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ABSTRACT

We obtain the ratio VJVb of the d.c. glow-to-electrode voltages at the powered (a) and grounded

(b) electrodes in low pressure capacitive r.f. discharges having unequal electrode areas Aa and Ab in

finite length cylindrical and coaxial geometry. We use a transport model in the glow in which ions are

generated by thermal electron ionization and are lost by ambipolar diffusion in the glow, with a con

stant diffusion coefficient. Three electrode sheath models are considered: collisionless ions, collisional

ions with a constant mean free time, and collisional ions with a constant mean free path. Using these

and the continuity of the r.f. current flow, we obtain the voltage ratio as a function of the electrode area

ratio, the length-to-radius ratio of the cylinder, and, for coaxial systems, the ratio of inner-to-outer radii.

The theory is in good agreement with experiments1-4 in cylindrical and coaxial geometry.

1. K. Kohler, J.W. Coburn, D.E. Home, E. Kay, and J.H. Keller, /. Appl. Phys.57, 59 (1985).

2. J.W. Coburn and E. Kay, J. Appl. Phys. 43, 4965 (1972).

3. CM. Horwitz, /. Vac. Sci. Technol.A 1, 60 (1983).

4. G.Y. Yeom, J.A. Thornton, and MJ. Kushner, /. Appl. Phys. 65, 3825 (1989).



I. INTRODUCTION

Capacitive, radio frequency (r.f.) discharges are widely used for materials processing in the elec

tronics industry. Typical parameters are pressure p = 10-300 mTorr, 00/271 = 13.56 MHz, voltage Vrf =

50-1000 V, and electrode spacing / = 3-10 cm. The discharges are generally asymmetric; ie, the

powered electrode a and the grounded electrode b have different areas, with Aa typically less than Ab.

This asymmetry determines the magnitude of the self-bias voltage Va (the ion bombarding energy) at

the powered electrode, which is a critical process parameter. Simple arguments1 assuming equal ion

current density to the two electrodes yield the scaling of the voltage ratio on the area ratio as

VJVb = (Ab/Aa)*, contrary to measurements1-9 that indicate a much weaker dependence of VJVb on

AbIAa for area ratios much different from unity. Pointu10 has formulated an analytical model for the

sheath voltage ratio, based on probe theory, which includes the effect of the floating potential and better

fits some of the experiments6. In this, she assumes collisionless sheaths and equal ion current densities

atelectrode surfaces. One dimensional spherical shell models have also been developed11,12, incorporat

ing various assumptions for the sheath and glow physics, and obtaining a scaling more in agreement

with measurements. However, the measurements are generally done in finite cylindrical, coaxial, or

more complicated geometries having two or more dimensionless geometry parameters; e.g., the

powered-to-grounded area ratio and the length-to-radius ratio for a finite length cylinder. In principle,

the voltage ratio depends on all the parameters, and, therefore, there may be no simple scaling with the

area ratio alone. In this work, we show that this is indeed the case. From general principles, we derive

the voltage ratio in terms of the ratio of two integrals over the powered and grounded areas, which

depend on the density at the plasma-sheath edge. We introduce various models for the sheath physics,

from which we determine the scaling of the voltage ratio with the discharge geometry parameters.

Finally, we compare our results with measurements in systems that closely approximate the model

geometries.

In the model, we assume that almost all the applied r.f. voltage is dropped across thin sheaths,

having thicknesses sa and sbt at the powered and grounded electrodes. In the pressure regime of

interest, the ion-neutral mean free path X, may be short compared to sa and sb. For example, in an

argon discharge Xt = (200/?)"1 cm; for s ~ 1 cm, we obtain X» < s forp > 5 mTorr. It follows that
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the assumption ofcollisionless ion transport in the sheath, which leads to aChild law scaling13 for the

ion current density, / «= Vy2fs2, is usually valid only at the lowest pressures. Cobine14 gives the

scaling / °* V2/s3 for constant ion mobility, such that the ion mean free time t,- is constant. This

models ion transport in the sheath due to ion-neutral elastic scattering. However, charge transfer of the

ion with the parent neutral gas atom can also contribute to the ion transport in the sheath. This

resonant process has a cross section, and therefore a mean free path, that is roughly a constant, indepen

dent of the ion drift velocity u. Because u varies within the sheath, t,- = Xju is not a constant In this

work, we obtain the voltage ratio for these three ion transport assumptions. The gas species and pres

sure determine which assumption is most reasonable physically for a particular discharge.

