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Abstract

In the study of multifingered robot hands, the process of manipulating an object from
one grasp configuration to another is called dexterous manipulation. A unique feature
of dexterous manipulation is that the object can be held stably by the hand through
the course of manipulation. Motion planning for dexterous manipulation amounts to
generating a sequence of trajectories of the fingers and possibly of the object so that
a final grasp configuration can be reached from an initial grasp configuration. In part
I of this paper, we formulate the motion planning problem for dexterous manipulation
and in the forthcoming part II we will construct solutions based on this formulation.
First, we show that the configuration space of the fingers is the space that we should
plan the motion. For this we decompose dexterous manipulation into the following
four basic manipulation modes: (i) coordinated manipulation; (ii) rolling motion; (Hi)
sliding motion and (iv) finger relocation. Then, we develop motion constraints for
each of the manipulation modes, and show that for finger motions that satisfy these
constraints these exists a well defined map, called the hand map, which maps the
finger motion onto the object motion. It is precisely the hand map that enables us to
determine completely the state of the hand manipulation system and plan motions in
the configuration space of the fingers only. We also classify other types of constraints
such as finger kinematics constraints and constraints for collision avoidance. Special
to this paper is the incorporation of dynamic constraints into motion planning. Also,
the hand map has extremeimportance of its own: it gives an intrinsic characterization
of the workspace of a multifingered robot hand. This definition of hand workspace
depends neither on the initial grasp configuration nor on the manipulation modes. It is
an invariant associated with the kinematic structure of the hand and the object. Thus,
it provides a criterion for evaluating designs of multifingered robot hands.

"Research partially sponsored bythe Defense Advanced Research Projects Agency (DoD), monitored by
Space and Naval Warfare Systems Command under Contract N00039-88-C-0292.



1 Introduction

A fascinating new area of robotics research has been the use of multifingered robot hands

for dexterous manipulation. The versatility and dexterity proved by human hands have

lured many researchers into constructing computer-controlled multifingered hands to per

form functions similar to that of a human. Undoubtedly, a multifingered robot hand can

accomplish a much larger class of tasks than a simple parallel-jaw gripper. For example,

consider a scribing task. The pencil can be picked up in a stable grasp configuration, and

then be manipulated within the hand to a final grasp configuration, which is usually a

better grasp for the task than theinitial grasp ([9]). The ability to adjust grasp configura

tions without dropping the object is the key feature associated with a multifingered robot

hand, and this feature is absent from a simple parallel-jaw gripper. Moreover, for almost

all sophisticated tasks the optimal grasp configuration can not be obtained from the initial

grasp with accessibility constraints. The procedure for adjusting grasps without the risk of

dropping the object has become indispensable for accomplishing a sophisticated task, and is

called dexterous manipulation by a multifingered robot hand.

Over the last decade, there have been a great deal of works in building the basic

building blocks for this problem ([3], [4], [7], [5], [10], [11], [12], [15]). For example, Sal

isbury ([12]) and Cutkosky ([4]) have formulated the contact modeling problem between

robot fingers and objects; Kerr ([7]) studied hand kinematics; Montana.([11]) developed

the kinematics of contact and Fearing ([5]) designed tactile sensors for robot fingers. Re

cently, Li et al ([10]) proposed a coordinated control algorithm for object manipulation,

Cole et al ([3]) showed that this algorithm could be combined with the work of [11] and

[7] to give a coordinated control algorithm for pure rolling constraints. Trinkle ([15]) also
looked at the problem of sliding fingers across the object while maintaining the object in

the hand. Among these control related problems ([3], [10], [11] [15]), people have assumed

that trajectories of the object or the fingers are given, and the control algorithms generate

the appropriate torque commands to realize the desired trajectories.

If wedefine phase (I) of dexterous manipulation to be the autonomous generation of

finger/object trajectories that lead from the initial to the final grasp configurations, and phase

(II) to be the development of appropriate control laws for the fingers to realize the desired

trajectories, then, in our view phase (II) of dexterous manipulation has been accomplished



through the combined effort of ([3], [10], [7], [11], [15]), and phase (I) is still unknown. It is

the objective of this two part paper to complete phase (I) of dexterous manipulation.

Our strategy for solving this problem consists of the following: First, we formulate

the problem into a "generalized" robot motion planning problem. This amounts to (i)

identifyingthe appropriate configuration space and (ii) classifying motion constraints on the

configuration space. Then, wesolve the generalized motion planning problem by extending

and applying known results from robot motion planning ([1], [8], [13]). We feel that the

work of Canny ([1]) most closely matches our problem.

We summarize here briefly what robot motion planning, one of the most studied

problems in robotics, can provide us: Given an initial and a final configurations in the

configuration space of a manipulator, construct a trajectory that connects the two config

urations. The trajectory must have the property that the manipulator along it is collision

free with the obstacles in the environment. Canny's solution to this problem is as follows:

First, a coordinatization of the configuration space is chosen, and the set of collision free

configurations is defined in terms of the coordinate variables, which constitutes a semi-

algebraic set Q. Second, Q is stratified into manifolds of lower dimensions. Third, using

tools from algebraic topology, a one dimensional curvein Q that connects the initial to the

final configurations is constructed, along with some complexity bounds. Thus, when the

manipulator follows this one dimensional curve from the initial configuration to the final

configuration, it is guaranteed to be collision free with the environment obstacles.

To put the current problem into a robot motion planning problem, the first thing is

to identify the appropriate configuration space where motion can be planned. For a hand

manipulation system, however, we have at least the following candidates (see Table 1 for the

notation): (1) The configuration space of the object, SE0(3); (2) the configuration space of

the Ar-fingers, SEk(Z); (3) the product space SEk(3) x SE0(3); and (4) the space ofcontact
points together with one of the above listed spaces.

We argue that the appropriate space is the configuration space of the fingers. For

this, let us assume that both the object and the finger are smooth and convex, and at

least one of them is strictly convex. Thus, given configurations of theobject and the finger

where they are in contact, the points of contact wilbe uniquely determined. This eliminates

the space of (4) from the candidate list. Also, the space SEo(3) is clearly not adequate for

completely specifying motion ofthe system, this rules (1) out. For theremaining two spaces,



weseethat the space of (3) is 6 dimensions larger than the space of (2). Furthermore, motion

of the object is not directly controllable. Thus, defining trajectories for the object in SE0(3)

is meaningless unless certain constraints can be satisfied ([10]). This eliminates (3) as well.

