 4.30 4.84 4.91
mark-and-sweep (1M) 0.05 0.05 0.08 0.31 1.44
incremental (1M) 3.33 4.02 4.43 4.84 4.93

Prolog Compiler

Algorithm (Cache Size) Cache miss rate (%)

th =125 th = 250 | th =500 | th = 1000 | th = 2000
stop-and-copy (64k) 4.72 4.77 4.90 5.07 5.37
mark-and-sweep (64k) 5.16 5.03 5.15 5.21 5.09
incremental (64k) 4.89 5.13 5.38 5.68 5.83
stop-and-copy (256k) 2.86 4.05 4.28 4.46 4.77
mark-and-sweep (256k) 2.50 2.87 4.23 4.45 4.40
incremental (256k) 3.24 4.14 4.46 4.79 5.04
stop-and-copy (1M) 2.12 2.76 3.15 3.80 4.03
mark-and-sweep (1M) 1.52 1.09 1.42 2.39 3.62
incremental (1M) 2.59 3.21 3.47 3.96 4.24

OPS5 (Weaver)

Algorithm (Cache Size) Cache miss rate (%)

th =125 th = 250 | th =500 | th = 1000 | th = 2000
stop-and-copy (64k) 2.96 2.89 2.83 2.99 2.93
mark-and-sweep (64k) 3.07 3.23 3.58 3.54 3.27
incremental (64k) 2.85 2.64 2.78 2.86 2.87
stop-and-copy (256k) 0.95 0.95 1.11 1.20 1.18
mark-and-sweep (256k) 1.13 1.10 1.43 1.44 1.05
incremental (256k) 1.12 0.97 0.99 0.98 0.98
stop-and-copy (1M) 0.32 0.29 0.33 0.33 0.33
mark-and-sweep (1M) 0.28 0.30 0.71 0.68 0.36
incremental (1M) 0.44 0.34 0.36 0.33 0.33

PMA

Algorithm (Cache Size) Cache miss rate (%)

th =125 th = 250 | th =500 | th = 1000 | th = 2000
stop-and-copy (64k) 7.31 6.43 6.18 6.12 6.45
mark-and-sweep (64k) 6.69 5.85 5.68 5.58 5.58
incremental (64k) 7.86 7.08 6.71 6.57 6.67
stop-and-copy (256k) 4.83 4.85 4.77 4.88 5.09
mark-and-sweep (256k) 4.26 4.12 4.22 4.29 4.37
incremental (2561{) 5.34 5.18 5.12 5.15 5.26
stop-and-copy (1M) 3.65 3.47 3.32 3.69 3.92
mark-and-sweep (1M) 1.08 1.47 1.97 2.57 3.15
incremental (1M) 4.42 4.05 3.71 3.87 4.02

Table C.21: Cache Miss Rates for

194

Three Collection Algorithms.

RSIM

Prolog Compiler

Age Fraction surviving Fraction surviving
(sec cons | vector |number | other total cons vector | number | other total
0.000004 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.000008 0.97 1.00 0.05 1.00 0.35 0.86 0.08 0.80 1.00 0.78
0.000016 0.96 0.06 0.00 1.00 0.32 0.83 0.04 0.20 1.00 0.76
0.000032 0.02 0.05 0.00 0.98 0.01 0.60 0.04 0.20 0.98 0.55
0.000064 0.01 0.05 0.00 0.02 0.01 0.57 0.04 0.20 0.02 0.51
0.000128 0.01 0.05 0.00 0.02 0.01 0.27 0.04 0.20 0.01 0.24
0.000256 0.01 0.05 0.00 0.00 0.01 0.27 0.04 0.20 0.01 0.24
0.000512 0.01 0.05 0.00 0.00 0.00 0.26 0.04 0.20 0.01 0.24
0.001024 0.01 0.05 0.00 0.00 0.00 0.18 0.04 0.20 0.00 0.16
0.002048 0.01 0.05 0.00 0.00 0.00 0.18 0.03 0.20 0.00 0.16
0.004096 0.01 0.05 0.00 0.00 0.00 0.18 0.03 0.20 0.00 0.16
0.008192 0.01 0.05 0.00 0.00 0.00 0.17 0.03 0.20 0.00 0.16
0.016384 0.01 0.05 0.00 0.00 0.00 0.16 0.03 0.20 0.00 0.14
0.032768 0.01 0.05 0.00 0.00 0.00 0.15 0.03 0.20 0.00 0.13
0.065536 0.01 0.05 0.00 0.00 0.00 0.15 0.03 0.20 0.00 0.13
0.131072 0.01 0.05 0.00 0.00 0.00 0.15 0.03 0.20 0.00 0.13
0.262144 0.01 0.05 0.00 0.00 0.00 0.15 0.03 0.20 0.00 0.13
0.524288 0.00 0.05 0.00 0.00 0.00 0.15 0.03 0.20 0.00 0.13
1.048580 0.00 0.05 0.00 0.00 0.00 0.14 0.03 0.20 0.00 0.13
2.097150 0.00 0.05 0.00 0.00 0.00 0.14 0.03 0.20 0.00 0.12
4.194300 0.00 0.05 0.00 0.00 0.00 0.14 0.03 0.20 0.00 0.12
8.388610 0.00 0.05 0.00 0.00 0.00 0.13 0.03 0.20 0.00 0.11
16.777200 0.00 0.04 0.00 0.00 0.00 0.11 0.03 0.20 0.00 0.10
33.554400 0.00 0.04 0.00 0.00 0.00 0.06 0.03 0.20 0.00 0.06
67.108900 0.00 0.04 0.00 0.00 0.00 0.01 0.02 0.00 0.00 0.01
134.218000 0.00 0.04 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.01
268.435000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table C.22:

195

Survival Distribution of Objects Referenced by Object Type.

Fraction surviving

Fraction surviving

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

RSIM Prolog Compiler

o
- S r
Object Type
—— —— total
— — — other
- — — — — number @ |
——————————— vector ©
—— cons
(o))
L £ 9o |
; o
>
0
c
i)
o <
L g 3 r
(TR
N
L S+
I N o L
L 1 1 1 1 1] (S]
1 0.0001 001 01 1 10 100 1000 1 0.0001 001 01 1 10 100 1000
e-6 e-6
Time (sec) Time (sec)
OPS5 (Weaver) PMA
o
- S r
[ee)
L @+
(2]
£ o©
E o
>
0
c
k)
o <
L g 3 r
(TR
N
L S+
L o L
L | o | |
1 0.0001 001 01 1 10 100 1000 1 0.0001 001 01 1 10 100 1000
e-6 e-6
Time (sec) Time (sec)

Figure C.18: Survival Distribution of Objects Referenced by Object Type.

196

OPS5 (Weaver)

PMA

Age Fraction surviving Fraction surviving

(sec) cons | vector |number | other total cons vector | number | other total
0.000004 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.000008 0.85 1.00 0.80 1.00 0.85 0.73 1.00 0.86 0.88 0.75
0.000016 0.82 0.02 0.20 1.00 0.81 0.62 0.64 0.43 0.88 0.62
0.000032 0.81 0.02 0.20 0.95 0.79 0.51 0.64 0.43 0.82 0.53
0.000064 0.80 0.02 0.20 0.89 0.79 0.46 0.64 0.43 0.82 0.49
0.000128 0.77 0.02 0.20 0.89 0.75 0.42 0.13 0.43 0.74 0.40
0.000256 0.73 0.02 0.20 0.74 0.72 0.38 0.13 0.43 0.59 0.37
0.000512 0.71 0.02 0.20 0.54 0.70 0.36 0.13 0.43 0.56 0.34
0.001024 0.69 0.02 0.20 0.41 0.68 0.32 0.13 0.43 0.38 0.31
0.002048 0.67 0.02 0.20 0.15 0.66 0.29 0.13 0.43 0.36 0.28
0.004096 0.64 0.02 0.20 0.11 0.63 0.27 0.12 0.43 0.35 0.26
0.008192 0.60 0.02 0.20 0.11 0.59 0.26 0.12 0.43 0.35 0.25
0.016384 0.57 0.02 0.20 0.11 0.56 0.26 0.12 0.43 0.35 0.25
0.032768 0.54 0.02 0.20 0.11 0.53 0.26 0.12 0.43 0.35 0.25
0.065536 0.50 0.02 0.20 0.11 0.49 0.25 0.12 0.43 0.35 0.25
0.131072 0.46 0.02 0.20 0.11 0.46 0.25 0.12 0.43 0.35 0.24
0.262144 0.41 0.02 0.20 0.11 0.40 0.23 0.12 0.43 0.35 0.23
0.524288 0.35 0.02 0.20 0.11 0.34 0.21 0.12 0.43 0.35 0.20
1.048580 0.26 0.02 0.20 0.11 0.26 0.15 0.12 0.43 0.35 0.15
2.097150 0.21 0.02 0.20 0.11 0.20 0.08 0.12 0.43 0.35 0.09
4.194300 0.18 0.02 0.20 0.11 0.18 0.07 0.12 0.43 0.35 0.08
8.388610 0.13 0.02 0.20 0.11 0.12 0.07 0.12 0.43 0.35 0.08
16.777200 0.05 0.02 0.20 0.11 0.05 0.06 0.12 0.43 0.33 0.07
33.554400 0.04 0.02 0.20 0.10 0.04 0.04 0.08 0.43 0.26 0.05
67.108900 0.03 0.02 0.20 0.04 0.03 0.01 0.01 0.14 0.08 0.01
134.218000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table C.23:

197

Survival Distribution of Objects Referenced by Object Type.

Pause Length (sec)

Pause Length (sec)

Pause Length (sec)

0.010 0.020 0.030

0.0

0.4 0.8 1.2 1.6 2.0

0.0

00 02 04 06 08 1.0 12 14

RSIM (stop©)

Copy Number /
copies = 3 (MARS) /

[copies = 10 (DIS)
copies = 3 (DIS) /

copies = 1 (DIS) /

r ——— copies =0 (DIS) Y A

125 250 500 1000 2000

GC threshold (kbytes)

Prolog Compiler (stop©)

125 250 500 1000 2000

GC threshold (kbytes)

PMA (stop©)

125 250 500

1000

2000
GC threshold (kbytes)

Pause Length (sec)

Pause Length (sec)

Pause Length (sec)

0.010 0.020 0.030

0.0

1.6

1.2

0.8

0.4

0.0

02 04 06 08 1.0

0.0

RSIM (mark&sweep)

125 250 500 1000 2000

GC threshold (kbytes)

Prolog Compiler (mark&sweep)

125 250 500 1000 2000

GC threshold (kbytes)

PMA (mark&sweep)

125 250 500 1000 2000

GC threshold (kbytes)

Figure C.19: Pause Lengths for Three Applications

RSIM (stop©)

Copy Number

Pause Length (sec)

th =125 th = 250 | th =500 | th = 1000 | th = 2000
copies = 0 (DIS) 0.001 0.002 0.005 0.008 0.013
copies = 1 (DIS) 0.002 0.004 0.006 0.010 0.016
copies = 3 (DIS) 0.003 0.005 0.008 0.013 0.020
copies = 10 (DIS) 0.006 0.008 0.012 0.019 0.032
copies = 3 (MARS) 0.005 0.005 0.007 0.009 0.013
RSIM (mark&sweep)
Copy Number Pause Length (sec)
th =125 th = 250 | th =500 | th = 1000 | th = 2000
copies = 0 (DIS) 0.001 0.002 0.005 0.008 0.013
copies = 1 (DIS) 0.002 0.003 0.005 0.009 0.015
copies = 3 (DIS) 0.002 0.004 0.007 0.011 0.018
copies = 10 (DIS) 0.004 0.006 0.010 0.017 0.028
copies = 3 (MARS) 0.004 0.004 0.006 0.008 0.011
Prolog Compiler (stop©)
Copy Number Pause Length (sec)
th =125 th = 250 | th =500 | th = 1000 | th = 2000
copies = 0 (DIS) 0.034 0.068 0.133 0.260 0.501
copies = 1 (DIS) 0.060 0.117 0.229 0.445 0.839
copies = 3 (DIS) 0.096 0.187 0.366 0.704 1.263
copies = 10 (DIS) 0.158 0.310 0.606 1.145 1.830
copies = 3 (MARS) 0.166 0.246 0.459 0.857 1.364
Prolog Compiler (mark&sweep)
Copy Number Pause Length (sec)
th =125 th = 250 | th =500 | th = 1000 | th = 2000
copies = 0 (DIS) 0.034 0.068 0.133 0.260 0.501
copies = 1 (DIS) 0.049 0.096 0.187 0.365 0.690
copies = 3 (DIS) 0.073 0.144 0.281 0.539 0.982
copies = 10 (DIS) 0.133 0.260 0.505 0.935 1.474
copies = 3 (MARS) 0.110 0.203 0.303 0.574 0.944
PMA (stop©)
Copy Number Pause Length (sec)
th =125 th = 250 | th =500 | th = 1000 | th = 2000
copies = 0 (DIS) 0.057 0.097 0.148 0.233 0.394
copies = 1 (DIS) 0.083 0.133 0.209 0.357 0.630
copies = 3 (DIS) 0.113 0.182 0.311 0.554 0.957
copies = 10 (DIS) 0.159 0.282 0.518 0.930 1.345
copies = 3 (MARS) 0.090 0.143 0.246 0.420 0.676
PMA (mark&sweep)
Copy Number Pause Length (sec)
th =125 th = 250 | th =500 | th = 1000 | th = 2000
copies = 0 (DIS) 0.057 0.097 0.148 0.233 0.394
copies = 1 (DIS) 0.073 0.118 0.184 0.303 0.521
copies = 3 (DIS) 0.095 0.151 0.247 0.425 0.732
copies = 10 (DIS) 0.138 0.236 0.416 0.730 1.092
copies = 3 (MARS) 0.082 0.128 0.179 0.284 0.477

Table C.24: Pause Lengths for Three Applications

199

Relative Overhead

Relative Overhead

Relative Overhead

3.0

05 1.0 2.0

0.0

3.0

25

2.0

1.5

1.0

0.5

0.0

4.0

3.0

2.0

1.0

0.0

RSIM (stop©)

N Copy Number

copies = 3 (MARS)
copies = 10 (DIS)
copies = 3 (DIS)
copies = 1 (DIS)
copies = 0 (DIS)

N -

125 250 500 1000 2000

GC threshold (kbytes)

Prolog Compiler (stop©)

B- —

— 8 _
L OB~ —
T
AN
L AN
N
L \D
B\
~
L B——-—-— —— o
‘i‘\ﬂ
booER-eeeee e [R T, Is|
B H = =]
oL L L L]
125 250 500 1000 2000

GC threshold (kbytes)

PMA (stop©)

125 250 500 1000 2000

GC threshold (kbytes)

Relative Overhead

Relative Overhead

Relative Overhead

04 08 12 16 20

0.0

0.4 0.8 12 1.6 2.0

0.0

3.0

2.5

1.0 15 20

0.5

0.0

RSIM (mark&sweep)

125 250 500 1000 2000

GC threshold (kbytes)

Prolog Compiler (mark&sweep)

B— —

L — 8 _
—o.
~
| ~
~
L ~
N
L N
\D
.
—H
B----B--a- - _ o
—3
o EFeeeeeeee-- B 2 T Freemmmeens o
| B s g S I
- L 1 1 1]
125 250 500 1000 2000

GC threshold (kbytes)

PMA (mark&sweep)

125 250 500 1000 2000

GC threshold (kbytes)

Figure C.20: Relative CPU Overhead for Three Applications

RSIM (stop©)

Copy Number

Relative Overhead

th =125 | th =250 | th =500 | th =1000 | th = 2000
copies = 0 (DIS) 0.669 0.617 0.568 0.502 0.422
copies = 1 (DIS) 1.008 0.911 0.777 0.616 0.511
copies = 3 (DIS) 1.596 1.325 1.000 0.788 0.642
copies = 10 (DIS) 2.854 2.045 1.552 1.211 1.001
copies = 3 (MARS) 2.376 1.378 0.837 0.564 0.400
RSIM (mark&sweep)
Copy Number Relative Overhead
th =125 | th =250 | th =500 | th =1000 | th = 2000
copies = 0 (DIS) 0.669 0.617 0.568 0.502 0.422
copies = 1 (DIS) 0.853 0.775 0.682 0.571 0.478
copies = 3 (DIS) 1.186 1.039 0.854 0.692 0.579
copies = 10 (DIS) 2.072 1.624 1.284 1.038 0.872
copies = 3 (MARS) 1.975 1.136 0.717 0.482 0.350
Prolog Compiler (stop©)
Copy Number Relative Overhead
th =125 | th =250 | th =500 | th =1000 | th = 2000
copies = 0 (DIS) 0.272 0.269 0.265 0.256 0.247
copies = 1 (DIS) 0.537 0.527 0.513 0.495 0.468
copies = 3 (DIS) 1.059 1.026 1.000 0.948 0.835
copies = 10 (DIS) 2.850 2.753 2.613 2.348 1.589
copies = 3 (MARS) 1.456 1.075 0.996 0.930 0.740
Prolog Compiler (mark&sweep)
Copy Number Relative Overhead
th =125 | th =250 | th =500 | th =1000 | th = 2000
copies = 0 (DIS) 0.272 0.269 0.265 0.256 0.247
copies = 1 (DIS) 0.415 0.408 0.398 0.385 0.364
copies = 3 (DIS) 0.714 0.692 0.674 0.642 0.577
copies = 10 (DIS) 1.906 1.834 1.743 1.534 1.069
copies = 3 (MARS) 0.962 0.888 0.658 0.622 0.512
PMA (stop©)
Copy Number Relative Overhead
th =125 | th =250 | th =500 | th =1000 | th = 2000
copies = 0 (DIS) 0.552 0.472 0.360 0.285 0.239
copies = 1 (DIS) 0.996 0.772 0.586 0.485 0.421
copies = 3 (DIS) 1.720 1.254 1.000 0.862 0.722
copies = 10 (DIS) 3.730 2.808 2.372 1.964 1.206
copies = 3 (MARS) 1.305 1.016 0.874 0.735 0.592
PMA (mark&sweep)
Copy Number Relative Overhead
th =125 | th =250 | th =500 | th =1000 | th = 2000
copies = 0 (DIS) 0.552 0.472 0.360 0.285 0.239
copies = 1 (DIS) 0.796 0.634 0.484 0.392 0.332
copies = 3 (DIS) 1.238 0.917 0.716 0.598 0.502
copies = 10 (DIS) 2.559 1.920 1.566 1.290 0.871
copies = 3 (MARS) 1.182 0.916 0.634 0.498 0.418
Table C.25: Relative CPU Overhead for Three Applications

