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Abstract

In the study of multifingered robot hands, the process of manipulating an object from
one grasp configuration to another is called dexterous manipulation. A unique feature
of dexterous manipulation is that the object can be held stably by the hand through
the course of manipulation. Motion planning for dexterous manipulation amounts to
generating a sequence of trajectories of the fingers and possibly of the object so that
a final grasp configuration can be reached from an initial grasp configuration. In part
I of this paper, we formulate the motion planning problem for dexterous manipulation
and in the forthcoming part II we will construct solutions based on this formulation.
First, we show that the configuration space of the fingers is the space that we should
plan the motion. For this we decompose dexterous manipulation into the following
four basic manipulation modes: (i) coordinated manipulation; (ii) rolling motion; (iii)
sliding motion and (iv) finger relocation. Then, we develop motion constraints for
each of the manipulation modes, and show that for finger motions that satisfy these
constraints these exists a well defined map, called the hand map, which maps the
finger motion onto the object motion. It is precisely the hand map that enables us to
determine completely the state of the hand manipulation system and plan motions in
the configuration space of the fingers only. We also classify other types of constraints
such as finger kinematics constraints and constraints for collision avoidance. Special
to this paper is the incorporation of dynamic constraints into motion planning. Also,
the hand map has extreme importance of its own: it gives an intrinsic characterization
of the workspace of a multifingered robot hand. This definition of hand workspace
depends neither on the initial grasp configuration nor on the manipulation modes. It is
an invariant associated with the kinematic structure of the hand and the object. Thus,
it provides a criterion for evaluating designs of multifingered robot hands.

*Research partially sponsored by the Defense Advanced Research Projects Agency (DoD), monitored by
Space and Naval Warfare Systems Command under Contract N00039-88-C-0292.



1 Introduction

A fascinating new area of robotics research has been the use of multifingered robot hands
for dexterous manipulation. The versatility and dexterity proved by human hands have
lured many researchers into constructing computer-controlled multifingered hands to per-
form functions similar to that of a human. Undoubtedly, a multifingered robot hand can
accomplish a much larger class of tasks than a simple parallel-jaw gripper. For example,
consider a scribing task. The pencil can be picked up in a stable grasp configuration, and
then be manipulated within the hand to a final grasp configuration, which is usually a
better grasp for the task than the initial grasp ([9]). The ability to adjust grasp configura-
tions without dropping the object is the key feature associated with a multifingered robot
hand, and this feature is absent from a simple parallel-jaw gripper. Moreover, for almost
all sophisticated tasks the optimal grasp configuration can not be obtained from the initial
grasp with accessibility constraints. The procedure for adjusting grasps without the risk of
dropping the object has become indispensable for accomplishing a sophisticated task, and is
called derterous manipulation by a multifingered robot hand.

Over the last decade, there have been a great deal of works in building the basic
building blocks for this problem ([3], [4], [7], [5], [10], [11], [12], [15]). For example, Sal-
isbury ([12]) and Cutkosky ([4]) have formulated the contact modeling problem between
robot fingers and objects; Kerr ([7]) studied hand kinematics; Montana ([11]) developed
the kinematics of contact and Fearing ([5]) designed tactile sensors for robot fingers. Re-
cently, Li et al ([10]) proposed a coordinated control algorithm for object manipulation,
Cole et al ([3]) showed that this algorithm could be combined with the work of [11] and
(7] to give a coordinated control algorithm for pure rolling constraints. Trinkle ([15)) also
looked at the problem of sliding fingers across the object while maintaining the object in
the hand. Among these control related problems ([3], [10], [11] [15]), people have assumed
that trajectories of the object or the fingers are given, and the control algorithms generate
the appropriate torque commands to realize the desired trajectories.

If we define phase (I) of dexterous manipulation to be the autonomous generation of
finger/object trajectories that lead from the initial to the final grasp configurations, and phase
(II) to be the development of appropriate control laws for the fingers to realize the desired

trajectories, then, in our view phase (II) of dexterous manipulation has been accomplished



through the combined effort of ([3], [10], [7], [11], [15]), and phase (I) is still unknown. It is
the objective of this two part paper to complete phase (I) of dexterous manipulation.

Our strategy for solving this problem consists of the following: First, we formulate
the problem into a "generalized” robot motion planning problem. This amounts to (i)
identifying the appropriate configuration space and (ii) classifying motion constraints on the
configuration space. Then, we solve the generalized motion planning problem by extending
and applying known results from robot motion planning ([1], [8], [13]). We feel that the
work of Canny ([1]) most closely matches our problem.

We summarize here briefly what robot motion planning, one of the most studied
problems in robotics, can provide us: Given an initial and a final configurations in the
configuration space of a manipulator, construct a trajectory that connects the two config-
urations. The trajectory must have the property that the manipulator along it is collision
free with the obstacles in the environment. Canny’s solution to this problem is as follows:
First, a coordinatization of the configuration space is chosen, and the set of collision free
configurations is defined in terms of the coordinate variables, which constitutes a semi-
algebraic set Q. Second, Q is stratified into manifolds of lower dimensions. Third, using
tools from algebraic topology, a one dimensional curve in Q@ that connects the initial to the
final configurations is constructed, along with some complexity bounds. Thus, when the
manipulator follows this one dimensional curve from the initial configuration to the final
configuration, it is guaranteed to be collision free with the environment obstacles.

To put the current problem into a robot motion planning problem, the first thing is
to identify the appropriate configuration space where motion can be planned. For a hand
manipulation system, however, we have at least the following candidates (see Table 1 for the
notation): (1) The configuration space of the object, SE,(3); (2) the configuration space of
the k-fingers, SE¥(3); (3) the product space SE¥(3) x SE,(3); and (4) the space of contact
points together with one of the above listed spaces.

We argue that the appropriate space is the configuration space of the fingers. For
this, let us assume that both the object and the finger are smooth and convex, and at
least one of them is strictly convex. Thus, given configurations of the object and the finger
where they are in contact, the points of contact wil be uniquely determined. This eliminates
the space of (4) from the candidate list. Also, the space SEy(3) is clearly not adequate for

completely specifying motion of the system, this rules (1) out. For the remaining two spaces,



we see that the space of (3) is 6 dimensions larger than the space of (2). Furthermore, motion
of the object is not directly controllable. Thus, defining trajectories for the object in S E,(3)
is meaningless unless certain constraints can be satisfied ( [10]). This eliminates (3) as well.
But, if the configuration space of the fingers, S E¥(3), is where we should plan the motion,
it has to have the following property: under appropriate constraints on S E¥(3), the state of
the hand manipulation system should be well defined for a given configuration of the fingers,
%, € SE*(3). By the earlier assumption that both the object. and the fingers are convex,
the above is true if the configuration of the object is related to that of the fingers.