But, if the configuration space of the fingers, SEk(3), is where we should plan the motion,

it has to have the following property: under appropriate constraints onSEk(3), the state of

the hand manipulation system should be well defined for a given configuration of the fingers,

gj GSEk(3). By the earlier assumption that both the object and the fingers are convex,
the above is true if the configuration of the object is related to that of the fingers.

We will decompose dexterous manipulation into the following manipulation modes:

(a) Coordinated manipulation; (b) Rolling motion; (c) Sliding motion and (d) Finger reloca

tion. For each of the manipulation modes appropriate constraints on the finger trajectories

will be imposed. We then show that, for finger trajectories which satisfy these constraints

the trajectory of the object is well defined and is related to that of the fingers' by a map,

called the hand map "H" (Section 5). Thus, if Q denote the set of admissible finger trajec

tories, then E(Q) C SE0(3) is the corresponding set ofobject trajectory. Let (g° ,#°p ),

(i/,p>0o,p)€ Qx H(Q) c S&(3) XSE0(3) be the initial and the final grasp configurations,
respectively. Then, if a trajectory 7(*) 6 Q,t € [0,*/], with the property that 7(0) = g° ;

?(*/) = s£p and #(7(0)) = $p; J5T(7(</)) = fl£p> can be constructed, the problem of
dexterous manipulation is completely solved. This is the theme of this two part paper.

An outline of part I is as follows: In Section 2 weuse the buildingblocksdeveloped in

( [?]» [1°]> [11]) to formulate the kinematics of a hand manipulation system. In Section 3 we

classify the generic types of motion constraints. Theseinclude finger kinematics constraints

and constraints for collision avoidance. In Section 4, we define constraints for each of the

manipulation modes. These constraints differ from those of Section 3 in the sense that they

aredynamic. In Section 5, we define the hand map for each of the manipulation modes. In

Section 6, we give a non-trivial example to illustrate the preceding discussions. Finally, in

Section 7 we conclude the paper with several important remarks.

2 Kinematics of a Multifingered Robot Hand

In this section, we study the kinematics of a multifingered robot hand system.

Consider the hand manipulation system shown in Figure 1. To describe motion of

the system, appropriate coordinate frames havebeen attached to the respective bodies. For



Figure 1: A hand manipulation system

any two coordinate frames C,-, Cj, where i,j are arbitrary subscripts, let gifj = (rifj,Rij) G

SE(3) denote the translation and rotation of C,- relative to Cj. Then, the translational

velocity of C; relative to Cj is given by vtfJ- = Rijnj, and the rotational velocity by

W.J = S~1(RtijRij), where S : R3 —• so(3) is the operator that identifies 3ft3 with the

space of 3 x 3 skew symmetric matrices.

Without loss of generality, a finger will be represented by its last link, and its

configuration space will be denoted by S£t-(3),t = 1, ...k. Also, we let SE0(3) denote the

configuration space of the object being manipulated.

We make the following assumptions: (Al) The boundaries of the object and of the

fingers are smooth 2-dimensional surfaces in ft3; and (A2) both the object and the finger are

convex and at least one of them is strictly convex. As a consequence of these assumptions,

we have (a) whenever two bodies are in contact the contact points will be unique; and

(b), if S0 C ft3 represent the boundary of the object, then Sa can be expressed as the

union of m0 GSf open sets {5g}j€m<>, where each 5g is the image of a diffeomorphism

#j :UC ft2 —> SI. Furthermore, the partial derivatives (<£j)u(u), (<0j)w(u) will be linearly
independent for all u = (u, v) 6 U. The pair ($, U) is called a coordinate chart of 50, and

the coordinates of apoint s GSg is given by (u,v) =(^j)_1(«). The set {Sg}j€m0 is called
the atlas of 50. Similarly, we can define coordinate charts (rfi,U)j€m^,mi € Af and atlas
(5/)i€m,. for5,-,iek.

Following the notation of [11] ( See also appendix A), we denote by K0(s) € ft2x2

the curvature form, T0(s) G ftlx2 the torsion form, and M0{s) G £2x2 the metric of the



object at s GSQ. These notions are invariant of the surface and can be computed using the

coordinate chart {<££, F}^. Similar definitions hold for 5;,i Gk.

To describe the kinematics of contact between finger i and theobject, welet Coi(t) G

S0 C ft3 and c/,(<) G5,- G3ft3 be the positions at time t of the point of contact relative to

C0 and Cri. We will restrict our attention to an interval I such that €«•(*), c/,-(t) belong to

a single coordinate chart of S0 and S,-, respectively. A set of coordinate frames is defined

as follows: The local contact frame Coi of the object has origin at the point of contact

(i.e., roit0 = c^) and z-axis the outward pointing normal to SQ. Coi is fixed relative to CQ.

Similarly, the local frame C/$- of finger i has origin at the point ofcontact (i.e., !•/,>,• = c/,)

and 2-axis the outward pointing normal to 5,-. Cfi is fixed relative to Crt. The local frames

Coii Cfi share a common origin and have their x—, y -axes in the common tangent plane.

We define the contact angle fa by the angle between the z-axes of Coi and C/,\ We choose

the sign of fa so that a rotation of Coi through —fa around its z-axis aligns the x-axes.

We let (i£,t£,v') and (w^w^wl). denote the translational and the rotational ve

locity of Coi relative to C/,-. These are in fact the velocities of the object relative to the

finger expressed in their respective local frames. Let (voitP, vjoi,p) be the velocity of the

object (relative to Cp) and (v/i,P, w/,>) the velocity of finger t, then the following relation
exists ([10]).

where

"°«,P A* o
o A*

rv* i
_

V*

vfi,p

LWfi* J
+

«4
wy

. w%z

w,ot,p

cos^f —sin^>i 0
- sin fa - cos fa 0

0 0-1

A 0
A* o
0 0 -1

(1)

(1) simply says that whenever finger i is in contact with the object its velocity is related

to that of the object by an afline transformation, whereas the afiine part is given by the
relative velocity terms.

Note that some components of the relative velocity in (1) have to be zero in order

to satisfy certain contact constraints. For example, for (a) fixed contact points, we have

= 0, and w% = w* = 0; (2)
«*



(b) coordinated manipulation with rolling constraints, we have

= 0, and iuj = 0;

and (c) finger i sliding across the object surface, we have

w\

vi = 0 and
4

w\

= 0.

