Copyright © 1989, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

SELF-SYNCHRONIZING CONCURRENT
COMPUTING SYSTEMS

Copyright © 1989

by

Vijay Krishna Madisetti

Memorandum No. UCB/ERL M89/122

16 October 1989

SELF-SYNCHRONIZING CONCURRENT
COMPUTING SYSTEMS

Copyright © 1989

by

Vijay Krishna Madisetti

Memorandum No. UCB/ERL M89/122

16 October 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

SELF-SYNCHRONIZING CONCURRENT
COMPUTING SYSTEMS

Copyright © 1989

by

Vijay Krishna Madisetti

Memorandum No. UCB/ERL M89/122

16 October 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

SELF-SYNCHRONIZING CONCURRENT COMPUTING SYSTEMS

Vijay Krishna Madisetti

Department of Electrical Engineering and Computer Sciences
University of California
Berkeley, CA 94720

ABSTRACT

While the past few years have witnessed an unprecedented advance in the status of parallel com-
puting hardware, software has not caught up with this pace of development. Our effort has been
focused on the development of efficient algorithms and software for high-speed parallel scientific com-

puting in an effort to meet this demand.

This thesis presents the theory and design of a new distributed computing system, the Self-
Synchronizing Concurrent Computing System (SESYCCS), for efficient solution of a large class of
compute-bound scientific problems. This thesis establishes that separating synchronization from com-
putation has a number of merits, especially in boosting the efficiency of implementation and reducing

memory requirements.

In this thesis, we propose two new models for distributed computation; Static Computation
Graphs (SCGs) and Dynamic Computation Graphs (DCGs), and a robust theory is developed for under-
standing their behavior. A new algorithm is proposed for efficient self-synchronization for SCGs that

optimizes computing resource allocation.

We present new algorithms for self-synchronization for DCGs and derive concrete quantitative
results for the efficiency of their implementation. We study in some detail the tradeoff between finite

memory and speed of computation.

Application of the algorithms to simulation of discrete-event systems is described and a new
algorithm, Wolf, is proposed and analyzed that promises a high processor utilization along with a

significant speedup in the computation.

Committee chair

David Messerschmitt

ACKNOWLEDGMENTS

I have been fortunate to have been able to meet with and work with a very large number of out-
standing individuals at Berkeley. Their stimulating company and support has made my stay here the

happiest and probably the most productive five years of my life.

I owe much to David Messerschmitt for giving me the benefit of his clear style of thinking and
experience. [thank him for his guidance and generous advice at all times. I have learnt much from
him.

I am indebted to Jean Walrand for teaching me most of what I learnt at Berkeley. I am very
grateful to him for giving me his time unhesitatingly, and for many pleasurable discussions on life and
philosophy.

I also take this opportunity to thank my parents, Anant and Madhavi, for their love, guidance,
patience and encouragement without which I could not have taken so many steps in the right direc-
tion. My uncle and aunt, Somnath and Lakshmi, have been a major source of inspiration during my
formative years, I thank them for taking so much interest and showing so much love. I thank my
brother Avanindra for his unquestioning love and support through our childhood together and now

through our advent into adulthood. I thank Sandhya for bringing him so much happiness. Years have

fallen into the right places.

I thank Sherry and Judd Smith for accepting me into their family and for allowing me to share

their happiness. I also thank Kim, Heather, Jenny and Alan for their affection.

I take this opportunity to thank my friend Chaitali for her love and encouragement through the
years. I thank my friend Partha for his company and his advice on matters practical. My heartfelt gra-
titude goes to my present and past friends at Stebbins Hall, especially Margaret, Maria, Adam, Chris,
Anupam, Jaideep, Rosa, Rene, John, Alison, Cristina, Lori, Ingrid, Deborah, Kristy, Herman and Gani

and the rest, for their company. I cherish many happy memories at Stebbins.

jii

At Cory I thank my friends, Teresa, Randy, Srinivas, Denise, Keshab, Pranav, Sonia, Venkat,
Ashutosh, Vasant, Meena, Andy, Takis, Joe, Shimone, and Chedsada for being there when it mat-
tered. I am also grateful to messer550 and eal550 (Horngdar, Johnson, Valerie, Biswa, Dev, Ilo, Tom,
Wen-lung, Gil, John, Jeff, Shuvra, Edwin, Alan, Maureen, Holly, Cindy, Paul, and Janet) for their
company and friendship. I thank Edward Lee and Graham Brand for being a ready source of guidance
and advice in times of need and necessity (especially on market-investment strategies). I am indebted
to many others at the department, who are my friends and will always be. For them that is friends
need no thanky, but I am grateful to them (especially Pearl, Beatrice, Maureen, Leah, Carol, Beth,
Gen Thiebaut, Kathryn, Pat, Chris, Gwyn and others with whom I had the good fortune of coming in

contact with).

I thank NSF, Shell Development Co. (Bill Moorhead), NCUBE Corp. (Tom Bauer), and

COPPE/UFRIJ Brazil, for their generous assistance and financial support for this research.

Last but not the least, I thank Professor Bob Brodersen and Professor H. Frank Morrison for

serving on my thesis committee and for their criticism which greatly improved my work.

iv

CONTENTS

1. Introduction

2. Synchronization in Distributed Systems

1. Synchronization in Shared-Memory Systems

1.1. Semaphores
1.2. Barrier Synchronization
1.3. Performance

2. Synchronization in Distributed-Memory Systems

10

2.1. Models for Distributed Computation

2.2, Causality Conditions

2.3. Synchronous Methods

2.4. Asynchronous Methods

2.5. Comparison of Synchronization Methods

3. Self-Synchronizing Concurrent Computing Systems

25

3.1. Why SESYCCS ?
3.2. Self-Synchronization for Static Computation Graphs
3.3. Self-Synchronization for Dynamic Computation Graphs

4. Summary

29

3. Self-Synchronization for Static Computation Graphs

1. Introduction

33

2. Message-Passing Parallel Machines

35

3. Static Computation Graphs

37

4. Structure of Static Computation Graphs

38

5. Properties of Static Computation Graphs 42
6. Discussion on Join-Type Networks 44
7. Synchronization of a Simple J-TN 45
8. Synchronization of Compound J-TN 45
8.1. Synchronization Algorithm for Compound Process
8.2. Process Migration
9. COSPROL: Rules and Syntax 60
10. Concurrent Programming in COSPROL 62
10.1. Phase Shift Migration
10.2. Optimization of CJ-TN
11. Summary 67
4, Self-Synchronization for Dynamic Computation Graphs
1. The Two-Processar Logical System 71
1.1. Discussion of the Two-Processor Model
1.2. Assoc.iated Markov Chain Representation
2. Computation in Presence of Communication Delay 81
2.1. Markov Chain Representation of Communication Delay
3. The Multiple-Processor Logical System 83
3.1. Concurrent Resynchronization
3.2. Associated Markov Chain Representation
4. Successive Resynchronization 93
4.1. Associated Markov Chain Representation
5. Summary 107

5. Randomized Algorithms for Self-Synchronization

1. Randomized Self-Synchronization 112
2. Finite Memory Requirements ' 117
3. Summary 122

6. Efficient Distributed Simulation

1. Structure of the Simulation 125
2. Vectored Simulation 126
3. A Synchronization Algorithm: WOLF 142

3.1. Sphere of Influence
3.2. Wolf for Resynchronization
3.3. Embedded-Source Model for Rollback

3.4. Pipelined Forward Computation and Rollback

4. Design of Simulators 154
5. Experimental Results 156
6. Summary and Future Work 157

7. Conclusions and Future Work

REFERENCES 160

Chapter 1

Introduction

This thesis is dedicated to algorithms and distributed computing architectures for high speed
scientific computing. It describes how a set of interconnected high performance VLSI processors, or a
multicomputer, can be used to solve a wide range of computationally intensive engineering problems.
The results presented can be extended to a distributed network of workstations. Most of the theory
presented in this thesis is new, for interest in these machines as an alternative to traditional supercom-
puters has been rekindled only recently, spurred by the rapid progress in VLSI téchnology and the com-
mercial viability of such machines. We have studied the programming and implementation of these
computing machines and have developed a body of theory for their efficient utilization. We owe much
to the rich heritage in parallel algorithms and technology developed in the 70°s as reflected in the semi-
nal work of Arvind, Chandy, Dijkstra, Hoare, Karp, Knuth, Kung, Kucék, Tukey and Winograd, and in

the late 70’s to early 80’s by Cray, Siegel, Seitz, Stone, and Valiant among others.

Multicomputers consist of a set of VLSI processors (usually 100-1000), each with its own private
memory and a capability to' communicate asynchronously with other independently executing proces-
sors in the system. There is no shared state among these processors. Concurrent computation can be

best described by the Multiple-Instruction-Multiple-Data (MIMD) model of computation, where each

processor executes a different part of the computation. It is expected that the result of the distributed
and asynchronous computation would be identical to that of an equivalent serial (or sequential) compu-
tation, though available much faster. Considering the fact that each decade (or less) has witnessed an
order of magnitude enhancement in the computational power of uniprocessors, one could argue that
multicomputers would be considered viable if and only if they can offer a speedup of at least two orders

of magnitude. For certain applications, multicomputers have indeed provided such a speedup.

While our objectives are straightforward, the means to reach these ends are challenging. Asyn-
chrony is at the heart of concurrent multicomputing and its effect on distributed computation has been
poorly understood. Time is no longer a shared variable, and consequently each processor is provided
with a local time clock. Communication between asynchronous processors would, therefore, require the
existence of an efficient synchronization mechanism, not only to ensure correctness of computation but
also to guarantee its forward progress. For instance, le; the progress of computation with time in a pro-
cessor i be measured by a local clock C; (¢) that increases monotonically with the wall clock time ¢. At
some later time ¢, processor i may need some data from a remote processor j that is at a local clock
value of C;(t;). For a number of reasons, this result from processor j may not be made immediately
available to i as requested. Non-zero communication delay is one such reason. Altematively, the local
clock C;(¢) on processor j may not have reached C; (¢;). Processor i may have to wait until such time
t2, when C;(t2) equals C; (¢,) for some #3 > ¢4. These reasons bring to light another fundamental issue
in multicomputing: latency. Latency (due to suboptimal scheduling of distributed computation)
enforces idle times in the processors, thus penalizing efficiency. Therefore, the performance of a VLSI
multicomputer can best be evaluated through a better understanding of the issues of latency and syn-

chronization.

This thesis is dedicated to exploring these issues in considerable depth. We present a robust
theory with relatively few assumptions about the behavior of compute-bound problems. The theory was
tested, whenever feasible, through implementation on a multiple-processor system. The grindstone of
implementation has taught us maxiy a lesson and our experience with these machines has been valuable

(and not rarely painstaking) to the extent that it served as a testbed for validation of the theory

developed. This "proof-of-concept” approach has given us the confidence required to come up with a

general framework for evaluating the performance of these computing engines.

Chapter 2 provides a brief quantitative description of synchronization in parallel systems. Not
much is known about synchronization in multicomputers, hence this chapter motivates the chapters that

follow.

We first address the issue of latency in muiticomputers. Latency can be eliminated by time-
sharing the multicomputer in a multi-threaded computation, where a number of independent programs
can execute concurrently on the same set of processors. We introduce the notion of a time-shared multi-
computer, and propose new optimal algorithms for efficient resource allocation in such systems. Our
emphasis is on the development of stable, efficient, real-time distributed algorithms (using feedback).
The onus of improving the efficiency of the implementation is removed from the shoulders of the user,
and moved o 2 scheduler on the multicomputer itself. The programmer, however, retains the responsi-
bility of presenting the algorithm to the muiticomputer in a form suitable for such a time-shared

approach. As we describe in Chapter 3, this effort is minimal, relative to the rewards accrued.

We then address the important issue of synchronization for general asynchronous systems. We
develop a theory for a class of synchronization algorithms. Synchronization issues are separated from
the computational (data) aspects of distributed computation. Use of special synchronization hardware is
proposed. In Chapter 4, we present new algorithms for synchronization and derive analytical results for
their performance. The question of whether a distributed system should be resynchronized at regular
intervals or allowed to proceed without xesynchronizat.ion is posed, and some analytical results indicat-
ing when either approach is preferred are presented. This chapter provides the theory for the design and
analysis of a new class of concurrent computing systems, Self-Synchronizing Concurrent Computing

Systerr;s (SESYCCS), where the synchronization is provided by the computing system itself.

A new class of algorithms, appropriately called the Randomized Algorithms (RA), are introduced
for synchronizing asynchionous distributed computing systems. These algorithms, as described in

Chapter 5, promise a further enhancement in the efficiency of SESYCCS, by leaming from the past

behavior of communicating processors. These algorithms find immediate application in the distributed

simulation of dynamical discrete-event systems.

Chapter 6 describes how our algorithms for distributed synchronization fit naturally in the distri-
buted simulation of discrete-event systems. We describe how such computation can be efficiently per-
formed out on a SESYCCS. Chapter 7 discusses present work in the area of synchronization in

SESYCCS and some future directions.

Chapter 2

Synchronization in Distributed Systems

Synchronization is defined as a mechanism that ensures that the result of a distributed computa-
tion is correct, in that it provides the same result as that of an equivalent serial or sequential computa-
tion. Synchronization is, therefore, a fundamental issue in the design of multiple-processor systems.
The twin responsibilities of allowing fair access to shared resources and ensuring correctness of the dis-
tributed computation are delegated to the synchronization algorithm. One of the primai-y aims of distri-
buted and parallel computation has been to partition a compute-bound problerﬁ and assign the parts to
independent processors, such that the computation terminates much faster as a consequence. The
increase in the speed of computation, called speedup, depends both on the natural concurrency avail-
able in the application as well as on the task partitioning and synchronization strategies used. Thus, dis-
tributed and parallel computation can only be viable if the computational burden is shared evenly
among processors, if the overhead in communications of data and control variables is small, and if the

synchronization is efficient.

As the number of processors in the system could be as large as a few thousands, it is of vital
importance that the algorithms used be distributed, and that their performance scale well. Time is a dis-
tributed variable, and correctness of the computation has to be enforced by each processor on the basis

of local information alone. Algorithms which enforce global correctness based on local decisions are

therefore zealously sought. In this chapter, we will introduce the problem of synchronization in distri-
buted systems. Later chapters will propose and analyze specific algorithms for synchronization in
message-passing distributed-memory systems. Finally, we introduce a new class of systems called the

self-synchronizing concurrent computing systems (SESYCCS).

2.1. Synchronization in shared-memory systems

In this section, we will review in brief the synchronization mechanisms available in shared-
memory multiple-processor systems. While our aim is to develop the theory of synchronization in
distributed-memory machines, we will examine some shared memory synchronization schemes to allow

later comparisons of performance.

In a shared-memory multiple-processor system, the processes (residing on processors), access
commen memery locations to obtain data and tasks for parallel execution. This model of computation is
fine-grained (parallelism at the instruction and loop level) in nature, and scheduling of tasks is often

centralized. Best efficiency is achieved whenever a process with a task has a processor to run on.

The need for synchronization in shared-memory systems can arise when two or more processes
wish to read or write the same data structure. The final result of the computation then depends on the
times (and the order) of accesses by each competing process. As an example, consider the following
statements to be executed concurrently by two processes, 1 and 2.

x=y*z

y=x+z

If x and y are shared between the processes, 1 and 2, the result of the parallel computation is unpredict-
able and depends on the order of access by the processes. Synchronization is of importance in resolving
this issue of dependency in such a critical section. Likewise, when two processes compete for the con-
trol of a shared resource (an I/O device, for instance), they both cannot be assigned the use of device,

and some synchronization protocol has to be enforced to serialize access.

2.1.1. Semaphores:

Semaphores are used to synchronize ‘access in a shared-memory environment and represent a
shared data structure into which each process can read or write. A lock is a very common type of sema-

phore, regulating access to a critical section.

Lock: A lock is a mechanism which ensures that only one process can access a shared data structure at
one time. Processes compete to acquire locks on a shared variable. If a process finds a desired shared
variable unlocked, it acquires the lock, and releases the lock after completion of its task in the critical
section. Processes awaiting the release of a lock have the choice of either spinning in a busy loop (wast-
ing cycles) or can switch context to some other task. Hardware locks, called atomic locks, are some-
times provided, where actions to ensure that the lock is unlocked before acquiring it, and relocking it,
are performed as one indivisible action. Hardware locks are quick and efficient because they do not

require operating system intervention in the synchronization.

Ordering Semaphores: If there are data dependencies between successive iterations of a loop, it is
essential that the iterations be executed in certain order. Ordering semaphores allow this by assigning to
each competing process an iteration number, /. A process is allowed to execute the loop if and only if
equals the value of the ordering semaphore N. After completion of the execution, the process relinqu-
ishes control over the loop after incrementing the value N, allowing other processes to continue with

the execution.

Counting Semaphores: Counting semaphores are very flexible in scheduling the order of execution,
and are found useful in the management of messages buffers and queues. For instance, counting sema-
phores can ensure that a process which has been waiting the longest would be assigned the use of the
resource. These semaphores allow the management of the utilization of seve;al instances of the same

resource. The counting semaphore is given a value N. This value can be interpreted as follows:

N >0: N is the number of instances of the resources available, when N = 1, and there is a single

resource, it is unlocked and available.

N <0 : No instances of the resource are available, and —N represents the number of competing

processes awaiting release of the resource.

To acquire the use of the resource, a process has to decrement N. If N is less than 0, it queues its

identity in the —N th slot and awaits it turn.

To release the use of the resource, the process examines if N is less than zero, and then notifies

the first process in the queue. It then increments N .

2.1.2. Barrier Synchronization

In a typical paralle]l program, a number of parallel tasks are forked out to different processes by
the job scheduler. After completion of their assigned tasks, processes mark themselves as present at a
barrier. After all the processes in the computation have marked themselves at the barrier, a new phase
of computation can start using the results of the preceding phase. Barrier synchronization is commonly

used in both shared-memory systems and distributed-memory systems.

Barrier synchronization can be implemented in a number of ways. A class of computation called
Static Computation Graphs (to be discussed in the latter sections of this chapter) employ this method of
synchronization. The obvious method for implementing barrier synchronization is to assign to one pro-
cess the responsibility of making sure all processes reach the barrier. Another common method is to
contruct a tree-type interconection between the processes, where the task completion signals reach the
root through a number of intermediate levels in the tree. Use of a hardware bus for synchronization

would be especially efficient.

50 Time (s)

45
40
35

30

20

15
A=128

i K
5 . A=64
—

A=32

No. of Processors
1 2 3 4 5 6 7 8 9 10 11

Figure 1: Computation on Single Bus Shared-Memory System

2.1.3. Performance

While mechanisms for synchronization in shared memory systems have been understood to a
large degree, current issues that need to be solved concern the scalability of these mechanisms to a
larger number of competing processes, and also issues in ensuring coherence of data in private caches.
Ease of programming shared-memory machines has been crucial to their wide acceptance in the com-
mercial market today, and speedup of application programs by an order of magnitude is typical with
very little additional effort in synchronization.‘

In Figure 1, we illustrate the performance of a single-bus shared memory Sequent system on a
seismic migration computation. As can be observed, increasing the number of processors up (0 six
decreases the computation time correspondingly. The performance quickly saturates after‘that, due to

' bus contention. Increasing the size of the problem (in this figure, A represents the size of the data array)

10

improves the initial speedup.

2.2. Synchronization in Distributed-Memory Systems

In a distributed-memory system there are no shared variables. Synchronization is implemented
via messages communicated between processors. Time, being a distributed variable, implies that each
processor, i, has a local logical clock, C;(¢) at a real time ¢, representing its local progress (in simulated
time) in the computation. C; (¢) evolves according to the dynamics of the computation. At this point we
will formalize the notion of a distributed computation. A distributed computation, or a physical system
consists of N subsystems, where the state of subsystem i evolves in discrete time as a function of its

' past state at time ¢—1 and its interactions with other processors j. At each time step (the step size can
be fixed or random), the subsystem updates it state, and sends messages to other subsystems participat-
ing in the physical system. The physical system is then mapped onto a set of M processors. This map-

ping is said to represent the logical nature of the computation, or the logical system.

O
Z

1 2 3

1
1 @) 2 3 2 ®)

56%? pL
G
TR0

2 3 S
3

]

Figure 2 .(a) Physical System, and (b). Logical System.

S represents simulated time, and R represents real computing time. In the physical system,
both simulated and real times progressed at the same rate. In the logical implementation on
three processors the simulated time moved slower relative to the real time. This is because
L3 was assigned two tasks, P 3 and P 4, instead of one.

11

As an example, let us consider a distributed computation represented by the data flow graph illus-
trated in Figure 2a. This represents the physical structure of the distributed computation independent of
any implementation. The vertices can represent tasks or subprograms participating in the distributed
computation. For the sake of simplicity let us assume that each task takes exactly one simulated time
. unit and communications are instantaneous. The task start times are shown in the figure as well. A
notion of global time exists in the physical system and simulated times, S , are equal to the real comput-
ing times, R (which represent the real time spent in the CPU on the computation). The implementation

of this physical system (on a distributed computing system) is defined as a logical system.

In Figure 2b, the physical system is shown mapped on to a logical system of three processors.
Two of the physical tasks from Figure 2a were mapped onto one logical process in Figure 2b. Note that
logical process L3 now is assigned two tasks P3 and P 4. Therefore, there is no single global time
representing the distributed computation and L2 and L 1 remain idle for one real computing time unit
awaiting completion of tasks P3 and P4 on L 3. Each logical process has its own local logical clock
measuring the progress in simulated units with real computing time. L 1 and L2 take one computing
"time unit (R =1) to reach global simulated time §=1, while L3 takes two real computing time units (R
=2) to reach global simulated time S=1. The local times are measured in simulated time units while the

computing time is measured in real time units (wall clock times).

This particular mapping between physical and logical systems is not unique. The selection of the
logical system depends on the the number of processors available in the distributed system, the
efficiency of a particular mapping, and lhe_ cost of the communications (relative to computation). In our
example, if the logical system of Figure 2b were implemented on four processors instead of three, the
local simulated times C;(¢) in the logical system and the global times S in the physical system would
correspond to each other.

Interactions between the subsystems in the physical system are faithfully carried over to the logi-

cal system, and in addition the logical system introduces a number of synchronization and control mes-

sages which ensure the correctness and efficiency of the distributed computation. The state information

12

in the logical system is correspondingly larger. The connectivity of the logical system can subsume that
of its associated physical system largely to accommodate efficient signaling for synchronization and
control purposes. Obviously, the logical system is of interest only if the state of the physical system can

be recovered from it.

2.2.1 Models for Distributed Computation

Thé dynamics; of the physical system can be represented by a set of state transition equations.
Two cases of distributed computation that are especially important are developed further in this thesis.
One of them evolves in discrete time (time-driven) while the other evolves at discrete points (event-
driven) in continuous time. Time-driven distributed computation includes a wide set of engineering
problems in the solution of systems partial differential equations and those which involve substantial
iterative manipulation of numerical expressions at each time step until completion. Event-driven sys-
tems are of importance in tﬁe modeling and analysis of distributed systems in a variety of applications,
in distributed simulation of dynamical systems and for efficient implementation of computation where
activity is localized to certain discrete (and not necessarily evenly spaced) points in time.

Time-Driven Physical System

The physical system consists of N subsystems, S, S2,..., Sy Wwith states x,(t), x2(¢),

x3()..... xy(t),t=0,1,2,3... thatevolve according to the set of dynamical equations
x(@)=fi(x(t-1), {m;(e-1),j =i}, () ,¢)
my;(8) = g (x; (1), 0;(¢) . 2)

; (¢) represents the stochastic component of the dynamics of the distributed computat.idn. m; (t-1)
represent communications (or messages) from subsystem j to i in time step ¢t—1. The function, f;(-)
updates the state while g;;(¢) determines which messages are to be transmitted to other processors, j,
fromi.

The implementation of the time-driven physical system on a set of M processors is called the

time-driven logical system.

13

Time-Driven Logical System

The logical system consists of M proéesses. L,,L,,..., Ly. These systems evolve dynami-
callyinT=0,1,2,..., ,whereT = T(t)and¢=0,1,2... is the real computing time. The aug-
mented states, X; (T') and the messages M ; (T) are represented by

X;(T)=F;X;(T-1),{M(T-1),j#i },0:(T),T)

M;(T)=G;X(T),o;(T), T)
In this implementation the local times of the processors C;(t)=C;(t)=T(t),

Event-Driven Physical System

In an event-driven physical systtm N subsystems, S,,S2,...,S8y with states
x,(8) . x5(t) ..., xy(t), evolve inte (0, oo).

There also exists a sequence of times T} <t?< ... T/ such that t*— t/*"! is a random interval
of time, when the svstem jumps from one state to another. For example, the state could change in
response to a message from another processor. The arrival time of this message is itself a random vari-

able. The state jumps to a new state when this message is ultimately received.

Then the system can be described by the following set of dynamical equations:

@ =Fc@"), @), j #i), o@D T
m; () = g;; x(t™ , ; () , T")
with ©}* satisfying 1/"~! <t/ <1 x;(-) is a right continuous function of t. m;;(t/*) refers to the
messages received by i from other systems j in between two successive jumps at ™~ and 1/ respec-

tively.

Event-Driven Logical System

The implementation of an event-driven physical system on a concurrent computing system is
called the event-driven logical system. The state X; (-) of subsystem L; is a right continuous function of
" the local time C;(¢). The real computing time, ¢, can be continuous or discrete (as in any computer sys-

tem, continuous time is modeled as discrete time steps). In the former case, the local clock C;(¢) is right

14

continuous in ¢. C;(¢) takes values T;* , T2, ..., T/" such that T""— T~ is a random variable for all
m and i. The jumps in the values of C;(r) represent the stochastic nature of the discrete event dynami-
cal system. The evolution of the augmented states in the logical system can then be described by
XTI =F;X T, (Mz(T}*) . j #i}, o(T7), T
M (T =G, (x (T, o, (T , T
The progress of the computation can then be expressed in terms of rate of growth of miinc'_ (),
since the smallest simulated time in the logical system represents the time up to which the distributed

computation has been progressed.

2.2.2. Causality Conditions

The distributed computation is correct iff x;(-) and m;(-) can be recovered from X;(-) and
My(-) forall i ,j. The necessary conditions for correctness, called the causality conditions, that

should be satisfied are,

@. Trl<Tr<TM forallm andi.

®. Trig T} <T{" for all i, j and for appropriate m and n (satisfying the state update

equation).

Formulating sufficiency conditions that are more general and depend both on the dynamics of the
systems as well as on the correctness within the programs themselves remain the responsibility of the

user.