We will decompose dexterous manipulation into the following manipulation modes:
(a) Coordinated manipulation; (b) Rolling motion; (c) Sliding motion and (d) Finger reloca-
tion. For each of the manipulation modes appropriate constraints on the finger trajectories
will be imposed. We then show that, for finger trajectories which satisfy these constraints
the trajectory of the object is well defined and is related to that of the fingers’ by a map,
called the hand map "H” (Section 5). Thus, if Q denote the set of admissible finger trajec-
tories, then H(Q) C SE,(3) is the corresponding set of object trajectory. Let (5‘;,p,g2,, )
(gf'p,gﬁ )€ @ X H(Q) C SE¥(3) x SE,(3) be the initial and the final grasp configurations,
respectively. Then, if a trajectory ¥(¢) € Q,t € [0,tf], with the property that v(0) = 5‘},";
7(ty) = 5;", and H(7(0)) = g9,; H(v(tf)) = g, can be constructed, the problem of
dexterous manipulation is completely solved. This is the theme of this two part paper.

An outline of part I is as follows: In Section 2 we use the building blocks developed in
( [7], [10], [11]) to formulate the kinematics of a hand manipulation system. In Section 3 we
classify the generic types of motion constraints. These include finger kinematics constraints
and constraints for collision avoidance. In Section 4, we define constraints for each of the
manipulation modes. These constraints differ from those of Section 3 in the sense that they
are dynamic. In Section 5, we define the hand map for each of the manipulation modes. In
Section 6, we give a non-trivial example to illustrate the preceding discussions. Finally, in

Section 7 we conclude the paper with several important remarks.

2 Kinematics of a Multifingered Robot Hand

In this section, we study the kinematics of a multifingered robot hand system.
Consider the hand manipulation system shown in Figure 1. To describe motion of

the system, appropriate coordinate frames have been attached to the respective bodies. For



Figure 1: A hand manipulation system

any two coordinate frames C;, C;, where i, j are arbitrary subscripts, let gi,j = (rij, Rij) €
SE(3) denote the translation and rotation of C; relative to C;. Then, the translational
velocity of C; relative to C; is given by v;; = Rﬁﬁ; j» and the rotational velocity by
w;; = STY(RE,R;;), where S : R3 — 30(3) is the operator that identifies ®3 with the
space of 3 X 3 skew symmetric matrices.

Without loss of generality, a finger will be represented by its last link, and its
configuration space will be denoted by SE;(3),i = 1,...k. Also, we let SE,(3) denote the
configuration space of the object being manipulated.

We make the following assumptions: (A1) The boundaries of the object and of the
fingers are smooth 2-dimensional surfaces in R3; and (A2) both the object and the finger are
convez and at least one of them is strictly convez. As a consequence of these assurﬁptions,
we have (a) whenever two bodies are in contact the contact points will be unique; and
(b), if S, C R3 represent the boundary of the object, then S, can be expressed as the
union of m, € N open sets {sg'}jemo, where each SJ is the image of a diffeomorphism
¢} : U C ®2 — §}. Furthermore, the partial derivatives (¢7),(u), (¢3),(u) will be linearly
independent for all u = (u,v) € U. The pair (¢}, U) is called a coordinate chart of S,, and
the coordinates of a point s € 57 is given by (u,v) = (¢)~1(s). The set {Sg’},-ema is called
the atlas of S,. Similarly, we can define coordinate charts (¢;f yU)jem,,m; € N and atlas
(5%)jem, for Si,i € k.

Following the notation of [11] ( See also appendix A), we denote by K,(s) € R2X2

the curvature form, To(s) € R!*? the torsion form, and M,(s) € R2*? the metric of the



object at s € S,. These notions are invariant of the surface and can be computed using the
coordinate chart {¢}, U}j¢m,. Similar definitions hold for S;,i € k.

To describe the kinematics of contact between finger ¢ and the object, we let c,(2) €
So C R and c4i(t) € S; € R® be the positions at time ¢ of the point of contact relative to
Co and Cy;. We will restrict our attention to an interval I such that ¢,;(t), csi(t) belong to
a single coordinate chart of S, and S;, respectively. A set of coordinate frames is defined
as follows: The local contact frame C,; of the object has origin at the point of contact
(i.e., Toi,0 = €0i) and 2-axis the outward pointing normal to S,. C,; is fixed relative to C,.
Similarly, the local frame Cy; of finger 7 has origin at the point of contact (i.e.y Tpipi = cfi)
and z-axis the outward pointing normal to S;. Cy; is fixed relative to Cy;. The local frames
Coi, Cy; share a common origin and have their z—, y -axes in the common tangent plane.
We define the contact angle 9; by the angle between the z-axes of C,; and Cyi. We choose
the sign of 9; so that a rotation of C,; through —; around its z-axis aligns the z-axes.

We let (v3,v},v;) and (w,w),w}).denote the translational and the rotational ve-
locity of Coi relative to Cy;. These are in fact the velocities of the object relative to the
finger expressed in their respective local frames. Let (vip, Woip) be the velocity of the
object (relative to Cp) and (vsip, wyip) the velocity of finger i, then the following relation
exists ([10]).

- ‘v; -
Ay 0 K
vo'.’P = 0 R vfl',p vZ_ 1
[w""?] [ 0 A,,,‘Hw;.-,,,]'l' we |’ M
w? .
H
- wz -
where
cosy; —siny; O 0
Ay =| —sing; —cosgy 0 |24 o
0 0 -1 00 -1

(1) simply says that whenever finger i is in contact with the object its velocity is related
to that of the object by an affine transformation, whereas the affine part is given by the
relative velocity terms.