201

Promotion Rate (%)

0.10

Promotion Rate (%)

Promotion Rate (%)

0.30 0.40

0.20

0.0

8 10 12 14 16 18

6

18 22

14

0 2 4 6 810

RSIM (stop©)

,E\
i El\ ,’l'
\l,’
- K \E\ =
T e .
i S s
L g——p-— =" —F— — 7
125 250 500 1000 2000

GC threshold (kbytes)

Prolog Compiler (stop©)

L 1 1 1 J

125 250 500 1000 2000

GC threshold (kbytes)

PMA (stop©)

125 250 500 1000 2000

GC threshold (kbytes)

Figure C.21:

Promotion Rate (%)

Promotion Rate (%)

Promotion Rate (%)

0.20 0.30 040 0.50

0.10

0.0

8 10 12 14

6

18 22

14

0 2 4 6 810

RSIM (mark&sweep)

125 250 500 1000 2000

GC threshold (kbytes)

Prolog Compiler (mark&sweep)

L 1 1 1 J

125 250 500 2000

1000
GC threshold (kbytes)

PMA (mark&sweep)

L 1 1 1 J

125 250 500 1000 2000

GC threshold (kbytes)

Promotion Rates for Three Applications

RSIM (stop©)

Copy Number

Promotion Rate (%)

th =125 th = 250 | th =500 | th = 1000 | th = 2000
copies = 0 (DIS) 0.231 0.400 0.402 0.366 0.318
copies = 1 (DIS) 0.000 0.174 0.096 0.052 0.041
copies = 3 (DIS) 0.000 0.000 0.000 0.036 0.018
copies = 10 (DIS) 0.000 0.000 0.000 0.003 0.011
copies = 3 (MARS) 0.143 0.092 0.069 0.060 0.051
RSIM (mark&sweep)
Copy Number Promotion Rate (%)
th =125 th = 250 | th =500 | th = 1000 | th = 2000
copies = 0 (DIS) 0.231 0.400 0.402 0.366 0.318
copies = 1 (DIS) 0.152 0.294 0.257 0.220 0.190
copies = 3 (DIS) 0.111 0.178 0.151 0.136 0.113
copies = 10 (DIS) 0.103 0.096 0.087 0.070 0.059
copies = 3 (MARS) 0.458 0.263 0.160 0.108 0.075
Prolog Compiler (stop©)
Copy Number Promotion Rate (%)
th =125 th = 250 | th =500 | th = 1000 | th = 2000
copies = 0 (DIS) 13.114 13.093 12.928 12.523 12.103
copies = 1 (DIS) 12.728 12.454 12.040 11.556 10.566
copies = 3 (DIS) 12.433 11.925 11.527 10.526 7.803
copies = 10 (DIS) 11.978 11.471 10.400 7.903 2.321
copies = 3 (MARS) 17.131 11.527 11.013 9.464 6.548
Prolog Compiler (mark&sweep)
Copy Number Promotion Rate (%)
th =125 th = 250 | th =500 | th = 1000 | th = 2000
copies = 0 (DIS) 13.114 13.093 12.928 12.523 12.103
copies = 1 (DIS) 12.971 12.763 12.446 12.105 11.286
copies = 3 (DIS) 12.701 12.357 11.882 11.363 9.732
copies = 10 (DIS) 12.523 12.110 11.448 9.837 6.116
copies = 3 (MARS) 12.971 12.602 11.382 10.716 7.921
PMA (stop©)
Copy Number Promotion Rate (%)
th =125 th = 250 | th =500 | th = 1000 | th = 2000
copies = 0 (DIS) 21.814 18.713 14.302 11.348 9.506
copies = 1 (DIS) 16.811 10.929 8.073 7.579 6.982
copies = 3 (DIS) 11.770 8.006 7.474 6.917 5.206
copies = 10 (DIS) 8.113 7.309 6.695 4.815 0.871
copies = 3 (MARS) 5.735 6.724 7.002 5.950 4.858
PMA (mark&sweep)
Copy Number Promotion Rate (%)
th =125 th = 250 | th =500 | th = 1000 | th = 2000
copies = 0 (DIS) 21.814 18.713 14.302 11.348 9.506
copies = 1 (DIS) 19.194 14.706 11.454 9.535 8.185
copies = 3 (DIS) 16.056 11.639 9.693 8.328 6.862
copies = 10 (DIS) 11.996 9.888 7.809 6.807 3.785
copies = 3 (MARS) 13.077 10.249 8.814 7.640 5.181

Table C.26: Promotion Rates for Three Applications

203

Collection Frequency (min)

Collection Frequency (min)

10

100 150 200 250 300

50

RSIM

Newspace Promotion Rate

500 1000 5000 10000

second generation threshold (kbytes)

OPS5 (Weaver)

500 1000 5000 10000

second generation threshold (kbytes)

Collection Frequency (min)

Collection Frequency (min)

16

14

12

10

20

15

10

Prolog Compiler

J
500 1000 5000 10000
second generation threshold (kbytes)
PMA
J
500 1000 5000 10000

second generation threshold (kbytes)

Figure C.22: Second Generation Collection Frequencies for Four Applications

204

RSIM

Newspace Collection Frequency (min)

Promotion | th = 500 | th = 1000 | th = 2000 | th = 4000 | th = 8000
2% 0.417 0.946 2.089 4.374 8.936
5% 0.153 0.328 0.720 1.635 3.458
10% 0.067 0.154 0.331 0.725 1.640
20% 0.029 0.068 0.156 0.335 0.734

Prolog Compiler

Newspace Collection Frequency (min)

Promotion | th = 500 | th = 1000 | th = 2000 | th = 4000 | th = 8000
2% 0.452 1.435 3.500 7.550 15.673
5% 0.200 0.510 1.328 2.943 6.201
10% 0.064 0.185 0.526 1.400 2.961
20% 0.027 0.057 0.144 0.468 1.289

OPS5 (Weaver)

Newspace Collection Frequency (min)

Promotion | th = 500 | th = 1000 | th = 2000 | th = 4000 | th = 8000
2% 37.225 97.918 152.986 207.033 252.927
5% 14.024 28.728 38.761 88.120 182.760
10% 7.211 14.001 28.728 38.761 88.120
20% 3.491 7.174 13.941 28.564 38.761

PMA

Newspace Collection Frequency (min)

Promotion | th = 500 | th = 1000 | th = 2000 | th = 4000 | th = 8000
2% 0.915 2.094 4.454 9.228 18.661
5% 0.242 0.710 1.653 3.534 7.352
10% 0.068 0.169 0.600 1.541 3.422
20% 0.032 0.068 0.171 0.602 1.544

Table C.27: Second Generation Collection Frequencies for Four Applications

205

Pause Length (sec)

Pause Length (sec)

35

1.5 2.0 2.5 3.0

1.0

0.5

0.0

0.05 0.10 0.15 0.20 0.25

0.0

RSIM

Newspacee Promotion Rate
—_—) — — 2%

e ()

,,,,,,,,,,,,,,,,,, 5%

/A
B---1

|

|

500

1000

5000

second generation threshold (kbytes)

OPS5 (Weaver)

10000

|

5000

second generation threshold (kbytes)

Figure C.23:

10000

Pause Length (sec)

Pause Length (sec)

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Prolog Compiler

1 I I J
500 1000 5000 10000
second generation threshold (kbytes)
PMA
r _B--4
/Er
L /
/
/
/
r /
v
/
/ R = R
/gy = a
/7

£717 7

e & e &
= H H g——t1

1 I I J
500 1000 5000 10000

second generation threshold (kbytes)

Second Generation Pause Lengths for Four Applications

RSIM

Newspace Pause Length (sec)

Promotion | th = 500 | th = 1000 | th = 2000 | th = 4000 | th = 8000
2% 0.330 0.358 0.361 0.368 0.380
5% 0.414 0.714 0.881 0.888 0.900
10% 0.495 0.815 1.401 1.718 1.735
20% 0.609 0.966 1.581 2.704 3.287

Prolog Compiler

Newspace Pause Length (sec)

Promotion | th = 500 | th = 1000 | th = 2000 | th = 4000 | th = 8000
2% 0.598 0.610 0.585 0.610 0.623
5% 0.597 0.791 0.766 0.803 0.807
10% 0.844 1.208 1.497 1.171 1.511
20% 0.988 1.849 2.901 3.645 3.454

OPS5 (Weaver)

Newspace Pause Length (sec)

Promotion | th = 500 | th = 1000 | th = 2000 | th = 4000 | th = 8000
2% 0.005 0.016 0.015 0.040 0.131
5% 0.009 0.013 0.052 0.066 0.131
10% 0.024 0.022 0.029 0.105 0.131
20% 0.054 0.058 0.064 0.078 0.216

PMA

Newspace Pause Length (sec)

Promotion | th = 500 | th = 1000 | th = 2000 | th = 4000 | th = 8000
2% 0.231 0.232 0.234 0.238 0.250
5% 0.506 0.509 0.510 0.515 0.520
10% 0.918 1.412 1.500 1.506 1.522
20% 0.973 1.829 2.804 2.984 2.993

Table C.28: Second Generation Pause Lengths for Four Applications

207

Prolog Compiler (stop©) PMA (stop©)

Threshold Pause Length (msec) Pause Length (msec)
(kbytes) copies=0 | copies=3 | copies=10 copies=0 | copies=3 | copies=10
2000 5.013 12.632 18.297 3.941 9.573 13.452
4000 9.340 18.523 21.913 6.858 13.367 14.457
8000 15.317 21.626 23.266 11.189 14.647 14.853
16000 19.862 23.877 24.250 14.262 15.053 15.428
32000 23.033 24.629 25.434 15.436 15.819 16.586
Prolog Compiler (stop©) PMA (stop©)
Threshold Collection Frequency (sec) Collection Frequency (sec)
(kbytes) copies=0 | copies=3 | copies=10 copies=0 | copies=3 | copies=10
2000 0.048 0.036 0.028 0.056 0.046 0.038
4000 0.097 0.078 0.072 0.113 0.096 0.093
8000 0.195 0.171 0.168 0.226 0.206 0.206
16000 0.391 0.363 0.363 0.452 0.431 0.432
32000 0.782 0.753 0.754 0.905 0.882 0.884
Prolog Compiler (stop©) PMA (stop©)
Threshold Promotion Rate (%) Promotion Rate (%)
(kbytes) copies=0 | copies=3 | copies=10 copies=0 | copies=3 | copies=10
2000 12.103 7.803 2.321 9.506 5.206 0.871
4000 11.351 2.841 0.532 8.274 1.374 0.000
8000 9.247 0.733 0.000 6.755 0.024 0.000
16000 6.000 0.086 0.000 4.307 0.000 0.000
32000 3.482 0.000 0.000 2.333 0.000 0.000

Table C.29: Predicted Performance for Two Applications. Predicted CPU speed is 100 times a
Sun4/280.

208

GC threshold (kbytes)

. Prolog Compiler (stop©) . PMA (stop©)
[N
QF —:.’.--‘E
- R - - =B o w L
Q Q
ERY E
e e
X R
Q Q
| -
o Copy Number o T
L < A e copies = 10 (DIS]
—————————————— copies = 3 (DIS)
— copies =0 (DIS)
o r 1 1 J o r 1 1)
1000 5000 10000 50000 1000 5000 10000 50000
GC threshold (kbytes) GC threshold (kbytes)
o Prolog Compiler (stop©) o PMA (stop©)
o —
o o QL
g gl g °
))
5 5 8t
F < | >
L o o
(TR (TR < L
c c o
S S
E g [E o~
8 8 e
o o
o L L L] o C L L]
1000 5000 10000 50000 1000 5000 10000 50000
GC threshold (kbytes) GC threshold (kbytes)
- Prolog Compiler (stop©) . PMA (stop©)
— [— [
oL
—
o |
Q Q
T o | g ©°T
04 04
& &
5 °0 5 < f
IS IS
e <« <)
@ @
N - \
o~ AL,
& . e
o t | o t B s 3 I
1000 5000 10000 50000 1000 5000 10000 50000

GC threshold (kbytes)

Figure C.24:
a Sun4/280.

Predicted Performance for Two Applications. Predicted CPU speed is 100 times

209

Prolog Compiler (stop©) PMA (stop©)

Threshold Pause Length (msec) Pause Length (msec)
(kbytes) copies=0 | copies=3 | copies=10 copies=0 | copies=3 | copies=10
2000 5.703 15.577 25.556 10.219 22.694 31.428
4000 11.168 30.918 50.892 19.910 43.764 60.855
8000 22.060 61.432 101.018 38.081 79.759 111.269
16000 43.677 120.920 199.638 69.157 131.563 192.502
32000 86.377 237.526 393.544 113.114 216.873 347.934
64000 168.614 462.801 764.330 171.256 379.520 640.750
128000 328.515 877.463 1379.140 276.772 677.312 1107.760
Prolog Compiler (stop©) PMA (stop©)
Threshold Collection Frequency (sec) Collection Frequency (sec)
(kbytes) copies=0 | copies=3 | copies=10 copies=0 | copies=3 | copies=10
2000 0.048 0.035 0.021 0.056 0.033 0.017
4000 0.097 0.070 0.043 0.113 0.067 0.036
8000 0.195 0.140 0.086 0.226 0.138 0.082
16000 0.391 0.282 0.175 0.452 0.299 0.204
32000 0.782 0.568 0.355 0.905 0.658 0.462
64000 1.567 1.145 0.734 1.813 1.394 0.995
128000 3.143 2.328 1.602 3.625 2.889 2.186
Prolog Compiler (stop©) PMA (stop©)
Threshold Promotion Rate (%) Promotion Rate (%)
(kbytes) copies=0 | copies=3 | copies=10 copies=0 | copies=3 | copies=10
2000 13.770 12.822 12.488 24.666 22.509 21.220
4000 13.574 12.674 12.376 24.033 20.451 17.553
8000 13.319 12.648 11.934 22.998 15.532 10.709
16000 13.195 12.127 11.614 20.892 9.080 7.604
32000 13.060 11.839 11.056 17.101 7.711 7.165
64000 12.776 11.232 9.855 12.968 7.372 6.198
128000 12.487 9.950 5.660 10.484 6.439 3.514

Table C.30: Predicted Performance for Two Applications. Predicted lifespans are 100 times
those measured. Predicted CPU speed is 100 times a Sun4,/280.

210

Prolog Compiler (stop©)
3]

500000

500000

1= Copy Numb, !
e L py Number /
(: - === copies = 10 (DIS) /
D copies = 3 (DIS) /
8 r —— copies =0 (DIS) /
%]
E o
c O r
E’ o]
S gt
8 o
S &
D“j <
o
S t
N
o t I
1000 5000 50000
GC threshold (kbytes)
5 Prolog Compiler (stop©)
oo
o |
R
[
KTy
> o [
Q
g o |
S o
o
P
L T L
= -
s o
g
S w |
o
o L
o J
1000 5000 50000
GC threshold (kbytes)
Prolog Compiler (stop©)
S ¢
N L
g9t
2 \
g © \\
s \
2 L
g ¢ B
£
S <
o
~
o C 1 1 1 1 J
1000 5000 50000

GC threshold (kbytes)

Figure C.25:

those measured.

500000

Collection Frequency (sec) Pause Length (msec)

Promotion Rate (%)

Predicted Performance for Two Applications.

Predicted CPU speed is 100 times a Sun4,/280.
211

PMA (stop©)

3l
o /
o L
o /
- /
/
St /
[e0]
o
S L
©
o
S t
<
o
S t
N
o r J
1000 5000 50000 500000
GC threshold (kbytes)
PMA (stop©)
q- -
o
~
-k
o r J
1000 5000 50000 500000
GC threshold (kbytes)
PMA (stop©)
v -
o |
N
o |
—
o L
—
o F
o C 1 1 1 1 J
1000 5000 50000 500000

GC threshold (kbytes)

Predicted lifespans are 100 times

Prolog Compiler (stop©) PMA (stop©)

Threshold Pause Length (msec) Pause Length (msec)

(kbytes) | pr=10% | pr=20% | pr=30% | pr=40% pr=10% | pr=20% | pr=30% | pr=40%
2000 40.89 40.47 40.45 40.29 40.53 38.03 39.73 40.06
4000 81.34 80.80 80.74 80.44 80.12 70.67 76.05 77.91
8000 160.77 160.24 160.95 160.59 159.35 129.28 136.64 143.94
16000 313.41 318.09 318.61 318.36 315.37 245.75 241.19 251.33
32000 586.57 628.39 632.62 632.06 613.64 470.79 449.58 461.54
64000 991.50 1221.58 1242.62 1248.08 1095.83 867.38 836.13 864.54
128000 1302.66 2153.66 2359.62 2424.22 1398.02 1237.38 1411.31 1556.20
256000 1399.07 2906.13 3917.18 4256.31 1316.70 1299.52 1590.83 2104.88
512000 1542.27 3144.83 4659.93 5698.56 1200.22 1232.74 1562.99 2173.17
1024000 619.61 3471.89 4064.81 6147.95 2260.20 1129.83 2268.29 2042.22

Prolog Compiler (stop©) PMA (stop©)
Threshold Collection Frequency (sec) Collection Frequency (sec)

(kbytes) | pr=10% | pr=20% | pr=30% | pr=40% pr=10% | pr=20% | pr=30% | pr=40%
2000 0.12 0.06 0.04 0.03 0.14 0.08 0.05 0.04
4000 0.25 0.13 0.08 0.06 0.29 0.17 0.10 0.08
8000 0.50 0.26 0.17 0.13 0.60 0.41 0.23 0.16
16000 1.04 0.52 0.35 0.26 1.23 0.93 0.59 0.41
32000 2.22 1.06 0.70 0.53 2.50 2.01 1.38 0.98
64000 5.49 2.19 1.45 1.08 5.86 4.22 3.00 2.18
128000 17.56 4.98 3.05 2.23 18.34 10.67 6.60 4.65
256000 48.89 15.54 7.08 5.08 61.44 29.02 18.42 11.86
512000 103.47 46.75 25.20 15.85 160.66 72.30 45.66 30.61
1024000 600.07 101.40 82.81 47.19 172.95 171.49 66.66 73.92

Prolog Compiler (stop©) PMA (stop©)
Threshold Promotion Rate (%) Promotion Rate (%)

(kbytes) | pr=10% | pr=20% | pr=30% | pr=40% pr=10% | pr=20% | pr=30% | pr=40%
2000 98.06 94.20 93.86 92.34 94.52 72.79 87.20 90.23
4000 95.91 93.39 93.04 91.84 90.08 53.62 72.65 80.38
8000 91.34 90.37 91.97 91.05 88.23 40.70 45.60 57.10
16000 82.32 87.71 88.13 88.01 84.62 38.13 31.92 33.80
32000 61.97 65.64 65.62 65.64 65.64 35.18 30.04 30.81
64000 28.20 32.69 33.07 32.82 34.83 27.34 25.94 28.14
128000 6.18 16.72 16.53 16.35 1.36 5.14 14.58 16.41
256000 0.00 5.89 8.06 8.36 0.00 0.00 0.54 3.52
512000 0.00 0.00 3.24 4.26 0.00 0.00 0.00 0.00
1024000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table C.31: Second Generation Metrics for Four Applications Assuming Longer Running Pro-
grams and Faster CPU’s. Object lifespan is assumed to be 100 times the lifespan actually observed.