We also assume that the glow region between the sheaths, having a thickness d > s serves to

maintain the discharge by means of the balance between ion generation there and loss to the electrodes.

We assume that the electron temperature Tt in the glow is uniform, and the volume ionization rate is

Vfc n, where Vf, is the ionization frequency and n is the electron density. Secondary electrons and local

ionization near the sheaths are important at high pressures and can also contribute to the ionization, but

we do not consider these mechanisms here11. Ions are lost by ambipolar diffusion to the two electrodes.

We consider a simple, constant mean free time process that models ion-neutral elastic scattering, yield

ing a constant diffusion coefficient D. The processes of ionization and diffusion determine the plasma

density profile and, in particular, the densities at the two sheath edges near the powered and grounded

electrodes, which are not equal as is so often assumed. In turn, these densities determine the sheath

properties and thus the sheath voltages Va and Vb.

The separation into distinct sheath and glow regions is somewhat arbitrary. We use the Bohm

sheath criterion15 to define the plasma-sheath edge; i.e., the diffusion solution in the glow is assumed to

be valid only for u <uB, where uB = (eTJM)in is the Bohm (ion sound) velocity, e/M is the ion

charge-to-mass ratio, and Te is in units of volts. The plasma-sheath edge is thus the surface (near the

discharge walls) where u = uB.
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H. BASIC THEORY

The discharge configurations are shown in Fig. 1. In Figs. l(a)-(c), the discharge occurs in a

right circular cylinder of radius R and length L. Figure 1(a) shows the geometry of Coburn and Kay7.

The powered electrode is a disk r < Ra at the cylinder bottom. The grounded electrode consists of the

annulus Ra < r <R at the bottom and the disk r <R at the top. The sidewall is assumed to be a thick

insulator that is an open circuit to the r.f. current flow. Figure 1(b) shows the geometry of Horwitz8.

The powered electrode is the bottom disk r <R and the bottom part of the sidewall

-L/2 < z < H-L/2. The grounded electrode is the remainder of the cylinder surface. Figure 1(c)

shows the geometry of Kohler et al6, for which the entire sidewall is part of the grounded electrode.

Finally, Fig. 1(d) shows a typical coaxial geometry, such as used by Yeom et al9. Here, the powered

(grounded) electrode is the inner (outer) coaxial conductor of radius /?, (R0) and length L, and the end

surfaces are part of the grounded electrode. In all cases, a small gap is assumed to separate adjacent

powered and grounded surfaces.

To derive the fundamental scaling formula, we let x be a two dimensional vector that specifies

the position on the electrode surface, ns(x) be the density at the plasma-sheath edge, V(x) be the d.c.

glow-to-electrode voltage, s(x) be the sheath thickness, and /(3c") be the r.f. current density normal to

the electrode surface. A key observation is that the glow, being highly conducting, cannot support a

potential difference greater that a few Te 's. Since V > Tt, the plasma-sheath edge is an equipotential

surface. Since each electrode a and b is also an equipotential surface, the glow-to-electrode voltage

across each sheath is a constant, independent of the position x along the surface. For the powered elec

trode, we therefore have Va(x) = Va = const

The relation between the r.f. voltage amplitude Va and the d.c. voltage drop Va is complicated16.

An approximate form is17

Va = Tt ln\l0(ya/Te)] - (jTJ2)\n(M/2nm), (1)

where Te is the electron temperature (in units of volts) and Mlm is the ion-to-electron mass ratio. For

Va » Te, we can expand the l0 modified Bessel function to obtain



va =va - vfa, 0)

where

Vfa =(JJ2) In (MTel4T?mVa) (3)

is the floating potential. For high voltage capacitive sheaths, V/fl <: Va and Va ~ Va. In this limit we

can relate the r.f. current density to the d.c. sheath voltage and sheath thickness:

Ja00 ~ Va/sa(X)- W

For a collisionless (Child law) sheath, we have12,18

**,(*) ~ V^sftO ; (5)

for a collisional (resonant charge transfer) sheath, we have11,19,20

nM(x) oc vF-lsZ12^); (6)

and for a collisional (elastic scattering) sheath, we have14

nsa(X) oc V.V(x)-. (7)

The total r.f. current Ia flowing to the powered electrode is

L ~ jJa(x)d2x . (8)

Inserting (4) into (8) and using the collisionless sheath scaling to eliminate sa, we obtain

/. ~ V™ jn5t?Qc)d2x . (9)