Note that some components of the relative velocity in (1) have to be zero in order

to satisfy certain contact constraints. For example, for (a) fized contact points, we have

% .
v, | =0, and w, = w, = 0; (2
v



(b) coordinated manipulation with rolling constraints, we have

% .
v, | =0, andw; =0; 3)

3
vz

and (c) finger i sliding across the object surface, we have

. wy
v;=0and [ w, | =0. (4)
w;
When (2) or (3) holds, one has from (1) that
Yoip = Ay;Vfip- (5)

On the other hand, since C,; is fixed relative to C,, the velocity of C,; is related to
the velocity of C, by a similarity transformation, given by

vo,-,p _ 'vo,p
[ s ] = Adg;_}o[ o ] (6)

where

R, —S(roio)RY
iy = [ B S| = ).

Similarly, one has for the finger that

Vtip —_ Uri,p |
[ Weip ] - Adgl-'l;ﬂ[ Wri,p ] ™

Using (6) and (7) we can rewrite (5) in the form

¢ VYoo | _ ptp . .- Uri,p
BiAdgo-i}o[ Wop ] = B,‘Tr:,o: . Wi p ]a (8)
where
1 000 00O -
Bi=|010000 and Ty 0 = (A(;b" -0 ]Adg-} -
001000 ! Avi Tor

Summing (8) up for i = 1,...k, yields the well known velocity constraint equation

for a hand system.

Gt[ Yo,p ] = jgf'p’ (g)
wo’p
where
[ Yr1,p ]
Wr1,p
J = Diag{B},...B}} Diag{Trioi, - Trkpa} € R¥¥k, £, = | . | ¢ go*
Urk,p
| Wrkp |




is the vector of finger velocity, and
G= [Adg'll ’"‘Adg'k‘ ] Dia.g{B1,...Bk} € ROx3k

is the grip Jacobian. Notice that G depends on the contact points ¢, = {c,,.-},-e EE ®3* only,
and since poi = (¢3) " (coi), and 2, = {Poi}ick € R we can write G = G(¢,) = G(p,)-
The wrenches exerted upon the object by the fingers can be expressed as

I

[ fo ] =G . , (10)

To
Tk
where 7, € R3 is the torque about the origin of C,, and f, is the linear force; z; is the
component vector of contact wrenches of finger ¢ and is constrained to lie in the friction

cone Kj;, specified by
Ki={z; € R, 23 <0, 2}, + 2}, < pPad,

where u € R, is the static Coulomb friction coefficient.
We let .
K=K 0..9 K; (11)

denote the friction cone of the hand.

Definition 1 (Grasp or Force Closure Condition)! A set of contact points ¢, = {coitick €
R3*k (orp = {pof}ielg € R% ) is said to form a grasp if G = G(c,) satisfies

G(K) = R°. (12)

When (12) is true, then G is onto (or the null space of G* is empty ), and G G* € R6*6
is nonsingular. Consequently, there exists a well defined map from the velocity space of the
fingers to the velocity space of the object. This is given from (9) by

[ ;’f-" ] = Ffsp, where F = (GG*)"'GJ € REXCk, (13)

op | -
Clearly, the entries of the matrix F depend on the contact coordinates of the object and
of the fingers, and the contact angles. We write F = F(p,,p P %) to emphasize this de-

pendence. On the other hand, the contact coordinates and the contact angles evolve as a

!The grasp condition can be transformed into constraint equations on the configuration variables of the
fingers using the hand map of Section 5. See Appendix B.



function of the relative velocity. According to the kinematic equations of contact ([11]), we

have
1 % | - 2 v
Poi = My (Koi+ Kygi)~ I -Kul T (14)
w’, v}
1 e 1| —w} v}
Pri = My Ay(Koi+ Kpi)~ wi | T i) (15)
z y
¥ = w4 ToiMoipoi + TyiMyidyi, (16)
vi = 0, (17)
where

Kyi= Ay Kpidy,
is the curvature form of the finger seen by the object. Note that the curvature forms, the

torsion forms as well as the metric forms have been evaluated at the point of contact, i.e.,
Koi = Koi(Poi), and etc.

3 Classification of Motion Constraints

In this section, we classify the set of basic constraints on finger motions. These include
(i) constraints for collision avoidance and (ii) constraints by the kinematic structures of
the fingers. These constraints will be defined on the configuration space of the fingers:
SE*(3) £ SEy(3) x ... x SEx(3).

We assume that geometries of the fingers/object are known, and they satisfy as-
sumptions (A1) and (A2). Furthermore, parameterizations of the fingers/object are given.

A. Constraints for Collision Avoidance

During the course of manipulation, collisions between links of all k-fingers should be
prevented. Since each finger is represented by its last link, the constraints can be formulated
directly in terms of the finger configuration variables. Consider the hand manipulation
system shown in Figure 1. Let "F;",i € k, stand for finger i. Let d : 3 x R —
R,d%(z,y) = TL, |zi — %:[?, be the Euclidean 2-norm. We define the distance function of
"F;” with "F;”,j # i as follows?

d(Fia -F:1) = min d(grj,pzy gri,py)$ (18)
T €S;,r€m,;

y€ S.'JGIB.

?Strictly speaking, we should take the "min” over z € {the set of R* enclosed by S;} and y € { the set
of #* enclosed by S;}. But, since ” F;” and " F;” are separated to start with, (18) is okay.

9



where

A
Irjp% = RejpT + Trjp

According to Canny ([1], Ch. 2), for given features of finger ¢ and j, d(F;, F;) defines a
function on the configuration variables of finger ¢ and finger j. Without loss of generality,
we will write, that

d(F;, F;) : SE*¥(3) — R. (19)

For computational advantages Canny used quaterion coordinates for the orientation space
SO(3). But, from [14] conversions between quaterion coordinates and orientation matrices

are rather straightforward.
Definition 2 Collision between finger i and finger j can be prevented if and only if
d(F;, F;) > 0, (20)

The subspace of S E*(3) where finger i is collision free with finger j is denoted by d(F;, F;)~1((0, 00))
= {(9r1.p+ ---grk.p) € SE*(3) | d(F;, F;) > 0}, and the constraint subspace for collision avoid-
ance of all k-fingers is the intersection:
ﬂ d(F;, F;)71((0,00)) C SE*(3. (21)
i<j
Remark: It is straightforward, using the kinematic functions of the fingers, to formulate
the constraints for collision avoidance between links of all k-fingers, where each finger has
more than one link.

