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ABSTRACT

We present a mathematical foundation for the algorithmic solution of free- and fixed-time optimal
control problems with evolution equation dynamics, finite dimensional controls, and constraints on the

controls and end points. In particular, (i) we develop expressions for the derivatives of the solutions of

the evolution equations with respect to controls in LJ [0,1] and to the final-time, (ii) we show that the

solutions ofthe relaxed evolution equations have acertain kind ofdirectional derivative, (Hi) we develop
algorithmic optimality conditions with respect to both ordinary and relaxed controls and the final-time,

and (iv) we present an approximation theory which shows that finite dimensional, minimax and methods

ofcenters type algorithms can be used to obtain arbitrarily good approximations to optimal controls for
optimal control problems with evolution equation dynamics and various constraints.
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1. INTRODUCTION

The results presented in this paper, dealing with the optimal control of evolution equations, were

largely motivated by optimal slewing problems arising in the control of large, flexible aerospace struc

tures and in the control of various earthbound mechanisms with flexible links, which are naturally

modeled by coupled systems of partial differential equations. Since, in practice, only finite element plant

models may be available (which are in the form of ordinary differential equations) and since it is much

easier to workwitha canonical system representation, weassume that theplant dynamics arein evolution

equation form, which permits us to treat both cases in a unified manner.

The majority of optimal control algorithms (see, for example [May.l - May.5, Pir.2, Teo.l, Teo.2,

War.2 - War.4, Won.l]) are presented in conceptualform, i.e., the effects of numerical integration of the

differential equations are ignored. In [Kle.l] we find an approximation theory for unconstrained optimal

problems with ODE dynamics, in the form of an implementation of the method of steepest descent. More

generally, this theory providesguidelines for adaptively increasing the precision of numerical integration

so as to ensure that the numerical scheme retains the convergence properties of the conceptual one. It was

laterusedby [Dun.l] to implement a conditional gradient method foroptimal control problems with ODE

dynamics. As far as optimal control problems with PDE dynamics are concerned, in [Gib.l, Gib.2,

Gib.3], we find a detailed solution of the linear quadratic regulator problem, including conditions for the

convergence of modal approximation schemes. However, for more general optimal control problems

with PDE dynamics, the prevailing approach has been to use somemethod for constructing a particular

finite dimensional approximating optimal control problem andthento solvethisproblem by somemethod

or other, see, e.g. [Jun.l, Chu.l, Ben.l Bur.l, Flo.l]. The relationship between the solutions and station

ary points of the approximating optimal control problem and those of the original optimal control prob

lem is not established in these papers.

In this paper, we deal with the numerical solution of optimal control problems not by adaptive

implementation of conceptual algorithms, but by adaptive diagonalization which requires less restrictive

assumptions and, in our experience, seems to produce more efficient computational schemes. In any

diagonalization approach, an original optimal control problem, P, is decomposed intoaninfinite sequence

of finite dimensional problems, P„, n = 1 ,2 ,3 ,... which are solvable by nonlinear programming or

nonsmooth optimization algorithms. These problems P„ must satisfy the following minimal consistency

condition. Since, in the absence of convexity, finite dimensional optimization algorithms can only be

shown to compute stationary points, rather than optimal points, the problems P„ must be such that not

only their solutions converge to a solution of P, but alsotheir (first order) stationary points converge to a

stationary pointof P. Next, thereis considerable empirical evidence to suggest thatfrom a computational

point of view, the most efficient approach is to proceed gradually, iterating towards a solution of a prob

lemP„ until some testis satisfied andthen carry over the lastiterate as a starting point for problem P„+1,



until the value of n is increased to some preassigned maximum value n*, rather than to solve P„*

directly. In an adaptive diagonalization scheme, we can expect to find tests which determine not only

when the solution of problem P„ should be arrested, but also the next value of n, which may be larger

than n+1. In return, as we will show later, theuseof adaptive tests results in stronger convergence pro

perties for the diagonalization method.

In developing an adaptive diagonalization scheme for the numerical solution of free- and fixed-time

optimal control problems with evolution equation dynamics, finite dimensional controls, and constraints

on the controls and end points, we had to deal with (i) the differentiability of solutions of PDEs with

respect to controls, (ii) optimality conditions for optimal control problems, which relate to thoseused in

finite dimensional nonlinear programming and nonsmooth optimization1, (Hi) relaxed control theory ina
PDE setting, (iv) conditions on the numerical methods for integrating the dynamical equations, to ensure
consistent discretization, and (v) tests for progressing from P„ to Pn+1.

The results presented inthis paper extend and generalize the results in [Kle.l, Will]. In particular,
the results in [Kle.l] do not apply toconstrained problems and hence anew generation of tests had to be
invented; furthermore, the results in [Kle.l, Wil.l] apply only to problems with ODE dynamics. Nor
were algorithms for constrained minimax optimal control problems, such as those considered in this
paper, addressed in [Kle.l, Wil.1].

In Section 2, we give aformulation ofthe problems that we will consider. In Section 3, we develop
expressions for the derivatives of the solutions of the evolution equations with respect to controls in
(L£ [0,1], H2) and the final-time, and we establish first order optimality conditions for minimax optimal
control problems with control constraints and for optimal control problems with constraints onthecontrol

and inequality constraints onthe final-point. In Section 4 weintroduce relaxed controls extensions of the

optimal control problems under consideration and develop appropriate extensions ofthe optimality condi
tions introduced in Section 3. In Section 5we present our approximation theory, and our adaptive diago
nalization schemes. We show that these can be combined with a finite dimensional minimax algorithm
[Pir.l, Psh.l, Pol.l], and a new phase I - phase n method of feasible directions[Pol. 21 to obtain arbi
trarily good approximations to optimal controls for optimal control problems with evolution equation
dynamics and various constraints. In Section 6we present computational examples.

It should be clear that because the optimality conditions for finite dimensional problems are in terms of"weak variations", in the absence
ofconvexity, stationary controls offinite dimensional approximations to an optimal control problem can only converge to acontrol satisfying a
weak optimality condition. Hence the Maximum Principle isgenerally an inappropriate optimality condition within the particular numerical ap

proximation framework considered in this paper.



2. FORMULATION OF OPTIMAL CONTROL PROBLEMS

Many optimal control algorithms, including the ones to bepresented in this paper, areextensions of

finite dimensional optimization algorithms that deal with problems defined in the Hilbert space R".

Now, the natural space forestablishing differentiability ofsolutions ofa differential equation with respect

to m-dimensional controls is LZ [0,1]. However, adoption of LZ [0, 1] as the space for analysis leads

to the somewhat awkward situation that the extensions of the finite dimensional algorithms do not appear

to be natural, becausethey require that we also use the L™ [0 ,11 norm, D-D2 , and L™ [0 ,1] scalarproduct,

Fortunately, one can also establish differentiability of solutions of a differential equation with

respect to controls in the Hilbert space L™ [0 ,11, provided that one imposes a growth condition on the

velocity function, as we will do shortly. In the case of controlconstrained optimal controlproblems,such

as the ones treated in this paper, the imposition of a growth condition on the velocity function does not

restrict the class of problems that can be considered,and amounts to no more than a mathematically con

venient device.

Finally, we recall that for any u e L% [0,1], Ow D2^[f Oh (t)fdt ]**, and for any u , v€L2"[0,l],

(u , v )2 = f {u(t) ,v(t))dt, where D-D denotes thenorm on Rm and (•, •)denotes thescalar product on

Rm.

We are now ready to proceed. For any 0 < t < «>, let G (t) be the set of admissible controls defined

by:

G(z)± {ueL%[0,T]\u(t)eU , for almost all/€ [0,t]} , (2.1)

where U is a compact convex subset of Rm.

Let X denote a Hilbert space with inner product {' ,')x and corresponding norm Mx. Let

A :D(A)->X be the infinitesimal generator of a strongly continuous semigroup {T(t)}t^0; let

F : X x Rm —> X be a nonlinear operator that is Lipschitz continuous on boundedsets. We will consider

dynamical systems of the following form:

—z(t ,u)=Az(t ,u) + F(z(t ,w),if(0), £(0,H) = z0eD04) , u €G(x). (2.2a)

where £ (t , u) € X, for all / e [0 , t].

Because the set U c Rm is compact, there exists a bound b < °° such that for all v e U, Iv* I <. b,

/ = 1 ,2 ,..., m. Hence, since our algorithms never violate the control constraint, we may assume

without loss of generality that the operator F has the form F(z , v) -F (z ,SAT(v)\ where

SAT : Rm -» Rm is such SAT(v) = (sat (v!), sat(v2),..., sat(vm)), where forall z € R,



\-J z ' if Iz I £2& , (22b)
5flr(z)"{«nCz)(2ft +l-^-'")), if Izl *2*> .

This growth condition allows us in Section 3 to postulate local Lipschitz continuity conditions that are

independent of bounds on the control.

We will assume that(2.2a) has a unique mild solution, which is defined as follows (see[Paz.l]):

Definition 2.1. Afunction £(•, u) € C([0, t] ,X) is said tobea /ni/tf solution to (2.2a) if

f (/ , if) =7'(0£o +jo H* -s)F(z(s ,u), u(s))ds . (2.2c)
D

We can normalize2 the final-time in fixed-time optimal control problems (originally defined on
[0, t]) to be 1and reduce free-time optimal control problems to fixed-time optimal control problems on
the interval [0,1], by replacing (2.2a) by scaled dynamics, with the scaling parameter denoted by t.
Thus, with each u € G(x), we associate a u € G(l) defined by u(t) ku(xt) for / € [0 ,1]. With each
£ € C([0,t] ,X), we associate z € C([0,1] ,X) defined by z(t)kz(ti) for all t € [0,1]. Then, the
function z(/ ,u,x) 4£(/ x, u) is amild solution of the differential equation

—z(t ,u ,T) =-^£(t'z>u) =T[Az(tz,u) +F(z(tz)$u(t'z))]

= x[Az(r ,u ,x)+F(z(r ,u ,x),w(0)l. (2.2d)

Hence we abuse notation and let G =G(l), and we replace the original dynamics (2.2a), with the scaled
dynamics:

—z(t ,u ,i) =-z[Az(t ,u ,t) +F(z(/ ,»,t) ,«(/))], z(0,u) =z0eD(A), te [0,1]. (2.2e)

Note that for any final-time t >0, the operator iA generates the semigroup {T(it)},^0and hence
z(t ,u , x) is a mild solution of (2.2e) if

z(/) =HxOzo +TJo TW - *HF (* (*),»(* ))rf5 . (2.2f)

Next, for y =0,1 ,2,..., q, let fJ' :X-»R be functions that are Lipschitz continuously differen-
tiable on bounded sets. Then, for j =0,1,2 ,..., q, we define the functions gj :Gx (0,°o) -»R by
g; (u ,T) =fJ(z(l ,u , x)). The simplest problem that we will consider is

Failure tonormalize may lead topathological computational results, see [Cul.l, Cul.2].



MMP: inf {maxs'Gi ,t) I u € G , xG [xmin,xmax]} , (2.3a)
J € q

where q£ {1 ,2 ,..., q}, and 0<x^ £xmax <«>. Note that when xmax =x^, (2.3a) is a fixed-time
problem, otherwise it is a free-time problem. In minimum time problems, x^,, is chosen to be very small

311(1 Tmax is chosen to be large, which ensures that the optimal value of the final-time, x, is the minimum

time.