Similarly using the collisional sheath scalings (6) and (7) for resonant charge transfer or elastic scatter

ing, we obtain, respectively,

/. - Va215 jn*\x)d2x (10)

and

/. ~ C3 jn"\x)d2x . (n)



Similar expressions to (9) - (11) are obtained for the grounded electrode b. Equating Ia to Ib by con

servation of r.f. current, we then obtain the fundamental scaling formula for high voltage sheaths,

\n§b(x)d2x

Vh jnfaQOd''
(12)

where the exponents p and q are given in Table 1 for the three sheath scaling laws. We see that the

voltage ratio is independent of the r.f. driving voltage and the electron temperature in the high voltage

limit The voltage ratio is determined by integrals over the powered and grounded areas that depend on

the density at the plasma-sheath edge. This density is determined by the generation and loss processes

for ions in the glow.

For large area ratios, the voltage across the large area electrode is low and the floating potentials

in (2) cannot be neglected. This effect was also included in the study by Pointu10. The preceding

analysis leading to (12) can be extended in a straightforward manner to obtain the relation

Vb

X-XlL jn&mdh

i_2k \nh<Z)d2x
Va K

(13)

where now Va and Vb mustbe related to the peak-to-peak r.f. voltage Vpp applied to the discharge:

Va + Vb a Vfa + Vfb + V„\2 . (14)

Solving (13) and (14) numerically, we can obtain the voltage ratio VJVb, which now depends on Vpp,

T€ and Mlm as well as the area integrals of the density. In the limiting case where Vb - 0, (1) yields

Vfb = (Te/2)\n(MJ2nm) and (14) yields

pp

Te\n(M/2nm) '
(15)
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IH. DIFFUSION IN THE GLOW

A. Finite Length Cylindrical Geometry

To determine the density in the glow at the plasma-sheath edge, we consider a simple transport

model in which ions are generated at a rate vun proportional to the electron density and are lost by

ambipolar diffusion to the walls with a constant diffusion coefficient D. The diffusion equation is

V2n+(vil/D)n =0. (16)

The general solution to (16) is

n = fl0J0(ar)cos(Pz) . (17)

where

~-=a2 + p2. (18)

There are two approaches to the boundary conditions applied to the solution of (16). The first which

assumes that the mean free path X,- is small compared with the chamber height and radius, specifies that

n be zero on the walls of the chamber. The density at the sheath edge is then found by linearly extra

polating using the density slope at the wall. The second approach, which applies for larger values of

Xi, is to apply the general boundary condition specifying that the ion flow speed at the walls is normal

to the wall and equal to uB. This involves specifying the ratio of the local normal derivative of n to

the value of n. This latter method is much more cumbersome and does not permit the compact expres

sion for the surface integrals that can be obtained using the first method.

In the short mean free path approximation, a in (17) and (18) is just %0i^» where %0i = 2.405 is

the first zero of the zero order Bessel function J0, and P is k/L. Given the geometry (L and R) and the

diffusion constant D (=X/«B), then (18) determines the ionization rate v,z. Recalling that v« = NKU,

where N is the neutral gas density and Kiz(Te) is the ionization rate constant, we see that (18) fixes Te

in the glow for a specified N.

The ion flux nu in the glow is given by



nil = -D Vn

Evaluating (19) at the plasma-sheath edge where n = ns and \u\ = uB, we obtain

m , *qP XoiJiOCoi) , ...
ns(R,z) = cos (itz/L)

uB R

at the cylinder side and

^(r,±L/2) =-^.^Jo(Xoir//?)
UB L

(19)

(20)

(21)

at the cylinder top and bottom. Here Zx is the first order Bessel function and Ji(%oi) = 0.5191. Inserting

(20) and (21) into (12) and doing the integrals for each of the three configurations in Figs. l(a)-(c), we

obtain the voltage ratios (VJVb)Q for each configuration in the limit of high sheath voltages. These can

be written in terms of the two normalized functions

C

F/,(0 =JdC/cos"«/2), (22)

G,(Q=jc'dC'tf(XoiO (23)

and the dimensionless geometric ratio

p r v+i

Pp=T
XoiJi(Xoi)

7E

(24)

The functions Fp and Gp are shown in Fig. 2 for p = 1/3, 2/5, and 1/2. For £ <: 1, Fp ~ C, and

Gp = C2/2. For C= 1, Fp = 2T2((p+l)/2)/7cr(p+l). The values of Fp{\) and Gp(l) are given in

Table 1.