(3)

(4)

When (2) or (3) holds,one has from (1) that

Voi,P = Aj,.vSiiP. (5)

On the other hand, since Coi is fixed relative to C01 the velocity of Coi is related to

the velocity of CQ by a similarity transformation, given by

where

Adg-} =
Slat.a

Jot,p

w,ot,p

Rii,o -s(roi,o)RoitC
0 Roi,o

Similarly, one has for the finger that

Vfi,P

Wfi,P
= Ad-i

9fi.r

'o,p

W,o,p

i 9<n,o —\roi,o,Roi,o)-

Jrt,P

W,rt,p

Using (6) and (7) we can rewrite (5) in the form

where

Bl; =

B\Adr>
wot,o

Jo,P

W,OtP
= B\Tri<

10 0 0 0 0

0 10 0 0 0

0 0 10 0 0

and Trii0i =

T»,p

W,rt,p

A* 0

L ° ^* J
Ad-i

9/i,r

(6)

(7)

(8)

Summing (8) up for i = 1,...A:, yields the well known velocity constraint equation

for a hand system.

G* "o,P

W,o,p
= J «/*.

where

J = Diag{2?{,...!?£} Diag{TP1>-, .... Trktbk} GX3kx6k, £/fP =

vrl,p

Vrk,P

L Wrk,p

(9)

6JfeG#



is the vector of finger velocity, and

G = Ad-i ,...Ad -i Di*.g{B1,...Bk}e&6x3k

is the grip Jacobian. Notice that Gdepends on the contact points c^ = {cd}i€u G3ft3* only,
and since poi =(<^)_1(coi), and p^ = {p«},-6* €&2*; we con write G= G(cJ =G(pJ.

The wrenches exerted upon the object by the fingers can be expressed as

Xi

To
= G (10)

. xk .

where r0 G 3ft3 is the torque about the origin of Ca, and fQ is the linear force; Xi is the

component vector of contact wrenches of finger i and is constrained to lie in the friction

cone Ki, specified by

Ki = {xi GB3, xii3 < 0, *?fl + x\2 < n2xlz)

where n G 3ft+ is the static Coulomb friction coefficient.

We let

K = K!®...eKk (11)

denote the friction cone of the hand.

Definition 1 (Grasp or Force Closure Condition)1 Aset ofcontact points c^ = {coi}i€k G
&*k (°rPo = {Poi}i€k G3ft2fc ; is said to form agrasp ifG = G(c0) satisfies

G{K) = »6. (12)

When (12) is true,then G isonto(or thenull space ofG' is empty), and G G* G3ft6x6

is nonsingular. Consequently, there exists a well defined map from the velocity space of the

fingers to the velocity space of the object. This is given from (9) by

Jo,P

w,o,p

= F£ftP, where F = (GGt)~1GJ G»6x6fc. (13)

Clearly, the entries of the matrix F depend on the contact coordinates of the object and

of the fingers, and the contact angles. We write F = F(p ,pf,fa) to emphasize this de

pendence. On the other hand, the contact coordinates and the contact angles evolve as a

The grasp condition can be transformed into constraint equations on the configuration variables of the
fingers using the hand map of Section 5. See Appendix B.
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function of the relative velocity. According to the kinematic equations of contact ([11]), we

have

where

r-lPoi = M^{Koi + Kfi)-l —w:
.8

Wl
-Kti

l"Jj

p}i =MjA^Koi+Kji)-1 ( ~J« +K* | Y
j>i = wi+ToiMojpoi +TfiMfipji,

(14)

(15)

(16)

(17)

Kfi = AfoKfiAfr

is the curvature form of the finger seen by the object. Note that the curvature forms, the

torsion forms as well as the metric forms have been evaluated at the point of contact, i.e.,

Koi = Koi(poi), and etc.

3 Classification of Motion Constraints

In this section, we classify the set of basic constraints on finger motions. These include

(i) constraints for collision avoidance and (ii) constraints by the kinematic structures of

the fingers. These constraints will be defined on the configuration space of the fingers:
SEk(3) = SEX(3) x ... x SEk(3).

We assume that geometries of the fingers/object are known, and they satisfy as

sumptions (Al) and (A2). Furthermore, parameterizations of the fingers/object are given.

A. Constraints for Collision Avoidance

During the course ofmanipulation, collisions between links of all Jfe-fingers should be

prevented. Sinceeachfinger is represented by its last link, the constraints canbe formulated

directly in terms of the finger configuration variables. Consider the hand manipulation

system shown in Figure 1. Let nF?,i G k, stand for finger i. Let d : ft3 x 3ft3 —•

3ft,d^(x,y) = £3=1 \xi - yi\2, be the Euclidean 2-norm. We define the distance function of

"*;•" with »Fj",j # i as follows2

d(Fi,Fj)= min d(grjtPx, griiPy), (18)
arG5J,rGmi
yG5|,/Gmt-

2Strictly speaking, we should take the "min" over x6 {the set of 5R3 enclosed by Sj) and yG{the set
of a*5 enclosed by 5,}. But, since *Fim and "Fj" are separated to start with, (18) is okay.



where

9rj,Px —Rrj,Px + rrjtP

According to Canny ([1], Ch. 2), for given features of finger i and j, d(Fi,Fj) defines a

function on the configuration variables of finger i and finger j. Without loss of generality,

we will write, that

d(Fi,Fj):SEk(3)—> ». (19)

For computational advantages Canny used quaterion coordinates for the orientation space

SO(3). But, from [14] conversions betweenquaterion coordinates and orientation matrices

are rather straightforward.

Definition 2 Collision between finger i and finger j can be prevented if and only if

d(Fi,Fj)>0, (20)

The subspace of SEk(3) where finger i is collision free with finger j is denoted by d(Fi, Fj)"1^, oo))
= {(^rij>, ».0r*,p) GSEk(3) | d(Fi,Fj) > 0}, and theconstraint subspace for collision avoid
ance of all fc-fingers is the intersection:

H d(Fi,Fj)-\(0,oo)) CSEk(3. (21)

Remark: It is straightforward, using the kinematic junctions of the fingers, to formulate

the constraints for collision avoidance between links of all k-fingers, where each finger has

more than one link.