B. Constraints by Finger Kinematics

The second type of basic constraint is the constraint due to the finger kinematic
structures. Since the last link is connected to the hand palm by n; links the set of reachable
configurations by the finger is a compact submanifold Q; of SE;(3). As was shown in [1],
Qi is a semi-algebraic set, and can be expressed by a set of inequalities in terms of the

configuration variables, gy p:

Qi = {grip € SE;(3): f(grip) 2 0}. (22)

The subspace of S E*(3) where finger kinematic constraints is satisfied is the product:

(@1 X ... X Qi) C SEF(3).

10



Finally, the subspace of SEF (3), where all the constraints discussed in this section

are satisfied is given by

Qs £ {Nicjd(F:, F;)7((0,00)) } (@1 X ... X Qi)} C SEX(3). (23)

4 The Basic Manipulation Modes

By assumptions (A1) alnd (A2), a state of the hand manipulation system is specified by a
point (g i Jop) g (9r1,ps - Grk,ps Go,p) in the space SE*(3) x SE,(3). We let (5‘;,,’,, 90p) €
SE¥(3) x SE,(3) denote the initial grasp configuration, and (gip, 9f,) € SE*(3) x SE,(3)
denote the final grasp configuration. The objective of dexterous manipulation is to reach
from an initial grasp configuration to a final grasp configuration, by commanding the fingers
to follow a prescribed trajectory in SEF(3). Since the object motion is affected only by
motion of the fingers, it is necessary that while the fingers travel in SE*(3) from 9_3,,, to
g;'p, the object will travel in SE,(3) from g2, to g .

We will decompose dexterous manipulation into the following manipulation modes:
(A) Coordinated manipulation; (B) Rolling motion; (C) Sliding motion and (D) Finger
relocation . Also, let [0,%4] be the time interval it takes to reach from the initial state to
the final state. [0,%] is divided into the union of successive sub-intervals, i.e., [0,%] =
Ut tirtisr], 0=to <ty < . < tp = ¢ #» such that at each sub-interval [t;,%;;,] the finger
motion is in one of the manipulation modes.

A. Coordinated Manipulation

Coordinated manipulation by a multifingered robot hand has been studied exten-
sively in [10]. It was shown that the fingers can be controlled to move in a coordinated
fashion so that the object can be manipulated from one configuration to another. We see
that, in addition to satisfying the generic types of constraints discussed in Section 3, the
fingers motion must also guarantee that the points of contact can in fact stay in contact with
the body. We shall formulate exactly the constraints on finger trajectories for coordinated
manipulation mode.

Consider an initial state of the hand manipulation system, given by (g f'p(o), 90,0(0))
€ SE*(3) x SEo(3). Let the initial contact points be ¢, € % and ¢cs € R, respectively,
and assume that ¢, form a grasp.

Let g7,5(t) = (gr1,(2),---grkp(t)) € SE*(3), t € [0,1,], be a set of trajectories of the

11



fingers. Note that the time interval [0,¢;] could represent any of the sub-intervals discussed
previously. From (13), let

v
[ w""’ ] = F(Cor 5> %) €f,ps (24)
o,p
where, with grip = (Tr.',p, Rn',p) €S Ei(3)v
Ur1,p
‘{frp = . ’ v"‘vP = R:'i,pi""‘rp’ a'nd w".'p = _I(R:",pRri,p)-
w"kvp

This is equivalent to say that the relative translational velocity is constrained to be zero.
Now, substitute (24) into the second equation of (1) and use (6) and (7) to get an equation

expressing the relative rotational velocity in terms of &;

]
Wy

'w; = ‘fitb.'Affi.riwri,p + Afi oWop(€rp), i€k (25)
w;
According to the contact equation (17), the contact angle ¢ is related to w’ by

P =wl,ick. (26)

Notice that (24), (25 ) and (26) together constitute a system of differential equations with

algebraic constraints:

([ »,
w:; = F(corc %) €10
,wx'

< z N ) 27
“’; = ‘A'/».'Atfi.riwrim + Af-i,o'"’om(ff,p): i€k, @)
we

\ ¢‘. = wi) 1€k

For a given set of finger trajectories, the relative rotational velocity can be solved
from (27) in terms of the velocity of the fingers. (See [6] for further details on systems of
differential equations with algebraic constraints). On the other hand, the points of contact

(Poi> Pyi) evolve as a function of the relative rotational velocity according to (15), (16):

Poi = MG (Koi + Kﬁ)"l[ —;ou,-,y ],
T

—w!

ﬁf.' = MEIA¢'(Km + Xf,')—l [ wiy ].

We have

12



Definition 3 (Coordinated Manipulation) We say that a set of finger trajectories 9 p(t)

€ SEX(3), t € [0,1,], constitutes a set of admissible trajectories for coordinated manipulation
if the relative rotational velocity (w’, wf,),i € k solved from (27) is identically zero, for all

t € [0,%].

Remarks (1) (wi,w}) = 0 implies that (poi, py:) is constant. This ensures that the con-
tacting fingers will not slip.

(2) Note that wi is not necessary zero in a coordinated manipulation mode. Each
finger is allowed to spin around the contact normal.

(3) If the contact coordinates po; and py; stay constant, then, G also stays constant’
and the grasp condition (12) is satisfied during the course of coordinated manipulation. On
the other hand, J is not constant, as ¥; = w! is not necessary zero.

The set of finger trajectories which satisfies Definition 3 will be denoted by Y
Clearly, we have " C SE¥(3).

B. Rolling Motion

An efficient manipulation mode for effecting motion of both the object and contact
coordinates is rolling. Cole et al ([3]) show that when the initial contact points c, is properly
chosen then the object can be manipulated with pure rolling constraints. We formulate the
constraints on finger trajectories for rolling motion as follows:

Consider an initial state of the hand manipulation system, with initial contact points
¢,(0) (or p_(0)) and ¢4(0) (or p £(0)), respectively. Assume that c,(0) (or p,(0)) forms a
grasp.

Let g f'p(t) € SE*(3), t € [0,1], be a set of finger trajectories and consider the

following system of differential equations with algebraic constraints (i € k):

¢

:1);::, ] = F(I_’o(t)’E f(t)’i) ff.p,

¥

wy
w:y = —Ad’l' Atf‘;"iwr"vp + A(t”"owo,p(ff,p)a
w
flel o . (28)
boi = MG (Koi + Kpi)™t| 7 0¥ |,

x

. _ ~ oy | —w

pri = My Ay (Koi + Kpi)™| 7Y ],
X

{ %i = Wy + Toi Moipoi + TyiMyipyi

13



Here, the first two equations are algebraic, and &;, is considered as an input term. The
initial conditions are given by the initial state of the hand system. Let p,;(¢) and py:(t),7 € k,
be the solutions of (28), and

coi(t) = @hi(Poil?)), t € [0,t1], € k.
be the contact points.

