

Copyright © 1989, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

SELF-SYNCHRONIZING CONCURRENT

COMPUTING SYSTEMS

Copyright © 1989

by

Vijay Krishna Madisetti

Memorandum No. UCB/ERL M89/122

16 October 1989

.

SELF-SYNCHRONIZING CONCURRENT

COMPUTING SYSTEMS

Copyright © 1989

by

Vijay Krishna Madisetti

Memorandum No. UCB/ERL M89/122

16 October 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

SELF-SYNCHRONIZING CONCURRENT

COMPUTING SYSTEMS

Copyright © 1989

by

Vijay Krishna Madisetti

Memorandum No. UCB/ERL M89/122

16 October 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

SELF-SYNCHRONIZING CONCURRENT COMPUTING SYSTEMS

Vijay Krishna Madisetti

Department of Electrical Engineering and Computer Sciences

University of California

Berkeley, CA 94720

ABSTRACT

While the past few years have witnessed an unprecedented advance in the statusof parallel com

puting hardware, software has not caught up with this pace of development Our effort has been

focused on the developmentof efficientalgorithms and software for high-speed parallel scientific com

puting in an effort to meet this demand.

This thesis presents the theory and design of a new distributed computing system, the Self-

Synchronizing Concurrent Computing System (SESYCCS), for efficient solution of a large class of

compute-bound scientific problems. This thesis establishes thatseparating synchronization from com

putation has a number of merits, especially in boosting the efficiency of implementation and reducing

memory requirements.

In this thesis, we propose two new models for distributed computation; Static Computation

Graphs (SCGs) and Dynamic Computation Graphs (DCGs), and a robust theory is developed for under

standing theirbehavior. A new algorithm is proposed for efficient self-synchronization for SCGs that

optimizes computing resourceallocation.

We present new algorithms for self-synchronization for DCGs and derive concrete quantitative

results for the efficiency of their implementation. We study in some detail the tradeoff between finite

memory and speed of computation.

-2

Application of the algorithms to simulation of discrete-event systems is described and a new

algorithm, Wolf, is proposed and analyzed that promises a high processor utilization along with a

significant speedup in thecomputation.

Committee chair

'Paut^ £~/ty^<lf>**>>v^*Sfr
David Messerschmitt

ACKNOWLEDGMENTS

I have been fortunate to have been able to meet with and work with a very large number of out

standing individuals at Berkeley. Their stimulating company and support has made my stay here the

happiestand probably the most productive five yearsof my life.

I owe much to David Messerschmitt for giving me the benefit of his clear style of thinking and

experience. I thank him for his guidance and generous advice at all times. I have learnt much from

him.

I am indebted to Jean Walrand for teaching me most of what I learnt at Berkeley. I am very

grateful to him for giving me his time unhesitatingly, and for many pleasurable discussions on life and

philosophy.

I also take this opportunity to thank my parents, Anant and Madhavi, for their love, guidance,

patience and encouragement without which I could not have taken so many steps in the right direc

tion. My uncle and aunt, Somnath and Lakshmi, have been a major source of inspiration during my

formative years, I thank them for taking so much interest and showing so much love. I thank my

brother Avanindra for his unquestioning love and support through our childhood together and now

through our advent into adulthood. I thank Sandhya for bringing him so much happiness. Years have

fallen into the right places.

I thank Sherry and Judd Smith for accepting me into their family and for allowing me to share

their happiness. I also thank Kim, Heather, Jenny and Alan for their affection.

I take this opportunity to thank my friend Chaitali for her love and encouragement through the

years. I thank my friend Partha for his company and his advice on matters practical. My heartfelt gra

titude goes to my present and past friends at Stebbins Hall, especially Margaret, Maria, Adam, Chris,

Anupam, Jaideep, Rosa, Rene, John, Alison, Cristina, Lori, Ingrid, Deborah, Kristy, Herman and Gani

and the rest, for their company. I cherish many happy memories at Stebbins.

1U

At Cory I thank my friends, Teresa, Randy, Srinivas, Denise, Keshab, Pranav, Sonia, Venkat,

Ashutosh, Vasant, Meena, Andy, Takis, Joe, Shimone, and Chedsada for being there when it mat

tered. 1am also grateful to messer550 and eal550 (Horngdar, Johnson, Valerie, Biswa, Dev, Ilo, Tom,

Wen-lung, Gil, John, Jeff, Shuvra, Edwin, Alan, Maureen, Holly, Cindy, Paul, and Janet) for their

company and friendship. I thank Edward Lee and Graham Brand for being a ready source of guidance

and advice in times of need and necessity (especially on market-investment strategies). I am indebted

to many others at the department, who are my friends and will always be. For them that is friends

need no thanky, but I am grateful to them (especially Pearl, Beatrice, Maureen, Leah, Carol, Beth,

Gen Thiebaut, Kathryn, Pat, Chris, Gwyn and others with whom I had the good fortune of coming in

contact with).

I thank NSF, Shell Development Co. (Bill Moorhead), NCUBE Corp. (Tom Bauer), and

COPPE/UFRJ Brazil, for their generousassistanceand financial support for this research.

Last but not the least, I thank Professor Bob Brodersen and Professor H. Frank Morrison for

serving on my thesis committee and for theircriticism which greatly improved my work.

IV

CONTENTS

L Introduction

2. Synchronization in Distributed Systems

1. Synchronization in Shared-Memory Systems5

1.1. Semaphores

12. Barrier Synchronization

13. Performance

2. Synchronization in Distributed-Memory Systems ~.......... ^.10

2.1. Models for Distributed Computation

22. Causality Conditions

23. Synchronous Methods

2.4. Asynchronous Methods

2.5. Comparison of Synchronization Methods

3. Self-Synchronizing Concurrent ComputingSystems„...~25

3.1. Why SESYCCS?

3.2. Self-Synchronization for StaticComputation Graphs

3.3. Self-Synchronization for Dynamic Computation Graphs

4. Summary 29

3. Self-Synchronization for Static Computation Graphs

1. Introduction 33

2. Message-Passing Parallel Machines ~.~35

3. Static Computation Graphs 37

4. Structureof Static ComputationGraphs38

5. Properties of Static Computation Graphs ..• 42

6. Discussion onJoin-Type Networks . .. •—44

7.Synchronization ofaSimple J-TN 45

8. Synchronization ofCompound J-TN *»•• •45

8.1. Synchronization Algorithm forCompound Process

8.2. Process Migration

9.COSFROL: Rules and Syntax 6°

10. Concurrent Programming inCOSFROL—.. 62

10.1. Phase Shift Migration

10.2. Optimization ofCJ-TN

11. Summary.........»m.m.....m~......~..m....».......~m.m........«.............................»...*~,,",,,*,,*,,**,******,*,,,****,#**0'

4. Self-Synchronization for DynamicComputationGraphs

1.The Two-Processor Logical System 71

1.1. Discussion of the Two-Processor Model

1.2. Associated Markov Chain Representation

2. Computation inPresence ofCommunication Delay~...81

2.1. Markov Chain Representationof Communication Delay

3.The Multiple-Processor Logical System 83

3.1. Concurrent Resynchronization

3.2. Associated Markov Chain Representation

4. Successive Resynchronization..^.........^.....„.„.^...................................~...................«...«~~~-—.....93

4.1. Associated Markov Chain Representation

5.Summary 1°7

5. Randomized Algorithms for Self-Synchronization

VI

1. Randomized Self-Synchronization 112

2. Finite Memory Requirements . 117

3. Summary122

6. Efficient Distributed Simulation

1. Structure of the Simulation_.....125

2. Vectored Simulation ^^.126

3. A Synchronization Algorithm: WOLF . 142

3.1. Sphere of Influence

32. Wolf for Resynchronization

3.3. Embedded-Source Model for Rollback

3.4. Pipelined Forward Cbmputation and Rollback

4. Design of Simulators154

5. Experimental Results............................«..^.M«.156

6. Summary and Future Work^.....157

7. Conclusions and Future Work

REFERENCES 160

Chapter 1

Introduction

This thesis is dedicated to algorithms and distributed computing architectures for high speed

scientific computing. It describes how a set of interconnected high performance VLSI processors, or a

multicomputer, can be used to solve a wide range of computationally intensive engineering problems.

The results presented can be extended to a distributed network of workstations. Most of the theory

presented in this thesis is new, for interest in these machines as an alternative to traditional supercom

putershas been rekindled only recently, spurred by the rapidprogress in VLSI technology and the com

mercial viability of such machines. We have studied the programming and implementation of these

computing machines and have developed a body of theory for their efficient utilization. We owe much

to the rich heritage in parallel algorithms and technology developed in the 70's as reflected in the semi

nal work of Arvind, Chandy, Dijkstra, Hoare, Karp, Knuth, Kung, Kuck, Tukey and Winograd, and in

the late 70's to early 80's by Cray, Siegel, Seitz, Stone, and Valiant among others.

Multicomputer consist of a set of VLSI processors (usually 100-1000), each with its own private

memory and a capability to communicate asynchronously with other independently executing proces

sors in the system. There is no shared state among these processors. Concurrent computation can be

best described by the Multiple-Instruction-Multiple-Data (MIMD) model of computation, where each

processor executes a different part of the computation. It is expected that the result of the distributed

andasynchronous computation wouldbe identical to thatof an equivalent serial (or sequential) compu

tation, though available much faster. Considering the fact that each decade (or less) has witnessed an

order of magnitude enhancement in the computational power of uniprocessors, one could argue that

multicomputers wouldbe considered viable if andonlyif theycanoffera speedup of at least twoorders

of magnitude. For certain applications, multicomputers have indeed provided sucha speedup.

While our objectives are straightforward, the means to reach these ends are challenging. Asyn-

chrony isat the heart of concurrent multicomputing and itseffect ondistributed computation has been

poorly understood. Time is no longer a shared variable, and consequently each processor is provided

with a localtime clock. Communication betweenasynchronous processors would, therefore, require the

existence of anefficient synchronization mechanism, notonlyto ensure correctness of computation but

also to guarantee its forward progress. For instance, letthe progress of computation with time inapro

cessor i be measured by a local clock Ct{t) that increases monotonically withthe wall clock timet. At

some later time t j, processor i may need some data from aremote processor j that is ata local clock

value ofCj (t{). For anumber ofreasons, this result from processor j may not be made immediately

available to i as requested. Non-zero communication delay isone such reason. Alternatively, the local

clock Cj (t)on processor ; may not have reached C, (t{). Processor i may have to wait until such time

f2, when C.(f2) equals Ct (t{) for some 12 >t\. These reasons bring to light another fundamental issue

in multicomputing: latency. Latency (due to suboptimal scheduling of distributed computation)

enforces idle times in the processors, thus penalizing efficiency. Therefore, the performance of aVLSI

multicomputer can bestbe evaluated through a better understanding of the issues of latency and syn

chronization.

This thesis is dedicated to exploring these issues in considerable depth. We present a robust

theory with relatively few assumptions about the behavior of compute-bound problems. Thetheory was

tested, whenever feasible, through implementation ona multiple-processor system. The grindstone of

implementation has taught us many a lesson and our experience with these machines has been valuable

(and not rarely painstaking) to the extent that it served as a testbed for validation of the theory

developed. This "proof-of-concept" approach has given us theconfidence required to come up with.a

general framework for evaluating theperformance of these computing engines.

Chapter 2 provides a brief quantitative description of synchronization in parallel systems. Not

much is known aboutsynchronization in multicomputers, hencethis chapter motivatesthe chapters that

follow.

We first address the issue of latency in multicomputers. Latency can be eliminated by time

sharing the multicomputer in a multi-threaded computation, where a number of independent programs

canexecute concurrently on the samesetof processors. We introduce the notionof a time-shared multi

computer, and propose new optimal algorithms for efficient resource allocation in such systems. Our

emphasis is on the development of stable, efficient, real-time distributed algorithms (using feedback).

The onusof improving the efficiency of the implementation is removed from the shoulders of the user,

and moved tc a scheduler on the multicomputer itself. The programmer,however, retains the responsi

bility of presenting the algorithm to the multicomputer in a form suitable for such a time-shared

approach. As we describe in Chapter 3, thiseffort is minimal, relative to the rewards accrued.

We then address the important issue of synchronization for general asynchronous systems. We

develop a theory for a class of synchronization algorithms. Synchronization issues are separated from

the computational (data) aspectsof distributed computation. Use of specialsynchronization hardware is

proposed. In Chapter 4, we present new algorithms forsynchronization and derive analytical results for

their performance. The question of whether a distributed system shouldbe resynchronized at regular

intervals or allowed to proceed without^synchronization is posed, and some analytical results indicat

ing when either approach is preferred are presented. This chapter provides the theory forthe design and

analysis of a new class of concurrent computing systems, Self-Synchronizing Concurrent Computing

Systems (SESYCCS), where thesynchronization is providedby thecomputing systemitself.

A new classof algorithms, appropriately called the RandomizedAlgorithms(RA), areintroduced

for synchronizing asynchronous distributed computing systems. These algorithms, as described in

Chapter 5, promise a further enhancement in the efficiency of SESYCCS, by learning from the past

behavior of communicating processors. These algorithms find immediate application in the distributed

simulation of dynamical discrete-event systems.

Chapter 6 describes howouralgorithms for distributed synchronization fit naturally in thedistri

buted simulation of discrete-event systems. We describe how such computation can be efficiently per

formed out on a SESYCCS. Chapter 7 discusses present work in the area of synchronization in

SESYCCS and some future directions.

Chapter 2

Synchronization in Distributed Systems

Synchronization is defined as a mechanism thatensures that the result of a distributed computa

tion is correct, in that it provides the same resultas that of an equivalent serial or sequential computa

tion. Synchronization is, therefore, a fundamental issue in the design of multiple-processor systems.

The twin responsibilities of allowing fair accessto shared resources and ensuringcorrectness of the dis

tributedcomputation are delegated to the synchronization algorithm. One of the primary aims of distri

buted and parallel computation has been to partition a compute-bound problem and assign the parts to

independent processors, such that the computation terminates much faster as a consequence. The

increase in the speed of computation, called speedup, depends both on the natural concurrency avail

able in the application as well as on the task partitioningand synchronization strategies used. Thus, dis

tributed and parallel computation can only be viable if the computational burden is shared evenly

among processors, if the overhead in communications of data and control variables is small, and if the

synchronization is efficient

As the number of processors in the system could be as large as a few thousands, it is of vital

importancethat the algorithmsused be distributed, and that their performance scale well. Time is a dis

tributed variable, and correctness of the computation has to be enforced by each processor on the basis

of local information alone. Algorithms which enforce global correctness based on local decisions are

therefore zealously sought. In this chapter, we will introduce the problem of synchronization in distri

buted systems. Later chapters will propose and analyze specific algorithms for synchronization in

message-passing distributed-memory systems. Finally, we introduce a newclass of systems called the

self-synchronizing concurrent computing systems (SESYCCS).

2.1. Synchronization in shared-memory systems

In this section, we will review in brief the synchronization mechanisms available in shared-

memory multiple-processor systems. While our aim is to develop the theory of synchronization in

distributed-memory machines, we willexamine someshared memorysynchronization schemes to allow

latercomparisons of performance.

In a shared-memory multiple-processor system, the processes (residing on processors), access

common memory locations toobtain data and tasks for parallel execution. Thismodel of computation is

fine-grained (parallelism at the instruction and loop level) in nature, and scheduling of tasks is often

centralized. Best efficiency is achievedwhenevera process with a task hasa processor to run on.

The need for synchronization in shared-memory systems can arise when two or more processes

wish to read or write the same data structure. The final result of the computation then depends on the

times (and the order) of accesses by each competing process. As an example, consider the following

statements to be executed concurrently by two processes, 1 and 2.

x-y * z

y -x +z

Ifx and y are shared between the processes, 1and 2, the result of the parallel computation isunpredict

able and depends on theorder of access by the processes. Synchronization isof importance inresolving

this issue of dependency in such a critical section. Likewise, when two processes compete for thecon

trolof a shared resource (an I/O device, for instance), they both cannot be assigned the use of device,

andsome synchronization protocol hasto be enforced to serialize access.

2.1.1. Semaphores:

Semaphores are used to synchronize access in a shared-memory environment and represent a

shared datastructure into which each process canreador write. A lock is a very common type of sema

phore, regulating access to a critical section.

Lock: A lock is a mechanism which ensuresthat only one processcan access a shareddata structureat

one time. Processes compete to acquire locks on a shared variable. If a process finds a desired shared

variable unlocked, it acquires the lock, andreleases the lock aftercompletion of its task in the critical

section.Processes awaiting the release of a lock have the choice ofeither spinning in a busy loop (wast

ing cycles) or can switch context to someother task. Hardware locks, called atomic locks, are some

times provided, where actions to ensure that the lock is unlocked beforeacquiring it, andrelocking it,

are performed as one indivisible action. Hardware locks are quick and efficient because they do not

require operating systemintervention in the synchronization.

Ordering Semaphores: If there are data dependencies between successive iterations of a loop, it is

essential that the iterations be executed in certainorder. Ordering semaphores allow this by assigning to

each competing process an iteration number, /. A process is allowed to execute the loopif andonly if/

equals the value of the ordering semaphore N. After completion of the execution, the process relinqu

ishes control over the loop after incrementing the value N, allowing other processes to continue with

the execution.

Counting Semaphores: Counting semaphores are very flexible in scheduling the order of execution,

and are found useful in the management of messages buffers and queues. For instance, counting sema

phores can ensure thata process which has been waiting the longest wouldbe assigned the use of the

resource. These semaphores allow the managementof the utilization of several instances of the same

resource. The counting semaphore is given a value N. This value can be interpreted as follows:

N > 0: N is the number of instances of the resources available, when N = 1, and there is a single

resource, it is unlocked and available.

8

N < 0 : No instances of the resource are available, and -N represents the number of competing

processes awaitingrelease of the resource.

To acquire the use of theresource, aprocess has todecrement N. IfN is less than 0, it queues its

identityin the -N th slotandawaits it turn.

To release the use of the resource, the process examines if N is less than zero,andthennotifies

the first process in the queue. It then increments N.

2.1.2. Barrier Synchronization

In a typical parallel program, a number of parallel tasks are forked out to different processes by

the jobscheduler. Aftercompletion of their assigned tasks, processes mark themselves as present at a

barrier. Afterallthe processes in thecomputation have marked themselves at thebarrier, a newphase

of computation can start using the results of the preceding phase. Barrier synchronization iscommonly

used in both shared-memory systems and distributed-memory systems.

Barrier synchronization can be implemented ina number of ways. A class of computation called

Static Computation Graphs (to bediscussed inthe latter sections of this chapter) employ this method of

synchronization. The obvious method for implementing barrier synchronization is toassign toone pro

cess the responsibility of making sure all processes reach the barrier. Another common method is to

contract a tree-type interconection between the processes, where the task completion signals reach the

root through a number of intermediate levels in the tree. Use of a hardware bus for synchronization

would be especially efficient

50

45

40

35

30

25

20

15

10

5

0
No. of Processors

123456789 10 11

Figure 1:Computation on SingleBusShared-Memory System

2.1.3. Performance

While mechanisms for synchronization in shared memory systems have been understood to a

large degree, current issues that need to be solved concern the scalability of these mechanisms to a

larger number of competing processes, andalsoissues in ensuring coherence of data in private caches.

Ease of programming shared-memory machines has been crucial to their wide acceptance in the com

mercial market today, and speedup of application programs by an order of magnitude is typical with

very littleadditional effort in synchronization.

In Figure 1, we illustrate the performance of a single-bus shared memory Sequent system on a

seismic migration computation. As can be observed, increasing the number of processors up to six

decreases the computation time correspondingly. The performance quickly saturates after that, due to

'buscontention. Increasing thesizeof theproblem (in thisfigure, A represents the sizeof thedataarray)

10

improves the initial speedup.

2.2. Synchronization in Distributed-Memory Systems

In a distributed-memory system there are no shared variables. Synchronization is implemented

via messages communicated between processors. Time, being a distributed variable, implies that each

processor, i, has a local logical clock, C, (r) atareal time t, representing itslocal progress (in simulated

time) in thecomputation. Ct-(0 evolves according to thedynamics of thecomputation. At this point we

will formalize the notion of a distributed computation. A distributed computation, or a physical system

consists of N subsystems, where the state of subsystem i evolves in discrete time as a function of its

past state at time r-1 and itsinteractions with other processors ;'. At each timestep (the step sizecan

be fixed or random), the subsystem updates it state, andsends messages to othersubsystems participat

ingin the physical system. The physical system is then mapped onto a setof M processors. This map

ping is said torepresent thelogical nature of thecomputation, orthe logical system.

Figure 2 .(a) Physical System, and(b). Logical System.

S represents simulated time, and/? represents real computing time. In the physical system,
both simulated and real times progressed at the samerate. In the logical implementation on
three processors the simulated time movedslower relative to the real time. This is because
L3 was assigned two tasks, P 3 and P4, instead of one.

11

As anexample, let us consider a distributed computation represented by the data flow graph illus

trated in Figure 2a. This represents thephysical structure of the distributed computation independent of

any implementation. The vertices can represent tasks or subprograms participating in the distributed

computation. For the sake of simplicity let us assume that each tasktakesexacdy one simulated time

unit and communications are instantaneous. The task start times are shown in the figure as well. A

notion of global time exists in the physical systemandsimulated times,S, areequal to the real comput

ing times, R(which represent thereal timespent in theCPU on the computation). The implementation

of thisphysical system(ona distributed computing system) is defined asa logical system.

In Figure 2b, the physical system is shown mapped on to a logical system of three processors.

Two of the physical tasks from Figure 2a weremapped ontoone logical process in Hgure 2b. Note that

logical process LI now is assigned two tasks P3 and PA. Therefore, there is no single global time

representing the distributed computation andL2 andL1 remain idle for one real computing time unit

awaiting completion of tasks P3 and PA on L3. Each logical process has its own local logical clock

measuring the progress in simulated units with real computing time. L1 and L2 take one computing

time unit (R=l) to reach global simulated time 5=1, while L3 takes two real computing time units (R

=2) to reach globalsimulatedtime 5=1. The localtimes aremeasured in simulated time units while the

computing time is measuredin real time units (wall clock times).

This particular mappingbetween physical and logical systems is not unique. The selection of the

logical system depends on the the number of processors available in the distributed system, the

efficiency of a particular mapping, and the cost of the communications (relative to computation). In our

example, if the logical system of Hgure 2b were implementedon four processors insteadof three, the

local simulated times C,(/) in the logical system and the global times S in the physical system would

correspond to each other.

Interactions between the subsystems in the physical system are faithfully carried over to the logi

cal system, and in additionthe logical system introduces a numberof synchronization and controlmes

sages which ensurethe correctness andefficiencyof the distributed computation. The state information

12

in the logical system is correspondingly larger. The connectivity of the logical system cansubsume that

of its associated physical system largely to accommodate efficient signaling for synchronization and

control purposes. Obviously, thelogical system isof interest only if thestate of thephysical system can

be recovered from it.

2.2.1 Models for Distributed Computation

The dynamics of the physical system can be represented by a set of state transition equations.

Twocasesof distributed computation thatare especially important are developed further in this thesis.

One of them evolves in discrete time (time-driven) while the other evolves at discrete points (event-

driven) in continuous time. Time-driven distributed computation includes a wide set of engineering

problems in the solution of systems partial differential equations and those which involve substantial

iterative manipulation of numerical expressions at each time step until completion. Event-driven sys

tems are of importance in the modeling andanalysis of distributed systems in a variety of applications,

in distributed simulation of dynamical systems and for efficient implementation of computation where

activity is localized tocertain discrete (and notnecessarily evenly spaced) points in time.

Time-Driven Physical System

The physical system consists of N subsystems, Si, S2 SN with states x^r), x2(t),

x3(t) xN(t), f =0,l,2,3... that evolve according to the setofdynamical equations

Xi(t)=fi(Xi(t-l)Amji(t-l)J*i } ,<Di(0.0

»ty(0 =&/(*i(0,©i(0.O

a>,(0 represents the stochastic component of the dynamics of the distributed computation, m^(r-l)

represent communications (or messages) from subsystem j to i in time step t-1. The function, /,•(•)

updates the state while &y(f) determines which messages are tobe transmitted toother processors, j,

fromi.

The implementation of the time-driven physical system on a set of M processors is called the

time-driven logical system.

13

Time-Driven Logical System

The logical system consists of M processes, LltL2 LM. These systems evolve dynami

cally inT =0,1,2 where T = T(t) and t =0,1,2... is thereal computing time. The aug

mented states, Xi (T) and themessages Mfi (T) are represented by

xt<r)=FlQ[i<T-MMjt<T-i)j*i} ,co,(r),r)

Mv<r)=fyCMr).<Mr).r)

Inthisimplementation thelocal times of the processors C,(t) = Cj(t) = T(t),

Event-Driven Physical System

In an event-driven physical system N subsystems, Si,S2»•• •»Stf with states

*i(0 .*2<0 **(0. evolve in te(0, oo).

There also exists a sequence of times %} £xf £ ... X" such that xj" - x*~! is arandom interval

of time, when ttv. system jumps from one state to another. For example, the state could change in

response to a message from another processor. The arrival time of this message is itself a random vari

able.The statejumps to a new statewhen this messageis ultimatelyreceived.

Then the system canbe described by the following set of dynamicalequations:

Xi(xn=fi(Xi(xrl), k-(xj*) j *n, (o,(xn ,td
mijixD =gij(x(x?), (OiW), x/")

with x* satisfying x™"1 £xj* £x/". x,(•) is a right continuous function of t. m^xf0) refers to the

messages received byi from other systems j in between two successive jumps at x-""1 and x™ respec

tively.

Event-Driven Logical System

The implementation of an event-driven physical system on a concurrent computing system is

calledthe event-driven logical system.The state X,(•) of subsystemL, is a rightcontinuousfunction of

the local time Q (t). The real computingtime, /, can be continuous or discrete (as in any computer sys

tem, continuous time is modeled as discrete time steps). In the formercase, the local clock Ct(t) is right

14

continuous in t. C, (0 takes values Ttl, 7,2 If such that If - TV"1 isarandom variable for all

mand i. The jumps inthe values ofC, (r) represent the stochastic nature ofthe discrete event dynami

cal system. The evolution ofthe augmented states in the logical system can then be described by

x,an -wot"1) . woot> .-/*«). °>»ot> •rn
ATyOT)=GyfrOT). <*>iOT), if)

The progress of the computation can then be expressed in terms of rate of growth of . C,(0,

since the smallest simulated timein the logical system represents the timeup to which the distributed

computation hasbeenprogressed.

2.2.2. Causality Conditions

The distributed computation is correct iffx,(•) and mfi{ •) can be recovered from X,(•) and

My(-) for all i yj. The necessary conditions for correcmess, called the causality conditions, that

should be satisfied are,

(a). rr~l < TF < Tf+1 for allmand i.

(b). r""1 5 7J* <T" for all i, ; and for appropriate m and n (satisfying the state update

equation).