212

second generation threshold (kbytes)

second generation threshold (kbytes)

3 Prolog Compiler (stop©) 3 PMA (stop©)
° T S
L A o
Newspace Promotion Rate EI/ o L
ra o —_— — — — 4% / ,a 8
a 8 F |-———--- 30% / o
s N et 20% Py 2 S
= 10% [2REN E & |
< r p g £ 9
< = Y -8 < °
8 8 r = 3 gl
o ™ ﬁ Q o
0 g %]
3 3
a s | / a8 § L
o
—
o C 1 1 1 1 1 1 J o C I 1 1 1 1 1 J
1000 5000 50000 500000 5 1000 5000 50000 500000 5
e6 e6
second generation threshold (kbytes) second generation threshold (kbytes)
5 Prolog Compiler (stop©) 5 PMA (stop©)
R g7
o
~ 3T 5
(&)
3 o 8 3t
=) L ~
> 0 >
g g S
28 s g
2 5 A
L o L
c ™ c
£l 2
2 ° 3t
3 8| S
—
o r J o r J
1000 5000 50000 500000 5 1000 5000 50000 500000 5
e6 e6
second generation threshold (kbytes) second generation threshold (kbytes)
s Prolog Compiler (stop©) g PMA (stop©)
— —
o L o |
© [e9]
2 o L L o L
© © © ©
o4 @
c c
Re] Re]
5 Qr 5 9
IS IS
<) <)
T 5| & o |
N N
o L . RN J o t |
1000 5000 50000 500000 5 1000 5000 50000 500000 5
e6 e6

Figure C.26:
Programs and Faster CPU’s.

Second Generation Metrics for Four Applications Assuming Longer Running

Object lifespan is assumed to be 100 times the lifespan actually
213

observed.

Prolog Compiler (stop©) PMA (stop©)

Threshold Size Pause Length (msec) Pause Length (msec)

(kbytes) pr=2% | pr=4% | pr=6% | pr=8% pr=2% | pr=4% | pr=6% | pr = 8%
2000 39.64 40.46 40.47 40.69 39.17 40.38 40.72 40.93
4000 75.88 79.69 79.72 80.65 73.44 79.32 80.80 81.63
8000 131.86 153.77 155.79 158.23 122.84 151.90 158.80 162.25
16000 207.45 277.18 297.01 302.50 181.13 265.13 302.93 320.00
32000 312.39 421.67 505.77 557.56 163.12 392.48 529.37 612.81
64000 269.69 621.83 723.49 836.81 161.02 360.98 622.66 1059.41
128000 226.30 539.95 874.67 1166.14 182.69 356.32 740.60 1127.14
256000 182.92 451.67 758.92 1001.79 102.58 403.97 550.72 1108.26
512000 293.55 365.21 912.76 837.54 106.39 226.41 704.79 1254.52
1024000 0.00 586.08 1012.72 681.44 114.00 234.00 394.83 698.87

Prolog Compiler (stop©) PMA (stop©)
Threshold Size Collection Frequency (sec) Collection Frequency (sec)

(kbytes) pr=2% | pr=4% | pr=6% | pr=8% pr=2% | pr=4% | pr=6% | pr = 8%
2000 0.64 0.31 0.21 0.16 0.75 0.36 0.24 0.18
4000 1.35 0.64 0.42 0.31 1.63 0.74 0.48 0.36
8000 3.08 1.33 0.88 0.64 4.02 1.57 0.99 0.72
16000 8.72 2.95 1.87 1.36 10.66 3.56 2.13 1.48
32000 21.41 8.34 4.34 3.02 37.25 9.97 4.59 3.07
64000 72.97 21.38 13.48 8.07 88.54 36.00 17.51 6.80
128000 201.26 72.97 36.00 22.12 166.93 87.19 40.21 28.40
256000 539.36 201.26 106.70 74.21 636.49 165.57 135.70 79.72
512000 675.10 539.36 190.30 202.91 1285.51 635.59 222.56 157.89
1024000 0.00 675.10 362.49 539.36 2585.34 1283.72 849.84 628.43

Table C.32: Third Generation Metrics for Four Applications Assuming Longer Running Pro-
grams and Faster CPU’s. Object lifespan is assumed to be 100 times the lifespan actually observed.

214

Pause Length (msec)
600 800 1000 1200

400

200

o

Collection Frequency (sec)
200 300 400 500 600 700

100

o

Prolog Compiler (stop©)

2nd Gen. Promotion Rate

Pause Length (msec)
400 600 800 1000 1200 1400

200

1000 5000 50000 500000

third generation threshold (kbytes)

Prolog Compiler (stop©)

1000 1500 2000 2500 3000

Collection Frequency (sec)

500

o

1000 5000 50000 500000

third generation threshold (kbytes)

PMA (stop©)
L L L L J
1000 5000 50000 500000 5
e6
third generation threshold (kbytes)
PMA (stopé©)
L]
1000 5000 50000 500000 5
e6

third generation threshold (kbytes)

Figure C.27: Third Generation Metrics for Four Applications Assuming Longer Running Pro-

grams and Faster CPU’s. Object lifespan is assumed to be 100 times the lifespan actually observed.

215

RSIM

Algorithm (Cache Size)

Total miss rate (%)

th =125 th = 250 | th =500 | th = 1000 | th = 2000
stop-and-copy (512k) 0.451 0.555 0.700 0.708 0.708
mark-and-sweep (512k) 0.232 0.160 0.158 0.276 0.387
stop-and-copy (1M) 0.419 0.522 0.579 0.646 0.655
mark-and-sweep (1M) 0.047 0.047 0.051 0.080 0.221
stop-and-copy (2M) 0.165 0.099 0.080 0.121 0.620
mark-and-sweep (2M) 0.032 0.033 0.036 0.042 0.056

Prolog Compiler

Algorithm (Cache Size) Total miss rate (%)

th =125 th = 250 | th =500 | th = 1000 | th = 2000
stop-and-copy (5121{) 0.391 0.450 0.560 0.591 0.623
mark-and-sweep (512k) 0.300 0.269 0.407 0.571 0.577
stop-and-copy (1M) 0.307 0.386 0.435 0.516 0.545
mark-and-sweep (1M) 0.232 0.177 0.219 0.340 0.494
stop-and-copy (2M) 0.116 0.130 0.157 0.276 0.472
mark-and-sweep (2M) 0.182 0.139 0.156 0.213 0.286

OPS5 (Weaver)

Algorithm (Cache Size) Total miss rate (%)

th =125 th = 250 | th =500 | th = 1000 | th = 2000
stop-and-copy (512k) 0.146 0.145 0.165 0.170 0.169
mark-and-sweep (512k) 0.147 0.147 0.200 0.194 0.152
stop-and-copy (1M) 0.081 0.078 0.083 0.082 0.082
mark-and-sweep (1M) 0.077 0.079 0.130 0.126 0.087
stop-and-copy (2M) 0.051 0.047 0.056 0.056 0.056
mark-and-sweep (2M) 0.041 0.044 0.095 0.091 0.052

PMA

Algorithm (Cache Size) Total miss rate (%)

th =125 th = 250 | th =500 | th = 1000 | th = 2000
stop-and-copy (5121{) 0.566 0.548 0.584 0.601 0.626
mark-and-sweep (512k) 0.377 0.406 0.476 0.522 0.550
stop-and-copy (1M) 0.498 0.475 0.456 0.502 0.531
mark-and-sweep (1M) 0.176 0.224 0.288 0.363 0.435
stop-and-copy (2M) 0.262 0.204 0.178 0.278 0.445
mark-and-sweep (2M) 0.135 0.174 0.209 0.266 0.315

Table C.33: Total Cache Miss Rates for Three Collection Algorithms.

216

Total miss rate (%)

Total miss rate (%)

0.8 0.9

06 0.7

0.5

0.4

01 02 03

0.0

0.04 0.08 0.12 0.16 0.20

0.0

RSIM

Algorithm (Cache Size)

r _—- mark-and-sweep (2M)

stop-and-copy (2M)

mark-and-sweep (1M)

stop-and-co
rk-and-sweep (512k)

stop-and-copy (512k) S

S -
\\ """"""" ///
L ~ __ /)/
—_
T I I I |
125 250 500 1000 2000

GC threshold (kbytes)

OPS5 (Weaver)

- [— T T 7=
T I I I J
125 250 500 1000 2000
GC threshold (kbytes)

Total miss rate (%)

Total miss rate (%)

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.0

Prolog Compiler

L 1 1 1

|

125 250 500 1000
GC threshold (kbytes)

PMA

2000

~ -~ B
L Pl -
- e
4/
/
T]]]]
125 250 500 1000

GC threshold (kbytes)

Figure C.28: Total Cache Miss Rates for Three Collection Algorithms.

217

2000

RSIM (stop©)

[Te -
N
e
o &
o
@
8 L R 3 SRR o TR PP SERREE SRR 3|
o - [-B-O--B-"4--8-4--8--4
Q.
.g
2 ST
3]
Q
= Newspace Threshold
w w - — — — - 2megabytes
————————— 512 kilobytes
— 128 kilobytes
o r 1 1 1 1)
0 20 40 60 80 100
Number of Processors
Prolog Compiler (stop©)
0o
o 8
o
9]
%]
8 1o
9 -
o
.g
o
R
3]
Q
=
ni} [Te)
o E 1 1 1 1)
0 20 40 60 80 100
Number of Processors
PMA (stop©)
Q r
[T
o —
[9]
%]
[}
Q
IS
2 o
e —
=}
3]
=
3]
L v
[}
[1 L L 1 J

0 20 40 60

Number of Processors

Figure C.29:

Garbage collection induced overhead is taken into account.

218

80

100

Effective Uniprocessors Effective Uniprocessors

Effective Uniprocessors

40 60 80 100

20

20 25 30 35

5 10 15

0

15 20 25 30

10

0 20 40 60 80

0 20 40 60 80

0 20 40 60 80

RSIM (mark&sweep)

-g-t--B-4H--G-41

1 1 1 1 J

100

Number of Processors

Prolog Compiler (mark&sweep)

_ A -B-f--F-f--F-48--0

1 1 1 1 J

100

Number of Processors

PMA (mark&sweep)

1 1 1 1 J

100

Number of Processors

Maximum Effective Uniprocessors for Different Algorithms and Threshold Sizes.

RSIM (stop©)

RSIM (mark&sweep)

Actual Effective Uniprocessors Effective Uniprocessors
Processors | th =125 | th = 500 th = 2000 th =125 | th = 500 th = 2000
1 0.97 0.99 0.99 0.97 0.98 0.99
5 4.81 4.86 4.86 4.83 4.91 4.92
10 9.45 9.36 9.25 9.65 9.82 9.80
20 17.44 15.33 14.16 19.29 19.62 19.35
30 21.11 16.16 14.51 28.92 29.42 28.24
40 21.40 16.17 14.51 38.54 39.19 35.34
50 21.40 16.17 14.51 48.13 48.94 38.73
60 21.40 16.17 14.51 57.70 58.66 39.23
70 21.40 16.17 14.51 67.23 68.33 39.25
80 21.40 16.17 14.51 76.71 77.94 39.25
90 21.40 16.17 14.51 86.13 87.46 39.25
100 21.40 16.17 14.51 95.45 96.84 39.25
Prolog Compiler (stop©) Prolog Compiler (mark&sweep)
Actual Effective Uniprocessors Effective Uniprocessors
Processors | th =125 | th = 500 th = 2000 th =125 | th = 500 th = 2000
1 0.69 0.76 0.79 0.70 0.77 0.78
5 3.45 3.76 3.89 3.50 3.82 3.86
10 6.85 7.38 7.54 6.97 7.61 7.53
20 13.25 13.48 12.71 13.73 15.02 13.22
30 18.26 15.99 13.65 19.95 21.93 14.78
40 20.23 16.14 13.66 24.66 27.51 14.81
50 20.39 16.14 13.66 26.55 30.25 14.81
60 20.39 16.14 13.66 26.74 30.68 14.81
70 20.39 16.14 13.66 26.75 30.69 14.81
80 20.39 16.14 13.66 26.75 30.69 14.81
90 20.39 16.14 13.66 26.75 30.69 14.81
100 20.39 16.14 13.66 26.75 30.69 14.81
PMA (stop©) PMA (mark&sweep)
Actual Effective Uniprocessors Effective Uniprocessors
Processors | th =125 | th = 500 th = 2000 th =125 | th = 500 th = 2000
1 0.68 0.80 0.84 0.61 0.79 0.85
5 3.33 3.94 4.14 3.03 3.91 4.19
10 6.49 7.72 8.04 6.04 7.77 8.21
20 11.36 13.92 13.71 11.99 15.12 15.01
30 12.66 16.14 14.87 17.74 21.19 17.81
40 12.68 16.24 14.88 23.05 24.13 17.98
50 12.68 16.24 14.88 27.24 24.50 17.98
60 12.68 16.24 14.88 29.31 24.50 17.98
70 12.68 16.24 14.88 29.68 24.50 17.98
80 12.68 16.24 14.88 29.70 24.50 17.98
90 12.68 16.24 14.88 29.70 24.50 17.98
100 12.68 16.24 14.88 29.70 24.50 17.98

Table C.34:

Garbage collection induced overhead is taken into account.

Maximum Effective Uniprocessors for Different Algorithms and Threshold Sizes.

219

Appendix D

Tables

This appendix contains the results that are presented in the thesis as figures in a tabular
form.

Lisp Application Fraction of Bytes Allocated (%)
cons | symbol | vector | number | other
Lisp Compiler 53.66 0.75 | 28.40 14.67 | 2.52

Curare 53.14 0.05 | 20.12 0.71 | 25.97
Boyer Moore TP | 92.43 0.06 4.82 1.96 | 0.73
RL 62.50 0.01 | 35.72 0.04 | 1.72

Table D.1: Object Allocations for Test Programs (by type and size).

Lisp Application Fraction of Objects Allocated (%)
cons | symbol | vector | number | other
Lisp Compiler 78.79 0.37 4.63 15.19 | 1.01

Curare 78.15 0.03 | 10.25 0.65 | 10.93
Boyer Moore TP | 98.16 0.02 0.34 1.24 | 0.25
RL 81.99 0.01 | 17.64 0.05 | 0.32

Table D.2: Object Allocations for Test Programs (by type and number).

220

Lisp Application Fraction of References (%)

cons | symbol | vector | number | other
Lisp Compiler 63.98 12.73 | 17.73 2.62 | 2.20

Curare 86.46 1.89 4.90 0.09 | 2.25
Boyer Moore TP | 71.45 24.51 3.29 0.13 | 0.23
RL 57.32 10.60 | 29.13 0.01 | 0.83

Table D.3: Object References by Type for Test Programs.

Lisp Application Fraction of References (%)
loadp | load | storep | store | storei
Lisp Compiler 74.80 | 0.59 5.57 | 1.16 | 17.88

Curare 90.80 | 0.31 1.55 | 0.05 | 7.28
Boyer Moore TP | 88.09 | 0.14 7.72 | 0.06 | 3.99
RL 71.53 | 0.43 9.04 | 0.07 | 18.93

Table D.4: Object References by Instruction Type for Test Programs.

221

Lisp Compiler

Curare

Time | Allocation Rate (kbytes/sec) Time | Allocation Rate (kbytes/sec)
(sec) | cons | vector |number| other (sec) | cons | vector |number| other
5.6 | 188.8 | 115.8 44.4 10.4 3.9 208.5 98.7 15.6 | 137.0
11.2 | 198.7 | 133.3 36.6 14.4 7.7 106.2 62.7 5.7 | 133.4
16.7 | 209.8 | 140.6 35.5 13.6 11.6 87.8 82.2 1.2 | 219.5
22.3 | 140.1 64.7 1.3 7.9 15.4 | 288.6 | 135.9 0.7 | 119.6
27.9 | 198.0 | 106.8 54.1 14.8 19.3 | 256.3 77.3 0.1 78.6
33.5 | 210.7 | 120.2 26.5 12.6 23.2 | 316.0 68.2 0.0 87.2
39.1 | 205.1 | 131.8 34.3 12.7 27.0 | 176.3 45.0 0.2 43.1
44.7 | 216.0 | 133.5 27.9 11.2 30.9 | 146.2 25.3 0.2 22.5
50.2 | 218.1 | 138.4 28.8 11.7 34.8 69.8 22.9 0.0 11.3
55.8 | 120.8 72.3 | 168.7 7.9 38.6 34.6 9.0 0.1 7.5
61.4 | 146.0 95.3 84.6 7.4 42.5 36.3 11.3 0.0 6.2
67.0 | 186.9 | 100.6 40.1 15.1 46.3 15.4 2.8 0.0 1.8
72.6 | 184.3 89.9 35.5 12.4 50.2 15.2 0.2 0.0 1.2
78.2 | 178.9 91.7 30.3 11.4 54.1 26.6 9.4 0.0 5.3
83.7 | 139.5 73.5 | 130.2 8.9 57.9 20.3 5.1 0.0 2.1
89.3 | 204.0 | 123.5 36.7 11.7 61.8 21.6 2.1 0.3 4.6
94.9 | 206.7 | 112.4 40.2 13.5 65.7 29.3 11.7 0.0 2.2
100.5 | 204.0 | 1054 41.9 15.6 69.5 12.3 1.2 0.0 2.7
106.1 | 201.4 | 101.3 36.1 13.9 73.4 21.3 5.7 0.0 0.7
111.6 | 221.7 84.3 19.6 9.1 77.2 24.5 5.6 0.0 2.2
117.2 | 148.5 59.6 0.0 7.1 81.1 24.0 5.8 0.0 3.3
122.8 | 186.6 98.9 55.4 16.1 85.0 24.6 5.0 0.0 3.0
128.4 | 205.0 | 109.5 30.6 11.8 88.8 20.2 6.3 0.0 1.0
134.0 | 197.8 74.1 15.1 9.4 92.7 23.9 2.1 0.0 1.8
139.6 | 205.1 | 123.5 42.5 12.2 96.6 19.7 5.4 0.0 0.9
145.1 | 211.6 65.6 25.1 11.6 100.4 21.7 5.6 0.0 0.9
150.7 | 219.0 54.2 0.2 8.2 104.3 14.1 4.9 0.0 0.5
156.3 | 230.1 | 129.8 54.3 15.7 108.1 11.2 0.1 0.0 0.0
161.9 | 233.9 | 124.3 38.5 13.8 112.0 97.2 69.4 5.3 87.0
167.5 4.5 0.1 | 321.3 0.5 115.9 97.6 71.4 1.0 | 123.0

Table D.5: Object Allocation Rates as a Function of Time.

