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ABSTRACT

We present a mathematical foundation for the algorithmic solution of free- and fixed-time optimal
control problems with evolution equation dynamics, finite dimensional controls, and constraints on the
controls and end points. In particular, (i) we develop expressions for the derivatives of the solutions of
the evolution equations with respect to controls in L% [0, 1] and to the final-time, (ii) we show that the
solutions of the relaxed evolution equations have a certain kind of directional derivative, (iii) we develop
algorithmic optimality conditions with respect to both ordinary and relaxed controls and the final-time,
and (iv) we present an approximation theory which shows that finite dimensional, minimax and methods
of centers type algorithms can be used to obtain arbitrarily good approximations to optimal controls for
optimal control problems with evolution equation dynamics and various constraints.
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1. INTRODUCTION

The results presented in this paper, dealing with the optimal control of evolution equations, were
largely motivated by optimal slewing problems arising in the control of large, flexible acrospace struc-
tures and in the control of various earthbound mechanisms with flexible links, which are naturally
modeled by coupled systems of partial differential equations. Since, in practice, only finite element plant
models may be available (which are in the form of ordinary differential equations) and since it is much
easier to work with a canonical system representation, we assume that the plant dynamics are in evolution
equation form, which permits us to treat both cases in a unified manner.

The majority of optimal control algorithms (see, for example [May.1 - May.5, Pir.2, Teo.1, Teo.2,
War.2 - War.4, Won.1]) are presented in conceptual form, i.e., the effects of numerical integration of the
differential equations are ignored. In (Kle.1] we find an approximation theory for unconstrained optimal
problems with ODE dynamics, in the form of an implementation of the method of steepest descent. More
generally, this theory provides guidelines for adaptively increasing the precision of numerical integration
so as to ensure that the numerical scheme retains the convergence properties of the conceptual one. It was
later used by [Dun.1] to implement a conditional gradient method for optimal control problems with ODE
dynamics. As far as optimal control problems with PDE dynamics are concemned, in [Gib.1, Gib.2,
Gib.3], we find a detailed solution of the linear quadratic regulator problem, including conditions for the
convergence of modal approximation schemes. However, for more general optimal control problems
with PDE dynamics, the prevailing approach has been to use some method for constructing a particular
Jfinite dimensional approximating optimal control problem and then to solve this problem by some method
or other, see, e.g. [Jun.1, Chu.1, Ben.1 Bur.1, Flo.1]. The relationship between the solutions and station-
ary points of the approximating optimal control problem and those of the original optimal control prob-
lem is not established in these papers.

In this paper, we deal with the numerical solution of optimal control problems not by adaptive
implementation of conceptual algorithms, but by adaptive diagonalization which requires less restrictive
assumptions and, in our experience, seems to produce more efficient computational schemes. In any
diagonalization approach, an original optimal control problem, P, is decomposed into an infinite sequence
of finite dimensional problems, P,, n =1,2,3,... which are solvable by nonlinear programming or
nonsmooth optimization algorithms. These problems P, must satisfy the following minimal consistency
condition. Since, in the absence of convexity, finite dimensional optimization algorithms can only be
shown to compute stationary points, rather than optimal points, the problems P, must be such that not
only their solutions converge to a solution of P, but also their (first order) stationary points converge to a
stationary point of P. Next, there is considerable empirical evidence to suggest that from a computational
point of view, the most efficient approach is to proceed gradually, iterating towards a solution of a prob-
lem P, until some test is satisfied and then carry over the last iterate as a starting point for problem P,,.;,

.1-



until the value of n is increased to some preassigned maximum value n*, rather than to solve P«
directly. In an adaptive diagonalization scheme, we can expect to find tests which determine not only
when the solution of problem P, should be arrested, but also the next value of n, which may be larger
than n+1. In return, as we will show later, the use of adaptive tests results in stronger convergence pro-
perties for the diagonalization method.

In developing an adaptive diagonalization scheme for the numerical solution of free- and fixed-time
optimal control problems with evolution equation dynamics, finite dimensional controls, and constraints
on the controls and end points, we had to deal with (i) the differentiability of solutions of PDEs with
respect to controls, (ii) optimality conditions for optimal control problems, which relate to those used in
finite dimensional nonlinear programming and nonsmooth optimization!, (iii) relaxed control theory in a
PDE setting, (iv) conditions on the numerical methods for integrating the dynamical equations, to ensure
consistent discretization, and (v) tests for progressing from P, to P,,,;.

The results presented in this paper extend and generalize the results in [Kle.1, Wil.1]. In particular,
the results in [Kle.1] do not apply to constrained problems and hence a new generation of tests had to be
invented; furthermore, the results in [Kle.1, Wil.1] apply only to problems with ODE dynamics. Nor
were algorithms for constrained minimax optimal control problems, such as those considered in this
paper, addressed in [Kle.1, Wil.1].

In Section 2, we give a formulation of the problems that we will consider. In Section 3, we develop
expressions for the derivatives of the solutions of the evolution equations with respect to controls in
(LZ[0, 1], [4,) and the final-time, and we establish first order optimality conditions for minimax optimal
control problems with control constraints and for optimal control problems with constraints on the control
and inequality constraints on the final-point. In Section 4 we introduce relaxed controls extensions of the
optimal control problems under consideration and develop appropriate extensions of the optimality condi-
tions introduced in Section 3. In Section 5 we present our approximation theory, and our adaptive diago-
nalization schemes. We show that these can be combined with a finite dimensional minimax algorithm
[Pir.1, Psh.1, Pol.1], and a new phase I - phase II method of feasible directions[Pol. 2] to obtain arbi-
trarily good approximations to optimal controls for optimal control problems with evolution equation
dynamics and various constraints. In Section 6 we present computational examples.

! It should be clear that because the optimality conditions for finite dimensional problems are in terms of "weak variations", in the absence
of convexity, stationary controls of finite dimensional approximations to an optimal control problem can only converge to a control satisfying a
"weak" optimality condition. Hence the Maximum Principle is geaerally an inappropriate optimality condition within the particular numerical ap-
proximation framework considered in this paper.



2. FORMULATION OF OPTIMAL CONTROL PROBLEMS

Many optimal control algorithms, including the ones to be presented in this paper, are extensions of
finite dimensional optimization algorithms that deal with problems defined in the Hilbert space R”.
Now, the natural space for establishing differentiability of solutions of a differential equation with respect
to m—dimensional controls is Lo [0, 1). However, adoption of L% [0, 1] as the space for analysis leads
to the somewhat awkward situation that the extensions of the finite dimensional algorithms do not appear
to be natural, because they require that we also use the L5 [0, 1] norm, [, , and L' [0, 1] scalar product,
(+,)s

Fortunately, one can also establish differentiability of solutions of a differential equation with
Tespect to controls in the Hilbert space L5 [0, 1], provided that one imposes a growth condition on the
velocity function, as we will do shortly. In the case of control constrained optimal control problems, such
as the ones treated in this paper, the imposition of a growth condition on the velocity function does not
restrict the class of problems that can be considered, and amounts to no more than a mathematically con-
venient device.

1
Finally, we recall that for any u € L3'[0, 1], lu Hzé [L lu (¢ )12dt 1%, and for anyu , v € L7[0,1),
1
(u,vh A L (u(t),v(t))dt, where Il denotes the norm on IR” and (-, -} denotes the scalar product on
R™.
We are now ready to proceed. For any 0 < T <o, let G (1) be the set of admissible controls defined
by:

Gl {ue LZ[0,7)lu(t)€e U, foralmostall t € [0,7]}, 2.1)
where U is a compact convex subset of R™.

Let X denote a Hilbert space with inner product (-,:)y and corresponding norm [-y. Let
A :D(A)—>X be the infinitesimal generator of a strongly continuous semigroup {7(z)},sq let
F :X xIR™ — X be a nonlinear operator that is Lipschitz continuous on bounded sets. We will consider
dynamical systems of the following form:

:id?z'(t JU)=AZ(t ,u)+F @@ ,u),u@)), Z(0,i)=zp€ DA), U €G(T). (22a)

wherez(t ,u)€ X,forallt € [0, <).

Because the set U © IR™ is compact, there exists a bound b < o such that forallv € U, 1v | <b,
i=1,2,...,m. Hence, since our algorithms never violate the control constraint, we may assume
without loss of generality that the operator F has the form F(z ,v)= F (z ,SAT(v)), where
SAT :R™ — R™ is such SAT (v) = (sat (v}) , sat(v?), ..., sat (v"")), where forall z € IR,



z if 1z1<2b, (2.2b)
sat(z) = sgn(z)(2b +1-e@=120) if (21 22p .

This growth condition allows us in Section 3 to postulate local Lipschitz continuity conditions that are
independent of bounds on the control.

We will assume that (2.2a) has a unique mild solution, which is defined as follows (see [Paz.1]):

Definition 2.1. A functionz (-, 4 ) € C([0, t), X) is said to be a mild solution to (2.2a) if

£, ) =T g+ [ T4 -F G (s ), i (s))ds . (2.2¢)

O

We can normalize? the final-time in fixed-time optimal control problems (originally defined on

[0, ]) to be 1 and reduce free-time optimal control problems to fixed-time optimal control problems on

the interval [0, 1], by replacing (2.2a) by scaled dynamics, with the scaling parameter denoted by .

Thus, with each & € G (), we associate a u € G (1) defined by u(t) Ay (zt) fort € [0, 1]. With each

z € C([0,1),X), we associate z € C([0, 1] , X)) defined by z(t)éz'(t'c) forallt € [0, 1]). Then, the
function z(¢ ,u , 1) %3 (¢, u) is a mild solution of the differential equation

%z(t Ju 1) = %z"(tt,u') =lA7 (1T, d)+F G (1) , i ()]

=1Az(t ,u ,D+FE{C ,u,v),u@t). (2.2d)

Hence we abuse notation and let G = G (1), and we replace the original dynamics (2.2a), with the scaled
dynamics:

L20 u, D =lAz0 ,u , DHFGE u D, 0], 20,0 =20€ DA), 1€ 0,1, (220)
Note that for any final-time t > 0, the operator TA generates the semigroup {T(t¢)}, 5 and hence
z(t , u , 7) is a mild solution of (2.2¢) if
t
z(t)=T(vt)zo+ 'cL T(x(t —s))F(z(s),u(s))ds . (2.2)
Next,forj =0,1,2,...,q,letf/ : X — R be functions that are Lipschitz continuously differen-

tiable on bounded sets. Then, for j =0,1,2,...,q, we define the functions g/ :G x(0,») 5> R by
g/, A fi@( ,u ,7). The simplest problem that we will consider is

2 Failure to normalize may lead to pathological computational results, see [Cul.1, Cul.2).



MMP : mf{meaxgj(u,'c)IuGG,'ce['cmin,-cmax]}, (2.32)
J€q

where q 441,2,... ,q }, and 0 < Ty, < Ty, < 0. Note that when Tpg, = Tyyp, (2.3a) is a fixed-time
problem, otherwise it is a free-time problem. In minimum time problems, T, is chosen to be very small

and Ty, is chosen to be large, which ensures that the optimal value of the final-time, %, is the minimum
time.

We will also show that algorithms for solving MMP are trivially adapted to solving optimal control
problems with control and end point inequality constraints, of the form

CMP : inf{go(u ,7) Imaxg/(u ,7)<0, u € G, t€ [Tmin » Tmax] } - (2.3b)
j€q
Our next task is to establish optimality conditions for the problems MMP and CMP.

3. OPTIMALITY CONDITIONS.
We begin with a few standard assumptions.

Assumption 3.1.
(i) The operator F(:, ) is Frechet differentiable. We will denote its partial Frechet derivatives, with
oF

respect to z and u, by E;—f(z , u)and —37(2 , U), respectively.

(i) Forallu € G,and T € [Ty, , Tmal a solution to (2.2f) exists.

(iii) There exists b, € (0,%) such that for all 1 € [0,1), u € LF[0,1], and T € [Tyin, Tmax)s
ﬂZ(t , U ,'C)“x Sbl.

(iv) For every bounded setS < X, there exists Kg < oo such that forallz ,z” € S andallu ,u’ € Rm,
(a) IFE ,u’)=F(z,u)ly <Kgllz’—zly +0u’—ul),
oF oF

(b) ﬂg(z',u’) -—g(z TUNSKg[lz/ = zly +lu’ = ul],
oF , , |, oF , p
(c) ﬂg(z ,u’) -g(z yull SKgllz” =zlly + 0w’ = ul].

(v) The functions f I, Jj=0,1,2,...,q, are Frechet differentiable; their Frechet differentials have
the form Df (z ; 8z) = (Vf/(z), 8z ), and their gradients, Vf/ ("), are Lipschitz continuous on
theset {z € X | lzlly <b,}. O

The following assumption is needed only if the scaling parameter < is allowed to vary.