Definition 4 (Rolling Motion) We say that a set of finger trajectories gs,(t) € SE*(3),

t € [0,t1], constitutes a set of admissible trajectories for rolling motion if: (i) wi,i € k,
from (28) is identically zero for allt € [0,1,]; and (ii) the set of contact points ¢ (t) € R3*
forms a grasp for allt € [0,1,].

Remark (1) By the first equation of (28) sliding is not possible, and by the grasp condition
(%) the fingers are able to ezert any desired wrenches upon the object through the course of
rolling motion.

The set of finger trajectories which satisfies Definition 4 will be denoted by S5 C
SEk(3). '
C. Sliding Motion

When a finger or a group of m fingers ( 1 < m < k) are commanded to slide along
the object surface, the remaining (non-sliding) fingers, together with contact wrenches from
the sliding fingers constrained to the boundaries of the friction cones, should be able to
held the object in the same configuration. The control algorithm presented in [10] can be
modified for this purpose. Constraint formulation for sliding motion is given here.

Assume that gravity is the only external force to be balanced during the course
of sliding. Let §, denote the gravity vector relative to C,, and Ad;;}, (g;, 0)! is then the
equivalent wrench on the object relative to C,.

Let 1 < m < k be the number of fingers to be slid simultaneously. Let 7, =
{(ni.)i=P, i, € k} define a permutation of m fingers to be slid. For example, if 13 =
{1,3,4}, then finger 1, 3 and 4 will be slid simultaneously. Note that for a given m, there

are :z = (k_-%f'_"? different ways that a total number of m fingers can possibly slide.

Thus, we have to perform (2* — 1) tests for all possible sliding motions.
Consider an initial state of the hand manipulation system given by (g y p(O), 90,p(0)) €
SE*(3) x SEo(3), and assume that the corresponding contact points c,(0) forms a grasp.
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Let g;,(t) € SE*(3), t € [0,11], be a set of trajectories of the fingers such that

ri,p(t) = grip(0), Vi € K\mpm.

In other words, the trajectories of the non-sliding fingers stay constant. Let
A
G(E\mm = ). Gi(K:) (29)
iel_(\rm
denote the set of contact wrenches from the nonsliding fingers, and
E Gi(9K;)
"eﬂ'm
denote the set of contact wrenches from the sliding fingers, where K; stands for the bound-
ary of K;. Then, the object can be held stationary under gravity force while simultaneously
sliding fingers in 7, if
Ad;:';[ g(;’ ] € G(K)\mm + Z Gi(9K;). (30)
JETM
With the object configuration stays constant, the velocity of the sliding fingers
relative to the object is simply the velocity of the fingers, i.e.,

- 1 -

y .
vz - Ay, .0 Vrip Vi
w [ 0 Ay, ]Adaﬁfre[ Wrip ]’ ? € Mm- (31)

s
L W,

If the relative rotational velocity is zero, the contact coordinates for the sliding fingers evolve

according to

X [
Poi = — M3  (Koi + Kfs‘)_lei[ :f ], Vi€ T,

v

) _ . i . 32

Pri= MﬁlAvﬁ.'(Koi + Kfi)-lKoo‘[ Zf ]a Vi € Tm, (32)
v

'g&,- = Toi MoiPoi + TyiMyipgi, Vi€ .
(31) and (32) together constitute a system of differential equations with algebraic

constraints, and is denoted by (*).

Definition 5 (Sliding Motion) We say that a set of finger trajectories pr(t) € SE(3),

t € [0,t,], constitutes a set of admissible trajectories for sliding motion ift (i) (wi, w{,,wi)
and v} defined by (*) are identically zero for allt € [0,t1] and i € nr; (4) (30) is satisfied for
allt € [0,1], and (iii) the set of contact points c,(t) € R%* forms a grasp for allt € [0, ).
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Remark (1) Condition (i) implies that pure sliding for all the fingers in m,,, (i) implies
that the object can be held in a stationary configuration under gravity force; and (iii) implies
that the grasp condition will be satisfied whenever sliding motion terminates.

The set of finger trajectories which satisfies Definition 5 will be denoted by Y t™.
Furthermore, we denote by g = Umel_{ 3.5™ the set of all possible sliding trajectories.
D. Finger Relocation

Finally, we conclude this section by defining constraints for finger relocation. In a
finger relocation mode, a group of m fingers (1 < m < k) are allowed to break contacts with
the object and they will be positioned at other locations, provided that the set of contact
points by the remaining fingers still forms a grasp.

Again, let the initial state of the hand manipulation system be (g f’p(o),go,p(o))
€ SE¥(3) x SE,(3) and Let 7, be defined as before.

Definition 8 (Finger Relocation) We say that a set of finger trajectories g f’p(t) € SE*(3),
t € [0,t1], such that g,ip(t) = grip(0),Vi € K\7; constitutes a set of admissible trajectories
for finger relocation if

G(K)\mm = RE. (33)

In other words, the set of contact points by the remaining fingers still forms a grasp.

The set of finger trajectories that satisfies Definition 6 will be denoted by 37", and
welet Tp = U,k Z5™

5 The Hand Map

In this section, we define the hand map for the set of admissible finger trajectories. Without

the hand map, it would not be possible to understand dexterous manipulation. The hand

map, H, relates the set of admissible finger trajectories to the corresponding object trajec-

tory. For example, given a set of finger motions that satisfies the requirement of coordinated

manipulation, the hand map tells where the object will be through the manipulation mode.
Let

Q=YcUTRUTsUTF C SE¥3).
Then,
H:Q c SE¥(3) — SE,(3) (34)
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is defined as follows:
1) A IE :

Let g f,p(t) € Y ¢t € [0,t1]. By Definition 4, poi(t) = psi(t) = 0,Vi € k. Thus,
Coi = @3(Poi) and cg; = q:f (pyi) are constant. It is clear from Figure 1 that the coordinates
of the contact point relative to the hand fixed frame, C, is the same through either the
object or the finger. This is mathematically equivalent to

Qo,p(t)cd = g"i,}’(t)cﬁ’ Vte [0’ tllvi € k. (35)

Since ¢, € R3* forms a grasp, the object configuration variable go,p(t) can be solved uniquely
from the set of k equations given in (35). The reader should convince herself that there
are enough independent equations in (35) because the set of contact points forms a grasp.