222

Boyer Moore TP

RL

Time | Allocation Rate (kbytes/sec) Time | Allocation Rate (kbytes/sec)
(sec) | cons | vector |number| other (sec) | cons | vector |number| other
4.6 | 147.9 72.7 1.1 6.6 7.2 | 141.9 83.0 1.0 17.5
9.2 | 114.2 8.7 5.1 2.9 14.4 | 237.0 | 180.3 0.0 1.0
13.9 69.8 3.0 1.8 0.2 21.6 | 210.9 | 124.7 0.0 0.6
18.5 78.8 2.6 3.0 0.6 28.8 | 253.5 | 146.1 0.0 1.3
23.1 48.4 0.0 0.2 0.0 36.0 | 246.5 | 144.7 0.0 1.2
27.7 66.1 0.1 0.9 0.0 43.2 | 202.1 | 110.4 0.0 16.2
32.3 91.3 2.9 4.9 0.8 50.4 | 174.6 65.2 1.4 26.9
36.9 45.3 0.6 0.3 0.2 57.6 99.2 41.3 1.9 12.5
41.6 67.1 2.6 2.0 0.7 64.8 75.7 51.7 0.0 1.0
46.2 71.5 0.1 1.4 0.0 72.0 | 279.9 | 154.6 0.0 0.7
50.8 64.6 0.1 1.0 0.0 79.2 | 263.6 | 147.1 0.0 0.4
55.4 90.7 2.5 1.5 0.6 86.5 | 279.9 | 162.0 0.0 1.4
60.0 79.6 0.0 0.1 0.0 93.7 | 260.7 | 140.3 0.0 0.5
64.6 94.9 0.0 0.1 0.0 100.9 | 227.6 | 126.5 0.0 0.4
69.3 97.5 4.9 2.8 0.6 108.1 | 283.2 | 167.6 0.0 0.6
73.9 47.9 0.0 0.1 0.1 115.3 | 208.9 | 136.2 0.0 1.4
78.5 41.3 0.0 0.0 0.0 122.5 | 207.6 | 137.6 0.0 1.6
83.1 54.4 0.1 1.0 0.2 129.7 | 190.9 | 140.5 0.0 1.4
87.7 86.6 2.7 4.2 1.1 136.9 | 264.2 | 158.9 0.0 1.3
92.3 73.8 0.1 1.3 0.2 144.1 | 252.3 | 148.3 0.0 1.2
97.0 77.4 0.1 1.6 0.3 151.3 | 259.9 | 153.7 0.0 0.2
101.6 74.8 2.5 2.2 0.3 158.5 | 238.0 | 139.3 0.0 0.7
106.2 49.8 0.1 0.5 0.1 165.7 | 322.3 | 175.5 0.0 0.6
110.8 68.9 0.2 2.8 0.3 172.9 | 286.3 | 158.6 0.0 0.4
115.4 40.6 0.0 0.2 0.0 180.1 | 267.9 | 145.0 0.0 1.1
120.1 53.2 2.4 0.4 0.0 187.3 | 304.8 | 170.8 0.0 0.8
124.7 69.1 0.1 0.9 0.2 194.5 | 278.6 | 149.8 0.0 0.5
129.3 71.8 0.1 0.8 0.2 201.7 | 244.3 | 131.8 0.0 0.5
133.9 64.3 0.1 0.5 0.2 208.9 | 261.2 | 129.6 0.0 0.5
138.5 60.3 3.4 3.1 1.9 216.1 | 109.0 40.8 0.1 98.4

Table D.6: Object Allocation Rates as a Function of Time.

223

Lisp Compiler

Curare

Time Net Rate (kbytes/sec) Time Net Rate (kbytes/sec)
(sec) | cons | vector |number| other (sec) | cons | vector |number| other
5.6 7.7 1.5 0.0 8.9 3.9 15.3 10.3 0.0 7.9
11.2 7.9 1.3 0.0 10.9 7.7 7.1 21.7 0.0 26.2
16.7 3.9 0.9 0.0 9.9 11.6 0.8 6.1 0.0 10.9
22.3 62.4 21.4 0.0 4.5 15.4 35.5 34.9 0.0 0.5
27.9 | -23.5| -20.6 0.0 10.9 19.3 17.0 9.0 0.0 0.0
33.5 4.2 1.0 0.0 8.3 23.2 16.7 8.9 0.0 0.0
39.1 -0.4 0.1 0.0 8.4 27.0 11.6 6.4 0.0 -0.0
44.7 3.9 0.5 0.0 5.3 30.9 6.9 3.8 0.0 0.0
50.2 3.4 0.6 0.0 6.4 34.8 12.8 7.8 0.0 0.0
55.8 -8.0 0.1 0.0 | -10.8 38.6 5.4 2.7 0.0 0.0
61.4 10.1 7.8 0.0 1.2 42.5 5.5 3.5 0.0 0.0
67.0 -8.6 1.9 0.0 7.5 46.3 1.8 0.9 0.0 0.0
72.6 | -28.9 -8.2 0.0 6.7 50.2 -0.5 0.0 0.0 0.0
78.2 -2.2 0.6 0.0 -3.1 54.1 5.0 1.1 0.0 0.0
83.7 -4.0 -0.2 -0.0 | -22.3 57.9 2.8 1.4 0.0 0.0
89.3 10.5 0.9 0.0 2.2 61.8 -1.9 0.0 0.0 0.0
94.9 2.5 1.2 0.0 1.2 65.7 9.6 4.1 0.0 0.0
100.5 2.1 -0.2 0.0 4.8 69.5 -0.8 0.5 0.0 0.0
106.1 -7.2 -3.8 -0.0 1.2 73.4 4.8 2.4 0.0 0.0
111.6 30.4 2.0 0.0 5.6 77.2 2.0 1.5 0.0 0.0
117.2 58.6 29.0 0.0 2.0 81.1 3.4 2.1 0.0 0.0
122.8 | -80.8 | -28.2 0.0 4.9 85.0 2.7 1.6 0.0 0.0
128.4 -2.8 -1.6 0.0 4.4 88.8 | -32.4 | -25.2 -0.0 -0.3
134.0 18.0 0.3 0.0 2.7 92.7 0.9 0.6 0.0 0.0
139.6 -4.7 14.0 0.0 8.6 96.6 4.6 1.9 0.0 0.0
145.1 10.8 | -15.6 -0.0 3.9 100.4 2.8 1.9 0.0 0.0
150.7 76.6 32.7 0.0 0.3 104.3 -0.5 1.7 0.0 0.0
156.3 | -20.9 -3.3 0.0 2.6 108.1 0.2 0.0 0.0 0.0
161.9 | -43.0 -0.3 -0.0 2.1 112.0 3.1 13.8 0.0 12.6
167.5 | -78.1 | -35.9 -0.0 | -99.4 115.9 | -142.4 | -125.4 -0.0 | -57.8

Table D.7: Net Allocation Rates as a Function of Time.

Boyer Moore TP

RL

Time Net Rate (kbytes/sec) Time Net Rate (kbytes/sec)
(sec) | cons | vector |number| other (sec) | cons | vector |number| other
4.6 21.5 2.9 0.0 2.7 7.2 27.8 12.1 0.0 1.5
9.2 10.0 0.4 0.0 1.0 14.4 19.8 21.7 0.0 0.0
13.9 2.6 0.1 0.0 0.1 21.6 12.0 14.1 0.0 0.0
18.5 -0.2 0.0 0.0 0.3 28.8 | -23.3 | -29.4 0.0 0.0
23.1 0.4 0.0 0.0 0.0 36.0 8.5 8.3 0.0 0.0
27.7 -0.5 -0.0 -0.0 0.0 43.2 -6.0 -6.4 0.0 0.1
32.3 1.5 -0.5 0.0 0.2 50.4 2.5 -7.7 -0.0 0.2
36.9 -0.1 0.6 0.0 0.0 57.6 37.1 3.7 0.0 1.0
41.6 2.2 0.0 0.0 0.1 64.8 18.4 19.8 0.0 0.0
46.2 1.1 0.0 0.0 0.0 72.0 14.5 14.5 0.0 -0.0
50.8 -0.0 0.0 0.0 0.0 79.2 | -13.6 -4.8 0.0 -0.0
55.4 3.5 0.0 0.0 0.1 86.5 10.4 0.1 0.0 -0.3
60.0 -1.2 -0.0 -0.0 0.0 93.7 10.2 11.2 0.0 -0.4
64.6 -0.3 0.0 0.0 0.0 100.9 9.6 9.9 0.0 0.0
69.3 1.8 0.0 0.0 0.2 108.1 | -40.2 | -42.7 0.0 0.0
73.9 0.5 0.0 0.0 0.0 115.3 -5.6 -8.0 0.0 0.0
78.5 0.0 0.0 0.0 0.0 122.5 3.0 6.4 0.0 0.0
83.1 -0.2 0.0 0.0 0.0 129.7 0.7 -3.8 0.0 0.0
87.7 3.2 0.1 0.0 0.2 136.9 11.0 12.0 0.0 0.0
92.3 0.1 0.0 0.0 0.0 144.1 5.0 4.1 0.0 0.0
97.0 0.5 0.0 0.0 0.0 151.3 19.3 23.5 0.0 0.0
101.6 1.5 0.0 0.0 0.0 158.5 | -23.1 | -28.4 0.0 0.0
106.2 -0.6 0.0 0.0 0.0 165.7 | -47.3 19.2 -0.0 -0.7
110.8 3.7 0.0 0.0 0.0 172.9 12.5 9.9 -0.0 -1.0
115.4 -0.5 0.0 0.0 0.0 180.1 | -29.4 | -33.9 0.0 -0.0
120.1 -0.0 0.0 0.0 0.0 187.3 18.7 21.1 0.0 0.0
124.7 -0.0 0.0 0.0 0.0 194.5 13.3 14.6 0.0 0.0
129.3 -1.4 -0.0 -0.0 -0.1 201.7 8.9 10.1 0.0 0.0
133.9 -0.1 0.0 0.0 0.0 208.9 | -45.1 | -51.1 0.0 -0.0
138.5 | -48.7 -3.6 -0.2 -4.8 216.1 | -29.6 | -19.8 0.0 -0.2

Table D.8: Net Allocation Rates as a Function of Time.

225

Lisp Compiler

Implementation Write Barrier CPU Overhead (%)

Method th =125 | th =250 | th = 500 | th = 1000 | th = 2000
hardware trap 0.1 0.0 0.0 0.0 0.0
write trap/fast OS 15.9 10.1 5.8 3.5 2.0
write trap/slow OS 18.3 11.6 6.7 4.0 2.3
software test 5.4 5.4 5.1 5.0 4.9

Curare
Implementation Write Barrier CPU Overhead (%)

Method th =125 | th =250 | th = 500 | th = 1000 | th = 2000
hardware trap 0.1 0.1 0.1 0.1 0.0
write trap/fast OS 6.4 3.4 2.1 1.3 0.9
write trap/slow OS 7.4 3.9 2.4 1.5 1.0
software test 1.7 1.6 1.5 1.5 1.3

Boyer Moore TP
Implementation Write Barrier CPU Overhead (%)

Method th =125 | th =250 | th = 500 | th = 1000 | th = 2000
hardware trap 0.3 0.2 0.0 0.0 0.0
write trap/fast OS 5.1 2.9 1.6 1.0 0.6
write trap/slow OS 5.9 3.3 1.9 1.1 0.7
software test 13.9 13.9 13.8 13.8 13.8

RL
Implementation Write Barrier CPU Overhead (%)

Method th =125 | th =250 | th = 500 | th = 1000 | th = 2000
hardware trap 3.1 2.8 2.6 1.8 0.8
write trap/fast OS 54.5 23.8 15.3 6.2 2.6
write trap/slow OS 62.7 27.4 17.6 7.1 3.0
software test 14.0 13.5 13.2 11.2 8.6

Table D.9:

collection algorithm used in all cases.

226

CPU Overhead for Write Barrier Implementations. Stop-and-copy is the garbage

Lisp Compiler

Implementation Read Barrier CPU Overhead (%)

Method th =125 | th = 250 | th = 500 | th = 1000 | th = 2000
hardware trap 10.5 10.0 9.8 9.6 9.5
software test 42.7 42.7 42.6 42.3 42.2
modified eq/fast OS 60.6 39.0 29.8 24.3 20.5
modified eq/slow OS 235.0 130.5 85.6 57.9 39.4
scan stack/fast OS 512.8 272.3 169.0 104.8 62.3
scan stack/slow OS 687.1 363.8 224.8 138.4 81.2

Curare
Implementation Read Barrier CPU Overhead (%)

Method th =125 | th = 250 | th = 500 | th = 1000 | th = 2000
hardware trap 11.5 11.4 11.4 11.4 11.4
software test 51.1 51.1 51.2 51.2 51.1
modified eq/fast OS 14.9 13.9 13.0 12.8 11.3
modified eq/slow OS 31.4 26.4 22.2 21.2 13.5
scan stack/fast OS 50.4 38.8 29.2 26.8 9.2
scan stack/slow OS 66.9 51.3 38.4 35.2 11.5

Boyer Moore TP
Implementation Read Barrier CPU Overhead (%)

Method th =125 | th = 250 | th = 500 | th = 1000 | th = 2000
hardware trap 11.0 11.0 11.0 11.0 11.0
software test 49.5 49.6 49.6 49.6 49.6
modified eq/fast OS 14.1 13.3 13.0 12.8 12.6
modified eq/slow OS 20.5 16.7 15.0 14.1 13.3
scan stack/fast OS 22.9 14.1 10.1 8.2 6.4
scan stack/slow OS 29.3 17.4 12.1 9.5 7.1

RL
Implementation Read Barrier CPU Overhead (%)

Method th =125 | th = 250 | th = 500 | th = 1000 | th = 2000
hardware trap 9.8 9.6 9.4 9.3 9.2
software test 41.3 41.2 40.8 40.7 40.6
modified eq/fast OS 42.6 37.6 32.1 29.5 27.4
modified eq/slow OS 138.4 114.0 86.5 73.7 63.2
scan stack/fast OS 287.4 231.2 167.5 138.1 113.8
scan stack/slow OS 383.2 307.6 221.9 182.3 149.6

Table D.10: CPU Overhead for Read Barrier Implementations. The results indicate the overhead
of the read barrier for an incremental copying algorithm.

227

Lisp Compiler (stop©)

Overhead Cumulative CPU Overhead (%)

Source th =125 | th =250 | th =500 | th = 1000 | th = 2000
alloc 5.1 4.7 4.6 4.6 4.5
scan 27.1 17.6 12.8 10.2 9.4
forward 33.1 21.4 15.4 12.1 11.1
transport 47.2 30.4 21.3 16.3 14.9
update 51.3 32.9 22.9 17.5 15.9

Curare (stop©)
Overhead Cumulative CPU Overhead (%)

Source th =125 | th =250 | th =500 | th = 1000 | th = 2000
alloc 1.9 1.8 1.8 1.8 1.7
scan 7.0 5.5 5.0 4.4 3.8
forward 9.0 6.8 6.2 5.5 4.7
transport 13.3 9.9 8.8 7.7 6.5
update 14.4 10.7 9.5 8.3 7.0

Boyer Moore TP (stop©)
Overhead Cumulative CPU Overhead (%)

Source th =125 | th =250 | th =500 | th = 1000 | th = 2000
alloc 1.4 1.4 1.4 1.3 1.2
scan 3.1 2.6 2.2 1.9 1.6
forward 3.6 2.9 2.5 2.1 1.8
transport 4.7 3.7 3.1 2.5 2.1
update 5.0 4.0 3.3 2.7 2.2

RL (stop©)
Overhead Cumulative CPU Overhead (%)

Source th =125 | th =250 | th =500 | th = 1000 | th = 2000
alloc 4.8 5.0 5.3 5.3 5.3
scan 38.8 28.1 21.1 15.7 12.2
forward 45.0 33.0 24.7 18.3 14.3
transport 62.0 45.0 33.1 24.4 18.7
update 66.0 48.1 35.4 26.0 19.9

Table D.11: Cumulative CPU Overhead of Copying Collection. The algorithm used is

stop-and-copy collection. Results for incremental copying are similar.

228

Lisp Compiler (mark&sweep)

Overhead Cumulative CPU Overhead (%)

Source th =125 th = 250 | th = 500 th = 1000 th = 2000
alloc 6.1 6.0 5.9 5.8 5.6
sweep 12.1 11.1 10.4 10.2 9.8
stack 20.9 16.1 13.9 12.4 11.7
type 35.2 24.3 19.5 15.8 14.8
marking 48.4 31.9 24.4 18.7 17.6
relocate 50.9 33.4 25.5 19.7 18.4

Curare (mark&sweep)

Overhead Cumulative CPU Overhead (%)

Source th =125 | th =250 | th =500 | th = 1000 | th = 2000
alloc 2.7 2.6 2.6 2.4 2.1
sweep 5.2 4.9 4.7 4.3 3.6
stack 7.6 6.7 6.3 5.5 4.4
type 11.0 9.4 8.7 7.5 5.7
marking 14.1 11.8 10.7 9.4 7.0
relocate 15.1 12.6 11.4 10.0 7.5

Boyer Moore TP (mark&sweep)

Overhead Cumulative CPU Overhead (%)

Source th =125 | th =250 | th =500 | th = 1000 | th = 2000
alloc 1.6 1.6 1.5 1.4 1.0
sweep 3.0 2.8 2.6 2.4 1.7
stack 3.8 3.3 3.0 2.6 1.9
type 5.0 4.1 3.6 3.0 2.2
marking 6.2 4.9 4.2 3.4 2.5
relocate 6.4 5.0 4.3 3.5 2.5

RL (mark&sweep)

Overhead Cumulative CPU Overhead (%)

Source th =125 th = 250 | th = 500 th = 1000 th = 2000
alloc 5.4 5.5 6.1 6.1 5.9
sweep 10.5 10.3 10.8 10.5 10.0
stack 22.1 18.8 16.7 14.3 12.8
type 39.6 31.6 25.7 20.2 17.2
marking 54.5 43.0 33.6 25.5 21.0
relocate 58.0 45.5 35.3 26.6 21.9

Table D.12: Cumulative CPU Overhead of Mark-and-Sweep Collection.