For the configuration of Fig. 1(a), we obtain using (22) and (23) in (12):

2GA\)-Gp(Ra!R)

GARJR)
(25)

where p and q given in Table 1 depend on the assumed sheath physics. For the configuration of Fig.

1(b), we obtain



V. p;lGp(l)+ Fp{l) + Fp(l-2H/L)

Vb Jo [Pi~GpW +FpM - Fp^-™11)
(26)

For the configuration of Fig. 1(c), we obtain

Vb Jo

2GJl) + 2ppFJl)-Gp(Ra/R)

GP{RJR)
(27)

In order to solve for longer mean free paths cases (X, :£ J?, LIT) and check the limits of validity

of the short mean free path approximation, we assume that a and p are not equal to Xoi^ and nIL

respectively, such that the boundary conditions using (14) become:

uB = -(D/n)(dn/dr) Ir=R = D ah (ctr)/J0(ar) I^ (28)

at the cylinder side wall, and

uB = -(D In )(dn Idz ) IZ=L{2 = D psin(0z)/cos(Pz) Il=La (29)

at the top and bottom end walls. The solutions for a and p can be found as functions of XtIR and

XilL. The resulting values for a and (3 are found to be less than %oi/R and izIL respectively, but

approach these values for Xi < J? or L/2. The solutions for dimensionless forms of a, a' = aRIXoi*

and p, P' = PL/tc, are shown in Fig. 3 as functions of X,//? and 2X,,/L.

B. Finite Length Coaxial Geometry

We consider a restricted class of coaxial geometries for which the inner and outer cylindrical

walls (radii Rt and R0) and the end walls are each undivided into powered or unpowered areas. Based

on the accuracy of the short mean free path approximation for the finite cylindrical geometry, we solve

the coaxial cylindrical discharge problem by linear extrapolation as in (20) and (21). In this case, the

solution for n instead of using only J0 for the radial dependence requires the Y0's as well:

n = n0[Q0(kR) YQ(kR0) - Y0(kr)J0(kRo))lY0(kRo)]cos(kzIL) (30)

In order to find the value of the ion density at the sheath edge, k in (30) is chosen such that n - 0 at

the electrode surfaces. This yields the relation:

J0(yx)Y0(x)-Y0(yx)J0(x) = Ot (3D



where we have let y = RilR0 and x = kR0 in (31), such that yx = */?,-. Equation (31) can be solved

numerically to obtain y(x). The expression (30) for n is then substituted into (19) with u - uB.

Assuming that the value of DluB is small, we get by linear extrapolation the value of ns, the density at

the sheath edge for the inner and outer electrode surfaces 5,- and S0 and the end wall surfaces Se. For

the inner cylinder Si, we obtain

ns oc kr{l(yx)J0(x)-]l(yx)Y0(x)]cos(nzlL); (32)

for the outer cylinder S0, we obtain

ns ~ fc[-Y1(x)Jo(x) + J1(x)Y0(^)]cos(jcz/L); (33)

and for each end wall St, we obtain

ns oc (7t/L)[J0(OY0(x)-Yo(OJo(^)]. (34)

where £ -kr. The surface integrals are then found easily for each of the sheath types: Child-

Langmuir, constant mean free path, and Cobine (constant mean free time), having p = 1/2,2/5, and 1/3,

respectively. For St,

\n!dz oc (LIRrl)Xp(y) , (35)

where

Xp(y) =Fp{\)(yxf [Y1(^)Jo(^)-Ji(^)Y0(^)F ; (36)

forS0,

jnfdz - (LIRrl)Yp , (37)

where

Yp =sFp(l)x"[-Yl(x)Jo(x) + Jl(x)Yo(x)Y = (2lnf Fp(1) ; (38)

and for each end wall Se,

\n!rdr oc (nlLyR2Zp(y) , (39)
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where

zp(y) =*-2JC^[Jo(QY0(jc)- Y0(OJoW]p . (40)

The constancy of Yp follows from the Wronskian relation for the J and Y Bessel functions. The func

tions Xp(y) andZp(y) are shown in Fig. 4, and the values of Yp aregiven in Table 1.

