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STABILITY OF A CLASS OF NONRECIPROCAL CELLULAR NEURAL NETWORKS

by

Leon O.Chua and Tamas Roska

Abstract

Cellular neural networks provide a new and powerful approach

to neural computing. Each cellular neural network is uniquely

defined by a template. Many useful templates for various

applications, such as geometric pattern recognition, have been

published. Not only local but even global pattern features can be

recognized in real-time. This is one generic and remarkable

property of cellular neural networks. If these networks are

symmetric, i.e. if the feedback values between the cells are

reciprocal then these networks and their circuit realizations are

globally asymptotically stable. Practical circuit realizations,

however, inevitably give rise to nonreciprocity. In this paper we

show that, for a class of practically important templates

(positive and opposite-sign templates), the stability property is

assured even if the symmetry/reciprocity condition is not met.

Moreover, the nonreciprocity allowed in our theorems is not re

stricted to small or local perturbations in an otherwise recipro

cal circuit.

I. INTRODUCTION

Artificial analog "neural" networks compute in real-time.

None of the digital realizations can compete in this respect (even

for the new generation of massively parallel digital signal

processors which can significantly outperform the conventional

digital-logical approach). The recently invented cellular neural

networks1 are multidimensional generalizations of neural networks,
and endowed with some additional properties. The recent applica

tions of two-dimensional cellular neural networks are quite

encouraging2. Moreover, some new analog templates3,4 have revealed



exciting new applications and great potentials for cellular neural

networks.

A necessary condition for the proper operation of a neural

network is that it be globally asymptotically stable within the

dynamic range of prescribed inputs. The global asymptotic

stability (convergence) of a subclass of cellular neural networks

defined by symmetric templates has been proved in the original

paper1. The symmetry condition means that the feedback coeffi
cients (prescribed by the cloning templates) between any two cells

are reciprocal in the sense that the corresponding values are the

same; i.e. A(i,j;k,l) =A(k,l;i,j).

In this paper we show that (i) unconditional global

asymptotic stability is guaranteed for all cellular neural

networks defined by positive templates (all feedback template

values are positive, except some which are zero) without any

symmetry requirement and (ii) for all cellular neural networks

defined by templates having nonzero values only in the central row

or column and having opposite signs relative to the central

template element, a similar stability property as well as the

mechanism of the dynamics, is shown. This latter class of

templates can be characterized by templates having nonzero values

in the central row or column with a pattern like (s 2 -r), where s

and r are positive.

In Section II. the various forms of asyrametry/nonreciprocity

and some classes of templates are rigorously defined. Section III

contains the stability result for positive templates while in

Section IV the stability properties and the structure of the

dynamics of opposite sign-templates are presented. Some simulation

results are given in Section V. Finally, some concluding remarks

and conjectures are summarized in Section VI.

II. THE GENERAL FRAMEWORK AND TWO IMPORTANT CLASSES OF

NON-SYMMETRIC TEMPLATES

The dynamical system equations associated with cellular

neural networks are given in Reference 1. Here we recall only the

main results. The extensions of these results for cellular neural

networks of dimension more than two is straight-forward.



Consider the analog processing cell circuit, henceforth

called a cell, as shown in Figure l.a with only one nonlinear

element whose characteristics is shown in Figure l.b. This cell is

located in the (i,j) position of a two-dimensional regular array

of M x N cells. The r-neighbourhood Nr(i,j) of a typical cell
C(i,j) is defined as

Nr(i,j) ={c(k,l), max (|k-il ,|l-j|) =r (integer) j (1)

An r=2 neighbourhood of a cell within a cell array consists of all

those cells shown shaded in Figure I.e.

In a typical cellular neural network, we have nonlinear elements

with fixed characteristics, linear elements with fixed values (C,

Rx, Ry and f), as well as elements with variable parameters
associated with the feedback templates A(i,j;k,l), the feed

forward templates B(i,j;k,l) and the current source I. The space

invariance of the templates A and B is assumed (i.e. all cells

have the same A and B as their nominal template values).

The input pattern for a cellular neural network is the set of

initial values vxij(0) across the capacitors and possibly the
input voltage sources vuij(0).

For example1, a black-and-white input picture can be coded as
a binary image .where 1 corresponds to a black pixel and -1

corresponds to a white pixel. In the case r=l and

0 0 0

A= ]0 0 0

the corresponding cellular neural network has been shown to

operate as a line detector; i.e. after the transients has settled

down the outputs of the cells (which tend to + 1) will extract

only the horizontal lines in the picture.