229

Lisp Compiler (incremental)

Overhead Cumulative CPU Overhead (%)

Source th =125 th =250 | th =500 | th = 1000 th = 2000
base overhead 50.2 32.6 23.0 17.7 12.7
write barrier 71.3 46.3 30.8 23.1 16.0
read barrier 306.2 176.8 116.4 81.0 55.4

RL (incremental)

Overhead Cumulative CPU Overhead (%)

Source th =125 th =250 | th =500 | th = 1000 th = 2000
base overhead 61.2 47.8 35.1 25.8 20.0
write barrier 104.1 71.1 49.5 32.4 22.8
read barrier 242.4 185.1 136.0 106.2 86.0

Lisp Compiler (stop©)

Overhead Cumulative CPU Overhead (%)
Source th =125 th =250 | th =500 | th = 1000 th = 2000
base overhead 51.3 32.9 22.9 17.5 15.9
write barrier 69.6 44.5 29.6 21.5 18.2

RL (stop©)

Overhead Cumulative CPU Overhead (%)
Source th =125 th =250 | th =500 | th = 1000 th = 2000
base overhead 66.0 48.1 35.3 26.0 19.9
write barrier 128.7 75.4 52.9 33.2 22.9

Lisp Compiler (mark&sweep)

Overhead Cumulative CPU Overhead (%)

Source th =125 th =250 | th =500 | th = 1000 th = 2000
base overhead 50.9 33.4 25.5 19.7 18.4
write barrier 61.5 39.8 29.3 22.0 19.9
indirect vectors 63.4 41.5 30.9 23.6 21.5

RL (mark&sweep)

Overhead Cumulative CPU Overhead (%)

Source th =125 th =250 | th =500 | th = 1000 th = 2000
base overhead 58.0 45.5 35.3 26.6 21.9
write barrier 108.5 74.5 54.4 33.7 24.6
indirect vectors 111.0 76.9 56.7 36.1 26.9

Table D.13: Cumulative CPU Overhead for Three Algorithms.

230

Lisp Compiler

Curare

Age Fraction of references (%) Fraction of references (%)

(sec cons | vector |number | other total cons vector | number | other total
0.000004 19.4 3.3 70.5 7.7 17.1 5.1 11.3 37.7 24.7 6.0
0.000008 7.2 1.7 14.7 3.8 6.1 1.4 3.4 12.3 9.3 1.7
0.000016 0.8 3.2 14.7 7.5 2.1 0.3 4.9 11.9 13.9 0.9
0.000032 1.4 5.6 0.0 7.8 2.5 0.2 4.9 0.0 18.1 0.9
0.000064 1.1 6.0 0.0 5.6 2.4 0.3 5.1 0.0 19.2 1.0
0.000128 1.3 3.4 0.0 4.5 1.9 0.3 3.6 0.0 1.0 0.5
0.000256 1.1 0.7 0.0 3.6 1.1 0.3 3.8 1.2 0.3 0.5
0.000512 1.3 0.8 0.0 2.7 1.2 0.3 1.3 2.0 0.3 0.4
0.001024 1.4 1.4 0.0 4.0 1.4 0.3 2.7 4.3 0.3 0.5
0.002048 1.6 2.3 0.0 2.6 1.8 0.4 4.1 6.7 0.2 0.6
0.004096 2.1 1.6 0.0 1.0 1.9 0.8 3.2 9.7 0.3 0.9
0.008192 2.5 2.6 0.0 1.5 2.4 1.1 3.7 11.5 0.4 1.3
0.016384 4.0 3.9 0.0 1.9 3.8 1.1 3.6 2.6 0.5 1.2
0.032768 5.9 4.1 0.0 1.8 5.2 1.4 4.6 0.0 1.0 1.6
0.065536 7.0 4.1 0.0 1.4 5.8 2.0 5.1 0.0 1.5 2.2
0.131072 6.5 5.6 0.0 1.0 5.9 3.1 4.6 0.0 1.5 3.2
0.262144 6.1 5.6 0.0 1.1 5.6 4.5 4.8 0.0 0.1 4.4
0.524288 6.7 2.9 0.0 1.7 5.4 6.5 4.9 0.0 0.0 6.2
1.048580 6.5 3.9 0.0 2.6 5.5 8.9 2.4 0.0 0.0 8.3
2.097150 6.1 6.9 0.0 4.6 6.0 9.6 2.6 0.0 0.1 9.0
4.194300 3.1 6.8 0.0 7.5 4.0 10.6 4.3 0.0 0.0 10.0
8.388610 1.5 8.5 0.0 10.4 3.4 11.2 3.1 0.0 0.1 10.4

16.777200 0.9 4.0 0.0 4.4 1.7 8.5 2.3 0.0 0.3 8.0
33.554400 1.4 3.1 0.0 1.7 1.8 8.2 2.3 0.0 0.0 7.7
67.108900 1.5 3.6 0.0 2.8 2.0 6.1 1.0 0.0 0.0 5.7
134.218000 1.4 4.3 0.0 3.7 2.1 5.9 1.0 0.0 0.0 5.5
268.435000 0.1 0.1 0.0 1.2 0.1 1.3 1.2 0.0 7.0 1.5
536.871000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table D.14: Age Distribution of Objects Referenced by Object Type.

231

Boyer Moore TP

RL

Age Fraction of references (%) Fraction of references (%)

(sec cons | vector | number | other total cons vector | number | other total
0.000004 5.4 0.4 36.4 4.8 5.3 22.6 9.8 68.4 8.7 18.3
0.000008 2.2 0.2 12.4 2.4 2.2 4.5 4.8 5.1 3.8 4.6
0.000016 0.8 0.4 19.5 4.1 0.8 0.4 5.4 9.1 6.3 2.1
0.000032 0.6 0.7 19.6 5.1 0.6 1.5 2.0 8.3 8.4 1.7
0.000064 0.6 1.3 0.0 6.1 0.6 0.2 2.0 0.0 9.7 0.9
0.000128 0.7 0.8 3.4 6.0 0.8 0.6 0.6 0.0 9.3 0.7
0.000256 1.0 0.1 0.0 4.4 1.0 0.9 0.7 0.0 13.6 0.9
0.000512 2.5 0.1 0.0 3.2 2.4 0.9 0.3 0.0 18.6 0.8
0.001024 2.5 0.2 0.0 3.7 2.4 0.7 0.5 0.0 0.7 0.6
0.002048 1.8 0.3 0.0 3.4 1.7 0.4 0.5 0.0 0.0 0.4
0.004096 2.8 0.6 0.0 2.3 2.7 0.4 0.7 0.0 3.5 0.5
0.008192 4.0 1.0 0.0 1.0 3.9 0.5 0.9 0.1 9.4 0.7
0.016384 4.2 1.0 0.0 0.5 4.0 0.9 1.0 0.1 1.9 0.9
0.032768 4.0 1.1 0.0 0.3 3.8 1.4 1.6 0.2 1.8 1.4
0.065536 4.1 2.0 0.0 0.2 4.0 2.1 1.5 0.5 1.5 1.9
0.131072 4.1 2.4 0.0 0.2 4.0 3.0 1.4 0.3 0.1 2.4
0.262144 4.7 1.4 0.0 0.5 4.5 3.8 1.5 1.3 0.1 3.0
0.524288 4.0 2.7 0.0 0.6 4.0 4.4 2.9 2.4 0.1 3.9
1.048580 3.8 3.8 0.1 0.4 3.8 5.3 4.8 0.8 0.3 5.1
2.097150 3.8 7.5 0.3 0.8 3.9 6.5 6.0 1.7 0.3 6.3
4.194300 3.3 4.9 0.2 0.1 3.4 6.8 7.0 1.6 0.0 6.8
8.388610 3.3 0.7 0.9 1.3 3.2 9.3 11.4 0.1 0.0 9.9

16.777200 3.2 2.3 0.2 3.0 3.2 9.9 14.1 0.0 0.2 11.2
33.554400 3.8 8.9 0.5 2.8 4.0 8.5 13.0 0.0 0.0 10.0
67.108900 5.4 10.2 0.9 4.5 5.6 3.1 4.5 0.0 0.1 3.5
134.218000 7.9 16.0 1.8 9.5 8.2 0.5 0.6 0.0 0.5 0.6
268.435000 15.3 28.6 3.7 20.8 15.9 0.7 0.5 0.0 0.3 0.6
536.871000 0.1 0.4 0.0 8.0 0.2 0.2 0.1 0.0 0.7 0.1

Table D.15:

232

Age Distribution of Objects Referenced by Object Type.

Lisp Compiler (incremental)

Memory Page faults per second
Size th =125 th = 250 th = 500 th = 1000 th = 2000
3 megabytes 20.9 19.5 66.0 99.1 118.3
4 megabytes 9.0 11.6 25.6 23.2 91.2
5 megabytes 2.4 8.7 12.1 2.4 70.0
6 megabytes 0.4 6.1 6.1 0.1 32.7

RL (incremental)

Memory Page faults per second
Size th =125 th = 250 th = 500 th = 1000 th = 2000
3 megabytes 147.4 10.9 44.6 107.8 100.7
4 megabytes 38.4 5.7 15.2 37.6 70.2
5 megabytes 11.7 1.8 6.1 14.3 52.0
6 megabytes 3.4 0.5 1.4 6.5 23.8

Lisp Compiler (stop©)

Memory Page faults per second
Size th =125 th = 250 th = 500 th = 1000 th = 2000
3 megabytes 9.9 19.6 59.9 103.0 124.7
4 megabytes 2.3 10.0 18.1 24.1 92.9
5 megabytes 0.3 3.1 9.4 1.8 71.8
6 megabytes 0.0 0.8 4.1 0.1 36.0

RL (stop©)

Memory Page faults per second
Size th =125 th = 250 th = 500 th = 1000 th = 2000
3 megabytes 21.7 8.8 57.1 104.2 90.3
4 megabytes 12.9 3.0 10.7 38.4 67.7
5 megabytes 5.3 1.2 3.5 12.2 49.9
6 megabytes 0.1 0.0 0.2 4.2 22.9

Lisp Compiler (mark&sweep)

Memory Page faults per second
Size th =125 th = 250 th = 500 th = 1000 th = 2000
3 megabytes 13.8 10.4 7.6 25.0 91.9
4 megabytes 5.9 4.5 3.6 8.3 44.3
5 megabytes 0.3 0.4 0.4 4.1 25.7
6 megabytes 0.0 0.1 0.0 1.6 12.2

RL (mark&sweep)

Memory Page faults per second
Size th =125 th = 250 th = 500 th = 1000 th = 2000
3 megabytes 5.2 10.7 9.7 23.1 58.5
4 megabytes 1.0 4.7 1.2 10.8 22.8
5 megabytes 0.0 1.4 0.0 4.6 6.1
6 megabytes 0.0 0.0 0.0 1.3 1.4

Table D.16: Page Fault Rates for Different Collection Algorithms.

233

Lisp Compiler (incremental)

Tolerance Memory Needed (4K pages)
Level th =125 th = 250 th = 500 th = 1000 th = 2000
0 faults/sec 1642 1891 1966 1579 1874
5 faults/sec 1267 1638 1712 1278 1651
10 faults/sec 1149 1579 1606 1233 1636
20 faults/sec 993 1157 1356 1141 1599

RL (incremental)

Tolerance Memory Needed (4K pages)
Level th =125 th = 250 th = 500 th = 1000 th = 2000
0 faults/sec 1906 1685 1807 1966 1849
5 faults/sec 1764 1244 1421 1649 1797
10 faults/sec 1409 1101 1349 1557 1756
20 faults/sec 1293 792 1111 1417 1692

Lisp Compiler (stop©)

Tolerance Memory Needed (4K pages)
Level th =125 th = 250 th = 500 th = 1000 th = 2000
0 faults/sec 1516 1719 1897 1586 2636
5 faults/sec 1016 1316 1641 1273 2019
10 faults/sec 959 1190 1507 1217 1982
20 faults/sec 757 1026 1254 1113 1698

RL (stop©)

Tolerance Memory Needed (4K pages)
Level th =125 th = 250 th = 500 th = 1000 th = 2000
0 faults/sec 1765 1516 1666 2095 1833
5 faults/sec 1348 1095 1304 1665 1707
10 faults/sec 1286 895 1229 1530 1679
20 faults/sec 1097 743 1055 1413 1627

Lisp Compiler (mark&sweep)

Tolerance Memory Needed (4K pages)
Level th =125 th = 250 th = 500 th = 1000 th = 2000
0 faults/sec 1354 1445 1352 1806 2184
5 faults/sec 1135 1086 1126 1503 1855
10 faults/sec 1046 1010 917 1183 1681
20 faults/sec 904 781 694 983 1571

RL (mark&sweep)

Tolerance Memory Needed (4K pages)
Level th =125 th = 250 th = 500 th = 1000 th = 2000
0 faults/sec 1246 1433 1277 1656 1689
5 faults/sec 894 1184 962 1395 1506
10 faults/sec 781 1011 880 1252 1380
20 faults/sec 673 791 754 1034 1193

Table D.17: Memory Sizes Required for Different Collection Algorithms.

234

Lisp Compiler (stop©)

Cache Size Cache miss rate (%)
th = 125 | th = 250 | th = 500 | th = 1000 | th = 2000
64 kilobytes 5.72 5.78 5.31 5.58 5.33
128 kilobytes 4.81 5.00 4.51 4.69 4.48
256 kilobytes 3.22 4.19 3.75 3.88 3.75
512 kilobytes 2.54 3.12 3.20 3.31 3.24
1 megabyte 2.28 2.71 2.57 2.94 2.93
2 megabytes 0.77 0.92 0.68 1.12 2.68

Curare (stop©)

Cache Size Cache miss rate (%)
th = 125 | th = 250 | th = 500 | th = 1000 | th = 2000
64 kilobytes 3.82 3.75 4.73 5.33 5.82
128 kilobytes 2.09 2.11 2.80 2.92 3.27
256 kilobytes 1.13 1.09 1.63 1.75 1.55
512 kilobytes 0.75 0.68 1.05 0.82 0.81
1 megabyte 0.33 0.65 0.73 0.47 0.39
2 megabytes 0.14 0.35 0.42 0.34 0.24

Boyer Moore TP (stop©)

Cache Size Cache miss rate (%)
th = 125 | th = 250 | th = 500 | th = 1000 | th = 2000
64 kilobytes 1.44 1.43 1.54 1.60 1.43
128 kilobytes 0.97 1.04 0.99 1.20 0.92
256 kilobytes 0.63 0.83 0.73 0.80 0.73
512 kilobytes 0.55 0.54 0.63 0.70 0.63
1 megabyte 0.45 0.50 0.52 0.57 0.58
2 megabytes 0.21 0.20 0.26 0.45 0.53

RL (stop©)

Cache Size Cache miss rate (%)
th = 125 | th = 250 | th = 500 | th = 1000 | th = 2000
64 kilobytes 7.45 6.43 6.70 6.78 7.17
128 kilobytes 6.01 5.34 5.73 5.67 6.01
256 kilobytes 4.32 4.28 4.83 4.68 4.97
512 kilobytes 3.33 3.14 3.99 3.80 4.03
1 megabyte 2.85 2.75 3.05 3.05 3.23
2 megabytes 1.00 1.12 1.52 1.78 2.57

Table D.18: Cache Miss Rates for Stop-and-Copy Collection.

235

Lisp Compiler (mark&sweep)

Cache Size Cache miss rate (%)
th = 125 | th = 250 | th = 500 | th = 1000 | th = 2000
64 kilobytes 4.90 4.80 4.87 5.00 5.11
128 kilobytes 3.76 3.93 4.09 4.28 4.40
256 kilobytes 2.31 2.82 3.44 3.67 3.82
512 kilobytes 0.97 1.23 2.28 3.11 3.31
1 megabyte 0.67 0.73 1.52 2.22 2.92
2 megabytes 0.63 0.68 1.24 1.68 2.23

Curare (mark&sweep)

Cache Size Cache miss rate (%)
th = 125 | th = 250 | th = 500 | th = 1000 | th = 2000
64 kilobytes 5.19 5.16 6.18 6.46 7.29
128 kilobytes 2.72 2.86 3.46 3.20 4.45
256 kilobytes 1.79 1.42 1.52 1.50 2.52
512 kilobytes 1.00 0.68 0.75 0.79 1.21
1 megabyte 0.88 0.60 0.24 0.33 0.53
2 megabytes 0.52 0.16 0.24 0.32 0.28

Boyer Moore TP (mark&sweep)

Cache Size Cache miss rate (%)
th = 125 | th = 250 | th = 500 | th = 1000 | th = 2000
64 kilobytes 1.41 1.39 1.47 1.32 1.37
128 kilobytes 0.82 1.03 1.08 0.89 1.06
256 kilobytes 0.51 0.54 0.73 0.71 0.81
512 kilobytes 0.21 0.29 0.43 0.59 0.66
1 megabyte 0.15 0.21 0.25 0.33 0.58
2 megabytes 0.14 0.20 0.24 0.27 0.49

RL (mark&sweep)

Cache Size Cache miss rate (%)
th = 125 | th = 250 | th = 500 | th = 1000 | th = 2000
64 kilobytes 9.38 8.09 7.26 6.15 6.10
128 kilobytes 7.82 6.58 5.63 4.81 4.80
256 kilobytes 6.12 4.95 4.34 3.64 3.71
512 kilobytes 3.70 3.13 3.10 2.83 2.72
1 megabyte 2.85 2.02 1.77 1.68 2.06
2 megabytes 1.76 1.60 1.51 1.46 1.28

Table D.19: Cache Miss Rates for Mark-and-Sweep Collection.