Assumption 3.2. The semigroup generated by A, { T(¢) }, >, is an analytic semigroup. O
The following two results can be gleaned from [Paz.1].
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Lemma 3.3. The semigroup {T(t)}, ¢ generated by the operator A is analytic if and only if there

exists a constant C <o such that (i) T(¢) is differentiable in ¢t >0; (ii) %T(t) = AT (¢); and (iii)

C
AT ($)ly < ' forallt >0. O

Since Lemma 3.3 implies local Lipschitz continuity of T'(¢) for ¢ > 0, it follows from Assumption

3.1 and Lemma 3.3, that the following must be true.

Lemma 34. There exists a b, € (0, %), such that for all z ,z” € § a {zeX 10zly <b,}, all
u,u €L3[0,1]),all T, v € [Ty, Tmax)-and all 7 € [0, 1]:

. oF
(i) ﬂg(z ,ul by,

... o OF
(ii) Hg(z yu)l < b,

(iii) llg—};(z' ,u’)— %(z L ull Sbofiz’ —zly + 1 —ul),

. oF oF
(iv) 15 ,u) =S~z ,ul S byl ~zlx +1 —ull,

(v) ITEt)=-T@t)I<bylv ==l . O

In view of Assumption 3.1 and Lemma 3.4, it can be concluded from the Implicit Function Theorem
in Banach spaces, as stated in [Lan.1, Ale.1], that the solutions, z(t , u , T), with ¢ € [0, 1], of (2.2f) are
Lipschitz continuously Frechet differentiable with respect to (z , T) on bounded sets, with the Frechet dif-
ferential, Dz(t ,u ,t; du , 8t) = dz(r), where dz (¢) is the solution of the variational equation:

oF
0z

F

(s ,u,v),u(s)dz(s)+
ou

bz (1) =j;{ T (x(t = s))e( (2(s), u(s))du(s))

+T((t =)+t =s)AT (Tt =8))F (z(s ,u ,7),u(s ))6‘:} ds +1AT (tt)zgdt. (3.1a)

We give an independent proof of this fact in the Appendix.

Since by Assumption 3.1(v), the gradients of the functions f/() are Lipschitz continuous on
bounded sets, we immediately obtain the following result.
Theorem 3.5.

(i) The functions g/ : LY[0, 11X [Tmin , T @ R, j =0,1,2, ... ,q, defined in Section 2, are
Frechet differentiable in (u , 1), i.e., forall u € G, T € [Ty, , Tmal» there exists a continuous linear
functional Dg/ (u , 7) : LF'[0, 1% R — IR, such that forany u , &’ € LT[0,1],7,7 > Ty,
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im & N -giw D -Dglu D —u, T - _

: =0.
W -ul;>0 (' —ul + |7 <)% (3.1b)
It=tl =0

(ii) There exist gradients VgJ :LJ[0, 11X [Ty, Tyed = LT[0, 1]1xR, j=0,1,2,...,q,
Vel ,v)=(V,8/(u ), Vog/ (u , 7)), such that forall u’, u € LF[0,1),7,T€ [Tig » Tmax)s

ng(u , W' —u ,v-17)= (Vugj(u ,1:),u’-u‘;2+Vtgj(u T -1). (3.1b)

(iii) The gradients Vg/ (- , -) are Lipschitz continuous on bounded sets. O

We are finally ready to address the question of optimality conditions for the problems (2.3a), (2.3b).
Because of algorithmic requirements, we chose a multiplier-free form for the optimality conditions. It is
not difficult to show that these conditions are equivalent to standard optimality conditions involving mul-
tipliers. Thus, for problem (2.3a) we define the max function W :G X [Tyin, Tmad = R and the
corresponding optimality function Oypp * G X [Tig » Tmax] = R by

w’ , V)8 max g/ (u’,7v),
yu’,v) max g (3.22)

Onvnvep(u” , ) 4 min Vallu — u'l? + Yalt— 112
mmp(t”, ) (u.r)ecxm.rm]{ 2

+jn€a1é {gj(u’,'c')-\p(u’,'c')+ (V,,gj(u'.'r'),u -u’)2+V,gj(u’,'r')('t—':’) }} (3.2b)

Referring to Proposition 5.5 in [Pol.1], we see that Bypyp(u , T) is the obvious extension of an
optimality function used in conjunction with first order algorithms for the solution of minimax problems
in R". Hence it is a correct optimality function to use in analyzing the convergence properties of imple-
mentable minimax algorithms for solving (2.3a), since such algorithms must construct finite dimensional
approximations to (2.3a).

Theorem 3.6.
(i) The function Oyp(: , *) is well defined and continuous.

(i) If h,(u’,v7)EG - {u’}, h(u',v)€ [Tyin, Tmax] — {T'} are such that (u’+h,u’,7),
TU+h(u’,7)) is a solution to the minimization problem  (3.2b), then
hy () : G X [tyin » Tmax] = L3 [0, 1}, and h.(-, ) : G X [Ty » Tmax] = IR are unique and continu-
ous.

Proof. With I, 4 {ue R? D2y W =1, 20}, and making use of the Fan minimax theorem

[Fan.1], we obtain that



Onvmp( , T) = max{‘/zllu’-uﬂ22+‘/zl't'—'cI2

min
@ 7)€ G X[Tmin , Tma] L€ I,

+YieqW {8/, Dy , D+ (V' ,v), 0 —u)y+ Vgl u ,1:)(1:’—1:)}}

= max min Valw' — ull? + Yallv’ — <f?
REE (7 ,7) € GxXFun ) T

+Y e qW {87, Dy , D+ (V80 ,v), 0 —u)y+V gl u ,r)(t’—t)}} (3.3a)

The minimization with respect to (¢’ , v') in (3.3a) is decoupled. The minimization with respect to v’ is a
simple, one dimensional quadratic problem. Because

Yallw’ -uﬂ§+zjequj (Vog/(u,v),u —u),y

1
=L [‘/2u'(t)-u(t)ll2+zj€qu.j (V, 8/ (u ,-c)(t),u’(t)—u(t))] ds , (3.3b)

the minimizing & for (3.3a) can constructed by minimizing the integrand pointwise in ¢ in (3.3b). Con-
sequently, Opmp(u , 7) is well defined. Continuity now follows from the Maximum Theorem in [Ber.1].
Similarly, since the solution (k“(-, -) , h.(- , -)) of the minimization problem (3.2b) is unique, it again fol-
lows from the Maximum Theorem that it is continuous. O

Theorem 3.7.  Suppose that (2 ,2) € G X [ty , Tnay] is an optimal solution to the problem MMP
(2.32). Then Gypyp(iZ ,3) = 0.

Proof. First, note that Oypp(# ,%) <0 must hold. Hence, for the sake of contradiction, suppose that
Ovmp(@ %) <0 and that (u* , t*) is the corresponding solution of the minimization problem (3.2b).

Then, for A € [0, 1], we must have that # + Au* - &) € G,% + Mt* -%) € [T , Ty, and

Y@ + Mu* - 0),% + M+ =) - w(@ ,%R) =max {g/@ %) -w(@ %)
JE€q
+M{V, g/ @ %), u* —=0)3+V,8/ (@ ,2)* -2)} +o )

S?L{‘/zﬂu* —012+ %l =212+ max {g/@ ,%) -y(@ ,%)
j€q



+(Vug @ %), u* -0y +V,g! @ ) -)) +—°§?) }

<A {Oppp(@ ,2)+0(W)/A |, (3.4)

where o(A)/A—>0 as A0 Hence there  exists a A€ (0,1] such that
Y@ +A@w* -12),% +A(* =%)) < y(@ ,%), which is a contradiction. O
Under a convexity assumption, the above optimality condition becomes a necessary and sufficient
condition. An examination of our definition of the functions gf (-, *) shows that they cannot be convex
for free time problems. However, in the case of linear dynamics and fixed end time, the problem can
become convex.
We can easily obtain an optimality condition for problem CMP (2.3b) from the one for MMP

(2.3a) by making use of the following observation. Suppose that (# ,?%) is an optimal pair for CMP. Let
¥ : G X [Tyin » Tmax] = R be defined by

¥(u , 1) = max max { g%u , ) -g%% ,%),8/( ,7v)}. (3.5)

Then ¥(& ,%) = 0 and, for any (u , <) sufficiently close to (# ,%), ¥(u ,t) 20. Hence (# ,%) is a local
minimizer for the function W(-, *). Therefore, referring to (3.2a), (3.2b), we define the optimality function
Ocmp - G X[Tmip » Tmax] > R by

Bemp(’ 7)) 2 min Volu =’ 12+ Yolt =712
cmp(t ) (u.z)eaxm,rm]{ ’ 2w 7

+max { -y ,v),+ (Vg% ,v), u-u)+ Ve ,)x-7),

glu,v)-yu y D+ Vgl 0,0 ~udy +Vgl(u , (-1, Jj € q}} , (3.6)

where y(u ,'c),,,é max {0, y(u ,7)}. Although the term y(u , 7), has no effect at feasible points and
hence also at optimal points, it is introduced into the optimality function for algorithmic reasons. The fol-
lowing result should be obvious.

Theorem 3.8.

(i)  The optimality function O¢cpp(- , *) is well defined and continuous.



(i) h(u,v)€G~{u},h(u,t)€ [Ty, Tmax] — { T} are such that (u +h, (u , 7), T+ h(u , 7))
is a solution to the minimization problem (3.6), then h, (-, *), h(-,*) are unique,continuous func-

tions.

(iii) Suppose that (# ,%) € G X [Ty , Tme] is an optimal solution to the problem CMP (2.3b). Then
Ocmp(? ,3) =0. O
It is customary to add a constraint qualification to optimization problems with inequality con-
straints. The analog of the Slater constraint qualification [Sla.1] commonly used in nonlinear program-
ming for problem CMP is as follows:

Assumption 3.9. We will assume that for all (u,7)€ G X [Ty , Tmax] Such that w(u ,7) >0,
Ovmp( , T) <O. O

Assumption 3.9 is standard in phase I - phase I methods of feasible directions. It implies that the
constraint violation function w(-,*) has no local minimizers outside of feasible set
{(,v)€ G x[tyn, Tmax] | W(u ,7) <0}, nor on the set {(u ,7) € G X [Tmin » Tmax) | W ,T) =0},
a fact that prevents phase I - phase II feasible directions algorithms from converging to infeasible points.
Finally, under Assumption 3.9 and a convexity assumption, O¢cyp(# , T) = O becomes both a necessary
and sufficient condition of optimality.

4. OPTIMALITY CONDITIONS IN THE SPACE OF RELAXED CONTROLS

Since the closed unit ball in L$'[0,1] is not compact, there may be bounded sequences
{ (u; , 7;) } =0, generated by an algorithm in solving the problem MMP or CMP, which have no accumu-
lation points in L5 [0, 1], even when these problems do have solutions. However, as was established in
(Ahm.1, Pap.1], such sequences always have accumulation points in the space of relaxed controls.
Hence, it is common to show that all the accumulation points generated by algorithms for solving optimal
control problems such as MMP and CMP, satisfy both a first order optimality condition in L7[0,1] and
the extension of these first order conditions to first order conditions for relaxed controls versions of MMP
and CMP.

In order to define relaxed control versions of the problems MMP and CMP, we follow Warga
[War.1], by defining G, the relaxed controls closure of the set G , as follows:

G = {c:[0,1]1 > rpm(U) | o is measurable } , (4.1a)

where rpm (U') denotes the set of Radon probability measures, topologized as in Chap 4, in [War.1]. In
this topology, a sequence {o; } ;2 < G converges to a o € G if and only if

-10-



ili_r)nw Ll IU ¢(t ,u)o;(t)du)dt = Iol .[U Ot ,u)o(t)du)dt , Vo€ L([0,1],CU)). (41b)

The set G is sequentially compact. From our point of view, the most useful concept of continuity on G is
that of sequential continuity. Hence all of our continuity statements, for functions defined on G, are to be
understood as sequential continuity statements, e.g., when we say that a function g : G — R is continu-
ous, we mean that for any sequence of relaxed controls {o; } ;o < G that converges to a 6 € G,
8(c;) > g(0),asi —> .

Next, we extend the map z :G X [Tyin » Tmax] = C([0,1],X) to
z':G_x[‘cmin,‘rmax] — C([0, 1],X) by defining for each o € G, z(,0,1)€ C(0,1],X) to be the
solution to

z(t) = T(':t)zo+1:LtIU T(t(t —s)F(z(s),u)o(s)(du)ds . 4.2)

Assuming that Assumption 3.1 holds, it can be shown that a mild solution to (4.2) exists, that it is
unique, and that it is bounded by b, the bound introduced in Assumption 3.1(ii). The simplest relation
between the solutions of (2.2f) and (4.2) is as follows.