We will also showthat algorithms for solving MMP are trivially adapted to solving optimal control

problems with control and end point inequality constraints, of the form

CMP: mf{g°(u ,x)lmaxg'(w ,x)£0. «€G , xe [x,™ ,xmax]}. (23b)
j € q v

Our next task is to establish optimalityconditions for the problems MMP and CMP.

3. OPTIMALITY CONDITIONS.

We begin with a few standard assumptions.

Assumption 3.1.

(i) The operator F(-, •) is Frechet differentiable. We will denote its partial Frechet derivatives, with
dF dF

respect to z and u, by — (z , u) and — (z , u), respectively.
oz ou

(ii) For all u e G, and x € [x^,,, xmax], a solution to (2.2f) exists.

(Hi) There exists ^(O.oo) such that for all f€[0,l], «eLj[0,l], and x € [x^, xmax],

Dz(/ ,u ,iy\x<.bx.

(iv) For everybounded set S c X, thereexists Ks<°° suchthatfor all z , z' € S and all u , u' € R/w,

(fl) DF(z/,w,)-F(z .I/)!* ^[Bz'-zOx+IIm'-hII],

W O-^V.k') --^(z ,w)a^^s[Dz,-zOx+Bw,-W01,
oz dz

3F dF(c) 0-|L-(z/,ii') -y-(z ,ii)B ^[llz'-zlljr+Dii'-kO].

(v; The functions /;' (•),j = 0 ,1 ,2 ,..., q, are Frechet differentiable; their Frechet differentials have

the form Df(z ;Sz) = (V/^^z), Sz )x, and their gradients, VfJ(-), are Lipschitz continuous on
the set {z eX I llzll* <.bx}. •

The following assumptionis needed only if the scalingparameterx is allowedto vary.

Assumption 3.2. The semigroup generated byA, {T(t)} t^0,is an analytic semigroup. •

The following two results can be gleaned from [Paz.l].



Lemma 33. The semigroup {T(t)}, ^0 generated by the operator A is analytic if and only if there

exists a constant C <«> such that (i) T(t) is differentiable in t >0; (ii) —T(t)=AT(t); and (Hi)
dt

UT(t)\x<,—,forall/>0.

Since Lemma 3.3 implies local Lipschitz continuity of T(t) for t > 0, it follows from Assumption

3.1 and Lemma 3.3, that the following must be true.

Lemma 3.4. There exists a b2 € (0,«>), such that for all z tz? € S 4 [z eX IDzDx £&j}, all
« ,u,€L2n[0,H,allx,x,€ [x^, x^], and all t e [0,1]:

dF(i) a^-(z ,u)\<.b2,
dF(ii) 0|Wz,iOl<;&2,
dF dF(Hi) O-^z'.wO-y-^ ,h)0<;62[[Iz'-zDx+0k,-uII],
dF dF(iv) B—(z' ."/)--^-(^ ,uyb£b2W -zlx+W -uM

(v) 0r(x/O-7'(xr)B^ft2lx/-xl . •

In viewof Assumption 3.1 and Lemma 3.4,it canbeconcluded from theImplicit Function Theorem

in Banach spaces, as stated in [Lan.l, Ale.l], that the solutions, z(t ,u , x), with / e [0,1], of (2.2f) are

Lipschitzcontinuously Frechetdifferentiable with respectto (w , x) on boundedsets, with the Frechetdif

ferential, Dz(t ,u , x; 6m , 6x) = Sz(t), where 6z(t) is thesolution of the variational equation:

t I dF dF6z(/)=M T(-z(t-s))T(—(z(s ,u ,i),u(s))Sz(s)+^(z(s),u(s))bu(s))

+(T(x(t - s)) +x(/ - s)AT(x(t - s)))F (z(s ,u ,x), w(,s ))6x Ids +tAT(it )z05x . (3.1a)

We give an independent proof of this fact in the Appendix.

Since by Assumption Z.\(v), the gradients of the functions fJ(-) are Lipschitz continuous on

bounded sets, we immediatelyobtain the following result.

Theorem 3.5.

(i) The functions gJ :Lj[0,l]x [x^ ,t^J->R, j = 0,1 ,2 ,...,q, defined in Section 2, are
Frechet differentiable in (u , x), i.e., for all u € G, x € [x,^ , xraax], thereexists a continuous linear

functional Dgj(u ,x):L?[0 ,1]xR -> R, such that for any u tu' € L^[0, l],x,x,>xmin



lim \gJW .*))-gJ(U ,T)-DgJ(u ,Z)(u'-U ,f-T)l
iw-«Ij-»o (On' -mD|+ Ix'-xl2)1^ ' <3-lb>

W There exist gradients VgJ ;LJ[0.1] x [x^ ,xmJ ->LJ[0 ,1]xR, 7=0,1,2 q,
VgJ\u ,t) =(Vu '̂(w ,x),V^(w ,x)), such that for all u', u € L^[0 , lj.t' ,xG [x^ ,xmaxl,

DgJ(u ,x)(«'-h ,x/-x)= (Vug'(u ,x)>u/-w)2 +VTg-'(« ,x)(x'-x). (3.1b)

(ii/J Thegradients Vgj (•, •) are Lipschitz continuous onbounded sets. D

We are finally ready to address the question of optimality conditions for the problems (2.3a), (2.3b).

Because of algorithmic requirements, we chose a multiplier-free form for the optimality conditions. It is

not difficult to show that these conditions are equivalent to standard optimality conditions involving mul

tipliers. Thus, for problem (2.3a) we define the max function \\r:Gx [x^,,,xmax] ->R and the

corresponding optimality function 6^^: G x [x,,^, x^] -> R by

x\r(u', x0 4max gj (u', x0, (3 2a)

0mmp("'.-O= min \ 1/2flM-«,022+1/2lx-x,l2
(U ,t)€ GxfTmin.TBnJ

+max U;V,x/)-\|/(k',x') + <Vu^V,x') ,u -u')2 +V,g>(ii' ,x')(x-x') }k(3.2b)
J € q I

Referring to Proposition 5.5 in [Poll], we see that 0mmp(" »t) is the obvious extension of an

optimality function used in conjunction with first order algorithms for the solution of minimax problems

in R". Hence it is acorrect optimality function to use inanalyzing the convergence properties of imple-
mentable minimax algorithms for solving (2.3a), since suchalgorithms must construct finite dimensional

approximations to (2.3a).

Theorem 3.6.

(i) The function OmmpO ,') is well defined and continuous.

(ii) If hu(u',T?)e G- {k'}> /^(w'.xOe [x^, xmax] - {x/} are such that (u'+hu (u', x'),

T/ + ftT(K/,x/)) is a solution to the minimization problem (3.2b), then

K (-,•)••G x [Xmi,,, xmaxl -> L? [0 ,1], and /iT(-, •): G x [x^, xmax] -> R are unique and continu
ous.

Proof With Zqk (neR* I£/Dl u/ =1, ji*0}, and making use of the Fan minimax theorem
[Fan.l], we obtain that



0mmp("»t)= min max 4 xhW -i/ll+Vzlx'-xl2

+Zy€q^ {^(" ,T)-\|/(M ,X)+{VugJ(U ,x) , «' - U)2 +V^(|| ,x)^ - x) }

= max min \ ViW - uflf + 1/4Dx/ - xfl2

+L/eq^ Uy(w ,x)-y(" .t)+ (V„^(« ,x),w/-u)2 +V^(« ,t)(t'-t)}1 (3.3a)

The minimization with respect to (k' , Y) in (3.3a) is decoupled. The minimization with respect tox7 is a
simple, one dimensional quadraticproblem. Because

y2Di//-wD22 +£yeq^' {Vugi(u,i)tu'-u)2

=i (^"'(O-wa^+Lyeq^ (Vu^(« ,x)(0,«'(0-ii(0)] dt , (3.3b)
the minimizing w' for (3.3a) can constructed by minimizing the integrand pointwise in t in (3.3b). Con

sequently, Ommp(" »*) is well defined. Continuity now follows from the Maximum Theorem in [Ber.l].
Similarly, since the solution (/*"(•, •),hx(-, •)) ofthe minimization problem (3.2b) isunique, it again fol
lowsfrom the Maximum Theorem thatit is continuous. •

Theorem 3.7. Suppose that (u ,x) e G x [x^ ,x^] is an optimal solution to the problem MMP

(2.3a). ThenOMMp^ ,x) = 0.

Proof First, note that 0mmp(" . x) £ 0 must hold. Hence, for the sake of contradiction, suppose that

0mmp(" ,t)<0 and that (u* ,x*) is the corresponding solution of the minimization problem (3.2b).

Then.forXe [0 ,1], we must have that u +\(u* -u)e G,x +X(x* - x) G[x^ ,x^], and

\|/(£ +X(m*-^),x+A.(x*-^))-\Kw ,<c) = max {gitf ,x)-y(" ,t)
yeq

+U{VugJtf ,x),M* -6)2 +^(6 M+ -*))} +o(X)

^XJ V4I«* -uil+^lx* -xl2+max {g'(w ,x)-\i/(w ,x)
J* € q



+<VU^*(£ .*),«*-0>2+Vtf'(0 ,x)(x*-<u)} +-^-

*M0mmp(" ,t) + o(X)/X } , (3.4)

where o(X)/X->0 as X-»0. Hence there exists a ie(0,l] such that

\|/(£ +X(u* - u), x + ft(x* - x)) <\j/(£ , x), whichis acontradiction. D

Under a convexity assumption, the above optimality condition becomes a necessary and sufficient

condition. An examination of our definition of the functions gJ(', ) shows that they cannot be convex

for free time problems. However, in the case of linear dynamics and fixed end time, the problem can

become convex.

We can easily obtain an optimality condition for problem CMP (2.3b) from the one for MMP

(2.3a) by makinguse of the following observation. Suppose that(w , x) is anoptimal pair for CMP. Let

¥ : G x [x^, xmax] -> R be defined by

V(u ,x) =max max {g°(u ,x) -g°(u , x), gHu ,x)}. (3.5)
; € q

Then ¥(w , x) = 0 and, for any (u , x) sufficientiy close to (« , x), ¥(k , x) £ 0. Hence (u , x) is a local

minimizer for the function ¥(•, •). Therefore, referring to (3.2a), (3.2b), we define theoptimality function
©CMP • Gxfx^, xmax] -> R by

6cmp("'/0 = min J VAu -«/D22+1/2lx-x,l2
(u ,x)e Gx[xmiIl,Tinij I

+max{-\|/(M/ ,x%+(V„gV .•0,m-h/>2+V^V ,t,)(x-x/),

'̂(w ,x)-\j/(m ,x)++(Vu '̂(« ,x),«,-«)2+VTg-''(u ,x)(x/-x), y€ q} L, (3.6)

where \j/(« ,x)+ 4max {0 ,\|/(w ,x)}. Although the term \|/(m ,x)+ has no effect at feasible points and
hence also atoptimal points, it is introduced intotheoptimality function for algorithmic reasons. The fol

lowing result should be obvious.

Theorem 3.8.

(i) The optimality function 0cmp(" »*) is weu* definedandcontinuous.