236

Lisp Compiler

Cache Size Cache miss rate (%)
th =125 th = 250 | th =500 | th = 1000 | th = 2000
stop-and-copy (64k) 5.72 5.78 5.31 5.58 5.33
mark-and-sweep (64k) 4.90 4.80 4.87 5.00 5.11
incremental (64k) 6.05 5.52 5.33 5.28 5.42
stop-and-copy (256k) 3.22 4.19 3.75 3.88 3.75
mark-and-sweep (256k) 2.31 2.82 3.44 3.67 3.82
incremental (256k) 3.81 3.82 3.71 3.68 3.75
stop-and-copy (1M) 2.28 2.71 2.57 2.94 2.93
mark-and-sweep (1M) 0.67 0.73 1.52 2.22 2.92
incremental (1M) 3.05 2.79 2.72 2.89 2.96

Curare

Cache Size Cache miss rate (%)
th =125 th = 250 | th =500 | th = 1000 | th = 2000
stop-and-copy (64k) 3.82 3.75 4.73 5.33 5.82
mark-and-sweep (64k) 5.19 5.16 6.18 6.46 7.29
incremental (64k) 3.82 3.87 4.00 5.29 5.02
stop-and-copy (256k) 1.13 1.09 1.63 1.75 1.55
mark-and-sweep (256k) 1.79 1.42 1.52 1.50 2.52
incremental (256k) 1.46 1.45 1.61 1.41 1.52
stop-and-copy (1M) 0.33 0.65 0.73 0.47 0.39
mark-and-sweep (1M) 0.88 0.60 0.24 0.33 0.53
incremental (1M) 0.86 1.13 1.01 0.54 0.39

Boyer Moore TP

Cache Size Cache miss rate (%)
th =125 th = 250 | th =500 | th = 1000 | th = 2000
stop-and-copy (64k) 1.44 1.43 1.54 1.60 1.43
mark-and-sweep (64k) 1.41 1.39 1.47 1.32 1.37
incremental (64k) 1.52 1.51 1.38 1.36 1.35
stop-and-copy (256k) 0.63 0.83 0.73 0.80 0.73
mark-and-sweep (256k) 0.51 0.54 0.73 0.71 0.81
incremental (256k) 0.75 0.89 0.81 0.78 0.74
stop-and-copy (1M) 0.45 0.50 0.52 0.57 0.58
mark-and-sweep (1M) 0.15 0.21 0.25 0.33 0.58
incremental (1M) 0.58 0.58 0.59 0.58 0.59

RL

Cache Size Cache miss rate (%)
th =125 th = 250 | th =500 | th = 1000 | th = 2000
stop-and-copy (64k) 7.45 6.43 6.70 6.78 7.17
mark-and-sweep (64k) 9.38 8.09 7.26 6.15 6.10
incremental (64k) 7.26 7.02 6.91 7.07 6.97
stop-and-copy (256k) 4.32 4.28 4.83 4.68 4.97
mark-and-sweep (256k) 6.12 4.95 4.34 3.64 3.71
incremental (256k) 4.48 4.77 4.98 4.89 4.99
stop-and-copy (1M) 2.85 2.75 3.05 3.05 3.23
mark-and-sweep (1M) 2.85 2.02 1.77 1.68 2.06
incremental (1M) 3.80 3.41 3.35 3.27 3.40

Table D.20: Cache Miss Rates for Three Collection Algorithms.

237

Lisp Compiler

Curare

Age Fraction surviving Fraction surviving

(sec cons | vector |number | other total cons vector | number | other total
0.000004 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.000008 0.84 1.00 0.42 1.00 0.78 0.58 0.60 0.65 0.86 0.61
0.000016 0.81 0.94 0.00 1.00 0.69 0.52 0.37 0.02 0.61 0.51
0.000032 0.77 0.60 0.00 0.99 0.65 0.47 0.29 0.02 0.61 0.47
0.000064 0.74 0.60 0.00 0.99 0.63 0.44 0.26 0.02 0.29 0.40
0.000128 0.71 0.43 0.00 0.97 0.59 0.40 0.21 0.02 0.25 0.36
0.000256 0.68 0.42 0.00 0.90 0.57 0.36 0.21 0.02 0.25 0.33
0.000512 0.66 0.42 0.00 0.73 0.55 0.34 0.21 0.02 0.25 0.31
0.001024 0.64 0.42 0.00 0.61 0.53 0.32 0.21 0.02 0.25 0.30
0.002048 0.63 0.42 0.00 0.52 0.52 0.31 0.20 0.02 0.25 0.29
0.004096 0.61 0.41 0.00 0.52 0.51 0.30 0.20 0.02 0.25 0.28
0.008192 0.60 0.39 0.00 0.52 0.49 0.28 0.19 0.01 0.25 0.27
0.016384 0.57 0.37 0.00 0.51 0.48 0.26 0.19 0.00 0.25 0.25
0.032768 0.53 0.32 0.00 0.51 0.44 0.24 0.19 0.00 0.25 0.24
0.065536 0.48 0.26 0.00 0.51 0.40 0.22 0.18 0.00 0.25 0.22
0.131072 0.41 0.18 0.00 0.51 0.33 0.21 0.18 0.00 0.25 0.21
0.262144 0.34 0.14 0.00 0.51 0.28 0.19 0.17 0.00 0.23 0.19
0.524288 0.29 0.10 0.00 0.51 0.24 0.17 0.16 0.00 0.20 0.17
1.048580 0.21 0.08 0.00 0.50 0.18 0.16 0.16 0.00 0.16 0.16
2.097150 0.10 0.06 0.00 0.50 0.09 0.14 0.15 0.00 0.15 0.14
4.194300 0.07 0.04 0.00 0.50 0.06 0.12 0.14 0.00 0.15 0.12
8.388610 0.05 0.04 0.00 0.50 0.05 0.10 0.14 0.00 0.09 0.10
16.777200 0.04 0.02 0.00 0.49 0.04 0.08 0.13 0.00 0.06 0.09
33.554400 0.03 0.02 0.00 0.45 0.03 0.08 0.12 0.00 0.06 0.08
67.108900 0.02 0.00 0.00 0.40 0.02 0.07 0.12 0.00 0.06 0.07
134.218000 0.00 0.00 0.00 0.01 0.00 0.06 0.10 0.00 0.06 0.06
268.435000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
536.871000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table D.21:

238

Survival Distribution of Objects Referenced by Object Type.

Boyer Moore TP

RL

Age Fraction surviving Fraction surviving

(sec cons | vector | number | other total cons vector | number | other total
0.000004 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.000008 0.86 0.99 0.69 1.00 0.86 0.45 0.99 0.16 0.88 0.55
0.000016 0.80 0.84 0.40 0.96 0.80 0.42 0.11 0.13 0.85 0.36
0.000032 0.77 0.83 0.11 0.79 0.77 0.30 0.11 0.02 0.84 0.27
0.000064 0.73 0.83 0.10 0.71 0.72 0.29 0.11 0.02 0.58 0.26
0.000128 0.68 0.06 0.01 0.50 0.67 0.28 0.09 0.02 0.43 0.25
0.000256 0.61 0.06 0.01 0.41 0.60 0.27 0.09 0.02 0.21 0.24
0.000512 0.53 0.06 0.01 0.37 0.52 0.27 0.09 0.02 0.21 0.23
0.001024 0.45 0.06 0.01 0.32 0.44 0.26 0.09 0.02 0.20 0.23
0.002048 0.39 0.06 0.01 0.31 0.38 0.26 0.08 0.02 0.20 0.23
0.004096 0.35 0.04 0.01 0.29 0.34 0.26 0.08 0.02 0.18 0.23
0.008192 0.30 0.04 0.01 0.28 0.30 0.25 0.08 0.02 0.14 0.22
0.016384 0.23 0.04 0.01 0.28 0.23 0.25 0.08 0.02 0.12 0.22
0.032768 0.17 0.04 0.01 0.28 0.17 0.24 0.08 0.02 0.10 0.21
0.065536 0.13 0.04 0.01 0.28 0.13 0.23 0.08 0.02 0.07 0.20
0.131072 0.11 0.04 0.01 0.28 0.11 0.22 0.08 0.02 0.07 0.19
0.262144 0.10 0.04 0.01 0.28 0.10 0.21 0.08 0.02 0.07 0.18
0.524288 0.09 0.04 0.01 0.28 0.08 0.18 0.07 0.02 0.07 0.16
1.048580 0.07 0.04 0.01 0.28 0.07 0.15 0.07 0.02 0.07 0.13
2.097150 0.06 0.03 0.01 0.28 0.06 0.11 0.06 0.02 0.07 0.10
4.194300 0.05 0.03 0.01 0.28 0.05 0.09 0.05 0.02 0.07 0.08
8.388610 0.04 0.03 0.00 0.28 0.04 0.06 0.04 0.02 0.07 0.06
16.777200 0.04 0.03 0.00 0.28 0.04 0.04 0.03 0.02 0.06 0.04
33.554400 0.03 0.03 0.00 0.28 0.03 0.03 0.01 0.02 0.06 0.03
67.108900 0.02 0.03 0.00 0.28 0.02 0.02 0.00 0.02 0.06 0.01
134.218000 0.02 0.02 0.00 0.26 0.02 0.01 0.00 0.01 0.05 0.01
268.435000 0.01 0.01 0.00 0.15 0.01 0.00 0.00 0.00 0.00 0.00
536.871000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table D.22:

239

Survival Distribution of Objects Referenced by Object Type.

Lisp Compiler (stop©)

Copy Number Pause Length (sec)
th =125 th = 250 | th =500 | th = 1000 | th = 2000
copies = 0 (DIS) 0.075 0.121 0.173 0.243 0.350
copies = 1 (DIS) 0.101 0.155 0.222 0.325 0.487
copies = 3 (DIS) 0.131 0.198 0.297 0.451 0.699
copies = 10 (DIS) 0.172 0.278 0.446 0.718 1.092
copies = 3 (MARS) 0.146 0.201 0.256 0.373 0.648

Lisp Compiler (mark&sweep)

Copy Number Pause Length (sec)
th =125 th = 250 | th =500 | th = 1000 | th = 2000
copies = 0 (DIS) 0.075 0.121 0.173 0.243 0.350
copies = 1 (DIS) 0.092 0.142 0.202 0.290 0.426
copies = 3 (DIS) 0.115 0.172 0.249 0.366 0.551
copies = 10 (DIS) 0.155 0.237 0.361 0.555 0.838
copies = 3 (MARS) 0.129 0.171 0.248 0.345 0.506

Curare (stop©)

Copy Number Pause Length (sec)
th =125 th = 250 | th =500 | th = 1000 | th = 2000
copies = 0 (DIS) 0.051 0.095 0.169 0.304 0.536
copies = 1 (DIS) 0.077 0.143 0.255 0.457 0.803
copies = 3 (DIS) 0.112 0.211 0.379 0.678 1.200
copies = 10 (DIS) 0.171 0.327 0.601 1.099 1.938
copies = 3 (MARS) 0.117 0.173 0.303 0.485 0.698

Curare (mark&sweep)

Copy Number Pause Length (sec)
th =125 th = 250 | th =500 | th = 1000 | th = 2000
copies = 0 (DIS) 0.051 0.095 0.169 0.304 0.536
copies = 1 (DIS) 0.067 0.125 0.221 0.394 0.695
copies = 3 (DIS) 0.093 0.173 0.305 0.543 0.949
copies = 10 (DIS) 0.150 0.282 0.508 0.907 1.547
copies = 3 (MARS) 0.084 0.143 0.211 0.355 0.498

RL (stop©)

Copy Number Pause Length (sec)
th =125 th = 250 | th =500 | th = 1000 | th = 2000
copies = 0 (DIS) 0.046 0.082 0.137 0.221 0.353
copies = 1 (DIS) 0.072 0.122 0.202 0.327 0.507
copies = 3 (DIS) 0.103 0.175 0.294 0.467 0.703
copies = 10 (DIS) 0.154 0.274 0.463 0.718 1.026
copies = 3 (MARS) 0.164 0.237 0.345 0.512 0.726

RL (mark&sweep)

Copy Number Pause Length (sec)
th =125 th = 250 | th =500 | th = 1000 | th = 2000
copies = 0 (DIS) 0.046 0.082 0.137 0.221 0.353
copies = 1 (DIS) 0.061 0.105 0.174 0.279 0.437
copies = 3 (DIS) 0.084 0.141 0.233 0.368 0.559
copies = 10 (DIS) 0.131 0.224 0.367 0.560 0.805
copies = 3 (MARS) 0.114 0.202 0.273 0.396 0.622

Table D.23: Pause Lengths for Three Applications

240

Lisp Compiler (stop©)

Copy Number Relative Overhead
th =125 | th=250 | th=500 | th =1000 | th = 2000
copies = 0 (DIS) 0.755 0.613 0.439 0.307 0.221
copies = 1 (DIS) 1.342 0.986 0.666 0.462 0.336
copies = 3 (DIS) 2.313 1.507 1.000 0.698 0.513
copies = 10 (DIS) 4.835 2.908 1.917 1.354 0.922
copies = 3 (MARS) 2.147 1.471 0.935 0.679 0.593

Lisp Compiler (mark&sweep)

Copy Number Relative Overhead
th =125 | th=250 | th=500 | th =1000 | th = 2000
copies = 0 (DIS) 0.755 0.613 0.439 0.307 0.221
copies = 1 (DIS) 1.089 0.813 0.557 0.390 0.280
copies = 3 (DIS) 1.679 1.130 0.751 0.524 0.383
copies = 10 (DIS) 3.351 2.016 1.322 0.918 0.642
copies = 3 (MARS) 1.888 1.252 0.906 0.670 0.498

Curare (stop©)

Copy Number Relative Overhead
th =125 | th=250 | th=500 | th =1000 | th = 2000
copies = 0 (DIS) 0.386 0.358 0.317 0.284 0.252
copies = 1 (DIS) 0.697 0.643 0.560 0.494 0.429
copies = 3 (DIS) 1.285 1.169 1.000 0.864 0.739
copies = 10 (DIS) 3.254 2.897 2.398 2.011 1.597
copies = 3 (MARS) 1.123 0.826 0.716 0.559 0.403

Curare (mark&sweep)

Copy Number Relative Overhead
th =125 | th=250 | th=500 | th =1000 | th = 2000
copies = 0 (DIS) 0.386 0.358 0.317 0.284 0.252
copies = 1 (DIS) 0.557 0.517 0.450 0.398 0.350
copies = 3 (DIS) 0.914 0.827 0.710 0.613 0.525
copies = 10 (DIS) 2.252 1.972 1.640 1.359 1.065
copies = 3 (MARS) 0.813 0.683 0.501 0.408 0.287

RL (stop©)

Copy Number Relative Overhead
th =125 | th=250 | th=500 | th =1000 | th = 2000
copies = 0 (DIS) 0.482 0.427 0.354 0.287 0.228
copies = 1 (DIS) 0.883 0.738 0.597 0.469 0.358
copies = 3 (DIS) 1.579 1.263 1.000 0.746 0.534
copies = 10 (DIS) 3.665 2.845 2.091 1.390 0.876
copies = 3 (MARS) 2.630 1.766 1.213 0.872 0.610

RL (mark&sweep)

Copy Number Relative Overhead
th =125 | th=250 | th=500 | th =1000 | th = 2000
copies = 0 (DIS) 0.482 0.427 0.354 0.287 0.228
copies = 1 (DIS) 0.700 0.594 0.484 0.382 0.297
copies = 3 (DIS) 1.107 0.897 0.712 0.544 0.398
copies = 10 (DIS) 2.457 1.878 1.387 0.949 0.627
copies = 3 (MARS) 1.758 1.477 0.960 0.675 0.522

Table D.24: Relative CPU Overhead for Three Applications

241

Lisp Compiler (stop©)

Copy Number

Promotion Rate (%)

th =125 | th=250 | th=500 | th =1000 | th = 2000
copies = 0 (DIS) 28.864 23.497 16.857 11.807 8.496
copies = 1 (DIS) 20.484 12.323 7.074 5.221 4.015
copies = 3 (DIS) 14.367 7.290 5.167 3.839 3.011
copies = 10 (DIS) 7.957 5.215 3.642 2.718 1.289
copies = 3 (MARS) 9.166 7.481 4.213 3.367 3.243
Lisp Compiler (mark&sweep)

Copy Number Promotion Rate (%)
th =125 | th=250 | th=500 | th =1000 | th = 2000
copies = 0 (DIS) 28.864 23.497 16.857 11.807 8.496
copies = 1 (DIS) 24.710 17.872 12.139 8.666 6.307
copies = 3 (DIS) 20.166 13.255 9.050 6.374 4.819
copies = 10 (DIS) 14.595 9.190 6.265 4.284 2.865
copies = 3 (MARS) 22.064 14.917 9.719 7.147 5.450

Curare (stop©)

Copy Number Promotion Rate (%)
th =125 | th=250 | th=500 | th =1000 | th = 2000
copies = 0 (DIS) 19.725 18.315 16.241 14.546 12.912
copies = 1 (DIS) 15.034 13.636 11.633 9.906 8.285
copies = 3 (DIS) 13.421 12.000 9.865 8.217 6.788
copies = 10 (DIS) 11.953 10.245 8.041 6.470 3.845
copies = 3 (MARS) 10.527 8.605 7.489 5.560 3.756

Curare (mark&sweep)

Copy Number Promotion Rate (%)
th =125 | th=250 | th=500 | th =1000 | th = 2000
copies = 0 (DIS) 19.725 18.315 16.241 14.546 12.912
copies = 1 (DIS) 17.404 16.235 14.168 12.447 10.869
copies = 3 (DIS) 16.019 14.476 12.250 10.710 9.008
copies = 10 (DIS) 14.082 12.726 10.707 9.047 6.878
copies = 3 (MARS) 13.200 11.439 9.891 6.305 3.355

RL (stop©)

Copy Number Promotion Rate (%)
th =125 | th=250 | th=500 | th =1000 | th = 2000
copies = 0 (DIS) 17.867 15.887 13.204 10.748 8.531
copies = 1 (DIS) 14.384 11.026 8.474 6.451 4.523
copies = 3 (DIS) 11.354 8.531 6.508 4.340 2.656
copies = 10 (DIS) 8.729 6.554 4.205 2.234 1.157
copies = 3 (MARS) 21.052 11.598 7.946 5.921 3.661

RL (mark&sweep)

Copy Number Promotion Rate (%)
th =125 | th=250 | th=500 | th =1000 | th = 2000
copies = 0 (DIS) 17.867 15.887 13.204 10.748 8.531
copies = 1 (DIS) 16.096 13.453 10.921 8.557 6.553
copies = 3 (DIS) 13.993 11.312 8.976 6.772 4.770
copies = 10 (DIS) 11.519 8.965 6.397 4.366 2.732
copies = 3 (MARS) 24.003 18.830 12.151 6.668 5.554

Table D.25:

242

Promotion Rates for Three Applications

Lisp Compiler

Newspace Collection Frequency (min)

Promotion | th = 500 | th = 1000 | th = 2000 | th = 4000 | th = 8000
2% 0.878 2.094 4.512 9.362 19.070
5% 0.169 0.520 1.484 3.422 7.302
10% 0.097 0.229 0.658 1.627 3.568
20% 0.044 0.099 0.234 0.668 1.638

Curare

Newspace Collection Frequency (min)