Proposition 4.1. Ifo € G is an ordinary control, i.e., there exists # € G such that 6(z )(S) = Ou(n)(S)
for all measurable sets S < U and almost all ¢ € [0, 1], thenz(t , 5, T) =z(t,u,v)forallt € [0, 1],
where z (- , o, T) is the solution to (4.2) and z (- , u , 7) is the solution to (2.2f). O

The following result follows by simple extension of results in [Pap.1].

Theorem 4.2.  (Continuity of z(-, 5, 7) in (o, 7)) If the sequence { (5} , ;) } ;21 € G X [Tmin » Tmad):
asi - o, issuchthato; > o € 5,1,- —7T,a5i oo, thenz(-,0;,7)>2z(,0,7),a8i -0, O
With these preliminaries out of the way, we are ready to define the relaxed control versions of the

problems MMP, CMP, defined in (2.3a), (2.3b). Thus, for j=0,1,2,...,9, we define
g G X [Tyip » T > Rby 2 (0, 92 fI(Z(1 , 0, 1)), and

MMP : min{r_neaxgj(c,'c)loea,TG[Tmin,Tmax]}, (4.32)
jeq
CMP : min{g-o(o,‘c)lmeaxgj(c,t)so,oea,te[tmm,'cmx]}. (4.3b)
jeq

Next, we need to obtain extensions of the optimality functions Oppyp(* , ) and Bcpp(- , *) for the
problems MT’[P, CMP, with the property that these extensions assume the same values on ordinary con-
trols as the functions Opyp(° , ) and O¢cmp( , ). On the surface, it is not at all clear how to obtain a
relaxed control version of Bypyp(- , -) or of Ocump( , ©). However, this task becomes a lot easier if we
observe (see Theorem 3.4) that the solution (u (¥’ ,v) —u’ , (& , v') — ) of the search direction finding
problem (3.2b) defines a pair of continuous functions (k, (-, *) »ho(-.*)). Hence we sée that (3.2b) is
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equivalent to

>

(@ ,2) min { Yallh, (& , )2 + Yl h (@ ,%)12

(b 1) € C(GX[tan , Tmaad , (G = & )X([Tin » T = 7))
+l_n€a§ {g/@ %) -yl %)+ (V,g/@ ) b (@), +V g (@ VOB .’%)}} {(4.5a)
J

It is now clear that to obtain a relaxed control version of Oypp(- , *) We must first obtain a relaxed
control version of the directional derivatives (V, g/ (u ,7), b, (1 , 7)) + Vog/ (u , ©)(¥' — 7). Now, refer-
ring to (A.3) we see that dz (¢ ,u ,t,du ,dt) is linear in (Su ,5t), and hence can be written as
6z(t,u,t,&u,61)=6z,,(t,u,t,&u)+62.,(t,u,'c,6'c), where Oz,(t ,u ,7,du)=
Oz(t ,u ,7,du ,0)anddz.(t ,u ,7,5t)=dz(¢ ,u ,t,0,05%). Consequently,

(Vg ,%) b, DYy = (ViU ,u,7),02,(,u LT b, D))y (4.5b)

Vgl , D=1 = (Vi ,u,7),5z( ,u T, T =T) )y . (4.5¢)
Hence, the relaxed control versions of (4.5b), (4.5¢) appear to be

(VfiEz(,0,7),82,0,0,%t,h))y . (4.6a)

(VFiE(,0,7),82(1,0,7,7 -9y , (4.6b)

where, with h, € C([0, 11X U X [Tip » Tpax) » R™) (i.e., its domain has been changed), 8—2,, ¢,o,t.h)

is the solution to

dz () =-c'[;T(1:(t -s))ju{ 3—]:(2'(.9 ,c,t),u)ﬁz(s)+g—5(z'(s ,0,T), u)h,(s ,u,T) } o(s )(du)ds ,
(4.6¢)
and B—zt(- » O, 7T, 7 —1)is the solution to
- ! oF _
Sz (t) =J‘0J'U{ T (=t —s))g(z(s ,0,7T),u)dz(s)
+(T(t(t =)+t =s)AT (x(t =5)))FE(s ,0,7), u)&t} o(s) (du)ds + tAT (tt)zyOt . (4.6d)

We will now show that for any o € G, A € [1, 1), and a class of search direction functions

A similar development for ODE’s can be found in [Wil.1].

-12-



h, € C(I0,11%x U X [Tig , Tmay) » R™), ADz,(-, 0,7, h,) is a first order approximation, in A, to

z(,0,t,A,h,)-2(-, 0, 1), where (with some abuse of notation) z(*, &, T, A, h,) is the solution to
t
z(t) = T('ct)zo+'cj'0 J'U T(e(t =s5)F(z(s),v +Ah, (s ,v ,T))o(s)(dv)ds . 4.7

We note that (4.6c) is the first variation of (4.7) along the curve in G defined by
{pC;A,h,)IA€[0,1]}, where

Pt A, B NS)R (ot)R), RA(veEU Iv+A,(t,v,DES )} (4.8)

ifv+h,(t,v,t)€ U forallv € U and almost all ¢ € [0, 1], otherwise p is undefined. It is easily seen
that if p is well defined, then p € G and z(1,p(,A,h,),©)=2(1,0,7,A,h,). Hence we introduce
the following definition.

Definition 4.3.  The search direction function b, € C([0,11%x U X [ty , Tmax) » IR™) will be said to
be admissible if W +h,(t ,u’ ,7)€ U for all w’ € U and almost all ¢ € [0, 1] and T € [Ty , Tmaxl-
We will denote by I the set of admissible search direction functions. O

Lemma 4.4. There exists an L < oo such that forany h, € I, 0 € G,t€ [(Tmin » Tmax)s £ € [0, 1]and A
sufficiently small, Iz(¢ ,0,%,A,h,)-2z(t ,0,TDISLIAL

Proof. Let
My 8max (I —wl\w W €U}. (4.9a)

Since U is compact, My <o, Clearly, for every b, € T, b, (t ,u’ ,T)ISMy forallt € [0,1], 4’ € U,

and v’ € [Ty, ,» Tmax)- Hence

(., 0,7, A, k) =20, 0, Dy =£:Iu T =sYFE(s 0,7, A, ), u+Mh (s, u, )
-F@(s ,0,7),u)lo(s)(du)dsly

t
S'cmaxMjo Ksllz(s ,0,t,A,h,)=2(s ,0,0+ IAIMy]lds , (4.9b)

where M is a bound on [T (t(t —s))I, s € [0, ], as also used in the Appendix. Applying the Bellman-
Gronwall inequality, we obtain that

Izt ,o,T,A,h,)-2(t ,0,DI<LIAI, (4.9¢)

where L 4 MKgMy; e™MKs and K s is defined as in Assumption 3.1(iv). O

Lemma 4.5. There exists d, < such that for all t € [0, 1], c € G, € [*min » Tmax)s A, € T and
A€ [-1,1],



Z(¢t 0,7, A, h)=2(t ,0,T) =MDz, (t ,0,%,h,)ly <d,IAI2. (4.10)

Proof. LetAz(t,o,t,A,h,)87(t,0,t,A, h,)-Z(t,0,7). Then, with My asin (4.9a),

1AZ (¢ ,o,‘c,l,hu)—kﬁ—zu(t ,0,7T,h)ly S".[o,fu T (x(t —s))[F(E(s ,O0,T,Ah,),u
- oF _ _
+Ah,(s ,u))—-F(z(s ,o,'c),u)—g(z(s ,0,T),u)dz(s ,o0,T,A,h,)

_3F

» (z(s ,0,7),u)Ah,(s ,u)] o(s )(du )ds ly

t 1 9F _ _ y
ST‘““MI)IU L E)z (z(s,0,7t,Ah,)+rAz(s ,0,T, A, k"), u+rAh,(s ,u))

-3—1:(5(3 ,0,7),uldrldz(s ,o,t,A, h)ly

1
+fo ng_i(;(s O, T, A b)) +rAz(s ,0,T,A b)), u+rAh,(s ,u))

oF _
-E(Z(s ,0,7),u)ldr 1AMy

+g—’:(z(s 0,7, uMAZ(s , 0,7t A, b,)=B2,(s ,0,T, A, k)l | o(s )(du )ds

t
STmaxML IU [Ks(Az(s ,0,7, A, )l + IAIMy)IAZ(s , 0,1, A, k)l
+Ks(IAZ(s ,0,7, A, )l + IANIMy) 1AMy,

+byIAIMylAz(s ,0,%,A, k) =02,(s ,0,7,A, h,)lylo(s )du)ds , (4.11a)

where b, is defined in Lemma 3.4. Since by Lemma 4.4 1Az(s ,0,T,A, A, My <L IAl, it follows from
the Bellman-Gronwall inequality that

1AZ(¢ , 0, T, A, b,) =Bz, (t , 0,7, )y S MKse™1AZ(s 0,7, A, bl + IAIMy)?

<dIAl?, (4.11b)
where dy = MKj eMyL +My)% a

Proceeding in a similar manner, we can also prove the following, somewhat simpler result:
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Lemma 4.6. There exists a d, <o such that for all h, €T, t € [0,1], c€ G, A€ [-1, 1],

v, T€ [Tmin » Tmax)s

Z( ,6,T., A1) =Z(t ,0,7)=Adz(t ,0,7, 7 =Dy <d,lAI2. : (4.12)
O

In addition, it is fairly easy to establish the following result:

Lemma 4.7. Foranyt € [0,1], c€G, 1€ [Tmin » Tmax), admissible h,, and v € [Ty , Tmagls let
6_2(t ,0,7, h, , T —1) denote the solution to

oF
0z

oF

(_z(s ,O,T),u)dz(s)+
ou

oz (1) =J‘(;IU T (¢ -s)){ (z(s ,0,7),udh,(s ,u ,1:))} o(s)(du)ds

+j'0!{ Tt =s)+1(t =s)AT(t(t —=s))F(z(s ,0,7), u)&c} ds + AT (tt)zdt . “4.13)

Then (i) 52(t ,0,T, by , U —1)=0z,(t ,0,T,h,)+d2,t ,5,T, 7 —7), and (ii)
dz (1 0,7, h, ,¥—1)iscontinmousin (¢ ,0,7,h, ,T). O

We are now ready to extend the optimality conditions in Section 3 to the relaxed optimal control
problems MMP, CMP. We define the max function y : G x [min » Tmax] = IR and the optimality func-
tion Byvp © G X [Tmin » Tmax] = R by

vo, 18 maxg’ (o, 1), (4.142)
jeq

1
B A ; 1 2 1 — ]2
em(o,'c)_(w ﬂerpﬂmw{ /2_.'0 IU w@ ,u ,Dl°c(t)du)dt +Velt - <l

+ max (g (c.v-wo,D+(VfIE(,0,7),0z,(1,0,7,w)y
JE€Qq

+ (ij(f(l,o,t),&,(l,o,r,‘t’-r))x}}. (4.14b)

Making use of Lemmas 4.6 and 4.7, we get immediately the following extension of Theorems 3.4 and
3.5

Theorem 4.8. (i) The function ém(' ,*) is well defined and continuous. (ii) Suppose that
(6 .3) € G X [Tyin , Tmay] is an optimal solution to the problem MMP (4.3a). Then Bypp(® ;%) =0. O

Similarly, we can define an extension, §CMP :G x [min » Tmax] = IR of the optimality function
Bcmp(: , ) as follows:
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- 1
Ocmp(o, T) A ‘/zL IU w(t ,u , D)o@t )du)dt +Yalv — 112

min {
W , %) € TX [tain , Toad)
+max (- (o, 1), + (VfoZ(1,0,7),82,(1,0,1,w)y + (VFOZ(1,0,7) , 5z,(1 0,1, T =)y,

g/, v-wo,7),+(VfIEA,0,7),0z,(1 ,0,T,w))y

+(fo(2'(l ,o,t),ﬁ_z,(l ,O,T, =)y, jE q}} , 4.15)

where G(o y Dy A max {0, 1_|I(0' , T) } . We can now state the obvious extension of Theorem 3.6.

Theorem 4.9. (i) The function 5CMP(- ,*) is well defined and continuous. (ii) Suppose that
(6 ,%) € G X [Tmin » Tmay] is an optimal solution to the problem CMP (4.3b). Then Ocpp(6 .3) =0. 0O

We conclude this section with a rather obvious result that is essential in the analysis of optimal con-
trol algorithms:

Theorem 4.10. Suppose that * € G is an ordinary control, i.e., there exists a u* € G such that
o* (t)(S) = dyx(1)(S ) for all measurable sets § < U and almost all ¢ € [0, 1]. Then

(i) Foranyte€[0,1],h, €T, v, 1€ [Tm,tw],g;(t 0¥ T, h, ,U=1)=0z(t ,u,7,du,d1),
where du(t)=h,(t ,u*(t),t)and St =7 -1.