B. Constraints by Finger Kinematics

The second type of basic constraint is the constraint due to the finger kinematic

structures. Since the last link is connected to the hand palm by n,- links the set of reachable

configurations by the finger is a compact submanifold Qi of SEi(3). As was shown in [1],

Qi is a semi-algebraic set, and can be expressed by a set of inequalities in terms of the

configuration variables, gri,p:

Qi = {9H,P e SEi(3) : f(griiP) > 0}. (22)

The subspace ofSEk(3) where finger kinematic constraints issatisfied istheproduct:

(Qi x ... XQk) C SEk(3).

10



Finally, the subspace of SEk(3), where all the constraints discussed in this section

are satisfied is given by

Qs ={n^jdiF^Fj)-1^,^))}r|{(Qi X... XQk)} CSEk(3). (23)

4 The Basic Manipulation Modes

By assumptions (Al) and (A2), a state of the hand manipulation system is specified by a

point (S/,p'̂ p) = (9rij>,...grk,P,g0,P) in the space SEk(3) x SEa(3). We let (g°p,^tP) G
SEk(3) x SE0{3) denote the initial grasp configuration, and (g* ,g*op) GSEk{3) x SEQ(3)
denote the final grasp configuration. The objective of dexterous manipulation is to reach

from an initialgrasp configuration to a final grasp configuration, by commanding the fingers

to follow a prescribed trajectory in SEk(3). Since the object motion is affected only by

motion of the fingers, it is necessary that while the fingers travel in SEk(3) from g°, to

g*p, the object will travel in SE0(3) from g%p to g{p.
Wewill decompose dexterous manipulation into the following manipulation modes:

(A) Coordinated manipulation; (B) Rolling motion; (C) Sliding motion and (D) Finger
relocation . Also, let [0, tf] be the time interval it takes to reach from the initial state to

the final state. [0,tf] is divided into the union of successive sub-intervals, i.e., [0,*/] =

U?=o [*n*«*+i]» 0 = to < t\ < ... < tn = tf, such that at each sub-interval [*,-,*,+i] the finger
motion is in one of the manipulation modes.

A. Coordinated Manipulation

Coordinated manipulation by a multifingered robot hand has been studied exten

sively in [10]. It was shown that the fingers can be controlled to move in a coordinated

fashion so that the object can be manipulated from one configuration to another. We see

that, in addition to satisfying the generic types of constraints discussed in Section 3, the

fingers motion must also guarantee that thepoints ofcontact caninfactstayin contact with

the body. We shall formulate exactly the constraints on finger trajectories for coordinated

manipulation mode.

Consider aninitial state ofthe hand manipulation system, given by(g (0), <jrOfP(0))

GSEk(3) x SE0(3). Let the initial contact points be c0 Gft3* and c/ Gft3*, respectively,
and assume that c0 form a grasp.

Let gftP(t) = (5ritPW,-0r*,pW) e SEk(3), t G[0,*j], be a set of trajectories of the

11



fingers. Note that the time interval [0,*i] could represent any of the sub-intervals discussed

previously. From (13), let

"°,p

w,o,p

= F(c0,cf,fa)tf,p,

where, with gri,P = (rrt>, Rri,p) G5E,(3),

Vrl,p

f/,p = » vn,P = Ki,Prri,p, and wrt|P =5-1(flJt>JRri>).

(24)

This is equivalent to say that the relative translational velocity is constrained to be zero.

Now, substitute (24) intothe second equation of (1) and use (6) and (7) to get an equation

expressing the relative rotational velocity in terms of f/iP:

w*. = -Aii>iAtfi,riWri,P +Ki,o™o,P(£f,P), i Gk. (25)
L W* J

According to the contact equation (17), the contact angle fa is related to w*z by

ft = wl, i Gk. (26)

Notice that (24), (25 ) and (26) together constitute a system of differential equations with

algebraic constraints:

JolP

w,o,p

wl
V

w\

k V = wj, %G k.

= F^c^fa) £ftP,

= -A+tA^Wri* + A'^WoMf*)* •' € k,
(27)

For a given set of finger trajectories, the relative rotational velocity can be solved

from (27) in terms of the velocity of the fingers. (See [6] for further details on systems of

differential equations with algebraic constraints). On the other hand, the points of contact

(Poi,Pfi) evolve as a function of the relative rotational velocity according to (15), (16):

We have

Poi^M^Koi + Kfi)-1

Pfi = M^A^i(Koi-rKSi)-1

12

w.

wl

•w:

w:



Definition 3 (Coordinated Manipulation) We say that a set of finger trajectories g (*)
"V»P

GSE (3), t G[0,*i], constitutes a set ofadmissible trajectories for coordinated manipulation

if the relative rotational velocity (w^w*,),^ Gksolved from (27) is identically zero, for all

*€[0,*i].

Remarks (1) (w%x,w%y) = 0 implies that (poi,Pfi) is constant. This ensures that the con

tacting fingers will not slip.

(2) Note that w*x is not necessary zero in a coordinated manipulation mode. Each

finger is allowed to spin around the contact normal.

(3) If the contact coordinates poi and pfi stay constant, then, G also stays constant

and the grasp condition (12) is satisfied during the course of coordinated manipulation. On

the other hand, J is not constant, as fa = w*z is not necessary zero.

The set of finger trajectories which satisfies Definition 3 will be denoted by J^c
Clearly, we have Y,c C SEk{3).

B. Rolling Motion

An efficient manipulation mode for effecting motion of both the object and contact

coordinates is rolling. Cole et al ([3]) show that when theinitial contact points c„ is properly

chosen then the object can be manipulated with pure rolling constraints. Weformulate the

constraints on finger trajectories for rolling motion as follows:

Consider an initial stateofthehand manipulation system, withinitialcontact points

£o(°) (or Po(0)) and cy(0) (or py(0)), respectively. Assume that c^O) (or po(0)) forms a
grasp.

Let 8/j»^ 6 ^^C3)' * £ [0,*i], be a set of finger trajectories and consider the
following system ofdifferential equations with algebraic constraints (i Gk):

'°,p

w,o,p

w*

w:

= jP(PoW>P/«^)0,p>

= -A^A'^Wrij + A^0w0,p(f/tP),

Poi = M^(Koi + Kfi)-1
wlx

-1Pfi = M^A^(Koi + Kfi) -wi
w*

. fa = wi + ToiMoipoi + TfiMjipfi

13
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Here, the first two equations are algebraic, and f/tP is considered as an input term. The

initialconditions aregiven bytheinitial stateofthehand system. LetPoi(t) andPfi{t),i Gk,

be the solutions of (28), and

<*(*) = V&(ftrfW). *€ [0,*i],« € k.

be the contact points.