A synchronous synchronization algorithm ensures that the conditions (a) and (b) are satisfied at
the end of each computing time step increment 8t =¢,2¢ ...

An asynchronous synchronization algorithm ensures that the conditions (a) and (b) are satisfied
eventually at t — oo (or equivalently when C;(¢) = oo for all i).

A synchronous algorithm ensures that the conditions are satisfied at every time step and that the

local clocks move forward in lock-step. In the synchronous algorithm the absence of a message has

15

also to be explicitly communicated to every other processor in the system. This is a high penalty in
communications and does not scale well with an increase in the number of processors. In addition, the
faster processors remain idle at every time step waiting for the slower processors to catch up. This

situation then favors an asynchronous synchronization algorithm.

The asynchronous algorithm does not incur the overhead of enforcing the causality conditions at
each time step. Whenever an error is discovered, the synchronization algorithm rolls back the simu-
lated time clocks until the last time they were correct and the computation begins anew. The asynchro-
nous algorithm thus enforces the conditions (a) and (b) only when it discovers a discrepancy. It is of

much interest to evaluate the performance of these two algorithms.

Some observations can be made at this point. There are two notions of time in the logical system.
The first notion is that of simulated time, which répresems the point of time in the execution of the phy-
sical system. The next notion is that of real computing time which represents the time spent on compu-
tation in clock cycles (or ticks) on the implementation of the computation. In a logical system, there-
fore, the simulated time evolves as some function of the real computing time. Some processors partici-
pating in the logical system can update their simulated time much faster (in real computing time) than
other processors in the system. This leads to a disparity between local simulated times in different pro-
cessors at the same point in real computing time. In our example shown in Figure 2, the simulated times
of logical processors L 1 and L2 kept pace with the real computing time until R=1 and then remained at
1 until the real computing time reached R =2, when processor L 3 reached simulated time 1 as well. Pro-
cessor L3 is slower in reaching the barrier because it had two tasks of size 1 unit assigned to it. In a
logical implementation of a physical system on an infinite number of processors, the simulated times

can closely follow real computing umes when tasks have comparable granularity.

Let us now define G (¢) as follows

G@) = {(i,j,mi()) | m)=¢}
In a time-stepped physical system where ¢ evolves in discrete time, G (¢) describes the precedences of

tasks and messages communicated at each time. If these precedences and messages m;;(¢) are known

16

apriori, i.e if G (t)=f (¢), where f (¢) is a known function of ¢, then the physical system is defined to

represent a Static Computation Graph (SCG).

On the other hand, if G(t)=g(t ,x,(t),x5(t)..... xy(t)) is a random function of time, as in
the event-driven system, the physical system is then defined to be Dynamic Computation Graph
(DCG).

Note that G (t) for ¢ =1/ for some i and some m, is unknown apriori in a stochastic event-driven
system. Thus discrete event systems fall into the class of DCGs. Some time-driven systems can be
described by DCGs as well, when the message transmission times and the messages themselves (e.g in

data-dependent computation) at each time step are unknown before the computation starts.

Static Computation Graphs, also called Class S , imply that the structure of the computation is
known and statically determined. This knowledge can be used to synchronize such graphs efficiently.
Dynamic Computation Graphs, also called Class D, represent a general model for distributed computa-
tion where the task precedences and messages are unknown prior to the computation and depend on the

stochastic evolution of the states of the phyéical system.

In this description of the distributed system, we have assumed that the state of each subsyétem is
influenced by interactions with every other subsystem. In practice, this interaction is often local, each

subsystem interacting locally with just a few other subsystems.

In a logical system the system states evolve in real computing time at different rates in simulated
time. Hence some of the interactions present in the physical representation may not be available to the
faster logical process in the computation of the next state. The logical system then has two alternatives
to avoid making an error in the forward computation. In a synchronous implementation, the next state is
not computed uniess all the subsystems have a common simulated time and only then the lowest time
stamped event is processed. In an asynchronous implementation the logical process assumes that it has
all the relevant information and computes the next state. The synchronization algorithm ensures that the
logical system is able to recover from this error. This error occurs due to the fact that some of the mes-

sages m; (T}*) were not received by processor i as it had reached simulated time T/*! (such that

17

TP < T/ < T7*') much earlier in computing time.

Since our primary objective is to understand the performance of synchronization algorithms, we

will restrict formalism for its own sake to a minimum, focusing more on the efficiency issues.

We will now examine how the problem of ensuring global synchronization of logical systems

(representing event-driven physical systems) is solved in this distributed environment.

2.2.3. Synchronous Methods

The local state of a subsystem i at T**! depends on the previous state (at some discrete point T}),
as well as on its interactions with the other subsystems that are between simulated times of T and T7**!.
The local clocks of the different physical subsystems are synchronous to a global clock. However,
when mapped to the logical system for the purposes of distributed computation, the clocks tend to grow
at different rates, and furthermore, a physical subsystem may not interact with other subsystems at
some points in time. This implies that in a logical system the absence of an interaction also has to be
explicitly communicated. The absence of interaction between two subsystems in the physical system is
carried over to the logical system as a null message. Obviously, if the logical system were simulating a
physical system where such interactions were infrequent, the overhead in communicating these null
messages can be very high. Synchronous methods find use in Chapter 3, when the structure of thé com-

putation is predictable.

2.2.4. Asynchronous Methods

When logical processes are allowed to update their local clocks on the basis of partial or incom-
plete information, the clocks can move independently of each other, except when interactions take
place in the corresponding physical system (as described in the event-driven system). These methods
have the advantage that processes can move ahead in computation time using available information
without awaiting messages. The logical system comesponding to the event-driven system is itself
event-driven. Some of the events occurring in an asynchronous logical system can be false, as they

were scheduled on the basis of partial information. The price paid for this optimism is that processes

18

need be capable of recovering from errors in computation that could have occurred on the basis of
incomplete local information (when a message from a subsystem which is at a smaller simulated time
bearing new information is not received at that real computing time) These methods are discussed in

some detail in Chapter 4.

2.2.5 Comparison of Synchronization Methods

One approach that distributes computation in a discrete-event system identifies the events that
have the smallest time stamps in the system and schedules them for execution. We will illustrate this for
the case of an example of an acyclic queueing system shown in Figure 3. If in addition, we make the
assumption that processes can execute events only in increasing time stamp order, the efficiency of the
algorithm improves, with most of the processors doing some kind of work. The introduction of null
messages improves efficiency further. Subsequently, we will also describe how an asynchronous syn-
chronization mechanism performs on the same network. Both the synchronous and asynchronous stra-

tegies appear to work well for this example.

The physical system to be simnglated is described by five first-come-first-served (FCFS) queues
connected as shown in Figure 3. The logical system on five processors assumes the same topology as
the physical system. The initial condition of the network is described in Figure 3, where events are each
identified with a unique identity (in small case alphabet) and a time stamp in simulated time. The
(simulated) time stamp is updated as the event traverses through the network. To simplify study further,
we also assume that executing each event takes one time unit in both simulated and real computing
times (ticks). Therefore, the time stamp (in simulated time units) of each event is incremented by the
service time (one unit) and by the waiting time at each processor. Each successive snapshot represents

the state of the network after one computing time tick.

The first strategy for synchronization is implemented in two phases, a synchronization phase fol-
. lowed by a computation phase. In the synchronization phase, the events in the system are rank ordered

on the basis of their time stamps. At the end of the synchronization phase, the computation phase begins

19

with the identification of a process that can begin processing its input queue. The process chosen is the
one with rank = 0. Once the event has been processed the synchronization phase resumes and the events

are rank ordered again.

One way of rank ordering the events would be to interconnect the processes together in a virtual
ring. Each process communicates a message containing its identity and its current timestamp to its
neighbor in the ring. The rank rk of each process k, is initialized to 0. Each process receiving a mes-
sage, increments its rank by one if the event in its input queue has a larger time stamp than the time
stamp of the event in the received message. The message is then forwarded to the next process in the
ring. If there are N processes in the system, this will take N communication times. The synchronization
phase ends when each process receives its own message. The computation phase then begins, with the
process assigned rk=0 processing its input queue. This computation is shown in Figure 3. The entire

computation is terminated after 10 steps.

In the algorithm just discussed, there were no additional synchronization messages between
processes. The concumency of the system is limited to the processes with the smallest rank. With an
increase in the number of processes, most processes remain idle resulting in an inefficient implementa-
tion of the logical system. We will now describe how null messages can speed up the execution. Null
messages are not real events, but are messages that inform the processes when it is safe to update their
local clocks. The knowledge that the service time in each process takes one time unit is used with
advantage in letting recipient processors know when they could expect event messages. If time stamps
can be predicted in advance, the efficiency of a distributed computation improves as a function of this

lookahead.

Ina synchx;onous strategy (See Figure 4), the algorithm ensures that events are scheduled for exe-
cution in time stamp order. At the first time tick, processes 2 and 5 are enabled, and process jobs (e , 6)
and (b , 7) respectively. Job (e , 6) exits with the identity (e , 8). The processing time on process 1 is
one simulated time unit, but the local clock on process 2 was previously .7 (it had processed (b , 6) pre-

viously). Therefore, the time stamp of job e is 8 instead of 7.

20

At this instant, process 2 has information that it will not send any task to process 5 with a times-
tamp less than 8, hence it transmits a null message (x, 8) to process 5. This allows process 5 to
schedule event (c , 8) for execution in the next time tick. Similarly, in the next time step, null message

(m, 11) assures process 4 that it can schedule event (f , 11) for execution.

The computation therefore proceeds much faster with the introduction of these messages expli-
citly for synchronization. The sequence of snapshots in Figure 4 illustrates that the termination occurs
in 6 time ticks.

The performance of asynchronous synchronization is illustrated in Figure 5. Here, processes are
not blocked, and each process executes whatever task is available at hand. However, as can be seen in
figure 3, process 3 realizes it has made an error in time step 1 when it had scheduled event (d , 9) for
execution without awaiting the arrival of (e , 8). Fortunately, the effect of this error was not propagated
by process 5, as it had scheduled event (c , 8) for execution. The process 3 recovers from the error and
sends an antimessage to process 4 asking it to delete event (d , 8) from its event list. The remainder of
the distributed computation proceeds as shown in the sequence of figures, and terminates in 6 time
ticks.

This example serves to introduce the different methods of synchronization used in message pass-
ing distributed systems. The aim of this thesis is to provide the foundation for the design of self-
synchronizing distributed systems. In the models we present and in subsequent analyses, we will often
find it rewarding to compare the performance of self-synchronizing distributed systems with the perfor-
mance in conventional distributed systems. Our models are simple and robust and allow us to study per-
formance of synchronization algorithms when the conditions of asynchrony are severe. We will point

out some limitations to our analyses as well, so that the reader will be advised as to when they are not

applicable.

Synchronous methods incur a high overhead in idle times when blocked processes are unable to
advance their clocks because global information is not available locally. The introduction of informa-

tion or null messages partly ameliorates this problem but adds to the communication overhead. Each

21

process must now keep informing every other process in the system updated estimates of its local time.
For obvious reasons, such an approach would scale poorly with an increase in the number of processes,
when the cost of communicating updates takes up a significant portion of the computation time. Patho-
logical examples, involving feedback, have been constructed with poor efficiency (0.05 - 0.1) of imple-

mentation.

Asynchronous synchronization allows the local clocks to drift apart rather than blocking them
from doing so. This achieves the maximum potential of concurrency available in the computation. The
disadvantage to this method is that occasionally the process has to undo the results of erroneous compu-
tation. The effects of secondary error propagation have also to be considered. The performance of such
optimistic methods has not been clearly understood, but efficient implementation has been shown for
some balanced applications. Another advantage to using asynchronous methods arises from the fact that
the user does not have to synchronize her logical processes for efficiency. Some efficient strategies for

such synchronization are studied in Chapters 4, 5 and 6.

Consider a system with a few thousand processors, and a larger number of logical processes, used
in a distributed computation. It is unusual and often impossible for any system designer to be able to
synchronize this distributed system part by part. The onus of synchronization should rightfully rest on
the distributed computing system, heralding the introduction of self-synchronizing concurrent comput-
ing systems which are responsible for handling the synchronization responsibilities for a distributed
application. The application expert subdivides the algorithm into parts and assigns processes to proces-
sors. The system then synchronizes the distributed application. The synchronization strategies are to be
implemented both in the hardware and software. The separation of synchronization and control
hardware from computation appears to be a viable alternative to traditional intra-computation synchron-

ization methods.

-

(e,10) (8.14)

Figure 3: Synchronization of an Acyclic Network

This figure depicts the successive snapshots in the distributed computation of the events in a logi-
cal system consisting of five processors. The entire computation takes 10 time steps to complete,
interleaved with time steps required for resynchronization. A ring type synchronization would be
inefficient, and a broadcast communication mechanism would improve performance.

23

Figure 4: Synchronous Synchronization

The same computation is repeated using a synchronous computation algorithm, with specific mes-
sages used for synchronization. Here the introduction of ‘‘null”’ or information messages,
improves the concurrency available in the system. Deadlock can also be shown to be avoided in
cyclic systems. The computation proceeds faster as a result, completing in 6 time steps. These
classes of methods are popularly known as conservative methods.

24

d.10) (c.8) ®.8)
—o—o—@—o—b

Figure 5: Asynchronous Synchronization

The simplicity of an asynchronous computation is shown in this diagram. There is no synchroni-
zation overhead, but there is additional processing whenever an error is detected. The computa-
tion proceeds, with processors executing tasks whenever a task is present in its input queue. The
possibility of error is ignored, but corrective action is enforced once an error in execution is
detected. In this particular example, during time step 2 and 3, the system recovers from error
(the error occurring when event (d ,9) was processed before event (¢ ,8). The computation in this
case also is terminated quickly. While maximal concurrency is extracted, recovery from error can
penalize efficiency. Therefore, synchronization algorithms need be very efficient.

25

2.3. Self-Synchronizing Concurrent Computing Systems

A Self-Synchronizing Concurrent Computing System (SESYCCS), (pronounced, say-six), is dis-
tributed computation on message-passing systems, where the computing system provides means for the
synchronization of the distributed computation. The roles of the computation and the synchronization
(i.e. control) are clearly separated from one another. This synchronization could be provided either

through hardware (special busses, etc) or through software (in the operating system) means.

For obvious reasons, it would be of interest to identify those classes of scientific computation that
would execute efficiently in a SESYCCS environment. Our studies indicate that two important classes

of scientific computation lend themselves conveniently to an efficient implementation on a SESYCCS.

2.3.1. Why SESYCCS ?

As described in Section 2.2, the physical system representing the computation evolves stochasti-
cally either in discrete-time or at discrete points in time. Whatever be the nature of the physical system,

the efficiency of the implementation depends on the logical system representing the computation.

In the general case where the physical system can be represented by a discrete-event physical
system, we have a number of ways available to select a corresponding logical system. In a synchronous
system, the logical clocks on the system move synchronously and in lock-step. The overhead in ensur-

ing that clocks move in lock-step can be quite high and performance poor as a result [ChMi79].

In an asynchronous logical system, the logical system follows the dynamics of the subsystems
contained by the physical system. The overhead in resynchronizing clocks that diverge rapidly and the

excessive memory requirements for flow control can lead to poor performanbe [JeSo83].

We propose a theory for self-synchronization where the concurrent computing system provides
the synchronization facilities. In this approach, we relax the stringent communication requirements of
the synchronous case. We propose that the logical processors (or processes) in the logical system
interact in a Bernoulli environment (see Section 2.3.3) Each logical processor (at some points in time)

probabilisticaily decides whether it wants to communicate local clock information to another logical

26

processor in the logical system.

A number of rewards accrue from this approach. First, efficient algorithms for self-
synchronization have been formulated that promise an improvement in performance over conventional
methods of intra-computation synchronization. Secondly, the buffer sizes (memory requirement) are
also guaranteed to be bounded in an asynchronous environment. The excessive communication over-

head imposed on synchronous methods is also eliminated.

In Chapters 3 and 4, we derive concrete resuits for the performance of self-synchronization algo-
rithms. In Chapter 5 we establish that memory requirements in a SESYCCS environment are bounded

as well.

2.3.2. Self-Synchronization for Static Computation Graphs (SCG)

The first class of concurrent computation discussed in this thesis is oﬂe where the data flow in the
computation can be expressed by a fork/join type network. A number of parallel tasks are created at a
fork and the results merged at a join. G (t) is a deterministic function of time, implying that these com-
putations can be expressed as Static Computation Graphs and the synchronization mechanism can be
synchronous in nature. The concurrency available in the system, therefore, varies deterministically with
time, and efficiency of the computation can be poor if resources are assigned to processes without tak-
ing this temporal variation into consideration. Even if the task times are assumed deterministic, manual
synchronization of such computation on the basis of local information alone soon becomes intractable,
partly because each processor in the distributed system has to schedule resources to its processes, keep-
ing in mind the requirements of other processors and other users as well. Our solution includes the
development of an algorithm which identifies idle brocessors, and assigns ‘‘useful’’ tasks to them.
These new tasks are culled from pool of tasks associated with independent programs executed by other

users of the SESYCCS.

In Chapter 3, we will have the occasion to study in some detail a subset of fork/join type compu-
tation where the task execution times are assumed deterministic. Hoivever, the execution times are unk-

nown both to the user and the SESSYCS. We will describe how the concurrent computation can be

27

efficiently performed when the computation is repeated over a number of instances of the input data. A
perturbation algorithm allows the SESYCCS to determine iteratively the static structure of the compu-
tation graph based on input-output considerations alone. This knowledge of the SCG is then utilized in

time-sharing the system with other independent users.

Concrete results on the performance of SESYCCS on Class S type computation are presented in
Chapter 3, along with results from the simulation of the algorithms on test examples. The interested
reader is referred to [MaMe88) for details on a Class § seismic migration computation implemented

on an NCUBE multicomputer.

2.3.3. Self-Synchronization for Dynamic Computation Graphs (DCGs)

A typical example in the second class of scientific computation suitable for execution in a
SESYCCS framework, is best described by the computation involved in distributed simulation of
discrete-event systems (Chapter 6). Here both task precedences and execution times are random in
nature. Efficient synchronization of such computation is very difficult even in systems with a few pro-
cessors. Indeed most present algorithms scale poorly with the number of processors. We present a new
clock model for such dynamical asynchronous computation, and specify how the computation evolves
with time. The model presented in Chapter 4 is sufficiently general to describe a number of computa-
tional problems in this framework. We now make precise the notion of asynchronous communication,
and its effect on the clock synchronization. The model presented is a specific case of the logical system
for the event-driven DCG described earlier, but it is sufficiently general for the purposes of the analysis
of self-synchronizing concurrent computing systems. We now wish to model the behavior of logical
clocks with computing time in the distributed asynchronous implementation. C: represents the logical
clock of processor i at computing time step » . This model lays the foundation for the models for logical

system that are developed in the chapters that follow.
In an N processor logical system, { Ci , n 20,i=1,..., N } isdefined as follows;

(T4 ,m=1,2...)are Bemnoulli imes
That is,

28

Prob (T¥ ., -Ti=k]=p;(1-p;)" . k=1,2,3...
If

n#T4; Cly = Fi(Cl.0.a])
Otherwise, if '

n=T:{ M C,{.g.] =F;(C£,C:,a’{)

Qualitatively, the logical system for a Dynamic Computation Graph (DCG) consists of a set of N
interacting processors (or processes) whose local clocks evolve asynchronously with real time n. Each
processor i executes some assigned tasks, and in addition, communicates and receives results from
other processors j at random points in time, 7/ and T#, respectively. In our description of the logical
system for a dynamic computation graph, we require that the interactions be Bernoulli in nature. This is
a condition where each processor i can communicate with any processor j at the end of each time step
with a probability p;;. Bernoulli communications is a weak requirement on the structure of the logical
system. This is because of the fact that it can model a number of other communication pattemns as well
(by choosing p;; appropriately). In addition, it is easy to implement on a distributed computing system
and guatantees finite buffer sizes in the SESYCCS (Chapter 6). C represents the state (local time) of
the processor j at time step # in the computation. a} is a random variable would represent the incre-
ment in the local time at time step n+1 if no message were received from other processors between n
and n+1. F;(-) det.enninw the evolution of the local clock as a function of its previous local clock, C/,
the received remote clock information, C: (or the lack of it, ¢), and aj. It is likely that processor j
receives more than one message at some point, and the function F;(-) incorporates all the new infor-

mation available into computing the next state.

29

2.4. Summary

It is clear from our discussion so far, that in a system where processors differ in their rates of for-
ward growth, inefficiency manifests itself as idle times in the faster processors in a synchronous
environment, and as resynchronization of local times in an asynchronous environment. The SESYCSS,
therefore, has to provide efficient synchronization to ensure that the dynamic computation graph is exe-

cuted correctly and with a minimum of direct or indirect overhead.

In Chapter 4 we derive new results for the estimation of the progress of computation on a
SESYCCS with two processors. Effect of communication delay is also captured in our analysis. Closed
form results derived were then confirmed from detailed simulation. Algorithms for the two-processor
SESYCCS were then extended to the case of a multiple-processor SESYCCS. A multiple-processor

-SESYCCS has a number of unique problems associated with its synchronization. We propose two algo-
rithms for self-synchronization. The first, Concurrent Resynchronizations (CR), is analyzed and its per-
formance is compared with another algorithm, Successive Resynchronizations (SR). The main result
from this comparison is that occasional resynchronization of all the processors is far more efficient in
terms of efficiency of forward computation as well as in terms of memory required by the concurrent
system, than for the case where synchronization is enforced as part of the computation itself. Chapter 4

discusses role of synchronization in Class D computation and is self contained.

SESYCCS for both Classes S and D, as described in Chapters 3 and 4, use deterministic algo-
rithms to synchronize computation that often had a temporal (deterministic or random) variation as
well. A natural extension of the algorithms would be to introduce a ‘‘learning’’ component into
SESYCCS. The cases for which this is possible are enumerated in Chapter 5, and closed form results

are derived to illustrate their efficiency.

Another important result was derived in this framework. In Chapter 5, we proved that asynchro-
nous communication is possible in a bounded memory environment. Algorithms for distributed syn-
chronization, especially in the context of distributed simulation, assumed that communications were

synchronous, that is both the sending and the receiving processors had to be ready to send and receive,

30

respectively. This restriction leads to deadlocks and subsequently expensive methods to detect and
resolve them. We show that Bernoulli communications ensure bounded message buffers. This guaran-

tees that SESYCCS are in fact realizable in practice.

We then study the application of these results to the problem of distributed simulation. Perfor-
mance of distributed simulation of discrete event systems has been very poor, and our objective has
been to make it efficient. In Chapter 6, we propose a new algorithm, Wolf, which builds upon the
theory developed earlier in the thesis to provide an efficient distributed environment for distributed

simulation on multiple-processor systems.

31

Chapter 3

Self-Synchronization for Static Computation Graphs

Scientific computation, especially in digital signal processing applications, can be represented in
the form of a network of fork/join networks as depicted in Figure 1. During the ‘‘computation’” phase,
the fork assigns tasks in parallel to a number of processors, and then the results of these computations
are ‘‘merged’’ appropriately by a join type network. The forks and the joins are logical processes and

their functions can be carried out by designated processors in the distributed network.

As can also be observed in Figure 1, the concurrency in the computation varies with the giobal
clocks in the system. In a distributed environment processors are self-timed. Unless efficient syn-
chronization is provided scheduling algorithms are unable to extract the concurrency from the computa-
tion. Specifically, all the processors are not busy in every ‘‘phase’’ of computation. Idle processors are
defined to be ‘“inactive’’ in those phases of the computation. Moreover, all the processors participating
in a phase of computation are not busy all of the time. Thus these processors are only partially active
during the computation phase. The presence of both inactive and partially active processors represents
an inefficiency in the concurrent computing system. Our objective is to schedule execution such that
computing resources are not wasted, and such that these processors are able to execute tasks from other

user programs as well, to offset this inefficiency.

32

While the objective of this chapter is straightforward, a number of issues complicate the self-
synchronization of the distributed computation represented by Static Computation Graphs (Chapter 2).
First of all, even if the user were willing to schedule a computation involving thousands of processors
(and processes), the execution times of each task are not known a priori. In addition, the user does not

know the requirements or the priorities of the other users in the same computing system.

I
I
|
!
|
|
|
i
|
[
!

A B

Figure 1: A Static Computation Graph

In the SCG illustrated above, the computation assumes a fork/join type structure. In each
computation phase, a fork assigns tasks to a few processors in the system, while the other
processors remain idle or ‘‘inactive.”’ The objective of a self-synchronizing system is then
be to identify the active and the inactive processors within each computation phase and
assign useful work to them. Processor 4 is is marked active (complete circle) in Phase 1 and
Phase 3, but marked inactive (dotted circle) in Phase 2. Processor 4 could just as well have
been scheduled to be active in Phase 2 instead of in Phase 1. Further inefficiency can result
if the task sizes within each phase are unequal, when the completion time in each phase is
dominated by the worst case.

33

The onus of achieving the optimum use of computing resources lies, therefore, on the computing
system itself. Our proposed solution involves the use of a distributed perturbation algorithm which
allows the time-sharing the processors amongst the processes of a number of independent user pro-
grams. The only restriction is that these programs be represented by Static Computation Graphs (See
Chapter 2).

Our approach in this chapter is as follows. In Section 3.4 we specify the structure of the Static
Computation Graph (SCG), alternatively called Class § computation. It may be argued that Class D
subsumes Class S . This is true. But the fact that Class S is more restrictive in structure allows us to
synchronize these programs along with others in the same class in a way that allows optimum use of
computing resources. We will tackle the challenging problems of synchronizing Class D problems in

Chapter 4.

In Sections 3.7-3.9 we present a distributed algorithm that uses the traces of each execution run to
identify processes that are active in each computation phase. Also identified are those processors that

have additional computing resources (which can be utilized to execute independent user programs).

Later sections provide concrete results on the improvement that can be expected from using Self-
Synchronizing Concurrent Computing Systems (SESYCCS) for solving static Class S problems.
Specifically, we make precise the notion of critical path computation. We also describe the rewards
that can be accrued by migrating processes within the same framework. The chapter concludes with a
brief description of a seismic signal processing application which lends itself to computation on a

SESYCCS.

3.1. Introduction

Much recent interest has been directed towards using parallel machines for fast and efficient
scientific computing. Parallel machines built from inexpensive hardware can deliver performance com-
parable to supercomputers at a much lower cost to performance ratio for a large set of engineering

problems. For best results, however, the computation has to have enough inherent concurrency to fully

utilize the parallel hardware available and reduce the latency.