-9-



(ii) Jfhu(u ,x)e G - {u },hT(u ,x)€ [x^, xmax] - {x} are such that (u + hu (u ,x),x + At(m ,x))

is a solution to the minimization problem (3.6), then hu(-, •), hx(-, •) are unique,continuous func
tions.

(Hi) Suppose that (u , x) € G x [x^,,, xmJ is an optimal solution to the problem CMP (2.3b). Then

6cmp(" .% = 0. D

It is customary to add a constraint qualification to optimization problems with inequality con
straints. The analog of the Slater constraint qualification [Sla.l] commonly used in nonlinear program
ming for problem CMP is as follows:

Assumption 3.9. We will assume that for all (u , x) € G x [xmin , xmax] such that \|/(w , x) 2> 0,
0mmp(" . t) < 0. •

Assumption 3.9 is standard in phase I - phase II methods of feasible directions. It implies that the
constraint violation function \\r(-, •) has no local minimizers outside of feasible set

{(u ,x)e G x [x^, x^J I \|/(k ,x)<;0},norontheset {(u ,x) € G x [x^, x^] I \|/(" ,x) = 0},

a fact that prevents phase I - phase II feasible directions algorithms from converging to infeasible points.
Finally, under Assumption 3.9 and a convexity assumption, 0cmp(" . *) = 0 becomes both a necessary
and sufficient condition of optimality.

4. OPTIMALITY CONDITIONS IN THE SPACE OF RELAXED CONTROLS

Since the closed unit ball in LJ [0,1] is not compact, there may be bounded sequences
{("/ »t/)} M)> generated byan algorithm in solving theproblem MMP or CMP,which have no accumu

lation points in L2 [0,1], evenwhen these problems do have solutions. However, as was established in

[Ahm.l, Pap.l], such sequences always have accumulation points in the space of relaxed controls.
Hence, it iscommon to show that all the accumulation points generated by algorithms for solving optimal
control problems such as MMP and CMP, satisfy both a first order optimality condition inL2 [0 ,11 and
the extension of these first orderconditions to first orderconditions for relaxed controls versions of MMP

and CMP.

In order to define relaxed control versions of the problems MMP and CMP, we follow Warga
[War.l], by defining G, the relaxed controls closure of the set G, as follows:

G = {ct ; [0,11 -» rpm(U) Ia is measurable} , (4.1a)

where rpm(U) denotes the set of Radon probability measures, topologized as in Chap 4, in [War.11. In
this topology, a sequence {ot }£q <= G converges toa a € G if and only if

•10-



rlfL Jo iu *(' '"WMuW =h fv <K' »u)o(t)(du)dt , V* €LrflO ,1], C(C/)). (4.1b)

The setG is sequentially compact. From our point ofview, the most useful concept ofcontinuity onG is
that of sequential continuity. Hence all of our continuity statements, forfunctions defined on G, are to be

understood as sequential continuity statements, e.g., when we say that a function g : G -» R is continu

ous, we mean that for any sequence of relaxed controls {a, }£$ c G that converges to a a e G,

g(Oi) -» g(o), as i -> oo.

^Next, we extend the map z :Gx[x^, xmaJ -> C([0 ,1], X) to
z *G x [xmin , xmax] -> C([0 ,1] ,X) by defining for each oeG,z(,o, x)) e C([0 ,11 ,X) to be the

solution to

z(t) =r(Tf)z0+tj£^ T(z(t -s))F(z(s),u)o(s)(du)ds . (4.2)
Assuming that Assumption 3.1 holds, it can be shown that a mild solution to (4.2) exists, that it is

unique, and that it is bounded by blt the bound introduced in Assumption 3.1(H). The simplest relation
between the solutions of (2.2f) and (4.2) is as follows.

Proposition 4.1. Ifa € G is an ordinary control, i.e., there exists u€ G such that a(t )(S) =6u(0(5)
for all measurable sets S <= U and almost all t € [0,1], then z(t , o, x) = z(t , u , x) for all t € [0,1],
where z(- ,g , x)is thesolution to (4.2) andz(•, u , x) is thesolution to (2.2f). •

The following result follows bysimple extension ofresults in [Pap.l].

Theorem 4.2. (Continuity ofF(•, a, x) in (a, x)) If the sequence {(a, , x,)},", <= G x [x^ ,xmax],
as i -» «>, is suchthat a, -» a € G, x, -> x, as i -> «>, thenF(-, a, , x,) -» F(-, a , x),as /->«>. •

With these preliminaries out of the way, we are ready to define the relaxed control versions of the

problems MMP, CMP, defined in (2.3a), (2.3b). Thus, for j =0,1,2,... ,q, we define
8J 'Gx [x^ ,TnJ -> R by gJ\o, x) ^/'(F(l ,a, x)), and

MMP: min{max^(a,x) Ia€G , x€ [x^.x^]} , (43a)
;eq

CMP: mm{f°(o,T)lmax^(o.T)iO, a€ G, x€ [x^ ,xmax]}. (4>3b)

Next, we need to obtain extensions of the optimality functions 0mmp(# »*) and 0cmp(* »*) for the
problems MMP, CMP, with the property that these extensions assume the same values on ordinary con
trols as the functions 0mmp(' .') and ©cmpO , ')• On the surface, it is not at all clear how to obtain a

relaxed control version of 0Mmp(' . ) or of 0cmp(' »*)• However, this task becomes a lot easier if we

observe (see Theorem 3.4) that the solution (u («' , x0 - u' ,x(w' , x') - x') of the search direction finding
problem (3.2b) defines a pair of continuous functions (hu(-, •), hz(-, •)). Hence we see that (3.2b) is
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equivalent to

©mmp(" .*) = min J V2Mu(u ,x)D22 +ViIhT(u ,x)12
(hu ,/iT) €CCGxfT^ ,T^J ,(G -U Mt,™ .T^J -x)) [

+max {^*(« ^)-vj/(i? ,x)+ {VH*'(0 .x),/^ ,<*))2 +Vtf'(0 ,x)/*Ttf lT)} I.(4.5a)

It is now clear that to obtain a relaxed control version of 0mmp(' »') we must first obtain a relaxed

control version ofthe directional derivatives {VugJ(u ,t),hu(u ,T))2 + VTgJ(u ,x)(x'-x). Now.refer-
ring to (A.3) we see that bz(t ,u ,x,5« ,6x) is linear in (bu ,6x), and hence can be written as

bz(t ,u ,x, bu , Sx) = bzu(t ,u ,x,hu) +6zT(/ ,u ,x,Sx), where bzu(t ,u ,x, bu) =
5z(/ ,m,x, bu ,0) and 6zT(r , w,x, 5x) = bz(t ,u ,x, 0 ,Sx). Consequently,

{VugJ(u ,T),hu(u ,x))2 = (V/>(z(l,« ,x)),6zu(1,m ,z,hu(u ,t)))x , (4.5b)

and

vV(w ,x)(x'-x) = (V/'(z(l ,w ,x)),6zx(l ,u ,x,x'-x))x . (4.5c)

Hence, the relaxed control versions of (4.5b), (4.5c) appear tobe

{V/'(F(1 ,a ,x), 6zu(l ,a, x, /ru))x , (4.6a)

{V/'(F(1 ,a ,x), 5zT(l ,a ,x,x7-x)^ , (4.6b)

where, with hu € C([0,1] x Ux [x^, xmaxl, Rm) (i.e., its domain has been changed), b~zu (•,a, x, hu)
is the solution to

8z(/) =XJ^r(x(/-5))J£/j —(z(5 ,0,T),tt)&(*) +|jj-(F(* ,O.T), 11^(5 ,u ,x)) fo(*)(«&i)ds ,
_ (4.6c)

and 5zT(-, a, x, x' - x) is the solution to

*z(t) =Uu\ ^W-*))^(?(* .a.t).«)&(*)

+(r(x(/ -s))+x(f -j)A7(x(/ -s)))F(z(* ,a,x),W)6xl o(s)(du)ds +tAT(xt)z0bi:. (4.6d)

We will now show3 that for any a € G, A. € [-1 ,1], and a class of search direction functions
A similar development forODE'scanbe found in [Wil. 1].
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hu € C([Q ,l]xU x [xmin , xmax], Rm), XSzM(-, a , x, hu) is a first order approximation, in X, to

z (•, a, x , X, hu) - F(-, a, x),where (with some abuse of notation) z(•, a, x, X, /iu) is the solution to

z(O =7,(xOz0 +tJ0 Jy T(T(t -s))F(z(s),v+Uu(s ,v ,z))a(s)(dv)ds . (4.7)

We note that (4.6c) is the first variation of (4.7) along the curve in G defined by

{p(-;X,/iu)IXe [0,1]},where

p(* ;X,hu))(S)k {o(t)(R),R± {veU\v+Uu(t ,v ,x)€S} } (4.8)

if v + hu (t , v , x) e U for all v € U and almost all t e [0 ,1], otherwise p is undefined. It is easily seen

that if p is well defined, then p e G and F(l , p(-, X, hu), x) = F(l, a , x, X, hu). Hence we introduce

the following definition.

Definition 4.3. The search direction function hu € C([0,1] x U x [x^,,, xmax], Rm) will be said to

be admissible if uf +hu(t , uf , x0 € U for all u' € U and almost all t € [0 ,1] and x€ [x^^x^!.

We will denote by T the set of admissible search direction functions. •

Lemma 4.4. There exists anL < °°such that forany hu € T,o e G, x € [xmin , x^], / € [0 ,11 and X

sufficiently small, Oz(f , a, x, X, hu)-z(t , a, x)D £LIXI.

Proof. Let

A^ £max {Dm' - w"Q Iw' , w" € £/ }. (4.9a)

Since C/ is compact, Mv < °°. Clearly, forevery hu € T, 0/iu (t ,uf , x')H £ Mv forall / € [0,1], u' e (/,
and x' e [xmin , t^J. Hence

BF(r ,a,x,X,/*u)-z(f ,a,x)Ox =l£ j^ xr(x(f -.s))[F(F(* ,a ,x,X ,/*„), u+Mu(s ,u ,x))

- F (z(s , a, x) ,u )]o(s )(du )dsDx

^W^KstlzCy ,o,x,X,/iu)-F(j ,a,x)8+IXIMy]flfj , (4.9b)

where M is a bound on D7(x(/ -j))Q, s € [0 , /], as also used in the Appendix. Applying the Bellman-

Gronwall inequality, we obtain that

QF(/ , a , x , X, hu)-z(t , a, x)D <.L IXI , (4.9c)

where LkMKS MveTiauMKs and Ks is defined as in Assumption 3.1 (iv). •

Lemma 4.5. There exists dj < «> such that for all / € [0 ,1], a € G, xG [x,^ ,x^l, hu € T and
X€ [-1,1],
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Iz(f ,o,-z,X,hu)-z(t ,a,x)-X6zu(/ , a,x ,hu)lx ^IXI2 . (4.10)

/Voo/. LetAz(r ,a,x ,X ,hu)kz(t ,a,x ,\,hu)-z(t ,a,x). Then, with A^ as in (4.9a),

DAF(/ ,o,T,\,hu)-\bzu(t ,a,x,/iu)0x£0JoJ,£/x7'(x(/-.s)) F(z(j ,a ,x ,X ,/*„)> "

— 3F _+ X/*u(.s ,m))-F(z(j ,a,x),w)--—(z(s ,G,T),u)bz(s ,o,T,\,hu)
dz

*T™MSoiu

dF --^-(z(.y ,o,t),u)'7Jiu(s ,u) o(s )(du )ds flx

1 dF -Jg A-^tefo ,a,x,X,/iu) +rAz(5 ,o,x,X,hu) ,u+rXhu(s ,«))

3F _- -^-(zC* ,o, x), w)lrfrDAz(5 ,a ,x,X,ftu)lx

i 3/r
+Jq D3^"(2^ ,a,x,X,/iu) +rAz(j ,a,x ,X,/j„),« +rXhu(s ,u))

dF- -^-(^ ,g ,z),u)\dr\X\Mu

dF - _ —+B~aT(z(,y ,a,x),M)IOAz(s ,a,x,X,/iu)-6zu(5 ,a,x ,X ,hu)\ix o(s )(du )ds

*W^J,\v KsflAzfr ,a,x,X,hu)lx + IXIM^OAFCs ,a,x,X, Au)lx

+ ^s(IAF(j ,a,x,X,/*u)lx + IXIM^IXMj,

+^2IXIMyDAz(j ,G,-z,X,hu)-bzu(s ,G,-z,X,hu)bx]G(s)(du)ds , (4.11a)

where b2 is defined in Lemma 3.4. Since by Lemma 4.4 0AF(s , a, x ,X, hu )bx £L IXI, it follows from
the Bellman-Gronwall inequality that

DAF(f ,a,x,X,/*u)-X5zu(/ ,o,i,hu)^x <LMKseMb\\Az-(s ,a,x,X,/*w)l + \X\MV)2

Zd^Xl2 , (4.11b)

•
Mb,whtTedx=MKseMOXL +MV)2.