Denoting the solution by g<,(¢), ¢ € [0,#1]), and we define H s>, by

H(g, (1)) = 65,(t), Vasalt) € Sont € [0, 1) (36)

Remark (1). An alternative procedure for solving gop(t) from g fp(t) is as follows: By

definition, we can write in the homogeneous representation that

G (0)dp(t) = [ S(teg) vap ] i

Substituting (17) into the above equation and rearranging the terms, yields a differential
equation for g, p(t): '

Gop(t) = .‘Jo.pF (ff,pv Q(t)), (37)
where F' has been derived from F. Notice that the only variables of F' are €1 and P(t). On
the other hand, the differential equation governing the contact angles is given from (16) by

"i’i(t) = wi@a §1p) 1EE (38)

(37) and (38) form a system of coupled differential equations and it can be solved using
Newton’s algorithm to give g, p(2).
—(2) HIER: . .

Let 5},,,(t) € Y st € [0,2]. By Definition 5, (v, vy,v;) = 0, and w} = 0,Vi € k.
Moreover, since p,(t), p f (t) € R?* | and YE R* can be solved from the system of differential
equations given in (28)) and c,(t) forms a grasp for all ¢ € [0,%;], the following differential
equation of go,p(t) is well defined for all ¢ € [0,t,] (see the previous remark).

9o,0(t) = gop(t)F (p,(3),p f(t)v.'ﬂ(t)a €1.0) (39)
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SE,(3)

@f.pr @0
(g[o,pa gao,p)
H(gs,p(1))
» SE;(3)
7 gf-l’
qfo-P gf.p(t) €Q

SE(3)
Figure 2: Action of the hand map.
Let the solution to (39 ) be denoted by g&,(t) € SE,(3),t € [0,%,], and we define
B(g, (1)) = o5,(1), V4 € [0,t1] g, (1) € T (40)

(3) Hly
It is clear from the context of sliding motion that the object configuration is constant,

so that we have

H(g1,0()) = 90,0(0), Vt € [0, t1),g,,(t) € X (41)

(4) Hly :
The Hand map for finger relocation mode is the same as for the sliding mode, we

set
H(g, (1) = 97,(0), Vt€[0,t1],g, (1) € T, (42)

This completes the definition of the hand map.

One can visualize the hand map by drawing the finger configuration space in the
plane and the object configuration space in the vertical axis. H is then the height function
associated with each admissible finger trajectory in Q. Let (g ,40,) € SE*(3) x SE,(3)
be the initial state of the hand manipulation system, and (gip, 9f,) the final state. The
objective of motion planning is to generate a sequence of finger trajectories, g f,p(t) €Q,te
USPlti-1,%i), to < t1 < .oti < tig1 < ... < tn = t7, such that g (0 =8, 8, (tn) = 5;4,,
along with H(g, (0)) = g3, and H(g ;p(tn)) = 04 p-(See Figure 2.)
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Figure 3: A hand manipulation system in 2

Note that the hand workspace relative to an object can be defined as ” the set of of
reachable configurations of the object while holding the object stably in the hand’3. ’I‘hgn,

from the preceeding discussions we have

Proposition 1 (Hand workspace) Let V(g f,gg,p) C SE,(3) be the set of reachable con-
figurations of the object, starting from the initial grasp configuration (2(} p,gﬂ,,,), Then,
V(g1 900) = H(Q).

In fact, this notion of hand workspace does not depend on the initial grasp. Let
(gg’,’p,gg,p) and (g} ,95,) be two initial grasps, such that (85, 9.0) € V(g} ,90,), then it
is not difficulty to see that V(g},p,g},’p) = V(gg’p,ggip).

In other words, V(g‘}P, 93,) gives the connected component of the hand workspace.

The computation of the hand workspace is a hope of current research.

6 An Important Example in %2

In this section, we present an example to illustrate the preceding discussions. We also
provide a solution to the motion planning problem.

Consider the two-fingered planar manipulation system with a unit circle, shown in
Figure 3. Each of the cylindrical fingers has 2 unit length, ;11- unit width, and its boundary

can be represented as the union of four pieces: S; = U;=1 Sf =12

3Such a definition is suggested to us by A.K. Pradeep
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Figure 4: From state 0 to state f by dexterous manipulation

The initial and final grasp configurations are labeled with state 0 and state f(Figure
4). Gravity force is along the y-direction of Cp. For simplicity we will assume that the fingers
have no kinematic constraint.

The configuration space of the object/fingers is given by SE,(2)/SE;(2),i = 1,2,
which consists of translations in ®2 and rotations around the normal that points outward.

The homogeneous representation of the configuration variables are

cosf, -—sinb, =z, ‘ cosf; —sinb; =x;
gop = | sinb, cosb, 1y, | and grip=| sinf; cosb; y |,i=1,2
0 0 1 ’ 0 0 1

Here, (z,,Y,) are coordinates of the origin of C, relative to Cy, and 6, is the angle between
the z—axis of C, and the z—axis of C,, measured counter-clock wise. The ob ject/fingers

velocities are related to the derivatives of the configuration variables by

Yo cos 8, — £o8inb, |, (43)

Zoc08 8, + Y,5in 6,
b,

Wo,p

) Z; cosb; + y; sin 6;
[ Oriip ] = | $icosb; — &;sinb; |, i=1,2. (44)
0;
The initial and final states of the system are represented as points in the space
(85,51 900) € SE*(2) X SEo(2), where g = (9r1,0: 9r2,) € SE(2).

The goal is to plan a sequence of finger motions so that state f can be reached from

Wrip

state 0. For this, we need to formulate the system constraints and construct the free space

discussed in the preceding sections.

1. Constraints for Collision Avoidance.
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For a given configuration, g fp € SE?(2), of the fingers, g,.'ll,pgrz,p represents the
relative configuration of finger 2 to finger 1.
The distance function (18) is expressed in terms of g;;-‘lpg..g,,:

d(Fl,Fg) = min "-'0 - g.-'ll,pgrz.py"
z€S,L,rem

y€Si,lem,

where m; = {1,2,3,4},i = 1,2. Substituting the coordinates of S!,I € m;, into the above
equation gives the constraint equation on SE?(2) for collision avoidance.