Distributed computation is organized as a number of cooperating processes scattered over a
number of computing processors. Processes constituting independent programs, however, compete
with each other for resources. The computation is synchronized through a message passing network,
and messages are used to communicate tasks, information and other control signals, all of which are
used by processes to advance their computation. Processes typically execute a task, then communicate
results to other processes and/or await results from other processes before resuming computation. Each
processor has its own memory, and its processes share the resources within the processor. Each of
these processes can either be “‘asleep (ready to run) awaiting messages, resources or the scheduler’s
signal or can be ‘“‘running’’ in memory and performing some useful task. In case more than one pro-
cess is running at the same time within a processor, we assume that they share resources and have
sufficient memory to execute. Most processes will be assumed to execute scientific computation; tasks
which have a medium to large grain when compared to communication costs [See AtSe88]. This is
because communication is expensive compared to a single instruction execution time, and this para-

digm will not support fine grained applications efficiently for the same reason.

Most parallel machines at present support a space-shared approach to sharing processors. Each
user or program is assigned a set of processors which do not overlap with the sets assigned to other pro-
cessors. This approach has the advantages that scheduling tasks for execution becomes easy, consider-
ing task execution times are predictable, but the hardware utilization remains poor [See AtSe88]. Due
to latency, however, the effective throughput in terms of MFLOPS could be reducedr In some applica-
tions in the distributed simulation of dynamical event-driven systems, efficiencies as low as 5% have
been reported [Fu88]. We propose time-sharing the processors s;uch that each user can use each and
every one of the processors available in the machine. Note that time-sharing in this context refers to
sharing the same processor with another set of users, and it does not necessarily imply that users use the
CPU resources available in a round-robin fashion. The scheduling of this multiuser (and multipro-
grammed) parallel machine can be very efficient if some algorithms presented in this chapter are used

by the scheduling kemel. The scheduler works iteratively and automatically changes its schedule as the

35

execution of the distributed computation proceeds in a SESYCCS environment.

Each algorithm has an upper bound 6n its execution time, T,,,, that is required by sequential

computation on a piece of hardware. This computation time can be reduced to T'__ if the concurrency

in the computation is completely utilized (with an infinite number of processors solely executing the
computation in parallel). However, in practice we have a finite number of processors and the presence
of other processes (competing for resources) limits the execution time to at least Ty, where N is the
number of processors available. Our aim is to schedule imcwses for execution such that the best use

of the parallel resources is made while getting an acceptable execution time.

Processes communicate via messages; a process going to sleep when it has completed its active
phase and transmitted updated information to successor processes. It sleeps until it receives messages
with new information from all the processes that it expects to communicate with. In a synchronous
synchronization environment, we expect a monitor process to ensure that a process is scheduled for
computation only after it receives all the relevant messages from other processes. For sake of clarity of
exposition we demarcate these phases in activity and sleep as the active and inactive phases of the pro-
cess respectively.

The algorithm proposed in this chapter is a two-pass algorithm. In the first pass, the algorithm
determines the information it needs from the data flow in the execution of the user program, and in the
second pass it determines a dynamic schedule for all the user processes in each processor using the
information extracted in the first pass. Our processes are assumed to execute scientific computation that
can be described by a Static Computation Graph (SCG). The schedule is automatically modified to

include the generation of new-user processes and termination of old-user processes.
3.2. Message Passing Parallel Machines

In this section, we describe a typical message passing parallel machine, which consists of a set of
computing processors (P) interconnected via a message passing network (IN). Each processor is a spe-

cialized floating point processor capable of executing computation assigned by a user program in a high

36

level language (e.g. FORTRAN or C), and has its own private memory. The private memory is typi-
cally organized into the user memory (UM), system memory (SM), and the message memory (MM).
The system memory is used by the operating system on each processor to handle inter-processor mes-

sage communications, scheduling, interrupts and other low level system functions.

The message memory (MM), is used to store messages for transmission to other processors in the
system. Communications are usually implemented using an asynchronous handshake protocol. The
user memory (UM) stores the user program and data. Typically the UM is very small (1/2 Mb), and
secondary access may be necessary for large programs. The local variables are stored in the UM, and
when messages are to be communicated with neighboring processors, the operating system is invoked
to copy the variables into the MM, and then transmits the message to the MM of the target processor,
where it is subsequently read by the destination process. The interconnection network (IN) is usually a
hypercube or a torus routing network [See DaSe85]. Message passing between non-neighboring nodes,
implemented using a virtual cut-through type algorithm, is very efficient, making message costs for
multihop transmission comparable to those of nearest-neighbor communications.

Me§sages sent between processes are 'identiﬁed using the following fields. The control fields

identify whether the message is to be treated as data or a migra.ted process region_.
For read calls the following format is used;

[buffer, length, source, type, control]
For write messages, the format used is;

[buffer, length, destination, type, control]

Here buffer and length refer to the length and address of the message buffer which stores the
message. The source and destination fields are process id’s and type is a qualification to discriminate

between dissimilar messages communicated between the same pair of processes.

37

3.3. Static Computation Graphs

The parallel program is developed with the architecture of the message-passing machine in mind.
The algorithm is broken down into a number of smaller parts, each of which is defined as a process and
assigned to a separate processor. These processors carry out tasks which are described in a high level
user program usually written in FORTRAN or C, and proceed with computation. At the end of the first
active phase, the process communicates the results of its computation to some of the other processes,
and awaits the receipt of messages, if any, from other processes. These processes complete their own
active phases before transmitting and receiving messages, but this is not necessarily the case. Most
scheduling is done locally on each processor, the initial mapping being arbitrary. This, coupled with
the fact that parent processors may be loaded down with other user programs, results in most processes
‘‘waiting to run in memory”’ for unpredictable amounts of computing time. As a consequence there is
an wnderutilization of processing resources, unacceptable response times and loss in concurrency. The
active phases themselves cannot be determined by each processor as they depend on the run times of

other processes (which in tum depend on unrelated user programs).

Local information available in each processor is not sufficient to handle the scheduling of users
with differing priorities, or to handle migration of processes to another processor when resources are

available, or to minimize idle times when the computation is repetitive in nature.

It is for these reasons that conventional parallel machines have adopted the simpler space-shared
approach to implementation of parallel computation. In this chapter, we propose an effective
automated approach to determining an optimal schedule for time-shared parallel machines in a

SESYCCS environment.

As mentioned in Section 3.2, the synchronization of the distributed computation follows a two-
pass procedure. The first pass suspends execution of other user programs, and concentrates on a single
target user program. The host then determines an activity graph for each process, and this information
is used to determine a schedule for this program and then the same task is repeated with other user pro-

grams, each time scheduling a program taking into account the requirements of other user programs

38

already scheduled. A more comprehensive description of the advantages and limitations to our algo-
rithms will be given in later sections (3.7-3.9). The next few sections describe some properties of the

forkijoin type of network that provides a concise description of the static computation graph.

Let us now describe the mechanisms which allow the implementation of the transition of a pro-
cess from its inactive phase to its active phase. A process ‘‘sleeps’’ while awaiting a specific number
of messages from a set of cooperating processes. However, the scheduler may delay scheduling of the
active phase until such time it thinks it is appropriate to do sb. Once the static structure of the computa-
tion is determined, the resources usually assigned to a user program in its inactive phases can altemna-

tively be assigned to another independent user program that can utilize them.
3.4. Structure of Static Computation Graphs

Static Computation Graphs as described in Chapter 2 have a static precedence structure which
distinguishes them from the class of Dynamic Computation Graphs. This additional restriction allows
the development of a number of algorithms which exploit their structure to optimize computer resource
assignment. The basic idea is as follows. If a computaﬁon graph has a static structure that requires it to
restrict the use of computing facilities to only certain periods of time, the computing resource that is
unused for the remaining period of execution may as well be utilized by another independent program.
In a uniprocessor case thls leads naturally to the concept of pipeline-interleaving. In the multiple pro-
cessor domain , however, efficient algorithms need be developed so that a number of processors in the
logical system are able to coordinate and time-share computing resources with other independent pro-

grams executing on the system.

We will make precise these notions by developing the structure of SCGs in the form of fork/join
type networks. A join-type network collects the results of a number of independent computations from
input processes (or sources) (1) .-, , S, () and performs some computation on the aggregate before
redirecting the result to another set of processes via a fork-type network. The join-type network has no

control over the sources to its inputs, it needs buffers to store inputs until such time ¢, when inputs from

39

all sources arrive at the join-type network. In other words, the join type network needs an input value
from each of its buffers before it can produce any output. The join-type network then takes one piece
of data from each of its buffers and merges them together into one output result. This implies that each
of the buffer sizes in the join-type network will be reduced by one. Let us suppose for the sake of argu-
ment that one of the input sources S,(¢) generates inputs to the join-type network at a much higher rate
than other sources. This means that the buffer corresponding to S,(¢) will grow very rapidly in size
with a possibility of overflow. We would therefore like to know when buffer sizes can be guaranteed

stable. We can then ensure that SESYCCS for SCGs are realizable in practice.
A Join-Type Network (J-TN)

Consider the network illustrated in Figure 2. Sources S,(t),S5(t)...., Sy(t) provide N inputs
to their respective buffers b,(¢) , b2(t), ba(t), ..., by(t). The buffers operate like a first-in-first-out
stack, where data is taken in and out in order of arrival times at the buffer. The buffer b;(¢) at time ¢
takes the value of its most recent input. For example, if the n** input, a, to i** buffer arrived at time t,,,
then b; (¢) takes the value a for the entire time interval until the arrival of the n +1* input at time i, .

Let us assume that the inputs are Poisson. This assumption implies that the interval between suc-
cessive data inputs are independent. This is routinely used in queueing analysis to model behavior of
inputs when little else is known about their statistics. The sources S; transmit at Poisson rates A; , with
the n®* arrival at time ¢, to the i* buffer. For ¢ 2 t,, each buffer has at least n input data points. We

quantify our model of the J-TN as follows,

Vi (n)& bi(‘)'l{‘in+l>t2’in]
Forall n,i,ift <t, then v; (n) = ¢.

Y(t48)=3 ¢ (7 (n)ova(n)ees vy (DT pa > 21" ,)
a=0

where

t', = (mint lv;(n)#d,ie {1,N})

40

and f (vi(n),v2(n),..., vy (n))is a program which operates on the data in the buffers and /
is the indicator function which takes value one (zero) when the condition enclosed in the { } is true
(false). Qualitatively, the output is produced only when all the input buffers have at least one input so
that Y (n)=f (vi(n),va(n),..., vy (n)). Here, Y(n) is defined in a manner analogous to
v;(n), and is the n* output from the J-TN. 0 is the processing time required by the J-TN to generate an

output given the inputs. The standard muitiplexer is a degenerate example of a J-TN.

50— TTTTTT] Yo
sy e T T T T 11
0 2—— T T T T 1] -
Sy B— T T T T 111
Figure 2: A Join-Type Network
A Fork-Type Network (F-TN)

A Fork-Type Network takes in one input and outputs N outputs. A Fork-Type Network is illus-
trated in Figure 3. A F-TN has a single input buffer v, (#) and N outputs ¥; ,i =1,2,..., N and
the outputs are related to the inputs according to

oo
L@ = Zfi(nn) I g >126°,)
In general, we could provide for a selector set S which determines which of the outputs Y; (¢t) would
change, enabling a probabilistic routing, varying with time, from the inputs to the outputs. A standard
demultiplexer is then a special case of the the F-TN, where each successive input (in time) is routed to a

successive output link (in space).

41

S@)

Figure 3: A Fork-Type Network
A Simple Process
A simple process p is one which accepts an input, x (#), and produces an output,y (n). If P
is the processor which assigns ¢, fraction of its CPU time to p then ¢, is defined to be the time taken by

p to produce an output. A simple process communicates with other processes only when it has com-

pletely processed the data assigned to it. (Figure 4).

x(n) y(n)

Figure 4: A Simple Process

A Compound Process

A compound process is composed of a number of processes interacting with each other. Each of
these processes is spawned by an independent multitasking processor which assigns a certain fraction
of its CPU time to its child process. An example of a compound process is shown in Figure 5 where
Processes p1,p2,. .., P, interact to process input data. The data flow allows for feedbacks, and mul-
tiple subsequent visits by the input to each process. The processes may generate shared variables which
are transparent to the input-output specifications. We will discuss these compound processes further
and develop their properties. Most multicomputing environments can be described with compound

processes.

42

() s »
x(n) y(n)

Figure 5: A Compound Process

A Simple J-TN (SJ-TN)

A Simple J-TN is a J-TN whose inputs are all simple processes. The SJ-TN processes the data

from each of the individual processes to produce an output according to the equations for the SJ-TN.

A Compound J-TN (CJ-TN)

A Compound J-TN is one which has at least one input that is a compound process.
Pipes

Pipes allow for processes to communicate in a specified order. Output from one process is fed
into the input of another process through a pipe.

At this point, we digress and develop a few properties of the J-TN that would be useful in subse-
quent analysis of static computation graphs. In effect, we will be deriving some stability results that

will determine if SCGs are realizable in practice.
3.5. Properties of Static Computation Graphs

Static Computation Graphs would be realizable in an implementation if and only if the buffer
sizes at the J-TNs are finite in size. We will now examine the dynamics of buffer sizes with different
types of input. While it is not surprising to observe that buffers can overflow when the input sources

emit data at unequal rates; it is also true that the J-TN is unstable even if the inputs rates are equal

43

(under some conditions). We will proceed immediately to establish this fact.

Stability: Consider a J-TN with two Poisson input sources, S, and S, as shown in Figure 6. If the
buffer sizes in b, and b, are given by 15,1 and 1b,| then a J-TN is stable if and only if (b,,b,) isa

Positive Recurrent Markov chain. Therefore, a J-TN is unstable if its expected buffer size is infinite.

S,¢) by(n)
h Y ()

St % by(n)
Q

2

Figure 6: A J-TN with two inputs

Proposition 1:
Let the sources to a J-TN be S, and S,. If the sources are independent and Poisson, then the J-

TN is unstable for all positive rates A; > 0.

Proof: Let us assume that the Queues Q, and Q, have service rates, B, and p, and let the inputs S, and

S, be independent Poisson sources.
Casel: =My =occand A=A, =7
The proof is as follows: If b, and b, are the buffers from sources 1 and 2, then 15,1 — 15,1 follows a

one dimensional random walk with the following transition probabilities.

The underlying Markov chain is, therefore, null recurrent [See Wa88]. This also implies that
11b,1 — 1b,1 | grows without bound for all positive rates. (The probability of 15,1 — 15211 becom-
ing zero is one, however, the expected time for this to happen is infinite.)

Case 2: A, is notequal to A,

In this case, the underlying Markov chain is transient and hence, the J-TN is unstable.

Therefore, we can conclude that independehce of the two Poisson inputs is a sufficient condition for

instability. Q.E.D.

This interesting result was derived with very few assumptions other than Poisson flow. Deter-

ministic flows, for example, do not result in instability if their average rates are same.

Proposition 2:

The J-TN with inputs routed probabilistically from the output of a M/M/1 queue is unstable.
Proof: From the sampling theorem for Poisson processes [Wa88], the sampled output processes are

independent and from Proposition 1, this implies instability.

Q.ED.

Theorem 1:

The J-TN fed by N Poisson sources with rates A; is unstable for all positive rates if any two
inputs are mutually independent.

Proof: Follows from Propositions 1 and 2.
3.6. Discussion on Join-Type Networks

_ Theorem 1 implies that a J-TN is not realizable in practice with finite buffer sizes if its inputs
were independent and Poisson. It is conjectured that the J-TN is unstable for all random inputs with
independent inter-arrival times (independent increments). This can be visualized by a trivial example.
Consider a simple J-TN with two inputs. The interarrival probability density function has mean a and
variance 62. A sequence of arrivals can then be constructed, (a¢ —6),2(a —c)... from input 1 and
a sequence of arrivals at times (a +G), 2(a +0)..., from input 2, which leads to unbounded
buffer sizes. It would, therefore, be impossible to assign buffer sizes for J-TNs with independent
iﬁputs. It is because of this that we require that lask execution times be deterministic or atleast predict-

able to a some extent (see later sections for experimental results).

45

3.7. Synchronization of a Simple J-TN

A J-TN consists of a join of the outputs of a number (say, N) of simple processes. Each of these
processes, p, is spawned by a processor which assigns a fraction of its computing time, c,, t0 it
Heavily utilized processors can assign small ¢,, if at all, while lightly loaded processors can devote a
higher fraction of their computing time to processes. In a time shared multicomputing environment, the
number of processes per processor is also variable. An efficient assignment algorithm would have the
capability to track such variations in load in the context of the concurrent program. If the constituent
processes (in a J-TN) produced outputs at varying rates, buffering would be difficult, and efficiency
would be lost due to enforced idle times (Sections 3.4-3.5). The algorithm for resource allocation in a
J-TN is straightforward. We will briefly outline it.

let us assume that the process p , consumes ¢, and takes a processing time £, to complete its task.
LetT=(ty1,t2,83,...08p ..., ix)yand C =(cy,C2,..., Cp,..., Cy) and there exists a vector

A=(0y,0,..., @ ,..., 0y), suchthat

A=C-T

We now define p = m:x(i:*_) and the reassigned processor fractions, ¢, , for each process will then
k
be given by

new O

™=

p keeps track of the ‘‘bottleneck’ process, and mepJ-'I‘N can be dynamically scaled up or down
depending on the value of p. Process migration can further enhance the speed of completion, if the
processes with the largest a; are assigned to processors which can assign the highest ¢;’s. In other
words, the computing fractions of the processes that have a small computing time requirement are

reduced so that the task completion times (in all the processes) are equal to each other.

3.8. Synchronization of a Compound J-TN.

46

In this section, we consider the case of a general CJ-TN which is a join of compound processes
(Section 3.4). A compound process was defined as one having a number of cooperating and con-
currently executing processes. Regardless of the interconnection, the output of the compound process
is joined with the output of other compound processes in a compound J-TN (CJ-TN). The CT-IN
allows us to consider medium-grained model of computation useful for most scientific applications.
We assume no specific knowledge of the tasks carried out by each process is available to the CJ-TN,
other than the input/output constraints and task completion times. Our proposed stabilization algorithm
is independent of the programs executed subject only to some assumptions which will be described
below. Each of the sub-processes p executes a different task and the dependencies between the sub-

processes make calculations for optimal CPU allocation intractable.

Our algorithm is best described by the Activity Plot, Figure 7a, which plots the Static Computa-
tion Graph versus time. The shaded regions, Figure 7b, indicate when a process is active. The depen-
dencies are depicted by arrows. In principle, all active regions of a compound process are not observ-

able from the execution completion times alone.

3.8.1. Synchronization Algorithm for Compound Process

In this section we describe the checkpoimt algorithm which optimizes the processor utilization
amongst the processes constituting the compound process. Each process while executing its assigned
task communicates with other processes within the same compound process. Each process within the
compound process can be assigned a maximum fraction of CPU by its parent processor depending on
its multiprogramming requirements. The algorithm is an adaptive one, and involves repeated invoking
of a subroutine called the checkpoint w'hich provides information regarding the efficient allocation of
processor fraction for a certain fraction of the total execution time. The outcome of the checkpoint
algorithm is a list of active processes for nonoverlapping intervals of time (; , %iy). Ay .4, for
i=1,2,3,..., Z such that the union of the intervals is (0, T') , where T is the total time required for

execution, -

47

The idea behind the use of the checkpoint algorithm can be summarized as follows. Each process
pis assigned a certain computing fraction Ck l;y the parent processor. We wish to determine if ¢, is
really necessary for the entire execution time. If the resource were unused for some known intervals of
time, then taking it away from the process would not affect the total computation time. So the check-
point algorithm choses an interval of time (¢,,4,) that is a subset of the total execution time, and then
changes (decreases) the service fraction ¢, of each process p by a fraction o for the duration of that
interval. The change in total computation time T is then observed. This change called AQ,, should
equal 0-AQ if the process actually needed the computing fraction ¢, during the interval of time (¢,.92)
(where ¢,— ¢, = AQ). In other words, if the total execution time is unaffected by the decrease in
assigned resource to a certain process for a certain interval of time, it is likely that the process is inac-
tive in that interval. The unused resource can instead be assigned to some other process. This idea is

now made precise as follows.

subroutine Checkpoint(¢q,, g,, A ,JA ,PA ,¢,T)

/"meinitialprocessorassignmemisc=(c1.cz...., cn)

/* Defining the operator v, C as follows*/
vp-f‘= (c1+€300e0s (1=0)Cp ..., cy), for t€(qy,92) M €0, T)
= C , Otherwise
AQ, = av,c o€
AQ = Qz-‘ ‘h-
Y = i%

Each process, p, is assigned to the set of active states A,, ,,, the to set of inactive states /A, ., or
to the set of partially active states, PA,, ,,, according to the following rule:
C—€<Y,SCG,p €A, 4

<Y, SC-¢,p € PA, ,,
0<y,<e,pelA, .,

48

¢ is a postive fraction that is small compared to G.

The Checkpoint Algorithm

Step 1: The time interval (0, T), determined from the initial trace execution with processor assign-
ment C is divided into two intervals (0,) and (7- T). The checkpoint subroutine i invoked for
both these intervals. The sets A, PA and /A are returned by the subroutine. If the cardinality of PA,
IPA | is non-zero for either interval, it is further divided into intervals, (0, %) and ({- , -;;), or,

(-;‘—, -34—T)and(—3}- ,T) as the case may be. The checkpoint subroutine is invoked for each of these
intervals and the process of iteration repeated if |PA | for any of these intervals is non-zero. The algo-
rithm continues until all the PA s are zero, and we have an active set A for each interval. The algo-

rithm is guaranteed to converge, with the least possible checkpoint interval being (0, € AQ).

Step 2: At the end of Step 1, the CJ-TN has the Activity Sets for a number of non-overlapping inter-
vals whose union is (0, T). For each interval the active processes for that interval would cooperate in
finding out the bottleneck. Each processor p, scales its ¢, to suit the bottleneck process for that inter-
val. As few processes are active in any interval, we expect good performance in the sense that the
effect of a bottleneck process at a certain time does not penalize the entire execution. The CJ-TN
(which could be modeled by a host processor) uses the data available from the parent processors, to cal-
culate the new assignments. Once the efficient assignment of CPU to the compound process in a CJ-
TN is completed, the entire CJ-TN is controlled using the scaling algorithm prescribed for a Simple J-

TN.

Step 3: After the steps 1 and 2, the algorithm identifies only those regions of a process that are on the
critical path. Tasks executed off the critical path are not identified, and these tasks can only be
observed by reducing their processor assignment fraction until they lie on the critical path (as well).

Once all active tasks are scheduled to lie on the critical path, resource allocation becomes simplified.

49

At the end of the steps 1 and 2, the checkpoint subroutine has demarcated the total execution time
(0, T) into active intervals (¢, ,42), (¢2,93)+..., (qn-1,qn) €ach with a set of processes that are
active within each interval. The processes, which are not active could either have no assigned tz’nsks, or
they could be executing off-critical path (but useful) computation. The algorithm for scheduling the
latter processes begins with the examination of the intervals closest to the termination of the execution,
(n-1: 9n)-

The interval (gy-1,4qn) is assigned the level 0. The next interval (gy_z, gn-1) is assigned the
level 1 and so forth for the other intervals. The computing fraction, ¢, , for pe/A,, | ,, is setto zero. If
the change in total execution time, AT, is also zero, then the next interval with level 1 is examined. The
computing fraction for this interval is again set to zero and the resulting effect on T is observed. If AT
is zero, the next higher level is examined, until level i is reached where setting the processor computing
fraction to zero results in AT > 0. At this point, the computing fractions of p in all levels O through i
are slowly increased from zero until AT again exceeds zero. The checkpoint subroutine is then used to

determine the active region of p in the levels 0 through i.

The procedure is continued again as before, but this time the level 0 is assigned to interval
(qN—i-1» Gn-1)- and the checkpoint subroutine is again used to demarcate the active regions.

This procedure is carried out for all the inactive processes ensuring that they compute efficiently.

This procedure is illustrated in Figure 7, where (a) illustrates the activity of different processes
over time. The arrows represent asynchronous communications. At the end of the checkpoint algo-
rithm, only those process segments which were active on the critical path are demarcated (by the
shaded regions). The other regions are left blank, as they have not yet been identified by the scheduler.
Step 3, then identifies process 5, as being active, when decreasing the initial computing fraction extends
the region J into the level 1 of the procedure. The checkpoint algorithm then identifies the active
regions of process 5 as depicted in (c). In the next step, process 4 is examined, where the execution of
region G is completed only when it is needed by segment F. This delay puts G on the critical path as

well. The checkpoint algorithm then finds the active processes for the entire execution graph, (d). The

50

inactive regions can then be assigned to other independent users.

' S wt
T
(C.EFH)
) (CEF)
B.F)
®3)
(AD)
0 —_—
T e
(C.EFH)
JcEFD
0
Figure 7: Description of the Checkpoint Algorithm
Proposition 1:

Let the events executed by the active processes in the interval (g2,4,) be J,, . The time
required for processing these events is the f (J,, 4, » S) = ¢,-q,, where S is the resource allocation

vectorand f: Z X RY 5> R. Let 2: (oy,0,..., oy), then a sufficient condition for

51

fUpar 26 < f U0 ©)
isthato; > 1 foralli.

Justification:

The proof of sufficiency is immediate. However, the fact that it is not a necessary condition may

not be obvious.
Let py.p2,....ps execute events J, . in the interval (g2,49,). Let the processes
P1,P2.P3,P4 execute events J, . ~E. E is the event assigned to process ps which records the

progress of the execution of events among the other processes. Therefore any vector °_‘ with o; > 1 for

ie(1,4)and os =1 will lead to a smaller f (J,,,,q,,f)-

Proposition 2:
An event g which &!csgﬁ o the set of inactive processes for an interval (g5,4,) can be
scheduled to occur independently of other events in the interval which are associated with processes

that are active, i.e. peA,, ..
Justification:

If an event a which is scheduled by an inactive process could affect an event scheduled by an
active process, then perturbing the service rate of the inactive process, would affect the total execution

time. Hence, the events associated with inactive processes are independent of other active processes

during the interval (g, , gy)-

An important consequence of this observation is that, the inactive processes in each interval, can
be assigned tasks which are from another independent program or user. The new user program is also
subjected to the same algorithm to determine its active phases, and resources assigned such that the

independent programs time share the common resources.

Theorem 2:

52

Every process p, when active for an interval (¢, ,q2), P€A4,,, 4, is on the critical path for that
interval.
Justification:

By construction, a process is classified as active if perturbation of its assigned fraction results in a
perturbation of a like amount in the total execution time. Therefore every process is on the critical path
whenever it is active. It shares the critical path with all other processes which are also active within the

same interval.