Formulating sufficiency conditions that are more general and depend both on the dynamics ofthe

systems as well as on the correctness within the programs themselves remain the responsibility of the

user.

Asynchronous synchronization algorithm ensures that the conditions (a) and (b) are satisfied at

theend of each computing timestepincrement 6/ = e, 2e ...

An asynchronous synchronization algorithm ensures that the conditions (a) and (b) are satisfied

eventually at t -> oo(orequivalently when C,(/) = ooforall i).

Asynchronous algorithm ensures that the conditions are satisfied atevery time step and that the

local clocks move forward in lock-step. In the synchronous algorithm the absence of a message has

15

also to be explicidy communicated to every other processor in the system. This is a high penalty in

communications and does not scale well with an increase in the number of processors. In addition, the

faster processors remain idle at every time step waiting for the slower processors to catch up. This

situationthen favorsan asynchronous synchronization algorithm.

The asynchronous algorithm does not incur theoverhead of enforcing thecausality conditions at

each time step. Whenever an error is discovered, the synchronization algorithm rolls back the simu

latedtime clocks"until the last time they werecorrect andthe computation begins anew. The asynchro

nous algorithm thus enforces the conditions (a) and (b) only when it discovers a discrepancy. It is of

much interestto evaluate the performance of these two algorithms.

Some observationscan be made at this point There are two notions of time in the logical system.

The first notion is that of simulatedtime, which represents the point of time in the execution of the phy

sical system. The nextnotion is that of real computing timewhich represents the timespenton compu

tation in clock cycles (or ticks) on the implementation of the computation. In a logical system, there

fore, the simulatedtime evolves as some function of the realcomputing time. Some processors partici

pating in the logical system can update their simulated timemuch faster (in real computing time) than

other processors in the system. This leads to a disparity between local simulated times in different pro

cessors at the samepointin real computing time. Inourexample shownin Hgure 2, the simulated times

of logical processors L1 andL2 kept pace with thereal computing timeuntilR =1 andthenremained at

1 until the realcomputing time reached R=2,when processor L3 reachedsimulatedtime 1 as well. Pro

cessor13 is slower in reaching the barrier because it had two tasks of size 1 unit assigned to it. In a

logical implementation of a physical system on an infinite number of processors, the simulated times

canclosely follow real computing timeswhentasks havecomparable granularity.

Let us now define G (i) as follows

G(0= [UJtmuit))\muit) ++)

In a time-stepped physical system where t evolves in discrete time,G(f) describes the precedences of

tasksand messages communicated at each time. If these precedences and messages m^t) areknown

16

apriori, i.e if G(f) =/ (r), where / (f) is a known function of t, then thephysical system is defined to

represent a Static Computation Graph (SCG).

On the other hand, if G(/) = g (t ,xfi), x2(t),..., xN(t)) is a random function of time, as in

the event-driven system, the physical system is then defined to be Dynamic Computation Graph

(DCG).

Note that G (t) for t = xf1 for somei andsomem, is unknown apriori in a stochastic event-driven

system. Thus discrete event systems fall into the class of DCGs. Some time-driven systems can be

described by DCGs as well, when the message transmission times and the messages themselves (e.g in

data-dependent computation) at eachtimestepare unknown before thecomputation starts.

Static Computation Graphs, also calledClass S, imply that the structure of the computation is

known and statically determined. This knowledge can be used to synchronize such graphs efficiently.

Dynamic Computation Graphs, alsocalledClass D, represent a general model fordistributed computa

tionwhere the taskprecedences and messages are unknown priorto thecomputation anddepend on the

stochastic evolution of the states of the physical system.

In thisdescription of the distributed system, we haveassumed that the stateof each subsystem is

influenced by interactions with every othersubsystem. In practice, this interaction is often local, each

subsystem interacting locally with just a few other subsystems.

In a logicalsystemthe system statesevolve in real computing timeat different rates in simulated

time. Hence some of the interactions present in the physical representation may not be available to the

faster logical process in thecomputation of thenextstate. The logical system then has two alternatives

toavoid making an errorin theforward computation. Ina synchronous implementation, thenextstateis

not computed unless all the subsystems havea common simulated timeand only then the lowest time

stamped event is processed. In an asynchronous implementation the logical process assumes thatit has

all the relevantinformation and computes the next state.The synchronization algorithm ensuresthat the

logical system is ableto recover from this error. This error occurs dueto thefact thatsome of themes

sages mji(Tj') were not received by processor i as it had reached simulated time 77*+1 (such that

;•?

17

T* £ Tj" £ T*+1) much earlier in computing time.

Since our primary objective is to understand theperformance of synchronization algorithms, we

will restrict formalism for its own sake to a minimum, focusing more on the efficiency issues.

We will now examine how the problem of ensuring global synchronization of logical systems

(representing event-driven physical systems) is solved in thisdistributed environment

2.2.3. Synchronous Methods

Thelocal state ofa subsystem i at r/*+1 depends ontheprevious state (atsome discrete point 77),

as well asonits interactions with theother subsystems that arebetween simulated times of 7? andJf*1.

The local clocks of the different physical subsystems are synchronous to a global clock. However,

whenmapped to the logicalsystem for thepurposes of distributed computation, the clocks tend to grow

at different rates, and furthermore, a physical subsystem may not interact with other subsystems at

somepoints in time.This implies that in a logical system the absence of an interaction also has to be

explicidy communicated. The absence of interaction between twosubsystems in the physical system is

carried over to the logical system as a nullmessage. Obviously, if the logical system were simulatinga

physical system where such interactions were infrequent, the overhead in communicating these null

messages can be very high. Synchronous methods find use in Chapter3, when thestructureof the com

putation is predictable.

2.2.4. Asynchronous Methods

When logical processes are allowed to update their local clocks on the basis of partial or incom

plete information, the clocks can move independently of each other, except when interactions take

place in the corresponding physical system (as described in the event-driven system). These methods

have the advantage that processes can move ahead in computation time using available information

without awaiting messages. The logical system corresponding to the event-driven system is itself

event-driven. Some of the events occurring in an asynchronous logical system can be false, as they

were scheduled on the basis of partial information. The price paid for this optimism is that processes

18

need be capable of recovering from errors in computation that could have occurred on the basis of

incomplete local information (when a message from a subsystem which is ata smaller simulated time

bearing new information is not received at that real computing time) These methods arc discussed in

some detail in Chapter 4.

22.5 Comparison of Synchronization Methods

One approach that distributes computation in a discrete-event system identifies the events that

have thesmallest timestamps in thesystem and schedules them for execution. We willillustrate this for

the case of an example of an acyclic queueing system shown in Figure 3. If in addition, we make the

assumption that processes can execute events only in increasing time stamp order, the efficiency of the

algorithm improves, with most of the processors doing some kind of work. The introduction of null

messages improves efficiency further. Subsequendy, we willalso describe howanasynchronous syn

chronization mechanism performs on the same network. Both the synchronous andasynchronous stra

tegiesappear to work well forthisexample.

The physical system to be simulated is described by five first-come-first-served (FCFS) queues

connected as shown in Figure 3. The logical system on five processors assumes the same topology as

the physical system. The initial condition of the network isdescribed in Figure 3,where events are each

identified with a unique identity (in small case alphabet) and a time stamp in simulated time. The

(simulated) time stamp is updated as the event traverses through the network. To simplify study further,

we also assume that executing each event takes one time unit in both simulated and real computing

times (ticks). Therefore, the time stamp (in simulated time units) of each event is incremented by the

service time (oneunit)andby the waiting timeat each processor. Each successive snapshot represents

the state of the network after one computing time tick.

The first strategy for synchronization is implemented in two phases, a synchronization phase fol

lowed by acomputation phase. In the synchronization phase, the events in the system are rank ordered

onthebasis of their timestamps. At theendof thesynchronization phase, thecomputation phase begins

19

with the identification of a process thatcan begin processing its input queue. The processchosen is the

one with rank = 0. Once the event has been processed the synchronization phase resumes and the events

are rank ordered again.

One way of rank ordering the events would be to interconnect the processes together in a virtual

ring. Each process communicates a message containing its identity and its current timestamp to its

neighbor in the ring. The rankrk of each process &, is initialized to 0. Each process receiving a mes

sage, increments its rank by one if the event in its input queue has a larger time stamp than the time

stampof the event in the receivedmessage. The message is then forwarded to the next process in the

ring. If there are N processes in the system, thiswill takeN communication times.The synchronization

phase ends wheneachprocess receives its own message. The computation phase thenbegins, with die

process assigned rk=Q processing its inputqueue. This computation is shown in Figure 3. The entire

computation is terminatedafter 10 steps.

In the algorithm just discussed, there were no additional synchronization messages between

processes. The concurrency of the system is limitedto the processes with the smallestrank. With an

increase in the number of processes, most processesremain idle resulting in an inefficient implementa

tion of the logical system. We will now describe how null messages can speed up the execution. Null

messages arenot real events, but aremessages that informthe processes when it is safe to update their

local clocks. The knowledge that the service time in each process takes one time unit is used with

advantage in lettingrecipient processors know when they couldexpect event messages. If time stamps

can be predicted in advance, the efficiency of a distributed computation improves as a function of this

lookahead.

In a synchronous strategy (See Figure 4), the algorithm ensures thatevents are scheduled forexe

cution in time stamp order. At the firsttime tick, processes2 and 5 are enabled, and process jobs (e , 6)

and (b , 7) respectively. Job (e , 6) exits with the identity (e , 8). The processing time on process 1 is

one simulated time unit but the local clock on process 2 was previously 7 (it had processed (b , 6) pre

viously). Therefore, the time stampof job e is 8 instead of 7.

20

At this instant process 2 has information thatit will not send any task to process 5 with a times-

tamp less than 8, hence it transmits a null message (n, 8) to process 5. This allows process 5 to

schedule event (c , 8) for execution in the next time tick. Similarly, in the next time step, null message

(rc, 11)assures process 4 thatit can schedule event (f , 11) forexecution.

The computation therefore proceeds much faster with the introduction of these messages expli

cidy for synchronization. The sequence of snapshots in Figure 4 illustrates that the termination occurs

in 6 time ticks.

The performance of asynchronous synchronization is illustrated in Figure 5. Here, processes are

not blocked, andeach process executes whatever task is available at hand. However, ascanbe seen in

figure 3, process 3 realizes it has made an error in time step 1 when it had scheduled event (d , 9) for

execution withoutawaiting the arrival of (e , 8). Fortunately, the effect of this error was not propagated

by process 5, asit had scheduled event(c , 8) for execution. The process 3 recovers from theerror and

sends anantimessage to process 4 asking it to delete event(d , 8) from itsevent list The remainder of

the distributed computation proceeds as shown in the sequence of figures, and terminates in 6 time

ticks.

This example serves to introduce the different methods of synchronization used in message pass

ing distributed systems. The aim of this thesis is to provide the foundation for the design of self-

synchronizing distributed systems. In themodels we present and in subsequent analyses, we willoften

find it rewarding to compare the performance of self-synchronizing distributed systemswith the perfor

mance in conventional distributed systems. Ourmodels aresimple androbustand allow us to study per

formance of synchronization algorithms when the conditions of asynchrony are severe. We will point

out some limitations to our analyses as well, so that the readerwill be advised as to when they are not

applicable.

Synchronous methods incur a high overhead in idle times when blocked processes are unable to

advance their clocks because global information is not available locally. The introduction of informa

tion or null messages partly ameliorates this problem but adds to the communication overhead. Each

21

processmust now keep informing every other processin the system updated estimates of its local time.

For obvious reasons, such an approach would scale poorly with an increase in the number of processes,

when the cost of communicating updates takes up a significant portion of the computation time. Patho

logicalexamples, involving feedback, have been constructed with poor efficiency (0.05 - 0.1) of imple

mentation.

Asynchronous synchronization allows the local clocks to drift apart rather than blocking them

from doing so. This achieves the maximum potential of concurrency available in the computation. The

disadvantage to this method is that occasionally the process has to undo the results of erroneous compu

tation. The effects of secondary error propagation have also to be considered. The performance of such

optimistic methods has not been clearly understood, but efficient implementation has been shown for

some balanced applications. Another advantage to using asynchronous methods arises from the fact that

the user does not have to synchronize her logical processes for efficiency. Some efficient strategies for

such synchronization are studied in Chapters4,5 and 6.

Consider a system with a few thousand processors,and a largernumber of logical processes, used

in a distributed computation. It is unusual and often impossible for any system designer to be able to

synchronize this distributed system part by part The onus of synchronization should rightfully rest on

the distributed computing system, heralding the introduction of self-synchronizing concurrent comput

ing systems which are responsible for handling the synchronization responsibilities for a distributed

application. The application expert subdivides the algorithm into parts and assigns processes to proces

sors. The system then synchronizes the distributed application. The synchronization strategies are to be

implemented both in the hardware and software. The separation of synchronization and control

hardware from computation appearsto be a viable alternative to traditional intra-computation synchron

ization methods.

(SM)

(c,8)

(£.14

(fl,6)

EH

(c,8) /r\^>8>
id$)

^ (SM7

(e,10) te44)
*4)AizrT7)

Figure 3: Synchronizationof an Acyclic Network

22

(c,8)

CO

ED

(dM)

This figure depicts the successive snapshots in the distributed computation of the events in a logi
cal system consisting of five processors. The entire computation takes 10 time steps to complete,
interleaved with time steps required for resynchronization. A ring type synchronization would be
inefficient, and a broadcast communication mechanism would improve performance.

(5,14)

(<*,9)

(a ,6)

n n »

o i(T)-fr-»

E

(rf,ii)

CO

Figure 4: Synchronous Synchronization

23

(a ,6) v—/

(d,10)

EH

re i

(6,8)

o o >(5) oo>
(/\H) v-y

The same computation is repeated using a synchronous computation algorithm, with specific mes
sages used for synchronization. Here the introduction of "null" or information messages,
improves the concurrency available in the system. Deadlock can also be shown to be avoided in
cyclic systems. The computation proceeds faster as a result, completing in 6 time steps. These
classes of methods are popularly known as conservative methods.

(c,8)

(S.14) (5,15)

(<j,6)

(rf,9)

<f ,11) ^-^ («.7)

(rf.H)

(5,16)

Figure 5: Asynchronous Synchronization

Xd,10) (c,8)
O 0

[I

(rf.10)

24

^^ (6,8)

(a ,7)

nnn ,

Onnnr>
(5T17J

The simplicity of an asynchronous computation is shown in thisdiagram. There is no synchroni
zation overhead, but there is additional processing whenever an error is detected. The computa
tion proceeds, with processors executing tasks whenever a task is present in its inputqueue. The
possibility of error is ignored, but corrective action is enforced once an error in execution is
detected. In this particular example, during time step 2 and 3, the system recovers from error
(the error occurring whenevent (d,9) was processed before event (e,8). The computation in this
case also is terminated quickly. While maximal concurrency is extracted, recovery from error can
penalize efficiency. Therefore, synchronization algorithms needbevery efficient

25

2.3. Self-Synchronizing Concurrent Computing Systems

A Self-Synchronizing Concurrent Computing System (SESYCCS), (pronounced, say-six),is dis

tributed computation on message-passing systems, where thecomputing system provides means for the

synchronization of thedistributed computation. The roles of thecomputation and the synchronization

(i.e. control) are clearly separated from one another. This synchronization could be provided either

through hardware (special busses, etc)or through software (intheoperating system) means.

For obvious reasons, it would be of interest to identify those classes of scientific computation that

would execute efficiendy in a SESYCCS environment Ourstudies indicate that two important classes

of scientific computation lend themselves conveniendy toanefficient implementation ona SESYCCS.

2.3.1.Why SESYCCS?

As describedin Section22, the physical systemrepresenting the computation evolves stochasti

cally either in discrete-time or at discrete points in time. Whatever be thenature of thephysical system,

theefficiency of theimplementation depends onthelogical system representing thecomputation.

In the general case where the physical system can be represented by a discrete-event physical

system, wehave a number of ways available to select a corresponding logical system. Ina synchronous

system, the logical clocks on thesystem move synchronously and in lock-step. The overhead in ensur

ingthatclocks move in lock-step canbequite high andperformance pooras a result [ChMi79].

In an asynchronous logical system, the logical system follows the dynamics of the subsystems

contained by thephysical system. Theoverhead in resynchronizing clocks thatdiverge rapidly and the

excessiye memory requirements for flow control canleadtopoorperformance [JeSo83].

We propose a theory for self-synchronization where the concurrent computing system provides

the synchronization facilities. In this approach, we relax thestringent communication requirements of

the synchronous case. We propose that the logical processors (or processes) in the logical system

interact in a Bernoulli environment (see Section 2.3.3) Each logical processor (at some points in time)

probabilistically decides whether it wants to communicate local clock information to another logical

26

processor in the logical system.

A number of rewards accrue from this approach. First, efficient algorithms for self-

synchronization havebeen formulated thatpromise an improvement in performance over conventional

methods of intra-computation synchronization. Secondly, the buffer sizes (memory requirement) are

also guaranteed to be bounded in an asynchronous environment The excessive communication over

head imposedon synchronousmethodsis also eliminated.

In Chapters 3 and4, we derive concrete results for theperformance of self-synchronization algo

rithms. In Chapter5 we establish that memory requirements in a SESYCCS environment are bounded

as well.

2.3.2. Self-Synchronization for Static Computation Graphs (SCG)

The first class of concurrent computationdiscussedin this thesis is one where the data flow in the

computation can be expressed by a fork/join typenetwork. A numberof paralleltasksare createdat a

forkand the results merged at ajoin.G(t)isa deterministic function of time,implying that thesecom

putations can be expressed as Static Computation Graphs and the synchronization mechanism can be

synchronous in nature. Theconcurrency available in thesystem, therefore, varies deterministicalry with

time, and efficiency of thecomputation can be poor if resources are assigned to processes without tak

ing this temporal variation intoconsideration. Even if the tasktimes are assumed deterministic, manual

synchronization of such computation on thebasis of heal information alone soon becomes intractable,

partly because eachprocessor in thedistributed system has toschedule resources to itsprocesses, keep

ing in mind the requirements of other processors and other users as well. Our solution includes the

development of an algorithm which identifies idle processors, and assigns "useful** tasks to them.

These new tasksare culled from poolof tasksassociated with independent programsexecutedby other

users of the SESYCCS.

In Chapter 3, we willhave theoccasion to study in somedetail a subsetof fork/join typecompu

tation where the task execution times are assumed deterministic. However, the execution times are unk

nown both to the user and the SESSYCS. We will describe how the concurrent computation can be

27

efficiendy performed when the computation isrepeated over anumber of instances of the input data. A

perturbation algorithm allows the SESYCCS todetermine iteratively the static structure of the compu

tation graph based on input-output considerations alone. This knowledge of the SCG isthen utilized in

time-sharing the system with other independentusers.

Concrete results onthe performance of SESYCCS onClass S typecomputation are presented in

Chapter 3, along with results from the simulation of the algorithms on test examples. The interested

reader is referred to [MaMe88] for details on a Class S seismic migration computation implemented

on an NCUBE multicomputer.

2.3.3. Self-Synchronization for Dynamic Computation Graphs (DCGs)

A typical example in the second class of scientific computation suitable for execution in a

SESYCCS framework, is best described by the computation involved in distributed simulation of

discrete-event systems (Chapter 6). Here both task precedences and execution times are random in

nature. Efficient synchronization of such computation is very difficult even in systems witha few pro

cessors. Indeed most present algorithms scale poorly with thenumberof processors. We present a new

clock model for such dynamical asynchronous computation, and specify how the computation evolves

with time.The model presented in Chapter 4 is sufficiemly general to describe a number of computa

tional problems in this framework. We now make precise the notion of asynchronous communication,

andits effect on the clock synchronization. The modelpresented is a specific caseof the logical system

for the event-driven DCG describedearlier, but it is sufficiendy general for the purposesof the analysis

of self-synchronizing concurrent computing systems. We now wish to model the behavior of logical

clocks with computing time in the distributed asynchronous implementation. C'H represents the logical

clockof processor i atcomputing time stepn. Thismodel laysthe foundation for the models for logical

system that are developed in the chaptersthat follow.

In an TV processor logical system, { Cj , n £0, i =1,..., N } isdefined as follows;

[T%, m =1,2... }are Bernoulli times

That is,

28

Prob [l5+i -12 =* }=Pij(l -pi})k-\k =1,2,3...

If

Otherwise, if

n=T% ; CU=FjiCl,Ci.ab

Qualitatively, the logical system for a Dynamic Computation Graph (DCG) consists of a setof Af

interacting processors (or processes) whose local clocks evolveasynchronously with real time n. Each

processor i executes some assigned tasks, and in addition, communicates and receives results from

other processors j atrandom points in time, T'J and T£, respectively. In our description of the logical

system for a dynamic computation graph, werequire that theinteractions be Bernoulli in nature. Thisis

a conditionwhere each processor i can communicate with any processor j at the end of each time step

with a probability p%J. Bernoulli communications isaweak requirement on the structure of the logical

system. This is because of the fact that it can model a number of other communication patterns as well

(by choosing pVj appropriately). In addition, it iseasy toimplement on a distributed computing system

and guarantees finite buffer sizes in theSESYCCS (Chapter 6). C'n represents thestate (local time) of

the processor j at time step n inthe computation, al isarandom variable would represent the incre

ment in the local time at time step n+1 if no messagewere received from other processors between n

and n+l.Fj(-) determines the evolution of the local clock as a function of its previous local clock, CJn,

the received remote clock information, Cln (or the lack of it, <J>), and aJH. It is likely that processor j

receives more than onemessage at some pointand the function Fj(•) incorporates all the newinfor

mation available into computing the next state.

29

2.4. Summary

It is clear from ourdiscussion so far, thatin a system whereprocessors differ in their rates of for

ward growth, inefficiency manifests itself as idle times in the faster processors in a synchronous

environment andasresynchronization of local times in anasynchronous environment The SESYCSS,

therefore, hasto provide efficient synchronization to ensure thatthedynamic computation graph is exe

cutedcorrectly andwith a minimumof direct or indirect overhead.

In Chapter 4 we derive new results for the estimation of the progress of computation on a

SESYCCS with two processors. Effectof communication delay is also captured in ouranalysis. Closed

form results derived were then confirmed from detailed simulation. Algorithms for the two-processor

SESYCCS were then extended to the case of a multiple-processor SESYCCS. A multiple-processor

•SESYCCS hasa number of unique problems associated with its synchronization. We propose two algo

rithms forself-synchronization. The first, Concurrent Resynchronizations (CR), is analyzed andits per

formance is compared with another algorithm, Successive Resynchronizations (SR). The main result

from this comparison is thatoccasional resynchronization of all the processors is far more efficientin

terms of efficiency of forward computation as well as in terms of memoryrequired by the concurrent

system, than for thecase where synchronization is enforced aspart of thecomputation itself. Chapter 4

discussesroleof synchronization in Class D computation and is self contained.

SESYCCS for both Classes S and D, as described in Chapters 3 and 4, use deterministic algo

rithms to synchronize computation that often had a temporal (deterministic or random) variation as

well. A natural extension of the algorithms would be to introduce a "learning" component into

SESYCCS. The cases for which this is possible areenumerated in Chapter 5, and closed form results

are derived to illustrate their efficiency.

Anotherimportant resultwas derived in this framework. In Chapter 5, we provedthat asynchro

nous communication is possible in a bounded memory environment Algorithms for distributed syn

chronization, especially in the context of distributed simulation, assumed that communications were

synchronous, that isboth thesending and the receiving processors had tobe ready to send and receive,

30

respectively. This restriction leads to deadlocks and subsequendy expensive methods to detect and

resolve them. We show that Bernoulli communicationsensure bounded message buffers. This guaran

tees that SESYCCS are in fact realizable in practice.

We then study the application of these results to the problem of distributed simulation. Perfor

mance of distributed simulation of discrete event systems has been very poor, and our objective has

been to make it efficient In Chapter 6, we propose a new algorithm. Wolf, which builds upon the

theory developed earlier in the thesis to provide an efficient distributed environment for distributed

simulation on multiple-processor systems.

Chapter 3

Self-Synchronization for Static Computation Graphs

31

Scientific computation, especially in digital signal processing applications, canbe represented in

the form of a networkof fork/join networks asdepicted in Figure 1. During the "computation" phase,

the fork assigns tasks in parallel to a number of processors, andthen the results of thesecomputations

are "merged" appropriately by a join type network. The forks and the joins are logical processes and

their functions can be carried out by designated processors in the distributednetwork.

As can also be observed in Figure 1, the concurrency in the computation varies with the global

clocks in the system. In a distributed environment processors are self-timed. Unless efficient syn

chronization is providedscheduling algorithms areunableto extractthe concurrency from the computa

tion. Specifically, all the processors arenot busy in every "phase" of computation. Idle processors are

defined to be "inactive" in those phasesof the computation. Moreover, all the processors participating

in a phase of computation arenot busy all of the time. Thus these processors are only partially active

during the computation phase. The presence of both inactive and partially active processors represents

an inefficiency in the concurrent computing system. Our objective is to schedule execution such that

computing resources are not wasted, and such that these processors are able to execute tasks from other

user programs as well, to offset this inefficiency.

32

While the objective of this chapter is straightforward, a number of issues complicate the self-

synchronization of the distributed computation represented by Static Computation Graphs (Chapter 2).

First of all, even if the user were willing to schedule a computation involving thousands of processors

(and processes), theexecution times of each task are notknown a priori. In addition, theuserdoes not

know therequirements or thepriorities of theother users in thesame computing system.

Computation Phase 1 Computation Phase 2 Computation Phase 3

Figure 1:A StaticComputation Graph

In the SCG illustrated above, the computation assumes a fork/join type structure. In each
computation phase, a fork assigns tasks toa few processors in the system, while the other
processors remain idle or "inactive." The objective of a self-synchronizing system is then
be to identify the active and the inactive processors within each computation phase and
assign useful work tothem. Processor 4 is ismarked active (complete circle) in Phase 1and
Phase 3, but markedinactive (dotted circle) in Phase 2. Processor 4 could just aswell have
been scheduled to be active in Phase 2 insteadof in Phase 1. Further inefficiencycan result
if the task sizes within each phase are unequal, when the completion time in each phase is
dominated by the worst case.

33

The onusof achieving the optimum useof computing resources lies, therefore, on the computing

system itself. Our proposed solution involves the use of a distributed perturbation algorithm which

allows the time-sharing the processors amongst the processes of a number of independent user pro

grams. The only restriction is that these programs berepresented by Static Computation Graphs (See

Chapter 2).

Ourapproach in this chapter is as follows. In Section 3.4we specify the structure of the Static

Computation Graph (SCG), alternatively called Class S computation. It may be argued that Class D

subsumes Class S. This is true. But the fact that Class S is more restrictive in structure allows us to

synchronize these programs along with others in the same class in a way that allows optimum use of

computing resources. We will tackle the challenging problems of synchronizing Class D problems in

Chapter 4.

In Sections 3.7-3.9 we present a distributed algorithm thatuses the traces of eachexecution runto

identify processes that are active in each computation phase. Also identified are those processors that

haveadditional computing resources (which can be utilized toexecuteindependent userprograms).