Let us introduce the dimensionless geometric ratio

xp = n(LInRoy+l . (41)

Then if both end walls are insulating and do not carry r.f. current, (VaIVb)0 may be expressed very sim

ply:

(Va/Vb)0 = (YpIXpy , (42)

where p and q are given in Table 1. If both end walls are conducting and part of the inner electrode

a, the result is

<yjVb)o = [YpIQCp + x;%W • (43)

If both end walls are conducting and part of the outer electrode b, then we have

<yaivb)0 = [(Yp + z;%)IXpV . (44)

IV. COMPARISON WITH EXPERIMENTS

The quantity measured in most experiments is the "bias ratio", defined as the bias voltage

^was = Vb - Va, normalized to the peak-to-peak r.f. voltage, which from (14) is

Vpp = 2(Va + Vb - Vfa - Vfb). Hence, we obtain

^bia, 1 VJVb - 1

Vpp 2 VJVb + 1 - VfaIVb - VfbIVb (45)

There have been relatively few bias ratio measurements done on low pressure (<100 mTorr)

asymmetric capacitive r.f. discharges in which electrode areas and voltages were carefully controlled,

and some of these were done in systems having electrodes whose areas were not very different l^1.

The studies by Horwitz8, Coburn and Kay7, Kohler et al6 and Yeom et al9, however, have a sufficientiy

-11-



wide range of area ratios and/or voltages to allow a meaningful comparison with the model presented

here. We first compare the short mean free path model results with the measured biases, and later com

ment on the effects of finite mean free path on the model results.

Horwitz8 has measured VbiJVpp at 13.56 MHz for the cylindrical geometries shown in Figs. 1(b)

and (c) for various applied voltages Vpp, pressures, electrode materials, and gases. Figures 5 and 6,

which are redrawn from Fig. 12 of ref. 8, show the measured results for the maximum of V^JVpp

(with respect to pressure) plotted against an "area ratio". The four sets of points B, C, D, and E at the

largest area ratios are for the geometry of Fig 1(b) with R ~ 10.35 cm, L ~ 5.3 cm, and H = 0, 1, 2,

and 3 cm, respectively. The set of points A at the smallest area ratio is for the geometry of Fig. 1(c)

with R ~ 13.4 cm, L = 5.3 cm, and Ra = 10.2 cm. Horwitz found that VbiJVpp was only weakly

dependent on the pressure, displaying a broad maximum with respect to pressure, and was only weakly

dependent on the type of gas and the electrode material. The points plotted in Figs. 5 and 6 are typi

cally for pressures of 4-12 mTorr.

To compare these data with the model of Sec. Ill, we choose a typical electron temperature

Te = 5 eV in argon gas. Then the model results are shown in Fig. 5 for Child law sheaths and in Fig. 6

for constant mean free path sheaths. The ion mean free paths in argon are 0.4-1.3 cm, of the order of

the typical sheath thickness. Thus we are in a collisional transition regime between these two sheath

models. For argon, resonant charge transfer dominates over elastic scattering; hence the constant mean

free path model is more appropriate than the constant mean free time (Cobine) model. The open trian

gles in Figs. 5 and 6 show the high voltage sheath results using (12) in (45) with Vfa = Vfb = 0. We

see that the high voltage results generally follow the measured results at Vpp - 1400 V, although there

is a significant deviation at the lowest area ratio for Child law sheaths. The pluses and open circles

show the model results obtained using (3), (13) and (14) in (45) to determine VbiJVppt numerically, for

Vpp = 330 V and 1400 V, respectively. Both the Child law and constant mean free path sheath results

are in good agreement with the measurements, giving not only the correct dependence on geometry but

also the correct voltage dependence. The model also predicts that VhiasIVpp should be independent of

pressure, electrode material, and (except for a weak, logarithmic dependence on Mlm) type of gas, in

agreement with the measurements. However, changing these parameters can change Te, which would
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yield a weak variation of the model results at low driving voltages. To predict the variation of Te with

these parameters, however, is beyond the scope of our model.

Coburn and Kay7 have direcdy measured VbIVa at 13.56 MHz for the cylindrical geometry shown

in Fig. 1(a) for various applied r.f. voltages in an argon discharge at 50 mTorr. They found that for

high r.f. voltages on the powered electrode, Vb scaledapproximately linearly with Va,

Vb~KxVa+Klt (46)

where Kx depended on the geometry ("area ratio") and K2 was roughly a constant, independent of

geometry. Figure 7, which is redrawn from Fig. 5 of ref. 7, shows the measured results for Vb versus

Va. The five curves A-E are in order of increasing "area ratio" for Ra = 2.54 cm, L = 1.88 cm, and

R = 2.95, 3.5, 4.25,4.75, and 5.3 cm, respectively.