The dynamical system equations describing a cellular neural

network are as follows

State equation;

C—--— =-J^vxlj(t) + ^_ A(i,j;k,l, vykl(t)
c(k,i)eNrd,j)

+ J/* B(i,j;k,l) Vukl(t) +I (2a)
C(k,l)6Nr(i,j)
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Output equation-

vyij(t) = 0.5 (fvxij(t)+l|-(vxij(t)-l|) = f(vxij) (2b)
For technical reasons, which reflects also the real circuit

situations, the piecewise-linear funtion f can be approximated to

within any precision by a smooth (C1) sigmoid function which
preserves the monotone-increasing character.

Input equation;'

vuij " Eij (2c)
Constraint, equations-

lYxijt0)!^1 (2d)
lvuijl tf * (2e)

Parameter assumptions;

A(i,j;k,l)=A(k,l;i, j) symmetry condition (2f)

C>0, Rx>0. (2g)
The assumption (2f) implies the perfect symmetry of the feedback-

template values between any two cells within a neighbourhood. In

the actual circuit realization this symmetry condition is

equivalent to the reciprocity of the relevant feedback controlled

current sources whose values are in turn determined by transistors

and resistors used in their circuit implementation.

In the- basic paper1 several important theorems were proved
concerning the qualitative and quantitative properties of cellular

neural networks. An important result states that if the parameters

satisfy the symmetry condition .then Theorem 4 of

Reference 1 guarantees that the circuit will be globally
asymptotically stable. Moreover, if the condition

A(i,j;i,j)>l/Rx (3)

is satisfied, then there is no oscillation (or chaos) and all the

output magnitude values are greater than or equal to 1.

In real-life circuit realizations, however, condition (2f)

can never be fulfilled exactly. in view of manufacturing

imperfections and parameter variations due to aging. Fortunately,
many experiments and simulations have shown that even non-

perfectly symmetric cellular neural networks (and nonreciprocal

circuits) do function properly: they are globally asymptotically
stable and always tend to constant values. Nevertheless, it is
desirable that a rigorous proof be given for this much larger
class of cellular neural networks.



In this paper the stability properties of two classes of

nonsvmmetrlc templates are considered. First, let us define them

precisely.

PefAnAtion \. The class of positive feedback templates for

cellular neural networks is defined by the dynamical equations (2)

and (3),except (2f), and in addition the following two conditions

must be satisfied

(i) A(i,j;k,l)=0 for all C(k,l)€ Nr(i,j) (4)
and (ii) the non-zero (hence positive) values of

A(i,j;k,l) are strategically located as to give rise to a covering

template which we define below.

A template is called a covering template iff any two cells in the

cell array can be connected by a sequence of cells with strictly

positive template values.

For example, the template of Figure 2.a is a covering (positive)

template while the template of Figure"2.b is not. A possible route

connecting two given cells for the template in Figure 2.a is shown

in Figure 2.c.

Definition 2. The class of opposite-sign templates is defined by

template ^

conditions

template values satisfying the following structures and sign

[0 s 0"l

0 p 0 I or
0-s 0J

where p > 1/RX and s> 0

0 0 0

s p-s

0 0 0 J

Remark 1. We are interested in the global stability

properties, irrespective of the local behaviour of the equilibrium

points.

Remark 2. The symmetry condition (2f) is not equivalent to

the symmetry condition of the Jacobian matrix of the state

equation because the product of two symmetric matrices need not be

symmetric.

III. STABILITY OF NONRECIPROCAL CELLULAR NEURAL NETWORKS WITH

POSITIVE TEMPLATES

Quite a few feedback cloning templates of cellular neural

networks2 have nonnegative elements only (e.g. noise removal, line
The results in this paper can be easily generalized to include

opposite-sign templates with the nonzero entries (s p -s) located in
a diagonal direction (i.e. with slope equal to +1 or -%).
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detector, etc.). In what follows we will show that under some mild

restrictions they are generally globally asymptotically stable

without requiring any symmetry condition. This is stated formally

in the next theorem.

Theorem 1.

For any given input vu and initial state vx, a cellular neural
network defined by the dynamical system equations (2), with smooth

function f(.), and having a positive feedback template, converges

to stable equilibria without nonconstant periodic solutions,

except possibly for a set of measure zero.

The proof contains three steps. First, we show that the state

equation is cooperative and irreducible. "Next, we claim that all

solutions are within a bounded range (compact closure). Finally,

applying a recent stability result5'6 we show that the network
converges to stable equilibria without nonconstant periodic

solutions.

Before giving the proof, we pause to consider the following two

definitions.