(ii) Byvp(c* , T) = Bppp(u* , ), and Bcpp(0* , T) = Ocpp(e* , 1) O

Thus we see from Theorem 4.10 that when o* is an ordinary control, the stationary points of (3.2b)
and (3.6) are also the stationary points of (4.14b) and (4.15), respectively.

5. APPROXIMATION THEORY

The numerical solution of optimal control problems such as MMP and CMP is impossible without
some sort of discretization of the evolution equation (2.2f). We will now develop a theory for discretiza-
tion of these problems. This theory depends on the convergence of the finite element method and on error
bounds, such as those to be found in [Fuj.1, Fuj.2 , Fuj.3].

The use of a numerical method in integrating the evolution system (2.2f) results in the replacement
of the set of admissible controls G by G,,, a compact, convex, finite-dimensional subset of G, and of the
original functions g/ : G X [T , Tymax] = R by approximating functions gJ : G, X [Tpin » Tmax] = R,
where n € Z, is a precision control parameter. Thus, the use of numerical integration results in the
replacement of the original problems MMP and CMP by approximations.
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Hence, to establish an approximation theory, for each n € Z,, we define the discretized problems
MMP, and CMP, by

MMP, .-nﬁn{;nea:ég,{(u,t)luEG,,,te[rmm,tmx]}. (5.12)

CMP, : min{gXu ,7)| max 8w ,9)<0, u€G,, TE€ [y, Tl } - (5.1b)
To ensure that the functions gJ(- , -) inherit the continuity and differentiability properties of the functions
g’ (-, "), we make the following reasonable assumptions:
Assumption 5.1.
(i) Foralln € Z,, the functions gJ : G, X [Tmin » Tmax] — IR are continuous.

(i) ForalneZ, j=0,1,2,..,q, and each (u,1) € G, X [Ty, Tmax)» there exists a gradient
Ve , v =(Vg) ,(u ,v), Vgl (u , 1)) € LY[0, 1] R, such that forall ' € G,,, v € [ty , Trmax)s

lim Ig,{(u't’)-g,{(u ,'c)—((Vug,{(u) ,V -u)2+VTg,{(u , DT =) =0

W-ulh—0 (Iu’-ull,_,z+I'|:’-'c12)'/2
1=l =0

(5.2a)

(iii) There exists a Lipschitz constant* L € (0, ), such that for all n € Z, j=0,1,2,..,q,
w,u€G,T,7vE€ [Ty, Tmals

Vgl ,v)=Vgi , Ol sL( —uld+ 1v —12%. (5.2b)

(iv) Forallne€ Z,,G, < G,,,.

(v) Theclosureof \y G, isG.
n€eZzZ,

(vi) (Uniform Approximation Property.) For all €>0, there exists n, such that for all n > ne,
j=0,1,2,..,q9,allu € G,,and all T € [ty , Tyayls

(@ g/ ,tv)-giu,v)<e, (5.2¢)
(b) Vgl ,7)=-Vgiu ,vl<e. (5.2d)
O

Usually, when continuous dynamical equations are replaced by discrete dynamic equations, the
resulting solutions inherit the continuity and differentiability properties of the original solutions, and
hence satisfy Assumption 5.1(i) - (iii). Assumption 5.1(vi) is satisfied at any particular « for any

* The existence of such a Lipschitz constant is a consequence of Assumption 3.1(iv,v).
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dynamics on which the finite element method converges. Thus the only thing one must verify is that the
approximation is uniform on the finite dimensional set, G, , as assumed.

Referring to Proposition 5.5 in [Pol.1], we see that the following analogs of Theorems 3.11 and 3.12
must hold for the problems MMP,, CMP,,.

Theorem 5.2. Forn € Z,, let y, : G, X [Ty , Tmax] = R and the corresponding optimality function
Omme, - Gn X [Tmin » Tmax] — IR be defined by

\yn(u',r’)éﬂa)ég,{(u’,t’), (5.3a)

Oynp. (u”, T) A min Volu —u’l2 + Ylt—112
3 ) ,7€ an["m-"nx]{ 2

+max (gl , )=y, , )+ (V, ,’,'(u’,'t’),u-u’)-i-Vtg,{(u',t')('t‘c’)}}. (5.3b)
J€q

Then,
(i) The optimality function Omme, ( » *) is well defined and continuous.

(i) X h,(u' ,vYEG, = {u’), h(u’,v)€ [Tip, Tmax] ={ T} are such that W' +h,(u’,v),
v+ h(u’, 7)) is a solution to (5.3b), then A, (-, *), k(- , *) are continuous functions.

(iii) Suppose that (u’, ,7',) € G, X [Tyin » Tmax] is an optimal solution to the problem MMP,. Then

Ovmp, (@7 , T) =0. a
Theorem 5.3. Forn € Z,, let yw,(u , 1), A max {0,y,(u,7)}, and let the corresponding optimality
function O¢cmp, © G, X [Tyip » Tmax] = R be defined by

Bemp. (1, T) 2 min Yolluw' — ul2 +Yalv — 7|2
CMP, W 7)€ GoXltmn » Toud] 2

+max {—=wy,(u ,1),+ { Vug,,o(u , T, U -u) +V,g,,°(u , T -71),

gl , D —yu v+ (V,giu ,v), 0 —u) +V.glw , v =1), j€q }}. (5.4)

Then
(i)  The optimality function 8cpp(- , *) is well defined and continuous.
() Ifh,(u,7), ho(u ,7) are suchthat u + h,(u ,7) € G,, T+h(u ,7) € [Ty, Tma,] are a solution to

(5.4), then A, (-, ), h(-, -) are continuous functions.
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(iii) Suppose that (Z, ,%,) € G, X [ty , Tmay] is an optimal solution to the problem CMP. Then
Ocmp(@ , ,3,) =0. a

To simplify notation, we define H 4G x [*min » Tmax)s Har 4 G, X [Tmin » Tmay), and M = (¥ , 1),
and, for any E=(&, ,E)€EH and nN=(u,7)€ H, we define (E,n)y2(&, ,u)Y+Ex, and
Iy 2 ul? + 1T1)%. Next, forany 0, n € H, we define

dov-nin) é;nea:; (/M) +(Vg/m) ' =n)y } + iy -miF (5.52)
Next, forany n € Z,,n’,n € H,, we define

Fn(n' = 1) & max (gl + (Velm,w=ny ) + %' —nif (5.5b)
With this notation, we have that

Ovmp(M) = min max ¢/ ' =n | ) - y(n), (5.5¢)
NeHjeq

Ommp, (M) = min
weH,

max ¢ -nIn)-y,Mm). (5.5d)
JE€q

Lemma S54. There exists a constant K; < % such that for every € >0, there exists n, such that for all
nzngandalnw ,m€ H,,

1, =1 Im-fMm' -=n Il <Ke. (5.62)
Proof. It follows from Assumption 5.1 that there exists an n, € Z, such that for all n 2 n,,

V' =1 -9’ -n ln)S;neaﬁ{g,{(n)-g"(nH (Vegim)=-Vgim) . ' -n)y }

<1 +Kyle, (5.6b)

where Ky = max {In’-nly I ,m € H ). Reversing the roles of §,(m’ =7 | ) and §(m’=n I 1) we
get the desired result. O

Theorem 5.5.  There exists a constant K < o such that for every € € (0, 1], there exists 1, such that
foralln 2ng,andalln € H,,

| BMMp" ('r[) - eMMP(T\) I £ K28 . 6.7

Proof. Foranym € H,, let

Em) B arg min §m’ -1 11, (5.82)
WEeEH
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E,(m)2arg min ¢, -n1n), (5.8b)
nWeEH,

E (mA i I’ —
En(n)-argnpgg" I’ = Emly . (5.8¢)

Let £>0 be given and let n, € Z, be defined as in Assumption 5.1(vi). In view of Assumption 5.1(v),
there exists an n’, € Z,, with n’; 2 n, such that for any n 2 n’, and any 1} € H there exists an N, € H,
such that In - n, I <e&. Hence we obtain

Ovvr(M) < PE, (M) =1 | M)~ w(n)
<9, & M) =1 1 1) = w, )] + [y, M) — )] + K 1€ < Oy, (M) + [K 3 + 1) ; (5.9a)
Branvee, M) < § G (M) =1 1 1) =y, ()
<SPE, ) =1 1 1) = wm) + [wm) -y, M) + K ¢
< PEM - 1) - ym) +K1EM) - E, Ml

+ o IEM) =y =1, () =y 118 ~E, (mly + K+ e

< Ovmp(m) +K ¢ (5.9b)

where K=1+K,+K +K”, with K’ =supye y max; ¢ g Vg (miy and K" =
Yasupy e y I’ =nly. The desired result now follows. O

The proof of the following result for problem CMP is quite similar to the one above and hence is
omitted.

Theorem 5.6.  There exists a constant K 5 < % such that for every & > 0, there exists n ¢ such that for all
n2ngandalln€ H,,

|8cme, M) - Bemp(M) | <K e . (5.10)

O

The problems MMP and CMP are finite dimensional and hence can be solved with arbitrary preci-

sion using a finite dimensional minimax or nonlinear programming algorithm, respectively, such as any

one of the following [Pol.1, Pol.3). The first question we must answer is whether doing that is useful, i.e.,

we must establish whether our discretizations are consistent in an appropriate sense. The following pair
of theorems gives an affirmative answer.
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Theorem 5.7.

(i) Suppose that { (&, ,%,) )= is a sequence of optimal solutions to the sequence of problems

1 —
MMP,,. Let ] ©Z, be such that &, — & € G (in the sense of control measures (i.s.c.m.)) and

1 N
%, 9% € [Tpin » Tmax]> @8 i = 0, then (6 , %) is an optimal solution of MMP.

(i) Suppose that { (u*, ,T*,)} o, With u*, € G, and ©*, € [tpiy , Tmayl, is such that
n

Brawp, (% , ¥%p) 2= (5.11)

1 _ 1
Let ] ©Z, be such that u*, —» o* € G (i.s.cm.) and t*, = T € [Tyn, Tmax)> a5 71 — ©, then

Oamp(0* , T*) = 0.
Proof. (a) For the sake of contradiction, suppose that (6 ,%) is not an optimal solution of MMP.
Then there exists a pair (o** ,7**), with o** € G and T** € [min » Tmax] Such that

W(o** , t*) < (& ,%). Since y(, ") is continuous, and & » € Gy is an ordinary control, we must have

- I _
that (@, ,%,) > y(& ,%). Hence, because of Assumption 5.1(vi), we must also have that
I _
Vo (@, ,%,) = W@ ,%). Now, by Assumption 5.1(v), there exists a sequence {u’, },¢; such that
1 -
u’, = o** (is.c.m.), as i — 0. Hence because y(: , -) is continuous and because of Assumption 5.1(vi),

Y, W, , %) —l> w(o** , T**) which, for n sufficiently high, contradicts the optimality of the pairs

@n %), |

(b) This part follows directly from the continuity of the function (- , -) and Theorem 5.5. O
We get a similar result for problem CMP, which we state without proof.

Theorem 5.8.

(i) Suppose that { (&, ,%,)},~ is a sequence of optimal solutions to the sequence of problems

1 _ 1
CMP,. Let I ©Z, be such that &, -8 € G (i.s.cm.) and 3, 5% € [Ty, Tyad. 35 1 — ,
then (6 , %) is an optimal solution of CMP.

(i) Suppose that { (u*, ,T*,) } o1, with u*, € G, and T*, € [Ty, , Tma is such that
n n n ax

Ovmp, (1%, , TF,) 2 —'rll— . (5.12a)
Va0t TS (5.12)
I 1

Let 1 ©Z, be such that u*, — o* € G (is.cm.) and %, — T € [Ty, Tmax)s as i — oo, then
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Bavp(0* , *) = 0 and w(o* , t*) <0. O

The computational scheme represented by Theorems 5.7 and 5.8 can be implemented as follows. An
algorithm is applied to problem MMP, (or CMP,), producing a sequence of iterates (u, Jo Tnid
i=0,1,2,..,i, which is arrested when (5.11) (or (5.12a) and (5.12b)) is satisfied. Then a new
sequence, (Up41i,Tne1i)» § =0,1,2,.., is started for problem MMP,,; (or CMP,,,), with
(#p41,0 » T41,0) = (5, » Ty ;,)- The main disadvantage of this scheme is that Theorems 5.7 and 5.8 deal
only with a special subsequence of all the iterates computed, rather than with the whole sequence.

We will now show that it is possible to generalize the algorithm implementation scheme in [Kle.1]
$0 as to obtain algorithms for solving MMP and CMP, with the property that any accumulation point of
the computed sequence of iterates satisfies our first order optimality conditions. However, this requires
that we strengthen Assumption 5.1(vi), as follows.