Later sections provide concrete results on the improvement that canbe expected from usingSelf-

Synchronizing Concurrent Computing Systems (SESYCCS) for solving static Class S problems.

Specifically, we make precise the notion of critical path computation. We also describe the rewards

thatcan be accrued by migrating processes within the same framework. The chapter concludes with a

brief description of a seismic signal processing application which lends itself to computation on a

SESYCCS.

3.1. Introduction

Much recent interest has been directed towards using parallel machines for fast and efficient

scientific computing. Parallel machines built from inexpensive hardware can deliver performance com

parable to supercomputers at a much lower cost to performance ratio for a large set of engineering

problems. For best results, however,the computation hasto have enoughinherentconcurrency to fully

34

utilizethe parallel hardware available andreduce the latency.

Distributed computation is organized as a number of cooperating processes scattered over a

number of computing processors. Processes constituting independent programs, however, compete

with each other for resources. The computation is synchronized through a message passing network,

and messages are used to communicate tasks, information and other control signals, all of which are

used by processes toadvance their computation. Processes typically execute a task, then communicate

results to other processes and/or await results from other processes before resuming computation. Each

processor has its own memory, and its processes share the resources within the processor. Each of

these processes can either be"asleep" (ready torun) awaiting messages, resources orthe scheduler's

signal orcan be "running" in memory and performing some useful task. In case more than one pro

cess is running at the same time within a processor, we assume that they share resources and have

sufficient memory toexecute. Most processes will beassumed toexecute scientific computation; tasks

which have a medium to large grain when compared to communication costs [See AtSe88]. This is

because communication is expensive compared to a single instruction execution time, and this para

digm willnotsupport fine grained applications efficiendy for thesame reason.

Most parallel machines at present support aspace-shared approach to sharing processors. Each

user orprogram is assigned asetof processors which do not overlap with the sets assigned toother pro

cessors. This approach has the advantages that scheduling tasks for execution becomes easy, consider

ing task execution times are predictable, but the hardware utilization remains poor [See AtSe88]. Due

to latency, however, the effective throughput interms of MFLOPS could bereduced. In some applica

tions in the distributed simulation of dynamical event-driven systems, efficiencies as low as 5% have

been reported [Fu88]. We propose time-sharing the processors such that each user can use each and

every one of the processors available in the machine. Note that time-sharing in this context refers to

sharing the same processor with another set ofusers, and itdoes not necessarily imply that users use the

CPU resources available in a round-robin fashion. The scheduling of this multiuser (and multipro-

grammed) parallel machine can bevery efficient if some algorithms presented in this chapter are used

bythe scheduling kernel. The scheduler works iteratively and automatically changes its schedule as the

35

execution of the distributed computation proceeds in a SESYCCS environment

Each algorithm has an upper bound on its execution time, Tseq, that is required by sequential

computation on a pieceof hardware. This computation time can be reduced to T if the concurrency

in the computation is completely utilized (with an infinite number of processors solely executing the

computation in parallel). However, in practice we havea finite numberof processors and the presence

of other processes (competing for resources) limits the execution time to at least TNt where N is the

numberof processors available. Our aim is to schedule processes for execution such that the best use

of the parallel resources is made while gettinganacceptable execution time.

Processes communicate via messages; a process going to sleep when it has completed its active

phase and transmitted updated information to successor processes. It sleeps until it receives messages

with new information from all the processes that it expects to communicate with. In a synchronous

synchronization environment, we expect a monitor process to ensure that a process is scheduled for

computation only after it receives all the relevant messages from otherprocesses. For sakeof clarity of

expositionwe demarcate these phases in activityand sleepas the active and inactive phases of the pro

cess respectively.

The algorithm proposed in this chapter is a two-pass algorithm. In the first pass, the algorithm

determines the information it needs from the data flow in the execution of the user program, and in the

second pass it determines a dynamic schedule for all the user processes in each processor using the

informationextracted in the firstpass. Our processes areassumed to execute scientific computation that

can be described by a Static Computation Graph (SCG). The schedule is automatically modified to

include the generation of new-user processes and termination of old-user processes.

3.2. Message Passing Parallel Machines

In this section, we describe a typicalmessagepassing parallel machine, which consists of a set of

computing processors (P) interconnected via a message passing network (IN). Each processor is a spe

cialized floating point processor capable of executing computation assigned by a userprogram in a high

36

level language (e.g. FORTRAN or C), and has its own private memory. The private memory is typi

cally organized into the user memory (UM), system memory (SM), and the message memory (MM).

The system memory is usedby the operating system on each processor to handle inter-processor mes

sage communications, scheduling, interrupts and other lowlevelsystem functions.

The message memory(MM), is usedto store messages for transmission to otherprocessors in the

system. Communications are usually implemented using an asynchronous handshake protocol. The

user memory (UM) stores the user program and data. Typically theUM is very small (1/2 Mb), and

secondary access may be necessary for large programs. The local variables are stored in the UM, and

when messages are to be communicated with neighboring processors, the operating system is invoked

to copy the variables into the MM, andthen transmits the message to the MM of the target processor,

where it is subsequendy read by the destination process. The interconnection network (IN) is usually a

hypercube ora torus routing network [See DaSe8S]. Message passing between non-neighboring nodes,

implemented using a virtual cut-through type algorithm, is very efficient, making message costs for

multihoptransmission comparable to thoseof nearest-neighbor communications.

Messages sent between processes are identified using the following fields. The control fields

identifywhetherthe message is to be treated asdata ora migrated process region.

For read calls the following format is used;

[buffer, length, source, type, control]

For write messages, the format used is;

[buffer, length, destination, type, control]

Here buffer and length refer to the length and address of the message buffer which stores the

message. The source and destination fields are process id's and type isa qualification todiscriminate

between dissimilarmessages communicated between the same pairof processes.

37

3.3. Static Computation Graphs

The parallel program is developed with thearchitecture of the message-passing machine in mind.

The algorithm is broken down intoa number of smaller parts, each of whichis defined as a process and

assigned to a separate processor. These processors carry out tasks whicharedescribed in a high level

user program usually written in FORTRANorC, andproceed withcomputation. At the end of the first

active phase, the process communicates the results of its computation to some of the other processes,

and awaits the receipt of messages, if any, from other processes. These processes complete their own

active phases before transmitting and receiving messages, but this is not necessarily the case. Most

scheduling is done locally on each processor, the initial mapping being arbitrary. This, coupled with

the fact that parentprocessors may be loaded down with other user programs,results in most processes

"waiting to run in memory" for unpredictable amountsof computing time. As a consequence there is

on 'jnderutilization of processing resources, unacceptable responsetimes and loss in concurrency. The

active phases themselves cannot be determined by each processor as they depend on the run times of

otherprocesses (which in turndependon unrelated userprograms).

Local information available in each processor is not sufficient to handle the scheduling of users

with differing priorities, or to handle migrationof processes to another processor when resources are

available, or to minimize idle times when the computation is repetitive in nature.

It is for these reasons that conventional parallelmachines have adopted the simpler space-shared

approach to implementation of parallel computation. In this chapter, we propose an effective

automated approach to determining an optimal schedule for time-shared parallel machines in a

SESYCCS environment

As mentioned in Section 3.2, the synchronization of the distributed computation follows a two-

passprocedure. The first pass suspends execution of other userprograms, andconcentrates on a single

target userprogram. The host then determines anactivity graph for each process, and this information

is used to determine a schedule for this program and then the same task is repeated with other user pro

grams, each time scheduling a program taking into account the requirements of other user programs

38

already scheduled. A more comprehensive description of the advantages and limitations to our algo

rithms will be given in later sections (3.7-3.9). The next few sections describe some properties of the

fork/join typeof networkthatprovides aconcise description of thestatic computation graph.

Let us now describe the mechanisms which allow the implementation of the transition of a pro

cess from its inactive phase to its active phase. A process "sleeps" while awaiting a specific number

of messages from a set of cooperating processes. However, the scheduler may delay scheduling of the

active phase untilsuchtime it thinksit is appropriate to do so. Oncethe static structure of thecomputa

tion is determined, the resources usually assignedto a user program in its inactive phases can alterna

tively be assigned to another independent userprogram thatcanutilizethem.

3.4. Structure of Static Computation Graphs

Static Computation Graphs as described in Chapter 2 have a static precedence structure which

distinguishes them from the class of Dynamic Computation Graphs. This additional restriction allows

thedevelopmentof a numberof algorithms whichexploittheirstructure to optimize computer resource

assignment The basic idea is as follows. If acomputation graph has a static structure that requires it to

restrict the use of computing facilities to only certain periods of time, the computing resource that is

unused for the remaining period of executionmay as well be utilizedby another independent program.

In a uniprocessor case this leads naturally to the concept of pipeline-interleaving. In the multiple pro

cessor domain , however, efficient algorithms need be developed so that a number of processors in the

logical system are able to coordinate and time-share computing resources with other independent pro

grams executing on the system.

We will make precise these notions by developing the structure of SCGs in the form of fork/join

type networks. A join-type network collects the results of a number of independent computations from

input processes (or sources) 5j(0, •, •, Sn(t) and performs some computation ontheaggregate before

redirecting theresult to another set of processes viaa fork-type network. The join-type network has no

control over the sources toits inputs, it needs buffers tostore inputs until such time tl when inputs from

39

all sources arrive at the join-type network. In other words, the join type network needs an input value

from each of its buffers beforeit can produce any output The join-typenetwork then takes one piece

of data from eachof its buffers andmerges them together intoone outputresult This implies thateach

of thebuffersizesin the join-type network willbe reduced by one.Let us suppose for the sakeof argu

mentthat oneof theinput sources S^t) generates inputs to thejoin-type network at a much higher rate

than other sources. This means that the buffer corresponding to S^t) will grow very rapidly in size

with a possibility of overflow. We would therefore like to know when buffer sizes can be guaranteed

stable. We can then ensure that SESYCCS for SCGs are realizable in practice.

A Join-Type Network (J-TN)

Considerthe network illustrated in Figure 2. Sources S^t), S2(t),..., SN(t) provideN inputs

to their respective buffers bi(t), b2(t), b3(t),..., bN(t). The buffers operate like a first-in-first-out

stack,where data is taken in and out in order of arrival times at the buffer. The buffer bt{t) at time t

takes the value of its most recent input For example, if the nrt input a, toirt buffer arrived attime tH,

then bi (t) takes the value a for the entire time interval until the arrival ofthe n+1* input at time fj+1.

Let us assumethat the inputsare Poisson. This assumption implies that the interval between suc

cessive data inputs are independent This is routinely used in queueing analysis to model behavior of

inputs when litde else is known about their statistics. The sources 5,- transmit atPoisson rates X,-, with

the n* arrival attime f'„ to the i* buffer. For t £ t*t each buffer has atleast n input data points. We

quantify our model of the J-TN as follows,

vf(n)= MO'/(*',.+i >'*'*!.}

For all n , i , if t < r£, then v,- (n) = ({>.

lr(/+e)=£(/'(v1(n),v2(«) vN(n))I[t\+l>t*t\}

where

t\ = {min t I v, (a)**,*€ {1,JV}}

40

and/ (vt (n), v2(n) vw (n)) is a program which operates on the data in the buffers and /

is the indicator function which takes value one (zero) when the condition enclosed in the {} is true

(false). Qualitatively, the output isproduced only when allthe input buffers have at least one input so

that y (n)=/ (V! (/»), v2(n) vN (n)). Here, Y(n) is defined in a manner analogous to

vf (n),and is the nrt output from the J-TN. 8 isthe processing time required bythe J-TN togenerate an

output given the inputs. The standard multiplexer isa degenerate example ofaJ-TN.

S2(t)

53(0

S4(0

4 1 1 I I I 1

I 1 I I I I

<\ I I I I I I

MINI

Figure 2: A Join-Type Network

A Fork-Type Network (F-TN)

AFork-Type Network takes inone input and outputs N outputs. AFork-Type Network is illus

trated inFigure 3. A F-TN has a single input buffer vx (n) andN outputs y, , i = 1,2 N and

theoutputs arerelated to theinputs according to

Yt(f) = £/i(v!(ii))•/(*•„+!>'*'\)
n=l

In general, we could provide for a selector set S which determines which ofthe outputs Yi (f) would

change, enabling a probabilistic routing, varying with time, from the inputs to the outputs. Astandard

demultiplexer isthen a special case ofthe the F-TN, where each successive input (in time) isrouted toa

successive output link (in space).

41

*iOO

o
5(0

D

Figure 3: A Fork-Type Network

A Simple Process

A simple processp is one which accepts an input,x (n), and produces an output,y (n). UP

is the processor which assigns cp fraction ofitsCPU time top then tp isdefined tobethe time taken by

p to produce an output A simple process communicates withotherprocesses only when it has com

pletelyprocessed the dataassignedto it (Figure 4).

x(n) ^^-^ y(n)

-M P 1 •0
Figure 4: A Simple Process

A Compound Process

A compound processis composed of a number of processes interacting with each other. Each of

these processes is spawned by an independent multitasking processorwhich assigns a certain fraction

of its CPU time to its child process. An example of a compound process is shown in Figure 5 where

processes P*p2,.... pn interact to process input data. Thedataflow allows for feedbacks, and mul

tiplesubsequent visitsby the input to eachprocess. Theprocesses may generateshared variables which

are transparent to the input-output specifications. We will discuss these compound processes further

and develop their properties. Most multicomputing environments can be described with compound

processes.

42

y(n)

Figure 5: A Compound Process

A Simple J-TN (SJ-TN)

A Simple J-TN is a J-TN whose inputs are all simple processes. The SJ-TNprocesses the data

fromeach of the individual processes to produce an outputaccording to the equationsfor the SJ-TN.

A Compound J-TN (CJ-TN)

A Compound J-TNis one whichhasat leastoneinputthat is a compound process.

Pipes

Pipes allow for processes to communicate in a specified order. Output from oneprocess is fed

into the input of anotherprocess througha pipe.

At this point wedigress anddevelop a few properties of theJ-TN thatwould be useful in subse

quent analysis of static computation graphs. In effect we will be deriving some stability results that

will determine if SCGs are realizable in practice.

3.5. Properties of Static Computation Graphs

Static Computation Graphs would be realizable in an implementation if and only if the buffer

sizes at the J-TNs are finite in size. We will now examine the dynamics of buffer sizes with different

types of input While it is not surprising to observe that buffers can overflow when the input sources

emit data at unequal rates; it is also true that the J-TN is unstable even if the inputs rates are equal

43

(under some conditions). Wewillproceed immediately toestablish thisfact

Stability: Consider a J-TN with two Poisson input sources, 5! and S2 as shown in Figure 6. If the

buffer sizes in bx andb2 aregiven by \bx I and \b2\ then a J-TN is stable if andonly if (bl, b£ is a

Positive Recurrent Markov chain. Therefore, a J-TN is unstable if its expected buffer size is infinite.

Sx(t) bjjn)

S2(t)

ariiiK^y(o

nnnsr

Figure 6: A J-TN with two inputs

Proposition 1:

Let the sources to a J-TN be S{ and S2. If the sources are independent and Poisson, then the J-

TN is unstablefor all positiverates A.,- > 0.

Proof: Let us assume that the Queues Q i and Q2 have service rates, \i{ and u? and let the inputs S i and

52 be independentPoisson sources.

Case 1: u.! = M2 = <»and^! = X^ = X

The proofis as follows: If bi and b2are the buffers from sources 1 and2, then Ib11 - Ib21 follows a

one dimensional random walk with the following transition probabilities.

P -1
,+i 2

The underlying Markov chain is, therefore, null recurrent [See Wa88], This also implies that

11 bi I - Ib211 grows without bound for all positive rates. (The probability of 11 b{I - Ib211 becom

ingzerois one,however, theexpected time forthisto happen is infinite.)

Case 2: Xx is notequal to ^

44

In thiscase, the underlying Markov chainis transient andhence, theJ-TN is unstable.

Therefore, we can conclude that independence of the two Poisson inputs is a sufficient condition for

instability. Q.EJ).

This interesting result was derived with very few assumptions other than Poisson flow. Deter

ministicflows,for example,do not result in instability if theiraveragerates are same.

Proposition 2:

The J-TN withinputsroutedprobabilistically from the outputof a M/M/l queueis unstable.

Proof: From the sampling theorem for Poisson processes [Wa88], the sampled output processes are

independent and from Proposition 1, this impliesinstability.

QJEJD.

Theorem 1:

The J-TN fed by N Poisson sources with rates A, is unstable for all positive rates if any two

inputs are mutually independent

Proof: Follows from Propositions 1 and 2.

3.6. Discussion on Join-Type Networks

Theorem 1 implies that a J-TN is notrealizable in practice with finite buffer sizes if its inputs

were independent and Poisson. It is conjectured that the J-TN is unstable for all random inputs with

independent inter-arrival times (independent increments). This can be visualized bya trivial example.

Consider a simple J-TN with two inputs. The interarrival probability density function has mean a and

variance o2. A sequence of arrivals canthen beconstructed, (a - c), 2(a - c)... from input 1and

a sequence of arrivals at times (a +a), 2(a +a)..., from input 2, which leads to unbounded

buffer sizes. It would, therefore, be impossible to assign buffer sizes for J-TNs with independent

inputs. It is because of this that we require that task execution times bedeterministic oradeast predict

able to a some extent (see later sections for experimental results).

45

3.7. Synchronization of a Simple J-TN

A J-TN consists of a join of the outputs of a number (say, N) of simple processes. Each of these

processes, p, is spawned by a processor which assigns a fraction of its computing time, cpt to it

Heavily utilized processors can assign small cpt if at all, while lightiy loaded processors can devote a

higher fraction of their computing timeto processes. Ina timeshared multicomputing environment the

number of processes per processor is also variable. An efficient assignment algorithm would have the

capability to track suchvariations in load in the context of the concurrent program. If the constituent

processes (in a J-TN) produced outputs at varying rates, buffering would be difficult, and efficiency

would be lost due to enforced idle times (Sections 3.4-3.5). The algorithm for resource allocation in a

J-TN is straightforward. We will briefly outline it

letusassume that the process p, consumes cp and takes a processing time tp to complete itstask.

LetT =(f!, t2, f3 tp ,.... iN), and C =(cx, c2 cp cN) and there exists a vector

A=(a1,ct2 Op c^), such that

A = CT

We now define p=max(—) and the reassigned processor fractions, c£*"\ for each process will then
* ck

be given by

' ~ p
p keeps track of the "botdeneck" process, and the J-TN can be dynamically scaled up or down

depending on the value of p. Process migration can further enhance the speed of completion, if the

processes with the largest a, are assigned to processors which can assign the highest c}'s. In other

words, the computing fractions of the processes that have a small computing time requirement are

reduced so that the task completion times (in all the processes) are equal to each other.

3.8. Synchronization of a Compound J-TN.

46

In this section, we consider the case of a general CJ-TN which is a join of compound processes

(Section 3.4). A compound process was defined as one having a number of cooperating and con-

currendy executing processes. Regardless of the interconnection, the outputof the compound process

is joined with the output of other compound processes in a compound J-TN (CJ-TN). The CT-JN

allows us to consider medium-grained model of computation useful for most scientific applications.

We assumeno specific knowledgeof the tasks carried out by each process is available to the CJ-TN,

other than the input/output constraints and taskcompletion times. Ourproposed stabilization algorithm

is independent of the programs executed subject only to some assumptions which will be described

below. Eachof the sub-processes p executes a different task and the dependencies between the sub-

processes makecalculations for optimal CPU allocation intractable.

Our algorithm is bestdescribed by theActivity Plot, Figure 7a, which plots the Static Computa

tion Graph versus time. The shaded regions, Figure 7b,indicate when a process is active. Thedepen

dencies are depicted by arrows. In principle, allactive regions of a compound process are not observ

able from the execution completion times alone.

3.8.1. Synchronization Algorithm for Compound Process

In this section we describe the checkpoint algorithm which optimizes the processor utilization

amongst the processes constituting the compound process. Each process while executing its assigned

task communicates with other processes within the same compound process. Each process within the

compound process can be assigned a maximum fraction of CPU by itsparent processor depending on

its multiprogramming requirements. The algorithm isan adaptive one, and involves repeated invoking

of a subroutine called the checkpoint which provides information regarding the efficient allocation of

processor fraction for a certain fraction of the total execution time. The outcome of the checkpoint

algorithm is a list of active processes for nonoverlapping intervals of time (rf ,f,+i), A^#rM for

i=l,2,3 Z such that theunion of theintervals is (0,7), where T is thetotal timerequired for

execution. -

47

The idea behind the use of the checkpoint algorithmcan be summarized as follows. Each process

pis assigned a certain computing fraction cp by the parent processor. We wish to determine if cp is

really necessary for the entireexecutiontime. If the resource were unused for some known intervals of

time, then taking it away from the process would not affect the total computation time. So the check

pointalgorithm choses an interval of time (q^q^ that is a subset of the total execution time, andthen

changes (decreases) the service fraction cp of each process p by a fraction a for the duration of that

interval The change in total computation time T is then observed. This change called AQpt should

equal c-AQ if theprocess actually needed the computing fraction cp during the interval of time(q\,q^)

(where q2-q\ = Ag). In other words, if the total execution time is unaffected by the decrease in

assigned resource to a certain process for a certain interval of time, it is likely that the process is inac

tive in that interval The unused resource can instead be assigned to some other process. This idea is

now made precise as follows.

subroutine Checkpoint^ , q2f A ,/A ,PA , e, T)

/* The initial processor assignmentis -{cx,clt...,cN)

/* Defining theoperator vp as follows*/

v„C = (cltc2,....(l-a)c- cN), for / 6 (ql yq2) p, (0,T)
"p

C , otherwise

C JO.AQP = ccv, - a

AQ = q2 - q\

y - ^tp ~

Each process, p, is assigned to the setof active states Aqx tq%, the to setof inactive states IAqx tq%, or

to the setof partially active states, PAqi aqt, according tothe following rule:

t<ypZo-z,pePAqitqi

0£yp <z,peIAqitqt

48

6 is a postive fraction thatis smallcompared to a.

The Checkpoint Algorithm

Step 1: The time interval (0, T), determined from the initial trace execution with processor assign-

T T
ment C is divided into two intervals (0, —)and(— ,7*). The checkpoint subroutine is invoked for

both these intervals. The sets A, PA and IA are returned by the subroutine. If the cardinality of PA,

T T TIPA I is non-zero for either interval, it is further divided into intervals, (0, —) and (—, y), or,

^ T_ 3T ^^ ^£L 7̂)as me case mav be. The checkpoint subroutine is invoked for each of these

intervals and the process of iteration repeated if IPA I for anyof these intervals is non-zero. The algo

rithm continues until all the PA s are zero, and we have an active set A for each interval. The algo

rithm is guaranteed toconverge, with theleast possible checkpoint interval being (0, e AQ).

Step 2: At the end of Step 1, the CJ-TN has the Activity Sets for anumber of non-overlapping inter

vals whose union is (0, T). For each interval theactive processes for thatinterval would cooperate in

finding out the bottleneck. Each processor p, scales itscp to suit the bottleneck process for that inter

val As few processes are active in any interval we expect good performance in the sense that the

effect of a bottleneck process at a certain time does not penalize the entire execution. The CJ-TN

(which could bemodeled byahost processor) uses the data available from the parent processors, tocal

culate the new assignments. Once the efficient assignment of CPU to the compound process in a CJ-

TN is completed, theentire CJ-TN is controlled using the scaling algorithm prescribed for a Simple J-

TN.

Step 3: After the steps 1and 2, the algorithm identifies only those regions of a process that are on the

critical path. Tasks executed off the critical path are not identified, and these tasks can only be

observed by reducing their processor assignment fraction until they lie on the critical path (as well).

Once allactive tasks arescheduled to lie on the critical path, resource allocation becomes simplified.

49

At the end of the steps 1and2, thecheckpoint subroutine hasdemarcated the totalexecution time

(0,T) into active intervals (qx,qj, (q2,q3) (qN-i,qN) each with a set of processes that are

activewithin eachinterval. The processes, whicharenot activecould eitherhave no assigned tasks, or

they could be executing off-critical path (but useful) computation. The algorithm for scheduling the

latter processes begins with the examination of the intervals closest to the termination of the execution,

The interval (qN.i, qN) is assigned the level 0. The next interval (^_2. tfw-i) is assigned the

level 1and so forth for the other intervals. The computing fraction, cp, for pe/A^t^ is setto zero. If

thechange in total execution time,AT, is also zero, then thenext interval with level 1 is examined. The

computing fraction for this interval is again settozero and the resulting effectonT is observed. If AT

is zero, the next higherlevel is examined, untillevel i is reached wheresettingthe processor computing

fraction to zero results in AT >0. At this point, the computing fractions of p in all levels 0 through i

are slowlyincreased from zerountilAT again exceeds zero. The checkpoint subroutine is thenusedto

determine the active region ofp in the levels 0 through i.

The procedure is continued again as before, but this time the level 0 is assigned to interval

(q^-i-i »ftr-i)> and thecheckpoint subroutine is again used todemarcate theactiveregions.

This procedure is carried out forall the inactive processes ensuring that they computeefficiently.

This procedure is illustrated in Figure 7, where (a) illustrates the activity of different processes

over time. The arrows represent asynchronous communications. At the end of the checkpoint algo

rithm, only those process segments which were active on the critical path are demarcated (by the

shaded regions). The otherregions areleft blank,as they have not yet been identified by the scheduler.

Step 3, then identifies process 5, asbeing active, when decreasing theinitial computing fraction extends

the region J into the level 1 of the procedure. The checkpoint algorithm then identifies the active

regions of process 5 asdepicted in (c). In thenextstep, process 4 is examined, where theexecution of

region G is completed onlywhen it is needed by segment F. This delay puts G on the critical path as

well. The checkpointalgorithm then finds the activeprocesses for the entireexecution graph, (d). The

inactive regions can thenbe assigned to otherindependent users.

3 4 5
Process ID

(a)

T _

50

3 4 5
Process ID

(b)

(CJSfM)

(C£f)

T

{CMffl)

lC£fJ)

(BJ)

\AJDJ)
(A J) J)

{C£fM)

lC£JFJ)

{Bf J)

(AJD,GJ)

Figure7: Descriptionof the Checkpoint Algorithm

Proposition 1:

Let the events executed by the active processes in the interval (q2, q\) be Jqi,qt. The time

C crequired for processing these events is the/ (/,„,,, _) = q2-qu where _ is the resource allocation

vector and /: Z XRw -> R. Let ^ =(ax , ct2 aw), then asufficient condition for

51

is that a,- > 1 for alii.

Justification:

Theproofof sufficiency is immediate. However, thefact that it is not a necessary condition may

not be obvious.

Let Pi,P2,...*Ps execute events Jqttqi in the interval (q2tqi). Let the processes

Pi »P2»P3 *P* execute events Jqttqi-E. E is the event assigned to process p5 which records the

progress of the execution of events among the other processes. Therefore any vector * with a, >1for

r
ie(l ,4) and05= 1will leadtoa smaller/ (Jqt,qi, _).