Proceeding ina similar manner, we can also prove the following, somewhat simpler result:
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Lemma 4.6. There exists a d2<<*> such that for all hu € T, / e [0,11, g€ G, X€ [-1,1],

T , X t LXmin , XmaxJ,

Qz(r ,g ,z,X,hu)-z(t ,a,x)-X5zT(f .a.x.x'-x)!!* £flf2IXI2. (4.12)
D

In addition, it is fairly easy to establish the following result:

Lemma 4.7. For any t € [0,1], a G G, x € [xmin , xmax], admissible hu, and x' € [xrain , xmax], let

bz(t ,g , x ,hu , x' - x) denote the solution to

6r(0 =hjv zT(x(t -s))\ -^-(z(s ,o, x), u)bz(s)+ ^~<J(s ,g,x), u)hu(s ,u,x)) \ G(s)(du)ds

+Jo j (r(x(/ ~'S)) +T^ -*Mr(T(/ -j)))F(F(j ,a,x),M)6x Vds +tAT(xf )z06x . (4.13)

Then (i) bz(t ,g ,x ,/ju ,x/-x) = 5zu(r ,a ,x ,/iu) + 5zT(/ ,a ,x ,x'-x), and (//;

5z(/ , a , x, hu , x' - x) is continuous in (/ , a, x, hu , x'). D

We are now ready to extend the optimality conditions in Section 3 to the relaxed optimal control

problems MMP, CMP. We define the max function \j/: G x [x^, xmax] -» R and the optimality func

tion 0MMP: G x [xmin , xmax] -> R by

\|/(a ,x) £maxgJ (a ,x), (4.14a)

0mmp(o-,x)4 min \ V4f f lw(f ,« ,x)B2a(/)(rf«)^ +V4It'-tI2(W .TOCrxfTn^.TnaJ [ JOJtf

+max {^'(a,x)-\|/(a,x)+(V/-'*(F(l,a,x),ozM(l,a,x,w))x
; € q

+ (V/>(F(1 ,a, x), 6zT(l, a,x, x'-t))x } L (4.14b)

Making use of Lemmas 4.6 and 4.7, we get immediately the following extension of Theorems 3.4 and
3.5:

Theorem 4.8. (i) The function 0mmp(* >') is well defined and continuous, (ii) Suppose that

(g ,t)e G x [xmin , xmax] is an optimal solution to the problem MMP (4.3a). Then 0Mmp(& , t) = 0. D

Similarly, we can define an extension, 0CMP; G x [x^ , x^] -» R of the optimality function

0Cmp(* »*) as follows:
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0CMp(^»t)= min J V4f f Ow(f ,w ,x)02a(O(flW +1/2lx/-xl2

+max{-\|f(a,x)++(V/V(l.a,x),6zu(l,a,x,w))Y + (V/0(F(l,a,x),ozT(l,a,x,x,-x))x,

gj(o, x) -^(a, x)++ (V/'(z(l ,a ,x), bzu(l ,a ,x,w))x

+(V/y(F(l ,a,x),Szx(l ,a,x,x'-x))x , y€ q} I , (4.15)

where \|/(a,x)+ 4 max {0 , \j/(a, x)}. We can now state the obvious extension ofTheorem 3.6.

Theorem 4.9. (i) The function 0cmp(" »*) is well defined and continuous, (ii) Suppose that

(g ,T)e G x [xmin , xmax] is anoptimal solution tothe problem CMP (4.3b). Then 0cmp(& ,^) = 0. •

We conclude this section with a rather obvious result that is essential in the analysis ofoptimal con
trol algorithms:

Theorem 4.10. Suppose that a* € G is an ordinary control, i.e., there exists a u* e G such that

g* (t)(S) = o>(f)(S) for all measurable setsS c U andalmost all / € [0,1]. Then

(i) For any te [0 ,1], hu e I\ x7 ,x€ [x^ , x^], bz(t , a* ,x,/iu ,x,-x) = Sz(/ ,« ,x,5« ,6x),
wherebu(t) = /iu(/ , w*(/) ,x) and6x = x/-x.

f"V 0mmp(^* . *c) = 0mmp(«* . i)> and 0cmp(<7* . x) = 0Cmp(«* . *). D

Thus we seefrom Theorem 4.10 that when a* is anordinary control, the stationary points of (3.2b)
and (3.6) arealso the stationary points of (4.14b) and (4.15), respectively.

5. APPROXIMATION THEORY

The numerical solution of optimal control problems such asMMP and CMP is impossible without
some sort of discretization of the evolution equation (2.2f). We will now develop a theory for discretiza
tionof theseproblems. This theory depends on the convergence of the finite element method andon error

bounds, suchas those to be foundin [Fuj.l, Fuj.2, Fuj.3].

The use ofa numerical method in integrating the evolution system (2.2f) results in the replacement
of the set of admissible controls G by G„, a compact, convex, finite-dimensional subset of G, and of the

original functions gj :Gx [x^, x^l -»R by approximating functions gJn: G„ x [x^, xmax] -> R,
where n e 7L+ is a precision control parameter. Thus, the use of numerical integration results in the
replacement of theoriginal problems MMP andCMPbyapproximations.
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Hence, to establish an approximation theory, for each n € Z+, we define the discretized problems
MMP„ and CMP„ by

MMP„ ; min{max '̂(« ,x) Iue Gn , xe [x^x^]} , (5 la)

CMPn ; min{g?(u ,x)lmax^(M ,x)£0 , u€ Gn , x€ [x^,xmax]}. (5lb)

To ensure that the functions &((•, •) inherit the continuity and differentiability properties ofthe functions
gJ (', 0, wemake thefollowing reasonable assumptions:

Assumption 5.1.

(i) For all n € S+, the functions g& : G„ x [indn, x^] ->R are continuous.

(ii) For all n e Z+, ; = 0 ,1 ,2 ,..., q, and each (u , x) € Gn x [x^,,, xmax], there exists a gradient

V&j(u ,x) = (ygl„{u ,x), Vg{„{u ,x)) € V2n [0 ,1] xR, such that for all u' € G„, x' € [x^ ,xmax],

r Ig^-O-^d* >T)-((Vlig>),v -«)2+VTg> ,x)(t/-x))I
nm = o /c o \

l«--M|2-»0 (lll/-«0|+lT/-Tl2)Vi (5-2a)

(7«j There exists a Lipschitz constant4 L€ (0,°°), such that for all n € Z+, y =0,1,2 qt
U' ,U EG^X.x'e [X^n , Xmax],

Wgi(* , x/) - V&>(w , x)B2 £L(Oh' - uB22 + Ix/ - x12)* . (5.2b)

(iv; For all n € 2i+, G„ c Gn+1.

(vj Theclosure of ^j G„ is G.

(Wj (Uniform Approximation Property.) For all e>0, there exists ne such that for all n Zne,
j = 0,1,2,...,$,alia € G„,andallx€ [x^, xmJ,

(a) Ig>(m ,x) -gJ„(u ,x) I£e, (5.2c)

(6) IV(K.i)- V&((w ,x)l2 <; e. (5.2d)
D

Usually, when continuous dynamical equations are replaced by discrete dynamic equations, the
resulting solutions inherit the continuity and differentiability properties of the original solutions, and
hence satisfy Assumption 5.1(0 - (Hi)- Assumption 5.1(v/; is satisfied at any particular u for any

4The existence ofsuch aLipschitz constant isaconsequence ofAssumption 3.1(iv,v).
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dynamics on which the finite element method converges. Thus the only thing one mustverify is that the

approximation is uniformon the finite dimensional set, G„, as assumed.

Referring to Proposition 5.5 in [Pol.l], weseethatthefollowing analogs of Theorems 3.11 and3.12

musthold for the problems MMP„, CMP„.

Theorem 5.2. For n € 2£+, let \yn : G„ x [x^,,, x^] -> R and the corresponding optimality function

0mmp„ •' Gn x ftmin >̂maxl -> R be defined by

\\f„ (u', xO &max gJn(u', x/), (5 3a)

0mmp.(«'.'O£ min \ V4D«-m/0| +V4It-t'I2
(U ,T)€ CxItnJn.TnJ

+max {gJn(u',x')->vn(u',T')+ ( Vaftf(ii' ,x0 ,u -u') +V^V ,x')(xxO }[• (5.3b)

Then,

(i) Theoptimality function 0mmp„ ('»') is well defined and continuous.

(»; If ^(ii'.tOc Gn- {«'}, /i,(u'1T0e[T1IlillITniax]-(T/} are such that (u'+ hu(u' ,x0,

x' + hT(u',xO) is a solution to (5.3b), thenhu (•, •), &,(•» ) arecontinuous functions.

(///; Suppose that («'„ , x/n) e G„ x [x^, x^] is an optimal solution to the problem MMP„. Then

0MMP„(w/n »x,„) =0. •

Theorem 53. For n € *&+, let \\/„ (u ,x)+ 4max {0,\j/„ (u ,x)}, and let the corresponding optimality
function 0CMPn ; G„ x [x^ , xmax] -* R be defined by

0cmp>.tO= min J 1/20w/-«a22 +1/2lx/-xl2
(l/ ,TO € G„X[Tnfn ,TmJ I

+ max{-\l/„(« ,x)++ ( Vugn°(w ,x),«/-«)+VT^n°(M ,x)(x'-x),

'̂(w ,x)-\|/(« ,x)++ (Vug£(u ,x),w' -u) +V^(« .xKx'-x) , y€q }I . (5.4)

Then

(7j The optimalityfunction 0Cmp(* >') is welldefined and continuous.