Definition 3. A dynamical system described by

d x±(t)
= pi(xl' 'xnW 1=1/2,...n i.e.

dt '

x = F(x); F 6C1 (5)
is said to be cooperative5'6 iff the off-diagonal elements of the
Jacobian matrix J=DF(x) are positive; i.e.

J
ij

'dfi
—- ^ 0 for i=fj
^Xj

Definition 4.- A dynamical system described by equation (5) is

irreducible iff for any distinct indices i and j a chain of

indices i=kQ,...,km=j can be found such that

Jk k ^°» r=1'2,...m.
r r-1

Roughly speaking, irreducibility means that any cell output can

affect, at least indirectly, the states of any other cell.

We are now ready to prove Theorem 1 in three steps.

Step 1.

Consider the state and output equations (2a) and (2b). Suppose,

all the cell state variables (vxij) are repacked into an MxN
vector x (ordered in any sequence, e.g. columnwise). The input and

output variables vuij and vyij are packed into u and y,
6 ~ ~



respectively (using the same ordering as for x) . Without loss of
generality let Rx=l, C=l and A(i, j;k, 1) )> 1. Then the state
equation assumes the form

x = F(x) = -x + A'f(x) + B'U + I (6)

where fi(x)=fi (x±)=f (x±), A' and B' contains the effects of the A
and B templates of all cells while all elements of £ are

associated with I. The off-the-center elements of the templates A

and B will convert to the off-diagonal elements of A' and B',

their location being dependent upon the corresponding order of the

cell variables and the vectors x and u. The diagonal elements of

A' and B' contain the central values of the templates A and B,

respectively.

Observe that the Jacobian matrix of equation (6) is given by

J = -U + A'P

where U is the unit matrix and P is a positive diagonal matrix

whose diagonal entries are the positive slopes of f. Hence, all of
the signs of the off-diagonal elements are determined solely by A'

i.e. by A.

It is quite easy now to show that any cellular neural network,

i.e. the dynamical system described by equation (6), which

satisfies the conditions of Theorem 1 is cooperative. This follows

from the fact that the off-diagonal elements of A' are the off-

the-center elements of the A templates which are nonnegative.

The irreducibility property follows from the positive covering

template hypothesis. Hence, choosing any two variables in x, i.e.

any two cells, it is possible to find a sequence of variables,
i.e. a sequence of cells, whose mutual partial derivatives -are

strictly positive.

Step 2.

It has been shown (Theorem 1 in Reference 1), without exploiting

the symmetry condition, that all states in a cellular neural

network are bounded for all time t>0. This bound vmax can be

calculated in closed form (equation (3) in Reference 1). Hence, it

can easily be stated that starting from x(0)=xQ6Wc (Wc^ Rn and
satisfying the constraint condition (4) ) all forward orbits are

bounded, i.e. they remain within a bounded set WCRn. Moreover, if
condition (3) is satisfied, the magnitude of the stable

equilibrium points is greater than 1. It follows from this fact

and the .piecewise-linear character of f that the number of stable

equilibrium points (which is greater than 1) is finite.

Step 3.

7



Now, we have a cooperative, irreducible system with bounded

forward orbits and with a finite number of stable equilibrium

points. The following Lemma 1 is a summary of Theorems 1.7, 2.4,

4.1 and 4.4 of Reference 5.

Lemma 1.

Assume thatthedynamical system of equation (5) is cooperative,

irreducible and has bounded forward trajectories starting from

x06wcC.Rn- Under these conditions the following statements are
true.

(a) The system can not have stable, nonconstant periodic

solutions;

(b) Except for a set of measure zerp, if xQ€ Wc then £(t)
approaches the equilibrium set E as t goes to infinity;

(c) Assume E is countable then x(t) converges to an equilibrium

point p ( F(p)=0 ) uniformly for almost all xQ6 Wc (p is called a
trap).

Hence, the cellular neural network is stable in the sense

stated in Theorem 1. Q.E.D.

Remark 3.

The templates
TO 0 Ol fo 1 0"|
> 1 2 1 and A= 0 2 0
Lo 0 oj Lo 1 oj

are not positive templates because they violate condition (ii) of

Definition 1 (this type of templates are used for edge

enhancement). They are not irreducible because the state equations

can be decomposed into M or N independent separate state

equations, respectively (one row or one column of cells). Within

these sets of independent dynamical systems, however, these

templates do qualify as positive (covering) templates (all the

cells in a row/column can be covered by the strictly positive

template directions. ). Hence, they are globally asymptotically

stable in the sense of Theorem 1.