Proposition 2:

An event a which belongs to the set of inactive processes for an interval (q2*qi) can be

scheduled to occur independendy of other events in the interval which are associated with processes

thatare active, le. peAq%qt.

Justification:

If an event a which is scheduled by an inactive process could affect an event scheduled by an

activeprocess, then perturbing the servicerate of the inactive process,wouldaffect the total execution

time. Hence, the events associated with inactive processes are independent of other active processes

during the interval (q2, qx).

An important consequence of this observation is that, the inactive processes in each interval, can

be assigned tasks which are from another independent programor user. The new user program is also

subjected to the same algorithm to determine its active phases, and resources assigned such that the

independent programs time share the common resources.

Theorem 2:

52

Every process p, when active for an interval (qi, q2),p eA?1> q%% is on the critical path for that

interval

Justification:

By construction, a process is classified as activeif perturbation of its assigned fraction results in a

perturbation of a like amount in the total execution time. Therefore everyprocess is on thecritical path

wheneverit is active. It shares the critical path with all otherprocesses which arealsoactive within the

same interval.

This is one of the main results of this section. The checkpoint algorithm does not complete a task

until it has been declared active (See Figure 8). Processes are scheduled to run only when they are

active, and concurrent processes which arescheduled to runat the same time are shifted alongthe time

axis until they are on the critical path. Therefore, after schedulingwith a checkpoint algorithm,every

process is on the critical path, slowingdown one process can slow the totalexecution time. Likewise

speedingup a single process cannot, in general speedup the execution,unless all concurrent processes

in the active interval are also scaled up proportionally. Therefore, the programmer need only specify

the interconnection within a compoundprocess, leaving optimalallocation and execution to the check

point algorithm.

We analyze the performance of our algorithms for a simulated activity plot shown in Figures 8-

12.The test pattern was generated usinga random number generator andrepresents the activity in the

static computation graph when each process was assigned a cp =0.1. Witha probability 1/2, the active

regions extendinto the next checkpoint interval. The process fractions for two cases are assigned from

a uniform distribution C/(0,1). The successive graphs depict the performance on a ten processor sys

tem, with and without process migration andwith andwithoutcheckpointoptimization. The execution

times are assumed deterministic. The optimization proceeds interval by interval, when the processors

can upgrade their individual cp 's to the largest value such that the cardinality of the set of active

processes for that intervalremains unchanged.

Time

11

10

8

k

I
n

•

10 Processor Number

Casel: 0.3 0.2 0.8 0.3 0.S 0.8

Case 2: 1.0 0.3 0.2 0.8 0.3 0.5

1.0 0.1 0.4 1.0

0.8 1.0 0.1 0.4

Figure 8: A Test Example

This figure shows the activity graph for a test example described in the text The active phases of

each processor are plotted against the total execution time. The active regions were generated using a

Bernoulli distribution with p = —. The maximum processorcomputing fractions available for each pro-

cess was assigned (for both the cases) using a uniform probability density function. The activity plot

shows the active phases when the computing fraction assigned to each process was 0.1.

4 k

Tim*

11 A

|10 -

9 - Cass 2

8 - " *****•.

7 _
Cm»1

•%*•••

——^r^>w

**\TT

6 -

5 .

4 -

3 -

<:

1 1 ! 1 1 ! r—-4-

Steps

1 1 1 -4-—•

6 7 8 9 10 11 12

Figure 9:Optimization Usingthe Checkpoint Algorithm

This figure shows the decrease in execution time possible for both cases in Figure 8, using the

scaling methods described in Chapter 3.

Time Steps

I 1 I I I 1 I I I—I-
10 11

Figure 10: Optimization of Computing Resources

This figure represents the computing resource, measured in computing fraction saved times the

time that it is available, versus the time steps of the iterative algorithm. As observed, the savings are

significant

56

Nonhomogeneity in SCGs

We now introduce the concept of nonhomogeneity in multicomputing systems. Let the check

points determined bythealgorithm beqx, q2,q3 qM such that \j (qi+l, q{) = (0, T).

Let the initially assigned CPU fractions be c/ , c2 c{/ respectively, and the maximum

fraction available be c^, c^ c^™".

Defining

c i
v - p v * - maX v
Ki» " ,nw • *P ~ n "T>

cp

J

- p***" *•• _ max*.

C P*A+.f. ^

If Y„ denotes theratio of thechange in total execution time after thecheckpoint algorithm to theunop-

timized time T then

M

SCft+l-^XKp-Kpe^J
t»l

Y« = M
Zfo+1 -?i)K%
i=l

yn is defined as the degree of nonhomogeneity and it is an indicator of the extent of the disparity

between the tasksand the process CPUassignments. The larger yn is, the greater the gains from our

optimization algorithms, since a smaller yn would imply a homogeneous partitioning of tasks before

preprocessing with the checkpoint algorithm. In some cases, calculation of allocation may be

simplified ifall the c1pwere equal for allp.

It mustbe notedhere that thecheckpoint algorithm extracts enough information from the consti

tuent processes in the concurrent program to determine the processes which are active for a large

number of subintervals. Obviously these processes need the largest fractions of CPU and a suitable

scheme can be devised which reassigns processes to processors such that the computation intensive

processes getassigned toprocesses with larger cmaxp. (See Figures 9-10).

EXECUTION TIME

11-- Execution Time

vq Without Migration

"O-—-O- O _^q

Figure 11: Performance ofProcess Migration

Migration involves the reassignment oftasks to lighdy loaded processors. The checkpoint algo
rithm can efficiendy migrate processes, as seen from the figure. The results for Case 1inFigure 8, show
a decrease in execution time from 11 to 2 time units.

^ Unopttmtzed Execution

O With Checkpoint

Figure 12: Data Dependencies

If the task times are slighdy stochastic, or they have a small dependency on the data, the total

execution time varies proportionally to the execution time. Since the checkpoint algorithm reduces the

total execution time by a significant amount, the variation is much smaller as a result. This improve
ment is seen in this figure.

59

3.8.2. Process Migration

In this section, we examine some strategiesfor migratingprocesses to other processors in the sys

tem.

Consider N processes 1,2 p N spawned by processors Px, P2 PN each with

a maximum available fraction of CPU cm*\, cmULPt cmnPtt.

The checkpoint algorithm generates sets ofactive processes Aqt%qM for intervals (q{ , qi+l) with an ini

tial assignment of CPUfractions equal to the maximum available per processor. Let the cardinality of

the active sets \Aqit<lM I = Zt, and the processors beordered in the decreasing fraction of CPU avail

able, PX%P2>P<$,..., Pn. We consider two cases for process migration which enhance processor

utilization.

Case 1: Process migration

At the end of the checkpoint algorithm, each of the processes belonging to the active set Aqi tqM is

reassigned to one of the processors Px P^. Eachprocess then has its CPUassignment scaledup

DU

CP,
by L,where y andx are chosen such that theratio is theminimum, say fa , for thatinterval. In

C X

practice we can scale up the CPU assignment by a larger fraction but thisrequires a larger amount of

computation to ensure that each process is assigned to a processor whichcan scale its CPU fraction by

the same amount The speedup factor yM can then be represented as

M M

Z(qi ~qM)k* P~ £(°i ~ ft+i) P.' +zi c
_ i=l i=l

Z(fc-ft+i)*\>
i=l

Since fa ^ K*p6y^ ^ process migration can result in improvement in speed if the overhead, Z, •C, asso

ciatedwith processmigration is assumed negligible. This is only justifiedif the intervals (qt , qi+\) are

large compared to the costsof context switching and communications associated with process migra

tion. Therefore, the processes are migrated to available processors with larger ctmP if and only if the

interval (qt , qi+{) is sufficiendy large (See Figure 11). This overhead is significant only for the first

60

few data samplesconsumedby the CJ-TN.

The evaluation of A andIA at eachstep,allows thereduction of the complexity of the algorithm

at each successive subinterval. This is becauseof the fact that if a process is active during an interval it

maintains that state for all subintervals.

Case 2: Data-dependency:

In theabove analysis, we have tacidy assumed thatthedatadependency of theprocess segments

within the checkpoints can beexpressed assome function ofe. The efficiency of the checkpoint algo

rithm is then a function of e. If epsilon were small enough, which is true in mostcoarse-grained signal

processing applications the algorithm is quite efficient However, a large variation in execution time,

can result in processes in other processors terminating much earlier or much later than theerrant pro

cess. As discussed above, the check point algorithm moves process segments on to the critical path,

however processing them earlier has noeffect on the total run length. A monitor on each processor

keeps a list ofprocess segments which can be executed over a number ofcheckpoint intervals without

affecting the total execution time. Consequently, whenever, aprocessor completes execution ofits pro

gram within a checkpoint interval much ahead of other processors, it processes one of those floating

off-critical path tasks. A finite algorithm, similar to the checkpoint perturbation algorithm, can then be

formulated to determine which of the processes can be moved away from the critical path, for execu

tion asa fill-in task for processors (to utilize their computation fraction efficiendy) in the case of large

e. This modification enables an enhancement in theefficiency at thecostof a floating process queue of

processes (which can be executed with some latitude in the time oftheir completion) (See Figure 12).

3.9. COSPROL : Rules and Syntax

COSPROL is proposed as a concurrent system programming language which enables the algo

rithm developer todefine a parallel paradigm for execution ofan algorithm. The COSPROL preproces

sor, does the following tasks.

1. Itmaps the COSPROL source program onto a distributed processor architecture, such that the algo-

61

rithm constraints, precedences and data flow characteristics are not violated. This is similar to the

specification used in languages such as in Blosim (See [Mess79]), buttargeted towards multiple proces

sor machines.

2. The Join-Type Networks of processes are then optimized for efficient CPU utilization, as will be

described in the following sections.

3. Byadaptive perturbation techniques, the COSPROL distributed architecture consisting of asynchro

nouslyexecuting processors is synchronized.

A. By keeping a current description of the critical sections of the network, the throughput can be

dynamically variedwithfluctuating load.

The individual processes are pieces of code which are defined by the programmer. COSPROL

optimizes resource allocation solely on thebasis of input-output characteristics of theoutput flow. The

execution times, process fractions, and communication protocols within processes are not assumed to

be knownbeforehand, makingsucha description of concurrent programs very attractive. The task exe

cution times are assumed deterministic. In this section we describe the COSPROL syntax and rules,

whichenablea concurrent system developer to specify an algorithm for implementation on a distributed

computing architecture.

The algoridim specified in COSPROL can then be analyzed by a preprocessor to allocate the

architecture, assign resources, and optimize performance. We will first describe the syntax and then

discusstheprocessing algorithms usedby theCOSPROL preprocessor.

Syntax

In the following discussion we denote processes by capital letters A, B, C and so forth. J-TN

denotes a Join-Type Network. Unless otherwise noted weassume eachprocess is spawned by separate

parent processor.

a. A=SP(A)

b. X = CP[AB,AC,BC,CD]

62

c. Sl = SJ-TN[zxA,z2B]

d. C2 = CJ-TN [zx A, z2B, z3X]

e. C3 = n CJ-TN [zx A, z2B, C2]

f. C5 = F-TN [A,S,zJ

g. C5/C4

(a) defines A as a simpleprocess. X is a compound process, comprising of a cluster of processes

A,B, C andD processes A andB, A andC etc. communicating witheachother. SI is a SimpleJ-TN

of z i processes described by A and z2 processes described by B. C2 is defined asa Compound J-TN of

processes, A, B and X of which at least one is a compound process. C3 is defined to be a CJ-TN of

order n whichimpliesthatit is theJ-TNof atleast oneprocess of order n -1. For example if n = 1 then

it is the CJ-TN, if however, n = 2 then, it is second orderhierarchical CJ-TN of firstorder CJ-TNs. C5

is a Fork-Type Process, with A as theinput process, S is the selector process which determines which

of the outputs are available to CS and zx is the maximum number of outputbuffers, (g) defines the

sequential connection of two processes CS and C4. The output of CS is piped into the input of process

C4. This definition is similar to the UNIX pipes.

We now present a few typical examples to illustrate useof COSPROL to specifydistributed com

putation algorithms in a SESYCCS environment

3.10. Concurrent Programming in COSPROL

In this sectionwe will present the results of a pilotimplementation of two computation intensive

problems (expressed as SCGs) on a commercially available NCUBE Multicomputer.

3.10.1. Phase Shift Migration

Migration of seismic data involves repositioning the measured data to determine accurately the

63

topology of the subsurface reflectors. Migration is an inverse process in which the recorded waves are

propagated back to their source by systematically solving the wave equation for each successive layer.

There has been considerable study of stable algorithms for efficient solution to the wave equation, and

seismic migrationhas been routinely used for interpreting seismic data for over two decades. Migration

techniques range from simple finite-difference techniques to the more sophisticated frequency domain

methods. Regardlessof the technique used, migration greatiy facilitates accuracy in seismic interpreta

tion and identification and in some cases is indispensable.

Seismic migration algorithms are computationally very intensive and require processing large

amounts of data. A frequency domain parallel phase shift migration algorithm was analyzed in

[MaMe88a] and the performance indices forthatalgorithm arediscussed. A detaileddiscussionof these

algorithms and their implementation is beyond the scope of this chapter and the reader is referred to

[MaMe88] for further details. Migration as a SCG can be described by the block diagram illustrated in

Figure 13.

The COSFROL representation of phaseshift migration can be elegandy describedas follows.

Seismic Migration Algorithm

Si= SJ-TN [a FFT]

C2= Sl/Al

Pl= F-TN [C2, ALL, a]

C5= SJ-TN [aPl/FFT,E]

C4= C3/M

P2= F-TN IC4, ALL, a]

PJ= P2/IFFT

FFT

TFT

FFT

Array
Transpose

64

FFT IFFT

IFFT

IFFT

Phase.Shifter

Figure 13: Seismic Migration as a SCG

In ourabove program, Al is the CJ-TN representing the matrix transpose involving all the pro

cessors in log N timesteps, E is theprocess generating the exponential multipliers, M is the multi-step

algorithm. P3 represent the processes containing the result which is a migrated layer. ALL implies

thatall the outputs (up to a maximum of a which is the data matrix size) are selected. FFTand IFFT

are theprocesses computing the Fast Fourier Transforms of thedata. Since theprocesses are inherently

loadbalanced by the simple structure theoptimization of thecodeis straightforward (Figure 13).

Programming for thedistributed application in COSPROL involves the following subtasks:

a). Partitioning the sequential algorithm, to distribute the computational load uniformly over the

independent processors. This partitioning is relatively straightforward in the case of migration since the

concurrent tasks were identical.

b). A communication protocol to enable efficient data andinformation transfer between the processors

to yield resultsconsistentwith the sequential program.

Very often the communication overhead determines the bottomline in performance to be

expected. This is where the perturbation approach proposed in this chapter winsoverother methods.

The checkpoint algorithm does not assume a priori knowledge of the tasks or the communication times.

It optimizes on the implementation and noton themodel of thecomputation. The costs of communica

tions are therefore automatically included in the performance. Further optimization of the performance

is done by balancing the load dynamically, overlapping computation with communication, pipelining

I/O and computation and by increasing the memory per processor.

65

The NCUBE/Ten Multiprocessor system interconnects 102432-bit processors each with 128/512

Kbyte private memory in a hypercube configuration [NCUBE86]. Host processors are available to

enable loose globalcontroland synchronization. I/O channelslead directly to the processingnodes and

the host through multiported memories.

The parallel phase shift algorithm wasimplemented on the 64 processor model. Solution for data

sizes for higherdimensions was implemented by breaking down the problem into smaller manageable

tasks, and the performance then projected fora higher numberof nodes. The modularity and the regu

larityof the node programs enables rapid porting ontohigher order hypercubes.

The first communication algorithm we use is the the sequential communication protocol (SCP)

[MaMe88aJ. The host is the center of the starof processors, each node communicates only with the

host in receiving and sending data. The host therefore implementsthe forks and the joins. The sequen

tialalgorithm thus penalizes the performance by not utilizing the parallelism inherent the highly inter

connected hypercube configuration. The second communication algorithm the parallel communication

protocol (PCP) overlaps communication between sets of nodes, reducing the total communication time.

This implies thatthe forks andthe joinsare implemented by thenodesthemselves in the logical system.

Both the protocols move the same amount of data and the times are proportional to A2where (A ,A)

is the size of the dataarray, though the constantsof proportionality arean orderof magnitude apart.

Ourbasisof comparison is a hypothetical sequential machine(HSP) with infinitecache size, and

thecomputation of the algorithm on thismachine is thetotal computation time on the different parallel

processors. Processor utilization of thismachine is assumed 100%.

Our experience with seismic signal processing has been encouraging in that it gave us a robust

testbed for testing the performance of SESYCCS on SCGs. Table 1 gives the speedup, /, for an imple

mentation with a data size of A = 256. The reader may contrast these figures with the performanceof a

shared-memory type implementation described in Chapter 2 where the speedup was only an order of

magnitude.

Table 1

Performance of Parallel Phase Shift Migration on NCUBE

Index # of Nodes HSP(sec.) SCP(sec) PCP(sec) I I

1 64 252 9.05 6.1 27 41

2 128 252 7.2 42 35 60

3 256 252 63 336 40 75

4 512 252 5.6 2.76 45 91

66

3.10.2. Optimization of a CJ-TN.

Our next example isthe synchronization of acompound process on the NCUBE multicomputer.

Consider the simple four node network shown Figure 14. The data path is from node 0to node 3, with a

loop at node 1. The execution times ofthe node programs for each data input is assumed to be distri

buted asan exponential random variable with mean X(.

&-ttZ3D

Figure 14: Synchronization of CJ-TN

Table 2

Synchronization of the CJ-TN

Index *i *2 *3 Execution_time

1 20 20 5 114

2 25 20 5 150

3 20 25 5 128

4 20 20 6.25 116

5 15 25 5.0 107

67

We illustrate the use of the checkpoint algorithm for speeding up stochastic systems (its utility in

deterministic systems was illustrated in Sections 3.8-3.9 above). Node 0 generates all the inputs to the

processes in the compound network. We perturb the meanservice times of these nodesto determine the

bottleneck process. The results are then used to speed up throughput The results on NCUBE are

shown in Table 2 above.

As observed from Table 2, the process 1 is the bottleneck. Its role in the total execution time is

quickly recognized and it is assigned the maximum use of resources (implying that its mean time is

reduced from 20 to 15 in column two of Table 2). The algorithm does not require a knowledge of the

data flow within the network and assigns resources on the basis of the input/output characteristics

which makes it so attractive for multiple processor systems.

Closer (mean) service times can penalize the resolution of the checkpoint algorithm. However,

this is not seriouscomplication since then both the processes would be on the critical path.

3.11. Summary

Self-Synchronizing Concurrent Computing Systems have been proposed for efficient distributed

computation. In thischapter, we described computation thatcan be described by a Static Computation

Graph.

68

We first examine the conditions under which a SESYCCS can be realizable in practice (with

bounded buffer sizes). We then present an algorithm, called the checkpoint algorithm, which demar

cates theactive regions of each process in the SESYCCS. Since thecomputation is described using a

SCG,thisknowledge is then utilizedin time-sharing the processors withotheruserprograms.

Quantitative estimates of the advantages of process migration are also derived. The mismatch

between the SCG and the SESYCCS is quantified by a coefficient of nonhomogeneity, yn, which pro

vides an estimateof the improvementresulting from synchronization.

All the algorithms described in this chapter are designed tobe implemented onthesystem itself,

and require neither user participation nor prior knowledge of the computation times by the system. The

SESYCCS adaptively takes intoaccount thepresence of users of differing priorities in thesame system,

andis able to modify the synchronization schedule on demand.

The framework introduced in this chapter provides a concrete base for the design of SESYCCS

for high speed signal processing applications. Anexample of a seismic migration shows the flexibility

of this approach as well the ease in implementation.

Future work is focussed on implementing the algorithms on a commercially available multicom

puter, and providing for a powerful user interface with theSESYCCS.

69

Chapter 4

Self-Synchronization for Dynamic Computation Graphs

In a distributed computation, the compute-bound algorithm is divided into a number of smaller

pieces andeach of these pieces is assigned to be executed on a separate processor whenever possible.

The amount of concurrency in the system can be very large in applications such as in the distributed

simulation of discrete event-systems. Most present day concurrent computing systems use a modest

number of processors (a few hundred) with the intention of reducing chip counts, backplane connec

tions and the complexity of communications. However, recent advances in VLSI and in new methods

of routing messages haveencouraged thedevelopment of more ambitious multicomputers. At the time

of writing, a commercial vendor hasannounced thedevelopment of an8192-processor multicomputing

machinewith a peak computingcapability of 27 GFLOPS [See NCUBE89].

Software for programming and efficient use of such machines has yet to catch up to the rapid

pace in the development of computing hardware. The multiprogramming and multitasking nature of

parallel anddistributed computation has hindered the tasks of manual synchronization andload balanc

ing.With theapplication oftenbreaking up intothousands of smaller pieces, synchronization of the dis

tributed computation is not feasible unless efficient algorithms for automation are developed to meet the

challenge.

70

In the previous chapters, we introduced Static Computation Graphs (SCGs) and Dynamic Com

putation Graphs (DCGs) as describing two important classes of scientific computation. Chapter 3

described efficient synchronization of SCGs in a SESYCCS environment. In this chapter, we wish to

model computation described by Dynamic Computation Graphs, and then propose algorithms for their

efficient synchronization. Most of the material presented inthis chapter isnew. Closed-form results are

derived for anumber of synchronization algorithms, and their performance is compared.

For avariety of reasons, the techniques introduced inChapter 3cannot beused for synchronizing

computation that can be described byDynamic Computation Graphs For instance, aStatic Computation

Graph has a temporal variation in concurrency that isa deterministic function of time. On the other

hand, the precedence relations among events in a Dynamic Computation Graph are unknown a priori,

and lookahead in the computation is very poor. The concurrency available ina Dynamic Computation

Graph is thus random in nature. Consequendy, algorithms for time-sharing resources lose their

elegance and simplicity. Very few concrete results on the performance analysis of synchronization

schemes have been reported in literature. We provide a number of new analytical results which

describe the behavior of Dynamic Computation Graphs, and present novel algorithms for their self-

synchronization (i.e synchronization is.not explicidy provided as part of the computation).

Synchronous methods of synchronization based on worst-case analysis pay a high price in

efficiency and the performance of these methods appears to be dependent on the application. These

methods do not scale wellwithanincreasing number of processors in thedistributed system. The chal

lenge, therefore, lies in the development of asynchronous algorithms for automated distributed syn

chronization of concurrent processors that scale well with the number of processors and yet are easy

and efficient to implement It is also desired that thesynchronization algorithm be capable of utilizing

the knowledge of the behavior (at run-time) of the distributed computation to further bootstrap itsper

formance.

As discussed in Chapter 2, the causality conditions are necessary to ensure that the logical sys

tem provides results that are correct This chapter discusses asynchronous synchronization methods for

71

DCGs. DCGs are modeled as a system of self-timed processors communicating to each other via mes

sages. The stochastic nature of the coupling between local clocks is captured in our model. Detailed

simulations confirm theoretical results quantifying the efficiency of the self-synchronization.

The situation of greatest interestis when the asynchronous clocks progress at different and possi

bly time-varying rates; the computation being inefficient owing to the high overhead in synchroniza

tion.Fortunately, as will be shown in later sections, the analysis is tractable for this case.

We will now provideexact resultson the performance of asynchronous synchronization mechan

isms. To clarify our exposition, we will first focus our efforts on an analysis for a logical system that

has two processors cooperating in a distributed computation. The two-processor case is very useful in

introducing the techniques and performance indices thatwe shall have occasion to use throughout the

remainder of the chapter.

4.1. The Two-Processor Logical System

In a two-processor asynchronous computation there are two clocks, C„ and C„2, associated with

processors 1and 2 respectively. These clocks evolve with real timen according to the setof dynamical

equations given below. As discussed in Chapter 2, processor 1 (2) can communicate with processor 2

(1) at every timestepn with a probability of p12 (P2i)«The communications in the logical system take

place at asequence ofBernoulli times n -TlJ form =1,2,3-, and i,./ € {1,2}. If processor j com

municates with processor i when ClH > C{, then C'H is resynchronized (or reset) to the value C'n. This

resynchronization is assumed to take one real computing unitof time. On the other hand, if theQ <

Cl then the progress of C£ is given by aj, also known as the rate of forward computation of i. We

assume that all the simulated times are multiples of some positive quantity e. This ensures that the

clocks move in a countable state space. This property will be used in later chapters to establish some

stability results. The dynamics of thelocal clocks are given by following setof equations.

{Cj , n £ 0, i = 1,2 } isdefined as follows,

72

[Tj ;m = 1,2 ,3...} are Bernoulli times such that

Probtr^ -Tjt^k }=PiJ U-Pij)'-1 ,* =1,2,...

If n^r£foraUj,m then, CB+i =CB + a'ln

Ci+1=min{Ci,Ci}+ai/{C><Ci)
Else, if n =T£, for allm, j, then,- , _ ri .•

Assume also that; a} >a2, for all n.

—eZ+-{0}
£

—eZ+
e

Bi <a2 <52 . for some constants B6 Z+ (the setof integers).

[Afote: The assumption that a* >a* can be relaxed to the case where a,,1 >a„2 for all n such that

C1 ^ CB2. The restrictions on the rates, therefore, are very weak and sufficiendy general to be widely

applicable.]

4.1.1 Discussion of the Two-Processor Model

We will nowoffera qualitative description of self-synchronizing computation on two processors,

1 and 2. Processors 1 and 2 communicate with each other via time-stamped messages. Messages are

time-stamped (in discrete real computing time) with the local simulated times of the transmitting pro

cessor. The progress of each processor can bedepicted graphically byaprofile that plots the simulated

computation time on the y axis and the real computer time (wall-clock ticks) on the xaxis (See Figure

1). Let us assume that processor 1computes forward with adeterministic rate ofA units per computing

time tick, while thecorresponding rate for processor 2 isB units per tick. Without loss in generality, let

us assume A > B. Processor 1 can communicate with processor 2 at each time tick with a probability

p12. Likewise, processor 2can send atime-stamped message to processor 1after each time tick, with a

probability p21. Figure 1, describes the progress of the clocks if they did not communicate with each

other. Each processor then progresses in simulated time atits forward computation rate (A orB).The

73

analysis of the two-processor case becomes interesting when theprocessors areallowed to interact with

each other.

o
Processor 1

Simulated Time

/

/
/

/
/ *>'

/

/

/A

*' B

o
Processor 2

Real Time

Figure 1: Profile for Two-Processor System

A message can be represented by a vertical line in the profile if we assume that the real time

required for communication is very small. A processor is said to "rollback" or "resynchronize" from

time Tx to time T2when it is at local simulated time Tx and receives a message time-stamped T2 and

Ti > T2. The processor, therefore, has to reset its own local clock from Tx to T2. We further assume

that this resynchronization takes a fixed amount of real computing time to complete (say, one clock

tick). The processor can then resume forward computation. (Note that all messages do not trigger resyn

chronization). A typical execution profile is given in Figure 2.

k

Rollback in 1 = a

Rollback inl-b

Simulated Time

A

1 /| 2

.1

/ ! ^ /
s

L*

•

/
/

/

-A
GT

Jtea/ Time/*?*^ a

74

Figure 2: Typical Profile for Asynchronous Computation

In the scenario illustrated in Figure 2, processors 1 and 2 begin computing forward with ratesA

and B respectively, and at some point in time processor 2 triggers a rollback in Processor 1 (Case 1).