Definition 4 ( Rolling Motion) We say that a set offinger trajectories gf,p(t) GSEk(3),

t G [0,ti], constitutes a set of admissible trajectories for rolling motion if: (i) wz,i G k,

from (28) is identically zero for allt G[0,*i]; and (ii) the set of contact points cjj;) Gft3*

forms a grasp for all t G[0,*i].

Remark (1) By the first equation of (28) sliding is notpossible, and by the grasp condition

(ii) the fingers are able to exert any desired wrenches upon the object through the course of

rolling motion.

The set of finger trajectories which satisfies Definition 4 will be denoted by J2r C

SEk(3).

C. Sliding Motion

When a finger or a group of m fingers ( 1 < m < A?) are commanded to slide along

the object surface, the remaining (non-sliding) fingers, togetherwith contact wrenches from

the sliding fingers constrained to the boundaries of the friction cones, should be able to

held the object in the same configuration. The control algorithm presented in [10] can be

modified for this purpose. Constraint formulation for sliding motion is given here.

Assume that gravity is the only external force to be balanced during the course

of sliding. Let gp denote the gravity vector relative to Cp, and Aa* ^{g^ti)1 is then the
9o,p F

equivalent wrench on the object relative to CQ.

Let 1 < m < k be the number of fingers to be slid simultaneously. Let irm =

{(7rm)!=r,»7rm £ k} define a permutation of m fingers to be slid. For example, if tt3 =

{1,3,4}, then finger 1, 3 and 4 will be slid simultaneously. Note that for a given m, there

are I J = ^_m^!ro, different ways that a total number of mfingers can possibly slide.
Thus, we have to perform (2* - 1) tests for all possible sliding motions.

Consider aninitial stateofthehand manipulation system given by(g. (0), <7o,P(0)) G

SE (3) x SEQ(3), and assume that the corresponding contact points co(0) forms a grasp.

14



Let g/,p(t) GSEk(3), t G[0,*i], be a set of trajectories of the fingers such that

ShiA1) = 0r.\p(O), Vi Gk\7Tm.

Li other words, the trajectories of the non-sliding fingers stay constant. Let

G(K)\*m± £ Gi(Ki)
i€k\*m

(29)

denote the set of contact wrenches from the nonsliding fingers, and

denote the set of contact wrenches from the sliding fingers, where dKi stands for the bound

ary of Ki. Then, the object can be held stationary undergravity force while simultaneously

sliding fingers in irm if

Aa*-X
9o,p

9p
0

eG(K)\irm + ^Gi(dKi).
j€*m

(30)

With the object configuration stays constant, the velocity of the sliding fingers

relative to the object is simply the velocityof the fingers, i.e.,

r vl i

w:

w:

w\

0 Aft J 9fi.r*
T*,p

W,n,p

, Vl G 7Tm. (31)

If therelative rotational velocity is zero, the contact coordinates for thesliding fingers evolve

according to

Poi^-M^iKoi + Kfi^Kfi
Lvv J

pfi =MJ>A^.(Koi +kfi)-lKoi

( fa = ToiMoipoi + TfiMfipfi, Vi G7Tro.

(31) and (32) together constitute a system of differential equations with algebraic

constraints, and is denoted by (*).

Definition 5 (Sliding Motion) We say that a set offinger trajectories g (t) GSEk(3),
t G[0,*i], constitutes a set of admissible trajectories for sliding motion if: (i) (w^w^wi)
and v\ defined by (*) are identically zero for all t G[0, *i] and i G7rm; (ii) (30) issatisfiedfor

all t G[0,*i], and (Hi) the set ofcontact points cjj) Gft3* forms a grasp for all t G[0,#i].

15
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Remark (1) Condition (i) implies that pure sliding for all the fingers in wm, (ii) implies

that the object can beheldin a stationary configuration undergravity force; and (Hi) implies

that the grasp condition will be satisfied whenever sliding motion terminates.

The set of finger trajectories which satisfies Definition 5 will be denoted by £sm-

Furthermore, we denote by J2s = Um6k Sm tne set °* ^ possible sliding trajectories.

D. Finger Relocation

Finally, we conclude this section by defining constraints for finger relocation. In a

finger relocation mode, a group of m fingers (1 < m < k) are allowed to break contacts with

the object and they will be positioned at other locations, provided that the set of contact

points by the remaining fingers still forms a grasp.

Again, let the initial state of the hand manipulation system be (g, (0),gop(o))

GSEk(3) x SEa(3) and Let wm be defined as before.

Definition 6 (Finger Relocation) We say that a set offinger trajectories g. (t) GSEk(3),

t G [0,*i], such that <7ri,P(<) = <7r$,p(0),Vi Gife\xm constitutes a set of admissible trajectories

for finger relocation if

G(K)\irm = ft6. (33)

In other words, the set of contact points by the remaining fingers still forms a grasp.

The set of finger trajectories that satisfies Definition 6 will be denoted by E£m> an^

weletEF = Um6kE5m-

5 The Hand Map

In this section, we define the hand map for the set of admissible finger trajectories. Without

the hand map, it would not be possible to understand dexterous manipulation. The hand

map, H, relates the set of admissible finger trajectories to the corresponding object trajec

tory. For example, given a set of finger motions that satisfies the requirement of coordinated

manipulation, the hand map tells where the object will be through the manipulation mode.

Let

Q= £<7 u E« U£5 UEf C SEk(3).

Then,

H :Q C SEk(3) -+ SEQ(3) (34)

16



is defined as follows:

Let i/lPW e Ec»* e [°»*il- fiy Definition 4, &„•(*) = £,,-(*) = 0,Vi Gk. Thus,
coi = <Pl(Poi) and c/i = (pi(pfi) are constant. It is clear from Figure 1 that the coordinates

of the contact point relative to the hand fixed frame, Cp is the same through either the

object or the finger. This is mathematically equivalent to

tfcpWco* = ^r,',p(<)c/,S Vi G[0,h],i Gk. (35)

Since c0 Gft3* forms agrasp, the object configuration variable g0,P(t) can De solved uniquely
from the set of k equations given in (35). The reader should convince herself that there

are enough independent equations in (35) because the set of contact points forms a grasp.