Promotion | th = 500 | th = 1000 | th = 2000 | th = 4000 | th = 8000
2% 2.585 5.898 11.237 21.506 35.676
5% 0.425 1.941 3.883 7.974 17.844
10% 0.161 0.386 1.429 3.882 7.973
20% 0.078 0.162 0.385 1.391 3.882

Boyer Moore TP

Newspace Collection Frequency (min)

Promotion | th = 500 | th = 1000 | th = 2000 | th = 4000 | th = 8000
2% 3.881 9.346 20.165 40.410 86.019
5% 1.104 3.224 7.564 16.157 33.858
10% 0.422 1.107 3.226 7.564 16.164
20% 0.186 0.423 1.112 3.233 7.564

RL

Newspace Collection Frequency (min)

Promotion | th = 500 | th = 1000 | th = 2000 | th = 4000 | th = 8000
2% 0.428 1.429 3.636 8.280 17.400
5% 0.188 0.468 1.301 3.128 6.778
10% 0.094 0.242 0.602 1.487 3.313
20% 0.039 0.095 0.245 0.603 1.493

Table D.26: Second Generation Collection Frequencies for Four Applications

243

Lisp Compiler

Newspace Pause Length (sec)

Promotion | th = 500 | th = 1000 | th = 2000 | th = 4000 | th = 8000
2% 0.286 0.285 0.290 0.298 0.307
5% 0.797 0.970 0.974 0.983 0.990
10% 0.762 1.231 1.333 1.341 1.351
20% 0.820 1.498 2.397 2.581 2.592

Curare

Newspace Pause Length (sec)

Promotion | th = 500 | th = 1000 | th = 2000 | th = 4000 | th = 8000
2% 0.153 0.051 0.167 0.230 0.690
5% 0.756 0.431 0.874 1.099 0.750
10% 0.975 1.753 1.699 1.906 2.420
20% 1.011 1.954 3.512 3.518 3.450

Boyer Moore TP

Newspace Pause Length (sec)

Promotion | th = 500 | th = 1000 | th = 2000 | th = 4000 | th = 8000
2% 0.295 0.298 0.298 0.312 0.311
5% 0.529 0.534 0.540 0.545 0.554
10% 0.761 1.055 1.065 1.077 1.087
20% 0.840 1.517 2.098 2.116 2.164

RL

Newspace Pause Length (sec)

Promotion | th = 500 | th = 1000 | th = 2000 | th = 4000 | th = 8000
2% 0.716 0.772 0.841 0.783 0.797
5% 0.713 1.115 1.192 1.190 1.200
10% 0.707 1.109 1.471 1.536 1.543
20% 0.826 1.405 2.188 2.934 3.035

Table D.27: Second Generation Pause Lengths for Four Applications

244

Lisp Compiler (stop©)

RL (stop©)

Threshold Pause Length (msec) Pause Length (msec)
(kbytes) copies=0 | copies=3 | copies=10 copies=0 | copies=3 | copies=10
2000 3.502 6.988 10.921 3.535 7.031 10.264
4000 5.173 10.447 12.493 5.436 9.909 14.262
8000 7.869 12.483 12.902 7.855 13.518 15.886
16000 11.409 13.099 13.485 10.692 16.018 16.652
32000 13.095 13.801 14.570 14.720 17.081 17.871
Lisp Compiler (stop©) RL (stop©)
Threshold Collection Frequency (sec) Collection Frequency (sec)
(kbytes) copies=0 | copies=3 | copies=10 copies=0 | copies=3 | copies=10
2000 0.058 0.050 0.043 0.056 0.048 0.043
4000 0.117 0.104 0.099 0.109 0.098 0.091
8000 0.233 0.216 0.215 0.219 0.203 0.198
16000 0.466 0.448 0.448 0.438 0.418 0.417
32000 0.932 0.913 0.912 0.877 0.854 0.854
Lisp Compiler (stop©) RL (stop©)
Threshold Promotion Rate (%) Promotion Rate (%)
(kbytes) copies=0 | copies=3 | copies=10 copies=0 | copies=3 | copies=10
2000 8.496 3.011 1.289 8.531 2.656 1.157
4000 6.286 1.864 0.069 6.577 1.444 0.588
8000 4.776 0.156 0.000 4.753 0.949 0.033
16000 3.464 0.000 0.000 3.235 0.098 0.000
32000 1.988 0.000 0.000 2.227 0.001 0.000

Table D.28: Predicted Performance for Two Applications. Predicted CPU speed is

Sun4/280.

245

100 times a

Lisp Compiler (stop©) RL (stop©)

Threshold Pause Length (msec) Pause Length (msec)
(kbytes) copies=0 | copies=3 | copies=10 copies=0 | copies=3 | copies=10
2000 17.112 28.094 34.687 8.533 20.018 29.258
4000 30.239 51.998 66.471 16.416 38.361 56.406
8000 52.628 93.461 122.555 31.128 70.639 104.575
16000 89.200 150.755 202.063 57.040 122.699 187.373
32000 138.338 225.222 325.405 98.367 208.880 326.742
64000 193.839 340.472 523.867 160.814 344.673 537.609
128000 273.978 521.810 842.094 261.586 539.946 816.351
Lisp Compiler (stop©) RL (stop©)
Threshold Collection Frequency (sec) Collection Frequency (sec)
(kbytes) copies=0 | copies=3 | copies=10 copies=0 | copies=3 | copies=10
2000 0.058 0.027 0.013 0.056 0.035 0.019
4000 0.117 0.058 0.029 0.109 0.070 0.040
8000 0.233 0.126 0.069 0.219 0.145 0.089
16000 0.466 0.281 0.193 0.438 0.305 0.205
32000 0.932 0.655 0.495 0.877 0.649 0.468
64000 1.864 1.451 1.165 1.754 1.372 1.078
128000 3.728 3.103 2.604 3.508 2.897 2.471
Lisp Compiler (stop©) RL (stop©)
Threshold Promotion Rate (%) Promotion Rate (%)
(kbytes) copies=0 | copies=3 | copies=10 copies=0 | copies=3 | copies=10
2000 41.560 30.819 28.118 20.614 18.004 16.651
4000 36.774 25.737 22.724 19.874 16.390 14.035
8000 31.962 19.719 14.145 18.845 13.350 10.108
16000 27.095 9.948 6.359 17.265 9.604 7.597
32000 21.007 6.149 4.462 14.884 7.685 5.329
64000 14.722 4.616 3.312 12.170 5.550 3.333
128000 10.406 3.555 2.296 9.898 3.661 1.777

Table D.29: Predicted Performance for Two Applications. Predicted lifespans are 100 times
those measured. Predicted CPU speed is 100 times a Sun4,/280.

246

Lisp Compiler (stop©) RL (stop©)

Threshold Pause Length (msec) Pause Length (msec)

(kbytes) | pr=10% | pr=20% | pr=30% | pr=40% pr=10% | pr=20% | pr=30% | pr=40%
2000 39.49 37.93 38.59 37.15 40.19 38.88 38.96 39.26
4000 76.17 67.94 72.78 70.40 78.66 73.71 75.10 76.40
8000 146.11 122.43 125.25 124.88 151.50 135.17 139.62 144.25
16000 275.07 217.12 209.39 199.83 282.90 247.28 253.94 263.32
32000 509.78 378.72 347.57 321.31 503.99 429.38 452.31 477.66
64000 908.59 654.02 573.52 516.55 823.90 694.25 760.59 820.33
128000 1242.42 1028.82 921.77 829.21 1263.72 1020.39 1173.85 1314.82
256000 1377.37 1146.88 1183.41 1179.80 1484.33 1426.86 1674.33 1914.14
512000 1309.04 1250.22 1236.33 1243.67 1518.19 1527.26 2108.29 2649.45
1024000 1313.05 1197.63 1311.46 1361.32 1551.15 1558.08 2149.52 2830.66

Lisp Compiler (stop©) RL (stop©)
Threshold Collection Frequency (sec) Collection Frequency (sec)

(kbytes) | pr=10% | pr=20% | pr=30% | pr=40% pr=10% | pr=20% | pr=30% | pr=40%
2000 0.15 0.08 0.05 0.04 0.14 0.07 0.05 0.04
4000 0.32 0.18 0.11 0.09 0.29 0.16 0.11 0.08
8000 0.70 0.45 0.27 0.21 0.61 0.36 0.23 0.17
16000 1.55 1.06 0.71 0.55 1.36 0.85 0.54 0.38
32000 3.51 2.44 1.72 1.36 3.19 1.99 1.26 0.89
64000 7.97 5.50 3.95 3.12 7.97 4.77 2.98 2.09
128000 20.34 12.27 8.73 6.85 20.42 11.49 7.15 4.97
256000 51.58 29.53 19.46 14.82 51.17 26.56 16.94 11.87
512000 129.16 61.40 43.43 33.18 120.11 60.59 37.58 27.18
1024000 278.31 139.15 88.05 65.10 256.68 130.03 84.75 61.36

Lisp Compiler (stop©) RL (stop©)
Threshold Promotion Rate (%) Promotion Rate (%)

(kbytes) | pr=10% | pr=20% | pr=30% | pr=40% pr=10% | pr=20% | pr=30% | pr=40%
2000 85.10 72.04 77.52 67.20 91.25 79.82 80.89 83.23
4000 73.42 44.40 60.90 54.90 83.75 64.07 69.79 74.75
8000 62.63 33.01 30.96 33.98 71.84 46.11 52.02 59.37
16000 50.56 24.93 19.99 16.84 54.73 35.42 38.27 42.34
32000 40.05 18.78 14.60 11.91 35.45 23.34 27.14 32.13
64000 27.49 14.53 11.06 8.96 17.76 12.96 17.02 20.77
128000 2.28 7.46 7.34 6.60 10.12 6.39 9.00 11.53
256000 0.01 0.39 0.90 2.55 0.58 3.33 5.11 5.82
512000 0.00 0.00 0.01 0.12 0.00 0.17 0.78 2.93
1024000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15

Table D.30: Second Generation Metrics for Four Applications Assuming Longer Running Pro-
grams and Faster CPU’s. Object lifespan is assumed to be 100 times the lifespan actually observed.

247

Lisp Compiler (stop©) RL (stop©)

Threshold Size Pause Length (msec) Pause Length (msec)

(kbytes) pr=2% | pr=4% | pr=6% | pr=8% pr=2% | pr=4% | pr=6% | pr = 8%
2000 40.44 40.74 39.92 39.22 40.30 40.41 40.37 40.22
4000 79.60 80.88 78.21 76.72 78.98 79.48 79.31 78.64
8000 153.41 159.18 151.84 146.71 150.41 152.78 152.03 151.00
16000 277.97 308.07 290.11 276.81 278.50 287.08 287.20 281.13
32000 374.70 569.71 544.29 516.87 509.90 506.60 510.40 499.70
64000 377.33 844.50 920.17 901.55 675.34 881.40 849.09 814.31
128000 325.20 865.11 1000.10 1153.29 637.97 1076.78 1214.30 1245.20
256000 423.32 746.03 1079.48 1148.75 640.24 1008.02 1316.08 1352.16
512000 417.14 968.46 1161.26 995.27 664.46 1013.23 1453.13 1264.84
1024000 377.19 952.33 1014.64 1295.91 924.07 1055.42 1155.45 1273.45

Lisp Compiler (stop©) RL (stop©)
Threshold Size Collection Frequency (sec) Collection Frequency (sec)

(kbytes) pr=2% | pr=4% | pr=6% | pr=8% pr=2% | pr=4% | pr=6% | pr = 8%
2000 0.74 0.37 0.25 0.20 0.70 0.35 0.23 0.18
4000 1.52 0.75 0.52 0.41 1.44 0.72 0.48 0.36
8000 3.17 1.52 1.10 0.87 3.06 1.50 1.01 0.77
16000 7.06 3.17 2.38 1.91 6.95 3.32 2.21 1.70
32000 20.27 6.93 5.23 4.29 16.07 7.74 5.21 3.99
64000 65.67 17.31 12.22 9.85 44.55 19.13 13.21 10.05
128000 188.09 61.73 39.90 25.86 145.43 53.25 33.65 25.51
256000 305.94 183.93 94.95 71.93 337.17 155.04 85.60 66.35
512000 658.31 302.24 198.43 194.09 702.74 346.42 178.90 168.67
1024000 1543.82 654.61 492.39 311.49 1045.26 712.82 504.67 359.86

Table D.31: Third Generation Metrics for Four Applications Assuming Longer Running Pro-
grams and Faster CPU’s. Object lifespan is assumed to be 100 times the lifespan actually observed.

248

Lisp Compiler

Cache Size Total miss rate (%)
th =125 th = 250 | th =500 | th = 1000 | th = 2000
stop-and-copy (512k) 0.390 0.463 0.472 0.487 0.477
mark-and-sweep (512k) 0.194 0.226 0.358 0.462 0.487
stop-and-copy (1M) 0.326 0.379 0.362 0.409 0.407
mark-and-sweep (1M) 0.125 0.133 0.231 0.319 0.406
stop-and-copy (2M) 0.123 0.141 0.111 0.167 0.361
mark-and-sweep (2M) 0.105 0.111 0.181 0.236 0.305

Curare

Cache Size Total miss rate (%)
th =125 th = 250 | th =500 | th = 1000 | th = 2000
stop-and-copy (512k) 0.167 0.157 0.204 0.176 0.174
mark-and-sweep (512k) 0.198 0.158 0.166 0.171 0.224
stop-and-copy (1M) 0.082 0.122 0.133 0.099 0.090
mark-and-sweep (1M) 0.151 0.116 0.072 0.082 0.107
stop-and-copy (2M) 0.043 0.069 0.079 0.069 0.057
mark-and-sweep (2M) 0.092 0.047 0.057 0.066 0.062

Boyer Moore TP

Cache Size Total miss rate (%)
th =125 th = 250 | th =500 | th = 1000 | th = 2000
stop-and-copy (5121{) 0.142 0.141 0.152 0.161 0.152
mark-and-sweep (512k) 0.099 0.109 0.127 0.147 0.155
stop-and-copy (1M) 0.097 0.104 0.106 0.113 0.113
mark-and-sweep (1M) 0.059 0.067 0.072 0.082 0.114
stop-and-copy (2M) 0.053 0.052 0.059 0.083 0.093
mark-and-sweep (2M) 0.044 0.052 0.056 0.060 0.087

RL

Cache Size Total miss rate (%)
th =125 th = 250 | th =500 | th = 1000 | th = 2000
stop-and-copy (512k) 0.489 0.465 0.572 0.548 0.577
mark-and-sweep (512k) 0.536 0.464 0.460 0.426 0.412
stop-and-copy (1M) 0.398 0.384 0.422 0.422 0.444
mark-and-sweep (1M) 0.397 0.293 0.263 0.251 0.299
stop-and-copy (2M) 0.151 0.166 0.216 0.248 0.348
mark-and-sweep (2M) 0.246 0.226 0.215 0.208 0.187

Table D.32: Total Cache Miss Rates for Three Collection Algorithms.

249

Ifetch Miss Rates

Cache Size | Instruction cache miss rate (%)
(kbytes) | SLC | RSIM | Weaver | PMA
32| 2.21 1.34 1.72 2.40

64 | 1.54 0.87 0.53 1.55

128 | 0.92 0.85 0.49 1.08

256 | 0.52 0.03 0.01 0.54

512 | 0.21 0.03 0.01 0.21

1024 | 0.11 0.03 0.00 0.11

2048 | 0.06 0.03 0.00 0.08

Table D.33: Instruction Cache Miss Rates for Four Applications.

Speedup

Actual Effective Uniprocessors
Processors | 0.1% | 0.3% | 0.5% | 1% | 1.5%
1 1.00 1.00 1.00 1.00 | 1.00
5 5.00 4.98 4.94 4.76 | 4.49
10 9.99 9.88 9.63 8.35 | 6.74
20 19.94 | 19.24 | 17.00 | 10.08 | 7.06
30 29.85 | 26.99 | 19.13 | 10.09 | 7.06
40 39.70 | 30.80 | 19.18 | 10.09 | 7.06
50 49.43 | 31.29 | 19.18 | 10.09 | 7.06
60 58.97 | 31.30 | 19.18 | 10.09 | 7.06
70 68.18 | 31.30 | 19.18 | 10.09 | 7.06
80 76.76 | 31.30 | 19.18 | 10.09 | 7.06
90 84.06 | 31.30 | 19.18 | 10.09 | 7.06
100 89.11 | 31.30 | 19.18 | 10.09 | 7.06

Table D.34: Maximum Effective Uniprocessors for Different Miss Ratios.

250

Lisp Compiler (stop©)

Lisp Compiler (mark&sweep)

Actual Effective Uniprocessors Effective Uniprocessors
Processors | th =125 | th =500 | th = 2000 th =125 | th = 500 th = 2000
1 0.64 0.81 0.87 0.63 0.79 0.87
5 3.17 4.02 4.31 3.15 3.95 4.32
10 6.28 7.96 8.48 6.30 7.86 8.50
20 12.13 15.18 15.86 12.56 15.52 15.91
30 16.62 20.00 19.78 18.76 22.69 19.87
40 18.27 21.10 20.24 24.88 28.50 20.34
50 18.39 21.13 20.24 30.83 31.42 20.35
60 18.39 21.13 20.24 36.44 31.90 20.35
70 18.39 21.13 20.24 41.34 31.92 20.35
80 18.39 21.13 20.24 44.82 31.92 20.35
90 18.39 21.13 20.24 46.36 31.92 20.35
100 18.39 21.13 20.24 46.66 31.92 20.35
Curare (stop©) Curare (mark&sweep)
Actual Effective Uniprocessors Effective Uniprocessors
Processors | th =125 | th =500 | th = 2000 th =125 | th = 500 th = 2000
1 0.87 0.91 0.94 0.86 0.89 0.93
5 4.33 4.56 4.69 4.28 4.44 4.64
10 8.66 9.12 9.37 8.54 8.88 9.27
20 17.31 18.18 18.72 17.02 17.74 18.51
30 25.93 27.15 28.03 25.36 26.58 27.70
40 34.52 35.95 37.30 33.45 35.40 36.81
50 43.06 44.43 46.50 41.00 44.19 45.78
60 51.53 52.24 55.58 47.31 52.94 54.52
70 59.89 58.58 64.49 51.18 61.63 62.81
80 68.08 62.30 73.07 52.37 70.22 70.19
90 75.95 63.41 81.05 52.49 78.67 75.81
100 83.26 63.53 87.87 52.50 86.88 78.79
RL (stop©) RL (mark&sweep)
Actual Effective Uniprocessors Effective Uniprocessors
Processors | th =125 | th =500 | th = 2000 th =125 | th = 500 th = 2000
1 0.58 0.74 0.85 0.58 0.72 0.84
5 2.86 3.65 4.20 2.86 3.57 4.18
10 5.63 7.19 8.25 5.64 7.11 8.30
20 10.59 13.34 15.12 10.59 13.95 16.16
30 13.36 16.33 18.03 13.39 20.08 22.69
40 13.74 16.61 18.22 13.78 24.23 25.92
50 13.75 16.62 18.22 13.78 25.43 26.35
60 13.75 16.62 18.22 13.78 25.50 26.36
70 13.75 16.62 18.22 13.78 25.50 26.36
80 13.75 16.62 18.22 13.78 25.50 26.36
90 13.75 16.62 18.22 13.78 25.50 26.36
100 13.75 16.62 18.22 13.78 25.50 26.36

Table D.35:

Garbage collection induced overhead is taken into account.