Assumption 5.10. There exists a constant K <o such that for all n € Z,, j=0,1,2,..,q,al

u € G,,and T € [Ty, , Tmaxls

lg/(u , %)~ giu , V) S—f;- (5.13)

a

Referring to [Kle.1], we see that Assumption 5.10 is satisfied when ordinary differential equations
are integrated numerically by a method of order at least one. It is shown in Section 6.5 of [Bak.1], mak-
ing use of the results in [Fuj.1, Fuj.2, Fuj.3, [Ode.1]], that, when the finite element method is imple-
mented using linear elements and Newmark’s B method is used with § = 0, Assumption 5.10 is satisfied
by the example treated in Section 6. We believe that it will also hold for many other cases as well.

For problem MMP we will extend a variant of the Pironneau-Polak-Pshenichnyi minimax algo-
rithm (see [Pir.1, Pol.1, Psh.1]), which can be used for solving MMP,. To simplify proofs, we will use
an exact line search step size rule; however, the results to follow remain valid also with an Armijo type
step size rule (see [Pol.1, Psh.1] for step size rule). To simplify exposition, we resume the notation
n = (u ’ T)’Hn = Gn X [Tmin ’ Tmax]-

Minimax Algorithm 5.11 (Solves MMP).
Parameter. Y€ (0,1).

Data.  ng,mp€ H,,

Step0. Seti =0,n(0) = ng.

Step 1. Compute the search direction,
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h; = hyiy(n;) 4 argnren}in ;nealé{ g,{(,-)(n,-) + (Vg,{(,-) M) . m=n; )y + ¥am —n,-ll,%} -1; (5.14a)
n@)

Step 2.  Compute the step size

A € Ayy(ny) 8 arg um[%n I Yoy +AR;) . (5.14b)

Step 3. Setn* =n; + A h;.

If
¥n @) = ¥n (M) > = o (5.14c)
replace n(i) by n(i)+ 1 and go to Step 1.
Else set n(i + 1) = n(i), Niaa =N + A.ih,'.
Step 4. replacei by i +1 and go to Step 1. O

Note that (5.14c) causes the algorithm to increase precision when the decrease in cost becomes
‘‘unacceptably’’ small.

Theorem 5.12  Suppose that Algorithm 5.11 constructs a sequence {T); } joo. Then this sequence has

accumulation points in H 4G x [Tmin » Tmax)s and every such accumulation point, ﬁ satisfies
Brvmp(f) = 0.

Proof.  First we note that since H is sequentially compact, the sequence {; } /2o must have accumula-
tion points in the relaxed controls topology. The rest of our proof is in three parts: (a) we will show that
n(i) — % as i — oo, then (b) we will show that for any n* = (c* ,t*) € H such that émm(ﬂ*) <0,
there exists an integer n* and a 8* >0, such that for all n(i) 2 n*, if n; € H,; is sufficiently close to
n*, then y,;)Mis1) = Wai)M;) <—0*, and, (c) we will obtain a contradiction by showing that if the
theorem is not true, then y(n;) — —o°.

(a) Suppose that there exists integers i and n such that for all i 2ig, n(i) = ng. Then we must have
that ¥, (N;41) — W, M;) < - 1/2™ for all i 2 iy, which implies that YpM;) = —asi — . Since H, is
compact, this is impossible, and hence we conclude that n (i) -« as i — .

is.c.m.

(b) Suppose that forn € Z,,m, € H, and thatn, — n* € H,as n — 0. Furthermore, suppose that
éMMP(n*) 4 _85* <0. Since Bvvp(*) is continuous, and since Ovvp(Ms) = EMMp(n,,) foralln € Z,, it
follows that there is an integer ng such that for all n € Z,, n 2 ny, Oypp(n,) < —~40*. It now follows
from Theorem 5.5 that there exists an integer n;2ngy such that for all n € Z,, n2n,,
Ommp, (M) < -=20*. Hence, foralln 2n;andA € [0, 1],
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Wn(nn +Mn(nn))"'\|’n(nn) =5ﬂ€a’é{ 8;{(11,.)— \I’n(T\n)'*-MVg,{(ﬂn) ' hn(nn))H + %“hn(ﬂn)lﬁ

1 . ;
+ A (V8 My + My (M) = Vi (Ma) » 1y (M) ) gy = Vil (), )ﬂ}:’,}

< MOpvmp, M) + AL IR, M3 (5.15a)

where L is as in (5.2b). Since the sets G, are uniformly bounded, there exists a b <o such that

Uk, (M)l <b for all n € Z,. Hence it follows from (5.15a) that there exists a A € (0, 1], such that for
alln 2n,,

Yo M + Ay MRy (M) = W, (M) S W, My + A1, (M) = W, (N, ) S — AS* (5.15b)

which completes the second part of our proof.

(c) Now, by construction, we have that W, (Mis1) = WoiyM;) £ =1/2"@, and hence, making use of
Assumption 5.10,

WMi4) - W) S — QIO _ Ry, (5.15¢)

n(i)
Hence, since n (i) — o0 as i — oo, there exists an i, such that forall i 2i,, y(n;,1) —wn;) <0.

Now, for the sake of contradiction, suppose that the sequence {1; } /oo has an accumulation point
ﬁ € H such that EMMP(ﬁ) <0. Then there exists an infinite subset / of the positive integers such that
n; —l->'ﬁ (i.s.cm.) as i — oo, and hence because \_p(-) is continuous and y(n;) = G(n,.), y(m;) —I)ﬁ as
i =, Now, {w(n;)};, is monotone decreasing, and hence we conclude that yn;) - El(ﬁ) as

i — 0, Since n(i) — o, it follows from (b) that there exist ad>0and an integer i, such that for all

i 21,0 € I, Yp(iMis1) = WngryM;) S =0 < 0. Hence, forall i € 1,

Y(Nis1) = WaiyMy) < -3+ 2{?(,.) . (5.15d)

Since n(i) — o as i — 0, (5.15d) contradicts the convergence of the sequence { y(1;) } iwo- This com-
pletes our proof. O

Two observations are in order at this point. First, it follows from (5.15¢) that the cost sequence is
eventually monotone decreasing. Since it is bounded, it must converge. Second, it can be deduced from
the above proof that Byp, . (M;) — 0, which implies in turn that A, () — 0. Hence, refering to Theorem
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1.3.66 in [Pol.3], we conclude that if y(-) has only a finite number of stationary points, then the sequence
of trajectories {x™ } must converge. Furthermore, if {n; } has an accumulation point in the H topol-

ogy, then the entire sequence {17); } must converge to that point.
For problem CMP, we will extend the unified phase I - phase II method of feasible directions, using
an Armijo step size rule, described in [Pol.2].
Algorithm 5.14
Parameters. v>0,a., B€ (0,1).
Data . nyp,mg€ H,,
Step0. Seti =0,n(0)=n,.

Step 1 . Compute the value of the optimality function 6; = Bcmp,,(N;i), and the corresponding search

direction h; = h,;)(n);), where

Hn(l)

eCMPn(r)(ni)énrenin { Yalm — ;13 +max { =y, M )e + (V8% M) N =1V
giay M) — v+ (Vgim) . n-n;)y . j€q ) } . (5.16a)

hn(i)(ﬂi)éafgnglin {'/Zhl-ﬂill% +max { - YN s+ ( V8 M) M=)y o

n(i)

8,{(.-)(Tli)-\v(n,-)++ (Vg,{(n;) MMy, j€q) }—1],- . (5.16b)

Step 2. Compute the step size A,;:
A =max {B* 1k € N, F,uMm; +Bh In)<pra8; ) , (5.16c¢)
where, forn € Z,,n ,n* € H,,
Fa 1%) 8 max { g,2) = 2.20*) =y, (%), W, (M) =9, (M%), } . (5.16d)

Step 3.  Setn* =n; +A;h;.
If

1

FpoiyM* Iny)>- Po) (5.16€)

Replace n(i) by n(i) + 1, and go to Step 1.
Elsesetn(i +1)=n(i), Ny =1; + A h;.
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Step4. Replacei byi + 1 and go to Step 1. O
Theorem 5.15  Suppose that (i) for every n € H such that ;I(‘l]) 20, 6Mm(n) < 0; and (ii) for every
n € Z, and every N € H, such that y,(n) 20, Bypyp, (M) < 0. If Algorithm 5.14 constructs a sequence

{n; }iZo, then this sequence has accumulation points in H AG x [Tmin » Tmax)» and every such accumula-

tion point, f}, satisfies y(M) <0, Bcyp() = 0.

Proof. First we note that since H is sequentially compact, the sequence {1; } ;2o must have accumula-
tion points in the relaxed controls topology. The rest of our proof is in three parts: (a) we will show that
n(i)— oo as i — o, then (b) we will show that for any n* = (c* ,7*) € H such that 6CMP(11*)<0,
there exists an integer n* and a 8* >0, such that for all n(i) 2 n*, and any 1, sufficiently close to n*,
Fr@)Mis1 I M;) £-0*, and (c) we will obtain a contradiction by showing that if the theorem is not true,
then either y(n;) = =2 asi — o or g%(n;) - —casi — =,

(a) Suppose that there is a finite integer n* such that n(i) = n* forall i > i*, with i* <o, Then the test
(5.16¢) fails to be satisfied for all i > i*, and hence Fpe (M;4; | ;) S —(1/2" )Y for all i > i*. Without
loss of generality, suppose that ,«(Ms)20 and that y,.(M;)>1/n* for all i 2i*. Then
Yo (Mi41) = W (M), S —(1/27" ) for all i > i*, and hence there must exist an o such that y,. (1;) <0 for
all i 2iq. Furthermore, for i 2 i(, we must also have that g3 (M;41) - g% ™M;) < = (1/2"" )Y, which implies
that g3 (n;) & — as i — . However, since H, is compact and g3 () is continuous, this is clearly
impossible, and we have a contradiction. Hence we must have that n(i) — 0 as i — oo,

(b) The proof of this part is quite similar to that of part (b) in the proof of Theorem 5.13, and is there-
fore omitted. '

(c) Foranym, n* € H,let F,(ny | n*) be defined by
F I n*) 8 max { g°m) - g%m*) - y*),., ym) - ym*), ). (5.17a)
Then, because of the test (5.16e) and Assumption 5.10, we have that for all i € Z,,

1 a-
F iy 1) S 550770 - 28) . (5.17b)

Sincey€ (0, 1)and n(i) — o asi — oo, it follows that there isani, € Z, such that
FMiy1 IM)) <0, Vizi, (5.17¢c)
and hence, foralli 2i,,

y(Mi) - ¥(n;). <0, (5.17d)

and
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£°Mian) —2°M;) — wny), 0. (5.17¢)
I A - = A
Now suppose that1; -1 € H (i.s.c.m.) as i — o and that 8(n) <0. We distinguish between two possi-
bilities:
(i) wn;)>0for all i 2i;. Then, by (5.17d), { w(n;)};"-;, is a monotone decreasing sequence, and,
I _ A - A
since by continuity w(n;) — w(n) as i — o, it follows that w(n,) = y() as i — . It now follows

from (b) and Assumption 5.10 that there exist ad and an ip2iysuchthatforalli € I,i 2i,,

28 28
5.17
2n(u) s % 2n(1) ’ ( b

\l’(ﬂm) \V(ﬂ,) SFn(l)(‘rlt-i-l I nx)+

which contradicts the fact that w(n;) = E(ﬁ) as i — %, Hence we must have that 6(?]) =0, and hence,
by assumption, that G('ﬁ) < 0 also holds.
(ii) 'There exists an i5 2 i such that y(n;,) <0. then it follows for (5.17d) that y(n;) <O forall i >i,.

Next, by (5.17e), { go(‘n,-) }i=i, is a monotone decreasing sequence, and, since by continuity

l A
g°m;) - g°M) as i — o, it follows that g%m,) — °M*) as i — o, (i.s.cm.). It now follows again
from (b) and Assumption 5.10 that there exists an i ;> i, such that foralli € I,i 2 i,,

0(le+1) -8 (ni)SFn(l)(nH'l |n1)S %'l' 2'11((0 5—3/2 (5.17g)

which contradicts the fact that go(n;) - g_o(n*) as i — %, Hence we must have that 6(11*) = 0, which
completes our proof. a

Again we can make some observations. First, it follows from (5.17f) that if the tail of the sequence
{m; } is infeasible, then the constraint violation function y(-) eventually decreases monotonically to
zero. In this case, making use of (5.17b), one can conclude that either the cost sequence { go(n,-) } con-
verges, or it has infinitely many accumulation points, a rather unlikely event. If the tail of the sequence
{m; } is feasible, then the the tail of the cost sequence is monotone decreasing, and hence, since it is
bounded, it converges. Second, it can be deduced from the above proof that 8cmp,,Mi) = 0, which
implies in turn that A, ;) — 0. Hence, refering to Theorem 1.3.66 in [Pol.3], we conclude that if 5CMP )
has only a finite number of zeros, then the trajectory sequence {x™ } must converge. Furthermore, if
{n; } has an accumulation point in the H topology, then the entire sequence {7; } must converge to
that point.