(ii) Uhu(u , x), /it(m ,x) are such that u + hu(u , x) € G„, x+ fcT(w , x) e [x^ , x^] are a solution to
(5.4), then hu(-, •), /iT(-, •) are continuous functions.
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(Hi) Suppose that (u„ ,x„)€ Gn x [T^n, x^] is an optimal solution to the problem CMP. Then

0CMp("« >t„) = 0. D

To simplify notation, we define H±Gx [xmin, xmax], Hn^Gnx [xmin ,xmax], and rj = (u ,x),
and, for any ? =(£„,§<)€// and rt =(u,x)e//, we define (£ ,i\)H &{%u ,u }2 +&x, and
0ri8w 4 (Ik B22 + Ix12)l\ Next, for any ti', ti € //, we define

<JKti' - Tl Ix\) 4max {gJ (x\) +(Vg> (ti), ti' - ri >„ }+V4hi' - r\fi , (5.5a)
; € q

Next, for any n € Z+, T|', ti € Hn, we define

V„ W~t\ ITl) =max {^(r|) + (Vaffli), if - t^ }+fchi' - t^ , (5.5b)
; € q

With this notation, we have that

0mmp(t1) = min max <j>' (if- n Iti) - i|/(Tl), (5.5c)
r\'e H j e q

6mmp„ (Tl) = min max <j^(Tf - ti Iti) - \j/„ (r|). (5.5d)
T|'C H„ j € q v '

Lemma 5.4. There exists a constant Kx <°° such that for every e >0, there exists ne such that for all
n £ ne, and all ti/ , ti € Hn,

l^nW-Tl 111)-^'-11111)1^^,8. (5.6a)

Proo/. It follows from Assumption 5.1 that there exists anne€ Z+ such that for all« £ ne,

$«(Tl7 - Tl Iti)- $(if - ti Iti)<; max {gJ(r\) - g^ (ti) +(V^(n) - Vgl OD.Tf-n)* }
yeq

£[l+KH)e, (5.6b)

where KH = max {Dif-Tillj, lif ,ti€// }. Reversing the roles of$„ (^ - ti I ti) and <j/(Tf - ti I ti) we
get the desired result. •

Theorem 5.5. There exists a constant K2 <*> such that for every e € (0,1], there exists ne such that
for all n £ ne, and all T| € Hn,

10mmp„ (Tl) - 0mmpO1) \^K2z. (5.7)

Proof. For any T| e Hn, let

£(T|) 4arg min <j/(Tf - ti Iti) , (5>8a)
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&(Tl) £arg min <j>w (ti' - ti Iti) , (5 8b)
Tj'e//,

l.(i|)Aaig^mm Hi'-ftufc . (5.8c)

Let e > 0 be given and let ne€ Z+ be defined as in Assumption 5.1(v/;. In view of Assumption 5.1(v;,

there exists an «'e€ Z+, with n'e ^ ne, such that for any n £ «'e and any ti e H there exists an ti„ e Hn
such that Btj - T|n lH £ e. Hence we obtain

0MMP(T1) £ $(?„ (Tl) - Tl I Tl) - \|/(T1)

^ C^ii (fti CH) - *H 111) - V« (Tl)] +[v« (Tl) - -VdlW +JSr ^ ^ Bmmp. (ti> +[^i+ 1]e; (5.9a)

0MMP„ (Tl) ^ <i/n (?„ (Tl) - Tl ITl) - \(/„ (Tl)

^V(?n(Tl)-TilTi)-\l/(Ti)+[M/(Ti)-\|;/,(Ti)] +/i:1e

* <ftftT0 - Tl ITl) - Vdl) +/^1?(T1) -|„ (TDQ„

+yl B^tD-tiB^-dI^tD-tiQ^ liedD-l^iD^+^ +De

^©MMpOD+^e » (5.9b)

where tf2 = 1+Kx +K' +K", with A" = sup,, €„ max,- €qWgJ (r\)lH and K" =
V^sup^. ^'e// HT1' ~ Tl D//. The desired result now follows. •

The proofof the following result for problem CMP is quite similar to the oneabove and hence is
omitted.

Theorem 5.6. There exists a constant K3 <°° such that for every e>0, there exists ne such that for all
n £ n& and all T| € Hn,

I6cmp„(t1) - 0cmp(t1) I£K3e • (5.10)
•

The problems MMP and CMP are finite dimensional and hence can be solved with arbitrary preci
sion using a finite dimensional minimax or nonlinear programming algorithm, respectively, such as any
one ofthe following [Pol.l, Pol.3]. The first question we must answer iswhether doing that isuseful, i.e.,
we must establish whether our discretizations are consistent in an appropriate sense. The following pair
of theorems gives an affirmative answer.
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Theorem 5.7.

(i) Suppose that [(un ,zn)} ~cl is a sequence of optimal solutions to the sequence of problems

MMP„. Let / <=Z+ be such that ti„ -»a e G (in the sense of control measures (i.s.c.m.)) and
/

x„ —» x e [Xmin , xmax], as i -» °°, then (a , x) is an optimal solutionof MMP.

(ii) Suppose that {(«*„ , x*„)} ".,, with u*„ € Gn and x*„ e [x^, xmaxl, is such that

0mmp„("*« .***»)* • (5.11)
n

i _ /

Let / <=Z+ be such that u*n -» a* eG (i.s.cm.) and x*n -» x* e [x^,,, xmax], as n -»°°, then

0mmp(^*^*) = O.

Proo/. (a) For the sake of contradiction, suppose that (a , x) is not an optimal solution of MMP.

Then there exists a pair (cr**,x**), with a** € G and x** € [x^, xmax] such that

\|/(a** , x**) < \|/(a , x). Since \|/(-, •) is continuous, and un € G„ is an ordinary control, we musthave

that \|/(m„ ,xn)-»\j/(a ,x). Hence, because of Assumption 5.1(vi), we must also have that
/ _

Vn("n .^n)-^^ >t0. Now, by Assumption 5.1^, there exists a sequence {w'„ }n€/ such that
/ _

u'n -> °*** (i.s.cm.), as i -> «>. Hence because \|/(-, •) is continuous and because ofAssumption 5.1(vi7,

Vn(u'n , x**)-»\j/(a** ,x**) which, for n sufficiently high, contradicts the optimality of the pairs

("« .%.)•

(b) This part follows directly from the continuity of the function 0(-, •) and Theorem 5.5. •

Weget a similar result for problem CMP, which westate without proof.

Theorem 5.8.

(i) Suppose that {(w„ , x„)} "ol is a sequence of optimal solutions to the sequence of problems

CMP„. Let / <=Z+ be such that Qn -» a € G (i.s.c.m.) and x„ -> x € [Tttdn , xmax], as/i->~

then (a , x) is an optimal solution of CMP.

(ii) Suppose that {(u*n , x*„)} ~=1, with u*n e G„ and x*„ e [x^, xmax] is such that

0mmp„ ("*« , t*„) ^ - —. (5.12a)

Vn("*n ,x*„)<;-. (5.12b)
n

i _ /

Let / c=^+ be such that u*„ -> a* e G (i.s.c.m.) and x*„ -> x* € [x^, xmax], as i -> «\ then
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0mmp(o~* ,T*) = Oand\|/(o* ,x*)£0. D

The computational scheme represented by Theorems 5.7 and 5.8 can be implemented as follows. An

algorithm is applied to problem MMP„ (or CMP„), producing a sequence of iterates (un4 ,in4),
i = 0,1,2,..., in which is arrested when (5.11) (or (5.12a) and (5.12b)) is satisfied. Then a new

sequence, (un+u ,x„+1|/), / =0,1,2,..., is started for problem MMP„+1 (or CMP„+1), with

("«+i,o»Tn+i,o) = ("«,/„ >Tn,0- The main disadvantage of this scheme is that Theorems 5.7 and 5.8 deal

only with a special subsequence of all theiterates computed, rather than with thewhole sequence.

We will now show that it is possible to generalize the algorithm implementation scheme in [Kle.l]

soas to obtain algorithms for solving MMP and CMP, with the property that any accumulation point of

the computed sequence ofiterates satisfies our first order optimality conditions. However, this requires
that we strengthenAssumption5.1(vi)t as follows.

Assumption 5.10. There exists a constant it <«> such that for all n€ Z+, ; =0,1,2 ,..., q, all
u € Gn,andx€ [x^ ,xmax],

\gJ(u ,T)-g/,(u ,x)l <;^-. (5.13)
2"

•

Referring to [Kle.ll, we see that Assumption 5.10 is satisfied when ordinary differential equations
are integrated numerically by a method oforder at least one. It is shown in Section 6.5 of [Bak.l], mak
ing use of the results in [Fuj.l, Fuj.2, Fuj.3, [Ode.lU, that, when the finite element method is imple
mented using linear elements and Newmark's Pmethod isused with P= 0, Assumption 5.10 is satisfied
by the example treated inSection 6. We believe that itwill also hold for many other cases as well.

For problem MMP we will extend a variant of the Pironneau-Polak-Pshenichnyi minimax algo
rithm (see [Pir.l, Pol.l, Psh.ll), which can be used for solving MMPn. To simplify proofs, we will use
an exact line search step size rule; however, the results to follow remain valid also with an Armijo type
step size rule (see [Pol.l, Psh.l] for step size rule). To simplify exposition, we resume the notation
ti = (u , x),//„ = G„ x [x^ , Tj,

Minimax Algorithm 5.11 (Solves MMP).

Parameter. y e (0 , 1).

Data. n0,T\0eHno.

StepO. Set/ =0,«(0) = /z0.

Stepl. Compute the search direction,
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*/ =*»(/)(%) =arg min max^ gi(t)(T\i)+Wgt(t)<y\i)>i\-r\i)h +1/2»T1 -H/ij? ^-ty <5.14a)

Step 2. Compute the step size

h€^,(1),) Aaig^ ng» %«(% +**,) • (5.14b)

Step 3. SetTi* =T|/+X|.A/.

If

WH*> -W%) >- ^7 • (5.14c)
replace n (/) by n (/) + 1 and go to Step 1.

Else set n (i + 1) = n (i), T|/+1 = T|, + Xf h(.

Step 4. replace / by / + 1 and go to Step 1. D

Note that (5.14c) causes the algorithm to increase precision when the decrease in cost becomes

4'unacceptably'' small.

Theorem 5.12 Suppose that Algorithm 5.11 constructs a sequence {ti,- }^. Then this sequence has

accumulation points in H ~ G x [xmin, xmax], and every such accumulation point, t\, satisfies

0mmp(A) = O.

Proof First we note that sinceH is sequentially compact, the sequence {rj,- }£o musthaveaccumula

tion points in the relaxed controls topology. The rest of our proofis in three parts: (a) we will show that

n(i) -» oo as i -»°°, then (b) we will show that for any Tl* = (a* , x*) € H such that 0mmp(t1* ) < 0.

there exists an integer n* and a 6* >0, such that for all n(i) £ n*, if % € Hn{i) is sufficiently close to

rj*, then Yn(/)(H/+i)-,%i(/)(1l/)^"&*» and, (c) we will obtain a contradiction by showing that if the

theorem is not true, then yCn,-)—»-<».

(a) Suppose that there exists integers i0 and n0 such that for all / ^ i0, n(i) = n0. Then we must have

that VnoOlz+i) - V/,0(T1/) ^ ~ 1/2Y"°for ^' ^ 'o»wnicn implies that \\f„fi\i) -» - °° as i -» «». Since H„0 is
compact, this is impossible, and hence we conclude that n (i) —> °° as / ->°°.