This is one of the main results of this section. The checkpoint algorithm does not complete a task
until it has been declared active (See Figure 8). Processes are scheduled to run only when they are
active, and concurrent processes which are scheduled to run at the same time are shifted along the time
axis until they are on the critical path. T!lerefore. after scheduling with a checkpoint algorithm, every
process is on the critical path, slowing down one process can slow the total execution time. Likewise
speeding up a single process cannot, in general, speed up the execution, uniess all concurrent processes
in the active interval are also scaled up proportionally. Therefore, the programmer need only specify
the interconnection within a compound process, leaving optimal allocation and execution to the check-
point algorithm.

We analyze the performance of our algorithms for a simulated activity plot shown in Figures 8-
12. The test pattern was generated using a random number generator and represents the activity in the
static computation graph when each process was assigned a ¢, =0.1. With a probability 1/2, the active
regions extend into the next checkpoint interval. The process fractions for two cases are assigned from
a uniform distribution U/ (0, 1). The successive graphs depict the performance on a ten procéssor sys-
tem, with and without process ;nigration and with and without checkpoint optimization. The execution
times are assﬁmed deterministic. The optimization proceeds interval by interval, when the processors
can upgrade their individual c,’s to the largest value such that the cardinality of the set of active

processes for that interval remains unchanged.

Time

"

10

=l
=
-

>

4 § 6 7 8 9 10 Processor Nymgor

Case1: 03 02 0.8 03 0S5 0.8 1.0 0.1 04 1.0
Case2: 1.0 03 0.2 08 03 05 08 1.0 01 04
Figure 8: A Test Example
This figure shows the activity graph for a test example described in the text. The active phases of
each processor are plotted against the total execution time. The active regions were generated using a
Bernoulli distribution with p = % The maximum processor computing fractions available for each pro-

cess was assigned (for both the cases) using a uniform probability density function. The activity plot
shows the active phases when the computing fraction assigned to each process was 0.1.

Al

-
v

Figure 9: Optimization Using the Checkpoint Algorithm

This figure shows the decrease in execution time possible for both cases in Figure 8, using the
scaling methods described in Chapter 3.

Flops*Time Steps

80[
55

4s .

a8Rk88s

10 L
5 & Time Steps

Figure 10: Optimization of Computing Resources

This figure represents the computing resource, measured in computing fraction saved times the
time that it is available, versus the time steps of the iterative algorithm. As observed, the savings are

significant.

56

Nonhomogeneity in SCGs

We now introduce the concept of noxihomogeneity in multicomputing systems. Let the check-

points determined by the algorithm be ¢, ,45,43,. ..., gy such that \ (g;41,4:)=(0,T).

Let the initially assigned CPU fractions be ¢ ,c4 ..., ci respectively, and the maximum
fraction available be ¢,™*, c,™=*, ..., cy™*.
Defining
¢’ « _ max
X = » X S X
P
™™ p
- CIPGAF.O . _
Ypedne = Lo v KpeAe T p Fredn.
PEAn.n

If , denotes the ratio of the change in total execution time after the checkpoint algorithm to the unop-

timized time T then

M
@i -0 p — K pen.)

i=l

Yo = M
Y@n—-a)x,

i=l
Y, is fleﬁned as the degree of nonhomogeneity and it is an indicator of the extent of the disparity
between the tasks and the process CPU assignments. The larger ¥, is, the greater the gains from our
optimization algorithms, since a smaller vy, would imply a homogeneous partitioning of tasks before
preprocessing with the checkpoint algorithm. In some cases, calculation of allocation may be
simplified if all the ¢/, were equal forall p.

It must be noted here that the checkpoint algorithm extracts enough information from the consti-
tuent processes in the concurrent program to determine the processes which are active for a large
number of subintervals. Obviously these processes need the largest fractions of CPU and a suitable

scheme can be devised which reassigns processes to processors such that the computation intensive

processes get assigned to processes with larger ¢™*,. (See Figures 9-10).

4 EXECUTION TIME

11 = Execution Time

o,
e,
.,
.,

Without Migration

34

|

Figure 11: Performance of Process Migration

Migration involves the reassignment of tasks to lightly loaded processors. The checkpoint algo-
rithm can efficiently migrate processes, as seen from the figure. The results for Case 1 in Figure 8, show
a decrease in execution time from 11 to 2 time units.

& Unoptimized Execution
QO with Checkpolnt
O With process migration

Execution Time
14
13
12
1
10 L
5 - e
8 - -
7 L e R
e Q-
5 L
4 _1L
3 4 (] B |

m 0 it
2 F h
1 L —_——
0 } } } } t } } } } 1 + t—>
10 20 30 40 % Variance

Figure 12: Data Dependencies

If the task times are slightly stochastic, or they have a small dependency on the data, the total
execution time varies proportionally to the execution time. Since the checkpoint algorithm reduces the

total execution time by a significant amount, the variation is much smaller as a result. This improve-
ment is seen in this figure.

59

3.8.2. Process Migration

In this section, we examine some strategies for migrating processes to other processors in the sys-

tem.

Consider N processes 1,2,..., p ,..., N spawned by processors P, ,P;, ..., Py each with

a maximum available fraction of CPU ¢™*p ,c™%p,,..., c™p,.

The checkpoint algorithm generates sets of active processes A,, .., for intervals (g; , ¢;,,) with an ini-
tial assignment of CPU fractions equal to the maximum available per processor. Let the cardinality of
the active sets |A,, .| = Z;, and the processors be ordered in the decreasing fraction of CPU avail-

able, P, ,P,,P,,..., Py. We consider two cases for process migration which enhance processor

utilization.

Case 1: Process migration

Ai the end of the checkpoint algorithm, each of the processes belonging to the active setA,, ., is

reassigned to one of the processors P, , ..., Pz. Each process then has its CPU assignment scaled up

max

c
by wp’ , where y and x are chosen such that the ratio is the minimum, say B; =1, for that interval. In
€y

practice we can scale up the CPU assignment by a larger fraction but this requires a larger amount of
. computation to ensure that each process is assigned to a processor which can scale its CPU fraction by
the same amount. The speedup factor ¥,, can then be represented as

M M
Y(q =i)X - 2(% —qin) Bi +Z;:C
i=1

i=1

Ym = i -
El(qs' “qin)k,

Since B; <x° peA,.,. Process migration can result in improvement in speed if the overhead, Z; - C, asso-
ciated with process migration is assumed negligible. This is only justified if the intervals (¢; , g;4,) are
large compared to the costs of context switching and communications associated with process migra-

tion. Therefore, the processes are migrated to available processors with larger ¢™>p if and only if the

interval (g; , ¢;41) is sufficiently large (See Figure 11). This overhead is significant only for the first

few data samples consumed by the CJ-TN.

The evaluation of A and JA at each step, allows the reduction of the complexity of the algorithm
at each successive subinterval. This is because of the fact that if a process is active during an interval it

maintains that state for all subintervals.
Case 2: Data-dependency:

In the above analysis, we have tacitly assumed that the data dependency of the process segments
within the checkpoints can be expressed as some function of €. The efficiency of the checkpoint algo-
rithm is then a function of €. If epsilon were small enough, which is true in most coarse-grained signal
processing applications the algorithm is quite efficient. However, a large variation in execution time,
can result in processes in other processors terminating much earlier or much later than the errant pro-
cess. As discussed above, the check point algorithm moves process segments on to the critical path,
however processing them earlier has no effect on the total run length. A monitor on each processor
keeps a list of process segments which can be executed over a number of checkpoint intervals without
affecting the total execution time. Consequently, whenever, a processor completes execution of its pro-
gram within a checkpoint interval much ahead of other processors, it processes one of these floating
off-critical path tasks. A finite algorithm, similar to the checkpoinit perturbation algorithm, can then be
formulated to determine which of the processes can be moved away from the critical path, for execu-
tion as a fill-in task for processors (to utilize their computation fraction efficiently) in the case of large
¢. This modification enables an enhancement in the efficiency at the cost of a floating process queue of

processes (which can be executed with some latitude in the time of their completion) (See Figure 12).
3.9. COSPROL : Rules and Syntax

COSPROL is proposed as a concurrent system programming language which enables the algo-
rithm developer to define a parallel paradigm for execution of an algorithm. The COSPROL preproces-
sor, does the following tasks.

1. It maps the COSPROL source program onto a distributed processor architecture, such that the algo-

61

rithm constraints, precedences and data flow characteristics are not violated. This is similar to the
specification used in languages such as in Blosim (See [Mess79]), but targeted towards multiple proces-
sor machines.

2. The Join-Type Networks of processes are then optimized for efficient CPU utilization, as will be
described in the following sections.

3. By adaptive perturbation techniques, the COSPROL distributed architecture consisting of asynchro-
"nously executing processors is synchronized.

4. By keeping a current description of the critical sections of the network, the throughput can be
dynamically varied with fluctuating load.

The individual processes are pieces of code which are defined by the programmer. COSPROL
optimizes resource allocation solely on the basis of input-output characteristics of the output flow. The
execution times, process fractions, and communication protocols within processes are not assumed to
be known beforehand, making such a description of concurrent programs very attractive. The task exe-
cution times are assumed deterministic. In this section we describe the COSPROL syntax and rules,
which enable a concurrent system developer to specify an algorithm for implementation on a distributed
computing architecture.

The algorithm specified in COSPROL can then be analyzed by a preprocessor to allocate the
architecture, assign resources, and optimize performance. We will first describe the syntax and then

discuss the processing algorithms used by the COSPROL preprocessor.

Syntax

In the following discussion we denote processes by capital lett;ars A, B, C and so forth. J-TN
denotes a Join-Type Network. Unless otherwise noted we assume each process is spawned by separate

parent processor.

a. A=SP(A)

b. X=CP[AB,AC,BC,CD]

62

c. S1=SITN[z A 2,B]

d. C2=CJTN[z,A,2,B,2;X]
e. C3=nCJTN[z, A 2,B,C2]
f. C5=F-TN [A,S,z]

g. C5/C4

(a) defines A as a simple process. X is a compound process, comprising of a cluster of processes
A, B, C and D processes A and B, A and C etc. communicating with each other. S1 is a Simple J-TN
of z, processes described by A and z, processes described by B. C2 is defined as a Compound J-TN of
processes, A, B and X of which at least one is a compound process. C3 is defined to be a CJ-TN of
order n which 'implies that it is the J-TN of at least one process of order n - 1. For example if n =1 then
it is the CJ-TN, if however, n = 2 then, it is second order hierarchical CJ-TN of first order CJ-TNs. C5
is a Fork-Type Process, with A as the input process, S is the selector process which determines which
of the outputs are available to C5 and z, is the maximum number of output buffers. (g) defines the
sequential connection of two processes C5 and C4. The output of C5 is piped into the input of process

C4. This definition is similar to the UNIX pipes.

We now present a few typical examples to illustrate use of COSPROL to specify distributed com-

putation algorithms in a SESYCCS environment.
3.10. Concurrent Programming in COSPROL

In this section we will present the results of a pilot implementation of two computation intensive

problems (expressed as SCGs) on a commercially available NCUBE Multicomputer.

3.10.1. Phase Shift Migration

Migration of seismic data involves repositioning the measured data to determine accurately the

63

topolbgy of the subsurface reflectors. Migration is an inverse process in which the recorded waves are
propagated back to their source by systematically solving the wave equation for each successive layer.
There has been considerable study of stable algorithms for efficient solution to the wave equation, and
seismic migration has been routinely used for interpreting seismic data for over two decades. Migration
techniques range from simple finite-difference techniques to the more sophisticated frequency domain
methods. Regardless of the technique used, migration greatly facilitates. accuracy in seismic interpreta-
tion and identification and in some cases is indispensable.

Seismic migration algorithms are computationally very intensive and require processing large
amounts of data. A frequency domain parallel phase shift migration algorithm was analyzed in
[MaMe88a] and the performance indices for that algorithm are discussed. A detailed discussion of these
algorithms and their implementation is beyond the scope of this chapter and the reader is referred to
[MaMe88] for further details. Migration as a SCG can be described by the block diagram illustrated in

Figure 13.

The COSPROL representation of phase shift migration can be elegantly described as follows.
Seismic Migration Algorithm

S1= SJIN[a FFT]
C2= S1/Al

Pl = F-IN[C2,ALL,a]
C3= SI-IN[aPl|FFT.E]
Cé= C3/M

P2= F-IN[C4,ALL a]

P3 = P2 [IFFT

| I
Phase.Shifter

Figure 13: Seismic Migration as a SCG

In our above program, Al is the CJ-TN representing the matrix transpose involving all the pro-
cessors in log N time steps, E is the process generating the exponential multipliers, M is the multi-step
algorithm. P3 represent the processes containing the result, which is a migrated layer. ALL implies
that all the outputs (up to a maximum of @ which is the data matrix size) are selected. FFT and IFFT
are the processes computing the Fast Fourier Transforms of the data. Since the processes are inherently

ioad paianced by the simple structure the optimization of the code is straightforward (Figure 13).

Programming for the distributed application in COSPROL involves the following subtasks:

a). Partitioning the sequential algorithm, to distribute the computational load uniformly over the
independent processors. This partitioning is relatively straightforward in the case of migration since the
concurrent tasks were identical.

b). A communication protocol to enable efficient data and information transfer between the processors

to yield resuits consistent with the sequential program.

Very often the communication overhead determines the bottomline in performance to be
expected. This is where the perturbation approach proposed in this chapter wins over other methods.
The checkpoint algorithm does not assﬁme a priori knowledge of the tasks or the commun-ication times.
It optimizes on the implementation and not on the model of the computation. The costs of communica-
tions are therefore automatically included in the performance. Further optimization of the performance
is done by balancing the load dynamically, overlapping computation with communication, pipelining

1/0 and computation and by increasing the memory per processor.

65

The NCUBE/Ten Multiprocessor system interconnects 1024 32-bit processors each with 128/512
Kbyte private memory in a hypercube configuration [NCUBE86]. Host processors are available to
enable loose global control and synchronization. I/O channels lead directly to the processing nodes and

the host through multiported memories.

The parallel phase shift algorithm was implemented on the 64 processor model. Solution for data
sizes for higher dimensions was implemented by breaking down the problem into smaller manageable
tasks, and the performance then projected for a higher number of nodes. The modularity and the regu-

larity of the node programs enables rapid porting onto higher order hypercubes.

The first communication algorithm we use is the the sequential communication protocol (SCP)
[MaMe88a]. The host is the center of the star of processors, each node communicates only with the
host in receiving and sending data. The host therefore implements the forks and the joins. The sequen-
tial algorithm thus penalizes the performance by not utilizing the parallelism inherent the highly inter-
connected hypercube configuration. The second communication algorithm the parallel communication
protocol (PCP) overlaps communication between sets of nodes, reducing the total communication time.
This implies that the forks and the joins are implemented by the nodes themselves in the logical system.
Both the protocols move the same amount of data and the times are proportional to A2 where (A ,A)

is the size of the data array, though the constants of proportionality are an order of magnitude apart.

Our basis of comparison is a hypothetical sequential machine (HSP) with infinite cache size, and
the computation of the algorithm on this machine is the total computation time on the different parallel

processors. Processor utilization of this machine is assumed 100 %.

Our experience with seismic signal processing has been encouraging in that it gave us a robust '
testbed for testing the performance of SESYCCS on SCGs. Table 1 gives the speedup, /, for an imple-
mentation with a data size of A =256. The reader may contrast these figures with the performance of a
shared-memory type implementation described in Chapter 2 where the speedup was only an order of

magnitude.

Table 1

Performance of Parallel Phase Shift Migration on NCUBE

Index | #of Nodes | HSP (sec.) | SCP(sec) | PCP(sec) | I I

1 64 252 9.05 6.1 27 | 41
2 128 252 7.2 4.2 35 | 60 Y
3 256 252 6.3 3.36 40 | 75

4 512 252 5.6 2.76 45 | 91]i

3.10.2. Optimization of a CJ-TN.

Our next example is the synchronization of a compound process on the NCUBE multicomputer.
Consider the simple four node network shown Figure 14. The data path is from node 0 to node 3, witha
loop at node 1. The execution times of the node programs for each data input is assumed to be distri-

buted as an exponential random variable with mean ;.

O—O B

Figure 14: Synchronization of CJ-TN

Table 2

67

Synchronization of the CJ-TN
Index | A, 7\1 Ay Execution_time
1 20120 5 114
2 25120 |5 150
3 201255 128
4 20| 20 | 625 116
5 15125 | 50 107

We illustrate the use of the checkpoint algorithm for speeding up stochastic systems (its utility in
deterministic systems was illustrated in Sections 3.8-3.9 above). Node O generates all the inputs to the
processes in the compound network. We perturb the mean service times of these nodes to determine the
bottleneck process. The results are then used to speed up throughput. The results on NCUBE are

shown in Table 2 above.

As observed from Table 2, the process 1 is the bottleneck. Its role in the total execution time is
quickly recognized and it is assigned the maximum use of resources (implying that its mean time is
reduced from 20 to 15 in column two of Table 2). The algorithm does not require a knowledge of the
data flow within the network and assigns resources on the basis of the input/output characteristics

which makes it so attractive for multiple processor systems.

Closer (mean) service times can penalize the resolution of the checkpoint algorithm. However,

this is not serious complication since then both the processes would be on the critical path.
3.11. Summary

Self-Synchronizing Concurrent Computing Systems have been proposed for efficient distributed
computation. In this chapter, we described computation that can be described by a Static Computation

Graph.

68

We first examine the conditions under which a SESYCCS can be realizable in practice (with
bounded buffer sizes). We then present an algorithm, called the checkpoint algorithm, which demar-
cates the active regions of each process in the SESYCCS. Since the computation is described using a

SCG, this knowledge is then utilized in time-sharing the processors with other user programs.

Quantitative estimates of the advantages of process migration are also derived. The mismatch
between the SCG and the SESYCCS is quantified by a coefficient of nonhomogeneity, v, , which pro-

vides an estimate of the improvement resulting from synchronization.

All the algorithms described in this chapter are designed to be implemented on the system itself,
and require neither user participation nor prior knowledge of the computation times by the system. The
SESYCCS adaptively takes into account the presence of users of differing priorities in the same system,

and is able to modify the synchronization schedule on demand.

The framework introduced in this chapter provides a concrete base for the design of SESYCCS
for high speed signal processing applications. An example of a seismic migration shows the flexibility

of this approach as well the ease in implementation.

Future work is focussed on implementing the algorithms on a commercially available multicom-

puter, and providing for a powerful user interface with the SESYCCS.

69

Chapter 4

Self-Synchronization for Dynamic Computation Graphs

In a distributed computation, the compute-bound algorithm is divided into a number of smaller
pieces and each of these pieces is assigned to be executed on a separate processor whenever possible.
The amount of concurrency in the system can be very large in applications such as in the distributed
simulation of discrete event-systems. Most present day concurrent computing systems use a modest
number of processors (a few hundred) with the intention of reducing chip counts, backplane connec-
tions and the complexity of communications. However, recent advances in VLSI and in new methods
of routing messages have encouraged the development of more ambitious multicomputers. At the time
of writing, a commercial vendor has announced the development of an 8192-processor multicomputing

machine with a peak computing capability of 27 GFLOPS [See NCUBES89].

Software for programming and efficient use of such machines has yet to catch up to the rapid
pace in the development of computing hardware. The multiprogramming and multitasking nature of
parallel and distributed computation has hindered the tasks of manual synchronization and load balanc-
ing. With the application often breaking up into thousands of smaller pieces, synchronization of the dis-
tributed computation is not feasible unless efficient algorithms for automation are developed to meet the

challenge.

70

In the previous chapters, we introduced Static Computation Graphs (SCGs) and Dynamic Com-
putation Graphs (DCGs) as describing two important classes of scientific computalion: Chapter 3
described efficient synchronization of SCGs in a SESYCCS environment. In this chapter, we wish to
model computation described by Dynamic Computation Graphs, and then propose algorithms for their
efficient synchronization. Most of the material presented in this chapter is new. Closed-form results are

derived for a number of synchronization algorithms, and their performance is compared.

For a variety of reasons, the techniques introduced in Chapter 3 cannot be used for synchronizing
computation that can be described by Dynamic Computation Graphs For instance, a Static Computation
Graph has a temporal variation in concurrency that is a deterministic function of time. On the other
hand, the precedence relations among events in a Dynamic Computation Graph are unknown a priori,
and lookahead in the computation is very poor. The concurrency available in a Dynamic Computation
Graph is thus random in nature. Consequently, algorithms for time-sharing resources lose their
elegance and simplicity. Very few concrete results on the performance analysis of synchronization
schemes have been reported in literature. We provide a number of new analytical results which
describe the behavior of Dynamic Computation Graphs, and present novel aigorithms for their self-

synchronization (i.e synchronization is.not explicitly provided as part of the computation).

Synchronous methods of synchronization based on worst-case analysis pay a high price in
efficiency and the performance of these methods appears to be dependent on the application. These
methods do not scale well with an increasing number of processors in the distributed system. The chal-
lenge, therefore, lies in the development of asynchronous algorithms for automated distributed syn-
chronization of concurrent processors that scale well with the number of processors and yet are easy
and efficient to implement. It is also desired that the synchronization algorithm be capable of utilizing
the knowledge of the behavior (at run-time) of the distributed computation to further bootstrap its per-

formance.

As discussed in Chapter 2, the causality conditions are necessary to ensure that the logical sys-

tem provides results that are correct. This chapter discusses asynchronous synchronization methods for

71

DCGs. DCGs are modeled as a system of self-timed processors communicating to each other via mes-
sages. The stochastic nature of the coupling between local clocks is captured in our model. Detailed

simulations confirm theoretical results quantifying the efficiency of the self-synchronization.

The situation of greatest interest is when the asynchronous clocks progress at different and possi-
bly time-varying rates; the computation being inefficient owing to the high overhead in synchroniza-
tion. Fortunately, as will be shown in later sections, the analysis is tractable for this case.

We will now provide exact results on the performance of asynchronous synchronization mechan-
isms. To clarify our exposition, we will first focus our efforts on an analysis for a logical system that
has two processors cooperating in a distributed computation. The two-processor case is very useful in
introducing the techniques and performance indices that we shall have occasion to use throughout the

remainder of the chapter.

4.1. The Two-Processor Logical System

In a two-processor asynchronous computation there are two clocks, C,! and C?, associated with
processors 1 and 2 respectively. These clocks evolve with real time n according to the set of dynamical
equations given below. As discussed in Chapter 2, processor 1 (2) can communicate with processor 2
(1) at every time step n with a probability of p,, (p2;). The communications in the logical system take
place at a sequence of Bernoulli timesn =T,/ form =1,2,3 -, and i, j € (1,2}. If processor j com-
municates with processor i when Ci > C}, then C} is resynchronized (or reset) to the value CJ. This
resynchronization is assumed to take one real computing unit of time. On the other hand, if the Ci <
Ci then the progress of C} is given by af, also known as the rate of forward computation of i. We
assume that all the simulated times are multiples of some positive quantity €. This ensures that the
clocks move in a countable state space. Thls property will be used in later chapters to establish some

stability results. The dynamics of the local clocks are given by following set of equations.

(C:,n20,i=1,2} is defined as follows,

72

(Tid;m=1,2,3...) are Bernoulli times such that
Probl T, T =k 1=p; (1-py)*" . k=1.2,...

If n#Tfforalljm then, Ci, =C.+aj

i, =min{C} ,C])} +a} I(C]<C;)

i p=Th i) .
Else,if n =TZ,forallm,}j, then, i =Ci+al

Assume also that; a,! > a2 foralln.

B,<a} <B, , for some constants Be Z, (the set of integers).

[Note: The assumption that a,! > a,2 can be relaxed to the case where a,’ > a,2 for all n such that
C,l <C2 The restrictions on the rates, therefore, are very weak and sufficiently general to be widely

applicable.]
4.1.1 Discussion of the Two-Processor Model

We will now offer a qualitative description of self-synchronizing computation on two processors,
1 and 2. Processors 1 and 2 communicate with each other via time-stamped messages. Messages are
time-stamped (in discrete real computing time) with the local simulated times of the transmitting pro-
cessor. The progress of each processor can be depicted graphically by a profile that plots the simulated
computation time on the y axis and the real computer time (wall-clock ticks) on the x axis (See Figure
1). Let us assume that processor 1 coinputes forward with a deterministic rate of A units per computing
time tick, while the corresponding rate for processor 2 is B units per tick. Without loss in generality, let
us assume A > B. Processor 1 can communicate with processor 2 at each time tick with a probability
P12 Likewise, processor 2 can send a time-stamped message to processor 1 after each time tick, with a
probability p,,. Fig.ure 1, describes the progress of the clocks if they did not communicate with each

other. Each processor then progresses in simulated time at its forward computation rate (A or B). The

73

analysis of the two-processor case becomes interesting when the processors are allowed to interact with

O — 0O

each other.

Processor 1 Processor 2
A
. . 7/
Simulated Time %
;
ﬂ,'
/
'/ A
7/
/
;
I”
4
./
/
0/’
/ P
o’ ” i
/ ”
4 .’ -
/
i _-~ B
7/ P
c, P L4
Pt Real Time
s -
=

v

Figure 1: Profile for Two-Processor System

A message can be represented by a vertical line in the profile if we assume that the real time
required for communication is very small. A processor is said to *‘rollback’’ or *‘resynchronize’” from
time T, to time T, when it is at local s1mulated time T, and receives a message time-stamped T, and
T, > T,. The processor, therefore, has to reset its own local clock from T, to T,. We further assume
that this resynchronization takes a fixed amount of real computing time to complete (say, one clock
tick). The processor can then resume forward computation. (Note that all messages do not trigger resyn-

chronization). A typical execution profile is given in Figure 2.

74

Rollback in 1=a
Rollback in 2=b

./’
Simulated Time p v
i ” 1 d <
[G -
Lz __2
a b \
GT
Real Time

L}

Figure 2: Typical Profile for Asynchronous Computation

In the scenario illustrated in Figure 2, processors 1 and 2 begin computing forward with rates A

and B respectively, and at some point in time processor 2 triggers a rollback in Processor 1 (Case 1).

Processor 1 then resynchronizes to the simulated time of processor 2, and then spends one computing

time unit recovering from the resynchronization. Two possible events can occur at this point. In the

first, processor 1 triggers a rollback in processor 2 with a probability p,, (Case 2), and in the second,

processor 2 resynchronizes processor 1 (Case 3) again. These cases are illustrated in Figure 3.

Rollback in 1=a

Rollback in 2=5b
Case 1 Case 3 Case 2
d 4
’/
Simulated Time e
P ,/',
e [d P
P |(.'/_ __ /
a b \
’ GT
Real iTime

v

Figure 3: Possible State Transitions.