Denoting the solution by flr£p(*), *G[0, *i], and we define H\y^ by

*(g/,pW) =&(*). V<7/lP« GE(7>*€ [0, *!]. (36)

Remark (1). An alternative procedure for solving g0tP(t) ^m 94 (*) w <w follows: By
definition, we can write in the homogeneous representation that

GjW&vW = 5K,p) t>o,p
0 0

G ft4x4.

Substituting (17) into the above equation and rearranging the terms, yields a differential

equation for g0,P(t):

9oAt) = 9o,PF(Sf,p,±(t)), (37)

where F has been derived from F. Notice that the only variables ofF are f/>p and ij>(t). On
the other hand, the differential equation governing the contact angles is given from (16) by

&•(*) =«£(&£/#). «G4. (38)

(37) and (38) form a system of coupled differential equations and it can be solved using
Newton's algorithm to give g0,P(t)-

Let §/,pM G£*>* € t0'*1!' By Dennition 5> (4><,*>*) = 0, and wz = 0,Vi Gk.
Moreover, since po(*), py(t) Gft2* ,and ^ Gft* can be solved from the system ofdifferential
equations given in (28)) and c^t) forms a grasp for all t G[0,*i], the following differential

equation of g0,P(t)l8 weu defined for all t G[0,*i] (see the previous remark).

9oM =^*)*(8o(0»B/(*).i(*).f/*) (39)
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SE.Q)

te/.p. iLp)

\8f,p> 80,p)

H(gf,p(»)

8f.P«)eQ
SE&)

Figure 2: Action of the hand map.

Let the solution to (39 ) be denoted by g*p{t) GSE0(3),t G[0,*i], and we define

*(l/,pW) =«&(<).V* €[<Mi],g/>pW G£*. (40)

<3> g'E.;
It is clear fromthe context of sliding motion that the object configuration is constant,

so that we have

•ff(s/,p(*)) =9oA°), V* 6 [0,h],S,J*) € Ei (41)

W g'EP;
The Hand map for finger relocation mode is the same as for the sliding mode, we

set

*(l/tpW) =*/,p(°)> Vt G[0,*i],g/p« G£F. (42)

This completes the definition of the hand map.

One can visualize the hand map by drawing the finger configuration space in the

plane and the object configuration space in the vertical axis. H is then the height fanction

associated with each admissible finger trajectory in Q. Let (g° ,g°p) GSEk(3) x SE0(3)

be the initial state of the hand manipulation system, and (g-J ,g£n) the final state. The

objective of motion planning is to generate a sequence of finger trajectories, g. (t) eQ,t G
—f>p

Ugrfc-i.*d> *o < *i < ...*; <*«+i < ... < *„ = tf, such that g (0) = g° , g (t„) = g> ,
-•/tp —/ip —/>p —/,p

along with #(g/p(0)) =<£p, and #(g/p(*„)) =flf'p.(See Figure 2.)
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CpLjc

Figure 3: A hand manipulation system in ft2

Note that the hand workspace relative to an object can be defined as " the set of of

reachable configurations of the object while holding the object stably in the hand*3. Then,

from the proceeding discussions we have

Proposition 1 (Hand workspace) Let V(g%f,g%tP) C SEQ(3) be the set of reachable con-
figurations of the object, starting from the initial grasp configuration (g° ,p°p), Then,
nfu,S°OJ,) =B(Q).

In fact, this notion of hand workspace does not depend on the initial grasp. Let

(l/,p>$p) **d (g/,p>0o,p) be two initial grasps, such that (%\p,gltP) GV{gfp,gQop), then it
is not difficulty to see that V(g)p,glp) =V(g°p,^iP).

In other words, V(g°fp,9%,p) gives the connected component of the hand workspace.
The computation of the hand workspace is a hope of current research.

6 An Important Example in 8t2

In this section, we present an example to illustrate the preceding discussions. We also

provide a solution to the motion planning problem.

Consider the two-fingered planar manipulation system with a unit circle, shown in

Figure 3. Each of the cylindrical fingers has 2 unit length, 1 unit width, and its boundary

can be represented as the union of four pieces: 5; = (jj=1 Sj,i = 1,2.

3Such a definition is suggested to us by A.K. Pradeep
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stated
CJLx

Figure 4: From state 0 to state / by dexterous manipulation

Theinitial and final grasp configurations are labeled with state0 and state /(Figure

4). Gravity force isalong the y-direction ofCp. For simplicity we will assume that the fingers
have no kinematic constraint.

The configuration space of the object/fingers is given by SE0(2)/SEi(2),i = 1,2,

which consists of translations in ft2 and rotations around the normal that points outward.

The homogeneous representation of the configuration variables are

9o,P =

COS 60 —sin 80 Xo COS &i —sin &i Xi

sm0o cos$0 Vo and 9rilP = sin 9i COS $i Vi
0 0 1 0 0 1

,i=l,2

Here, (xoy y0) are coordinates of theorigin of CQ relative to Cp, and 0O is the angle between

the s-axis of C0 and the z-axis of Cp, measured counter-clock wise. The object/fingers

velocities are related to the derivatives of the configuration variables by

"°,p

w 'o,p

and

"ri,P

w rt,p

x0 cos $0 + y0 sin 0o
y0cos 0O —x0 sin 90

L

ii cos $i + fa sin 8i
yi cos $i —Xi sin 0; , t = l,2.

(43)

(44)

The initial and final states of the system are represented as points in the space

(S/,p>&>,p) €SE2{2) x SE0{2), where g/p =(gri*,gr2*) GSE2{2).
The goal is to plana sequence of finger motions so that state / can be reached from

state 0. For this, we need to formulate the system constraints and construct the free space

discussed in the preceding sections.

1. Constraints for Collision Avoidance.
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For a given configuration, g/p GSE2(2), of the fingers, 9~iiP9r2,P represents the
relative configuration of finger 2 to finger 1.

The distance function (18) is expressed in terms of <7~x y^:

d(Fx, F2) = min \\x - g^g^y\\
x G S[,r G ni!
y G5j,/Gm2

where mt- = {l,2,3,4},i = 1,2. Substituting the coordinates of S\,l Gm,-, into the above

equation gives the constraint equation on SE2(2) for collision avoidance.