2. Grasp Condition.

We parameterize the boundary S, of the object by the angle with respect to the z—
axis of C,. Thus, the coordinate of contact point c,;,i = 1,2, is the angle 8,; of c,; relative
to the z—axis of C,. Note that 0 < 6,; < 27. The configurations of the two contact frames

of the object are
sinf,; cosf, cosb,;
Goio = | coslo sinb, sinb, |, i=1,2.
0 0 1

and the grip Jacobian G is
‘ sinf,; cosf, sinf,; cosb,
G=| —cosb,; sinf, —cosb,y sinb,;
-1 0 -1 0
One can easily verify that (co1, co2) forms a grasp if and only if the line joining ¢, and co2
lies in the friction cone (see Figure 3). The equivalent mathematical statement is

|7r - Iaol —002| | < 2tan~! Ky (45)

where u is the coefficient of friction, and is assumed to be 1 here.
(45) implies that
|7 = 1051 — 852) | < 2tan~t p < 2.%
which simplifies to
0 < |001 — b02| < 2.

Since the determinant of GG! is
det(GG*) = 4(1 — cos (0,1 — 002)),
the grasp condition implies that G has full rank.
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For a given state (gf,p, gop) € SE?(2) X SE,(2) of the system, 9ripJo,p TEDTESEDLS
the configuration of the object relative to finger i. When the object is in contact with finger

1, the point of contact c,; is unique and can be expressed as a function of g,‘ifpgo,,:

Cos = c(”'(gr-t',lpgorP)
Derivation of this function is rather straightforward (using the hand map constructed be-
low).

3. Coordinated Manipulation.

Because po; = py; = 0, the fingers and the object become a single (rigid ) connected
component for coordinated manipulation. Let [0,¢;] be the time interval of interest, and
gr2,r1(0) be the configuration of C,; relative to C;; at time 0. Then, for coordinated manip-
ulation, the trajectory of finger 1 is related to that of finger 2 by a constant transformation,
ie.,

9r2.0(t) = gr1p(t)gr2,r1(0), Vi € [0,].

and the set of admissible finger trajectories can be expressed as

Xe= {gf,,(t) €S E2(2), |gr2,p(2) = 9r1,0(t)gr2,,1(0)}

On the other hand, trajectories of the object is also related to that of finger 1 by a constant

transformation,

9o,p(t) = 9r1,p(t)go,r1(0), V2 € [0,2,].
where g,,1(0) is the configuration of the object relative to finger 1 at ¢ = 0. This defines
the hand map by

H(g, (t)) = 9r1,0(t)0,1(0), Vt € [0, 11], 5, (t) € 3.

4, Rolling Motion.

Let [0,2,] be the time interval of interest for rolling motion. As shown in Figure 3,
let ypi,i = 1,2, be the y—coordinate of the contact point cy; relative to C,;. For rolling
motion with rolling velocity 0,7 = 1,2, Ypi can be expressed as

¥p1(2) = ¥p1(0) — (801 (2) — 601(0)),
¥p2(%) = yp2(0) + (fo2(2) - 652(0)).

Then, the configurations of the contact frames, Cyi,t = 1,2, relative to C,; are

0o 1 3} 0 -1 -}
9ia,a=| -1 0 yp [,andgspre=|1 0 yp
0 0 1 0 0 1
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Thus, the J matrix of (9) is

0 -1 -3 0 0 0

2 1 0 -y 0 0 O A

=10 0 o 0o 1 =} = J(01(2), 52(2))-
0 0 0 -10 yp

Combining (9) with (43) and (44), yields a system of differential/algebraic equations

that describe constraints for rolling motion:

( £, 088, + Y, 8ind, Z; cos 0; + ¥; sin 6;
Gt| Yocosb, — Zo8inb, | =J| ficosb; — &;sinb; |,
00 é:’
< . 46
701 = Qo - 9_17 ( )
002 = 90 - 02)
L |7 — 1061 = 02| | < 2tan~! p.

(46) can be solved to give the set 3 C SE?(2) of admissible finger trajectories, and the
resulting object trajectories given by the first equation of (46) defines the hand map for
rolling motion.

A set of finger trajectories that satisfies (46) is that each finger rolls with equal
velocity (see also [11]). Thus, if the fingers started in antipodal positions, they will remain
antipodal.

5. Sliding Motion.

In this example, sliding motion implies that the fingers must move in the tangent
direction of the unit circle. Thus, p,; = 0,i = 1,2, and if the two fingers started in positions
parallel with each other, thet will remain parallel with each other during sliding mode.

Gravity force relative to Cy is §p = 908 , and it can be expressed relative to C,,
and is given by Ad; - [ g(;, J, where
o,p
cosd, —siné, 0
Ad_, = sin d, cosf, 0

go'p zo Sin 90 - yo cos 00 220 cos oo + yo Sin 00 1

Let [0,2,] be the time interval of interest and (g f,p(O), go,p(0)) the initial state for
sliding. Since the number k of fingers is 2, we have to exam 22 — 1 = 3 possible cases for
sliding. These include: m; = {1}, finger 1 slides; m; = {2}, finger 2 slides and =, = {1,2},
both fingers slide. The other constraint for sliding motion is

Ad;;;[ %’ ] € G(K)\mm + Y Gi(3K;). (47)
JETm
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A simple calculation shows that, in order to satisfy (47), the set of finger trajectories for
Tm = {1,2} is empty, i.e., >3 = {0}, and for the other cases we have:
() m1 = {1}: Let gop(co1 — co2) be the vector ( relative to Cp) joining co2 to ¢o1.

Then, slding finger 1 is possible if the vector points upward relative to Cp, i.e.,

o,p(Co1 — €o2) - [ (1) l > 0. (48)

Moreover, the finger must slide upward, i.e.,

. 0
T"',p- [ 1]20.

Note that if finger 1 is below finger 2, i.e., (48) fails to hold, then sliding finger 1 is not
possible.

(b) my = {2}: We simply interchange the subscript 1 with 2, and obtain similar
constraints for sliding finger 2.
Finger Relocation.

It is clear that 3 = 0.