Ls.c.m.

(b) Suppose that for n € Z+, T|„ € Hn and that ti„ -»Ti*€//,asrt-»°°. Furthermore, suppose that

QmmpCH* ) = -85* < 0. Since OmmpO is continuous, and since 0mmp(t1« ) = 0mmp(t1/i) for all « € 7L+, it

follows that there is an integer n0 such that for all n € 2£+, n £ n0, OmmpCH/i) ^ -45*. It now follows

from Theorem 5.5 that there exists an integer n1'Zn0 such that for all n € 2E+, n^nh

0mmp„ ("Hn) ^ "~25*. Hence, for all n ^ n 2and X€ [0,1],
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J € q I

+̂ (V '̂(Tln +SXhn (Tln )) - V&j(Tln )PAW (Tl„ ))H - l/2ll/ln (Tlfl )fl£ I

^WMMPn(Tl„) +XLIIAfl(Tin)D^] , (5.15a)

where L is as in (5.2b). Since the sets Gn are uniformly bounded, there exists a b < «> such that

M« (Tl/)0// £b for all « € Z+. Hence it follows from (5.15a) that there exists a %e (0,1], such that for

V„ (Tl„ +*„ (ti„ )h„ (r\„ )) - y„ (Tl„) £ \|/„ (ti„ +lhn (r\n)) - %(ti„ )^ - *5* , (5.15b)

which completes the second partof our proof.

(c) Now, by construction, we have that Vn(/)(%i-i)-%(/)(%) *-l/2v(/), and hence, making use of
Assumption 5.10,

V(Tl,+i) - v|/(ti,. )<; - -l^1-^)-K). (5.15c)

Hence, since n(/) ->°°as i ->«>, there exists an i0 such that for all / £ i0, ik(tii+1) - yOl/) £ 0.

Now, for the sake of contradiction, suppose that the sequence {T|,- }£o has an accumulation point

Ti € H such that OmmpOI) <0. Then there exists an infinite subset / of the positive integers such that

ti,- -»T| (i.s.cm.) as / -»<», and hence because \|/(-) is continuous and 11/(11,-) =VOl,). Yd,) ->ti as

/ -»«>. Now, {\|/(ti,) }£,-o is monotone decreasing, and hence we conclude that \|/(ti,) -»\j/(ti) as

/ -> 00. Since n(/) -> «>, it follows from (b) that there exist &% >0 and an integer ih such that for all

1 2>ihi e /,^n(/)(Tl/+i)-M'n(i)(Tl/)^-5<0. Hence, for all / e /,

V(W - ¥„(/)(Tl/) £-t +-±fi . (5.15d)

Since «(/)-> °° as / -» «>, (5.15d) contradicts the convergence of the sequence {\|/(Ti,)} ^ This com
pletes our proof. •

Two observations are in order at this point. First, it follows from (5.15c) that the cost sequence is

eventually monotone decreasing. Since it is bounded, it must converge. Second, it can be deduced from

the above proof that QMMpnjT\i) -» 0, which implies in turn that hn(i) -> 0. Hence, refering to Theorem

-24-



1.3.66 in [Pol.3], we conclude that if \|/(-) has only a finite numberof stationarypoints, then the sequence

of trajectories {or11' } must converge. Furthermore, if {i\t } has an accumulation point in the H topol
ogy, then the entire sequence {T|,- } must converge to that point.

For problem CMP, we will extend the unified phase I - phase JJ method of feasible directions, using

an Armijo step size rule, described in [Pol.2].

Algorithm 5.14

Parameters . y > 0, a , p € (0 ,1).

Data . n0,T\0eHno.

Step0 . Set i = 0, n (0) = n0.

Step 1 . Compute the value of the optimality function 0,- = 0cmp„(1)(t1i )» and the corresponding search
direction hf = A„(/)(il/)t where

0CMPn(O(TV)= min \ ViOTi-Ti,^+max{-\l/„(0(Ti,)++(Vgn0(/)(Ti,),Ti-Ti/)w ,

&f(/)(Tl/)-M'(Tl/)++ (Vaffli,) ,T1 -Tl,- )H , j eq}\ . (5.16a)

A„(/)(H/)iaig mm \ V4hi-n, lj| +max{-v|/„(,)(Ti,.)++ {Vg^n{r\t)tr\-i\t)H ,

8i(i)(y\i)- V(Tl,-)++ (V^(ti,) ,ti -Tl,- )H , j € q }I-ti,- . (5.16b)

Step 2 . Compute the step size X{:

X{ =max {p* Ik € N , F„(/)(ti,- +P*fy Iti,) <;p*cc0,- } , (5.16c)

where, for n € Z+, ti , ti* e H„,

F„ (ti Iti* )&max {fcPfli) - ^„°(Ti*) - V|I (ti* )+, Wn (ti) - x|/„ (ti* )+ } . (5.16d)

Step 3. SetTi* = i\t + X,- fy.

If

^(/)(T1* lTl/)>-^(?y (5.16e)
Replace n (i) by n(i) + 1, and go to Step 1.

Else set n (i + 1) = «(/), T|/+1 = ti,- + Xfo.
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Step 4. Replace / by i + 1 and go to Step 1. D

Theorem 5.15 Suppose that (i) for every ti € H such that \|/(ti) £ 0, ©mmpO]) < 0; and (ii) for every

n € Z+ and every t\e H„ such that \\fn(t\) Z0, 0mmp„(t1) < 0. If Algorithm 5.14 constructs a sequence

{Tl/ },^, then this sequence has accumulation points in HkGx [x^ ,t^], and every such accumula

tion point, f\, satisfies \|/(T|) £ 0, 0cmpO1) = 0-

Proof. First wenote that since H is sequentially compact, the sequence {TJ, }£o must have accumula

tion points in the relaxed controls topology. The rest of our proofis in threeparts: (a) we will showthat

n(1)-»00 as 1 ->00, then (b) we will show that for any T|* = (a* tx*)eH such that 0CmpO1*)<0,

there exists an integer n* and a 5* > 0, such that for all n(/) £ n*, and any ti, sufficiently close to ti* ,

^n(/)(Tli+i IT]/) ^ - 6*, and (c) we will obtain a contradiction by showing that if the theorem is not true,

then either \|/(T|, )-»-<» as / -» °°org^rj,- )-»-«> as/ -» «>.

fa) Suppose that there is a finite integer n* such that n (/) = n* for all 1 £ i*, with /* < °°. Then the test

(5.16e) fails to be satisfied for all 1 £ 1*, and hence Fn*(t\i+1 Iti,) £-(1/2"*)Y for all 1 ^ /*. Without

loss of generality, suppose that \|/„* (r\p)Z0 and that \|/«*(Tl/)> 1/n* for all /£/*. Then

V«* (Tl,+i) - Vn* (Tl/)+ £ -(1/2"* )Y for all i £ 1*, and hence there must exist an i0 such that \j/rt* (tj,- )£0for
all i 2> 10. Furthermore, for 1k /0, we must also have that g& 0lJ+1) - g$ (ti,) £ - (1/2"* )\ which imphes
that £n*(Tl/) -> -°° as 1-> «>. However, since #„ is compact and &£(•) is continuous, this is clearly
impossible, and we have a contradiction. Hencewe must have that n(/) -» °° as 1 -» °°.

(ft) The proofof this part is quite similar to that of part (b) in the proofof Theorem 5.13, and is there
fore omitted.

(c) For any ti , tj* € //, let Fn (t\ I T|*) be defined by

F(TilTi*)4max{^°(Ti)-^0(Ti*)-v|/(Ti*)+,\l/(Ti)-i|/(Ti*)+}. (5.17a)

Then, because of the test (5.16e) and Assumption 5.10, we have that for all / € Z+,

F(T»'+i '̂ -^(2(1-Y)n(/)-2£). (5.17b)
Since y € (0,1) and n(i) -» «> as / _» c» it follows that there isan / j € 7£+ such that

^Olz+ilTi/^O, v/*/, , (5.17c)

and hence, for all / ^ / j,

V(Tl/+i) - ¥(Tl/)+ £ 0 , (5.17d)

and
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*°<W -*°(Tl#) - M/(Tl/)+ * 0 . (5.17e)
/

Now suppose that T|, -> ti € H (i.s.c.m.) as i -> °° and that 0(tJ) <0. We distinguish between two possi
bilities:

(0 V(T1/) >0 for all i £ /j. Then, by (5.17d), {\j/(ti,) },"=,-, is a monotone decreasing sequence, and,

since by continuity \|/(T1,) -» \|/(ti) as / -»«>, it follows that \|/(T|f-) -» \|/(TJ) as i -»«>. It now follows

from (b) and Assumption 5.10 that there exist a% and an i2 £/ jsuch that for all / € /, / £ 12,

V<W -vKTl/) *FHin(r\M |%)+̂ *-*+-2jL , (5.17f)

which contradicts the fact that \|/(ti,-) -» \|/(t|) as i -> °°. Hence we must have that 0(T|) =0, and hence,

by assumption, that \|/(TJ) £ 0 also holds.

(ii) There exists an i3 £ ^ such that \|/(Tl/3) £0. then it follows for (5.17d) that \|/(ti,) £0 for all / £ i3.

Next, by (5.17e), {g°(T|/) }/°°=/3 is a monotone decreasing sequence, and, since by continuity
i _ ^

£°(Tl/)->g0(Tl) as i ->°°, it follows that g0{i\i)-*g°<y\*) as i ->«>, (i.s.c.m.). It now follows again
from (b) and Assumption 5.10 that there exists an i4 £ / j such that for all / e I, i £ i4,

«°(il/+i)-g0(il/)^„(o(Tl/+i ITi,-)^-io +-^-^4/2 , (5.17g)

which contradicts the fact that g°(Ti,-) -> g°(r\*) as / -»°°. Hence we must have that 0Oi*) =0, which
completes our proof. •

Again we can make some observations. First, it follows from (5.17f) that if the tail of the sequence
{ti,- } is infeasible, then the constraint violation function \j/(-) eventually decreases monotonically to

zero. In this case, making use of (5.17b), one can conclude that either the cost sequence {g°(Ti,)} con

verges, or it has infinitely many accumulation points, a rather unlikely event. If the tail of the sequence

{tj,- } is feasible, then the the tail of the cost sequence is monotone decreasing, and hence, since it is

bounded, it converges. Second, it can be deduced from the above proof that QcMPmilp\i) -»°» which
implies in turn that hn(i) -> 0. Hence, refering to Theorem 1.3.66 in [Pol.3], we conclude that if QCMP (•)

has only a finite number of zeros, then the trajectory sequence {x1* } must converge. Furthermore, if

{r\i } has an accumulation point in the H topology, then the entire sequence {r\t } must converge to
that point.