To see that (13) yields an expression in the form (46), we expand (13) in the limit Vfa < Va to

obtain

Vb=<ybtVa)0Va+qVfb , (47)

where (VbIVa)0 is given by (12) and Vfb by (3) with a ->b. We note from (3) that V/b is a constant,

to within a weak logarithmic factor. Comparing (47) and (46), we have K\ = (VbIVa)Q. However, for

the range of Vb 's shown in Fig. 7, the higher order terms in the expansion leading to (47) are impor

tant, and there is a departure from linearity.

To compare the data in Fig. 7 with the model of Sec. Ill, we choose a typical electron tempera

ture Te ~ 4 eV in this 50 mTorr argon discharge. One further choice must be made. For the geometry

of Fig. 1(a), leading to (Vb/Va)0 given by (25), the r.f. current flowing to the grounded electrode

through the insulating side wall cylinder was taken to be zero. Actually, some r.f. current must flow

through this side wall by virtue of its capacitance to the grounded surfaces outside. To account for this

effect, we have increased the radius of the cylinder by a somewhat arbitrary amount AR, choosing

R' = R +AR with AR = 0.25 cm.

Figure 7 shows the constant mean free path sheath results using (3) in (19) and (20) to obtain Vb

versus Va for Vpp = 500, 800, and 1400 V. At 50 mTorr, there are from several to ten ion mean free
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paths in a typical sheath thickness, and so this collisional model is more appropriate than the Child law

model. There is good agreement between the collisional model and the measurements except at the

highest "area ratios", where the model deviates somewhat from the measurements. For these cases,

almost all of the applied r.f. voltage is dropped across the powered sheath, and the grounded electrode

sheath is in the transition regime Vb - Vfb - 5Te. We do not expect this low voltage sheath to be

described well by the approximate forms given in (2)-(7). Furthermore, there may be a mixed col-

lisionality regime in which the ion motion in the (thin) grounded sheath is collisionless, while the

motion in the (thick) powered sheath is collisional. Overall, the agreement between the model and the

measurements is satisfactory for the regime in which the model is valid.

In contrast, a similar comparison of the model and data for Child law sheaths is not as good. To

illustrate this, we reproduce in Fig. 8, redrawn from Fig. 6 of ref. 7, the slopes Kx of the lines shown in

Fig. 7, plotted against an "area ratio". The predictions of the constant mean free path model (solid

dots) are seen to fit the data much better than the predictions of the Child law sheath model (solid

squares). The sensitivity of the model to changes in AR is also illustrated in Fig. 8 for the cases of

data points B and E. The upper bound is for A/? =0 and the lower bound is for AR = 0.5 cm.

Kohler et al6 have measured Vy^JV^ for a 20 mTorr argon discharge in the cylindrical geometry

shown in Fig. 1(c), for which the powered electrode was one end wall and the grounded electrode was

the other end wall and the cylinder side, with R = Ra~ 7.95 cm and L ~ 6.3 cm. Measurements for

this "confined" geometry6 were made over a range of Vpp from 400 to 1700 volts. The measured

results for Vbiu versus Vpp are shown as the open triangles in Fig. 9, which is redrawn from Fig. 8 of

ref. 6. Kohler et al also measured the temperature to be Te = 3.2 eV. The model results are obtained

using (3), (13) and (14) in (45) to determine VhiM for Vpp = 400, 1000, and 1600 volts. The soliddots

are the results for Child law sheaths, and the open circles are for constant ion mean free path sheaths.

We see that there is good agreement between the measurements and both model results in this collision-

ally transitional pressure regime.

Yeom et al9 have measured VbiMIVpp for a 3 mTorr argon discharge in a finite coaxial geometry

for which the inner cylindrical wall is the powered electrode and the outer cylindrical wall and the two
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end walls are the grounded electrode. Although most of their measurements were in cylindrical mag

netron geometry, having a d.c. axial magnetic field B, they also report some measurements for 5=0.