Processor 1 then resynchronizes to the simulated time of processor 2, and then spends one computing

time unit recovering from the resynchronization. Two possible events can occur at this point In the

first, processor 1 triggers a rollback in processor 2 with a probability pl2 (Case 2), and in the second,

processor 2 resynchronizes processor 1(Case 3)again. These cases are illustrated in Figure 3.

Rollback in l = a

Rollback in2 = b

Figure 3: Possible State Transitions.

75

In the ideal case, local clocks on both processors march ahead at the equal rates, A = B, and the

rate of growth of thecomputation achieves itsmaximum value, B simulated time units perrealcomput

ing time unit

4.1.2 Associated Markov Chain Representation

The dynamical system represented by equations in Section 4.1 can now be represented by a Mar

kov chain. If weassume that a* is at least twice as large as a„2, it can beeasily shown that the discrete-

time Markov chain representation of the two-processor asynchronous computation would be given by

Figure 4. If the system is in stateS,- = 1(2), thisimplies thatprocessor 1(2) is ahead in local time, and

receivedmessages can inducea resynchronization or rollback if CJ is ahead of C'n (measured in simu

latedtime). Let the invariant probabilities of states Si andS2be denoted by rc(l) and tc(2) respectively.

W>21

Figure 4: Two-Processor System

The balance equations are,

K(D = (H>2i) *<!) + «C2)

7C(2) = 71(1)^2!

Solving these equations, one finds

/i\ J ™ P21Jt(l) = -T7 . "(2) =l+p2l l+p2l

76

The Global Time (GTH) is defined to be the smallest localtime (at time stepn) in the entire dis

tributed system. It is the time up to which the distributed computation can be guaranteed correct In

other words, GT. =mintC1, C„2} .The average rate of growth of GTH, a = Um —-. An analyti-
n—¥oo n

cal expression for a, after N computing timetickscan bederived as follows:

a •N = (I-P21)' *(1)' BN + (1-p 12) •tc(2) •2BN

Hence,

a, therefore, provides an useful estimate of the progress of the self-synchronizing computation.

The progress of the distributed computation depends onthe probabilities of interaction and also onthe

rates of the individual processors.

The fact that themultiplier for the second term on the right hand side of theexpression above is

.25 should be obvious from Figures 3 and4. If A werelessthan IB, the valueof a wouldbe anupper

bound, and notanequality. Note also that a willbeaffected only if the slower processor is resynchron-

ized. We will sometimes have occasionto refer to a as the "Wolf Coefficient'* with regards to its use

inan algorithm for distributed synchronization, Wolf, tobediscussed inChapter 6.

We will now try to interpret our analytical results toget further insight into the dynamics of asyn

chronous computation. For this purpose, the clock model discussed in this section was simulated to

reveal the transient nature of the asynchronous computation (our analysis in earlier sections derives

steady-state values).

In Figure 5, we study the progress of asynchronous computation, when the probabilities pl2and

p2l are given the values 0.1 and 0.8 for Case 1, and 0.7 and 0.8 for Case 2,respectively. The values of

a„l and a„2 are 1and 3respectively. Analytical values for the Wolf Coefficient a, are calculated (using

the expressions derived above) to be 0.911 and 0.377 respectively. The former coefficient is much

larger because the probabilities of interaction are small. In Case 1 the system spends a smaller amount

of real computing time recovering from resynchronization. In the second case, however, the communi-

77

cations between processors are frequent and the Wolf Coefficient is penalized as a result Observing

thedynamics in the value of the Wolf Coefficient in Figure 5, we notethat thevalue settles down to its

steady statevalue quite early in the computation.

Figure 6, shows the dynamics of the clocks on the processors themselves for the two cases. The

slower processor 2 frequently sends messages to processr 1 in the courseof the computation. Most of

these messages force processor 1 to resynchronize. The average global growth is, however, not penal

ized unlessPn is large. This is because of the fact that if pl2 is small, then processor 1 would then

overtake processor 2 leavinga unaffected. On the otherhand, if px2 were large (as in Case2), the pro

gress of the slow processor is further impeded, as shown in the Figure 6, and the coefficient a is

affected significantly.

In Figure 7, we present the results of another interesting experiment where the two cases of

asynchronous computation have varyingcommunication to computationratios. In Case 1, communica

tions between processors are infrequent and in Case 2 communications are relatively frequent As

expected, the former case progresses faster. We also note that the memory requirements are much

larger as well The intuitive explanation for this is as follows. If the processors communciate infre

quently with each other they tend to drift apart further before resynchronization. Processors in this

environment needs correspondingly largerbuffer sizes to store the state information.

1.0

Two Processor System

0.7

0.6

0.5

0.4

0.3

0.2

0.1

J

hi

fiV

44 88 132

Case 1: p 12 = 0.1, p2i = 0.8
Case 2:pl2 = 0.7, p2l = 0.8

176 220

Figures

78

Casel

Time Steps

264 308 352 396

In this figure a is plotted against time steps. In Case 1, a was analytically calculated to be
0.911,correspondingly in Case 2 it was 0.377. As observed from the figure, a rapidly settles
to its asymptotic value. The values of a„l and a2were chosen to be 3 and 1 respectively. If
al =a„2, then a= 1 if the processors 1 and2 both had startedat the same initialclock time.
Once out of synchrony, however, the value of a drops down to 0.64.

20C-

18(-

16C-

14C-

12C-

101-

Simulated Time

Case 1: p l2= 0.1, p2l = 0.8
Case 2: p 12 = 0.7, p2l = 0.8

Two Processor System

Casel

70 84

Figure 6

79

Real Time

126 140 148

This figure describes the evolution of the local clock times and the global time (GT) of the
two-processor system. Both Case 1 and Case 2 have about the same number of messages
sent from the slow to the fast processor, however in Case 2 p12 is larger, contributing to a
significant drop in the rate of growth. The memory required on each processor is roughly
the same for both cases. Frequent communications imply smaller drift between local clock.

24 48 72 96 120 144 168 192 21& 240 264 288

Figure 7

Case 1: p 12 = 0.3, p2i = 0-3
Case2:p12 = 0.7,p21 =0.7

80

This figure studies the two-processor synchronization under two communication scenarios.
In Case 1, with "infrequent communications" the rate of progress the memory require
ments were proportionally higher. In Case 2, with "frequent communications," the pro
gress is slow, however, the memory requirements are also smaller. We believe this
memory-speed tradeoffis fundamental to asynchronous distributed systems. Asynchronous
communications ensure that processors need not wait to communicate, and Bernoulli
interactions ensure that the buffer sizes remain bounded.

/

81

4.2. Computation in Presence of Communication Delay

Let us consider once again the model of an asynchronousdistributed computation on two proces

sors, as developed in Section 4.1. Our present objective is to integrate the effect of communication

delay into ourmodel for the dynamics of the local clocks. Let us also assume that the communication

delay in the transmission of the message from processor 1 to processor 2 is a real time units,and b for

a messageon the return path.Without lossof generality, let us assume thata is less thanone computing

time tick and b is between one and two computing time ticks. Other cases can be handled analogously.

The dynamics of the self-synchronized system will be given by the following set of equations. (It

is assumed that there are no messages in transit when the system is initialized.)

If n *T* .forallm J ,i, then/
CLi=CHUal

CL=CH2+a?

_Tl2ifn=r,

if»=rl21 ,<

Cl^Ci +ai

CU =minfC1. C2+1} +ail {C„2+1 <C„1}

c;«=c;+ai

Cl+l -Cli +aH

C*+2 = Cfi+1 + fln+1

CU =min(CB2, CHl+2) +aiI[CU < CHl)

1-P12

1-P21

Figure 5: Two-Processor System with Communication Delay

82

Equations for the analysis of systems with arbitrary delays can be constructed in a similar

manner. We will pursue the analysis for onespecial and interesting case, where we assume that both

processor 1and processor 2'progress at the same rate, a*1 =a%-B for all n. We also assume that a

and b are both less than ons computing time tick. We believe that these restrictions will isolate the

effect of communication delays on the progress of the computation.

4.2.1. Markov Chain Representation of Communication Delay

The discrete-time Markov chain now consists of 4 states. The effect of a message is hidden for

onecomputing timetick (while themessage is in transit). This results in twoadditional states. The sys

temis in state Si (S3) when processor 1 (2) is ahead. State S2 represents the case where processor 2

sends amessage to processor 1when Cl >C„2.1his message is, however, not read until the nej;t com- \

puting time unit At that point, processor 2 gets ahead and will remain ahead of processor 1 until it

receives a message from processor 1(with probabilityp12). The Markov chain is shown inFigure 8.

The balance equations are

7t(l) = (l-p21)Ji(l) + ic(4) , jc(2) = *(l)p21

*(3) = (1-Piz)*0) + *(2) . *(4) = *(3)p12

Solvingfor the invariantprobabilities,

*(D= l

«(3) =

l + 2pl2-p2i-P2i -PiiPn

//>x P21
7C(2) = 5 J"

l + 2pl2-p2i~p2i -P12P21

I "P21 ~P21
jc(4) = V r

l + 2pl2-p2\-P2i -P12P21

I-P21~P21

(Pl2}(l+2pl2-p2l-p2\ -pl2pii)

The coefficient a will now be given by

a= (1-2ju(2) -2je(4))-£

We will close this sectionwitha pertinent observation. Finitecommunication delay between pro

cessors can also be incorporated quite easily into the model for the clock dynamics in asynchronous

83

systems. The effect of the delay is to further reduce the Wolf coefficient

43. The Multiple Processor Logical System

In the previous sections, we had analyzed distributed asynchronous computation on two proces

sors. Our analysis was rewarding for a number of reasons. The simplicity and generality of the model

was elegantly illustrated by the two-processor system. The effect of resynchronization can be described

by the associated Markov chain balance equations, and the coefficient a provides a closed-form

description of the progress of asynchronous computation. This is a new result

It could be argued that asynchronous distributed computation can only progress as fast as the

slowest processor in the system. This is incorrect The progress of asynchronous computation depends

both on the rates of the faster and the slower processors and also on the probabilities of their interac

tion. There is one interesting fringe benefit garbage collection algorithms become simple to implement

As the system converges very fast to the ratea, each processor (especially the faster one) can wipe its

memory clean of any value below that indicated by the Wolf Coefficient for that system. One could

argue further thatthe probabilities of interaction are notknown a priori. However, this is not a problem

(when implementing a distributed system)as the rate canbe easilymeasured locally once the computa

tion proceeds. The convergence toasymptotic rate of growth is veryquick(this was verified in simula

tion results).

Our interest now lies in the analysis of an asynchronous computation mappedonto a system with

a number of processors. Typically, multicomputing involves the synchronization of a few hundred pro

cessors, and performance can be very poor if a synchronization algorithm does not scale gracefully.

Poor efficiency results when some processors are able to compute forward with a greater speed than

other processors. A slower processor is one where the local state update chews upa significant portion

of processor cycles. A faster processor is usually one with a small amount of state information ateach

instant

84

Let us once again examine a case where synchronization can do the most good. This is the

"unbalanced" system, where fast and slow asynchronous processors coexist inthedistributed system.

Section 4.3.1 introduces a new algorithm for synchronization. Here, the processors are classified

into oneof two sets; fast orslow. Whenever a slowprocessor communicates witha faster processor, all

the faster processors are resynchronized. The idea then is to reduce the possibility of a cascade of

resynchronizations that can occur. The distinction between fast and slow is not restrictive. A slow pro

cessor can change its dynamics and join the setof faster processors and vice versa. In an inefficient

implementation of alogical system there are processors that could belong toeither class. It isnotneces

sary that a particular processor remain in either of them for the entire course of the computation. We

introduce without preamble the notion ofW(j ,n/), also known as the sphere of influence of processor

j. For the purposes of the next section, the reader is requested toassume that this sphere of influence

denotes a setof processors that need toberesynchronized whenever / is resynchronized. This is done

toensure that thecausality conditions of Chapter 2 are notviolated. We willmake this notion precise in

later sections.

43.1. Concurrent Resynchronization

{Cj ,i=l,2,..., N) are defined as follows,

[T'nJ ,m = l,2,3...]are Bernoulli times such that

Prob/Tii! -I^-flo^a-fli,)*-1 ,* =U2.3 ...
Whenn^r^,Ci+l=Ci+ai

The a„ are partiallyordered as follows,

ai.al,..., aH>a* ,foralln

Let{2,3,4 N)eF

and{l}eS

We can now describe the dynamics of the computation when processors within the "fast set" F

interact betweenthemselves, andwhen processors in the "slow set" S interact with the processors in F

and vice versa. Detailed explanations follow the equations.

85

The probability that one or more of the faster processors communicate with a slower processor is

given byps. Pf gives the probability that the slow processor sends a message to one of the faster pro

cessors.

Case 1: Fast Processors Interact within F

ForijeF,ifn =Vj ,
C*+1 =min{C« ,Ckn) +akn,kzW(J *]) Uj
CU*Ci+ai

Let times Ti -Fand rf ** be defined as follows,

~S,F _TS,F_tri_ k-\ProbPM - It'* »« =Pf{1-PfT-1 .* -1,2,...

where pF =1- i*FQ--P\j)
and

*fj _TFJ-i,-\- *"1 lr -prob psa - 15*=«=ps(i-/»sri ,*=1,2

where p5 =1- -eF(l -pyi)

Case 2: Slow Processor Interacts with Fast Processors

Then for ieS, and JceF,

_ T5-fif n = r,

C*+l=min{Ci,C*)+as-/{C*<Ci},*€F

Case 3: Fast Processors Interact with Slow Processor

Kn=TFJ,-
C'n+X = min{Cin,Ck}+an-I{C'n<Ck) ,keF

Ckn+i=Ck + ak

In Case 1, we discuss the interactions among the "fast" processors themselves. When a proces

sor i eF, communicates with another processor j sF, the processor / rollsback only if it is ahead in

86

simulated time. In case it does rollback, it also resynchronizesother processorswith whom it had com

municated in the recent past, while its local clock was above that of processor i. These processors

whichwere indirectly affectedby the message from i to ;, aresaidto belongto the sphere of influence,

Wijji}), ofprocessor j. We will discuss the effect ofW(j\n]) on the distributed system in later sec

tions. Fornow, suffice it to say that the fast processors recover from messages andrecompute forward

without losing any real time in the process.

Case 2 describes the dynamics of the system when a "slow" processor communicates with a

"fast" processor. When a slow processor i sends a message with a lower time stamp to processor

JfceF, then theprocessor F rollsback to thetime stamp of the message. Inaddition, allother processors

in the set F concurrently rollback to the time stamp of the message sent from processor i. It can be

trivially shown that the computation willstill be correct. Our objective now would toquantify the per

formance of such a synchronization method.

A qualitative description of theperformance would beuseful inarriving ata good model for the

state transitions. The dynamics of the system can again be described by two states. In state 5/?, all the

processors in setF are ahead (in local times) of the processor 1inS. In state SSt processor 1 in theset

S, is ahead of all theprocessors in the setF. When nocommunication occurs between theprocessors in

the setsF andS, the systemis in the state SF. Whenever, communications occur among the processors

in the set F, the system is still in the state SF, as very little timeis spent on the resynchronization (if

any). The system jumps from state SF to state Ss,whenever there is acommunication from S toF. At

the next step, the system again jumps back to the state SF ifa{ for jeF are at least twice as large as a*

(if this assumption is relaxed then thebounds derived are upper bounds onthe performance). TheGlo

balTime in the system is not affected if there were nocommunication from processors in setF to the

processor in setS when the system is in state 5. If there is indeed such a message asinCase 3 above,

then the Global Time is penalized. The values of pP and pSl therefore, are bothresponsible for deter

mining therate of progress of thedistributed computation. However, interactions within the processors

in the set F themselveshave littleeffect (if any)on the progress. The performance analysis would have

87

the advantage that it is not overly sensitive to the individual communication probabilities, but instead

depends onsome function of their values. The indices ofperformances would then also be able to indi

cate if physical processes need be lumped together into one logical process if they communicate too

often in relation to the rest of the system. We will discuss this issue later, in the context of distributed

simulation of dynamical discrete event systems.

4.3.2. Associated Markov Chain Representation

In this section, we will analyze the performance of concurrent rollbacks as a method of synchron

ization in distributed systems. The discrete time Markov chain is shown in Figure 9, with two states.

The transition probabilities are pF and ps. The effect of ps is to reduce growth of the Global Time.

The analysis and the balance equationsare very similar to those of the two-processor case.

1-Pf Pf

Figure 9: State Representation for Concurrent Resynchronizations

The balance equations are,

jc(F) = (l-/>f)rc(F) + jt(S)

n(S)=pF-K(F).

Solving the equations together with the fact that rc(F) + it(S) = 1 we have

1 PfJc(F)=-i— , jc(5) =
l+pF l+pF

The Wolf Coefficient o^ which estimates the average growth of the Global Time GTn is given by

88

« l~PF n . Pp(l~Ps) «n
l+pF l+pF

where a*=B for all n. Similar bounds can be derived for other ranges ofa*1. If the faster processors

are not at leasttwice as fast, a.x the upperboundon the attainable performance.

Example 1: Consider the three-processor system shown in Figure 10, where processors 1,2, and 3

cooperate in an optimistic computation. Let 1 be the slowest processor in set5 with rate of forward

computation being Rlt the rates of2and3insetFare/?2and/?3respectively. After each time step, the

processors can communicate with each other with probabilities given bypi} (where i is the transmitting

processor and j is the receiving processor). Consider the profile of the computation as shown inFigure

2.The forward computation time(or simulated time) is plotted against thereal computing timein wall

clock ticks. Processor 1 sends a message to Processor 2 at real time tx. This message is (instantane

ously) received by Processor 2 which rolls back toL(l). In our aggressive protocol, Processor 3 also

rolls back its local clock to L(1). At thispoint bothProcessors 2 and3 rollback for one timeunit,while

Processor 1 moves ahead in simulated time. At this stage eitherof the Processors 2 or 3 in F could

send amessage toroll back Processor 1. The typical profile illustrates this case. The Global Time (GT)

of thissystem follows the trajectory givenby theboldline.

Computing time in clock ticks

Figure 10:Typical Profile for Concurrent Resynchronization

89

To study the performance of concurrent resynchronizations further, we present the results of a

simulation of the dynamics of the clocks in a four-processor system(See Figure 11). The four proces

sors have rates, a„ - 1, a% - 2, a„3 =4 and a„4 = 8.The probabilities of interaction inCase 1,are low (

Pij =0.3 for all i ,j). In Case 2, the probabilties of interaction are relatively higher (pVj =0.7 for all

i ,j). Analogous to the two processor case, Case 1 with fewer communciations between processors

progresses much faster than the case where processors communicate frequently. The buffer sizes in

Case 1 are also larger.The Wolf Coefficients, plotted in Figure 12,also show that frequentcommunica

tions penalize forward growth.

To show that the progress of the computation is quite sensitive to the rate of growth of the

slowest processor Let us examine Figure 13. Here the slowest processor in the system was boosted

from a forward computation rate of 1 to 3 simulated time unitsper computing time unit. The impulsive

increase in the forward computation is reflectedin the the progress of the overall computation itself.

150

13f-

12C-

105-

90-

Simulated Time

Four Processor System
Concurrent Resynchronizations

30 60 90 120. 150 180 210 240 270

Figure 11

Case 1: Infrequent Communications.
Case 2: Frequent Communications.

90

299

This simulation extends the performance analysis to the case of multiple processors. Fre
quent communications again penalize progress. It may be more efficient to use the results
of the simulation to "lump" processes together to reduce the communications between
processes. The memory-time tradeoff is again observed. The performance of concurrent
synchronizations is illustrated in this plot.

0.9 -

0.8 _

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Four Processor System

Wolf Coefficient

Simulated Time

U
29 58 87 116 145 174

Figure 12

Case 1: Infrequent Communications.
Case 2: Frequent Communications.

91

Casel

Case 2

203 232 261 290

The rate of growth index, or the Wolf Coefficient, at, is studied for concurrent resynchroni-
zations in the figure above. The plot confirms the conclusions drawn in Sections 3 and 4.
The analytical value of the coefficient is useful in designing efficient garbage collection algo
rithms. The overhead in concurrent resynchronization lies in the fact that in a distributed
system consisting of a few thousand processors, broadcast can be costly unless special
hardware is provided.

5oq

45C-

40C - Simulated Time

35C-

30C-

251-

201-

151-

Multiple Processor System

Time varying rates

156 195 234

Figure 13

RealTime

273 312

92

390

The progress of concurrent resynchronizations is sensitive to the rate of the slowest proces
sor. In this example, the slowest processor was assigned a faster rate after time f=180. The
immediate change in the profile is reflected in the plot

93

Synchronization usingconcurrent rollbacks has the advantage that the processes are resynchron

ized very often, whenever a slow processor communicates with a fast processor. The memory require

ments for this algorithm will be minimal The overhead manifests itself in the broadcast mechanism

needed to communicate with all the fast processors. If the distributed system consists of a few hundred

processors, thisoverhead can be significant. Broadcast by each processor to a few selectother proces

sorsin the system will find favor from the view pointof efficiency.

We will now consider another synchronization algorithm. In this algorithm, processors communi

cate with each other in the same patternas before, but with one important difference. There is no broad

cast, and communication between processors results in the resynchronization if the message is received

by a processor with a larger local time. Therefore, it is only the receiving processorthat could rollback.

If the receiving processor had communicated intermediate results to other processors, (which it now

finds were erroneous), those processors are then rolled back to consistent states in subsequent time

steps. In response to a single message, a cascade of secondary synchronizations could result Exactly

how this affects performance is the subject of the next section. We will then have the opportunity to

show that Successive Resynchronization, often performs poorly with respect to Concurrent Resyn

chronizations. In addition, we will simplify concurrentrollbacks to introduce another efficient rollback

algorithm [See MaWaMe88], Wolf, whichbooststhe efficiencyof implementation further.

4.4. Successive Resynchronization

In this section, we will proposeand examine anotheralgorithm for the synchronization of asyn

chronous distributed computing on multiple processors. The effect of propagation of error on the pro

gressofdistributed computation is quantified.

At this point in our discussion, let us reexamineour premises. We have assumed that rollback (or

resynchronization) takes exactly one time step. This is a conservative estimate of the time required to

resynchronize. A realistic assumption is that the time required to resynchronize is proportional to the

magnitudeof the time rolled back in local times. This would imply that the performance bounds we

94

derive here are upper bounds on the performance. A successive synchronization scheme, suchas one

which will be discussed in this section will be penalized even further, for reasons that shall soon be

apparent

Let us now define the notion of a Valid Error Path, Vijt from processor i to processor ;. The

length of a valid error path, IV>y I isdefined asan integer measuring the number ofprocessors in the

valid error path. A valid error path, VJ'*" is defined toexist between processors i and j iff there is a

sequence oftimes Tx*, T*J,., T?J such that nt £Tx* £ T$* £ . £T?J £n2 for some x ,y ,., z and for

some processors k ,/ ,.,«. We further assume that

Prob{IVJ-*+Tl =n}=pr10-Pw)» /%e[0,l],ifn <T

r-i

else, Prob{IV#rl=n} =l-£(l-/v) ^,ifn=T

ruru.cnr.orc, if jeF then if T^J is the real time when processor leS communicates with j\ then let

n-nj be the smallest time such that C% >C>fc . The set of all ksuch that Vf^ where a = nj ,T^,

is avalid error path isknown as the Sphere ofInfluence, WijjJ^ - nj).

The Sphere of Influence can be determined bya number of methods. A conservative approach

would be to use minimum communication times and execution times to determine the maximum range

ofpropagation of the error message from node ;. Alternatively, itcould be iteratively determined at run

time, using a suitable dynamic programming algorithm (Le. Bellman-Ford Algorithm, [BeTs89]), where

each processor routinely determines its own Sphere ofInfluence using marker messages. The Sphere of

Influence can then be stored in the form of a look-up table, and used in an algorithm called the Wolf,

which willbe discussed in the nextchapter. Theprobability pw is also sometimes called theSend Fac

tor by someresearchers (See [AtSe88]).

Having introduced the notion ofa sphere of influence, it isconvenient to introduce the notion of

radius of the sphere of influence. A node it in the sphere of influence of node j, is defined to be at a

radius of influence ofrjk iff at least rjk-\ processors are in between processors j and k for any valid

errorpath. Here R denotes themaximum radius of the sphere of influence.

95

Whatever the nature of the computation, the effect of the sphere of influence on the computation

is substantial A succession of rollbacks can arise as aresult ofasingle message from the slow proces

sor to one of the faster processors. The effect of the rollback of the faster processors temporarily

reduces the slope of the Global Time, GTn. The average rate of growth a^ is only reduced if one of the

faster processors sends amessage to aslower processor (which isnow ahead) during resynchronization.

Since there are a number of likely opportunities for a faster processor to send a message to a slower

processor especially when the sphere of influence is large, the net effect on the coefficient a is large if

p0 is large. Here p{ is defined as the probability processor j can send amessage to the slow processor

at each time step. For the sake of simplicity, let us assume that pi =/?{ =•=• = p0 implying that

each fast processor isequally likely tosend amessage tothe slower processor. The faster processor can

onlyaffectthe slower processor if theslower processor is ahead.

Let us now examine the dynamics of the distributed asynchronous computation in this frame

work.

Dynamical Equations

{CJ , i=l, 2 N} is defined as follows,

[Vj ,m = 1,2,3 ,...]areBernoulli times such that

ProbtT^ -T^=k] =/>„(l-Pij)k-\Jk =1,2,3...
Whenn^r^, C'+1=C'+a»

The aln are partially ordered as follows,

a»2, a* a*t> a* , for all n

xj =oo, for ally , n.

ForieS JeF ,ifn=T% ,-

CUX =min{C^ , C«} +a{I [C{ < Cj}

jc*+2 =min{C^ ,Cln}, for all k s . t .rjk=l

*Li+R =min{C '̂, Cj}, for all/ s . t rjt =R
C«+i = €„ + alH

For/65, jeF , ifn=TUl ,«
Ci+l=min{Ci,C^'}+^/{Ci<Ci}

CL=Ci + al

FoTiJeFtfn=rnJ , <
C*+1 =min{C«,C*} +ai,ke W(j#]) U j

96

ForallZ,;,/»*ry , jCB+1 =min(Ci ,*„} +a'n

The dummy states jcjJ, jeF represent the memory inthe system, when asingle rollback can cause

a successionof rollbacksin the system, keeping the GTn temporarily at a slope zero.