6. COMPUTATIONAL RESULTS
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We carried out three computational experiments involving the slewing motion of the hollow alumi

num tube depicted in Figure 1. The tube is one meter long, has a cross sectional radius of 1.0 cm, and a

thickness of 1.6 mm. Attached to one end of the tube is a mass of 1 kg, and attached to the other end is a

shaft connected to a motor. To reduce the computational burden, we neglected small nonlinear terms, the

coupling between the flexural and extensional vibrations, and assumed that the acceleration can be con

trolled, instead of assigning a mass to the shaft and assuming that the torque is controlled. These

simplifications lead to a model in the form of the standard Euler-Beraoulli tube with Kelvin-Voigt visco-

elastic damping:

mw„(t ,x) +CIwtxxxx(t ,x) +EIwxxxx(t ,x)-mCl2(t)w(t ,x) = -—^—u(t)x ,
1 +m/3

t e [0,t], xe [0,1], (6.1a)

with boundary conditions:

w(/,0) = 0, wx(f,0) = 0. Clw^it tl) + EIw„{t ,1) = 0, /€[0.t], (6.1b)

Cl2(t)w(t ,l)-wtt(t >l)-u(t)-CIwtxxx(t .D-EIw^it ,1) =0, t € [0,x], (6.1c)

0,(0 = &(/), /€[0,t], &,(/) = w(0, /€[0.x], (6.1d)

where w(t ,x) is the displacement of the tube from theshadow tube (which remains undeformed during

themotion) due to bending as a function of timeand distance along thetube; u(t) is theacceleration pro

duced by the motor, and Q(t) is the resulting angular velocity (in radians per second), and 0(f) is the

angular displacement of the rigidbody (in radians). The values for the parameters in (6.1a) - (6.1c) were

chosen to be m =.2815 kg/m, / = 1.005 x lO^m4, C =6.89xl07 pascals/sec; E =6.89xl09 pascals, as
given in theCRC Handbook of Material Science. Thetube is very tightly damped (0.1 per cent).

When time is normalizedto the interval [0,1], the dynamics become:

mwtt(t ,x) + zCIwtxxxx(t ,x) +T2EIwxxxx(t ,x)-x2mQ2(t)w(t ,x)= -t2—-—u(t)x ,
1 +m/3

t e [0,1], x e [0,1], (6.2a)

with boundary conditions:

w(f,0) = 0, wx(t,0) = 0, Clw^it .IHtE/w^/ ,1) = 0, t € [0 ,1], (6.2b)

T2Q2(t)w(t ,l)-w„(t ,l)-T2u(t)->zCIwtxxx(t .D-t^E/h^/ ,1) =0, f€[0,l] ,
(6.2c)
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e,(0 = TQ(0. /e[0,l], Q.t(t) = zu(t) te [0,1] (6.2d)

To transcribe these dynamics into the standard form (2.2a), we proceed as follows. First we define

Kit) e X &L2([0 ,1]) xR, andO :X xR2->X by

^^-K'.l)] • <m)Mt).OLt))±* Cl\t)w(t ,x)-u(t)x/(l+m/3)
&(t)w(t ,l)-u(t)

Nextwe define theoperators A j and Q, and their respective domains D(A {) and D(Q) as follows:

D(A ,)£{£ = e x i tljcccc e l2([o , id, c,(0) =Cix(O) =Cixcd) =o, C,(i) = C21 .

A j: D (A j) -» X is defined by

m

ElCi^d)
= T2

(6.2e)

(6.2f)

(6.2g)

and with D(Q) 4D(A j), Q:D(Q) -> Xis defined by Q4-^4 j. Then (6.2a-c) can de written in the
xE

form

C+QCr+^iC = $>(?,",&) (6.2h)

It is shown in Section 6.4 and Appendix IIin [Bak.l], that 4> is aan operator that is Lipschitz continuous

on bounded sets, and thatA j and Q satisfy the assumptions in [Gib.l] needed to derive the infinitesimal

generator of a contraction semigroup. We give a brief outline of this derivation, see [Gib.l] for the

details. First, we define the space V£D(A ?) xX, so that ify =(y Y, y2) € V, then

0y02= {y1,Ajy1)+{y2,y2). (6.2i)

where ( •, • Hs the L2 inner product. For any given / € [0,1], let v(t)eV be defined by
v(0 =(w(f ,x),w(t ,l),wt(t ,x),wt(t ,1)), and let the operator A2:D(A2)-^V, where

D(A2) = D(A1)xD(Al)<^V, be defined by

A2v(t)k 0 /

•Ax -Q v(0 =

wt(t ,x)
w,(t , 1)

CI /, a jzEI (t ,X)

. -xCIwrjKr(/ , 1) -^EIu^/ , 1)

(6.2j)

It is shown in Section 2 in [Gib.l], that there exists aunique maximal dissipative extension of A2toA3
where A3 is the generator of a contraction semigroup that represents the free response of the system

(6.2h). It is shown in [Sho.l] that A3 generates an analytic semigroup. The standard form (2.2a) is then
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obtained bydefining the state byz(t) £ (v (r), 0, Q) e V xR2, and

A*

A3 0 0

0 0 T

0 0 0

, F(z(0,i«(0)£

0
0

W)^(OAO)
o

TW(0

0

0

t^OW ,A:)-x2«(/)A:/(l+/n/3)

0

TK(0

(6.2k)

It follows that A satisfies Assumption 3.2 and that F satisfies assumption 3.1.

We considered three slewing problems which shared two requirements: (a) the tube had to be

rotated 4fP, from rest5 to rest, and (b) the acceleration produced by the motor was limited to 5 rads/sec2.
The first problem, Plt was a minimum time problem, subject to the above constraints; the second prob
lem, P2, was aminimum energy problem, subject tothe above constraints and an upper bound on the time

allowed; and thelast problem, P3, was a minimum time problem, subject to the above constraints and an

upper bound onthe potential energy due to deformation of the tube throughout the entire maneuver (i.e., a
worst case deformation constraint).

The transcription of the problems Ph P2, and P3 into the form (2.3b) required the introduction of
the following functions. With t denoting the final time, let

g\u ,T)£x.

The energy consumed by the maneuver is givenby

g\u ,T)^^U(t)2dt .
The angular error at the final time is measured by

g3(u ,x)^(0(l)-7i/4)2

The rigid body energy at final time is givenby

g\u ,T)^Q(1)2,

The kinetic energy due tovibration of the tube at time t is given by

g5(u,T)&fj^wt(t ,x)2dx,
and thepotential energy due to deformation of the tube at time x is given by

(6.3)

(6.4)

(6.5)

(6.6)

(6.7)

5We say that the tube is at rest when the total energy ofthe tube is zero. This energy is composed ofthe energy due to rigid body motion
and energy due to vibration and deformation.
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An/. ,.x_ EI'g6(W,T)^/>(T,W) =̂ -joWx,(T,X)

we see that the tube is at rest when g\u ,z) = g\u , x) =g\u ,x) =0.

The deformation constraint for problem P3 has the form P(t , u) £f(t) for all / € [0,1], where

/ (•) is a given positive bound function. This is a state-space constraint. To reduce the computational

burden, wereplaced it by the equivalent requirement gn(u ,x)£ 0, where

g\u ,T)dj^ [max{P(r ,u)-f(t), 0}]2dt . (6.10)

Since /> (/ , w) is continuous, g7(w , t) =0 if and only if P(t ,u)<.f(t) for all / € [0 , x]. Transforma

tions such as (6.10) mustbe used with great care because for any feasible pair (u , x), gn(u , x) =0 and

Vg7(w »t) =0, and hence 0(w ,x) =0, which causes our algorithm to stop up at such apair. However,
the problems caused by thisviolation can be circumvented by initializing thealgorithm with aninfeasible

point, keeping the parameter y, in Algorithm 5.11, small, and introducing ane into the problem statement,
as shown below.

It can be shown that all the above functions gJ :G x [0, x] -» R are continuously differentiable (in

the L2[0 ,1] x R topology) in u and / for allj € {1 ,2,..., 7 }. To conform with the format of prob

lem (2.3b), werelax each of the equality constraints byasmall amount. The three problems now acquire

the following mathematical form6, where G^ {ue L2[0 ,1] I l«(/)l £ 1 Vf € [0,1]} and
T =[x0, Tf ], with x0 >0 very small and if <«> very large.

Pt: min {g\u ,x)lg3(« ,x)-e£0, g\u ,x)-e<£0, g\u ,x)-e£0,

g\u ,x)-e£0, (« ,x)€GxT}.

ldx . (6.8)

P2: min{£2(M ,x) \ g\u ,x)-x7 £0, g\u ,x)-e<;0, g\u ,x)-e£0,

g\u ,x)-e<;0, g\u ,x)-e<;0, (u ,x)e G xT}

P3: minfg1^ ,z)\g\u ,x)-e<;0, g\u ,x)-e£0, g\u ,x)-e<;0,

g\u ,x)-e£0, g\u ,x)-e£0, (w ,x)€ GxT).

In our experiments, we set e= 10"4. Thus, with this relaxation, we are requiring that the final value ofthe
angle 0 be in the interval [4f - O.f ,4f +0.^]. We assume that because ofmodel simplifications and
other inevitable modeling errors, a linear feedback system would be used to assure final pointing accu
racy.

(6.11a)

(6.11b)

(6.11c)

6Note that we find itconvenient at this point to abandon the convention that the cost function is g°(-, •) as well as the linear numbering of
the constraints.
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In the computational experiments reported in this paper, the term £l\t) was neglected in equation
(6.1a) - (6.1c). Similar results were obtained in computational experiments in which the term Cl2(t) was

kept. Weused a cubic Hermit spline implementation of the Finite Element Method for spatial discretiza

tion and Newmark's p-method, with p = 0, for temporal discretization of both responses and sensitivi

ties7. This approach is quite stable and gives accurate simulations. The results of our computational
experiments are shown in Figs. 2-11.

Problem Pi: For simplicity, we chose the zero function as the initial control and 2 for an initial value

for the maneuver time. The initial discretization consisted of 32 time steps and 6 finite elements. The

discretization was refined at iterations 67, 99, and 123. Figure 2 is a graph of thecontrol after 150 itera

tions. Atthis point, the number of time steps was 256 and the number offinite elements 48. Figure 3ais
a graph of \yqi >qi(u ,x) as a function ofthe iteration number. Figure 3b shows x^, >qi(u , x) for the first
15iterations. Afterprecision refinement, thealgorithm finds a control u € Ga andfinal timex e T such

mat %,,?/(" . "0 < 0 in only a few additional iterations. Note that each time precision of discretization

was increased, the value of y\rqt tqi(u{ , x,) increases. This is due to improvement in the accuracy of the

evaluation of the partial differential equation. This increase in constraint violation u/^ qi{ft. T/) decreases
each time the discretization is increased and we see that in the limit the increase is zero. Figure 4 is the
graph ofthe cost as a function ofiteration number. Figure 5 is the graph ofw(t , 1), the displacement of
the tip ofthe tube, from the shadow tube, as a function oftime. The maximum displacement ofthe tip of
about 5 mm and is within the range of validity of the Euler-Bemoulli model. The tip displacement is
large between 0.36 seconds and 0.437 seconds. Figure 6 is a profile of thetube deformation, w(t ,x) (see
Figure 1), during this interval. The total time for the entire maneuver is 0.7886 seconds.

Problem P2: Figure 7 is the graph ofthe control produced by minimizing the total input energy while
constraining the final time to be less than 0.800 seconds, i.e., only 1.4 percent longer than the minimum

time computed for Pj. The resulting final time is 0.800. The control is much smoother than the

minimum time control, and the total energy consumption isreduced by 18%, from 19.15 to 15.72. Figure
8 is the graph of the control when the bound on the final time is extended to 1.00second, 27% over the

minimum time for the maneuver. The result isa total energy is reduction by 62%, to7.27.