IV. THE DYNAMICS OF OPPOSITE-SIGN TEMPLATE SYSTEMS

The type of templates .presented in the last remark is

characterized by the property that nonzero elements occur only in

one row or in one column. Clearly, this leads to a set of

independent state equations because nonzero feedback comes only

from the cells in one direction (the constant terms can arise only

8



from the dc bias I, or from constant inputs feedforward through

the templates B) . In this case the state equation (6), again

assuming Rx=l and C=l, takes on a particularly simple form:
x = -Ux + A1f (x) -b (7)

where, in the case of the opposite-sign row-type template,

A1-

[0 0 0"j
Is p -s
[o 0 oj

p -S

s p -s

P>1, s>0

and where the matrix A1 has the form

s

-s

b = I + / B(i,j;k,l) ukl (8)
~ C(k,l) -Nr(i,j)

S p J

In (7) U denotes an n-dimensional unit matrix and b€Rn, where n
denotes the number of cells in each row. In the case of the

column-type opposite-sign template, the £ojan of the state equation

(for a column of cells) is the same.

Let us now analyze the dynamics of the class of opposite-sign

template cellular neural networks described by equation (7) . Our

following analysis depends crucially on the following lemma.

Lemma 2.

(A1 - U)£ P (9)
where P denotes the class of real nxn matrices with the property

that all of their principal minors are strictly positive. One

important property of these matrices is the fact that the real

part of all of their eigenvalues are positive7. These matrices
played a crucial role in ensuring the uniqueness of DC solutions

of nonlinear circuits8.

Observe that (A1 - U) has the same form as A1 except that its
diagonal elements are given by q=p-l> 0 (instead of p).

The proof of Lemma 2 is as follows.

First, observe that any principal minor of order n^ 1 has the same

form as one of the successive principal minors of (A1 - U), or
having a block-diagonal form containing blocks of this form.

Hence, if all of the successive principal minors of (A1 - U) are
positive, then (A1 - U)fiP.
Next, we show that all successive principal minors of (A1 - U) are
positive. The first, second and third principal minors are given

respectively by:

det1=q>0, det2=q2+s2>0 and det3=qdet2+s2det1^ 0
9



Suppose, the principal minors up to the k-th order (k>2) are

positive. Then the (k+l)st one is positive again. This is true

because expanding the determinant along the first row, we obtain
detk+l = qdetk + s2detk-l

Remark 4. It is clear from the above proof that Lemma 2 is

true even if the feedback template in (7) is generalized to the

non-svmmetric template

"0 0 0"|
A = r p -s P>1, r>0, s>0,

0 0 0] '
1

In other words , the property (AA - U) € P is valid without the

additional assumption of "value symmetry"^ or "sign symmetry" for

this special class of templates. What really matters is the sign

asymmetry of the template values (in addition to the assumptions

p^l and the special structure of the templates).

Remark 5. It is important in our following proof to realize

that if a matrix belongs to the class P, then all of their

eigenvalues have a positive real part7.

Returning to our investigation of the dynamics let us

classify the states of the cells according to the values assumed

by their respective state variables vxij or xK. If a cell
characterized by the k-th state variable xK is in the range

lxKl^ 1 i.e. f(xK)=xK then it is said to be operating in
region a. Conversely, if |xK| S 1 the cell is said to be operating
in region fl. \

The mechanism of the dynamics is characterized by the next

theorem.

Theorem 2.

Let N be a cellular neural network with opposite-sign templates

and hence described by the piecewise-linear state equation (7).

Then the dynamics of N starting from any initial state satisfying

the constraint equations (2d) and (2e) has the following

properties.

(1) If all cells are operating in region a at any time t=t^
then all eigenvalues of the associated Jacobian matrix have

positive real parts at t=tj.

(2) If all cells are operating in region p then all eigenvalues

are -1, hence, they tend to decay to a constant.

10



(3) If there are b variables operating in region p, while the

rest are operating in region a then the Jacobian matrix has b

eigenvalues equal to -1, while all the other eigenvalues have a

positive real part.

Remark 6. In view of Theorems 2 and 5 of Reference 1 a

cellular neural network with opposite-sign templates and operating

in region p must converge to a stable equilibrium point even if

the network is nonreciprocal. Furthermore, if at least one cell is

operating in region o then the circuit can not be in equilibrium

because there is at least one cell whose dynamics is. growing

exponentially.

Proof of Theorem 2.

(1) If all cells are operating in region a, then equation (7)

has the form

x = -Ux + Axx - b = (Ax-U)x - b (10)
In this case the Jacobian matrix is equal to (Ax-U), which is a P-
raatrix in view of Lemma 2. It follows that all eigenvalues have

positive real parts.