Onceagain, the condition thata{ for j eF are greater than ai for alln can be relaxed further to

thecase where this inequality holds only for those n, where C{ <C,,1.

4.4.1. Markov Representation of Successive Resynchronization

We will now analyze the performance of the asynchronous system with successive resynchroni

zations. We will simplify ourmodel further, by letting p^ alone represent the effectsof the sphere of

influence (tantamount to assuming there are a very large number, possibly infinite, number of proces

sors in the system). This assumption implies that we derive a conservative upper bound on theprogress

of the distributed computation. The analysis is much simpler, and the bound will be accurate if pF is

small. This is also the case of most interest

If a slow processor has infrequent communications with the faster processors, a very long cas

cade (possibly infinite!) of successive resynchronizations can result Fortunately, in a real system, the

numberof resynchronizations would be restricted to the numberof processors in the system.

The Markov representation of the system consists once again of two states. In state SF all the

"fast" processors are ahead (in local times) of the"slow" processor. In state Ss, the"slow" proces

soris at leastas large a local time as the local timeson oneormoreof the "faster'' processors. In state

97

Ss slopeof the global time is zero. The system remains in state Ss with a probability /v at each time

step. This Markov chain is described in Figure 14.

\-pF
Pf

l-Pw

Figure 14: SuccessiveResynchronizations

The balance equations for this system are:

n(F) • (l-pF) + n(S) • (l-pw) =n(F)

n{S) = n(S)-pw+n(F)'pF.

The invariant probabilities will then be

Pf

l—Pwtc(5) = £5— ,n(F)=
Pf

1 +
l-Pw

The Wolf Coefficient, o^ is then given by

1 +
Pf

1-Pw

Pw

o2^k(F)-B +n(S) • (l-p0) • IB.

The effect of the communications between the faster processors is captured by pw, while p0

describes theeffect on o^. Letus now look at an example ofa five-processor system whose profile is

depicted in Rgure 15. From the examination of Figure 15, onecan easily verify that c^ is indeed an

upper bound. Here Oq, would be accurate for small values ofpw, or alternatively, large values ofp0.

Note 0C2 can be larger than 1.

Simulated Time

Simulated

Influ
Real Time

-„t..„|.._.t_.h_t_._1..^.._|....i_._.t.„.l_i._i„_.i..._t._^
a b c d f I

Radius of Influence R =4

-T~-^-f
Radius of Influence R =4

Figure 15: a^ is an upper bound.

98

—t-

In this figure we describe asynchronouscomputation using SR on five processors. 1 is the slowest
processor, and processors 2,3 ,4,5 are in its sphere of influence, x and y are the true estimates
of the global time at the end of the computation for two possible cases, z is the upper bound
predicted in our analysis.

99

In Figure 15, we reconstruct two of a number of possiblecases which can occur in the case of Succes

sive Resynchronizations. In every case, however, the analytical expression derived in the text is an

upper bound. To show that this is the case, we examine Case 1 above, where a set of five processors

cooperate in an asynchronouscomputation. Processor 1resynchronizes at point/ in real time, after the

entire sphere of influence has resynchronized. The actual GTn follows the trajectory shown in the

figure. However, the analyticallyderived GT estimatesthe growth in simulated time as z, as opposed to

actual growth of x reached.

In the second plot in Figure 15, another possible sequence of events is traced. Here, Processor 1

resynchronizes early in the computation, at point b itself. The actual GT reaches y which, though less

than z is closer to it than x. Therefore, it should be clear that our upper bound is accurate for cases of

small pw and large pQ.

Example 2: Consider again a three processor system with Processors 1,2 and 3. A typical execution

profile is shown in Rgure 16. Processor 1 sends a message to Processor 2 at time tx and local time L (1),

causing Processor 2 to rollback from L(2) to L(l). However, Processor 2 had earlier communicated

with Processor3 in the interval L (2) - L (1). In the general model introduced in the earlier part of the

section, this interaction was captured by a probability pw. As seen in the profile, the Processor 2 first

rollsback and then Processor 2 rolls back. Note that this is in contrast to the case of Example 1, where

both 2 and 3 rolled back concurrently. The slope of the Global Time (GT) remains zero for a longer

period which could lead to a smaller growth in forward computation, because each of these faster pro

cessors could resynchronize the slower processor (with probability p0). However, in the case of Exam

ple 1, since more processors roll back concurrendy, there is a greater likelihood that one of them could

resynchronize Processor 1 (implying ps >p0)» resulting in a reduction in the forward rate of computa

tion in the next time step.

Computing time in clock ticks

Figure 16: Profile for Successive Resynchronizations

We will now examine the results of the simulation of the clock dynamics of a four-processor sys

tem synchronizedusingSuccessiveResynchronizations. Here, two new factorscome into piay. The first

is the probability, pw, that a faster processorcommunicates with other processors in the system before

being resynchronized by the slower processor. The second, p^ is the probability that models the fact

that the fast processors can communicate with the slower processor while recovering from resynchroni

zation.

In Figure 17, we study the dynamicsof two cases wherepw is kept constant, and the value of p0

is varied. With a larger p0t the probability that the slowest processor is resynchronized (thus penalizing

the average rate of growth) is enhanced, and the performance of Case 2 illustrates this. In Case 1, the

performance is better. The buffer sizes are much larger than the case of Concurrent Resynchroniza

tions because the processors communciate with each other (or resynchronize) less frequently. The

smaller values of the Wolf Coefficients in Rgure 18, also confirm our analytical results, that CR

requires less memory that SR and also progressesmuch faster.

Figure 19 illustrates anotherimportant result The fact that/ty is large is not suffcientto penalize

the a. It is necessary thatp0 be large too.

100

101

149 r

This simulation studies the effect of p0 on two runs of Successive Resynchronization on a
system with 4 processors. The value of Pw was kept constant at 0.7, while p0 was 0.4 in Case
1, and in Case 2p0 was kept at 0.8. Note the slower progress of the distributed computation
in Case 2. Both computations run slower than the previous examples with Concurrent
Resynchronizations.

1.0 - A

0.9 -

0.8
Simulated Time

0.7

0.6

Successive Synchronizations
Four Processor System

Casel

0 41 82 123 164 205 246 287 328 369 410 451 492

Figure 18

102

The observed values of a are plotted for the case of distributed computation with successive
resynchronizations, for two different cases. A higher value of p0 in Case 2,
(po=0.7, Pw - 0.7) penalizes the performance of this case relative to Case 1, (
p0 = 0Atpw = 0.7).

63 84 105 126 147 168 189 210 231 252 273 294

Figure 19

103

This simulations shows that a large pw can affect GTn but not cc, unless p0is large as well.

104

Comparing Successive Resynchronizations with Concurrent Resynchronizations we have

from the analytical expressions for the Wolf Coefficient, the Figures 20 and 21, where their rela

tive values are plotted.

Figure 22 and 23 illustrate the performance of SR and CR under similarcomputation to

communication ratios. It is seen that CR outperforms SR both in terms ofrate of forward progress

as well as in the terms of buffer sizes (as these are proportional to drift in the clocks.)

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.9

0.7

0.5

0.3

0.1

la
p0 = 0.85, pF = 0.65 , ps = 0.5

.__ <*1

-

s

- Pw

i . _i. L 1 1 1 1.1 1 1 1 1 1 1 1 1 1

0 0.5 1.0

Figure 20: Comparison ofWolf Coefficients

pF=0.65, ps = 0.30, pw = 0.50

:t°

Po

0.55 0.65 0.75 0.85

Figure 21: Comparison ofWolf Coefficients

105

70O-

64(^

58(r

Simulated Time

52<r

46V

400-

34(r

28(f

22(c

16V

Comparison of Methods

Successive Synchronizations

Real Time

156 195 234 273

Figure 22

This study shows the performance of two synchronization algorithms, under identical
conditions. The probabilities of communications were the same for the two cases, and
the forward computation rates were also matched. In the case of "Successive Resyn
chronization," pw or the SendFactor was assumed to be 0.7. Note also the smaller
memory requirements for the case of concurrent synchronizations.

106

1.0

0.8

0.6

0.4

0.2

Comparison of Synchronization Methods

r*»wJ

Successive Synchronizations

Real Time

41 82 123 164 205 246 287 328 369 410 451 492

Figure 23

107

The Wolf Coefficients are compared for CR and SR under identical conditions. Per
formance of CR is clearly superior.

4.5. Summary

In this chapter, a new model has been proposed 'for the analysis of synchronization

mechanisms in self-synchronizing concurrent computing systems (SESYCCS). Such systems are

important in the efficient solution of large scale distributed computation that can be described by

Dynamic Computation Graphs.

In our study of the two-processor logical system, we have derived an analytical estimate of

the progress of distributed computation. The rate of growth of Global Time is not the rate of

108

growth of the slowestprocessor in the system,but hasbeen shownto depend on both the rates of

the two processors as well as the probabilities of their interaction. Frequent communications

between processors resultin a slowergrowth in the computation. The Wolf Coefficient,a, which

represents the average growth in the Global Time (GTn) in addition to describing the efficiency

of the self-synchronization, is alsouseful in the design of efficientand simple garbage collection

algorithms.

Simulation results confirm that the rate of growth is indeed that given by the analytical

result

Communicationdelay increases the memory of the system. The effect of the communica

tion delay is to introduce new states into the performance analysis state representation, and this

effect was quantitatively determined in the chapter. Closed form results have been derived for a

few cases. Communication delay can cause a further degradation in efficiency of a SESYCCS,

especially if communications are frequent Results of our analysis can be used to "lump"

processes togetherto reducethis interaction.

The results were then extended to the case of the multiple processor SESYCCS. A new

algorithm, Concurrent Resynchronization (CR), hasbeen proposed to synchronize a SESYCCS,

where synchronization is enforced separately from the computation. Concrete and exact results

of the performance of this scheme have been derived. Concurrent Resynchronization has the

advantage that the rateof growth is not penalized by communications between the larger number

of processors in the computing system. This is because all processors are resynchronized when

ever an inconsistency in the local clocks is discovered. The memory requirements are also much

smaller. However, the price paid is in the additional communications required to enforce the syn

chronization. Use of special synchronization hardware will, therefore,be of merit

The second algorithm proposed, Successive Resynchronization (SR), describes the perfor

mance of a synchronization algorithm wherethe synchronization is implementedas a part of the

computation. Exactresults arederived in the performance analysis. The effect of propagation of

109

error amongst communicating processes is particularly highlighted, and the drop in the rate of

growth of the Global Time is attributed to an increased likelihood of a succession of resynchroni

zations in the system. Qosed form results provide a concrete basis for comparison between SR

andCR.

CR is then extended to include only those processors in the resynchronization which

belong to the Sphere ofInfluence of each processor. The efficiency is shown to be improved as a

result In Chapter 6, we will describe the implementation of this algorithm in the distributed

simulation of discrete-event systems.

The theory presented in this chapter is new. The results and analysis are robust and general

enough to allow the analysis of a number of other synchronization mechanisms for SESYCCS as

well.

We conclude that the separationof synchronization from computation in the logical system

has the advantages of an increased efficiency of implementation, smaller memory requirements,

and a reduction in the burden imposed upon the user of the concurrent computing system.

Current work consists of an extension of these results to the analysis of systems where the

time required for resynchronization is proportional to the amount resynchronized in local times

and also to incorporate the effect of finite memory.

Chapter 5

Randomized Algorithms for Self-Synchronization

110

This chapter introduces and develops a new class of self-synchronization algorithms called die

Randomized Algorithms (RA). It is envisaged that these algorithms would take advantage of the

knowledge of the dynamics of the computation, and thus providea basis for systematicadaptive syn

chronization of distributed computation.

•The algorithms for self-synchronization for Static Computation Graphs (Chapter 3) and for

Dynamic Computation Graphs (Chapter 4) were proposed for two distinct classes of scientific computa

tion. Static Computation Graphs are proposed with a specific fork/join type computation in mind. In a

number of scientific applications, especially in digital signal processing, algorithms can be constrained

to fit this model. The static structure of the computation is first identified by the synchronization algo

rithm and the resource allocation schemes are subsequently optimized. Our results from Chapter 3

demonstrate that it is possible to develop an efficient time-shared SESYCCS environment for this class

of computation.

Dynamic Computation Graphs, on the other hand, are very broad in their scope. The structure of

the computation is random and varies dynamically with time. Our solution to the problem of self-

synchronizationwas to develop a theory of self-synchronization that separated the roles of computation

Ill

from that of synchronization. Our analysis in Chapter 4 provides concrete results on the performance

of several algorithms for self-synchronization. Provision of explicit synchronization facilities was

shown to be advantageous in the SESYCCS environment

However, no attempt was made to "learn" the dynamics of the distributed computation itself to

improve upon the efficiency of self-synchronization. It can be argued that for a sufficiently large class

of scientific computation, the behavior of the computation can be adaptively identified as the computa

tion progresses. Nevertheless, since the computation is itself random, it would be unusual to expect to

be able to predict the its behavior exacdy (as in Chapter 3). But it would not be unreasonable to expect

that the some knowledge of the computation can be used to optimize the performance of the distributed

implementation.

This chapter addresses this very question. The question is reformulated as follows. Can the

problem of self-synchronization be couched in the terms of statistical estimation ? The input to the

adaptive algorithm would be the sequence of observationsrepresenting the evolution of the local times

on other processors in the distributed system. Each processor then tries to estimate the local clocks on

the remote processors on the basis of these observations. If each processorwere to communicate with

other processors at local times that are comparable, the penalties of resynchronization or additional

memory storage would not be as severe.

This chapter also addresses another important question. Are SESYCCS realizable for DCGs ? In

other words, are the memory requirements finite? Flow control and memory requirements constitute an

important partof the designof any distributed computingsystem. It is essential thatalgorithms for flow

control and garbage collection be as efficient as possible. Otherwise, this would negate the benefits

accrued from self-synchronization.

Hitherto an important requirement in a distributed message passing environment was to ensure

that communications between processors were blocking. This implied that both the sending and the

receiving processors had to be ready to send and receive the message respectively. This condition

ensured that buffer sizes were finite. In the non-blocking communication environment there is no such

112

restriction. Thus there is a likelihood that message buffers would overflow when the distributed com

putation was inappropriately implemented.

Relaxing theassumption of blocking communications allows a practical and efficient realization

of a SESYCCS, precluding the necessity of providing large buffers for communication purposes. We

show that under some patterns of communications between processors non-blocking communications

can be implemented in a stable and efficient manner with finite memory requirements.

Bernoulli communications imply that the different processes in the logical system interact with

each otherat some point in time. This notion of irreducibility leads directly to the stability of buffers.

Note the similarity in flavor with results derived in Chapter 3, where we proved that non-interacting

(e.g. independent) processescan affect stability in buffer sizes.

5.1. Randomized Self-Synchronization

Our previous results in analyzingthe performance of SESYCCS showed that the progress of the

computation depends on the rates of the forward growth in the constituent processors. The computation

is particularly inefficient if the divergence between the rates of individual processors is very high. In

addition if the time taken to undo the effects of erroneous computation are taken into consideration, it is

necessary to ensure that the local clocks of individual processors do not diverge "quickly." Indeed,

most experimental evaluations of optimistic computation have been based on balanced realizations.

How this balance can be achieved is the subject of this chapter.

Each processor in the system makes some decisions on how the clocks of other processors evolve

in time. When a communication between processors is imminent the transmitting processor ensures

that some randomized algorithm is followed that estimates the local times of the remote processors.

The transmitting processor may then decide to wait to allow other processors to catch up, or assign

more resources to its own computation should it appear that it were slower than the other processors in

the system. We will analyze randomized algorithms (RA) for the case of two processors. In a more

113

general framework, the algorithm has to be implemented to estimate the clocks of all processors in the

immediate sphere of influence.

The problem can now be formulated as follows: Two processors participate in the computation.

The clock of Processor 1 is given by Cn at a discrete time n. The evolution of the local clock in the

n-f1 stepis then given by (where C is a random variable)

d+l = Cn + C»

Processor 2 tries to estimate the clock at instant n+1, given that the clocks synchronized earlier at

instant n. The evolution of the estimator Un can, therefore, be given by

uH+l = cH + vH

CM and Vn are the decision variables. It must be noted at this point that Vn is the estimatorof the

remote clock (in Processor 2). We must also assign a cost function to the estimation algorithm. A fair

cost function would penalize Processor 2, when Un+X is either ahead or behind Cu. To derive some

analytical results we proceed to a few specific cases.

Casel:

Let us assume that C 's are i.i.d on (0, oo), and Vn can take values in [0, V] Therefore, given

Cji+1 = Cn + C»

u*+l=cH + vn

The problem then is to come up with a sequence Vx, V2... which minimizes a discounted cost func

tion, WH which consists of the contributions of a distance function / () over a number of intervals in

discrete time. With p < 1 a constant and E [] denoting expectation we have,

W.=E[i,f>l-f(Um.Cm)l
»=i

Since the t,n 's are i.i.d the estimation procedure at each step is independent of error in the previ

ous step. So we can rephrase our desired goal as a single step optimization, where we have to select a v

such that

rrdnimzeE[f{y^

114

Let us also assume that/ (v , Q can be written as

/(v,Ci) = a(v-Q+ + MCi-v)+

Here a and b represent the costs associated with overestimating and underestimating the remote clock

respectively, and (x)+equals x if x is positive andequals 0 ifx is negative. Thesecostsdirectiy relate

to the costs of resynchronization, lost computation, and additional memory required for storageof mes

sages ahead in local times.

15000

13500

12000

10500

9000 h

7500

6000

4500

3000

1500

a = 12

6=2

J t A.= 10

- wm

Cost Function

-

1 y^

s

1 . a+b
v=—In

A. a

i£>-—f ! 1 1

—•** n

iiii

•
i

0 20 40 60 80 100 120 140 160 180 200

Figure 1: Clock Estimation in an Asynchronous Environment

In the first strategy, the mean — is used to estimate the remote clock v„ (which has an
A,

exponential pdf), in the second case, v = — •In . The latter gives the best perfor-
A, a

mance.

If £ follows a probability density function given byg (0. thecostfunction can thenbe written as

Ef(ytQ =a](y-Qg®di+b J (Ct-v)g(QdCt

115

Let us consider the case where g (Q describes an exponential density function. The cost function

can then be written as

V oo

E/(v.o=«j(v-ok-*ty;+* J (c-v)fc-M
0 v

Carrying out the simplification

Ef(v,Q=av+±e-x"-a-^e-Xv
Minimizing over v gives

• 1, a +b
v =—In

A, a

Therefore, ateach step, the Vn is assigned the value v*. Similar analysis can becarried over to

other probability density functions. The performance of this strategy is observed in Figure 1, where

two different strategies are compared. If the processors communicated at irregular intervals this

analysis can be extended to estimate the sumof a number of random variables.

Case 2:

Consider now the case where £A's form a Markov sequence of numbers with a transition matrix

A. The solution to the estimator problem is then given by the Vn which minimizes

Wn=E\f(VHtU\^i\

This function can sometimes be easily minimized as illustrated in the following example.

Example 1: Consider the irreducible and aperiodic four-state Markov chain which describes the evolu

tionof CK with discrete time. The probabilities of transition areshown in the Figure 2.

Let us also assume that the system started in state 2, with value C,x = 2. The two possible transi

tionsareto states £2 = 1 or to £2 = 3.

The cost function in terms of V2 will be

W2=a(V2- l)+p(l \2) + b(3-V2)+-pQ\2)

V. then is chosen such that the cost function is minimized. This depends on the probability transition

matrices and also on the values of a and b.

p(3ll)

p(l!2)

P(4I3)

Figure 2: Example 1

116

Letusnow consider a general case where C* *s arenota Markov sequence, however, there exists

a Markov sequence yx, y2... such that

t-My.)

The objective function then becomes

W.=W(V..k)lk-i.t.-2....]

and if we define

*n(0 = P(y«=ncn-i.C-2....)

Then we have

^=2/(V,/l(0)«n(0
i

jcb(«) can becalculated using a suitable nonlinear estimator (e.g. Bayes' Rule).

In this section, we have derived specific algorithms for the estimation of clock increments in

other processors. Each processor, would therefore, update its clock recovery algorithm which each new

117

message communicated to it by a remote processor.

5.2. Finite Memory Requirements

We now wish to examine the conditions under which a SESYCCS can be realizable in practice.

While our conjecture was that a SESYCCS was realizable we have not yet established that asynchro

nous distributed computation with Bernoulli interactions and non-blocking communications can be exe

cuted in a bounded-memory computing system. This section establishes this fact The notation follows

that introduced in Chapters 2 and 4.

In a/ processor system, { C'n , n £ 0, i = 1,..., / } is definedas follows;

{T% , m- 1,2 ' }are Bernoulli times

That is,

Prob[TJ> +x-T% =k]=pij(l-pij)k-ltk = l,2,3

If

n*T* ;Cj+l =C£ + fl,.

Otherwise, if

n = 7* ; CU =min(Ci .C>) +anI[Cn <d)

with 0 <pij £ 1. Inaddition, we also assume that

yeZ+-{0}

6 Z+
8

Define

yj =cH-mf{C{)

Theorem 1: If irreducible and aperiodic, then

y„ = (yj,/ =i /)

is a Positive Recurrent Markov chain.

118

Thecondition that theincrements at andCj be multiples of £ ensures thatwe dealwith a count

able state space.

70 140 210 280 350 420 490 560 630 699
>

n

Figure 3: Buffer Requirements with Concurrent Resynchronization

This figure describes the requirements of message buffers in a four processor system syn

chronized using Concurrent Resynchronizations.

The main idea in this section is to show that the buffer sizes will be bounded under Bernoulli

interactions. If it is guaranteed thatall processors communicate witheach othersooneror later, then it

is easy to see thatthebuffers willalways bebounded. This is because thelocal clocks will be in "syn

chrony" andwill notdrift too farapart from each other. We will now establish this notion formally.

The condition of irreducibility ensures that all the processors communicate with each other at

some time, allowing all states to be reached, yj represent the drifts of each local time C'H from the

minimum clock in the system. WhileC'H coulddrift to infinity with increasing n, we wish to show that

119

the differences in the times remain bounded. To prove this, we make use of the following Lemma 1,

which we will not prove. The reader is referred to [Wa88] for details of the proof.

Lemma 1: Let V : C —> R+, then if there exists a K such that

E[V(Cn+l)-V(CH) I V(CH) ZK]Z-e<0

Then

E\V(Cn)] £ A<co , alln £ 1

We can now use Lemma 1 to prove that if V{ •) is such that {V(Cn) £ B} is a finite set for all

B,then

E[V(CR)}

so that

and

Therefore,

Prob{V(Cn)>B) <
B

E[V(Cm)]
Prob [V(CH) Z B) 2 i ,

Prob {V(Cn) :£ £}>0,for£ >A.

Prob {finite set} > 0.

The last condition implies that the Markov chain is PositiveRecurrent

Using the notation used in the model for asynchronous systems described earlier in this section,

letting V(y„) = max yj, we have

i-maxr'i miii/ii-£[,• Cn-^C'n] ZA

or

rmax.Er^yH] <> A

and

[yH I max yH < B }is finite

Therefore, yn is a PositiveRecurrent Markov chain andTheorem 1is proved.

120

To prove that the condition for Lemma 1to hold is indeed satisfied, we proceed as follows. Let

us assume, with loss in generality, that there isa processor i that is the largest in local times, and that

yn =yn - K. Let yl for j' * i be very small in comparison to KeZ, taking at most the value K - L.

Let the probability that any one of the processors j communicates with i at each time step be given by

1- p. The next-step transition diagram is then given by Figure 4. We normalize the value of y„ to be

zero and consequently the rest of the system is at local clocks of at least - (K -L). Here, yn can

increase by an increment an = a inone time step with probability p, alternatively it can decrease toat

most- L with probability 1- p. Then it is easily derived that

E\yH+m-ya lyn*0] ^m-a'pm+(l-pm)(-L)

so that

E\yH+m -y* I y« ^0] £ pm(a m+L)-L <0 for m ,L largeenough.

Let us now show that the conditionis true for the general case as well. At some point in time we

have yH=K. Let us chose an e< 1, say e= —. Since the system is irreducible (all processors can

communicate with eachother),we can findN such thatafterN time steps all the processors have com

municated with each other (or resynchronized) with probability e. If a is the upper bound on the for

ward computation rates of the processors this implies that the upper bound onyn isNa with probability

e and K +Na with probability 1-e. Then

is

This implies that

E\V{CH+l)-V(CR) I V{CH)ZK]

< aNQ.-e) + (K+aN)e-K

aN-K(l-z) <0 for K> ***
1-e

This proves thatthe condition is satisfied, andtheLemma1is applicable.

Finding theinvariant distribution of yH allows oneto derive bounds on thememory requirements.

Figures 3 and 5 plot the size of the buffers with computing time n for the cases of self-

synchronization using CR and SR respectively. The memory requirements are assumed to be

121

proportional to the drift in local timeson each processor from the minimum.

1-P

1-p

Figure 4: Transition Diagram for Buffer Increment

Figure 5: Buffer Requirements with Successive Resynchronizations

122

This figure describes the buffer requirements in a four-processor system synchronized

usingSuccessive Resynchronizations (SR). Note that the buffer sizes needed are larger than

the corresponding sizes in Figure 3 where CR isused for synchronization.

In theanalysis derived above, the communication costs were assumed to zero (i.e. communica

tions are instantaneous). Thestate could, therefore, becaptured by thelocal times C) alone. In thecase

that thecommunication times are non-zero, the new state vector would be characterized by (CH , Mn*),

where MlJ represents themessages in transit at time n originating inprocessor i and destined forother

processors j. It is expected that the Markov chain for thedifferences would be ergodic as well, (if

there is an upper bound on the message propagationtime).

To summarize the results of this section, we have have presented a model of asynchronous distri

butedcomputation, which requires a small synchronization overhead. Thecost lies in memory require

ments and the computing time needed to undo mhuc ciumicous computation. We have proved that

under some weak assumptions of irreducibility, the system is stable (ergodic) with finite memory

requirements. We have not proposed any garbage collection algorithm for our system, but we do not

expectsuchan algorithm to haveany stringent efficiency requirements. The efficiency of theRandom

izedAlgorithms can be evaluated by measuring theWolfCoefficient The invariant distribution of the

yH would be the guideline for memory design.

5.3. Summary

In theprevious sections, wehave introduced theframework andmethods involved indescribing a

new class of synchronization methods called the Randomized Algorithms (RA), which promise a

further improvement in performance. We have discussed a fewconcrete caseswhere the improvement

canbe quantitatively measured. Ourapproach reformulates theproblem as a statistical estimation prob

lem. Thepreliminary analysis was rewarding in thatwehave been ableto derive specific closed form

results.

123

The theory developed in this chapter fits hand-in-glove with the theory developed for the self-

synchronization of dynamic computation graphs. This happy marriage of self-synchronization with

adaptive clock estimation promises much in terms of efficient implementation of distributed computa

tion.