75

In the ideal case, local clocks on both processors march ahead at the equal rates, A = B, and the
rate of growth of the computation achieves its maximum value, B simulated time units per real comput-

ing time unit.

4.1.2 Associated Markov Chain Representation

The dynamical system represented by equations in Section 4.1 can now be represented by a Mar-
kov chain. If we assume that a,! is at least twice as large as a,2, it can be easily shown that the discrete-
time Markov chain representation of the two-processor asynchronous computation would be given by
Figure 4. If the system is in state S; = 1(2), this implies that processor 1(2) is ahead in local time, and
received messages can induce a resynchronization or rollback if C; is ahead of C} (measured in simu-

lated time). Let the invariant probabilities of states S and S ; be denoted by m(1) and 7(2) respectively.

I-py . Pa

Figure 4: Two-Processor System

The balance equations are,

n(1) = (1-py) - (1) + =(2)
n(2) =7n(1) - pn

Solving these equations, one finds

(1) = 1 . @)= P2

l+py 1+py

76

The Global Time (GT,,) is defined to be the smallest local time (at time step n) in the entire dis-
tributed system. It is the time up to which the distributed computation can be guaranteed correct. In

im GT,
other words, GT, = min{C,! , C,2} . The average rate of growth of GT,, & = lim — An analyti-
n—oo

cal expression for o, after N computing time ticks can be derived as follows:

o N =(-pyy) - (1) - BN + (1-py5) - n(2) - 2BN
Hence,

0= (1-p2) +p (-py)
(14p2y) 2 (1+py)

a, therefore, provides an useful estimate of the progress of the self-synchronizing computation.

The progress of the distributed computation depends on the probabilities of interaction and also on the
rates of the individual processors.

The fact that the multiplier for the second term on the right hand side of the expression above is
",28 should be obvious from Figures 3 and 4. If A were less than 2B, the value of & would be an upper
bound, and not an equality. Note also that o will be affected only if the slower processor is resynchron-
ized. We will sometimes have occasion to refer to o as the *“Wolf Coefficient,” with regards to its use

in an algorithm for distributed synchronization, Wolf, to be discussed in Chapter 6.

We will now try to interpret our analytical results to get further insight into the dynamics of asyn-
chronous computation. For this purpose, the clock model discussed in this section was simulated to
reveal the transient nature of the asynchronous computation (our analysis in earlier sections derives

steady-state values).

In Figure 5, we study the progress of asynchronous computation, when the probabilities p,, and
po, are given the values 0.1 and 0.8 for Case 1, and 0.7 and 0.8 for Case 2, respectively. The values of
a! and a2 are 1 and 3 respectively. Analytical values for the Wolf Coefficient, o, are calculated (using
the expressions derived above) to be 0.911 and 0.377 respectively. The former coefficient is much
larger because the probabilities of interaction are small. In Case 1 the system spends a smaller amount

of real computing time recovering from resynchronization. In the second case, however, the communi-

77

cations between processors are frequent, and the Wolf Coefficient is penalized as a result. Observing
the dynamics in the value of the Wolf Coefficient in Figure S, we note that the value settles down to its

steady state value quite early in the computation.

Figure 6, shows the dynamics of the clocks on the processors themselves for the two cases. The
slower processor 2 frequently sends messages to processr 1 in the course of the computation. Most of
these messages force processor 1 to resynchronize. The average global growth is, however, not penal-
ized unless p,, is large. This is because of the fact that if p,, is small, then processor 1 would then
overtake processor 2 leaving o unaffected. On the other hand, if p,, were large (as in Case 2), the pro-
gress of the slow processor is further impeded, as shown in the Figure 6, and the coefficient o is
affected significantly.

In Figure 7, we present the results of another interesting experiment, where the two cases of
asynchronous computation have varying communication to computation ratios. In Case 1, communica-
tions between processors are infrequent, and in Case 2 communications are relatively frequent. As
expected, the former case progresses faster. We also note that the memory requirements are much
larger as well. The intuitive explanation for this is as follows. If the processors communciate infre-
quently with each other they tend to drift apart further before resynchronization. Processors in this

environment needs correspondingly larger buffer sizes to store the state information.

78

1.0

Two Processor System
09 L

08 | Case 1

0.7 }

0.6

0.5

f)
04 ! !
R \ Case 2
]
| : \ ;‘
] .

0.3
N
b
0.2
0.1 |
Time Steps
00 4 88 132 176 220 264 308 352 396

Figure 5

Case 1: py2=0.1,p5, =08
Case2:pp= 0.7, Pau= 0.8

In this figure o is plotted against time steps. In Case 1, o was analytically calculated to be
0.911, correspondingly in Case 2 it was 0 3717. As observed from the figure, o rapidly settles
to its asymptotlc value. The values of a,! and a? were chosen to be 3 and 1 respectively. If
a,) =a?2, then a.= 1 if the processors 1 and 2 both had started at the same initial clock time.
Once out of synchrony, however, the value of a drops down to 0.64.

180~

Simulated Time
140-

1

120

101

61

41r

Two Processor System

AAAAAA

AL

Real Time

N

Case l:plz =0.1, P = 0.8
Case 2: Pin= 0.7,py = 0.8

98 112

126

140 148

79

This figure describes the evolution of the local clock times and the global time (GT) of the
two-processor system. Both Case 1 and Case 2 have about the same number of messages
sent from the slow to the fast processor, however in Case 2 p,, is larger, contributing to a
significant drop in the rate of growth. The memory required on each processor is roughly
the same for both cases. Frequent communications imply smaller drift between local clock.

3901

357

2931

260('

228

1951

163

131

33

Two Processor System

Case 1

A

24 48 72 9% 120 144 168 192 216 240 264 288
Figure 7

Casel:p3= 03, Pu= 0.3
Case 2: Pi2= 0.7, Pa= 0.7

80

This figure studies the two-processor synchronization under two communication scenarios.
In Case 1, with “infrequent communications” the rate of progress the memory require-
ments were proportionally higher. In Case 2, with ‘‘frequent communications,” the pro-
gress is slow, however, the memory requirements are also smaller. We believe this
memory-speed tradeoff is fundamental to asynchronous distributed systems. Asynchronous
communications ensure that processors need mot wait to communicate, and Bernoulli
interactions ensure that the buffer sizes remain bounded.

81
4.2. Computation in Presence of Communication Delay

Let us consider once again the model of an asynchronous distributed computation on two proces-

sors, as developed in Section 4.1. Our present objective is to integrate the effect of communication

-delay into our model for the dynamics of the local clocks. Let us also assume that the communication

delay in the transmission of the message from processor 1 to processor 2 is @ real time units, and b for
a message on the return path. Without loss of generality, let us assume that a is less than one computing

time tick and b is between one and two computing time ticks. Other cases can be handled analogously.

The dynamics of the self-synchronized system will be given by the following set of equations. (It

is assumed that there are no messages in transit when the system is initialized.)

.. Cnlﬂ =Cn1 4 aul
If »#TE forallm ,j,i, then,
" J an-o-l =an+au2

'C.ZH = an + auz
Ifn =Ty ,{C2; =min(C,},C%) +a2I(CE, <C,)

icni-c-l = Cnl + anl

Cos =Cy +a,
Ifn= Tn%‘ »] Cnl+2 = Cnl-l-l + anl+l
scnl+3 = min{cnz ’ Cnl+2} + anl I [Cnl+2 < Cnll

1-py2

1-pa
Figure 5: Two-Processor System with Communication Delay

82

Equations for the analysis of systems with arbitrary delays can be constructed in a similar
manner. We will pursue the analysis for one special and interesting case, where we assume that both
processor 1 and processor 2 progress at the same rate, al=a2=B for all n. We also assume that a
and b are both less than ons computing time tick. We believe that these restrictions will isolate the

effect of communication delays on the progress of the computation.

4.2.1. Markov Chain Representation of Communication Delay

4

The discrete-time Markov chain now consists of 4 states. The effect of a message is hidden for
one computing time dck (while the message is in transit). This results in ‘two additional states. The sys-
tem is in state S, (S3) when processor 1 (2) is ahead. State S, 1epresents the Case where processor 2
sends a message to processor 1 when C,! > C2. 'l‘lns message is, however, not read until the next com-
puting time unit. At that point, processor 2 gets ahead and will remain ahead of processor 1 untl it

receives a message from processor 1 (with probability p;,). The Markov chain is shown in Figure §.
The balance equations are

7(1) = (1-p2)n(1) + n(4) , n(2)=n(L)py
%(3) = (1-p1)n(3) + 7(2) , n(4)=nB3)p,2
Solving for the invariant probabilities,

1
()=
142p12-py—P —P12P
Pa
n(2)=
1+2p12—pn—Ph — P1P A
1-py—-p3
=)= 2 . 2
1+2p13—pa—Pa —P12P2
1- —n2
7(3) = Pa—P2a

(P11 +2p 12— P2 —PH —P12PH)
The coefficient o will now be given by

o = (1-2n(2) —2n(4)) B

We will close this section with a pertinent observation. Finite communication delay between pro-

cessors can also be incorporated quite easily into the model for the clock dynamics in asynchronous

83

systems. The effect of the delay is to further reduce the Wolf coefficient.

4.3. The Multiple Processor Logical System

In the previous sections, we had analyzed distributed asynchronous computation on two proces-
sors. Our analysis was rewarding for a number of reasons. The simplicity and generality of the model
was elegantly illustrated by the two-processor system. The effect of xgsynchronization can be described
by the associated Markov chain balance equations, and the coefficient o provides a closed-form

description of the progress of asynchronous computation. This is a new result.

It could be argued that asynchronous distributed computation can only progress as fast as the
slowest processor in the system. This is incorrect. The progress of asynchronous computation depends
both on the rates of the faster and the slower processors and also on the probabilities of their interac-
tioq. There is one interesting fringe benefit, garbage collection algorithms become simple to implement.
As the system converges very fast to the rate a, each processar (especially the faster one) can wipe its
memory clean of any value below that indicated by the Wolf Coefficient for that system. One could
argue further that the probabilities of interaction are not known a priori. However, this is not a problem
(when implementing a distributed system) as the rate can be easily measured locally once the computa-
tion proceeds. The convergence to asymptotic rate of growth is very quick (this was verified in simula-

tion results).

Our interest now lies in the analysis of an asynchronous computation mapped onto a system with
a number of processors. Typically, multicomputing involves the synchronization of a few hundred pro-
cessors, and performance can be very poor if a synchronization algorithm does not scale gracefully.
Poor efficiency results when some processors are able to compute forward with a greater speed than
other processors. A slower processor is one where the local state update chews up a significant portion
of processor cycles. A faster processor is usually one with a small amount of state in'format.ion at each

instant.

Let us once again examine a case where synchronization can do the most good. This is the

“‘unbalanced’’ system, where fast and slow asynchronous processors coexist in the distributed system.

Section 4.3.1 introduces a new algorithm for synchronization. Here, the processors are classified
into one of two sets; fast or slow. Whenever a slow processor communicates with a faster processor, all
the faster processors are resynchronized. The idea then is to reduce the possibility of a cascade of
resynchronizations that can occur. The distinction between fast and slow is not restrictive. A slow pro-
cessor can change its dynamics and join the set of faster processors and vice versa. In an inefficient
implementation of a logical system there are processors that could belong to either class. It is not neces-
sary that a particular processor remain in either of them for the entire course of the computation. We
introduce without preamble the notion of W(j , n ,-'), also known as the sphere of influence of processor
j. For the purposes of the next section, the reader is requested to assume that this sphere of influence
denotes a set of processors that need to be resynchronized whenever j is resynchronized. This is done
to ensure that the causality conditions of Chapter 2 are not violated. We will make this notion precise in

later sections.
4.3.1. Concurrent Resynchronization

(Ci,i=1,2,..., N} are defined as follows,

(Tiy,m=1,2,3...] are Bernoulli times such that

Prob [TES, - T =kl=p;(1-p;))** . k=1,2,3...
Whenn #TY, Ci,, =Ci +a}
The @} are partially ordered as follows,

a,?.a,,’,.... ,{">a,,l ,foralln
Let(2,3,4,...,N)eF
and(1}eS

We can now describe the dynamics of the computation when processors within the “‘fast set’” F
interact between themselves, and when processors in the *‘slow set’’ § interact with the processors in F

and vice versa. Detailed explanations follow the equations.

85

The probability that one or more of the faster processors communicate with a slower processor is
given by ps. pr gives the probability that the slow processor sends a message to one of the faster pro-

CESSOrS.

Case 1: Fast Processors Interact within F

Crv =min(C,.Cr) +az keW(n)U j

@ e i , o
Fori,jeF,ifn=T,7 , Ci,, =Ci+al

Let times T2 *F and TS be defined as follows,
Prob [To:f —T3-F=kl=pr(l-pe)*~.k=1,2,...
where pp=1- I
JeF]
and
Prob [TF3) — TS =k]=ps(1-ps)*~ .,k =1,2,...

where pg = 1——j2F(1 -pj1)

Case 2: Slow Processor Interacts with Fast Processors

Then forieS,and keF,

.- Ck,, =min(C:,C¥) +a, - 1{CE<C!} ,keF
Ifﬂ =Tm 3y C;+1=C;+a;

Case 3: Fast Processors Interact with Slow Processor

Ci,, =min{(C:.C¥ +a, - 1{(Ci<CF) ,keF

k. _ ~k k
Cn+l _Cn +an

If n=TE",

In Case 1, we discuss the interactions among the “‘fast’’ processors themselves. When a proces-

sor i € F, communicates with another processor j € F, the processor j rollsback only if it is ahead in

86

simulated time. In case it does rollback, it also resynchronizes other processors with whom it had com-
municated in the recent past, while its local clock was above that of processor i. These processors
which were indirectly affected by the message from i to j, are said to belong to the sphere of influence,
w({ ,n;), of processor j. We will discuss the effect of W (j ,') on the distributed system in later sec-
tions. For now, suffice it to say that the fast processors recover from messages and recompute forward

without losing any real time in the process.

Case 2 describes the dynamics of the system when a ‘‘slow’’ processor communicates with a
““fast’” processor. When a slow processor i sends a message with a lower time stamp to processor
keF , then the processor F rollsback to the time stamp of the message. In addition, all other processors
in the set F concurrently rollback to the time stamp of the message sent from processor i. It can be
trivially shown that the computation will still be correct. Our objective now would to quantify the per-

formance of such a synchronization method.

A qualitative description of the performance would be useful in arriving at a good model for the
state transitions. The dynamics of the system can again be described by two states. In state Sg, all the
processors in set F are ahead (in local times) of the processor 1 in §. In state Sg, processor 1 in the set
S, is ahead of all the processors in the set F . When no communication occurs between the processors in
the sets F and S, the system is in the state Sg. Whenever, communications occur among the processors
in the set F, the system is still in the state Sg, as very little time is spent on the resynchronization (if
any). The system jumps from state Sy to state Sg, whenever there is a communication from § to F. At
the next step, the system again jumps back to the state Sg if al for jeF are at least twice as large as a)
(if this assumption is relaxed then the bounds derived are upper bounds on the performance). The Glo-
bal Time in the system is not affected if there were no communication from processors in set F to the
processor in set S when the system is in state S . If there is indeed such a message as in Case 3 above,
then the Global Time is penalized. The values of pp and py, therefore, are both responsible for deter-
mining the rate of progress of the distributed computation. However, interactions within the processors

in the set F themselves have little effect (if any) on the progress. The performance analysis would have

87

the advantage that it is not overly sensitive to the individual communication probabilities, but instead
depends on some function of their values. The indices of performances would then also be able to indi-
cate if physical processes need be lumped together into one logical process if they communicate too
often in relation to the rest of the system. We will discuss this issue later, in the context of distributed

simulation of dynamical discrete event systems.

4.3.2. Associated Markov Chain Representation

In this section, we will analyze the performance of concurrent rollbacks as a method of synchron-
ization in distributed systems. The discrete time Markov chain is shown in Figure 9, with two states.
The transition probabilities are pr and ps. The effect of pg is to reduce growth of the Global Time.

The analysis and the balance equations are very similar to those of the two-processor case.

l-pF Dr

Figure 9: State Representation for Concurrent Resynchronizations

The balance equations are,

(F)=(1-pp)m(F)+n(S)
7(S)=pr - 7(F).
Solving the equations together with the fact that n(F) + n(S) = 1 we have

- PF
1+pp ’
The Wolf Coefficient o, which estimates the average growth of the Global Time GT, is given by

1:(F)=ﬁ . T(S)

88

P

a, =

1- 1-

pr g, PrA=ps)
l+p’.-. 1+pg '
where ! =B for all n. Similar bounds can be derived for other ranges of a,. If the faster processors

*

are not at least twice as fast, o, the upper bound on the attainable performance.

Example 1: Consider the three-processor system shown in Figure 10, where processors 1, 2, and 3
cooperate in an optimistic computation. Let 1 be the slowest processor in set S with rate of forward
computation being R ,, the rates of 2 and 3 in set F are R, and R respectively. After each time step, the
processors can communicate with each other with probabilities given by py; (where i is the transmitting
processor and j is the receiving processor). Consider the profile of the computation as shown in Figure
2. The forward computation time (or simulated time) is plotted against the real computing time in wall
clock ticks. Processor 1 sends a message to Processor 2 at real time ¢,. This message is (instantane-
ously) received by Processor 2 which rolle hack to L (1). In our aggressive protocol, Processor 3 also
rolls back its local clock to L (1). At this point both Processors 2 and 3 rollback for one time unit, while
Processor 1 moves ahead in simulated time. At this stage either of the Processors 2 or 3 in F could
send a message to roll back Processor 1. The typical profile illustrates this case. The Global Time (GT)

of this system follows the trajectory given by the bold line.

89

Simulated Time

v

Computing time in clock ticks

Figure 10: Typical Profile for Concurrent Resynchronization

To study the performance of concurrent resynchronizations further, we present the results of a
simulation of the dynamics of the clocks in a four-processor system (See Figure 11). The four proces-
sors have rates, @) =1,42=2,a. =4 and a,} = 8. The probabilities of interaction in Case 1, are low (
pi; =03 for all i , j). In Case 2, the probabilties of interaction are relatively higher (p; = 0.7 for all
i ,j). Analogous to the two processor case, Case 1 with fewer communciations between processors
progresses much faster than the case where processors communicate frequently. The buffer sizes in
Case 1 are also larger. The Wolf Coefficients, piotted in Figure 12, also show that frequent communica-

tions penalize forward growth.

To show that the progress of the computation is quite sensitive to the rate of growth of the
slowest processor Let us examine Figure 13. Here the slowest processor in the system was boosted
from a forward computation rate of 1 to 3 simulated time units per computing time unit. The impulsive

increase in the forward computation is reflected in the the progress of the overall computation itself.

15
' g
Four Processor System l: : il
13% Concurrent Resynchronizations ‘ “ i
I I Ay
U f
m- i
Simulated Time ‘i’i ;?’ .' “
105" -ii{‘ "‘~ ;‘ \,l.
% % | i b
i i RV Case 1
e
h i
if | Wy
il dull/
61F ‘L J
A
o ! H Case 2
HER '
! i 8 i sttt
31F ! 'P ’ : 3 ,,Imm zl’!t}
i ;‘ ,!l :,1" é 1418 “muuu mm)““
! ; iR E ! LAt)6 i)hu
16 ‘3 | ; 4 M T Lt ‘ . “";‘.J?‘_“t* 3 00 AN —_—
!lf Fﬁ Ii “ .m ‘ }mnmmJ Real Time
i NHI« (¥] A] vk
10 30 60 90 120. 150 180 210 240 270 299

Figure 11

Case 1: Infrequent Communications.
Case 2: Frequent Communications.

90

This simulation extends the performance analysis to the case of multiple processors. Fre-
quent communications again penalize progress. It may be more efficient to use the results
of the simulation to ‘“‘lump’’ processes together to reduce the communications between
processes. The memory-time tradeoff is again observed. The performance of concurrent

synchronizations is illustrated in this plot.

91

Four Processor System
09 I Wolf Coefficient

0.8

1
07 | Case

06 |

0.5

04 |

03 |
0.2

01 L Case 2
1
:_‘4 Computing Time —_

0 29 58 87 116 145 174 203 232 261 290
Figure 12

Case 1: Infrequent Communications.
Case 2: Frequent Communications.

The rate of growth index, or the Wolf Coefficient, a,, is studied for concurrent resynchroni-
zations in the figure above. The plot confirms the conclusions drawn in Sections 3 and 4.
The analytical value of the coefficient is useful in designing efficient garbage collection algo-
rithms. The overhead in concurrent resynchronization lies in the fact that in a distributed
system consisting of a few thousand processors, broadcast can be costly unless special
hardware is provided.

Multiple Processor System

450 Time varying rates

400 Simulated Time

350- T

3¢

251

201

it
101
51f _—
l0 39 78 117 156 195 234 351 390
Figure 13

92

The progress of concurrent resynchronizations is sensitive to the rate of the slowest proces-
sor. In this example, the slowest processor was assigned a faster rate after time :=180. The

immediate change in the profile is reflected in the plot.

93

Synchronization using concurrent rollbacks has the advantage that the processes are resynchron-
ized very often, whenever a slow processor communicates with a fast processor. The memory require-
ments for this algorithm will be minimal. The overhead manifests itself in the broadcast mechanism
needed to communicate with all the fast processors. If the distributed system consists of a few hundred
processors, this overhead can be significant. Broadcast by each processor to a few select other proces-

sors in the system will find favor from the view point of efficiency.

We will now consider another synchronization algorithm. In this algorithm, processors communi-
cate with each other in the same pattern as before, but with one important difference. There is no broad-
cast, and communication between processors results in the resynchronization if the message is received
by a processor with a larger local time. Therefore, it is only the receiving processor that could rollback.
If the receiving processor had communicated intermediate results to other processors, (which it now
finds were erroneous), those processors are then rolled back to consistent states in subsequent time
steps. In response to a single message, a cascade of secondary synchronizations could result. Exactly
how this affects performance is the subject of the next section. We will then have the opportunity to
show that Successive Resynchronization, often performs poorly with respect to Concurrent Resyn-
chronizations. In addition, we will simplify concurrent rollbacks to introduce another efficient rollback

algorithm [See MaWaMe88), Wolf, which boosts the efficiency of implementation further.

4.4. Successive Resynchronization

In this section, we will propose and examine another algorithm for the synchronization of asyn-
chronous distributed computing on multiple processors. The effect of propagation of error on the pro-

gress of distributed computation is quantified.

At this point in our discussion, let us reexamine our premises. We have assumed that rollback (or
resynchronization) takes exactly one time step. This is a conservative estimate of the time required to
resynchronize. A realistic assumption is that the time required to resynchronize is proportiohal to the

magnitude of the time rolled back in local times. This would imply that the performance bounds we

94

derive here are upper bounds on the performance. A successive synchronization scheme, such as one
which will be discussed in this section will be penalized even further, for reasons that shall soon be

apparent.

Let us now define the notion of a Valid Error Path, V;;, from processor i to processor j. The
length of a valid error path, 1V;; | is defined as an integer measuring the number of processors in the
valid error path. A valid error path, V}}** is defined to exist between processors i and j iff there is a
sequence of times T:* , T/ T such that n, ST S TP/ < . STV <n, for some x , y ..,z and for

some processors k , ! ,., n. We further assume that
Prob (1V**T\ =n)} =p§ ' (1-pw), pwel0,11,if n <T

T-1 .
else, Prob (VI =n)=1- T (1-py) - pw .ifn=T
i=0

Turihcrmorc, if jeF then if T,)/ is the real time when processor 1€ S communicates with j, then let
n=n; be the smallest time such that Ci» 2Cv . Thesetof all k such that, V},, wherea = n; Tl
is a valid error path is known as the Sphere of Influence, W (j TV - n;).

The Sphere of Influence can be determined by a number of methods. A conservative approach
would be to use minimum communication times and execution times to determine the maximum range
of propagation of the error message from node j. Altematively, it could be iteratively determined at run
time, using a suitable dynamic programming algorithm (i.e. Bellman-Ford Algorithm, [BeTs89]), where
each processor routinely determines its own Sphere of Influence using marker messages. The Sphere of
Influence can then be stored in the form of a look-up table, and used in an algorithm called the Wollf,
which will be discussed in the next chapter. The probability py is also sometimes called the Send Fac-

tor by some researchers (See [AtSe88]).

Having introduced the notion of a sphere of influence, it is convenient to introduce the notion of
radius of the sphere of influence. A node k in the sphere of influence of node j, is defined to be at a
radius of influence of rj, iff at least r;—1 processors are in between processors j and k for any valid

error path. Here R denotes the maximum radius of the sphere of influence.

95

Whatever the nature of the computation, the effect of the sphere of influence on the computation
is substantial. A succession of rollbacks can arise as a result of a single message from the slow proces-
sor to one of the faster processors. The effect of the rollback of the faster processors temporarily
reduces the slope of the Global Time, GT,,. The average rate of growth oy, is only reduced if one of the
faster processors sends a message to a slower processor (which is now ahead) during resynchronization.
Since there are a number of likely opportunities for a faster processor to send a message to a slower
processor especially when the sphere of influence is large, the net effect on the coefficient a is large if
Po is large. Here p{, is defined as the probability processor j can send a message to the slow processor
at each time step. For the sake of simplicity, let us assume that pf =p =-=- = Po implying that
each fast processor is equaily likely to send a message to the slower processor. The faster processor can

only affect the slower processor if the slower processor is ahead.

Let us now examine the dynamics of the distributed asynchronous computation in this frame-

work.

Dynamical Equations

{Ci,i=1,2,..., N} isdefined as follows,
(T .,m=1,2,3,...] are Bemoulli times such that

Prob[Th), - Ti/=kl=p;(1-p;) " k=1,2,3...
Whenn 2T4, Ci,, =Ci +a}
The a! are partially ordered as follows,

N

atal...., a¥>al foralln

x} =00, forallj ,n.

(Ciy =min(C/, C) +ai 1(CI < Ci)

Xsiz =min(C} ,C}} forallk s .t . rj=1
ForieS ,jeF ,ifn=T§ ,{- - .

Xaser =min{CJ,Ci} ,foralll s .t ry =R

Ciu=Ci+al

.

96

Cin =min{C{,CJ}+af I(C} <C])

. : ’ - j!i . H H
ForieS ,jeF , ifn=TL" , Ci, =Ci+al.

C:-l-l = min{c:ncf) + a: ’ ke W(j,'l;) U j

. . £ Tid - .)
Fori,jeF,ifn =T,/ , Ciy=Ci+a

Foralli ,j ,n #TiJ ,{c,,,,,=min(c:; X} +al

The dummy states x{, j€F represent the memory in the system, when a single rollback can cause

a succession of rollbacks in the system, keeping the GT, temporarily at a slope zero.