(2) If all cells are operating in region p then equation (7)

has the form

x = -Ux + A1f (x) - b =» -Ux - b' (11)
****** *r>*' **«»»»

where b' = b - A1f(x), f,(x*)° 1 or -1
In this case the Jacobian matrix is equal to -U. It follows that

all eigenvalues are equal to -1. That is, all state variables are

decaying to a constant until they are operating in this region.

(3) Suppose, there is one cell operating in region p (the k-th

cell) while all the others are operating in region a. We show that

one eigenvalue of the Jacobian matrix is equal to -1 while all the

other have positive real parts. The general case when we have b

variables operating in region p can be proved by a repetitive

application of the above proof for the one variable case.

So, suppose the k-th variable is operating in region p and all

the others are operating in region a. Equation (7) then becomes

x = AaPx - bk (12)
where

11



A°P=

k-1

k

k+1

I q -s

s q -s

s

k-1 k k+1

-s

_?J
s -1 -s

0| q -s

I s .
I
I . -s

s q^

and where q=p-l; h=f(xk+1)= 1 or -1

The Jacobian matrix J=A°0 and its eigenvalues are the roots of the
determinant of (\ U-Aa^). Expanding the determinant along the k-th
column, we obtain

det(Xun-AaP) = det(\UK_1-A1) (X+l)det(Xun_k-A2) (14)
Since one eigenvalue is equal to -1 and the matrices A^ and A2

have the same form as AlsU (with different order) it follows from
Lemma 2 that they are P-matrices, and hence all their eigenvalues

have positive real parts. Q.E.D.

I

b*= bk-2

bk-l"sh
bj. + ph

+sh'k+1

5k+2

V. SOME SIMULATION RESULTS

To investigate how changes in the numerical values in a template

affect the steady state response, we simulated several examples

numerically using the same PWLSPICE program which was used in

Reference 2. The following thre,e examples are instructive in that

they reveal some interesting dynamic behaviours. In all examples

(motivated by Reference 4) the basic parameters were the same2
(relative units, C, Rx, etc.). In each example , 20 cells per row

are processed. The numerical values at each sampled time step (a

snap shot) are color coded as follows:

yellow -1, orange 0, ££& 1 and blue is the background.

The successive rows from the top to the bottom are the subsequent

transient values starting from the initial condition corresponding

to the pixel values of the picture to be processed and taking on

the values at discrete time steps (snap shots) in the interval

0-10 /us. The three examples are shown on Figure 3, using the same
bi=0.5 and the same initial picture.

12



Example l. Consider first the opposite-sign template

A =

ro o oi
= 1 2 -1

Lo o. OJ
The resulting transient is shown on Figure 3.a as a sequence of

snap shots. Notice that this circuit is stable.

Example 2. Consider next the template

A

[0 0 0 "T
1.5 2 -1

0 0 0 J
where the absolute values of the off-the-center entries are

different. The resulting transient is shown in Figure 3.b.

Although the result is different from that of Example 1 this

circuit is stable nevertheless.

Example 3. Finally, consider the template

[0 0 0")
1 0.8 -1

0 0 0 J

where the conditions A(i,j;i,j)>1/RX and (A^—U)g P are barely
violated. The resulting transient is shown in Figure 3.c. Observe

that this time, the circuit oscillates.

VI. CONCLUDING REMARKS

Cellular neural networks with appropriate choice of templates

can solve, among other things, local and global pattern

recognition problems. The global stability of these networks has

been proved earlier for the symmetric/reciprocal cases where the

feedback values between the different cells within a neighbourhood

are the same in both directions. In this paper we have shown that,

at least for some interesting classes of templates, this

symmetry/reciprocity condition is in general not necessary for

global stability. Moreover, our conditions are robust in the sense

that they require neither precise template-value relation, nor a

closeness to some prescribed values. On the other hand, we have

also seen examples such that violating some basic conditions would

give rise to oscillations.
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FIGURE CAPTIONS

Figure 1. The cell circuit and its neighbourhood in a cell array
a. .The cell circuit. Indices u, x and y refer to the input,

state and output, respectively; v denotes the node-to-datura

voltage, E and I refer to the independent voltage and current
sources. Ixy denotes the current sources controlled by the output
voltages of the cells in the r-neighbourhood and Ixu denotes the
current sources controlled by the input voltages of the cells in
the r-neighbourhood.

b. Characteristics of the single nonlinear element (a
voltage-controlled current source) in the cell circuit.

c. An r=2 neighbourhood in part of a cell array

Figure 2. Illustration of a positive template covering.

Figure 3. Transient response of three simulation studies:

a. Example 1

b. Example 2

c. Example 3
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