We have alsoprovedthatcomputation in a SESYCCS environment is realizable in practice using

nonblocking communications and finite memory whenever the logical system is irreducible. Bernoulli

communications in the physical system imply that this is naturally the case. If the physical system were

not irreducible, bounded buffers may still be guaranteed by using messages explicidy for transmitting

clock information such that the logical system is irreducible. This is a weak restrictionon the commun

ications, and augurs well for an efficient implementation. The assumption of infinite buffers, the bane

of the non-blocking environment so far, can be relaxedas a result

It is hopedthatin sucha framework, theefficiency of distributed asynchronous computation will

be then be better understood.

Chapter 6

Efficient Distributed Simulation

124

Distributed simulation systems, by definition, eliminate the globally shared event listused in the

sequential (uniprocessor or shared-memory multiprocessor) simulation systems. The physical system

being simulated ismodelled byaset of logical processes (LP), each of which isprovided with alocal

clock. Each LPcan communicate with other asynchronous LPs through messages. Theconcurrency in

the events in the physical system iscaptured by the logical system and it is hoped that the simulation

progresses much faster in consequence. However, anumber ofproblems typical to distributed systems

arise. They include verifying global correctness of simulation, detecting and resolving deadlock, task

partitioning among processes, and the overhead incurred in message passing, to name just a few.

The fact that a multiple processor machine can achieve greater computational power at a more

attractive price interms ofdesign costcomparted to asingle processor design, has spurred much recent

interest in distributed computing as a solution to compute-bound sequential problems. It is proposed

that such machines offer a viable alternative to traditional supercomputers at a higher performance to

cost ratio. (See [AtSe88]).

There, however, remain a number of interesting research issues in concurrent computing. First

is the development of distributed algorithms suitable for execution onanetwork of asynchronous com-

125

puting nodes. Parallel algorithms for such machines differ from serial ones, in the sense that both the

algorithm and the data have to be partitioned into smaller parts for concurrent execution. Secondly,

efficient operating systems for concurrent multiple processor systems need be developed. Algorithms

for process scheduling and allocation are decidedly primitive and limited in scope. Load imbalances

and communication penalties routinely cripple distributed computing applications. The third major

concern, is data management I/O facilities and the user interface.

A number of event driven distributed simulation algorithms have been examined in literature.

(See [ChMi79], [JeSo83], [MaWaMe88b]). These methods can be classified into 1) Conservative (Syn

chronous) Methods, 2) Optimistic (Asynchronous) Methods, and, 3) Randomized Methods (See

Chapter 5). In Chapters 4 and 5, we have analyzed the performance of these methods. In this chapter

we will focus mainly on the implementation issues in the context of distributed simulation.

6.1. Structure of Simulation

We will summarize qualitatively some relatedconcepts introduced in Chapter 2 that are germane

to the distributed simulation of discrete-event dynamical systems (DEDS). The Distributed Simulation

System (DSS) consists of the following subsystems.

The Physical System being simulated is first described by a set of communicating physical

processes (PP). A few assumptions on the behaviorof these processes areusually made. A processcan

send a message at any time t > 0 to any other process. The contents of this message depend only on the

information available to the process up to time t. (See Chapter 2 for a more formal description of the

causality conditions.)

The Logical System is then derived from the Physical System by simulating each constituent pro

cess by a logical process (LP). The simulationof each PPby an LP is independent of the simulationof

the rest of the DSS. In addition, the interactions between PPs in the Physical System are faithfully car

ried over to the LPs in the Logical System as well (the converse may not hold true!). Therefore, LPt

communicates with LPj if the corresponding PPs communicate in the Physical System being simulated.

126

Each logical process has associated with it a logical clock C,(f) or Cn that evolves in continuous or

discrete-time respectively.

The Message System synchronizes the different clocks in the Logical System. Time stamped

messages allow the logical processes toexecute asynchronously atdiffering rates. For instance, if PPi

communicates a message m to PPj atphysical time r, then the equivalent logical system schedules a

message (t, m) from LP; toLPj. Messages can be ofanumber of types. Some of them are used for

thepurposes of simulating thephysical system, while others are used to lookafter theaspects of distri

buted control and clock synchronization. In addition to the time stamp and message identification

fields, it is often advantageous to append statistics collection fields as well, largely to simplify interpre

tation of the distributed simulation. Each LPt has a local clock value Ti9 which implies that LP, has

simulated PP, till time Tt. This also implies that if thedistributed synchronization is correct, LPt will

not receive any messages timestamped earlier than T{. Ensuring that such loss of causality will not

occur is central to conservative simulation schemes.

We now make precise the underlying structure and mechanisms through which elements

(processes) ina dynamic discrete event system interact with each other. Theefficiency of adistributed

implementation of a simulation isdependent onanumber of factors: 1)Theconcurrency inherent in the

system being simulated, 2) The potential parallelism that can be extracted (through the useof looka-

head), and, 3) The communications overhead in passing data andcontrol variables within the system.

Very often, as in mostoptimistic simulation algorithms, the structure of the system being simulated is

not utilized in planning the simulation.

6.2. Vectored Simulation

In this section, we will describe how a few common networks can be simulated with greater

efficiency than thatwhichcanbe achieved in a conventional distributed realization. The enhancement

in the utilization of the processors and reduction in the communication overhead will be illustrated

graphically for thesenetworks andexpected values for efficiencies willbe derived.

127

Simulation of any large scale dynamical systems involves the simulation of a number of busy

cycles to obtain statistically consistent estimates (See [He86],[GlIg87]). For example, a large commun

ication network with about 40 nodes, could have a busy cycle of about 200 years (with about 240 jobs

processed!). Most networks are, however, used only for a small period of that time span. Therefore,

simulating transient characteristics of the system is important Vectored simulation interleaves B

independent simulation runs of the same physical system on the same network of N computing proces

sors (and the results are subsequendy averaged). By permuting the mapping of the system to the distri

buted computing system for each simulationrun (as describedbelow), the efficiency of the implementa

tion is greatly enhanced. As B is usually much smaller than N, speedup is possible. Vectoring also has

the positive effect of amortizing the overhead associated with communication setup times over a

number of simulation runs. Concisely, we propose that B independent (and identical) simulation runs

be distributed over the same N independent processors. Therefore, B independent simulation runs,

share the same real-time distributed computing system while maintaining orthogonality in simulated

time. We propose that such a "vectored simulation," does in fact enhance efficiency, by reducing the

communication overhead, and increasing the amount of useful computation.

These examples show how distributed simulation can be used with advantage in simulating large

scale networks while maintaining a high processor utilization. A single simulation run on a network of

N processors can be inefficient both due to the high overhead in synchronization and due to the fact that

most nodes remain idle for the lack of useful tasks to execute. Conservative simulations are required to

enforce causality locally at each node at evey time step, resulting in poor efficiency. On the other hand,

optimistic asynchronous simulation algorithms can exhibit a higher processor utilization, but there is a

substantial penalty paid while recovering from a loss of causality (most simulation studies in literature

present results for well "balanced'1 optimistic simulations). To complicate matters, the efficiency of the

distributed realization in addition very often depends on the structure of the physical network. This

additional information is seldom incorporated into the simulation itself to improve its' efficiency. A

partially asynchronous simulation algorithm may often outperform a totally asynchronous simulation,

utilizing the knowledge of the system (being simulated) available to it This knowledge can be

128

incorporated in the simulation algorithm withoutany loss in generality and is transparent to the user.

We will classify most of the algorithms in this section as partially asynchronous simulations.

In the following, we introduce vectoring in the contextof a few typicalbuildingblocks for large

scale systems. They include, 1) Tandem FCFS Queues, 2) FCFS Queue with Feedback, 3) A Merge

Network, 4) A Fork Network, 5) A Central Server Network.

Example 1: Tandem FCFS Queues: Consider the network shown in Figure 1, consisting of N FCFS

queues strung in tandem. This physical system can besimulated onN logical processes, each of which

is represented by a computing processor (node). Each computing node typically receives an input,

simulatesa service time by invokinga suitablerandomnumbergenerator,and updates its statistics col

lection routines, and then reroutes the job to the next node in the network. Let us assume that the time

Queue 1 Queue 2 Queue N

Him*Q—H3II>(2)-»<> oo-ffiuQ-»
The Physical System

The Logical System

Figure 1: Tandem FCFS Queues

taken by processor i to execute these tasks be given by tlcomp = a seconds and the time for non-

overlapped node to nodecommunications be given by ticomm = b. The totalcomputation timewill then

be 2&mp and the total time spent in communication and computation will be SWomm + tcomp)- The

ratio of the time spent in useful computation to the time spent on communicating and computing is

defined as the efficiency, T|. In case every processor does the same work, the efficiency is given by

[MaMe88a],

^_l£ 1 _ 1
i=l . 'comm J+ iL

1+ ,i a

129

The speedup would then be defined by Nt\. In the ideal case, tcomm would be zero and speedup

would be N.

Let us assume that we process messages from two simulation runs at the same time. Each mes

sage between any two nodes consists actuallyof two jobs from two identical (i.e. simulating the same

physical system) but independent simulation runs. The tcomp then increases to 2a. The time for com

munication between two nodes, however, does not become 2b as may be expected. This is because

tcomm = tsttup + Ct *»

Here, tsttup is thetimerequired to initialize communication between processors, a- B is thecomponent

whichincreases linearly with thenumber of bytes(B) transmitted between processors. Typically, tstotp

dominates communication costs. The resulting communication time for a message of vector length

B = 2, is therefore only slightly larger than b, and this boosts the efficiency of the implementation even

further.

Queue 1

nn*OT
FCFS Queue with Feedback: Physical System

(a)

Buffer for marked job

r The Logical System

(b) (c)

Figure 2: Queue with Feedback

Example 2: FCFS Queue with Feedback: The FCFS queue to be simulated is shown in Figure 2a, and

each job has a probability p of being fedback for reprocessing. If simulated on a logical processor net

work depicted by Figure 2b, processor 1 cannot process jobs until it receives a message from processor

130

2, informing it whether or not a job will in fact be fedback, along with the simulated time on link C.

The efficiency will then be poor, specially if p is small, as this implies that though very few jobs will

infact be fedback, processes 1 and 2 have to communicate for each job processed. Instead of this

approach, we propose thatthe jobs which need to be fedback be "marked** probabilistically (Figure 2c)

before the simulationbegins and system then be simulatedjust as in the case of the tandem queue. The

difference arises when a marked job is received and a special processingroutine is invoked (see below).

Let the input arrivals occur at simulated times AxtA2tAit- tAp ,..., AR, and let the p* job be

the one which is to be fedback. Let the real times when the processor Q begins processing these jobs

be 11, t2,..., tp ... respectively. When the pA job arrives at simulated time Ap and its processing

begins at real time tpt the local simulated time at the processor willbe given by s(tp) orequivalently,

s(tp_x +a). After thep Ajob is processed, the local simulated time is given by

s{tp+a) =max {s(tp),Ap} +xp

Here xp is the simulated service time for the p* job. The processor Q then processes and reroutes the

jobs in the order/? + 1 ,/>+ 2 p +k ,p where

Ap+k < max[s(tp)tAp)+xp

Consider now the general case when N queues are connected in tandem. It is easily observed that

whenever a job is fedback in any individual queue the successor computing nodes have to remain idle

for a time period (b + a). For the case of a chain of queues 1 JV, where jobs could return to

queue 1 from queue N, (Figure 3), the same strategy adopted will enforce an idle time of

(N -i)(a+b) at node i each time a marked job is received (with probabilityp) at node 1. As p -» 0,

the efficiency of our scheme tends to one while conventional conservative distributed simulations

would require that only one job be processed at a time by the N logical processes.

Example 3: A Merge Network:

A Feedback Loop

Figure 3: Ring of Queues

B

Merge Network: Physical System
a

Logical Mapping 1
b

Logical Mapping 2
c

Figure 4: A Merge Network

131

Let us now consider a merge network, as shown in Figure 4a, A, B and C are three subsystems

interacting via time stamped messages. This system can be mapped on the nodes of the computing

132

system as shown in Figure 4b. Subsystems A,B, and C are respectively mapped onto processors 1,2

and 3. We denote this mapping as:

(A,B,C)-» (1,2,3)

For the sake of simplicity, let us assign a deterministic task schedule for these processors. Let

Ax, A2..... and ^ %B2,2*3.... be the jobs leaving subsystems A and B respectively, system C

then processes thesejobs in the orderAxBxB2A2B 3B4 and so on. Therefore, C processes two jobs

fromfl for each job from A. The timing diagram for the simulation is described by Figure 5. The rec

tangularboxes representusefulcomputation, whilethe dottedlines representcommunication. The hor

izontalaxis representsreal computingtime (and not simulatedtime). It is easily seen that

Job 1

\

Job 2

Processor 1
/

\ Job 1 Job 2Job 1/ Job 3 Job AJob 2/

Job 2 \ Job 3

\ \
\ \
\ Job 4 \

SI&Z\ "S77R

Figure 5: Timing Diagram

Processor 3

Processor 2

1 2
processor A is only utilized — of the time, while processorB is utilized just — of the time. This would

2
imply that the efficiency of conventional distributed implementations would be —, (note that idle time

was counted as a communication cost). We will try to see how efficiency could be boosted to reduce

idle time to zero in the ideal case. For this purpose (Figure 4c), we map

(A,fl,C)-> (2,1,4)

133

Note that the mapping of systems A and B is a permutation of the previous one (intentionally), while a

new processor 4 simulates subsystem C. The timing diagram is shown in Figure 6. As may be

expected this s very similar to Figure 5, but different in that the idle times of processors 1 and 2 are

reversed. By simple superposition of the two timing diagrams, we have the mapping

(A,ff,C)2->(l,2,3) +(2,l,4)

resulting in an efficiency of 1 (assuming communications costs were zero!).

Processor 1

focessor 4

Job3 processor 2

Figure 6: Timing Diagram

Our example was simple, in that it assumed deterministic processing of jobs in a prespecified

order. The buffer requirements, therefore, were minimal. Let us consider a more general case, where

A and B have exponential service times with rates, u,and 2\i respectively. On the average, system C

processes 2 jobs from B for each job from A. Let the mapping be (A , B , C) -»(1,2,3) as before.

Processor 3, however, receives at least two inputs from 2 before receiving one input from 1. This

implies that processor 1 may have to operate in real time at half the rateof processor 2, (just asbefore).

If the simulated times are compared, their difference is very small leading to a small storage buffer

requirement However, for the casewhereboth processors 1 and2 process inputs at the samereal time

rate, the simulated times drift apart very rapidly leading to unbounded buffers. The vectoring is again

134

carried out as before, where the second simulation run n permutes the mapping of A and B to proces

sors 2 and 1, with the additionof a new processor 4. Processor 1, thenprocessesone job of simulation

run I, before processing two jobs for simulation run n, while processor 2 does exacdy the reverse,

resulting in efficient utilization of the processors in the longrun. Because of the inherent randomness

there will be a certain slack and the buffer sizes may be chosen appropriately. This simulation would

be called a partially asynchronous one, in the sense that the processor 1 and 2 are conservative to the

extent of using mean values to determine relative speeds of processing. Buffer sizes can then be

designed to smooth the flow accordingly.

Example 4: A Fork Network:

This network is shown in Figure 7. Process A sends a message to only one of the processes

B , C %D . When modeled by a (logical system) computing network, only one processor receives the

task while the other processors receive information messages whichupdate their local simulatedtimes.

Processing these information messages takes very little time (if any) and when these information mes

sages outnumber the number of computing jobs that a logical processor receives, efficiency of the

implementation is poor. The advantage of vectoring is the greatestfor the fork network. Qualitatively

this is because of the fact that permuting the system to processor mapping for independent simulation

runs, allows even partitioning of the load over the recipient processors. For a back-of-the-envelope

estimate of the improvement in efficiency we proceed as follows.

Figure 7: A Fork Network

Letp be the probabilitythat a messageis a information message(and consequently (1 - p) that it

is a "real" job). The effective useful computation per message is then

tcomp ~ P tinformation + (* Portal

The ratio of communication to computation for scalar simulation (B=\) would, therefore, be

t~t + a

*comp Ptinformation *' (1 P)^real

While that for "vectored simulation" would be

'«c + « 'B

tcomp Bptinformation +B(\-p)rreaJ

and

lim *comm a.

135

B-H» teomp Ptuformation +(1 ~ PVrwii

Efficiency, therefore, is enhanced for a well chosen vector length B. Practical considerations such as

finite message buffer sizes limit B. Feasible values for B lie in the range of 10-1000. A few of the

vector components can be devoted to either statistics collection, or for other control mechanisms and

I/O.

The ratio of information messages to the real messages determine the value of p, and experi

ments conducted on distributed machines show that this value can be has high as 20, giving p a value

of 0.95. The structure of the system being simulated often determines the number of information mes

sages generated. For example, presence of a number of forks and branches in a queueing system can

result in a high information message overhead (See [Fu88], [ReMa88]).

The graphs in Figures 8a and 8b describe the efficiencies for first and second generations of

tightly coupled multicomputer networks, for varying ratios of information messages to real messages.

The knee of the curve would determine a "good" choice for B. In the case of Figure 8a, where the

setup time is very high (indicative of the multicomputer presenUy availablecommercially), the knee is

reached at high vector lengths of 50-100. In Figure 8b, the knee is reached earlier at vector lengths

between 5-20.

•- Efficiency0.8

0.71

0.6..

0.5.-

0.4..

if

'.s

0.24.

0

0 50 100

«__ p=0.05
Z~ £=0.20
•-- p=0.50

♦. p=0.80

Vector Length

150

Figure 8a: Efficiency ofVectored Simulation

0.8

0.71

0.6..

0.5.-

*• Efficiency

p=0.05
p=0.20

0.4

0.3

.'"" Mr^> . ♦— p=0.50

0.2..V ^"\ ml .**

0.11 *

10 •hr

p=0.80

Vector Length

Figure 8b: Efficiency ofVectored Simulation

136

It is also observed that the initial efficiencies are much higher in the latter case. In generating the plot

for second generation machines, we have assumed that the communication setup times are reduced by

two orders of magnitude while the computation capabilities of the nodes are enhanced by an order in

137

magnitude (See [AtSe88]). With further expected improvements in the message communication proto

cols in future generations of multicomputers, it would be reasonable to limit 5 to a few tens of indepen

dent simulations.

The effect of "vectoring" on the performance of a distributed simulation was simulated on a

model of a simple communication network on the NCUBE system.

0

6
Figure 8c: 4-Processor Simulation

Figure 8c, shows the network consisting of 4 nodes (1-4). Node 1 is the source of messages, and

node 4 is the sink. The messages follow the deterministic path 1-2-3-2-4. The message communication

times, and processing times per message (in mseconds) were given values such that each node had the

same ratio of communications to computation.

Two different initial values of the efficiencies were chosen, one with an efficiency t^ = 48/64,

and the other relatively lower with an efficiency of % = 37/64. The communication semp times were

given the values existing in commercially available multicomputers,and the effect of vector length on

the performance was observed. The communication time (\is) versus message-length (bytes) charac

teristic is shown in Figure 9d.

From Figure 8e, it can be observed that r\x was boostedupto a value of 60, and T)2 to a value 58.

The enhancement in efficiency being substantially larger for *n2. The efficiency drops again briefly

138

between vector lengths 16-24 (this is because of the step+ramp communication characteristic adopted

for theexperiment), andthen stabilizes to itsasymptotic value (which is higher than the initial value for

vector length=1). Figure8e, extrapolates theperformance from 4 to 64 nodes.

- Message comm. time

- A

msecs

2.26
slope = 0.032 msec/message

1.33

Message Length

10 15 20 25 29

Figure 8d: Communication Time Characteristic (NCUBE)

ioor

90

80

70

60

50

40

30

20

10

°0

...

_ Efficiency of Vectored Simulation
(64 Processors)

Speedup

case 1

• —^"

/ y-^case 2

-

>

Vector Length
i i i i i i i i i

8 10 12 14 16 18 20

Figure 8e: Efficiency cf Vectored Simulation

Central-Server Network

Figure 9: A Central Server Network

139

Example 5: A Central-Server Network:

The central server network as shown by Figure 9, models an important class of computer sys

tems. Conventional distributed simulations have exhibited a very poor efficiency. The timing diagram

shown in Figure 10, shows why this is the case.

RIWI-h^ F\ .H R P
! i>
! i!
! i!

a

i!
i!

i!
i!

Central Server Network

Time

i !

M

Figure 10:The Timing Diagram of Central Server Network

140

The central server network operates as follows (let us consider four tasks circulating around the sys

tem), the central serverprocesses a task andassigns the task to one of the satelliteservers, whichupon

processing it returns it back to the central server. The simulation is slowed down because the central

server and the other satellite servers are unable to process any further tasks until first task returns to the

central server. This implies that the portionof the networksimulatingthe central server system, will be

unable to extract the natural concurrency available from the central server type of structure. The pro

cessor simulating central server has to await the arrival of time stamped tasks at all of its input links

before assigning one of them to a satellite processor. Most of the satellite processors are forced to

remain idle. Fortunately, vectoring simulationsagain provides an easy way out Here again, we con

sider first the case of two independent simulation runs I and II. The processor simulating the central-

server first processes a task from simulation run I, and thenassigns it to one of the satellite servers. It

thenprocesses a task from simulation run n and assigns it to one of the threesatellite servers whichare

idle. This will keep the processor simulating the central server busy all the time, and two satellitepro

cessors occupied. By adding another processor to simulate the central server the efficiency can be

boosted further by having four independentsimulationruns. Observing the timing diagram (Figure 11),

we can see that a vector length of eight can achieve ideal efficiency!

qqnri^ nlannnnrinni
1 " 11

ii
» \i I '

•l

jiiLi
ii

! i

I" 1"
* 'I

J

n

X*

M

Viecfor Length = 2

Central Server Network

Figure 11:Timing Diagram for ideal efficiency

141

As the speedup would then be unity (ignoring communication overhead), it may be far more efficient

to simulate the entire central server networkon a single processor. This is consistent with the experi

mental results of previous studies. To summarize, with a deterministic feedback cycle, the concurrency

of the real time system cannot be captured by conservative schemes, and simulation on a single proces

sor would be attractive. However, if the network were open, with tasks capable of leaving the system,

the concurrency in the physical system can be captured simply by marking those tasks which would be

fed back, and taking precautions only for these tasks. The distributed computing system can then be

used with advantage to simulate this system.

Conservative simulation schemes are penalized by the high overhead incurred in the communica

tion of information messages, in addition to the enforced idle times of the computing nodes awaiting

tasks. Vectored simulations provide both an increased amount of useful work while reducing the com

munication costs per simulation run. In optimisticsimulation (as in the merge network), knowledge of

the rates of the input links can be used with advantage in synchronizing their simulation times (or by

142

duality, scaling buffer sizes according to flow rates for each link).

The Central Server Network can be simulated with greater efficiency and speed using an optimis

tic algorithm. The conservative simulation algorithm was penalized by the fact that the processor simu

lating the central server was stopped from processing inputs until the job from the satellite servers

returned back to the buffer. In an optimistic simulation, the central processor would process the lowest

time stamped job, conditioned on the event that the returnof a satellite job would not roll back the for

ward computation. In the worst case, it could perform only as poorly as the conservative scheme.

We will now discuss some efficient optimistic algorithms with an objective to model their perfor

mance and propose techniques to improve upon their efficiency. A new rollback

algorithm[MaWaMe88b], Wolf, will be presented, which promises quick recovery from errors in the

simulation.

Wolf arises directly from the theory of synchronization, as developed in Chapter 4. Concurrent

Resynchronizations is enforced, but only over a set of processors within the sphere of influence.

63. A Synchronization Algorithm: WOLF

In this section, we will propose a new algorithm that separates the synchronization from the

simulation aspects of the distributed computation. The logical system implementing the distributed

computation is synchronized in an asynchronous environment estblished in Chapter 4. A modified ver

sion of Concurrent Resynchronizations will be introduced in this section. As outlined in Chapter 4, it is

the Sphere of Influence of a processor i that need to be resynchronized whenever any discrepancy in

the causality conditions is discovered by i. We will give methods for determining this sphere of

influence. The focus of this chapter is on the implementation of the ideas discussed in Chapters 4 and 5,

therefore, eficiency of implementation is the main objective.

143

Figure 12: Sphere of Influence

63.1 Sphere of Influence, W (i, O

In this section, we wish to quantify the notion of error propagation within an optimistic distri

buted simulation system. Let b be thecommunication timebetween two neighboring nodes, and a be

the processing time required toprocess a single message byany computing node. If amessage of class

c completes its processing attime t=0 innode i, then wedefine thesetW(i, t) to be the setof nodes

thatcan be influencedby thatmessagein time t. Morespecifically,

jeW (i ,/) <=> pkf>0, for some a, P,and
keW(i,t-a-b)

As the communication times b and computation times a are in general random, replacing them

by the minimum communication times and processing times leads to a conservative estimate of the

sphere of influence. A finite algorithm allows one to compute W{i , t) for any finite t. This can be

done off-line. This information can be storedin node i, possibly after some compression by approxi

mation in the form of a lookup table. The sphere of influence could also be adaptively updated to moni-

144

tor the changes in the network. The radius of propagation, R (i , t), of the sphere of influence ,

W(i , /), is the distance in the number of nodes, which a message transmitted by node i could pro

pagate in the time t. For a conservative estimate, the radius of propagation would be -. The
a +b

sphereof influence (in the conservative sense), can be looked uponas consisting of a numberof shells

of increasing radii (1 - R), each shell consisting of nodesreachable from i withina certain time span.

The sphere of influence thus enables the simulation designer to take advantage of the structure of the

system beingsimulated. For example, even if a certain computing node could communicate (direcdy

and indirecdy) with another, the requirements of the simulation could preclude such communications,

and this knowledge can be used to prune the sphere of influence. (Figure 12)

The sphereof influence has anotherdimension whensimulation is used as a design tool, specially

in the ComputerAided Designof large scalecircuits. The circuit is designediteratively to satisfycer

tain output specifications. Each time a circuit component is modified,a subset of the entire circuit will

only be affected by this change. The simulation algorithm then conserves its resources by simulating

only thosecircuitcomponents whichlie within the sphereof influence of the modified component This

would increase the speed of the simulation, as the distributedcomputing system is able to focus on a

smaller circuit than the original one. The design is then iteratively completed. At present some

attemptsare being madeto study the feasibility of thisapproach in developing a distributed versionof a

hardware simulation CAD tool

6.3.2 Wolf for Resynchronization

Wolf, is an algorithm that is invoked by the synchronization mechanism whenever it is

discovered that the causality conditions are* not satisfied. Wolf, is a broadcast algorithm that resyn

chronizes the entire sphere of influence of the computing process that discovers it had made an error.

This section discusses the structure of the synchronization mechansim.

Notation:

145

0Qk is the Output Queue of Node k.

IQk is the Input Queue of Node k

S, is a message which is the Straggler.

LVT is the Local Virtual Time at a node.

E is the Error Message detected at time ts after it was processed.

A+denotes the messages which were processed after A was processed.

i *• jeW\ A, implies that i broadcasts message A to nodes j e W{i jts)

SR consists of those nodes ,keW(i,ts), which are at a radial distance of/? away.