A sequence of finger motions that brings the system from state 0 to state f and
satisfies the constraints of (1) through (6) is shown in Figure 5, where each picture shows
the system at the end of a manipulation mode. Here, we have divided the time interval
into 7 successive subintervals: 0 = #g < #; < ... < 7 = ¢ #- The manipulation mode corre-
sponds to each subinterval is: [to,%;]: coordinated manipulation; [¢;,1,]: sliding finger 2 up
; [t2, %3] : rolling motion ( to change relative orientation); [t3,#4]: sliding finger 2 up; [t4,5):
coordinated manipulation; [ts,%s]: sliding finger 1 up; [te,?7]): coordinated manipulation.
Note that the initial state of a manipulation mode is always the final state of the preceding
mode. |

It is interesting to note how the relative configurations of the object to finger 2
change as the system goes from state 0 to state f. This is shown in Figure 6, where 0 is
the orientation angle, and y is the y—coordinate of the origin of C, relative to C,,. Sliding
motion changes only the y coordinate, while rolling motion changes both the y and the 8
coordinates. In order to reach state f from state 0, the fingers have to follow these lines of

motion.
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Figure 5: A solution to the dexterous manipulation problem.
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— — — line of rolling motion

Figure 6: Relative configurations of the object to finger 2 from state 0 to state f.

7 Discussions

In part I of this paper, we have formulated the motion planning problem for dexterous ma-
nipulation. By decomposing dexterous manipulation into four basic manipulation modes
and introducing the hand map, we have shown that motion can be planned in the configu-
ration space of the fingers.

In deriving the free space for motion planning, we have encountered two types of
constraints: A spatial type of constraints, which is defined on the configuration variables of
the fingers ( Section 3), and the other is a dynamic type of constraints, which is formulated
in terms of the finger trajectories. We showed that for dynamic constraints, solving a set
of differential /algebraic equations is needed to obtain the free space Q.

Finally, the free space that satisfies both the spatial constraints and the dynamic

constraints is the intersection:
Q.()Q C SE¥(3).

Solution curves that lie in @, Q and connect an initial grasp to a final grasp will be
constructed in part II of this paper.
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Appendix A: Geometries of a Surface

To have the paper relatively more self-contained, we provide here the definitions of
curvature form, torsion form and metric discussed in Section 2. These notions are geometric
invariants of a surface. For more detailed treatment on this subject, see [11] and the
references therein.

Consider a surface S. Let (¢,U) be the coordinate chart for S. We assume that
(#,U) is orthogonal (and right-handed) in the sense that ¢y (u) - ¢,(u) = 0 for all u € U.
The contact frame at a point u € U is defined to be the coordinate frame with origin at

#(u) and coordinate axes

x(u) = gu(u)/ligu()ll, ¥(u) = $u(u)/lidu(w)ll, z(u) = x(u) x y(u).

At the point s = ¢(u), the curvature form K(s) is defined as the 2 x 2 matrix

K(s) = pe(u), y(u)['[zu(u)/ligu(w)ll, 2 (w)/ | go(w)l;

the torsion form at s is the 1 X 2 matrix

T(s) = y(u)'[xu(u)/||gu(w)ll, 30 (w)/ ligo(w)l},

and the metric M(s) is the 2 x 2 diagonal matrix

M(s) = diag([|¢u(u)ll, |60 (w)I])-

Example ( from [11]). Consider the sphere S of radius R. The following is a coordinate
chart for S.
U={(u,v)]-7/2<u<7/2,~-r <v< 7}

and the map
¢:U — R : (u,v) — (—R cos u cos v, Rsin u, R cos usin u).

The coordinates u and v are known as the latitude and longitude, respectively. The coor-

dinate vectors of the contact frame are given by

—sinucosv sin v COS U COS ¥

x(u)=| sinusinv |, y(u)=| —cosv |, z(u)= | —cosusinv
cosu 0 sinu

The curvature form, torsion form and metric are

K=,[1{)R I?RJ’T=[0 —ta.nu/R],M:[g Rc(c))su]'
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Appendix B. Grasp Conditions As Constraints on the Finger Configuration

Space

In this appenddix, we show how the grasp conditions of Section 3 can be transformed
into constraints on the configuration space of the fingers: SE*(3).

By assumption (A2), the points of contact, p , will be uniquely determined given
configurations of the object and the fingers: (g, , %) € SE¥(3) x SE,(3). On the other
hand, the object configuration is related to that of the fingers by the hand map. This
enables us to write G(p,)=G(p (g 00 H(8;,))) = Glg £p)"

Since K is a convex cone, we have
Lemma 1 G(K) = R® if and only if G(K) does not have a supporting hyperplane.

The proof is a direct consequence of the Separation Theorem in convex analysis. A sup-
porting hyperplane has a unique normal through the origin, and the inner product of the

normal with the set is negative. This gives
Proposition 2 G(K) = R® if and only if

min m G;iz; 0 49
min max zjexﬁgs,(y, izj) > (49)

(49) defines an inequality with g;, s parameters. Thus, this directly transforms into a

constraint equation on the configuration variables of the fingers.
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Notations

n-dimensional Euclidean space.

Total number of fingers in a hand manipulation system.

The special rotational group of R2,

( ®3 x SO(3)) The Euclidean group of &3

A copy of SE(3), designated to represent the configuration space of finger 1.
A copy of SE(3), designated to represent the configuration space of the object.
= SE;(3) X ... X SE(3), configuration space of the fingers.

The set of natural numbers.

={1,..k }.

Reference coordinate frame fixed to the last link of finger 4, i € k.
Reference coordinate frame fixed to the object.

Inertia reference coordinate frame at the hand palm.

The grip Jacobian.

The hand map.

(i € k) contact point of the object with finger i, relative to C,.

(% € k) contact points of finger i, relative to C;.

(= (#%)~(coi) Coordinates of the contact point c,q.

(= (¢1)7!(esi) Coordinates of the contact point cy;.

Contact angle of i — th contact.

= (cf,l, ...cf,k)t € R3*,

= (ctfli ’"c‘fk)‘ € R3k,

= (P61, -Por)* € R,

= (P‘jv'"Pffk)t € Rzk.

= (¥1,...9)" € R*.

(€ SE;(3)) Configuration variable of finger i relative to Cp.

(€ SE,(3)) Configuration variable of the object relative to Cp.

= (9f1,ps -9tk p)'» configuration variable.
The complement of set B in set A.
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