For this system, R0 = 10.5 cm, L = 18.16 cm, and measurements were made for three different inner

cylinder radii /?,• = 5.0, 1.27, and 0.635 cm. The results for VbiiS/Vpp, taken from Fig. 2 of ref. 13, are

shown in the second column of Table 2. Yeom et al state that the measured electron temperature from

Langmuir probes is approximately 12 eV. However, such measurements are notoriously difficult to

make in capacitive r.f. discharges22. It seems unlikely that such large temperatures can be sustained in

a 13.56 MHz discharge at B =0. We therefore compare the measurements to the model using both the

measured Te ~ 12 eV and a more reasonable value of T€ =5 eV. Also, Yeom et al do not direcdy give

the driving voltage Vpp for the data in their Fig. 2, but instead specify an r.m.s. current density

Jrms - 6.0 mA/cm2. Subsequendy, they present measurements showing that Vpp ~ 275 V at 7mr = 3

mA/cm2 and B - 200 G. Lacking any better estimate, we choose Vpp ~ 550 Vfor ./„„, = 6.0 mA/cm2

andB = 0. Using these values of Te and Vppt we solve (13) and (14) numerically for Va and Vb using

(44) for the ratio of the integrals in (13). We then evaluate VbiJVpp from (45) to obtain the results in

columns 3 through 6 of Table 2 for both Child law sheaths and constant mean free path sheaths. These

model results are in good agreement with the measured values in column 2.

When the charge exchange mean free path X,- is a significant fraction of the interelectrode gap or

cylinder radius, there may be a need to calculate the density ns at the sheath edge more precisely than

the linear approximation of (20) and (21). The technique used is to obtain values of a and P by solving

(28) and (29) [See Fig. 31 and insert these values in (17) to determine n. This density is then

integrated over the electrode and wall surfaces as in (12) for r - R or z = ±LI2 to yield values for

(VJVb)0. These are shown in Fig. 10 as functions of the mean free path normalized to half the

interelectrode gap. In most situations, especially for small electrode area ratios, and for all cases using

the constant mean free path sheath model, the change in (VJVb)0 for 2XtIL =• 0.2 (which corresponds

to about 12 mTorr in refs. 6 or 8) is less than 10%. Thus we justify using the short mean free path

limit model results in comparing with the experimental measurements.
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V. DISCUSSION AND CONCLUSION

Starting from the crucial observation that the glow-to-electrode voltage across each sheath is a

constant, independent of position along the sheath surface, we were able to decouple the equations for

the sheath and glow dynamics in the high sheath voltage limit. For the sheath dynamics, we treated a

collisionless (Child law) model and two collisional models, one having constant ion mean free path in

the sheath and one having constant ion mean free time. For the glow dynamics, we treated finite length

cylindrical and coaxial geometry, with plasma generation having a volume ionization rate proportional

to the electron density and with plasma loss to the walls by ambipolar diffusion with a constant

diffusion coefficient. Separately solving the equations for the sheath and glow and then combining the

results, we obtained the powered-to-grounded electrode voltage ratio as the ratio of integrals over the

powered and grounded areas of certain powers of the known density at the plasma-sheath edge. Hence,

the voltage ratio was shown not to be determined as a simple power of the electrode area ratio, as is

commonly assumed. These results were extended to low voltage sheaths using approximate expressions

for the d.c. floating potentials at the sheaths, and were extended to include finite mean free path effects

in the glow. Formulae and graphs were obtained allowing the voltage ratio to be found for any finite

cylindrical geometry and for a restricted class of finite coaxial geometries.

The model results were then compared to four published experimental studies of the voltage ratio,

three in finite cylindrical geometry and one in finite coaxial geometry. In all cases, we found good

agreement between the model results and the measurements. The model successfully predicts the

dependence of the voltage ratio on the discharge geometry and driving voltage. The model also

predicts that there should be little dependence of the voltage ratio on the type of gas and the electrode

material, in agreement with experimental measurements. The collisionless (Child law) sheath model

agrees best with measurements at low pressures, and the collisional (constant ion mean free path) sheath

model agrees best at higher pressures. However, within a given sheath collisionality regime, the model

predicts litde dependence of the voltage ratio on the discharge pressure, again in agreement with the

experimental measurements.
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We believe there are several reasons for the closer agreement of our model with the measure

ments of refs. 6-9 than previous models in the literature. The first, and most apparent, is the two

dimensionality of our model. The effect of this on the sheath impedances at the electrodes is caused by

the large variation over the top or side walls of the plasma density ns at the sheath edge. Radial and

axial dependences of this density, found from (21) and (20), are seen to be quite different from each

other, and vary by large factors over the electrode and wall surfaces. As a result, the ion current den

sity varies significandy over the walls and thereby causes the sheath thickness and capacitive impedance

to vary as nfm (Child law) or n/"275 (constant mean free path). We have calculated the average values

of ns over the powered and grounded electrode surfaces in order to determine the ratio of the average

current densities. This is shown in Fig. 11. Two immediate conclusions may be drawn: First, the

average current density ja at the smaller electrode is at least 40% greater than jb for electrode area

ratios of 2 to 3. This flady contradicts the often used assumption that ja and jb are equal. Second, the

geometry (aspect ratio RIL) also affects the dependence of jjjb on area ratio. This is intuitively evi

dent since it can be seen from (20) and (21) that ns at the side wall relative to ns at the top and bottom

walls will be strongly affected by aspect ratio.