6. COMPUTATIONAL RESULTS
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We carried out three computational experiments involving the slewing motion of the hollow alumi-
num tube depicted in Figure 1. The tube is one meter long, has a cross sectional radius of 1.0 cm, and a
thickness of 1.6 mm. Attached to one end of the tube is a mass of 1 kg, and attached to the other end is a
shaft connected to a motor. To reduce the computational burden, we neglected small nonlinear terms, the
coupling between the flexural and extensional vibrations, and assumed that the acceleration can be con-
trolled, instead of assigning a mass to the shaft and assuming that the torque is controlled. These
simplifications lead to a model in the form of the standard Euler-Bernoulli tube with Kelvin-Voigt visco-

elastic damping:
-mQ? ="
mw(t ,x)+ ClWpr (t , X))+ Elw (1 ,x)=mQ*(t)w(t ,x) 1_l_m/:,’u(t)x ,
tef0,7], x€[0,1], (6.1a)
with boundary conditions:
w(i,00=0, w,(t,0=0, Clwy( , 1)+EIw_(t,1)=0, t€[0,1], (6.1b)
Qyw( , D=w,(@,1)=u()=Clwy,(t ,1)=Elw,(t ,1)=0, t€[0,1], (6.1¢c)
O,t)=Q¢), te[0,1], Qt)=u), te€[0,1], (6.1d)

where w(¢ , x) is the displacement of the tube from the shadow tube (which remains undeformed during
the motion) due to bending as a function of time and distance along the tube; u (¢) is the acceleration pro-
duced by the motor, and €(¢) is the resulting angular velocity (in radians per second), and @(t) is the
angular displacement of the rigid body (in radians). The values for the parameters in (6.1a) - (6.1c) were
chosen to be m = .2815 kg/m, I = 1.005 % 107®m*, C = 6.89x107 pascals/sec.; E = 6.89x10° pascals, as
given in the CRC Handbook of Material Science. The tube is very lightly damped (0.1 per cent).

When time is normalized to the interval [0, 1], the dynamics become:

m

MWy (t ,X) + TCWper (¢, X) + CEIW o (t , %) =TmQ2()W(t ,x) = —121+m/3u(t)x ,
te[0,1], x€[0,1], (6.2a)
with boundary conditions:
w(t,00=0, w,(t,0)=0, Clwg(t,1)+1EIw,(,1)=0, t€[0,1], (6.2b)
POAOW(t , 1) =w,u(t , 1) =Pu(t) = tClw, (¢ , 1) -CEIw,. (¢t ,1)=0, t€[0,1],
(6.2¢c)
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Q,(t)=1tQ@), t€[0,1]1, Q@)=tw()t€e0,1]. (6.:2d)

To transcribe these dynamics into the standard form (2.2a), we proceed as follows. First we define
L)€ X ALy([0,1) xR, andd : X x R - X by

2 -
C(t)é[:')g ’i))] . B, u(t), )l 9(‘)‘2’29(”);)(‘ EEGTL 620

Next we define the operators A; and Q, and their respective domains D (4 ;) and D (Q ) as follows:

DA)E (L= [E;J € X | Graxer € L(10,11), §1(0) = T3, (0) = {1, (1) =0, §(D) = L5 } (6.2f)

A,:D(A)) = X is defined by

EI
A8 Z 2 " oteeex () (6.2)
N8| ~ 7 | Bl () |
and with D (Q) Ap (A1), Q :D(Q)—> X is defined by Q A %A, . Then (6.2a-c) can de written in the
form
Ca+QG+A L= ,u,Q). (6.2h)

It is shown in Section 6.4 and Appendix II in [Bak.1], that ® is a an operator that is Lipschitz continuous
on bounded sets, and that A; and Q satisfy the assumptions in [Gib.1] needed to derive the infinitesimal
generator of a contraction semigroup. We give a brief outline of this derivation, see [Gib.1] for the
details. First, we define the space V Ap A {’5) xX,sothatify =(y,,y;) € V, then

= {y,;, A1)+ (y2,y2), (6.2i)

where (-,-) is the L, inner product. For any given ¢ € [0, 1], let v(t)€ V be defined by
v(t)é(w(t X)), w(t , 1), w,(t ,x),w,(t,1)), and let the operator A,:D(A,) >V, where
D(A3)=D(A)xD(A,) ©V,be defined by

w,(t ,x)
é 0 I _ Wt(t ,1)
sz(xr)_[_Al _Q]v(t)— _Tgw (t x)_T2E «.x) ' (6.2j)
m texxx ’ m xxxex ’

=Ty (1 , 1) = PEIwg(t , 1) |

It is shown in Section 2 in [Gib.1], that there exists a unique maximal dissipative extension of Ay to A,
where A3 is the generator of a contraction semigroup that represents the free response of the system
(6.2h). It is shown in [Sho.1] that A ; generates an analytic semigroup. The standard form (2.2a) is then
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obtained by defining the state by z (r) Avwy, 0, Q)€ V xR?, and

[ 0
A3 00 8 . 0
A8 0 01, Fe®),ue)d | own)umQey| = |72 %gf(t»)fv)(t-ﬁl;(_fg;((lt;m/3> . (6.2k)
000 0 0
Tu(t) wu(t)

It follows that A satisfies Assumption 3.2 and that F satisfies assumption 3.1.

We considered three slewing problems which shared two requirements: (a) the tube had to be

rotated 45°, from rest® to rest, and (b) the acceleration produced by the motor was limited to 5 rads/sec?.
The first problem, Py, was a minimum time problem, subject to the above constraints; the second prob-
lem, P,, was a minimum energy problem, subject to the above constraints and an upper bound on the time
allowed; and the last problem, P3, was a minimum time problem, subject to the above constraints and an
upper bound on the potential energy due to deformation of the tube throughout the entire maneuver (ie.,a
worst case deformation constraint).

The transcription of the problems Py, P,, and P into the form (2.3b) required the introduction of
the following functions. With < denoting the final time, let

gl(u D) Az, (6.3)
The energy consumed by the maneuver is given by

g%wu ,v)8 Iol u(t)dr . (6.4)
The angular error at the final time is measured by

g% , 74 (0(1) - w4y (6.5)
The rigid body energy at final time is given by

g, v 22, (6.6)
The kinetic energy due to vibration of the tube at time < is given by

1
gw , vl %fo w,(t ,x)%dx , 6.7)

and the potential energy due to deformation of the tube at time < is given by

3 We say that the tube is at rest when the total energy of the tube is zero. This energy is composed of the energy due to rigid body motion
and energy due to vibration and deformation.
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1
2%u ,t)éP(t,u): —EziL We (T, x)dx . (6.8)

we see that the tube is at rest when g“(u , =8 , 1) = g6(u ,T)=0.

The deformation constraint for problem P5 has the form P (¢t ,u) < f(¢) for all € [0, 1], where
f () is a given positive bound function. This is a state-space constraint. To reduce the computational
burden, we replaced it by the equivalent requirement g(u , T) <0, where

At 2 |
g7(u,1:)=J;)[max{P(t,u)-f(t),O}] d . (6.10)

Since P(t , u) is continuous, g7(u ,t)=0if and only if P(¢r ,u) < f(¢t) forall t € [0, ). Transforma-
tions such as (6.10) must be used with great care because for any feasible pair (u , 1), g’(u ,T) =0 and
Vg’(u ,7) =0, and hence 8(u , t) = 0, which causes our algorithm to stop up at such a pair. However,
the problems caused by this violation can be circumvented by initializing the algorithm with an infeasible
point, keeping the parameter 1, in Algorithm 5.11, small, and introducing an € into the problem statement,
as shown below.

It can be shown that all the above functions gj :G x[0, 1] = R are continuously differentiable (in
the L,[0, 1]x IR topology) in u and ¢ forall j € {1,2,...,7}. To conform with the format of prob-
lem (2.3b), we relax each of the equality constraints by a small amount. The three problems now acquire
the following mathematical form% where G a {u€eLy0,1]1 lut)I<1Vte[0,1]} and
T=[7, 'cf]. with 19 > 0 very small and Ty <o very large.

P;: min{g'w ,v)1g%u ,v)-€<0, ghu ,7v)-e<0, gu ,7)-€<0,

(6.11a)
gﬁ(u , 0 —-e<0, (u,v)e€GxT]}.
P,: min{g*u ,7) ) gu,1) -1, <0, g%u ,1)-€<0, g%u ,71)-€<0,
(6.11b)
g3 ,7)-e<0, g%u ,1)-e<0, (u,7)€ G xT}
P;: min{g'(u ,1)1g%u,1)-e<0, gu ,1)-£<0, g5u ,1)-£<0,
(6.11c)

g%u ,v)-£<0, g’(u ,7)~€<0, (u,7)€ G xT).

In our experiments, we set € = 10~%. Thus, with this relaxation, we are requiring that the final value of the
angle © be in the interval [45° — 0.5, 45’ +0.5’). We assume that because of model simplifications and

other inevitable modeling errors, a linear feedback system would be used to assure final pointing accu-
racy.

S Note that we find it convenient at this point to abandon the convention that the cost function is g%(- , ) as well as the linear numbering of
the constraints.
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In the computational experiments reported in this paper, the term Q2(¢) was neglected in equation
(6.1a) - (6.1c). Similar results were obtained in computational experiments in which the term Q2(¢) was
kept. We used a cubic Hermit spline implementation of the Finite Element Method for spatial discretiza-
tion and Newmark’s f—method, with B = 0, for temporal discretization of both responses and sensitivi-
ties’. This approach is quite stable and gives accurate simulations. The results of our computational
experiments are shown in Figs. 2 -11.

Problem P;:  For simplicity, we chose the zero function as the initial control and 2 for an initial value
for the maneuver time. The initial discretization consisted of 32 time steps and 6 finite elements. The
discretization was refined at iterations 67, 99, and 123. Figure 2 is a graph of the control after 150 itera-
tions. At this point, the number of time steps was 256 and the number of finite elements 48. Figure 3a is
a graph of y,, 4 (u , 7) as a function of the iteration number. Figure 3b shows y,, . (u , 7) for the first
15 iterations. After precision refinement, the algorithm finds a control u € G,, and final time t € T such
that Y, ¢ ., T) <0 in only a few additional iterations. Note that each time precision of discretization
was increased, the value of y, . (4; ,T;) increases. This is due to improvement in the accuracy of the
evaluation of the partial differential equation. This increase in constraint violation Va, . au ,v) decreases
each time the discretization is increased and we see that in the limit the increase is zero. Figure 4 is the
graph of the cost as a function of iteration number. Figure 5 is the graph of w(t , 1), the displacement of
the tip of the tube, from the shadow tube, as a function of time. The maximum displacement of the tip of
about 5 mm and is within the range of validity of the Euler-Bernoulli model. The tip displacement is
large between 0.36 seconds and 0.437 seconds. Figure 6is a profile of the tube deformation, w (¢ , x) (see
Figure 1), during this interval. The total time for the entire maneuver is 0.7886 seconds.

Problem P,:  Figure 7 is the graph of the control produced by minimizing the total input energy while
constraining the final time to be less than 0.800 seconds, i.e., only 1.4 percent longer than the minimum
time computed for Py. The resulting final time is 0.800. The control is much smoother than the
minimum time control, and the total energy consumption is reduced by 18%, from 19.15 to 15.72. Figure
8 is the graph of the control when the bound on the final time is extended to 1.00 second, 27% over the
minimum time for the maneuver. The result is a total energy is reduction by 62%, to 7.27.

Problem P3:  In problem P, we have the additional requirement to keep the potential energy, which is
a measure of the total tube deformation, below the parabola (B) for all time. Figure 9 shows the optimal
control for problem P3. The optimal final time for this case is 0.8177 seconds, an increase of 3.7 percent
over the solution of problem P;. Figure 10 shows the potential energy curve for this case, which was

7 See [Bak.1, Chap. 8] for implementation details, that are based on the results in [Fuj.1, Fuj.2, Fuj.3, Ode.1].
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constrained to lie below a parabola (B). For comparison In Figure 11, curve A is the graph of the poten-
tial energy of the tube as a function of time for the control generated in solving the minimum time prob-
lem P 1-

7. CONCLUSION

We have presented an approximation theory for the numerical solution of optimal control problems
with dynamics in evolution equation form, with control and state space constraints. It should be obvious
that the theory can be trivially adapted to deal with problems with constraints on the initial state, as well
as with unconstrained problems. Although not included in this paper, we have results (reported in [Bak.1,
Bak.2]) which show that our theory can be used in conjunction with finite element techniques to produce
reasonably efficient numerical procedures which have the property that all the accumulation points of the
control sequences that they produce satisfy the problem constraints as well as an optimality condition
either for the original or the relaxed problem, depending on whether the accumulation point is in the
L%'[0, 1] topology or in the relaxed controls topology.
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9. APPENDIX: DIFFERENTIABILITY OF MILD SOLUTIONS

We will now establish the Frechet differentiability of solutions of (2.2f) with respect to the control
u € L3'[0, 1] and the scaling parameter .