Once again, the condition that a/ for jeF are greater than a,! for all n can be relaxed further to

the case where this inequality holds only for those n, where C < C,.
4.4.1. Markov Representation of Successive Resynchronization

We will now analyze the performance of the asynchronous system with successive resynchroni-
zations. We will simplify our model further, by letting py alone represent the effects of the sphere of
influence (tantamount to assuming there are a very large number, possibly infinite, number of proces-
sors in the system). This assumption implies that we derive a conservative upper bound on the progress
of the distributed computation. The analysis is much simpler, and the bound will be accurate if py is

small. This is also the case of most interest.

If a slow processor has infrequent communications with the faster processors, a very long cas-
cade (possibly infinite!) of successive resynchronizations can result. Fortunately, in a real system, the

number of resynchronizations would be restricted to the number of processors in the system.

The Markov representation of the system consists once again of two states. In state Sy all the
“fast’” processors are ahead (in local times) of the *‘slow’* processor. In state S, the *‘slow’’ proces-

sor is at least as large a local time as the local times on one or more of the ““faster’” processors. In state

97

Ss slope of the global time is zero. The system remains in state Sg with a probability py at each time

step. This Markov chain is described in Figure 14.

1_pF Dr

Figure 14: Successive Resynchronizations

The balance equations for this system are:

n(F) - (1-pg) + n(S) - (1-py) ==(F)
(S)=7n(S) " pw +n(F) pr.

The invariant probabilities will then be

Pr
1_
M) = —2 | p(F)= —L
1+ Pr 1+ Pr
l-py 1-pw

The Wolf Coefficient, o, is then given by

L ST(F) B +n(S) - (1-py) - 2B.

The effect of the communications between the faster processors is captured by pw, while p,
describes the effect on a,. Let us now look at an example of a five-processor system whose profile is
depicted in Figure 15. From the examination of Figure 15, one can easily verify that a, is indeed an
upper bound. Here o, would be accurate for small values of py, or alternatively, large values of pg.

Note o, can be larger than 1.

98

|]
Simulated Time 5 / / 51 P
'y * } } V. a ,_. i !
4 4 4 V4 AmalgticalGT |
7 SV]
3 / 3 / i
» / 7 R _1’ : x
‘ I'd
2 ¢ 1i
» / = .l i(// !
2 ’ X
[, / \ ‘;T A&
1 , ~
> ?;/7 /1/ v
z« :
Radius of ln;uence R =4)
Real Time . _._._._._.
< —t--t+tr--t+-1--t+-t-r-t-t--t—t+t-t—t+-t+-t
' a b ¢ d f l | \
A — 2 T
i 5 H .
Simulated [Tim} sol /1 - | BrdlyucalGT
4 4 // | x
a / » i1

1 .,.‘ y 4 /
e .~
— 5

Radius of Influence R =4

Figure 15: a, is an upper bound.

In this figure we describe asynchronous computation using SR on five processors. 1 is the slowest
processor, and processors 2,3,4, 5 are in its sphere of influence. x and y are the true estimates

of the global time at the end of the computation for two possible cases. z is the upper bound
predicted in our analysis.

99

In Figure 15, we reconstruct two of a number of possible cases which can occur in the case of Succes-
sive Resynchronizations. In every case, however, the analytical expression derived in the text is an
upper bound. To show that this is the case, we examine Case 1 above, where a set of five processors
cooperate in an asynchronous computation. Processor 1 resynchronizes at point f in real time, after the
entire sphere of influence has resynchronized. The actual GT, follows the trajectory shown in the
figure. However, the analytically derived GT estimates the growth in simulated time as z, as opposed to

actual growth of x reached.

In the second plot in Figure 15, another possible sequence of events is traced. Here, Processor 1
resynchronizes early in the computation, at point b itself. The actual GT reaches y which, though less
than z is closer to it than x. Therefore, it should be clear that our upper bound is accurate for cases of

small py, and large po.

Example 2: Consider again a three processor system with Processors 1, 2 and 3. A typical execution
profile is shown in Figure 16. Processor 1 sends a message to Processor 2 at time ¢, and local time L (1),
causing Processor 2 to rollback from L (2) to L (1). However, Processor 2 had earlier communicated
with Processor 3 in the interval L (2) — L (1). In the general model introduced in the earlier part of the
section, this interaction was captured by a probability py . As seen in the profile, the Processor 2 first
rollsback and then Processor 2 rolls back. Note that this is in contrast to the case of Example 1, where
both 2 and 3 rolled back concurrently. The slope of the Global Time (GT) remains zero for a longer
period which could lead to a smallell growth in forward computation, because each of these faster pro-
cessors could resynchronize the slower processor (with probability p,). However, in the case of Exam-
ple 1, since more processors roll back concurrently, there is a greater likelihood that one of them could
resynchronize Processor 1 (implying ps 2 pg), resulting in a reduction in the forward rate of computa-

tion in the next time step.

100

Simulated Time
L@
,"... ‘ 3 “ - !
- R | P
3 5 L7 ' 4R

o | Ll A

L) I A 4 F
’ =~ X 6r

Computing time in clock ticks
Figure 16: Profile for Successive Resynchronizations

We will now examine the results of the simulation of the clock dynamics of a four-processor sys-
tem synchronized using Successive Resynchronizations. Here, two new faciors come inw piay. The first
is the probability, py , that a faster processor communicates with other processors in the system before
being resynchronized by the slower processor. The second, p,, is the probability that models the fact
that the fast processors can communicate with the slower processor while recovering from resynchroni-
zation.

In Figure 17, we study the dynamics of two cases where py is kept constant, and the value of pg
is varied. With a larger p,, the probability that the slowest processor is resynchronized (thus penalizing
‘the average rate of growth) is enhanced, and the performance of Case 2 illustrates this. In Case 1, the
performance is better. The buffer sizes are much larger than the case of Concurrent Resynchroniza-
tions because the processors communciate with each other (or resynchronize) less frequently. The
smaller values of the Wolf Coefficients in Figure 18, also confirm our analytical results, that CR

requires less memory that SR and also progresses much faster.

Figure 19 illustrates another important result. The fact that py, is large is not suffcient to penalize

the o It is necessary that p, be large too.

101

149F

Four Processor System
Successive Synchronizations

75
t
|
50 t
g
e
25
0 |
0 294

Figure 17

This simulation studies the effect of p, on two runs of Successive Resynchronization on a
system with 4 processors. The value of py, was kept constant at 0.7, while p, was 0.4 in Case
1, and in Case 2 p, was kept at 0.8. Note the slower progress of the distributed computation
in Case 2. Both computations run slower than the previous examples with Concurrent
Resynchronizations.

102

Successive Synchronizations
_ Four Processor System

10 L
09 L I

08 L Simulated Time

06 |

0.2
W Case 2
s —]
0.1 .'\:\:JI'\'
N Real Time —_—
o0 41 82 123 164 205 246 287 328 369 410 451 492
Figure 18

The observed values of o are plotted for the case of distributed computation with successive
resynchronizations, for two different cases. A higher value of p, in Case 2,
(®¢=0.7,pw =0.7) penalizes the performance of this case relative to Case 1, (
Po=04,py =0.7).

103

29 !
'I
|

27 Successive Resynchronizations '{ :{I ;’:
25 Four Processor System " ,'l,f I

! ! lE, :l

i fi 1 4L
23 iy Mk f

i g
2 . i o

Simulated Time) ". "}m
18 Lok
jl " !,"l 1o
:é"
16 i . ' ‘i:v."f‘r
i :}'-'il”‘ y
N
147 | ik
RpAE
12¢ / ‘ﬂ'-i‘?'%
W o
10§ i 18
'{ El,: b
sar TIRY =01, py =07
i ," i s Po=%5.2» Pw =0.
A i g R
® i 59‘%]"
! :i ."."
210, gr .
VA real Time —_

(b 21 42 63 84 105 126 147 168 189 210 231 252 273 294

Figure 19

This simulations shows that a large py, can affect GT, but not o, unless p, is large as well.

104

Comparing Successive Resynchronizations with Concurrent Resynchronizations we have
from the analytical expressions for the Wolf Coefficient, the Figures 20 and 21, where their rela-
tive values are plotted.

Figure 22 and 23 illustrate the performance of SR and CR under similar computation to

communication ratios. It is seen that CR outperforms SR both in terms of rate of forward progress

as well as in the terms of buffer sizes (as these are proportional to drift in the clocks.)

0.9
0.8
0.7
0.6

0.5
0.4

0.3
0.2
0.1

0.9

0.7

0.5

0.3

0.1

Po=0.85,pr =0.65,pg =0.5

Pw

0

0.5 1.0

Figure 20: Comparison of Wolf Coefficients

pr=0.65, ps =0.30, py =0.50

Po
—_—

1] 1 1

0.55

0.65 0.75 0.85

Figure 21: Comparison of Wolf Coefficients

105

704

106

Comparison of Methods
58(0
Simulated Time .
52 y
46(F 1 hus ‘
=
40 . Concurrent Synchronization
¥ 0 e ”
’.
28 A T 11
fdiy
Al /1 {} A
.._4"‘] A l IJ‘A AR /; lb i
22 M W % ‘ A”l sl
e L B
/ / l’.\ / 1 ’ .
] fpul
16(.! . E o i"" L . e
A i, }h_,,::,, SR Successive Synchromzanons
kAR Real Time ’

1¢ 39 78 117 156 195 234 2713 312 351 390

Figure 22

This study shows the performance of two synchronization algorithms, under identical
conditions. The probabilities of communications were the same for the two cases, and
the forward computation rates were also matched. In the case of ““Successive Resyn-
chronization,”” py or the SendFactor was assumed to be 0.7. Note also the smaller
memory requirements for the case of concurrent synchronizations.

107

Comparison of Synchronization Methods

10 }

| a
08 Concurrent Synchronizations
0.6

0'4 K MNMMN:‘W

S
| Successive Synchronizations
02
- Real Time
>
% 41 82 123 164 205 246 287 328 369 410 451 492
Figure 23 '

The Wolf Coefficients are compared for CR and SR under identical conditions. Per-
formance of CR is clearly superior.

4.5. Summary

In this chapter, a new model has been proposed 'for the analysis of synchronization
mechanisms in self-synchronizing concurrent computing systems (SESYCCS). Such systems are
important in the efficient solution of large scale distributed computation that can be described by

Dynamic Computation Graphs.

In our study of the two-processor logical system, we have derived an analytical estimate of

the progress of distributed computation. The rate of growth of Global Time is not the rate of

108

growth of the slowest processor in the system, but has been shown to depend on both the rates of
the two processors as well as the probabilities of their interaction. Frequent communications
between processors result in a slower growth in the computation. The Wolf Coefficient, o, which
represents the average growth in the Global Time (GT,) in addition to describing the efficiency
of the self-synchronization, is also useful in the design of efficient and simple garbage collection

algorithms.

Simulation results confirm that the rate of growth is indeed that given by the analytical

result,

Communication delay increases the memory of the system. The effect of the communica-
tion delay is to introduce new states into the performance analysis state representation, and this
effect was quantitatively determined in the chapter. Closed form results have been derived for a
few cases. Communication delay can cause a further degradation in efficiency of a SESYCCS,
especially if communications are frequent. Results of our analysis can be used to ‘‘lump”’

processes together to reduce this interaction.

The results were then extended to the case of the multiple processor SESYCCS. A new
algorithm, Concurrent Resynchronization (CR), has been proposed to synchronize a SESYCCS,
where synchronization is enforced separately from the computation. Concrete and exact results
of the performance of this scheme have been derived. Concurrent Resynchronization has the
advantage that the rate of growth is not penalized by communications between the larger number
of processors in the computing system. This is because all processors are resynchronized when-
ever an inconsistency in the local clocks is discovered. The memory requirements are also much
smaller. However, the price paid is in the additional communications required to enforce the syn-

chronization. Use of special synchronization hardware will, therefore, be of merit.

The second algorithm proposed, Successive Resynchronization (SR), describes the perfor-
mance of a synchronization algorithm where the synchronization is implemented as a part of the

computation. Exact results are derived in the performance analysis. The effect of propagation of

109

error amongst communicating processes is particularly highlighted, and the drop in the rate of
growth of the Global Time is attributed to an increased likelihood of a succession of resynchroni-
zations in the system. Closed form results provide a concrete basis for comparison between SR

and CR.

CR is then extended to include only those processors in the resynchronization which
belong to the Sphere of Influence of each processor. The efficiency is shown to be improved as a
result. In Chapter 6, we will describe the implementation of this algorithm in the distributed

simulation of discrete-event systems.

The theory presented in this chapter is new. The results and analysis are robust and general
enough to allow the analysis of a number of other synchronization mechanisms for SESYCCS as

well.

We conclude that the separation of synchronization from computation in the logical system
has the advantages of an increased efficiency of implementation, smaller memory requirements,

and a reduction in the burden imposed upon the user of the concurrent computing system.
Current work consists of an extension of these results to the analysis of systems where the
time required for resynchronization is proportional to the amount resynchronized in local times

and also to incorporate the effect of finite memory.

110

Chapter 5

Randomized Algorithms for Self-Synchronization

This chapter introduces and develops a new class of self-synchronization algoriihims calicd tic
Randomized Algorithms (RA). It is envisaged that these algorithms would take advantage of the
knowledge of the dynamics of the computation, and thus provide a basis for systematic adaptive syn-

chronization of distributed computation.

The algorithms for self-synchronization for Static Computation Graphs (Chapter 3) and for
Dynamic Computation Graphs (Chapter 4) were proposed for two distinct classes of scientific computa-
tion. Static Computation Graphs are proposed with a specific fork/join type cc;mpmaﬁon inmind. Ina
number of scientific applications, especially in digital signal processing, algorithms can be constrained
to fit this model. The static structure of the computation is first identified by the synchronization algo-
rithm and the resource allocation schemes are subsequently optimized. Our results from Chapter 3
demonstrate that it is possible to develop an efficient time-shared SESYCCS environment for this class

of computation.

Dynamic Computation Graphs, on the other hand, are very broad in their scope. The structure of
the computation is random and varies dynamically with time. Our solution to the problem of self-

synchronization was to develop a theory of self-synchronization that separated the roles of computation

111

from that of synchronization. Our analysis in Chapter 4 provides concrete results on the performance
of several algorithms for self-synchronizaiion. Provision of explicit synchronization facilities was

shown to be advantageous in the SESYCCS environment.

However, no attempt was made to ‘‘learn’’ the dynamics of the distributed computation itself to
improve upon the efficiency of self-synchronization. It can be argued that for a sufficiently large class
of scientific computation, the behavior of the computation can be adaptively identified as the computa-
tion progresses. Nevertheless, since the computation is itself random, it would be unusual to expect to
be able to predict the its behavior exactly (as in Chapter 3). But it would not be unreasonable to expect
that the some knowledge of the computation can be used to optimize the performance of the distributed

implementation.

This chapter addresses this very question. The question is reformulated as follows. Can the
problem of self-synchronization be couched in the terms of statistical estimation ? The input to the
adaptive algorithm would be the sequence of observations representing the evolution of the local times
on other processors in the distributed system. Each processor then tries to estimate the local clocks on
the remote processors on the basis of these observations. If each processor were to communicate with
other processors at local times that are comparable, the penalties of resynchronization or additional

memory storage would not be as severe.

This chapter also addresses another important question. Are SESYCCS realizable for DCGs ? In
other words, are the memory requirements finite? Flow control and memory requirements constitute an
important part of the design of any distributed computing system. It is essential that algorithms for flow
control and garbage collection be as efficient as possible. Otherwise, this would negate the benefits

accrued from self-synchronization.

Hitherto an important requirement in a distributed message passing environment was to ensure
that communications between processors were blocking. This implied that both the sending and the
receiving processors had to be ready to send and receive the message respectively. This condition

ensured that buffer sizes were finite. In the non-blocking communication environment there is no such

© 112

restriction. Thus there is a likelihood that message buffers would overflow when the distributed com-

putation was inappropriately implemented.

Relaxing the assumption of blocking communications allows a practical and efficient realization
of a SESYCCS, precluding the necessity of providing large buffers for communication purposes. We
show that under some patterns of communications between processors non-blocking communications

can be implemented in a stable and efficient manner with finite memory requirements.

Bernoulli communications imply that the different processes in the logical system interact with
each other at some point in time. This notion of irreducibility leads directly to the stability of buffers.
Note the similarity in flavor with results derived in Chapter 3, where we proved that non-interacting

(e.g. independent) processes can affect stability in buffer sizes.

5.1. Randomized Self-Synchronization

Our previous results in analyzing the performance of SESYCCS showed that the progress of the
computation depends on the rates of the forward growth in the constituent processors. The computation
is particularly inefficient if the divergence between the rates of individual processors is very high. In
addition if the time taken to undo the effects of erronecus computation are taken into consideration, it is
necessary to ensure that the local clocks of individual processors do not diverge ‘‘quickly.”” Indeed,
most experimental evaluations of optimistic computation have been based on balanced realizations.

How this balance can be achieved is the subject of this chapter.

Each processor in the system makes some decisions on how the clocks of other processors evolve
in time. When a communication between processors is imminent, the transmitting processor ensures
that some randomized algorithm is followed that estimates the local times of the remote processors.
The transmitting processor may then decide to wait to allow other processors to catch up, or assign
more resources to its own computation should it appear that it were slower than the other processors in

the system. We will analyze randomized algorithms (RA) for the case of two processors. In a more

113

general framework, the algorithm has to be implemented to estimate the clocks of all processors in the

immediate sphere of influence.

The problem can now be formulated as follows: Two processors participate in the computation.
The clock of Processor 1 is given by C, at a discrete time n. The evolution of the local clock in the

‘n+1 step is then given by (where {, is a random variable)

Cn+l = Cn + Cn
Processor 2 tries to estimate the clock at instant n+1, given that the clocks synchronized earlier at

instant n. The evolution of the estimator U, can, therefore, be given by

Up=C, +V,
L. and V, are the decision variables. It must be noted at this point that V,, is the estimator of the
remote clock (in Processor 2). We must also assign a cost function to the estimation algorithm. A fair
cost function would penalize Processor 2, when U, is either ahead or behind C.... To derive some

analytical results we proceed to a few specific cases.
Qase 1:
Let us assume that {,’s are i.i.d on (0, o), and V, can take values in [0, V] Therefore, given

Cn+l = Cn + Cu
Uu+l = Cn + Vu

The problem then is to come up with a sequence V,,V,... which minimizes a discounted cost func-
tion, W, which consists of the contributions of a distance function f () over a number of intervals in
discrete time. With B <1 a constant, and E [] denoting expectation we have,

W,=E[S B - f Uy ,Cl

i=l

Since the {,’s are i.i.d the estimation procedure at each step is independent of error in the previ-
ous step. So we can rephrase our desired goal as a single step optimization, where we have to select a v

such that,

minmize gL £ (v , C,)]

114

Let us also assume that f (v , {;) can be written as

fO,.L)=a(-8)" +b(E -v)
Here a and b represent the costs associated with overestimating and underestimating the remote clock
respectively, and (x)* equals x if x is positive and equals 0 if x is negative. These costs directly relate
to the costs of resynchronization, lost computation, and additional memory required for storage of mes-

sages ahead in local times.

15000

13500 | A

12000 B Wn

Cost Function

10500
1

9000 | A

7500 F

6000 [

4500 |

1500 n

0 1 1 1 1] 1 1 | 1

0 20 40 60 8 100 120 140 160 180 200

Figure 1: Clock Estimation in an Asynchronous Environment

In the first strategy, the mean 1 is used to estimate the remote clock v, (which has an

A
exponential pdf), in the second case, v = % . ln%-. The latter gives the best perfor-

mance.

If { follows a probability density function given by g (), the cost function can then be written as

Ef (v ,t;)=a£(v—c)g<@dc4b [€-v)e®dg

115

Let us consider the case where g ({) describes an exponential density function. The cost function

can then be written as

Ef(v.O=a[¢ -Ohe™dl+b [(C-vIhe™dl
0 v

Carrying out the simplification

Ef(v,D=av +{-e""-a—%e"’“’

Minimizing over v gives

. 1 a+b
v =it

A a
Therefore, at each step, the V,, is assigned the value v*. Similar analysis can be carried over to
other probability density functions. The performance of this strategy is observed in Figure 1, where
two different strategies are compared. If the processors communicated at irregular intervals this

analysis can be extended to estimate the sum of a number of random variables.

Case 2:
Consider now the case where {,’s form a Markov sequence of numbers with a transition matrix

A. The solution to the estimator problem is then given by the V,, which minimizes

W,=E[f(V,, Cn)lc»-l]
This function can sometimes be easily minimized as illustrated in the following example.

Example 1: Consider the inpduciblc and aperiodic four-state Markov chain which describes the evolu-

tion of {, with discrete time. The probabilities of transition are shown in the Figure 2.

Let us also assume that the system started in state 2, with value {; =2. The two possible transi-

tions are to states {;=1orto §;=3.

The cost function in terms of V, will be

Wa=a(Vy—-1)"p(112)+b(B-V)"-p(312)
V, then is chosen such that the cost function is minimized. This depends on the probability transition

116

matrices and also on the values of g and b.

p@I1)

p@413)
Figure 2: Example 1

Case 3:
Let us now consider a general case where {,’s are not a Markov sequence, however, there exists

a Markov sequence y; ,y2... such that

La=h0n)

The objective function then becomes

W,,=E[f(V,. sc;l) I Cn-l-Cn—Z:---]
and if we define

nn(i) & P(yn=il€u-l!§n-21'°-)

Then we have
Wo=2f(,h(@)) Q)
i
7, (i) can be calculated using a suitable nonlinear estimator (e.g. Bayes’ Rule).

In this section, we have derived specific algorithms for the estimation of clock increments in

other processors. Each processor, would therefore, update its clock recovery algorithm which each new

117

message communicated to it by a remote processor.

5.2. Finite Memory Requirements

We now wish to examine the conditions under which a SESYCCS can be realizable in practice.
While our conjecture was that a SESYCCS was realizable we have not yet established that asynchro-
nous distributed computation with Bernoulli interactions and non-blocking communications can be exe-
cuted in a bounded-memory computing system. This section establishes this fact. The notation follows

that introduced in Chapters 2 and 4.
InaJ processor system, { C , n 20,i=1,...,J) is defined as follows;

(T4 ,m=1,2.... }are Bernoulli times

That is,
Prob{ T4, -T=k1=p;(A-p;)*" ,k=1,2,3--
If
n#TE ; Ci,, =Ci+g
Otherwise, if '

n=Th ; Ciyy =min(C; , C{} +a, 1 (C; < Cl)

with 0 < p;; < 1. In addition, we also assume that

Define
= C-mNeh
Theorem 1: If irreducible and aperiodic, then

Yo = Ol,i=1,...,J)
is a Positive Recurrent Markov chain.

118

The condition that the increments a; and C} be multiples of € ensures that we deal with a count-

able state space.

50

Buffer Sizes: CR
a5

0r y
35
30
251
20

15F ‘: |

10-'|. i | | ‘

j
I h

lel 'l.. i l‘ ~hl|.lh A it)

l“ il \ Bl

140 210 280 350 420 490 560 630 699
D —

n

Figure 3: Buffer Requirements with Concurrent Resynchronization

This figure describes the requirements of message buffers in a four processor system syn-

chronized using Concurrent Resynchronizations.

The main idea in this section is to show that the buffer sizes will be bounded under Bernoulli
interactions. If it is guaranteed that all processors communicate with each other sooner or later, then it
is easy to see that the buffers will always be bounded. This is because the local clocks will be in "syn-

chrony" and will not drift too far apart from each other. We will now establish this notion formally.

The condition of irreducibility ensures that all the processors communicate with each other at
some time, allowing all states to be reached. y represent the drifts of each local time C; from the

minimum clock in the system. While C: could drift to infinity with increasing n, we wish to show that

119

the differences in the times remain bounded. To prove this, we make use of the following Lemma 1,

which we will not prove. The reader is referred to (Wa88] for details of the proof.

Lemma 1: LetV : C —— R, then if there exists a X such that

EV({Chi)-V(C,) | V(C,) 2K]1 S - <0
Then

E[V(C,)] S A<oo ,alln 21

We can now use Lemma 1 to prove that if V(-) is such that {V(C,) < B} is a finite set for all

B, then
E[V(C,

Prob {V(C,)>B} < #.

so that
E[V(C.
Prob {V(C,) < B} 2 i--—[;—)]-,

and

Prob {V(C,) < B}>0,forB >A.
Therefore,

Prob {finite set} > 0.
The last condition implies that the Markov chain is Positive Recurrent.

Using the notation used in the model for asynchronous systems described earlier in this section,

letting V (y,) = max y., we have
EM™ci-™Aci) s 4
or '

E["yi] < A

and

(ya | max y{ < B }is finite

Therefore, y, is a Positive Recurrent Markov chain and Theorem 1 is proved.

120

To prove that the condition for Lemma 1 to hold is indeed satisfied, we proceed as follows. Let
us assume, with loss in generality, that there is a processor i that is the largest in local times, and that
y.=y. =K. Lety] for j #i be very small in comparison to K € Z, taking at most the value K - L.
Let the probability that any one of the processors j communicates with i at each time step be given by
1-p. The next-step transition diagram is then given by Figure 4. We normalize the value of y, to be
zero and consequently the rest of the system is at local clocks of at least — (K —L). Here, y, can
increase by an increment al = a inone time step with probability p, altematively it can decrease to at
most — L with probability 1 — p. Then itis easily derived that

EWpim—Ys | Y2201 Sm-a-p™+(1-p™)-(-L)
so that,

EWnim —=Yn | ¥ 201 € p™(@-m +L)-L <0 for m ,L large enough.

Let us now show that the condition is true for the general case as well. At some point in time we
have y, =K. Let us chose an €< 1, say e=%. Since the system is irreducible (all processors can

communicate with each other), we can find N such that after N time steps all the processors have com-
municated with each other (or resynchronized) with probability €. If a is the upper bound on the for-
ward computation rates of the processors this implies that the upper bound on y, is Na with probability

£ and K + Na with probability 1-€. Then

EV(Ca)-V(Cy) | V(C,) 2 K]

is
< aN(1 —¢) + (K+aN)e~K
This implies that
aN -K(1—-¢) < 0 for K2 l“f’e

This proves that the condition is satisfied, and the Lemma 1 is applicable.
Finding the invariant distribution of y, allows one to derive bounds on the memory requirements.

Figures 3 and 5 plot the size of the buffers with computing time n for the cases of self-

synchronization using CR and SR respectively. The memory requirements are assumed to be

121

proportional to the drift in local times on each processor from the minimum.