A second reason for the closer agreement between our model and experiment is the incorporation,

as inPointu10, of the floating potential, which causes sheath capacitances to be more accurately approxi

mated in the large area ratio or low voltage cases. A third reason is our use of a collisional sheath

model in the higher pressure regimes.

The areas in which our model may not reflect the physics of some experiments with precision

include both sheath and bulk plasma effects. Firstly, the ionization may not be stricdy proportional to

n due to thermal gradients or secondary electron generation at the electrode surfaces. This is apt to

happen more at high pressures (> 200 mTorr) or in very large systems (R, L > 1 m). The neglect of

the electrical resistance of the glow region may also be inappropriate in these cases. At more moderate

pressures, stochastic heating by the oscillating sheaths may also lead to strongly nonuniform ionization

profiles1 U8,20. Furthermore, the solution for n in (16) has been found by assuming vuID is constant

over the plasma volume. This is not correct since the diffusion coefficient D is actually inversely pro

portional to the flow speed u for charge exchange collisions in the glow, and u varies spatially within
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the glow4,11. This approximation will be relaxed in an upcoming numerical study. Lastly, we have

neglected the sheath thicknesses in calculating the electrode areas. This might be most significant in

the case of the Cobum and Kay experiment7.
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Table 1. Exponents and function values for various sheath scaling laws.

Sheath Ion Transport P q FPQ) G„(l) h

Collisionless
1

2
4 0.3808 0.1518 0.608

Elastic Scattering
1

3
3 0.4103 0.1744 0.706

Resonant Charge Transfer
2

5

5

2
0.3978 0.1647 0.664
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Table 2. Comparison of measurementsand model in finite coaxial geometry.

Ri (cm)

•^ War"pp

Measured Child's law Const m.f.p. law

T€ = 5 eV Te = 12 eV Te = 5 eV Te = 12 eV

5.0 0285 0.355 0.28 0.315 0.27

1.27 0.42 0.44 0.375 0.44 0.395

0.635 0.425 0.44 0.375 0.45 0.405
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Fig. 1. Geometry of the basic discharge configurations.
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Fig. 2. Fp and Gp versus ^ for/7 = 1/3, 2/5, and 1/2.
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Fig. 5. Measurements of Vb\JVpp versus "area rado", redrawn from Fig. 12 of reference 8, along

with the model results using Child law (collisionless) ion sheaths. The open triangles show

the high voltage sheath model results. (The point for case A at VbiuIVpp ~ 0.46 is off of the

figure.) The pluses and open circles show the model results for Vpp = 1400 and 330 V, respec

tively.
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Fig. 6. Measurements of VbiJVpp versus "area rado", redrawn from Fig. 12 of reference 8, along

with the model results using constant mean free path collisional ion sheaths. The open trian

gles show the high voltage sheath model results. The plusses and open circles show the

model results for Vpp = 1400 and 330V, respectively.
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Fig. 7. Measurements of Vb versus Va for five "area ratios", redrawn from Fig. 5 of reference 7,

along with the model results (dashed lines) using the constant ion mean free path sheath

model, with AR = 0.25 cm.
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Fig. 8. Values of the slopes K\ of the measured curves shown in Fig. 7, redrawn from Fig. 6 of refer

ence 7, along with the model results for (Vb/Va)0 = Kx. The solid dots are for the constant

ion mean free path sheath model, and the solid squares are for the Child law sheath model.

The lower and upper bounds shown for cases B and E show the sensitivity of the model

results to changes in the cylinder radius R.
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Fig. 9. Measurements ofV^ versus Vpp for a"confined" r.f. discharge, redrawn from Fig. 8of refer

ence 6. The open triangles are the measured values, and the closed and open circles are the

model results for Child law sheaths and constant ion mean free path sheaths, respectively.
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Fig. 10. VJVb versus 2X-JL for various cases having area ratios AbIAa. The solid dots and squares

are the model results for the Horwitz data of reference 8 using Child law sheaths and constant

ion mean free path sheaths, respectively. The open circles and triangles are the corresponding

model results for the Coburn and Kay data of reference 7.
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