Problem P3: In problem P3, we have the additional requirement to keep the potential energy, which is
a measure of the total tube deformation, below the parabola (B) for all time. Figure 9 shows the optimal
control for problem P3. The optimal final time for this case is 0.8177 seconds, an increase of 3.7 percent
over the solution of problem Pt. Figure 10 shows the potential energy curve for this case, which was

7See [Bak.1, Chap. 8] for implementation details, that are based on the results in [Fuj.l. Fuj.2, Fuj.3, Ode.l].
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constrained to lie below a parabola (B). For comparison In Figure 11, curve A is the graph of the poten

tial energy of the tube as a function of time for the control generated in solving the minimum time prob

lem Pj.

7. CONCLUSION

We have presented an approximation theory for the numerical solution of optimal control problems

with dynamics in evolution equation form, with control and state space constraints. It should be obvious

that the theory can be trivially adapted to deal with problems with constraints on the initial state, as well

as with unconstrained problems. Although not included in this paper,we haveresults (reported in [Bak.l,

Bak.2]) which show that our theory can be used in conjunction with finite element techniques to produce

reasonably efficient numerical procedures which havethe property that all the accumulation points of the

control sequences that they produce satisfy the problem constraints as well as an optimality condition

either for the original or the relaxed problem, depending on whether the accumulation point is in the

L2 [0 ,1] topology or in the relaxed controls topology.
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9. APPENDIX: DIFFERENTIABILITY OF MILD SOLUTIONS

We will now establish the Frechet differentiability of solutions of (2.2f) with respect to the control

u € L2 [0 ,1] and the scaling parameter x.

LetM , ©€ (0, «>) besuch that Vr(t)l&Me"t for all t e [0, l],andletM &Memaax.

Lemma A.l. (Lipschitz Continuity of z(t ,u , x) in (u , x).)

There exists b3 e (0 , °°) such thatfor all u', u eL2m[0,l],/e [0,l],x€ [x^x^],

0z(/ ,u' ,x')-z(t ,u ,-z)lx£b3(W -u$+W-z\2)x/i. (A.l)

Proof. For any u , u'€ Lj'[0 ,1] and/ € [0,1],

z(t tu' ,x')-z(f ,u ,x)= T(z/t)z0+\x,T(T/(t -s))F(z(s ,u' , xO ,u'(s ))<fc

-T(zt)zQ-^zT(z(t -s))F(z(s ,u ,T),u(s))ds

-33-



= [T(z/t)-T(zt))z0+n T'Ttfit-sMFizis ,«' ,x'),u'(s))-F(z(s ,u ,x),u(s))]

-[xr(x(/-5))-xT(x/(/-j))]F(z(^ ,u ,z),u(s)) ds . (A.2a)

Since {z(t ,u ,x) € S4 {z € X IQzO* £fcj}, by Assumption 3.1(70, we conclude from Assumption
3.1(7//) and Lemma 3.4 that there exists constants Ks , L e (0, «>), such that, with

y(t)£k(t ,u'tT)-z(t ,u ,x)Dx,for/€ [0,1],

y(/)^xmaxM^sJo[y(j) +0M/(5)-w(5)Q2]^+Llx,-xl . (A.2b)

Applying the Bellman-Gronwall Inequahty, and making use ofthe fact that by the Schwartz Inequahty,
flu flj £ Dm B2, we obtain that

y(t)<.e^MKs {xmaxMtfsQu'-M01 +Llx/-xl }<^3(Bm'-mII22+Ix'-xl2)*, (A.2c)

where b3 ±V2 max {x^M^ ,L}eXaaMKs. q

Next, for u' , u e £,£[0,1] and x', x€ [x^.x^J, we define bu =u' -«, 6x = x/-x, and

5z (•, m, x, 5m , 6x) € C([0,1], X) tobe the solution to the equation

' dF 7H?6Z(0 =JO] HT(/-j))T(-gJ-(z(* ,U ,T),U(s))bz(s) +̂ (z(s),U(s))bu(S))

+(T(-z(t -s)) +x(t -s)AT(x(t -s)))F(z(s ,u ,x), m(5))ox Ids +tAT(it)z0&i. (A.3)

Note that (A.3) is the first variation with respect to (u , x) ofequation (2.2f).

Theorem A.4. (Frechet Differentiability ofz(t ,u , x) with respect to (u , x).)
Forall u', u e L% [0 , 1], t/,x € [xmin , xmax]

Uz(/ ,K',x')-z(f ,m ,x)-Sz(/ ,u ,x,m' -u ,x'-x)0;r £o(m'-m ,x'-x) , (A.4)

where o(bu , 5x)/(II5m fl22 + 15x 12)l/i ->0 as (5m , 5x) ->0.

Proof. To simplify notation, we define Az (/)&z(t ,u', x') - z(/ ,u , x), 5z (O =
5z (/ ,m,x,5« ,5x), Sm =m' - m, Sx =x'-x, and we remove obvious arguments by setting

F(t)±F(z(t ,u ,x), u(t)), F'(t)kF(z(t ,u' ,t?) ,u'(t)), F2(t)± ^-(z(t ,u ,t),u(t)),
oz

a dFFu(t)±^(z(t ,u ,x),u(/)).
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First, in terms of this simplified notation, we have that

Sz(t) = jN tT(t(/ -s)[F2(s)bz(s) +Fu(s)bu(s)] +

+[T(T(t -s)) +x(t -s)AT(x(t -s)]F(s))bx Ids +tAT(Tt)z0bx , (A.5)

Az(t) =[r(x7)-r(xr)]z0 +J0 [xT(x'(f -5))F/(5)-x7'(xa -s))F(s)]ds

=[T(z't)-T(xt)]z0+xjj7(x(/ -s)W(s)-F(s)]ds

+{, [T,7'(x/(f - 5)) - x7-(x(r - s))]F(j)<fc . (A.6)

Hence,

[Az (/) - 5z(/)] = [T(x't) - T(it) - 5x/A7(xr )]z0

+JE)I [t7W -*s))-^(x(/ -s))]F/(s)-bx[x(t -s)AT(x(t -s)) +T(i(t -s))]F(s)l ds

^JjW -s))\ Fz(s)[Az(s)-bz(s)] +[F'(s)-F(s)-Fz(s)Az(s)-Fu(s)bu(s) Ids .

(A.7a)

We will deal with the three groups of terms in the right hand side of (A.7a) oneata time. We will

give full details for the last group only, since the calculations are quite laborious. First, since by Lemma
3.3,(dldt)T(t)=AT(t),

U(s +bs)-T(s)-AT(t)bsK = o1(bs) ,

where ox(bs)/bs -»0 as bs -> 0. Now let s =tx and s + bs = fx'. Hence bs = f(x' - x)=/5x where
Sx = x' - x. Therefore,

fl7,(/x/)-7,(rx)-Ar(05xrfl^o1(Sx/) ,

and hence

D[7'(x/r)-7,(x/)-8x/A7'(x/)]zoIl^izoDxo1(6x). (A.7b)

Next, making use of Lemmas 3.3 and 3.4, one can show that
t

11^ [xT(x/(/ -s))-xT(x(t -*))]F'(5)-Sx[x(f -s)AT(x(t ~5)) +r(x(r -s))]F(s)dsHx =o2(6m ,5x),
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(A.7c)

where o2((6m , 6x))/(I6m fl22 +15x12)x/l -> 0 as (5m , 6x) -> 0.

Finally, making use of Assumption 3.1 and Lemma 3.4 and Lemma A.l, we obtain that

xl^T(x(t-s))\ F2(s)[Az(s)-bz(s)] +[F'(s)-F(s)-F2(s)Az(s)-Fu(s)bu(s)\dsKx

£xmaxMb2jQlte(s)-bz(s)Hix ds +xmaxM^{F,(s)-F(s)-F2(s)Az(s)-Fu(s)bu(s)}^ixds

t l ^p
^^max^j0JMAz(5)-6z(5)lx+jo \L-^(z(s)+rAz(s),u(s) +rbu(s))-F2(s)ldrbAz(s)lx

1 dF 1+Jo ^-fa(z(s>) +rAz(s) ,u(s) +rbu(s))-Fu(s)MrVibu(sm ds

t

Wtf Jo j b2KAz(s)- bz (s )llx +jQKsr (lAz (s )DX +D6m (s )il)tfr QAz (s )flx

+h Ksr0iAz(s)lx +Q5M(s)0)flM5M(.y)Hl ds

*W J^ {b2KAz (s) - 5z (s )lx +Ks [DAz (s )lx +05m (j)l]2 }ds . (A.7d)

Since by Lemma A.1, BAz (s)DX £ o3(I6m Of + 16x 12)*, we obtain, combining (A.7b) -(A.7d) that

DAz(/)-bz(/)\x <;xmaxMJ^ {62IAz(s)-bz(s)lx }ds +T^JiKg[Z>3D6mB2 +o3((5m ,fix))], (A.7e)

where o3((5m , 5x))/(I5m D22 + 15x 12)l/4 —> 0 as (6m ,6x)->0. Applying the Bellman-Gronwall Lemma,
we obtain that

BAz (t) - 6z(/ )DX £ o ((6m , 6x)), (A.7f)

where o((bu , 6x))/(D6m Of +15x1 2),y* ->0 as (6m ,6x) -> 0, which completes our proof. •

Proceeding byanalogy with theproof ofLemma A.l, it is easy toestablish thefollowing result:

Lemma A.5. The solution bz(t ,u tx,bu ,6x), of (A.3), is linear in (5m ,6x) for each t € [0,1],

m€ L? [0 ,1], and x€ [xmin , xmax], and it isLipschitz continuous in (m , x) e G x [x^,, , xmax], i.e., there
exists b4 < oo such that for allu', u € L? [0,1], / € [0 ,1], x € [x^ , xmax],
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H5z(/ ,u' ,x' ,bu ,bx)-bz(t ,u ,x,bu ,6r)lx^64(Oii/-«0f+lT/-Tl2)Vi. <A-8)
D

If wedenote byzux(t,u, x) the linear map 6m -> 5z (t ,u ,x, 5m ,6x) and make use of Assump
tion 3.1CVJ andTheorem A.4, we obtain the following theorem:

Theorem A.6. For all u € Lf [0,1], x e [x^, xraax], and / € [0 ,1], z(t ,u , x) admits a Lipschitz
continuous Frechet derivative. That is, there exists a Lipschitz continuous linear operator
Dz(t ,m ,x) = (Duz(t ,m ,x),D^(t ,m ,x))eB(L^[0,l],X) such that for all 6m eLJ[0,l] and
5xe 1R,

z(t ,m +6m ,x+6x)-z(/ ,m ,x)-Duz(t ,u ,x)bu -Duz(t ,u ,x)bx
hm • =0 / * rv>

i6«i2->o (D6mI22+I5xI2)^ ' (A-9>
16x1->0 Z

D
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Figure 1. Configuration of Slewing Experiment
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Figure 4. Cost v/s Iteration number for Problem 1
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Figure 5. Displacement of Tip of Tube, Problem 1
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Figure 8a. Final Control for Problem 2:Time of Maneuver =0.900 seconds
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Figure 9. Problem 1: Potential Energy
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