The following is the algorithm for the node, i, which initiates Wolf to rollback the effects of error

message, E, processed at real time of ts seconds earlier.

Wolf Algorithm

Nodei:

i*jeW(ijs)\V(EJE)

Rollback LVT toT,

AwaitACKj from all jeSR

Initiate Forward Compute Phase

End

I* V(E Xi). is the Wolf-call, containing the identity of the error message, E, and the timestamp, TE, at

which ft was received by i. */

I* Eachreceiving node,;, processes V(EJE). We illustrate thealgorithm for nodeje W(i4S) when it

receives a Wolf-call, V(A X). */

Nodej:

Read V{AJ).

146

While (LVTj <T)do continue processing endao;

If(AnOQj *tythenj *» keW(i,ts) I V(0+,T<*)

/*HereAplOQ>=a.*/

I* Here TA denotes the LVT when ; received message A. */

Rollback to TA

Ifj € SR transmit ACKj to i

e/«?awaitV(A,T)

endif

else await V(A J*)

The algorithm ensures that the effects of die error message, E, are limited to the sphere of radius

R,W(i ,fe). In addition, only P broadcasts are necessary to complete the rollback as opposed to at least

R communication steps required by timewarp. P is usually much smaller than R. In the next section,

we outline how P can be determined.

We need next to estimate the communication overhead for Wolf. If the time required for a single

broadcast is £ then for P broadcasts we need time Pz. At each step of the algorithm, a few nodes (on

an error path) broadcast Wolf-calls concurrendy, incurring overhead of only one broadcast Therefore

P, the number of steps the algorithm takes to terminate, determines the overhead in communications.

In practice, the time required for a multihop broadcast is approximately equal to that of a single hop

communication step. This performance is achieved using a virtual cut-through routing algorithm.

Let us now consider a few examples, to illustrate rollback using Wolf. In Example 6 (Figure 13),

we have a simple queueing network with a sphere of influence, W(i, ts) consisting of the 17 nodes as

shown. Node 1 initiates Wolf when it detects the straggler. Let us assume that the error message, E, is

now at node 8. Therefore, nodes 1-8 form the primary error path, or the error path of order 7 as we

will call it When node 1, initiates the rollback, it

147

Figure 13:Example 6

148

broadcasts information about the error message and the its Local Virtual Time when it received the

error message, E. Each receiving node stops processing its Input Queue if its LVTis greater than that

time, and inaddition, if it has actually processed E then itisonthe primary error path and rolls back (to

the LVT at which it received E). It then broadcasts to the remaining nodes (off the primary path) in

W(i ,/s), information regarding the messages it has processed subsequent to processing E. In this case,

nodes nodes 3 and 5 are the onlynodes on the primary error path (order 1) which have transmitted

messages along paths 3-13 and 5-17 (order 2). These broadcasts take place simultaneously, with all

the nodes rolling back to the LVTs which are consistent with the available information. In short, the

primary path 1-8 rolls back after the first broadcast and then the paths of order 2,3-13 and 5-17, roll

back after the second broadcast

If standard timewarp (without broadcast and *'blocking'') were used, a minimum of 7 communi

cation hops would berequired, asthe antimessage is propagated along the nodes 1-8 in succession and

likewise along the paths 3-13 and 5-17. If the thenodes were lightly loaded then thenumber of com

munication steps required by the antimessage to meet with and annihilate the error message would be

much larger. Forward computation is then initiated by Node 1,and the nodes restart forward computa

tion. Forward computation after rollback can use with with advantage the facts that lazy cancellation

can be used (to save on retransmission of messages) and that random numbers previously generated at

the nodes can be reused to simulate service times.

We have introduced some new notation in the previous example; that of the order of the error

path. Paths oforder 1, contain those nodes which had processed the primary error message E. Paths of

higher order are those which originate from the paths of lower order, when nodes on lower order paths

process messages subsequent toprocessing an error message (and hence those messages are also errors

and need be corrected). This notion allows us to determine the number of broadcasts which would be

requiredby the Wolf algorithm.

The number of broadcasts required by Wolf equals the highest order of any error path in the

sphere ofinfluence.

149

In the case of Example 6, the highest order of error paths was 2, hence 2 broadcasts were

required. It can be easily shown that the maximum number of broadcasts would be limited by the

radius of propagation of the sphere of influence. In Example 6, this radius was 7.

Our next example (Figure 14) depicts the configuration of a manufacturing system. Let us con

sider a simulation on a very large grid (in two or three dimensions) of processors. To illustrate the

difference in costs , we assign values for the minimum communication time between nodes, 6 = 1,

seconds and the minimum processing time, a = 1 seconds. If the error was detectedby node 1 at time

t=4 seconds, and the network were lighdy loaded, it is unlikely that the antimessage transmitted by

node 1, would meet with the error message to annihilate it If the error message reached the fork,

secondary error messages would contaminate theentire network. Wolf, however, with a combination

ofbroadcast and "blocking" guarantees thateffects of the error messagewill be confinedto the sphere

of influence (with radius 2). Besides, all the nodes in the error path rollback in simulated time con

currently. Since, only a few paths span the sphere of influence the rollback phase with Wolf is very

short implyinga shortrecovery period from the lossof causality.

^<K>o-*
Folk / / /

150

Based on this discussion, we formalize thenotion of primary and secondary error paths. We con

sider two paths differing in order by one, the one with the lower order being the primary path and the

onewith thehigher order, the secondary error path.

6.3.3 Embedded-source Model for Rollback

Let node i process a message E at real time r=0, and at time t-ts a straggler is detected,

informing node i that message E was an error message. Message £, in the mean while, has been pro

cessed by nodes j ,k , / •r when the straggler arrived at i. This path i -j - k -1 -r isdefined as an

error path of order 1. Each node along the error path of order 1, processes other messages subsequent

to processing the error message, these messages are also error messages and direcdy influence the rest

of the network. In a dynamical discrete event system, with random routing, the path of o»uci 1, gives

rise toa number of secondary error paths of order 2. For the purpose of analysis, each of thenodes, n,

onthe path of order 1is embedded with a source of rate u* (messages/sec), which generates error mes

sages tothe rest of the network. The messages from i are processed as they arrive. Therefore, between

every two error messages processed along the primary error path, a number of secondary error mes

sages resulting from interaction with the rest of the network are generated. (Figure 15) The reader may

recall, that wehad analytically modeled source by the probability /ty inour analysis inChapter 4.

In the path of order 1, nodes ; ,* , / r are at radii of 1 , 2 , 3, R respectively. The

number of error messages generated by these R nodes in thetime ts wouldbe

(ts - b -a)\ij +{ts -2b -2a)\it +(ts -3a -3b)^ +.. .+(ts-Ra-Rb)\ir
These messages represent those which are generated prior to the time the straggler is detected. When

Wolf is invoked, additional error messages are generated in the time it takes for the broadcast to reach

the nodes, and their number is

e(u7+u*+u./+. ., +u,.)

However, if there were noWolf-call and antimessages are propagated from node to node, then number

151

of additional error messages that remain to be cancelled are given by

(6+a)0i^+2n*+ 3^+ ...+/? iv)

The number of additional errormessages to be cancelled depends on the rates of the embedded sources,

and is particularly sensitive to the sourceson nodes at increasingradii of propagation (owing to a linear

multiplier). Therefore, a long error path is capable of generating a large number of secondary error

messages relative to a short error path (small ts). Wolf, however, is insensitive to the path length. In

this simple example, we have considered two paths; the analysis can be extended to paths of higher

order. If all nodes in the sphere of influence were not informed about the straggler then the numbers

given above represent only the lower bound on the additionalmessages that need be cancelled.

(a) General Network

pathp

i \ J

(b) Embedded-source model

Figure 15: Embedded-Source Model

In this chapter, we remain content to describe the structure of the distributed simulation and com

ment on its efficiency. The rigorous analysis is, however, covered in Chapters 4 and 5.

psthp

152

6.3.4 Pipelined Forward Computation and Rollback

Spheres of influence allow an elegant representation of forward simulation and rollback in an

optimistic distributed simulation. The sphere of influence of an error message grows with time, until

the error is detected and Wolf is invoked. The the broadcast Wolf-call "freezes" the sphere of

influence while the rollback phase begins.

In Wolf, nodesin morethanone shellcanrollback concurrently. The signal to rollback doesnot

depend on the radius of the shell aparticular node isin, but on the order of the error path of which it is

part This is unlike standard timewarp, where the shells rollback insuccession, starting with the shell at

radius 1and ending withtherollback of shell atradius R. InWolf, we have P broadcasts and hence P

phases in the rollback. However, both theschemes allow pipelining of forward computation with roll

back. In Wolf, a phase could include rollback of more than onecomplete shelL We must note, how

ever, that restarted forward computation though faster is still sequential Feedback paths may slow

down forward computation. The overhead in communications for the node initiating Wolf, can be

greatly reduced by using an iterative determination of the sphere of influence, where a number of

smaller spheres of influence areinfluenced by the error (See latersection).

After the nodes in a shell have rolled back, they restart forward computation, while the nodes in

the shells of greater radii beginto rollbackin simulated time. This pipelining then progresses untilall

the shells in thesphere of influence haverolled backto a state consistent with theavailable information.

By then, the entire sphere willhave restarted forward computation. This sequence is shown in Figure

16(a>(f). In (a) the sphere of influence is growing to thatin (b). At the instant (b), the node i detects

the straggler, and the rollback starts as shown by (c). In (d), shells 2 and 3 rollback, while shell (1)

computes forward. In (e), shell 4 rolls back, while shells 1,2 and3 compute forward. The Wolf phase

is completed in (f).

—» ftoflbtck

^ Coffiputt Fofwira

Figure 16: Pipelined Forward Computation andRollback

Figure 17: Experimental Setup onNCUBE

153

154

6.4. Design of Simulators

In thissection, we delve briefly on some strategies to plan andimplement large scale simulations

of dynamical discrete event systems on a network of computing processors. Such systems contain a

large number ofcomputing nodes (40-50), flexible routing facilities, service disciplines, and monitoring

and statistics collection routines.

The initial phase of the simulation involves formulating a model for the real life system being

simulated. The onusof designing a precise model of thedynamical discrete event system rests largely

on the application expert The next step is todistribute the model onto asetof logical processes. Then

the processes are mapped onto a distributed computing system with a number of computing elements.

Sincetheconcurrent computing environment consists of a number of concurrent and, in general, asyn

chronous processes sharing a few common processors, an efficient task assignment and load balancing

alzcriths: must be used to schedule the distributed simulation. We have developed a some algorithms

toadaptively assign computing resources inadistributed multitasking, multiprogramming environment

(SeeMaMe88b.)

Bothconservative and optimistic distributed simulation methods can improve upon theefficiency

of their implementation by minimizing the communication overhead. The overhead in conservative

methodologies arises from the information messages that are communicated between processes to

maintain causality. In optimistic schemes, communications are necessary to rollback to a state con

sistent with the available information. We have proposed an algorithm through which a number of

messages from B independent simulations are processed on the same distributed simulation testbed.

Instead of a single message, a "vector" consisting of B messages from B independent simulations are

transmitted between processes. All the messages in a "vector" share the same communication over

head and also help keep processors busy. For example, the information messages of onesimulation are

sent with thereal jobs of another orthogonal simulation run. In thecase of optimistic Wolf, the proces

sors can compute forward inone simulation run, while they are blocked by rollback inanother indepen

dent simulation run. The two main advantages are the reduction in the communication overhead, and

155

the increase in the utilization of the computing elements. We define this approach as "vectored simula

tion" and call B as the Buckshot vector.

Once a suitable "vector" length is chosen, the next step is the identification of Wolf nodes and

determining their spheres of influence. Both of thesedepend on the structure of the distributed model

being simulated.

Wolf nodes can be usually identified as those with more than one input The sphereof influence

can be determined by a number of methods. In the algorithms discussed in this chapter, we have

assumed thatthe sphere of influence is known, andthe efficiencyof the algorithm depends on how well

this sphere can be estimated in practice (hence thename, Wolf). A conservative method, in which the

minimumcommunication and processing timesareused is described in the chapter. This may overesti

mate the radius of the sphere, especially when the networkis heavily loaded. Otherapproaches we are

considering, include a dynamic algorithm (a Bellman-Ford type algorithm) which iteratively evaluates

smaller spheres of influence and extrapolates toa large one. For example, toevaluate W(i , T), at first

W{i, Tx) is determined for TX<T, and then the nodes, k in «/(i , Tx) determine W{k , T - Tx).

Theunion of these spheres determines therequired sphere of influence. This approach can beextended

to evaluate the sphere of influence as accurately as possible. This approach has the additional benefit

thatthe rollbacks will thenbe confined to a few spheres of influence of smallerradii and therewill be a

reduction in the communication cost However, occasionalerrorscan result due to changes in the states

of the queues, in dynamic systems. Another method, would be to release marked messages occasion

ally and determine their trajectories with time. Very often, especially in static systems, the entire tra

jectory ofamessage through asystem can beprobabilistically determined before the message enters the

network, simplying evaluation of W(i tt).

156

6.5. Experimental Results

In this section, we present some results from some pilot implementations of rollback algorithms

on the NCUBE distributed memory multiple processing system. The NCUBE multiple processor sys

tem, connects upto 1024 computing elements each with its own local memory (The latest commercial

version interconnects 8192 processors witha peak performance of 27GFLOPS!). The processors com

municate via asynchronous message passing. Each of the nodes iscapable of about 0.5 MFLOPS peak

performance and a strong hypercube type interconnectivity allows concurrency in communications.

Latest models of commercial multiprocessors provide very efficient multi-hop communication proto

cols (See [Da87]), with thetimetaken for a multi-hop message communication step onlyslighdy larger

than thatof a single hop. Inaddition hardware broadcast facilities are provided, enabling a single node

to broadcastto a number ofother neighboringnodes throughdedicated links.

Wolf andTimewarp ([JeSo83]) algorithms were implemented cr. z network of seven computing

nodes. The network topology is illustrated in Figure 17. The objective of the experiment wasto exTier-

imentally verify the embedded-source model and the sensitivity of themessages to be cancelled to the

source rates and the path length. Extensive simulation of Wolf, on a large network using about40

nodes is currently being implemented to study the performance tradeoffs in practice. In this example,

the nodeswere strungin tandem, and node5, is embeddedwith a source ofrateU5 modelinginteraction

with the rest of the network. The performance of Wolf andTimewarp was then measured with varying

processing times. One such set of observations is illustrated in Rgure 18. The numbers represent the

number of error messages that need to be cancelled by either scheme. The straggler was separated

from the error message by 6 time units. When two embedded sources were used(the otheron node4),

the numbers of error messages were an order of magnitudehigher. Our results are encouraging, indi

cating an orderof magnitude reduction in the numberof messages to be cancelled by Wolf relative to

timewarp, in addition to a significantenhancement in the speed of rollback, when two paths are con

sidered, (the sum (a+b) along the path is normalized to 1 and the the source rate is varied between 1

and 2.

Figure 18

The number of error messages generated is proportional
to the source rate as observed experimentally.

157

6.6. Summary and Future Work

This chapter examines an application of self-synchronizing concurrent computing systems in the

distributed simulation of discrete event dynamical systems.

We have proposed some algorithms for efficient distributed simulation onanetwork of asynchro

nously executing processors. We have described methods for efficient rollback and recovery from

error, vectoring simulations to balance load, and have illustrated the advantages to these techniques by

means of examples.

Wolf, an algorithm for efficient self-synchronization, that had been quantitatively analyzed in

Chapter 5, is proposed for efficient synchronization. Separation of synchronization from computation

is shown to be efficient in this distributed framework.

Application and further development of such distributed algorithms is ourcurrent goal in theper

formance evaluation of large scale discrete event systems.

Chapter 7

Conclusions and Future Work

158

In this thesis, Self-Synchronizing Concurrent Computing Systems (SESYCCS) have been pro

posed for high speed scientific computation and their performance analyzed. SESYCCS provide syn

chronization for distributed computation applications within an efficient and powerful concurrent pro

gramming environment

SESYCCS provide automatic synchronization of distributed programs that can be described by

Static and Dynamic Computation Graphs. Chapter 2 provides a formal description of the types of

computation-bound problems that fit into this framework. New models for clock behavior in an asyn

chronous distributed environment are also proposed.

Self-Synchronization for Static Computation Graphs is the theme in Chapter 3. A number of

theoretical properties of SCGs are derived and discussed. The computer designer is made aware of the

needandthe algorithms for efficientprogram design thatguarantee finite buffer sizes in the concurrent

computing system. With systems currendy providing upto a 10Q GFLOPS in total computing power, it

is of paramount importance to ensure that this resource is notsquandered inaninefficient implementa

tion. A novel perturbation algorithm for self-synchronization is proposed thatoptimizes resource allo

cation algorithmsin a multi-user environment We show that it is possible to assign resources

159

efficiently and in a simple enough manner among anumber ofusers of the concurrent computing sys

tem.

Chapter 4 tackles the problem of self-synchronization in Dynamic Computation Graphs. A robust

model is developed for potraying the dynamics of clocks in the SESYCCS environment Analysis is

presented which provides new insight on the progress of distributed asynchronous computation.

Efficiency inthe dynamic environment isquantified systematically and anumber ofnew algorithms for

self-sycnhronization are proposed. It is proved that synchronization separated from the computation

gives the best results in terms of performance and interms of limiting the memory requirements in the

processors. Closed form results describe the different design constraints and strategies in the design of

SESYCCS. Detailed simulation of multipleprocessor systemsvalidate the analytical results. Hardware

synchronization facilitiesare proposed.

Chapter 5 extends theresults of Chapter 3 and 4 to analyze theperformance of SESYCCS in an

"adaptive" environment where the analysis of the traces of the distributed computation provides valu

able insight into the behavior of somecompute bound problems. These interesting results provide a

further enhancement of the efficiency of implementation.

These algorithms areexamined in the contextof distributed simulation of discrete event systems.

A numberof new techniques for efficient distributed simulation arediscussed and experimental results

are presented in Chapter 6. Distributed simulation is seen as a test bed for self-synchronization and

further experiments are being planned to determine theengineering tradeoffs involved in the design of

high speed parallelcomputing systems.

Present research efforts are beingdirected towards usingthisrichbody of theory andexperimen

tation to developa powerful andefficientconcurrent computing environment forthe 1990's.

160

REFERENCES

[Ag86]

G. A. Agha, (1986), Actors: A Model of Concurrent Computation in Distributed

Systems, MIT Press, Mass., 1986.

[AtSe88]

W. Athas, C. L. Seitz, (1988), "Multicomputers: Message-Passing Concurrent

Computers," IEEE Computer, August 1988, pp 9-24.

[Ba73]J. L. Baer, (1973), "A Survey of Some Theoretical Aspects of Multiprocessing,"

ComputingSurveys,voL 15, pp 31-80, March 1973.

[BeTs89]

D. Berstekas, J. Tsitsiklis, (1989), Parallel and Distributed Computation: Numeri

cal Methods, Prentice-Hall, Englewood Cliffs, NJ, 1989.

[ChNfi79]

K. M. Chandy, J. Misra, (1979), "Distributed Simulation: A Case Study in Design

and Verification of Distributed Programs", IEEE Transactions on Software Engg.

VOL SE-5, No. 5, September 1979, pp440-452.

[ChMi81]

K. M. Chandy, J. Misra, (1981), "Asynchronous Distributed Simulation via a

Sequence of Parallel Computations," Comm. of the ACM, Volume 24, No. II, April

1981, pp 198-206.

[DaSe87]

W. J. Dally and C. L. Seitz, (1987) "Deadlock-Free Routing in Multiprocessor

Interconnection Networks," IEEE Trans, on Computers, Vol. 36, No. 5, May 1987,

pp 547-553.

161

[Da87]

W. J. Dally, (1987), "Wire-Efficient VLSI Multiprocesor Communication Net

works," Proc. ofStanfordConf. on VLSI, pp 390-415.

[Ga88]

A. Gafiai, (1988), "Rollback Mechanisms for Optimistic Distributed Simulation

Systems", Proc. of SCS Distributed Simulation Conference, San Diego January,

1988.

[Fu87]R. Fujimoto, (1987), "Performance Measurements for Distributed Simulation Stra-

tegies," Tech., Report, UUCS-87-026a, Univ. of Utah. 1987.

[Gllg88]

P. W. Glynn, D. Iglehart, (1987), "Importance Sampling for Stochastic Simula-

tions," Tech. Report 49, Dept of OR., Stanford University, 1987.

[Hi85]W. D. Hfflis, (1985), TheConnection Machine, MTTTress, Mass., 1985.

[He86]

P. Heidelberger, (1986), "A Statistical Analysis of Parallel Simulations", Proc. of

Winter Simulation Conf. December 1986.

[Ho78]

C. A. R. Hoare, (1978), "Communicating Sequential Processes," Communications

ofACM, vol 15, pp 171-176,1972.

[HwBr84]

K. Hwang and F. Briggs, (1984), Computer Architecture and Parallel Processings

McGraw-Hill, New York, NY 1984.

[KaMi66]

R. M. Karp, R. E. Miller, (1966), "Properties of a Model for Parallel Computa

tions: Determinacy, Termination and Queueing, ", SIAM Journal of Appl. Math.,

Vol 14., November 1966, pp 1390-1411.

162

[JeSol983]

D. Jefferson, and H. Sowizral, (1983), "Fast Concurrent Simulation Using and the

Time Warp Mechanism", Part 1: Local Control, A Rand Note N-1906-AF; The

RAND Corporation, SantaMonica, CA, June 1983.

[Je85]D. Jefferson, (1985), "Virtual Time", ACM Transactions on Programming

Languagesand Systems,Vol 7, No. 3, July 1985.

[Ko75]

W. E. Kohler, (1975), "A Preliminary Evaluation of the Critical Path Method for

Scheduling Tasks on Multiprocessor Systems," IEEE Trans, on Computers,

December 1975, pp 1235-1238.

[Ku78]

D. J. Kuck, The Structure of Computers and Computations, Volume 1, John Wiley

and Sons, New York, 1978.

[LaMuSa83]

S. Lavenberg, R. Muntz, B. Samadi, "Performance Analysis of a Rollback Method

for Distributed Simulation," Performance, '83. 1983.

[Mi86]

J. Misra, (1986), "Distributed Discrete-Event Simulation," Computing Surveys, Vol.

18, No. 1, March 1986, pp. 39-64.

[MiMi84]

D. Mitra, I. Mitrani, (1984), "Analysis and Optimum Performance of Two Message

Passing Processors Synchronized by Rollback, Proc. of 10th, Int. Conf. on Comp.

Perf. Modeling, 1984.

[MaMe88a]

V. Madisetti, D. Messerschmitt, "Seismic Migration Algorithms on Parallel Com

puters," Proc. of3rd Hypercube ConcurrentComputing Conference, January 1988,

163

Pasadena.

[MaMe88b]

V. Madisetti, D. G. Messerschmitt, (1988), "Distributed Computation on Con

current Processors", Proc. ofAllerton Conf., September 1988.

[MaWaMe88]

V. Madisetti, J. Walrand, D. Messerschmitt, "Wolf: A Rollback Algorithm for

Optimistic Distibuted Simulation Systems," Proc. ofWinter Sim. Conf. San Diego,

December 1988.

[MaWaMe89]

V. Madisetti, J. Walrand, D. Messerschmitt, "Efficient Distributed Simulation,"

IEEEIACMISCS AnnualSimulationSymposium,Tampa, Florida, March 1989.

[Me79]

D. Messerschmitt, (1979), "Blosim Simulation Program." U. C. Berkeley, 1979.

[MuCo69]

R. R. Muntz, E. G. Coffinan, (1969), "Optimal Preemptive Scheduling on Two-

Processor Systems," IEEE Trans, on Computers, Vol C-18, November, 1969,

[NCUBE89]

NCUBE User's Manual, NCUBE Corp. Beaverton, Oregon.

[Pa81]J. H. Patel, (1981), "Performance of Processor-Memory Interconnections for Mul

tiprocessors", IEEE Trans, onComputers, Vol. C-30, October 1981, pp771-780.

[PeWoMa79]

J. K. Peacock, J. W. Wong, E. G. Manning, (1979), "Distributed Simulation Using

A Network of Processors," Computer Networks, Vol. 3, February 1979, pp 44-56.

[RaChGo72]

C. V. Ramamoorthy, K. M. Chandy, M. J. Gonzalez, (1972), "Optimal Scheduling

Strategies in a Multiprocessor System," IEEE Transactions on Computers, Vol C-

164

21, pp. 137-146, Feb 1972.

[ReFu87]

D. Reed, R. Fujimoto, (1987), Multicomputer Networks: Message-Based Parallel

Processing, The MTT Press, 1987.

[ReMaMc87]

D. A. Reed, A. D. Maloney, B. D. McCredie, "Parallel Discrete Event Simulation:

A Shared Memory Approach," ACM Sigmetrics Conf. on Meas. and Model, of

Comp. Systems, pp 36-38,1987. e

[RiWa89]

R. Righter, J. Walrand, (1989), "Distributed Simulation of Discrete-Event Sys

tems," Proc. ofIEEE, Vol. 77, No.l January 1989.

[RiWa88]

C. Rich, R. Waters, (1988), "Automatic Programming: Myths and Prospects", IEEE

Computer, August 1988, pp 40-51.

[Se85]H. J. Seigel, 1985, Interconnection Networks for Large-Scale Parallel Processing,

Lexington Books, Lexington, Mass. USA, 1985.

[Sc70]L. Schrage, (1970), "Solving Resource Constrained Network Problems by Implicit

Enumeration-Nonpreemptive Case," Oper. Res. Vol. 18, pp 263-278, Mar-Apr

1970.

[Se85]C. L. Seitz, (1985), "The Cosmic Cube," Communications of the ACM, Vol.28,

No. 1, Jan 1985, pp 22-33.

[Se84]C. L. Seitz, (1984), "Concurrent VLSI Architectures," IEEE Trans, on Computers,

Vol 33, No. 12, December 1984, pp. 1247-1265.

[U173]J. D. Ullman, "Polynomial Complete Scheduling Problems," ACM Operating Sys

tems Rev. Vol. 20, no. 3, pp. 96-101, Oct 1973.

165

[St87]H. J. Stone, (1987), High-Performance Computer Architecture, Addison Wesley,

Reading, Mass. USA. 1987.

[Wa88]

J. Walrand, (1988), An Introduction to Queueing Networks, Prentice-Hall,

Englewood-Cliffs, NJ, 1988.

[Wi66]

N. Wirth, "A Note on Program Stractures for Parallel Processing," Communications

of theACM, 9 May 1966, pp 320-321.

[ZeMo83]

J. Zeman, G. Moschytz, "Systematic Design and Programming of Signal Proces

sors, Using Project Management Techniques," IEEE Trans, on ASSP, Vol ASSP-

31, No. 6, December 1983.

	Copyright notice1989
	ERL-89-122 (1 of 2)
	ERL-89-122 (2 of 2)