Maximum Effective Uniprocessors for Different Algorithms and Threshold Sizes.

251

Bibliography

[1]

[2]

D. Allen, S. Steinberg, and L. Stabile. Recent developments in Butterfly Lisp. In Proc.
AAAI-87 Sizth National Conference on Artificial Intelligence, July 1987.

Andrew Appel, John Ellis, and Kai Li. Real-time concurrent collection on stock multi-
processors. In Proceedings of the SIGPLAN’88 Conference on Programming Language
Design and Implementation, pages 11-20, Atlanta, GA, June 1988. SIGPLAN, ACM
Press.

Andrew W. Appel. Simple generational garbage collection and fast allocation.
Software— Practice and Experience, 19(2):171-183, February 1989.

Stefan Arnborg. Optimal memory management in a system with garbage collection.
BIT, 14:375-381, 1974.

H. D. Baecker. Garbage collection for virtual memory computer systems. Communi-
cations of the ACM, 15(11):981-986, November 1972.

Henry G. Baker, Jr. List processing in real time on a serial computer. Communications
of the ACM, 21(4):280-294, April 1978.

Mary Gray Baker. Discussion about sprite protection faults. Personal communication.,
October 1989.

David R. Barach, David H. Taenzer, and Robert E. Wells. A technique for finding
storage allocation errors in C-language programs. ACM SIGPLAN Notices, 17(5):16—
23, March 1982.

B. T. Bennett and V. J. Kruskal. LRU stack processing. IBM Journal of Research and
Development, pages 353-357, July 1975.

D.I. Bevan. Distributed garbage collection using reference counting. In PARLFE Parallel
Architectures and Languages Europe, pages 273—288. Springer- Verlag, June 1987. LNCS
259.

Peter B. Bishop. Computer Systems with a Very Large Address Space and Garbage Col-
lection. PhD thesis, MIT Laboratory for Computer Science, Cambridge, Massachusetts,
May 1977.

252

[12] Daniel G. Bobrow, Kenneth Kahn, Gregor Kiczales, Larry Masinter, Mark Stefik, and
Frank Zdybel. CommonLoops: Merging Lisp and object-oriented programming. In
Norman Meyrowitz, editor, OOPSLA’86 Conference Proceedings, pages 17-37, Port-
land, OR, November 1986. ACM.

[13] Daniel G. Bobrow and Daniel L. Murphy. Structure of a Lisp system using two-level
storage. Communications of the ACM, 10(3):155-159, March 1967.

[14] Robert S. Boyer and J Strother Moore. A Computational Logic Handbook, volume 23
of Perspectives in Computing. Academic Press, Inc., Boston, 1988.

[15] D. R. Brownbridge. Recursive Structures in Computer Systems. PhD thesis, University
of Newcastle on Tyne, September 1984.

[16] Luca Cardelli, James Donahue, Lucille Glassman, Mick Jordan, Bill Kalsow, and Greg
Nelson. The Modula-3 report. Technical Report Research Report 31, Digital Equipment
Corporation System Research Center, Palo Alto, CA, August 1988.

[17] Patrick Caudill and Allen Wirfs-Brock. A third generation Smalltalk-80 implemen-
tation. In Normam Meyrowitz, editor, OOPSLA’86 Conference Proceedings, pages
119-130, Portland, OR, September 1986. ACM.

[18] C. J. Cheney. A nonrecursive list compacting algorithm. Communications of the ACM,
13(11):677-678, November 1970.

[19] Douglas W. Clark and C. Cordell Green. An empirical study of list structure in Lisp.
Communications of the ACM, 20(2):78-87, February 1977.

[20] W.F. Clocksin and C.S. Mellish. Programming in Prolog. Springer-Verlag, New York,
1981.

[21] Jacques Cohen. A use of fast and slow memories in list-processing languages. Com-
munications of the ACM, 10(2):82-86, February 1967.

[22] Jacques Cohen and Alexandru Nicolau. Comparison of compacting algorithms for
garbage collection. ACM Transactions on Programming Languages and Systems,
5(4):532-553, October 1983.

[23] George E. Collins. A method for overlapping and erasure of lists. Communications of
the ACM, 2(12):655-657, December 1960.

[24] Anthony James Cortemanche. MultiTrash, a parallel garbage collector for multi-
Scheme. Bachelor’s thesis, MIT, January 1986.

[25] Robert Courts. Improving locality of reference in a garbage-collecting memory man-
agement system. Commaunications of the ACM, 31(9):1128-1138, September 1988.

253

[26] D. Julian M. Davies. Memory occupancy patterns in garbage collection systems. Com-
munications of the ACM, 27(8):819-825, August 1984.

[27] L. Peter Deutsch and Daniel G. Bobrow. An efficient, incremental, automatic garbage
collector. Communications of the ACM, 19(9):522-526, September 1976.

[28] Edsger W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten, and E. F. M. Steffens.
On-the-fly garbage collection: An exercise in cooperation. Communications of the
ACM, 21(11):966-975, November 1978.

[29] John R. Ellis, Kai Li, and Andrew Appel. Real-time concurrent collection on stock
multiprocessors. Technical Report 25, DEC Systems Research Center, Palo Alto, CA,
February 1988.

[30] Robert R. Fenichel and Jerome C. Yochelson. A Lisp garbage-collector for virtual
memory computer systems. Commaunications of the ACM, 12(11):611-612, November
1969.

[31] John Foderaro, Keith Sklower, Kevin Layer, et al. Franz Lisp Reference Manual. Franz
Inc., Berkeley, CA, 1985.

[32] John K. Foderaro and Richard J. Fateman. Characterization of VAX Macsyma. In
Proceedings of the 1981 ACM Sympostum on Symbolic and Algebraic Manipulation,
pages 14-19. ACM, 1981.

[33] Franz Incorporated. Allegro Common Lisp User Guide, Release 3.0 (beta) edition,
April 1988.

[34] Richard P. Gabriel. Performance and Fvaluation of Lisp Systems. MIT Press Series
in Computer Science. M.I.T. Press, Cambridge, MA, 1985.

[35] Richard P. Gabriel. Performance Evaluation of Lisp Systems. Computer Systems
Series. MIT Press, Cambridge, Massachusetts, 1985.

[36] Richard P. Gabriel and John McCarthy. Qlisp. In Janusz S. Kowalik, editor, Parallel
Computation and Computers for Artificial Intelligence, pages 63—-90. Kluwer Academic
Publishers, 1988.

[37] Adele Goldberg and David Robson. Smalltalk-80: the Language and Its Implementa-
tion. Series in Computer Science. Addison-Wesley, Palo Alto, CA, 1983.

[38] Benjamin Goldberg. Generational reference counting: A reduced-communication dis-
tributed storage reclamation scheme. In Proceedings of the SIGPLAN’89 Conference
on Programming Language Design and Implementation, pages 313-320, Portland, OR,
June 1989.

[39] Ron Goldman and Richard P. Gabriel. Qlisp: Parallel processing in Lisp. IEEE
Software, 6(4):51-59, July 1989.

254

[40] Robert H. Halstead, Jr. Multilisp: A language for concurrent symbolic computation.
ACM Transactions on Programming Languages and Systems, 7(4):501-538, October
1985.

[41] Tim Hickey and Jacques Cohen. Performance analysis of on-the-fly garbage collection.
Communications of the ACM, 27(11):1143-1154, November 1984.

[42] Mark Hill, Susan Eggers, James Larus, George Taylor, et al. SPUR: A VLSI multipro-
cessor workstation. IEEE Computer, 19(11):8-22, November 1986.

[43] Mark D. Hill. TYCHO. University of Wisconsin, Madison, WI. Unix manual page.

[44] Mark D. Hill. Aspects of Cache Memory and Instruction Buffer Performance. PhD
thesis, University of California at Berkeley, Berkeley, CA, November 1987. Also appears
as tech report UCB/CSD 87/381.

[45] C. A. R. Hoare. Optimization of store size for garbage collection. Information Pro-
cessing Letters, 2:165-166, February 1974.

[46] Motokuza Hozumi, Toshiaki Kurokawa, Norihisa Suzuki, Tomoyuki Tanaka, and
Shigeru Uzuhara. Multiprocessor Common Lisp on TOP-1. In US/Japan Workshop
on Parallel Lisp, Sendai, Japan, June 1989.

[47] Douglas Johnson. Trap architectures for Lisp systems. Technical Report UCB/CSD
88/470, UCBCS, Berkeley, CA, November 1988.

[48] Douglas Johnson. Discussion about a large lisp cad system. Personal communication.,
October 1989.

[49] Mike Johnson. Am29000 User’s Manual. Advanced Micro Devices, 1987.

[50] Gerry Kane. MIPS R2000 RISC Architecture. Prentice-Hall, Englewood Cliffs, NJ,
1987.

[61] David Kranz, Robert H. Halstead, Jr., and Eric Mohr. Mul-T: A high-performance
parallel Lisp. In Proceedings of the SIGPLAN’89 Conference on Programming Language
Design and Implementation, pages 81-90, Portland, OR, June 1989. SIGPLAN, ACM
Press.

[52] H. T. Kung and S. W. Song. An efficient parallel garbage collection system and its
correctness proof. Technical note, Department of Computer Science, Carnegie-Mellon
University, Pittsburgh, Pennsylvania, 1977.

[63] Leslie Lamport. Garbage collection with multiple processes: An exercise in parallelism.

In Proceedings of the International Conference on Parallel Processing, pages 50-54,
Walden Woods, Massachusetts, August 1976. IEEE.

255

[64] James R. Larus. Restructuring Symbolic Programs for Concurrent Fzecution on Mul-
tiprocessors. PhD thesis, University of California, Berkeley, Berkeley, CA, 1989.

[55] Henry Lieberman and Carl Hewitt. A real-time garbage collector based on the lifetimes
of objects. Communications of the ACM, 26(6):419-429, June 1983.

[56] B. Liskov, R. Atkinson, T. Bloom, E. Moss, J. C. Shaffert, R. Scheifler, and A. Snyder.
The CLU Reference Manual. Lecture Notes in Computer Science. Springer-Verlag,
New York, New York, 1981.

[57] LMI. The lambda system: Technical summary. Technical report, LISP Machines, Inc.,
1983.

[58] Shogo Matsui, Yoshinobu Kato, Shinsuke Teramura, Tomoyuki Tanaka, Nobuyuki
Mohri, Atsushi Maeda, and Masakazu Nakanishi. Synapse: A multi-microprocessor
Lisp machine with parallel garbage collector. In Proceedings of the International Work-
shop on Parallel Algorithms and Architectures, pages 131-137, Suhl, GDR, March 1987.

[59] R. L. Mattson, J. Gecsei, D. Slutz, and I. L. Traiger. Evaluation techniques for storage
hierarchies. IBM Systems Journal, 9(2):78-117, 1970.

[60] John McCarthy. Recursive functions of symbolic expressions and their computations
by machine, part I. Communications of the ACM, 3(4):184-195, April 1960.

[61] David A. Moon. Garbage collection in a large Lisp system. In Conference Record of the
1984 ACM Symposium on LISP and Functional Programming, pages 235-246, Austin,
Texas, August 1984.

[62] David A. Moon. Architecture of the Symbolics 3600. In Proceedings of the Twelfth
Symposium on Computer Architecture, Boston, Massachusetts, June 1985.

[63] Mike N. Nelson. Physical Memory Management in a Network Operating System. PhD
thesis, University of California at Berkeley, Berkeley, CA, November 1988. Also appears
as tech report UCB/CSD 88/471.

[64] I. A. Newman, R. P. Stallard, and M. C. Woodward. Improved multiprocessor garbage
collection algorithms. In Proceedings of the 1983 International Conference on Parallel
Processing, pages 367-368, Ohio State University, Columbus, OH, August 1983. IEEE.

[65] I. A. Newman and M. C. Woodward. Alternative approaches to multiprocessor garbage
collection. In Proceedings of the 1982 International Conference on Parallel Processing,
pages 205-210, Ohio State University, Columbus, OH, August 1982. IEEE.

[66] Peter Nuth and Robert Halstead, Jr. A study of LISP on a multiprocessor (preliminary
version). Lisp Pointers, 2(3—-4):15-32, 1989.

256

[67] Frank Olken. Efficient methods for calculating the success function of fixed space
replacement policies. Master’s thesis, University of California at Berkeley, Berkeley,
CA, March 1981.

[68] C.-J. Peng and G. S. Sohi. Cache memory design considerations to support languages
with dynamic heap allocation. Technical Report 860, Computer Sciences Dept., Univ.
of Wisconsin—Madison, July 1989.

[69] R. Rashid et al. Machine-independent virtual memory management for paged unipro-
cessor and multiprocessor architectures. In Second Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS II), pages 31-39. ACM,
October 1987.

[70] Ken Rimey and Paul N. Hilfinger. A compiler for application-specific signal processors.
In VLSI Signal Processing, 111, pages 341-351. IEEE Press, November 1988.

[71] Paul Rovner. On adding garbage collection and runtime types to a strongly-typed,
statically checked, concurrent language. Technical Report CSL-84-7, Xerox Palo Alto
Research Center, Palo Alto, California, July 1985.

[72] H. Schorr and W. M. Waite. An efficient machine-independent procedure for garbage
collection in various list structures. Communications of the ACM, 10(8):501-506, Au-
gust 1967.

[73] Robert A. Shaw. Improving garbage collector performance in virtual memory. Technical
Report CSL-TR-87-323, Stanford University, March 1987.

[74] Robert A. Shaw. EFmpirical Analysis of a Lisp System. PhD thesis, Stanford University,
Stanford, CA, February 1988. Also appears as Computer Systems Laboratory tech
report CSL-TR-88-351.

[75] Patrick G. Sobalvarro. A lifetime-based garbage collector for LISP systems on general
purpose computers. Bachelor’s thesis, MIT, 1988.

[76] Guy L. Steele, Jr. Common Lisp: The Language. Digital Press, Burlington, Mas-
sachusetts, 1984.

[77] Guy L. Steele, Jr. Multiprocessing compactifying garbage collection. Communications
of the ACM, 18(9):495-508, September 1975.

[78] Peter Steenkiste. Lisp on a reduced-instruction-set processor: Characterization and
optimization. Technical Report CSL-TR-87-324, Computer Systems Laboratory, Stan-
ford University, March 1987. PhD dissertation.

[79] Sun Microsystems, Inc., Mountain View, CA. The SPARC Architecture Manual, revi-
sion 50 edition, August 1987.

257

[80] George Taylor. Ratio of MIPS R3000 instructions to heap references. Personal com-
munication, October 1989.

[81] George S. Taylor, Paul N. Hilfinger, James R. Larus, David A. Patterson, and Ben-
jamin G. Zorn. Evaluation of the SPUR Lisp architecture. In Proceedings of the
Thirteenth Symposium on Computer Architecture, June 1986.

[82] Chris J. Terman. Simulation tools for digital LSI design. Technical Report TR-304,
MIT Laboratory for Computer Science, Cambridge, MA, September 1983.

[83] James G. Thompson. Efficient Analysis of Caching Systems. PhD thesis, University
of California at Berkeley, Berkeley, CA, October 1987. Also appears as tech report
UCB/CSD 87/374.

[84] David Ungar. Generation scavenging: A non-disruptive high performance storage recla-
mation algorithm. In SIGSOFT/SIGPLAN Practical Programming Environments Con-
ference, pages 157-167, April 1984.

[85] David Ungar and Frank Jackson. Tenuring policies for generation-based storage recla-
mation. In OOPSLA’88 Conference Proceedings, pages 1-17. ACM, September 1988.

[86] David M. Ungar. The Design and Fvaluation of A High Performance Smalltalk System.
PhD thesis, University of California at Berkeley, Berkeley, CA, March 1986. Also
appears as tech report UCB/CSD 86/287.

[87] Philip L. Wadler. Analysis of an algorithm for real time garbage collection. Commu-
nications of the ACM, 19(9):491-500, September 1976.

[88] David W. Wall. Global register allocation at link time. Technical Report 86/3, DEC
Western Research Laboratory, Palo Alto, CA, October 1986.

[89] Skef Wholey, Scott Fahlman, and Joseph Ginder. Revised internal design of Spice
Lisp. Technical report, Department of Computer Science, Carnegie-Mellon University,
Pittsburgh, Pennsylvania, January 1985.

90| Paul R. Wilson. OppOI‘tllIliStiC arbage collection. SIGPLAN NOtiCGS, 23(12 :98—102,
g g
December 1988.

[91] Paul R. Wilson and Thomas G. Moher. Design of an efficient generation garbage
collector. To appear., April 1989.

[92] Taiichi Yuasa. Realtime garbage collection on general-purpose machines. Technical
Report Preprint 535, Research Institute for Mathematical Science, Kyoto University,
Japan, 1986.

[93] Taiichi Yuasa and Masami Hagiya. The KCL Report. Research Institute for Mathe-
matical Sciences, University of Kyoto.

258

[94] Benjamin Zorn and Paul Hilfinger. Direct function calls in SPUR Lisp. Technical Re-
port UCB/CSD 88/403, Computer Science Division (EECS), University of California,
Berkeley, February 1988.

95] Benjamin Zorn and Paul Hilfinger. A memory allocation profiler for C and Lisp pro-
g
grams. In Proceedings of the Summer 1988 USENIX Conference, San Francisco, CA,
June 1988.

[96] Benjamin Zorn, Paul Hilfinger, Kinson Ho, and James Larus. SPUR Lisp: Design
and implementation. Technical Report UCB/CSD 87/373, Computer Science Division
(EECS), University of California, Berkeley, October 1987.

[97] Benjamin Zorn, Kinson Ho, James Larus, Luigi Semenzato, and Paul Hilfinger. Mul-
tiprocessing extensions in SPUR Lisp. IEEFE Software, 6(4):41-49, July 1989.

259