2. Grasp Condition.

We parameterize the boundary Sa of the object by the angle with respect to the x-

axis of Ca. Thus, the coordinate of contact point c^, i = 1,2, is the angle 0^ of c^ relative

to the x-axis of C0. Note that 0 < 0oi < 2t. The configurations of the two contact frames

of the object are

9oi,o —

and the grip Jacobian G is

G =

sin 0oi cos 0oi cos 0oi
cos 0oi sin 0oi sin 0oi

0 0 1

, t=l,2.

sin0oi cos^oi sin0O2 cos0O2
—cos0oi sin0oi -cos^o2 sin0O2
-10-10

One can easily verify that (c0i, C02) forms a grasp if and only if the line joining Co\ and c02

lies in the friction cone (see Figure 3). The equivalent mathematical statement is

K - \0oi - M I < 2tan"1 fjL,

where p. is the coefficient of friction, and is assumed to be 1 here.

(45) implies that

IT
k - |0oi - 0O2\ I< 2tan-1 fi < 2 • -

which simplifies to

0 < \0oi - 902\ < 2jt.

Since the determinant of GGl is

det(GG') = 4(1 - cos(0ol - 0o2)),

the grasp condition implies that G has full rank.
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For a given state (gfp,g0,P) GSE2{2) x SE0(2) of the system, g->pg0,P represents
the configuration of the object relative to finger i. When the object is in contact with finger

i, the point of contact c^ is unique and can be expressed as a function of g^p9oji*

Coi = coi\9ri,P9o,P)

Derivation of this function is rather straightforward (using the hand map constructed be

low).

3. Coordinated Manipulation.

Because p^ = pft = 0, the fingers and theobject become a single (rigid ) connected

component for coordinated manipulation. Let [0,*i] be the time interval of interest, and

9r2,ri(0) be the configuration ofCr2 relative to Crl at time 0. Then, for coordinated manip

ulation, the trajectory offinger 1 is related to that offinger 2 by a constant transformation,

i.e.,

9r2lP(t) = 9rlAt)9r2trl(^ ^ G[0,*J.

and the set of admissible finger trajectories can be expressed as

Ec = {i/,pW 6SE2(2), \gr2tP(t) = <M,pW<7r2,ri(0)}

On the otherhand, trajectories oftheobject is also related to that offinger 1 bya constant

transformation,

9o,p(t) = 0rl,pW<7o,rl(O), V* G [0,<i].

where go,ri(0) is the configuration of the object relative to finger 1 at t = 0. This defines

the hand map by

#(g/tPM) = <7rl,p(t)<fc>,rl(0),V* G[0,<i],g/fPW G£c.

4. Rolling Motion.

Let [0,*i] be the time interval ofinterest for rolling motion. As shown in Figure 3,

let %»>* = 1,2, be the y-coordinate of the contact point c/,- relative to Cr;. For rolling
motion with rolling velocity 0oi, i = 1,2, %*• can be expressed as

yPi(t) = ypi(o) - (MO - Mo)),
yP2(t) = yp2(o) + (M*) - Mo)).

Then, the configurations of the contact frames, Cfi,i = 1,2, relative to Crf- are

0/i,n =
' ° 1 5 1 " 0 -1 1

8

-i o VP\ , and 0/2,r2 = 1 0 yP2
0 0 1 0 0 l
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Thus, the J matrix of (9) is

J =

0 -1 -\ 0 0
1 0 -ypl 0 0
0 0 0 0

0 0 0 -1 0 yp2

0

0

1 -ix 8
= J(Ool(t),0o2(t)).

Combining (9) with (43) and(44), yields a system of differential/algebraic equations

that describe constraints for rolling motion:

xocos0o + jfosin0o
G* jrocos0o - xosin0o = J

9o

&o\ = 9o —01,
0o2 = 0o —02i
\k - \0O\ - 0O2\ | < 2tan-1 p.

Xi cos 0i + yi sin 0,
jfi cos 0i —ii sin 0i

0i
(46)

(46) can be solved to give the set J2R C SE2(2) of admissible finger trajectories, and the

resulting object trajectories given by the first equation of (46) defines the hand map for

rolling motion.

A set of finger trajectories that satisfies (46) is that each finger rolls with equal

velocity (see also [11]). Thus, if the fingers started in antipodal positions, they will remain

antipodal.

5. Sliding Motion.

In this example, sliding motion implies that the fingers must move in the tangent

direction of the unit circle. Thus, #» = 0,i = 1,2, and if the two fingers started in positions

parallel with eachother, thet will remain parallel with each other during sliding mode.
0

Gravity force relative to Cp is gp =

, where

9.8
, and it can be expressed relative to CQ,

and is given by Ad1^
9o,p

9P
0

9o,p

cos 0O - sin 0O 0
sin0o cos0o 0

x0sin 0O - y0cos 0O xQ cos 0O + yQ sin 0O 1

Let [0,t\] be the time interval of interest and (g. (0),<fo,p(0)) the initial state for

sliding. Since the number k of fingers is 2, we have to exam 22 —1 = 3 possible cases for

sliding. These include: xx = {1}, finger 1 slides; *i = {2}, finger 2 slides and tt2 = {1,2},

both fingers slide. The other constraint for sliding motion is

Adl-X
9o,p

9P
0

GG(K)\xm + £ Gi(dKi).
J6ffm
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A simple calculation shows that, in order to satisfy (47), the set of finger trajectories for

7rm = {1,2} is empty, i.e., 2? = {0}> an<^ f°r *ne °ther cases we have:

(a) tti = {1}: Let g0,P(co\ —c02.) be the vector ( relative to Cp) joining c02 to c0\.

Then, sidingfinger 1 is possible if the vectorpoints upward relative to Cp, i.e.,

9o,P(c0i - C02)

Moreover, the finger must slide upward, i.e.,

'rt,p

> 0. (48)

>0.

Note that if finger 1 is below finger 2, i.e., (48) fails to hold, then sliding finger 1 is not

possible.

(b) tti = {2}: We simply interchange the subscript 1 with 2, and obtain similar

constraints for sliding finger 2.

Finger Relocation.

It is clear that £f = 0.