Figure 4: Transition Diagram for Buffer Increment

Buffer Sizes: SR

||||| e

- — —— e B R e ST AP CRA R T2 T IR I

133 207 276 345 414 483 552 621 690

100,

90-

80 ya

69

Figure 5: Buffer Requirements with Successive Resynchronizations

122

This figure describes the buffer requirements in a four-processor system synchronized
using Successive Resynchronizations (SR). Note that the buffer sizes needed are larger than

the corresponding sizes in Figure 3 where CR is used for synchronization.

In the analysis derived above, the communication costs were assumed to zero (i.e. communica-
tions are instantaneous). The state could. therefore, be captured by the local times C}' alone. In the case
that the communication times are non-zero, the new state vector would be characterized by (C: , M},
where MY represents the meséages in transit at time n originating in processor i and destined for other
processors j. It is expected that the Markov chain for the differences would be ergodic as well, (if

there is an upper bound on the message propagation time).

To summarize the results of this section, we have have presented a model of asynchronous distri-
buted computation, which requires a small synchronization overhead. The cost lies in memory require-
ments and the computing time needed io undo sume cuvucous computation. We have proved that
under some weak assumptions of irreducibility, the system is stable (ergodic) with finite memory
requirements. We have not proposed any garbage collection algorithm for our system, but we do not
expect such an algorithm to have any stringent efficiency requirements. The efficiency of the Random-
ized Algorithms can be evaluated by measuring the Wolf Coefficient. The invariant distribution of the

y: would be the guideline for memory design.

5.3. Summary

In the previous sections, we have introduced the framework and methods involved in describing a
new class of synchronization methods called the Randomized Algorithms (RA), which promise a
further improvement in performance. We have discussed a few concrete cases where the improvement
can be quantitatively measured. Our approach reformulates the problem as a statistical estimation prob-
lem. The preliminary analysis was rewarding in that we have been able to derive specific closed form

results.

123

The theory developed in this chapter fits hand-in-glove with the theory developed for the seif-
synchronization of dynamic computation graphs. This happy marriage of self-synchronization with
adaptive clock estimation promises much in terms of efficient implementation of distributed computa-
tion.

We have also proved that computation in a SESYCCS environment is realizable in practice using
nonblocking communications and finite memory whenever the logical system is irreducible. Bernouili
communications in the physical system imply that this is naturally the case. If the physical system were
not irreducible, bounded buffers may still be guaranteed by using messages explicitly for transmitting
clock information such that the logical System is irreducible. This is a weak restriction on the commun-
ications, and augurs well for an efficient implementation. The assumption of infinite buffers, the bane

of the non-blocking environment so far, can be relaxed as a resuit.

It is hoped that in such a framework, the efficiency of distributed asynchronous computation will

be then be better understood.

124

Chapter 6

Efficient Distributed Simulation

Distributed simulation systems, by definition, eliminate the globally shared event list used in the
sequential (uniprocessor or shared-memory multiprocessor) simulation systems. The physical system
being simulated is modelled by a set of logical processes (LP), each of which is provided with a local
clock. Each LP can communicate with other asynchronous LPs through messages. The concurrency in
the events in the physical system is captured by the logical system and it is hqped that the simulation
progresses much faster in consequence. However, a number of problems typical to distributed systems
arise. They include verifying global correctness of simulation, detecting and resolving deadlock, task

partitioning among processes, and the overhead incurred in message passing, to name just a few.

The fact that a multiple processor machine can achieve greater computational power at a more
attractive price in terms of design cost, comparted to a single processor design, has spurred much recent
interest in distributed computing as a solution to compute-bound sequential problems. It is proposed
that such machines offer a viable altemative to traditional supercomputers at a higher performance to

cost ratio. (See [AtSe88]).

There, however, remain a number of interesting research issues in concurrent computing. First,

is the development of distributed algorithms suitable for execution on a network of asynchronous com-

125

puting nodes. Parallel algorithms for such machines differ from serial ones, in the sense that both the
algorithm and the data have to be partitioned into smaller parts for concurrent execution. Secondly,
efficient operating systems for concurrent muitiple processor systems need be developed. Algorithms
for process scheduling and allocation are decidedly primitive and limited in scope. Load imbalances
and communication penalties routinely cripple distributed computing applications. The third major

concern, is data management, I/O facilities and the user interface.

A number of event driven distributed simulation algorithms have been examined in literature.
(See [ChMi79], [JeSo83], [MaWaMe88b]). These methods can be classified into 1) Conservative (Syn-
chronous) Methods, 2) Optimistic (Asynchronous) Methods, and, 3) Randomized Methods (See
Chapter 5). In Chapters 4 and 5, we have analyzed the performance of these methods. In this chapter

we will focus mainly on the implementation issues in the context of distributed simulation.

6.1. Structure of Simulation

We will summarize qualitatively some related concepts introduced in Chapter 2 that are germane
to the distributed simulation of discrete-event dynamical systems (DEDS). The Distributed Simulation

System (DSS) consists of the following subsystems.

The Physical System being simulated is first described by a set of communicating physical
processes (PP). A few assumptions on the behavior of these processes are usually made. A process can
send a message at any time ¢ > O to any other process. The contents of this message depend only on the
information available to the process up to time ¢. (See Chapter 2 for a more formal description of the
causality conditions.)

The Logical System is then derived from the Physical System by simulating each constituent pro-
cess by a logical process (LP). The simulation of each PP by an LP is independent of the simulation of
the rest of the DSS. In addition, the interactions between PPs in the Physical System are faithfully car-
ried over to the LPs in the Logical System as well (the converse may not hold true!). Therefore, LP;

communicates with LP; if the corresponding PPs communicate in the Physical System being simulated.

126

Each logical process has associated with it a logical clock C;(t) or C: that evolves in continuous or

discrete-time respectively.

The Message System synchronizes the different clocks in the Logical System. Time stamped
messages allow the logical processes to execute asynchronously at differing rates. For instance, if PP;
communicates a message m to PP; at physical time ¢, then the gquivalent logical system schedules a
message (¢ ,m) from LP; to LP;. Messages can be of a number of types. Some of them are used for
the purposes of simulating the physical system, while others are used to look after the aspects of distri-
buted control and clock synchronization. In addition to the time stamp and message identification
fields, it is often advantageous to append statistics collection fields as well, largely to simplify interpre-
tation of the distributed simulation. Each LP; has a local clock value T;, which implies that LP; has
simulated PP; till time T;. This also implies that if the distributed synchronization is correct, LP; will
not receive any messages timestamped earlier than T;. Ensuring that such loss of causality will not

occur is central to conservative simulation schemes.

We now make precise the underlying structure and mechanisms through which elements
(processes) in a dynamic discrete event system interact with each other. The efficiency of a distributed
implementation of a simulation is dependent on a number of factors: 1) The concurrency inherent in the
system being simulated, 2) The potential parallelism that can be extracted (through the use of looka-
head), and, 3) The communications overhead in passing data and control variables within the system.
Very often, as in most optimistic simulation algorithms, the stricture of the system being simulated is

not utilized in planning the simulation.

6.2. Vectored Simulation

In this section, we will describe how a few common networks can be simulated with greater
efficiency than that which can be achieved in a conventional distributed realization. The enhancement
in the utilization of the processors and reduction in the communication overhead will be illustrated

graphically for these networks and expected values for efficiencies will be derived.

127

Simulation of any large scale dynamical systems involves the simulation of a number of busy
cycles to obtain statistically consistent estimates (See [He86),[GlIg87]). For example, a large commun-
ication network with about 40 nodes, could have a busy cycle of about 200 years (with about 2 jobs
processed!). Most networks are, however, used only for a small period of that time span. Therefore,
simulating transient characteristics of the system is important. Vectored simulation interleaves B
independent simulation runs of the same physical system on the same network of N computing proces-
sors (and the results are subsequently averaged). By permuting the mapping of the system to the distri-
buted computing system for each simulation run (as described below), the efficiency of the implementa-
tion is greatly enhanced. AsB is usually much smaller than N, speedup is possible. Vectoring also has
the positive effect of amortizing the overhead associated with communication setup times over a
number of simulation runs. Concisely, we propose that B independent (and identical) simulation runs
be distributed over the same N independent processors. Therefore, B independent simulation runs,
share the same real-time distributed computing system while maintaining orthogonality in simulated

“time. We propose that such a ‘‘vectored simulation,’” does in fact enhance efficiency, by reducing the

communication overhead, and increasing the amount of useful computation.

These examples show how distributed simulation can be used with advantage in simulatihg large
scale networks while maintaining a high processor utilization. A single simulation run on a network of
N processors can be inefficient both due to the high overhead in synchronization and due to the fact that
most nodes remain idle for the lack of useful tasks to execute. Conservative simulations are required to
enforce causality locally at each node at evey time step, resulting in poor efficiency. On the other hand,
optimistic asynchronous simulation algorithms can exhibit a higher processor utilization, but there is a
substantial penalty paid while recovering from a loss of causality (most simulation studies in literature
present results for well "balanced” optimistic simulations). To complicate matters, the efficiency of the
distributed realization in addition very often depends on the structure of the physical network. This
additional information is seldom incorporated into the simulation itself to improve its’ efficiency. A
partially asynchronous simulation algorithm may often outperform a totally asynchronous simulation,

utilizing the knowledge of the system (being simulated) available to it. This knowledge can be

128

incorporated in the simulation algorithm without any loss in generality and is transparent to the user.
We will classify most of the algorithms in this section as partially asynchronous simulations.

In the following, we introduce vectoring in the context of a few typical building blocks for large
scale systems. They include, 1) Tandem FCFS Queues, 2) FCFS Queue with Feedback, 3) A Merge

Network, 4) A Fork Network, 5) A Central Server Network.

Example 1: Tandem FCFS Queues: Consider the network shown in Figure 1, consisting of N FCFS
queues strung in tandem. Thié physical system can be simulated on N logical processes, each of which
is represented by a computing processor (node). Each computing node typically receives an input,
simulates a service time by invoking a suitable random number generator, and updates its statistics col-

lection routines, and then reroutes the job to the next node in the network. Let us assume that the time

Queue 1 Queue 2 Queue N
(o © v)
The Physical System
/ ’ ” ’
4 " 7
7 / ” 7
/ 1/
/ () /
7 /7 IZ4 7
/7 / rZ4 /
’ ’ G v
The Logical System

Figure 1: Tandem FCFS Queues

taken by processor i to execute these tasks be given by r;',,,, =q seconds and the time for non-

overlapped node to node communications be given by t! nm = b . The total computation time will then

N . N .
be Yfc,mp and the total time spent in communication and computation will be > (omm + toomp)- The

i=l i=l
ratio of the time spent in useful computation to the time spent on communicating and computing is
defined as the efficiency, n. In case every processor does the same work, the efficiency is given by
[MaMe88a],

129

The speedup would then be defined by N1. In the ideal case, ¢,,,, Would be zero and speedup

wouldbe N.

Let us assume that we process messages from two simulation runs at the same time. Each mes-
sage between any two nodes consists actually of two jobs from two identical (i.e. simulating the same
physical system) but independent simulation runs. The ¢, then increases to 2a. The time for com-
munication between two nodes, however, does not become 2b as may be expected. This is because

Loomm = boeup + 0 * B
Here, ¢,,,,, is the time required to initialize communication between processors, o - B is the component
which increases linearly with the number of bytes (B) transmitted between processors. Typically, £,
dominates communication costs. The resulting communication time for a message of vector length
B =2, is therefore only slightly larger than b, and this boosts the efficiency of the implementation even
further.

Queue 1

FCFS Queue with Feedback: Physical System
(@)

Buffer for marked job
—
~O-Or | =-

The Logical System
®) ()

Figure 2: Queue with Feedback

Example 2: FCFS Queue with Feedback: The FCFS queue to be simulated is shown in Figure 2a, and
each job has a probability p of being fedback for reprocessing. If simulated on a logical processor net-

work depicted by Figure 2b, processor 1 cannot process jobs until it receives a message from processor

130

2, informing it whether or not a job will in fact be fedback, along with the simulated time on link C.
The efficiency will then be poor, specially if p i‘s small, as this implies that though very few jobs will
infact be fedback, processes 1 and 2 have to communicate for each job processed. Instead of this
approach, we propose that the jobs which need to be fedback be ‘‘marked’” probabilistically (Figure 2c)
before the simulation begins and system then be simulated just as in the case of the tandem queue. The
difference arises when a marked job is received and a special processing routine is invoked (see below).

Let the input arrivals occur at simulated times Ay ,A5,A3,°,4, ,..., A,, and letthe p* job be
the one which is to be fedback. Let the real times when the processor Q begins processing these jobs
bety,t,..., 8 ... Tespectively. When the p* job arrives at simulated time A, and its processing
begins at real time ¢, , the local simulated time at the processor will be given by s(f,) or equivalently,
5(t, +a). After the p™ job is processed, the local simulated time is given by

s(t, +a)=max {s(5,)4,} +x,
Here x, is the simulated service time for the p™ job. The processor Q then processes and reroutes the
jobsintheorderp +1,p+2,..., p +k ,p where
Ay 4 < max(s(1,),A,} +x,

Consider now the general case when N queues are connected in tandem. It is easily observed that
whenever a job is fedback in any individual queue the successor computing nodes have to remain idle
for a time period (b +a). For the case of a chain of queues 1,..., N, where job's couid return to
queue 1 from queue N, (Figure 3), the same strategy adopted will enforce an idle time of
(N —i)(a +b) atnode i each time a marked job is received (with probability p) at node 1. Asp — 0,
the efficiency of our scheme tends to one while conventional conservative distributed simulations

would require that only one job be processed at a time by the N logical processes.

131

Output

(1-p)

A Feedback Loop
Figure 3: Ring of Queues

Example 3: A Merge Network:

mON

o

Merge Network: Physical System
a

/ N

Logical lgdapping 1 Logicachapping 2

Figure 4: A Merge Network

Let us now consider a merge network, as shown in Figure 4a. A, B and C are three subsystems

interacting via time stamped messages. This system can be mapped on the nodes of the computing

132

system as shown in Figure 4b. Subsystems A, B, and C are respectively mapped onto processors 1, 2

and 3. We denote this mapping as:

4.B.C)—>(123)

For the sake of simplicity, let us assign a deterministic task schedule for these processors. Let

A,,A,,..., andB,,B,,B,,... be the jobs leaving subsystems A and B respectively, system C

then processes these jobs in the order A, B, By A, B3 B4 and so on. Therefore, C processes two jobs

from B for each job from A. The timing diagram for the simulation is described by Figure 5. The rec-

tangular boxes represent useful computation, while the dotted lines represent communication. The hor-

izontal axis represents real computing time (and not simulated time). It is easily seen that

@—-n

t Job1 Job 2 Job 3

\ ' /
\]

i
[

Prlécessor 1

!

\ Job 1 Job 2ob 1/ Job3 Job 4Job 2}

i \ \ \
i ! \
i : \ A
Job1 | Job2\Job3 \ Job 4\
1 \ \

Processor 3

Processor 2

Figure 5: Timing Diagram

processor A is only utilized 1 of the time, while processor B is utilized just

3

% of the time. This would

2

imply that the efficiency of conventional distributed implementations would be =, (note that idle time

3’

was counted as a communication cost). We will try to see how efficiency could be boosted to reduce

idle time to zero in the ideal case. For this purpose (Figure 4c), we map

@“,8,C) » 2,1,9

133

Note that the mapping of systems A and B is a permutation of the previous one (intentionally), while a
new processor 4 simulates subsystem C. The timing diagram is shown in Figure 6. As may be
expected this s very similar to Figure 5, but different‘ in that the idle times of processors 1 and 2 are
reversed. By simple superposition of the two timing diagrams, we have the mapping

(A,B,C) > (1,2,3)+(2,1,9)

resulting in an efficiency of 1 (assuming communications costs were zero!).

O
4@

L]
Job 1 Job2 Job3 Job
Processor 1
o I M
! j P .
\ i i j
i ! ! !
i i i i
1 1 1 C 171 1
i 1 Processor 4
] \ \
! \ “
i 1
Job 1 Job 2 | Job 3 l’rocessor 2
1 1. 1

Figure 6: Timing Diagram

Our example was simple, in that it assumed deterministic processing of jobs in a prespecified
order. The buffer requirements, therefore, were minimal. Let us consider a more general case, where
A and B have exponential service times with rates, jt and 2|1 respectively. On the average, system C
processes 2 jobs from B for each job from A. Let the mapping be (A ,B ,C) —(1,2, 3) as before
Processor 3, however, receives ~at least two inputs from 2 before receiving one input from 1. This

implies that processor 1 may have to operate in real time at half the rate of processor 2, (just as before).
If the simulated times are compared, their difference is very small leading to a small storage buffer
requirement. However, for the case where both processors 1 and 2 process inputs at the same real time

rate, the simulated times drift apart very rapidly leading to unbounded buffers. The vectoring is again

134

carried out as before, where the second simulation run II permutes the mapping of A and B to proces-
sors 2 and 1, with the addition of a new processor 4. Processor 1, then processes one job of simulation
run I, before processing two jobs for simulation run II, while processor 2 does exactly the reverse,
resulting in efficient utilization of the processors in the long run. Because of the inherent randomness
there will be a certain slack and the buffer sizes may be chosen appropriately. This simulation would
be called a partially asynchronous one, in the sense that the processor 1 and 2 are conservative to the
extent of using mean values to determine relative speeds of processing. Buffer sizes can then be

designed to smooth the flow accordingly.

Example 4: A Fork Network:

This network is shown in Figure 7. Process A sends a message to only one of the processes
B ,C ,D . When modeled by a (logical system) computing network, only one processor receives the
task while the other processors receive information messages which update their local simulated times.
Processing these information messages takes very little time (if any) and when these information mes-
sages outnumber the number of computing jobs that a logical processor receives, efficiency of the
implementation is poor. The advantage of vectoring is the greatest for the fork network. Qualitatively
this is because of the fact that permuting the system to processor mapping for independent simulation
runs, allows even partitioning of the load over the recipient processors. For a back-of-the-envelope

estimate of the improvement in efficiency we proceed as follows.

CC
®

Figure 7: A Fork Network

Let p be the probability that a message is a information message (and consequently (1 — p) that it

isa “‘real’” job). The effective useful computation per message is then

135

leomp = P linformation + (=P

The ratio of communication to computation for scalar simulation (B =1) would, therefore, be

tcolmn — ‘:‘l +a

tcomp - ptiqfomau‘on + (l"P)‘rcal
While that for *‘vectored simulation’” would be

Lcomm lye + O B
beomp Bp‘in{ormbu +B(1-pyeas

and

lim fcomm _ o
B o0 beomp Plinformation + Q "p)‘nal

Efficiency, therefore, is enhanced for a well chosen vector length B. Practical considerations such as
finite message buffer sizes limit B. Feasible values for B lie in the range of 10-1000. A few of the
vector components can be devoted to either statistics collection, or for other control mechanisms and

I/o.

The ratio of information messages to the real messages determine the value of p, and experi-
ments condt;cted on distributed machines show that this value can be has high as 20, giving p a value
of 0.95. The structure of the. system being simulated often determines the number of information mes-
sages generated. For example, presence of a number of forks and branches in a queueing system can

result in a high information message overhead (See [Fu88], [ReMa88]).

The graphs in Figures 8a and 8b describe the efficiencies for first and second generations of
tightly coupled muiticomputer networks, for varying ratios of information messages to real messages.
The knee of the curve would detex:mine a ‘*good’’ choice for B. In the case of Figure 8a, where the
setup time is very high (indicative of the multicomputers presently available commercially), the knee is
reached at high vector lengths of 50-100. In Figure 8b, the knee is reached earlier at vector lengths

between 5-20.

081 Efficiency
07,
061
0.54 e p=005

T TIIIIST 020
04L e R o p=0.50
03l Bl
02l £
i e P080
01l e

Vector Length

0 50 100 150

Figure 8a: Efficiency of Vectored Simulation

03+ Efficiency
0.7L
0.64L
051 — =0.05
-~ """:::::._-_:M..._ 5=0_20
044 P ,/: e — p=050
0.3 '{'/' ’,/."— -
i g s

0.2- o ‘ / ’ /" - .

v p=0.80
0.1. - .'/

L : . Vector Length
0 5 10 I3

Figure 8b: Efficiency of Vectored Simulation

136

It is also observed that the initial efficiencies are much higher in the latter case. In generating the plot

for second generation machines, we have assumed that the communication setup times are reduced by

two orders of magnitude while the computation capabilities of the nodes are enhanced by an order in

137

magnitude (See [AtSe88]). With further expected improvements in the message communication proto-
cols in future generations of multicomputers, it would be reasonable to limit B to a few tens of indepen-

dent simulations.

The effect of ‘‘vectoring’’ on the performance of a distributed simulation was simulated on a

model of a simple communication network on the NCUBE system.

O—0O__ O

Figure 8c: 4-Processor Simulation

Figure 8c, shows the network consisting of 4 nodes (14). Node 1 is the source of messages, and
node 4 is the sink. The messages follow the deterministic path 1-2-3-2-4. The message communication
times, and processing times per message (in mseconds) were given values such that each node had the

same ratio of communications to computation.

Two different initial values of the efficiencies were chosen, one with an efficiency 1, = 48/64,
and the other relatively lower with an efficiency of n, = 37/64. The communication setup times were
given the values existing in commercially available multicomputers, and the effect of vector length on
the performance was observed. The communication time (ls) versus message-length (bytes) charac-
teristic is shown in Figure 9d.

From Figure 8e, it can be observed that i, was boosted upto a value of 60, and 7, to a value 58.

The enhancement in efficiency being substantially larger for n,. The efficiency drops again briefly

138

between vector lengths 16-24 (this is because of the step+ramp communication characteristic adopted
for the experiment), and then stabilizes to its asymptotic value (which is higher than the initial value for

vector length =1). Figure 8e, extrapolates the performance from 4 to 64 nodes.

- Message comm. time

=

- slope = 0.032 msec/message
2.26 pe g

1.33

0 5 10 15 20 25 29

Figure 8d: Communication Time Characteristic (NCUBE)

1
a0k Efficiency of Vectored Simulation
(64 Processors)
801
Speedup
701
eoF __°=!' _ _ |
. I'd
50 ,./ case 2
40
301
20 =
10 —_—>
Vector Length

0 1 1 I L (] 1 1 [1

0 2 4 6 8 10 12 14 16 18 20

Figure ge: Efficiency of Vectored Simulation

° Central—Server Network

Figure 9: A Central Server Network

Example 5: A Central-Server Network:

139

The central server network as shown by Figure 9, models an important class of computer sys-

tems. Conventional distributed simulations have exhibited a very poor efficiency. The timing diagram

shown in Figure 10, shows why this is the case.

140

loooo 0 oopon

e e

fe— e
g
et el - . - -

[
The

5 =]

Central Server Network

Figure 10: The Timing Diagram of Central Server Network

The central server network operates as follows (let us consider four tasks circulating around the sys-
tem), the central server processes a task and assigns the task to one of the satellite servers, which upon
processing it returns it back to the central server. The simulation is slowed down because the central
server and the other satellite servers are unable ;o process any further tasks until first task retumns to the
central server. This implies that the portion of the network simulating the central server system, will be
unable to extract the natural concurrency available from the central server type of structure. The pro-
cessor simulating central server has to await the arrival of time stamped tasks at all of its input links
before assigning one of them to a satellite processor. Most of the satellite processors are forced to
remain idle. Fortunately, vectoring simulations again provides an easy way out. Here again, we con-
sider first the case of two independent simulation runs I and II. The processor simulating the central-
server first processes a task from simulation run I, and then assigns it to one of the satellite servers. It
then processes a task from simulation run II and assigns it to one of the three satellite servers which are
idle. Thls will keep the processor simulating the central server busy all the time, and two satellite pro-
cessors occupied. By adding another processor to simulate the central server the efficiency can be

boosted further by having four independent simulation runs. Observing the timing diagram (Figure 11),

141
we can see that a vector length of eight can achieve ideal efficiency!

V1l Ooooo onooonono
.'i"" |
T A y

u oy

2 \ \
\ Timeh

3 v '|L
'*
|

4 1
1] I

5 i

Vector Length =2

Central Server Network

Figure 11: Timing Diagram for ideal efficiency

As the speedup would then be unity (ignoring communication overhead) , it may be far more efficient
to simulate the entire central server network on a single processor. This is consistent with the experi-
mental results of previous studies. To summarize, with a deterministic feedback cycle, the concurrency
of the real time system cannot be captured by conservative schemes, and simulation on a single proces-
sor would be attractive. However, if the network were open, with tasks capable of leaving the system,
the concurrency in the physical system can be captured simply by marking those tasks which would be
fed back, and taking precautions only for these tasks. The distributed computing system can then be

used with advantage to simulate this system.

Conservative simulaﬁon schemes are penalized by the high overhead incurred in the communica-
tion of information messages, in addition to the enforced idle times of the computing nodes awaiting
tasks. Vectored simulations provide both an increased amount of useful work while reducing the com-
munication costs per simulation run. In optimistic simulation (as in the merge nefwork). knowledge of

the rates of the input links can be used with advantage in synchronizing their simulation times (or by

142

duality, scaling buffer sizes according to flow rates for each link).

The Central Server Network can be simulated with greater efficiency and speed using an optimis-
tic algorithm. The conservative simulation algorithm was penalized by the fact that the processor simu-
lating the central server was stopped from processing inputs until the job from the satellite servers
returned back to the buffer. In an optimistic simulation, the central processor would process the lowest
time stamped job, conditioned on the event that the return of a satellite job would not roll back the for-

ward computation. In the worst case, it could perform only as poorly as the conservative scheme.

We will now discuss some efficient optimistic algorithms with an objective to model their perfor-
mance and propose techniques to improve upon their efficiency. A new rollback
algorithm[MaWaMe88b], Wolf, will be presented, which promises quick recovery from errors in the
simulation.

Wolf arises directly from the theory of synchronization, as developed in Chapter 4. Concurrent

Resynchronizations is enforced, but only over a set of processors within the sphere of influence.

6.3. A Synchronization Algorithm: WOLF

In this section, we will propose a new algorithm that separates the synchronization from the
simulation aspects of the distributed computation. The logical system implementing the distributed
computation is synchronized in an asynchronous environment estblished in Chapter 4. A modified ver-
sion of Concurrent Resynchronizations will be introduced in this section. As outlined in Chapter 4, it is
the Sphere of Influence of a processor i that need to be resynchronized whenever any discrepancy in
the causality conditions is discovered by i. We will give methods for determining this sphere of
influence. The focus of this chapter is on the implementation of the ideas discussed in Chapters 4 and 5,

therefore, eficiency of implementation is the main objective.