LetM , ®€ (0,0) be such that IT(t)l <M e® forallt € [0, 1], and let M & M e“™=

Lemma A.l. (Lipschitz Continuity of z(t , u , T)in (¢ , T).)
There exists b3 € (0, ) such that forall u’, u € L3'[0,1),7 € [0, 1], T € [Trip.» Tmax)»

bzt ,u’, W) —z(t ,u , Dy Sbylr —uld+ |7 —1I12)*%. (A.1)

Proof. Foranyu , u’€ L3'[0,1]andt € [0, 1],

t

z(t ,u ,T)-z(t ,u,1)= T('c’t)zo+l[1:’T('c'(t =S)F(z(s ,u ,7),u' (s))ds

—T(‘rt)zo—j;:‘tT(’t(t —SNF(z(s ,u ,T),u(s))ds
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= [T(-r’t)—T(-ct)]zo+fot{ TTW@ =sHIF(z(s , & ,v),u(s)=F(z(s ,u ,7),u(s))

-[TGEE =s) =TT @ =s)IF(z(s ,u ,T),u(s)) y ds . (A.2a)

Since {z(t ,u ,7)€ S 4 {z€X |zly <b; }, by Assumption 3.1(ii), we conclude from Assumption
3.1(iii) and Lemma 3.4 that there exists constants Ks, L € (0,~), such that, with
y(t)éllz(t yu', )=z ,u ,7ly,fort € [0, 1],

y(t)S'cmeKsJ;:[y(s)+llu’(s)—u(s)[l2] ds +L 17 -xl. (A.2b)

Applying the Bellman-Gronwall Inequality, and making use of the fact that by the Schwartz Inequality,
lull; < lul,, we obtain that

y(@)se™=MKs (o MK’ —ul)+L17 =% } Sbs(lu’ —ulf + 17 -1I12)%, (A.2¢)
where b3 8 V2 max { 1, MK , L } e™=MKs, O
Next, for ', u € L7[0,1] and v, T € [ty , Ty, We define du =u’ —u, dSt=1 -1, and

Oz(,u ,t,du ,dt)€ C([0,1],X) to be the solution to the equation

5 ! oF oF
Z(t)=j0 T( —S))T(g(Z(s U .t).u(S))ﬁz(S)+$(Z(S),u(S))Su(S))

+ (T (et =s))+T(t =$)AT (x(t —s))F(z(s ,u ,7), u(s))&r} ds +1tAT (tt)z 0t . (A.3)

Note that (A.3) is the first variation with respect to (u , 1) of equation (2.2f).

Theorem A.4. (Frechet Differentiability of z (¢ , u , t) with respectto (u , T).)
Forallu’,u € Lg' [0,1],7r€ [Tmin ’ Tmax]

lz(t ,u’,v)=2z(t ,u ,x)=0z(t ,u,T,0 —-u y U=y <o’ -u ,v-1) , (A4)

where o (u , 5t)/(I8u 12 + 15t1%)% = 0 as (3u , 5t) — 0.

Proof. To simplify notation, we define Az(t)éz(t yu' ,tYy—z( ,u , 1), Sz(t)é
dz(t ,u ,t,du ,01%), dudu —u, 5t8v -1, and we remove obvious arguments by setting
FORFGG ,u,v,ut), FOAFee.v ,v),ut), F,()2 3—f(z(t,u,t),u(t)),
Fu(t)éa—p(z(t Ju LTy, u)).

ou
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First, in terms of this simplified notation, we have that

0z(t) = Lt{ T (2t —s)[F,(s)dz(s)+ F,(s)du(s)] +

+ [T (vt = 5))+ Tt = $)AT (x(t - s)IF (s ))8':} ds + tAT (Tt )zgdT , (A.5)

Az(t)=[T(7t) —T(‘ct)]zo+LT [Tt =s)F (s) =T (x(t = s))F (s)lds
=[T(t't)-T(tt )]zo-l-‘tL‘T('c(t ~s)IF' (s)=F(s)lds

+L: (KT (@ —5)) =T (2t —s))F (s)ds . (A.6)

Hence,

[Az(t) =0z (t)] = [T (x't) - T (zt) — dutAT (xt )z

+ ‘[:{ [(FT (¢ = 5)) =T (vt = s)IF (s) = dt[w(t —s)AT (2(t = 5)) + T (2t — s NIF (s )} ds

+‘r‘£:T('c(t -s)){ Fz(s)[Az(s)—Bz(s)]-i-[F’(s)-F(s)—Fz(s)Az(s)-Fu(s)éu(s)} ds .

(A.7a)

We will deal with the three groups of terms in the right hand side of (A.7a) one at a time. We will
give full details for the last group only, since the calculations are quite laborious. First, since by Lemma
3.3,(d/dt))T(t) = AT (1),

I7(s +0s)—T(s)=AT (t)ds1 = 0,(3s) ,

where 0,(ds)/ds -0 as ds — 0. Now let s =tt and s +8s =¢v. Hence &s = t(t'— 1) =t Ot where
8t = 1" — 1. Therefore,

IT@¢)=T(tt)~AT (t)dttl<0,(0w) ,
and hence
T (x't) = T (xt) = BTAT (t1))z gl < lzgly 0 4(37) . (A.7b)
Next, making use of Lemmas 3.3 and 3.4, one can show that

IIJ'Or KT (¢ =5)) =T (2t = 5)IF’ (s) = dt[t(t - s)AT (x(¢ =5)+T((t —s))IF (s)dslly =0,(u ,d1),



(A.7c)
where 0,((du , 51))/(15u 12 + 15t12)% = 0 as (Bu , 5t) — 0.

Finally, making use of Assumption 3.1 and Lemma 3.4 and Lemma A.1, we obtain that

'c[lL’T(‘l:(t —s)){ F,(s)[Az(s)—-0z(s)]+ [F'(s)—F(s)—Fz(s)Az(s)—Fu(s)Bu(s)} dsly
s:mebzf;nAz(s)-az(s)nx ds +'tmaxMj'(:[l{F’(s)-F(s)—F,(s)Az(s)—-Fu(s)Su(s)}ﬂxds
t 1 oF
S‘cmaxMj‘o byllAz (s) -0z (s)ly +L) ﬂg(z(s)+rAz(s),u(s)+r5u(s))-F,(s)ldrllAz(s)llx
1 oF
+L l]—a:(z(s)+rAz(s) ,u(s)+rﬁu(s))—Fu(s)lldrllﬁu(s)ll} ds
< “maxMj;{ byllAz(s) = Bz (s)ly +Ll Ksr(1Az (s)ly + 10u (s Y)dr 1Az (s )iy
1
+ L Kgr(1Az (s )y + 0du (s )l)dr 1du (s )H} ds

< T fc; { balAz (s) — 8z (s )y + Kg [1Az (s)ly +05u (s )12 } ds . (A7d)

Since by Lemma A.1, 1Az (s)ly < b5(15u 02 + 15712)*, we obtain, combining (A.7b) -(A.7d) that
t
1Az (t)=dz(t)ly < TmaxML {DalAz(s) =0z (s)ly } ds + Tpo MK [3I0ully + 04((Bu , B7))],  (A.7e)

where 03((du , 57))/(15ul} + 18t1%)* 5 0 as (5u , 5t) = 0. Applying the Bellman-Gronwall Lemma,
we obtain that

1Az (t) =Bz (t)ly <o ((Bu ,d7)), (A7)
where o ((Su , 51))/(I5u 1 + 15712)" —0 as (5u , 5t) — 0, which completes our proof. a

Proceeding by analogy with the proof of Lemma A.1, it is easy to establish the following result:

Lemma AS. The solution dz (¢ ,u ,t,du ,87), of (A.3), is linear in (du , &t) for each ¢ € [0, 1],
u € L7[0, 1], and t € [Ty , Tmay), and it is Lipschitz continuous in (4 , T) € G X [T , Tyay)s 1.€., there
exists b4 < oo such that forallu’, u € L3[0,1],¢ € [0,1),T € [Ty , Tayls
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10z(t ,u’, v ,0u ,dt)=8z(t ,u ,T,0u 50y Sby(l —ulf+ |7 —<1%)%. (A8)
O
If we denote by z, (¢ , u , 7) the linear map du — 8z(¢ ,u , T, du , &t) and make use of Assump-
tion 3.1(v) and Theorem A.4, we obtain the following theorem:

Theorem A.6. Forall u € L'[0, 1], T€ [Ty, Tmg). and ¢ € [0, 1], z(t , u , T) admits a Lipschitz
continuous Frechet derivative. That is, there exists a Lipschitz continuous linear operator
Dz(t ,u ,v)y=D,z(t ,u ,7),Dz(t ,u,v) € B(LF[0,1],X) such that for all du € L3[0,1] and
dte R,

z(t ,u+0du ,t+dt)-z(t ,u ,7)=D,z(t ,u ,7)0u -D,z(t ,u , 7)o

touk; =0 (10ulZ + (512" T (A9
15tl -0

37-



10. REFERENCES

[Ahm.1] N. H. AHMED, Properties of relaxed trajectories for a class of nonlinear evolution equations

[Ale.1]

[Arm.1]

[Bak.1]

(Bak.2]

[Ben.1]

[Bur.1]

[Ber.1]
[Chu.1]

[Cul.1]

[Cul.2]

[Dun.1]

[Dun.2]

[Flo.1]

on a Banach space, SIAM J. Control and Optimization, Vol.21, No.6, pp 953-967, 1983.

B. M. ALEKSEEYV, V. M. TIKHOMIROV, and S. V. FOMIN, Optimainoye Upravieniye
(Optimal Control), Nauka, Moscow, 1979.

L. ARMIIO, Minimization of functions having Lipschitz continuous first partial derivatives,
Pacific Journal of Mathematics Vol 16, pp 1-3, 1966.

T. E. BAKER, Algorithms for optimal control of systems described by partial and ordinary dif-
ferential equations, (Ph. D. Dissertation, University of California, Berkeley, June 1988) Memo
No. UCB/ERL M88/45, University of California, Berkeley, Electronics Research Laboratory 21
June, 1988.

T. E. BAKER and E. POLAK, Anr Algorithm for optimal slewing of flexible Structures, Univer-
sity of California, Electronics Research Laboratory, Memo UCB/ERL M89/37, 11 April 1989.

J. BEN-ASHER, J. A. BURNS and E. M. CLIFF, Time optimal slewing of flexible spacecraft,
Proc. 26th IEEE Conference on Decision and Control, 1987, pp. 524-528.

J. A. BURNS, R. E. MILLER, and E. M. CLIFF, Control of a viscoelastic shaft with attached
tip mass, Proc. 26th Conference on Decision and Control, pp. 997-999, 1987.

C. BERGE, Topological Spaces, Macmillan Co., N.Y., 1963.

H. M. CHUN, Large-angle slewing maneuvers for flexible spacecraft, Ph. D. Dissertation,
M.LT., 1986.

J. CULLUM, Discrete approximations to continuous optimal control problems, Siam J. Con-
trol, Vol. 7, No. 1, February, 1969.

J. CULLUM, An Explicit Procedure for Discretizing Continuous Optimal Control Problems,
JOTA, Vol. 8, pp. 15-34, 1971.

J. C. DUNN, Diagonally modified conditional gradient methods for input constrained optimal
control problems, SIAM J. Control and Optimization, Vol. 24, 1986, pp. 1177-1191.

J. C. DUNN and E. SACHS, The effect of perturbations on the convergence rates of optimiza-
tion algorithms, Appl. Math. Optim., Vol. 10, 1983, pp. 143-157. [Ode.1] 8 J. T. ODEN and R.
B. FOST, Convergence, Accuracy and Stability of Finite Element Approximations of a Class of
Non-linear Hyperbolic Equations Intl. Journal for Numerical Methods in Engineering, Vol. 6,
1973, pp. 357-365.

M. A. FLOYD, M. E. BROWN, J. D. TURNER and W. E. VANDERWELDE, Implementation

-38-



[Fuj.1]

[Fuj.2]

[Fuj.3]

[Gib.1]

[Gib.2]

[Gib.3]

[Jun.1]

[Hua.1]

[Kle.1]

[Lan.1]
[May.1]

[May.3]

[May.4]

of a minimum time and fuel on/off thruster control system for flexible spacecraft, Journal of
Astronautical Sciences, To Appear.