A sequence of finger motions that brings the system from state 0 to state / and

satisfies the constraints of (1) through (6) is shown in Figure 5, where each picture shows

the system at the end of a manipulation mode. Here, we have divided the time interval

into 7 successive subintervals: 0 = t0 < ti < ... < t7 = tf. The manipulation mode corre

sponds to each subinterval is: [t0,ti\: coordinated manipulation; [ti,t2]: sliding finger 2 up

; [*2,<3] : rolling motion (to change relative orientation); [t3,t4]: sliding finger 2up; [t4,t5]:
coordinated manipulation; [<5,<s]: sliding finger 1 up; [*6,<7]: coordinated manipulation.

Note that theinitial state ofa manipulation mode is always thefinal state ofthepreceding
mode.

It is interesting to note how the relative configurations of the object to finger 2

change as the system goes from state 0 to state /. This is shown in Figure 6, where 0 is

theorientation angle, and y is the y-coordinate ofthe origin ofCc relative to Cr2. Sliding

motion changes only the y coordinate, while rolling motion changes both the y and the 0

coordinates. In order to reach state / from state 0, the fingers have to follow these lines of

motion.
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Figure 5: A solution to the dexterous manipulation problem.
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Figure 6: Relative configurations of the object to finger 2 from state 0 to state /.

7 Discussions

In part I of this paper, we have formulated the motion planning problem for dexterous ma

nipulation. By decomposing dexterous manipulation into four basic manipulation modes

and introducing the hand map, we have shown that motion can be planned in the configu

ration space of the fingers.

In deriving the free space for motion planning, we have encountered two types of

constraints: A spatial type of constraints, which is defined on the configuration variables of

the fingers ( Section 3), and the other is a dynamic type of constraints, which is formulated

in terms of the finger trajectories. We showed that for dynamic constraints, solving a set

of differential/algebraic equations is needed to obtain the free space Q.

Finally, the free space that satisfies both the spatial constraints and the dynamic

constraints is the intersection:

Q9()Q CSEk(3).

Solution curves that lie in Qaf]Q a^d connect an initial grasp to a final grasp will be
constructed in part II of this paper.
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Appendix A: Geometries of a Surface

To have the paper relatively more self-contained, we provide here the definitions of

curvature form, torsion form and metric discussed in Section 2. These notions are geometric

invariants of a surface. For more detailed treatment on this subject, see [11] and the
references therein.

Consider a surface 5. Let (<f>, U) be the coordinate chart for 5. We assume that

(<f>, U) is orthogonal (and right-handed) in the sense that #u(u) •^„(u) = 0 for all u 6 U.

The contact frame at a point u GU is defined to be the coordinate frame with origin at

<fr(u) and coordinate axes

x(u) = 0«(u)/||0u(u)||, y(u) = ^(u)/||^(u)||, z(u) = x(u) x y(u).

At the point s = <£(u), the curvature form K(s) is defined as the 2x2 matrix

JT(.) = W«), j(«)],[K(«)/||*,(«)||,«.(u)/|*,(n)||],

the torsion form at s is the 1x2 matrix

T(s) = y(u)'[x„(u)/||^(u)||)x),(u)/||^(u)||],

and the metric M(s) is the 2x2 diagonal matrix

M(s) = diag(||^(u)||,||^(u)||).

Example ( from [11]). Consider the sphere 5 of radius R. The following is a coordinate

chart for 5.

U = {(u, v)\ - tt/2 < u < 7T/2, -7T < v < it}

and the map

<l>: U —• 3R3 : («, v) \—• (—22 cos ucos v,Rsin u, Rcos usin u).

The coordinates u and v are known as the latitude and longitude, respectively. The coor

dinate vectors of the contact frame are given by

x(u) =
— sin u cos v

sin u sin v

cosu

, y(«) =

smv

— cosv

0

, z(u) =
COS U COS V

— cos u sin v

sinu

The curvature form, torsion form and metric are

K =
1/R 0

0 1/R ,T = [0 -tanu/#],Af =
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Appendix B. Grasp Conditions As Constraints on the Finger Configuration

Space

In this appenddix, we show how the grasp conditions of Section 3 can be transformed

into constraints on the configuration space of the fingers: SEk(3).

By assumption (A2), the points of contact, p , will be uniquely determined given

configurations of the object and the fingers: (g, ,g0,P) GSEk(3) x SEQ{3). On the other

hand, the object configuration is related to that of the fingers by the hand map. This

enables us to write G(pJ=G(po(g/p, JT(g/p))) = G(g/p).
Since A* is a convex cone, we have

Lemma 1 G(K) = 3ft6 if and only if G(K) does not have a supporting hyperplane.

The proof is a direct consequence of the Separation Theorem in convex analysis. A sup

porting hyperplane has a unique normal through the origin, and the inner product of the

normal with the set is negative. This gives

Proposition 2 G(K) = 3ft6 if and only if

min max max (y.GiXj) > 0 (49)

(49) defines an inequality with g/p as parameters. Thus, this directly transforms into a
constraint equation on the configuration variables of the fingers.
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Notations

3ftn n-dimensional Euclidean space.
k Total number of fingers in a hand manipulation system.
SO(3) The special rotational group of 3ft3.
SE(3) ( 3ft3 x 50(3)) The Euclidean group of ft3
SEi(3) A copy of SE(3), designated to represent the configuration space of finger i.
SE0(3) A copy of SE(3), designated to represent the configuration space of the object.
SEk(3) = SEi(3) x ... x SEk(3), configuration space of the fingers.
AT The set of natural numbers.
k ={1,...*}.
Cri Reference coordinate frame fixed to the last link of finger i, i 6 k.
C0 Reference coordinate frame fixed to the object.
Cp Inertia reference coordinate frame at the hand palm.
G The grip Jacobian.
H The hand map.
Coi (i Gk) contact point of the object with finger i, relative to CQ.
cfi (i € k) contact points of finger i, relative to Cr,-.
Poi (= (v?o)~1(c0«) Coordinates of the contact point c^.
Pfi (— ((Pii)~1(cfi) Coordinates of the contact point c/,\
0,- Contact angle of i - th contact.
c0 =(4i,...4k)'e»s*.
c, -(^....^yea*
p0 = (A,..A)' e »2fc.
Pf =&„,..*%)< e*2k.

gri,P (G 5JE?,(3)) Configuration variable of finger i relative to Cp.
9o,P (€ 5E0(3)) Configuration variable of the object relative to Cp.
S/fP = (^Ji,p» •—^ik,p)'» configuration variable.
A\i? The complement of set B in set A.
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