H. FUIN, Finite Element schemes: stability and convergence, in Advances in Computational
Methods in Structural Mechanics and Design, J. T. Oden, R. W. Clough, and Y. Yamamoto,
eds, pp 201-218, Papers at Second U.S. Japan Seminar, University of Huntsville, Alabama
press, 1972

H. FUIII, A note on finite element approximation for evolution equations, Kokyuroku, RIMS,
Kyoto Univ., No. 202, pp 96-117, 1974.

H. FUJITA and T. SUZUKI, Evolution Problems, in HANDBOOOK OF NUMERICAL
ANALYSIS Vol. II, Finite Element Methods (Part 1), P. G. Ciarlet, J. L. Lions, eds., Elsevier Science
Pub., 1991,

J. S. GIBSON, An Analysis of optimal modal regulation: convergence and stability, SIAM J.
Control and Optimization, Vol. 19, No. 5, 1981.

J. S. GIBSON, D. L. MINGORI, A. ADAMIAN, and F. JABBARI, Approximation of optimal
infinite dimensional compensators for flexible structures, Proc. Workshop on Identification and
Control of Flexible Space Structures, Vol. I, April 1985, pp. 201-218.

J. S. GIBSON, The Riccati integral equations for optimal control problems on Hilbert spaces,
SIAM J. Control and Optimization, Vol. 17, No. 4, 1979,

J. L. JUNKINS and J. D. TURNER, Optimal Spacecraft Rotational Maneuvers, Studies in
Astronautics, 3, Elsevier, Amsterdam, 1986.

P. HUARD, Programmation Mathematique Convexe, Rev. Francaise Inf. Rech. Oper., Vol.
7,1968, pp. 43-59.

R. KLESSIG and E. POLAK, An Adaptive Algorithm for Unconstrained Optimization with
Applications to Optimal Control, SIAM J. Control, Vol. 11, No. 1, 1973, pp. 80-94.

S. LANG, Real Analysis, Second Edition, Addison Wesley Co, Reading, Mass, 1983.

D. Q. MAYNE and E. POLAK, First order, strong variations algorithms for optimal control,
JOTA, Vol. 16, No. 3/4, 1975, pp. 277-301.

D. Q. MAYNE and E. POLAK, A feasible directions algorithm for optimal control problems
with terminal inequality constraints, IEEE Transactions on Automatic Control, Vol. AC-22,
No. 5, 1977, pp. 741-751.

D. Q. MAYNE and E. POLAK, An Exact penalty function algorithm for optimal control prob-
lems with control and terminal equality constraints, Part 1, JOTA, Vol. 32 No. 2, 1980, ppP-
211-246.

-39-



[May.5]

(Pap.1]

[Paz.1]

[Pir.1]

[Pir.2]

[May.2]

[Pol.1]

[Pol.2]

[Pol.3]

[Psh.1]

[Sho.1]

[Sin.1]

[Sla.1]

[Teo.1]

[Teo.2]

D. Q. MAYNE and E. POLAK, An exact penalty function algorithm for optimal control prob-
lems with control and terminal equality constraints, Part 2, JOTA, Vol. 32 No. 3, 1980, pp.
345-363.

N. S. PAPAGEORGIOU, Properites of relaxed trajectories of evolution equations and optimal
control, SIAM J. Control Optim., Vol. 27, No. 2, pp. 267-288, 1989.

A.PAZY, Semigroups of Linear Operators and Applications to Partial Differential Equations,
Springer-Verlag, New York, 1983.

O. PIRONNEAU and E. POLAK, On the Rate of Convergence of Certain Methods of Centers,
Mathematical Programming, Vol. 2, No. 2, 1972, pp. 230-258.

O. PIRONNEAU and E. POLAK, A Dual Method for Optimal Control Problems with Initial
and Final Boundary Constraints, SIAM J. Control, Vol. 11, No. 3, 1973, pp. 534-549.

E. POLAK, and D. Q. MAYNE, First order, strong variations algorithms for optimal control
problems with terminal inequality constraints, JOTA, Vol. 16, No. 3/4, 1975, pp. 303-325.

E. POLAK, On the Mathematical Foundations of Nondifferentiable Optimization in Engineer-
ing Design, SIAM Review, 1987, pp. 21-91.

E. POLAK and L. HE, A Unified Phase I Phase II Method of Feasible Directions for Semi-
infinite  Optimization, University of California, Electronics Research Laboratory, Memo
UCB/ERL M89/7, 3 February 1989. To appear in JOTA.

E. POLAK, Computational Methods in Optimization: A unified Approach, Academic Press,
New York, 1972.

B. N. PSHENICHNYT and Yu. M. DANILIN, Numerical Methods in Extremal Problems,
Nauka, Moscow, 1975.

R. E. SHOWALTER, Hilbert Space Methods for Partial Differential Equations, Pitman, Lon-
don, 1977.

G. SING, P. T. KABAMBA, and N. H. MCLAMROCH, Planar, time-optimal rest to rest slew-
ing maneuvers of flexible spacecraft, J. Guidance, Control, Dyn., Vol.12, 1989, pp. 71-81.

M. SLATER, Lagrange Multipliers revisited: a contribution to nonlinear programming,
Cowles Commission Discussion Paper, Mathematics 403, November 1950.

K. L. TEO and Z. S. WU, Computational Methods for Optimizing Distributed Systems,
Academic Press, New York, 1984.

K. L. TEO, K. H. WONG, and D. J. CLEMENTS, A Feasible directions algorithm for time-lag

optimal control problems with control and terminal inequality constraints, JOTA, Vol. 46,

-40-



[War.1]

[War.2]

[War.3]

[War.4]

[Wil.1]

[Won.1]

1985, pp. 295-318.

J. WARGA, Optimal Control of Differential Equations and Functional Equations, Academic
Press, New York, 1972.

J. WARGA, Steepest Descent with Relaxed Controls, SIAM J. Control, Vol. 15, 1977, pp. 674-
682.

J. WARGA, Iterative procedures for constrained and unilateral optimization problems, SIAM
J. Control, Vol. 20, 1982, pp. 360-367.

J. WARGA, Iterative optimization with equality constraints, Math. of Oper. Res., Vol. 9, 1984,
pp- 592-605.

L. J. WILLIAMSON and E. POLAK, Relaxed controls and the convergence of optimal control
algorithms, SIAM J. Control Vol. 14, No. 4, 1976, pp. 737-757.

Wong, K. H. and Teo, K. L., A Conditional Gradient Method for a Class of Time-Lag Optimal
Control Problems, Journal of Australian Mathematical Society, Vol. 25, No. Series B, 1984, pp.
518-537.

-41-



1 meter

1Kg

O //’/Wx)

0 1 X

Figure 1. Configuration of Slewing Experiment



Control
5.00 .

3
3
b

4.00%
3.00.55.
2003
1.00.’5.

0.00 Frvvresrrepressressporsorssset oot Proeerssetoresrtered .
OO 010 020 030 040 ;050 060 070 0.80 0.0 1.00
-1.00% Normalized Time

2004
3.00%

400}

-5.00 % "

Figure 2. Final Control for Problem 1



PSI
0.005.,,

0.005.

0.004.;

0.003.

0.002;

0.001,;

0.00

it

s

H
3
s

ii
HR
i i3 i
3 HER HY
% HERY iy
, HIAY S

100 lteration

Figure 3a. Constraint Violation in Problem 1: 150 Iterations



PSI
0.60 .}

0.50 ;.
0.40 ;.
0.30 ;.
0.20 ;. !

0.10 ;.

.
0.00 L.cssecmbrmmmmbrmmmtsssmtomosissnmmdmdnobo S o m———
;

Figure 3b. Constraint Violation in Problem 1: first 15 Iterations



Cost
2.00...

seatseten

100}

0 100 Iteration

Figure 4. Cost v/s Iteration number for Problem 1



Meters

,,....
-

0.005,

ererssnssosonisns,
o
etvas,
J—
=

3 i i3
i i H i
H H i H
H H H
i i :
H i H 3
I i Y
00000 anld /] [l ] |§~‘: ..'.: .

'.. L] L * : * T ] b ) W
0:00 0.10 ;‘10.20 0.30._ 040 ©50 060 0.70 0.80 090 1.00
i Normalized Time

H
§
it i1 H
H H H 3 H
H H H Y H
i H H : H :
H i 3 H H i
3 H H H H H
H H H H H H
H i H H 3 H
H H H H H H
3 H % H H
H i H i % i
3 i H H $ H
3 H H H s H
H H : T 3
i i i i i
H H H : é
H H F
3 : L |
3 H L
. .. :‘ "‘.
%

Figure 5. Displacement of Tip of Tube, Problem 1



w(t,x) (meters)

0.005 " 1= 0.437 sec

o
* t=0.419 sec
-
a"'..'
o o
.'.o"'.‘ o’
- ** -
p -
P g .,.o.'aw"
R
o oo
...... ot x
0.000, s

ﬁummnm}-louomoltamlﬂalsmﬂﬂpmu:::_

D.00 0.10  U:20:: 0.30 040 050 UGU '''' 0 '70 """" 080-»-0.90 100
.., = 0.401 sec

", ., t=0.382 s6C

"1 = 0.360 sec

Figure 6. Beam Profile



Control

5.00

4.00 % \

3.00 5.

200 ;.

1.00 %

0.00

..:.‘é.‘. "

H

-1.00 %
-3.00.
-4.00.

5.00 £

D00 010 020 030 040 050 060

cavaneet®”

070 080 090 1.00
Normalized Time

Figure 8a. Final Control for Problem 2: Time of Maneuver = 0.900 seconds



Control
5.00

4.00 ‘.‘.
3.00 .""s‘
2.00

1.00 i

0:00 russsscrrmssmsstomssssrissetssseusssmamssmissssssistersssssfosmmmssirssssni]
.00 0.10 0.20 0.30 0.40 "?.50 060 070 0.80 0.90 1.00
-1.00% Normalized Time
-2.00%

-3.00%

400}

i .
5.00% \

Figure 7. Final Control for Problem 2: Time of Maneuver = 0.800 seconds



Control

¥
*,

4003 ...
3.00% =.

200%
1.00.5 - E

0.00

3
%
. .'::#. [ReD 1 1 1

b.00 010 020 030 040 050, 0.60 070 0.80 080 1.00
-1.00% % .. Normalized Time

2003 \

oo’
e
oo
o

3.00§

-4.00%

-5.00%

Figure 8b. Final Control for Problem 2: Time of Maneuver = 1.000 seconds



Potential Energy

OUM--

s
0.03] A
+, ii
i
[ 5 j A
! 3 i i
i3, H HA!
[ HA RN : i3
H *, i3 i
0021 e, 4 n
i H i i i H
] Tt i i
I i H Ai i i
i H y iy i
: H : ., H :
i i o, H
P i, i
] § ; i . i H
0011 i
b H H H oo, H H
L H H H e i i H
i i i R S
) ; t : ;‘- H E; :E *eves, -..:.;... esves. "}g"“
$ H H 3 H : 3 H H
H H : H H H H ] %
9 H : : 3 : 3 i 1 i ;
4 H H : § H H t H
| v } i L v
0.00 1.;. } - I-.F". 1 “a) LS L aananad S ]
T L} 1) L] L] ! L4 1 ]
010 020 030 040 050 0.60 070 0.80 0.0 1.00

Normalized Time

Figure 9. Problem 1: Potential Energy



Control

5.00

4.00

3.00

2.00

1.00

0.00

-1.00

-2.00

-3.00

-4.00

-5.00

i 7
iz {
i i

ity
-

i

(] 1 'l [ ‘_“: 1 1 [l 1

.00 0.10 020 0.30 04C ;050 060 070 0.80 0.9
Normalized Time

Figure 10. Final Control for Problem 3

b

tr]

1.00



Potential Energy
0.04.

003}

b H i."-.

1 ii~B
o.on'.

H F R R
Py,
i TN
4 H I .
H P e
0.010 i ] LA = ’i‘ --.....,.‘_.
‘s H ; H H H e,
H 3 : % : i oes,
i : i § .""'""-o'. -°"".'m“=":""--.
:5 5 ‘. ; E: :: Peevers "-....:::"::::. ..”:::::.,,"".,...:
H H H i P8 e Geseen
H i i i i
: 2 : 3 H H
i i v ! i
$ ) H S H 3 2
H 3 H LG HH
: 3 L 12
o.oo Z 1 A 1 1 i 1 1
T t T T T T L
000 0.10 020 030 040 050 0.60 0.70

: prasesenif
080 090 1.00
Normalized Time
Figure 11. Problem 3: Potential Energy
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