143

Figure 12: Sphere of Influence

6.3.1 Sphere of Influence, W (i ,¢)

In this section, we wish to quantify the notion of error propagation within an optimistic distri-
buted simulation system. Let b be the communication time between two neighboring nodes, and a be
the processing time required to process a single message by any computing node. If a message of class
¢ completes its processing at time (=0 in node i, then we define the set W (i , ¢) to be the set of nodes
that can be influenced by that message in time ¢. More specifically,

. jeW (i, 1) <=> pP>0, forsomea,p,and
keW (i ,t-a-b)

As the communication times b and computation times g are in general random, replacing them
by the minimum communication times and processing times leads to a conservative estimate of the
sphere of influence. A finite algorithm allows one to compute W(i , ¢) for any finite ¢. This can be
done off-line. This information can be stored in node i, possibly after some compression by approxi-

mation in the form of a lookup table. The sphere of influence could also be adaptively updated to moni-

144

tor the changes in the network. The radius of propagation, R (i,), of the sphere of influence ,

W (i ,t), is the distance in the number of nodes, which a message transmitted by node i could pro-

pagate in the time ¢. For a conservative estimate, the radius of propagation would be ;—:_—b-. The
sphere of influence (in the conservative sense), can be looked upon as consisting of a number of shells
of increasing radii (1 — R), each shell consisting of nodes reachable from i within a certain time span.
The sphere of influence thus enables the simulation designer to take advantage of the structure of the
system being simulated. For example, even if a certain computing node could communicate (directly

and indirectly) with another, the requirements of the simulation could preclude such communications,

and this knowledge can be used to prune the sphere of influence. (Figure 12)’

The sphere of influence has another dimension when simulation is used as a design tool, specially
in the Computer Aided Design of large scale circuits. The circuit is designed iteratively to satisfy cer-
tain output specifications. Each time a circuit component is modified, a subset of the entire circuit will
only be affected by this change. The simulation algorithm then conserves its resources by simulating
only those circuit components which lie within the sphere of influence of the modified component. This
would increase the speed of the simulation, as the distributed computing system is able to focus on a
smaller circuit than the original one. The design is then iteratively completed. At present, some
attempts are being made to study the feasibility of this approach in developing a distributed version of a

hardware simulation CAD tool.

6.3.2 Wolf for Resynchronization

Wolf, -is an algorithm that is invoked by the synchronization mechanism whenever it is
discovered that the causality conditions are not satisfied. Wolf, is a broadcast algorithm that resyn-
chronizes the entire sphere of influence of the computing process that discovers it had made an error.

This section discusses the structure of the synchronization mechansim.

Notation:

145

0Q, is the Output Queue of Node k.

IQ, is the Input Queue of Node k£

S, is a message which is the Straggler.

LVT is the Local Virtual Time at a node.

E is the Error Message detected at time ¢ after it was processed.

A+ denotes the messages which were processed after A was processed.
i = jeW | A, implies that { broadcasts message A to nodes je W (i f5)

Sp consists of those nodes , ke W (i ,t5) , which are at a radial distance of R away.

The following is the algorithm for the node, i, which initiates Wolf to rollback the effects of error

message , E , processed at real time of ¢; seconds earlier.
Wolf Algorithm
Node i:

i = jeW(it) | V(E,TE)
Rollback LVT to T;

Await ACK; from all jeSg
Initiate Forward Compute Phase

End

/* V(E.T;), is the Wolf-call, containing the identity of the error message, E, and the timestamp, T, at

which it was received by i. */

/* Each receiving node, j, processes V(E ,Tg). We illustrate the algorithm for node je W (i .t5y when it

receives a Wolf-call, V(A,T). */
Node j:

Read V(A,T).

146

While (LVT; < T) do continue processing enddo;
If(AMNOQ; #) then j = keW(it) | V(Q+Tq,)

/* Here A(NOQ; = Q .*/

/* Here T, denotes the LVT when j received message A. */

Rollback to T,
If je Sg wansmit ACK;; o i
else await V(A,T)
endif
else await V(A,T)
endif
The algorithm ensures that the effects of thie errur message, £, are iimited to the sphere of radius
R,W(i). Inaddition, only P broadcasts are necessary to complete the rollback as opposed to at least

R communication steps required by timewarp. P is usually much smaller than R. In the next section,

we outline how P can be determined.

We need next to estimate the communication overhead for Wolf. If the time required for a single
broadcast is € then for P broadcasts we need time Pe. At each step of the algorithm, a few nodes (on
an error path) broadcast Wolf-calls concurrently, incurring overhead of only one broadcast. Therefore
P, the number of steps the algorithm takes to terminate, determines the overhead in communications.
In practice, the time required for a multihop broadcast is approximately equal to that of a single hop

communication step. This performance is achieved using a virtual cut-through routing algorithm.

Let us now consider a few examples, to illustrate rollback using Wolf. In Example 6 (Figure 13),
we have a simple queueing network with a sphere of influence, W (i , #5) consisting of the 17 nodes as
shown. Node 1 initiates Wolf when it detects the straggler. Let us assume that t.ﬁe error message, E, is
now at node 8. Therefore, nodes 1-8 form the primary error path, or the error path of order 1 as we

will call it. When node 1, initiates the rollback, it

Figure 13: Example 6

147

148

broadcasts information about the error message and the its Local Virtual Time when it received the
error message, E . Each receiving node stops processing its Input Queue if its LVT is greater than that
time, and in addition, if it has actually processed E then it is on the primary error path and rolls back (to
the LVT at which it received E). It then broadcasts to the remaining nodes (off the primary path) in
W (i ,t5), information regarding the messages it has processed subsequent to processing E. In this case,
nodes nodes 3 and S are the only nodes on the primary error path (order 1) which have transmitted
messages along paths 3-13 and 5-17 (order 2). These broadcasts take place simultaneously, with all
the nodes rolling back to the LVTs which are consistent with the available information. In short, the
primary path 1-8 rolls back after the first broadcast, and then the paths of order 2, 3-13 and 5-17, roll

back after the second broadcast.

If standard timewarp (without broadcast and *‘blocking’’) were used, a minimum of 7 communi-
cation hops would be required, as the antimessage is propagated along the nodes 1-8 in succession and
likewise along the paths 3-13 and 5-17. If the the nodes were lightly loaded then the number of com-
munication steps required by the antimessage to meet with and annihilate the error message would be
much larger. Forward computation is then initiated by Node 1, and the nodes restart forward computa-
tion. Forward computation after rollback can use with with advantage the facts that lazy cancellation
can be used (to save on retransmission of messages) and that random numbers previously generated at

the nodes can be reused to simulate service times.

We have introduced some new notation in the previous example; that of the order of the error
path. Paths of order 1, contain those nodes which had processed the primary error message E.. Paths of
higher order are those which originate from the paths of lower order, when nodes on lower order paths
process messages subsequent to processing an error message (and hence those messages are also errors
and need be corrected). This notion allows us to determine the number of broadcasts which would be

required by the Wolf algorithm.

The number of broadcasts required by Wolf equals the highest order of any error path in the

sphere of influence.

P

149

In the case of Example 6, the highest order of error paths was 2, hence 2 broadcasts were
required. It can be easily shown that the maximum number of broadcasts would be limited by the

radius of propagation of the sphere of influence. In Example 6, this radius was 7.

Our next example (Figure 14) depicts the configuration of a manufacturing system. Let us con-
sider a simulation on a very large grid (in two or three dimensions) of processors. To illustrate the
difference in costs , we assign values for the minimum communication time between nodes, b =1,
seconds and the minimum processing time , a = 1 seconds. If the error was detected by node 1 at time
t=4 seconds, and the network were lightly loaded, it is unlikely that the antimessage transmitted by
node 1, would meet with the error message to annihilate it If the error message reached the fork,
secondary error messages would contaminate the entire network. Wolf, however, with a combination
of broadcast and *‘blocking’’ guarantees that effects of the error message will be confined to the sphere
of influence (with radius 2). Besides, all the nodes in the error path roll back in simulated time con-
currently. Since, only a few paths span the sphere of infinence the rollback phase with Wolf is very

short, implying a short recovery period from the loss of causality.

150

Based on this discussion, we formalize‘ the notion of primary and secondary error paths. We con-
sider two paths differing in order by one, the one with the lower order being the primary path and the

one with the higher order, the secondary error path.

6.3.3 Embedded-source Model for Rollback

Let node i process a message E at real time ¢=0, and at time t=ts a straggler is detected,
informing node i that message E was an error message. Message E, in the mean while, has been pro-
cessed by nodes j , k , ! - r when the straggler arrived at i. This path i —j—k—1-r is defined as an
error path of order 1. Each node along the error path of order 1, processes other messages subsequent
to processing the error message, these messages are also error messages and directly influence the rest
of the network. In a dynamical discrete event system, with random routing, ific path of mde i, gives
rise to a number of secondary error paths of order 2. For the purpose of analysis, each of the nodes, n,
on the path of order 1 is embedded with a source of rate 1, (messages/sec), which generates error mes-
sages to the rest of the network. The messages from i are processed as they arrive. Therefore, between
every two error messages processed along the primary error path, a number of secondary error mes-
sages resulting from interaction with the rest of the network are generated. (Figure 15) The reader may
recall, that we had analytically modeled source by the probability py in our analysis in Chapter 4.

In the path of order 1, nodes j ,k ,/,...,rareatradiiof1,2,3...,R respectively. The
number of error messages generated by these R nodes in the time ¢; would be

(ts=b—a)p;+(ts —2b —2a) e +(ts —-3a-3b)W+...+(s —Ra —-Rb) W,
These messages represent those which are generated prior to the time the straggler is detected. When
Wolf is invoked, additional error messages are generated in the time it takes for the broadcast to reach
the nodes, and their number is

e+t +. .y
However, if there were no Wolf-call and antimessages are propagated from node to node, then number

151

of additional error messages that remain to be cancelled are given by
(b +a)u; +21, +3 +.. . +RY,)

The number of additional error messages to be cancelled depends on the rates of the embedded sources,
and is particularly sensitive to the sources on nodes at increasing radii of propagation (owing to a linear
multiplier). Therefore, a long error path is capable of generating a large number of secondary error
messages relative to a short error path (small ¢5). Wolf, however, is insensitive to the path length. In
this simple example, we have considered two paths; the analysis can be extended to paths of higher
order. If all nodes in the sphere of influence were not informed about the straggler then the numbers

given above represent only the lower bound on the additional messages that need be cancelled.

(b) Embedded-source mode!

Figure 15: Embedded-Source Model

In this chapter, we remain content to describe the structure of the distributed simulation and com-

ment on its efficiency. The rigorous analysis is, however, covered in Chapters 4 and 5.

152

6.3.4 Pipelined Forward Computation and Rollback

Spheres of influence allow an elegant representation of forward simulation and rollback in an
optimistic distributed simulation. The sphere of influence of an error message grows with time, until
the error is detected and Wolf is invoked. The the broadcast Wolf-call “‘freezes’ the sphere of

influence while the rollback phase begins.

In Wolf, nodes in more than one shell can rollback concurrently. The signal to rollback does not
depend on the radius of the shell a particular node is in, but on the order of the error path of which it is
part. This is unlike standard timewarp, where the shells rollback in succession, starting with the shell at
radius 1 and ending with the rollback of shell at radius R. In Wolf, we have P broadcasts and hence P
phases in the rollback. However, both the schemes allow pipelining of forward computation with roll-
back. In Wolf, a phase could include rollback of more than one complete shell. We must note, how-
ever, that restarted forward computation though fasicr is still sequential. Feedback paths may slow
down forward computation. The overhead in communications for the node initiating Wolf, can be
greatly reduced by using an iterative determination of the sphere of influence, where a number of

smaller spheres of influence are influenced by the error (See later section).

After the nodes in a shell have rolled back, they restart forward computation, while the nodes in
the shells of greater radii begin to roll back in simulated time. This pipelining then progresses until all
the shells in the sphere of influence have rolled back to a state consistent with the available information.
By then, the entire sphere will have restarted forward computation. This sequence is shown in Figure
16(a)-(f). In (a) the sphere of influence is growing to thatiln (b). At the instant (b), the node i detects
the straggler, and the rollback starts as shown by (c). In (d), shells 2 and 3 rollback, while shell (1)
computes forward. In (e), shell 4 rolls back, while shells 1, 2 and 3 compute forward. The Wolf phase

is completed in (f).

153

Pipelined Forward Computation and Rollback

Experimental Setup: Wolf

Figure 16

/bin/csh

1tool -

“Racorded Bxit of Job No.

Figure 17: Experimental Setup on NCUBE

154

6.4. Design of Simulators

In this section, we delve briefly on some strategies to plan and implement large scale simulations
of dynamical discrete event systems on a network of computing processors. Such systems contain a
large number of computing nodes (40-50), flexible routing facilities, service disciplines, and monitoring

and statistics collection routines.

The initial phase of the simulation involves formulating a model for the real life system being
simulated. The onus of designing a precise model of the dynamical discrete event system rests largely
on the application expert. The next step is to distribute the model onto a set of logical processes. Then
the processes are mapped onto a distributed computing system with a number of computing elements.
Since the concurrent computing environment consists of a number of concurrent and, in general, asyn-
chronous processes sharing a few common processors, an efficient task assignment and load balancing
algorithm must be used to schedule the distributed simulation. We have developed a some algorithms
to adaptively assign computing resources in a distributed multitasking, multiprogramming environment
(See MaMe88b.)

Both conservative and optimistic distributed simulation methods can improve upon the efficiency
of their implementation by minimizing the communication overhead. The overhead in conservative
methodologies arises from the information messages that are communicated between processes (0
maintain causality. In optimistic schen_les, communications are necessary to rollback to a state con-
sistent with the available information. We have proposed an algorithm through which a number of
messages from B independent simulations are processed on the same distributed simulation testbed.
Instead of a single message, a ‘‘vector’’ consisting of B messages from B independent simulations are
transmitted bemgen processes. All the messages in a ‘‘vector’’ share the same communication over-
head and also help keep processors busy. For example, the information messages of one simulation are
sent with the real jobs of another orthogonalv simulation run. In the case of optimistic Wolf, the proces-
sors can compute forward in one simulation run, while they are blocked by rollback in another indepen-

dent simulation run. The two main advantages are the reduction in the communication overhead, and

155

the increase in the utilization of the computing elements. We define this approach as *‘vectored simula-

tion’’ and call B as the Buckshot vector.

Once a suitable ‘‘vector” length is chosen, the next step is the identification of Wolf nodes and
determining their spheres of influence. Both of these depend on the structure of the distributed model

being simulated.

Wolf nodes can be usually identified as those with more than one input. The sphere of influence
can be determined by a number of methods. In the algorithms discussed in this chapter, we have
assumed that the sphere of influence is known, and the efficiency of the algorithm depends on how well
this sphere can be estimated in practice (hence the name, Wolf). A conservative method, in which the
minimum communication and processing times are used is described in the chapter. This may overesti-
mate the radius of the sphere, especially when the network is heavily loaded. Other approaches we are
considering, include a dynamic algorithm (a Bellman-Ford type algorithm) which iteratively evaluates
smaller spheres of influence and extrapolates to a large one. For example, to evaluate W (i , T), at first
W(i,T,) is determined for T,<T, and then the nodes, k in W(i ,T,) determine W(k ,T -T,).
The union of these @hem determines the required sphere of influence. This approach can be extended
to evaluate the sphere of influence as accurately as possible. This approach has the additional benefit
that the rollbacks will then be confined to a few spheres of influence of smaller radii and there will be a
reduction in the communication cost. However, occasional errors can result due to changes in the states
of the queues. in dMic systems. Another method, would be to release marked messages occasion-
ally and determine their trajectories with time. Very often, especially in static systems, the entire tra-
jectory of a message through a system can be probabilistically determined before the message enters the

network, simplying evaluation of W(i , ¢).

156

6.5. Experimental Results

In this section, we present some results from some pilot implementations of rollback algorithms
on the NCUBE distributed memory multiple processing system. The NCUBE multiple processor sys-
tem, connects upto 1024 computing elements each with its own local memory (The latest commercial
version interconnects 8192 processors with a peak Momww of 27 GFLOPS!). The processors com-
municate via asynchronous message passing. Each of the nodes is capable of about 0.5 MFLOPS peak
performance and a strong hyperéube type interconnectivity allows concurrency in communications.
Latest models of commercial multiprocessoré provide very efficient multi-hop communication proto-
cols (See [Da87]), with the time taken for a multi-hop message communication step only slightly larger
than that of a single hop. In addition hardware broadcast facilities are provided, enabling a single node
to broadcast to a number of other neighboring nodes through dedicated links.

Wolf and Timewarp ([JeSo83]) algcrithms were implemented on 2 nstwork of seven computing
nodes. The network topology is illustrated in Figure 17. The objective of the experimem was to exner-
imentally verify the embedded-source model and t.he: sensitivity of the messages to be cancelled to the
source rates and the path length. Extensive simulation of Wolf, on a large network using about 40
nodes is currently being implemented to study the performance tradeoffs in practice. In this example,
the nodes were strung in tandem, and node S, is embedded with a source of rate s modeling interaction
with the rest of the network. The performance of Wolf ard Timewarp was then measured with varying
processing times. One such set of obsewations is illustrated in Figure 18. The numbers represent the
number of error messages that need to be cancelled by either scheme. The straggler was separated
from the error message by 6 time units. When two embedded sources were used (the other on node 4),
the numbers of error messages were an order of magnitude higher. Our results are encouraging, indi-
cz_lting an order of magnitude reduction in the number of messages to be cancelled by Wolf relative to
timewarp, in addition to a significant enhancement in the speed of rollback, when two paths are con-
sidered. (the sum (a+b) along the path is normalized to 1 and the the source rate is varied between 1

and 2.

100
Error Messages Cancelled
A
5
S0OF o _- -7 -
251
n >
0
1 2
Figure 18

The number of error messages generated is proportional
to the source rate as observed experimentally.

157

6.6. Summary and Future Work

This chapter examines an application of self-synchronizing concurrent computing systems in the
distributed simulation of discrete event dynamical systems.

We have proposed some algorithms for efficient distributed simulation on a network of asynchro-
nously executing processors. We have described methods for efficient rollback and recovery from

error, vectoring simulations to balance load, and have illustrated the advantages to these techniques by

means of examples.
Wolf, an algorithm for efficient self-synchronization, that had been quantitatively analyzed in
Chapter 5, is proposed for efficient synchronization. Separation of synchronization from computation

is shown to be efficient in this distributed framework.

Application and further development of such distributed algorithms is our current goal in the per-

formance evaluation of large scale discrete event systems.

158

Chapter 7

Conclusions and Future Work

In this thesis, Self-Synchronizing Concurrent Computing Systems (SESYCCS) have been pro-
posed for high speed scientific computation and their performance analyzed. SESYCCS provide syn-
chronization for distributed computation applications within an efficient and powerful concurrent pro-

gramming environment.

SESYCCS provide automatic- synchronization of distributed programs that can be described by
Static and Dynamic Computation Graphs. Chapter 2 provides a formal description of the types of
computation-bound problems that fit into this framework. New models for clock behavior in an asyn-

chronous distributed environment are also proposed.

Self-Synchronization for Static Computation Graphs is the theme in Chapter 3. A number of
theoretical properties of SCGs are derived and discussed. The computer designer is made aware of the
need and the algorithms for efficient program design that guarantee finite buffer sizes in the concurrent
computing system. With systems currently providing upto a 100 GFLOPS in total computing power, it
is of paramount importance to ensure that this resource is not squandered in an inefficient implementa-
tion. A novel perturbation algorithm for self-synchronization is proposed that optimizes resource allo-

cation algorithmsin a multi-user environment. We show that it is possible to assign resources

159

efficiently and in a simple enough manner among a number of users of the concurrent computing Sys-

tem.

Chapter 4 tackles the problem of seif-synchronization in Dynamic Computation Graphs. A robust
model is developed for potraying the dynamics of clocks in the SESYCCS environment. Analysis is
presented which provides new insight on the progress of distributed asynchronous computation.
Efficiency in the dynamic environment is quantified systematically and a number of new algorithms for
self-sycnhronization are proposed. It is proved that synchronization separated from the computation
gives the best results in terms of performance and in terms of limiting the memory requirements in the
processors. Closed form resuits describe the different desigﬁ constraints and strategies in the design of
SESYCCS. Detailed simulation of multiple processor systems validate the analytical resuits. Hardware

synchronization facilities are proposed.

Chapter 5 extends the results of Chapter 3 and 4 to analyze the performance of SESYCCS in an
"adaptive” environment, where the analysis of the traces of the distributed computation provides valu-
able insight into the behavior of some compute bound problems. These interesting results provide a

further enhancement of the efficiency of implementation.

These algorithms are examined in the context of distributed simulation of discrete event systems.
A number of new techniques for efficient distributed simulation are discussed and experimental resuits
are presented in Chapter 6. Distributed simulation is seen as a test bed for self-synchronization and
further experiments are being planned to determine the engineering tradeoffs involved in the design of

high speed parallel computing systems.

Present research efforts are being directed towards using this rich body of theory and experimen-

tation to develop a powerful and efficient concurrent computing environment for the 1990’s.

160

REFERENCES

[Ag86]
G. A. Agha, (1986), Actors: A Model of Concurrent Computation in Distributed

Systems, MIT Press, Mass., 1986.

[AtSe88]
W. Athas, C. L. Seitz, (1988), "Multicomputers: Message-Passing Concurrent

Computers,” IEEE Computer, August 1988, pp 9-24.

[Ba73}J. L. Baer, (1973), "A Survey of Some Theoretical Aspects of Multiprocessing,"
Computing Surveys, vol. 15, pp 31-80, March 1973,

[BeTs89]
D. Berstekas, J. Tsitsiklis, (1989), Parallel and Distributed Computation: Numeri-
cal Methods, Prentice-Hall, Englewood Cliffs, NJ, 1989.

[ChMi79]
K. M. Chandy, J. Misra, (1979), "Distributed Simulation: A Case Study in Design
and Verification of Distributed Programs", IEEE Transactions on Software Engg.
VOL SE-5, No. 5, September 1979, pp440-452.

[ChMi81]
K. M. Chandy, J. Misra, (1981), "Asynchronous Distributed Simulation via a
Sequence of Parallel Computations,” Comm. of the ACM, Volume 24, No. 11, April
1981, pp 198-206.

[DaSe87]
W. J. Dally and C. L. Seitz, (1987) "Deadlock-Free Routing in Multiprocessor
Interconnection Networks," IEEE Trans. on Computers, Vol. 36, No. 5, May 1987,

pp 547-553.

161

[Da87]
W. J. Dally, (1987), "Wire-Efficient VLSI Multiprocesor Communication Net-
works," Proc. of Stanford Conf. on VLSI, pp 390-415.

[Ga88)
A. Gafni, (1988), "Rollback Mechanisms for Optimistic Distributed Simulation
Systems”, Proc. of SCS Distributed Simulation Conference, San Diego January,
1988.

[Fu87]R. Fujimoto, (1987), "Performance Measurements for Distributed Simulation Stra-
tegies," Tech., Report, UUCS-87-026a, Univ. of Utah. 1987.

[GlIg88]
P. W. Glynn, D. Iglehart, (1987), "Importance Sampling for Stochastic Simula-
tions," Tech. Report 49, Dept. of OR., Stanford University, 1987.

[Hi85]W. D. Hillis, (1985), The Connection Machine, MIT Press, Mass., 1985.

[He86]
P. Heidelberger, (1986), "A Statistical Analysis of Parallel Simulations”, Proc. of
Winter Simulation Conf. December 1986.

[Ho78]
C. A. R. Hoare, (1978), "Communicating Sequential Processes,” Communications
of ACM, vol 15, pp 171-176, 1972.

[HwBr84]
K. Hwang and F. Briggs, (1984), Computer Architecture and Parallel Processing,
McGraw-Hill, New York, NY 1984.

(KaMi66]
R. M. Karp, R. E. Miller, (1966), "Properties of a Model for Parallel Computa-

tions: Determinacy, Termination and Queueing, ", SIAM Journal of Appl. Math.,

Vol 14., November 1966, pp 1390-1411.

162

[JeS01983]
D. Jefferson, and H. Sowizral, (1983), "Fast Concurrent Simulation Using and the
Time Warp Mechanism", Part 1: Local Control, A Rand Note N-1906-AF; The
RAND Corporation, Santa Monica, CA, June 1983.

[Je85]D. Jefferson, (1985), "Virtual Time", ACM Transactions on Programming
Languages and Systems, Vol. 7, No. 3, July 1985.

[Ko75]
W. E. Kohler, (1975), "A Preliminary Evaluation of the Critical Path Method for

Scheduling Tasks on Multiprocessor Systems," IEEE Trans. on Computers,
December 1975, pp 1235-1238.

[Ku78]
D. J. Kuck, The Structure of Computers and Computations, Volume 1, John Wiley
and Sons, New York, 1978.

[LaMuSa83])
S. Lavenberg, R. Muntz, B. Samadi, "Performance Analysis of a Rollback Method
for Distributed Simulation," Performance, '83. 1983.

[Mi86]
J. Misra, (1986), "Distributed Discrete-Event Simulation,” Computing Surveys, Vol.
18, No. 1, March 1986, pp. 39-64.

[MiMig4]
D. Mitra, L. Mitrani, (1984), "Analysis and Optimum Performance of Two Message
Passing Processors Synchronized by Rollback, Proc. of 10th, Int. Conf. on Comp.
Perf. Modeling, 1984.

[MaMe88a]
V. Madisetti, D. Messerschmitt, "Seismic Migration Algorithms on Parallel Com-

puters," Proc. of 3rd Hypercube Concurrent Computing Conference, January 1988,

163

Pasadena.

[MaMe88b]
V. Madisetti, D. G. Messerschmitt, (1988), "Distributed Computation on Con-

current Processors", Proc. of Allerton Conf., September 1988.

[MaWaMe88]
V. Madisetti, J. Walrand, D. Messerschmitt, "Wolf: A Rollback Algorithm for
Optimistic Distibuted Simulation Systems," Proc. of Winter Sim. Conf. San Diego,
December 1988. |
[MaWaMe89]
V. Madisetti, J. Walrand, D. Messerschmitt, "Efficient Distributed Simulation,"
IEEE/ACM/SCS Annual Simulation Symposium, Tampa, Florida, March 1989.
[Me79]
D. Messerschmitt, (1979), "Blosim Simulation Program." U. C. Berkeley, 1979.
[MuCo69]
R. R. Muntz, E. G. Coffman, (1969), "Optimal Preemptive Scheduling on Two-
Processor Systems," /EEE Trans. on Computers, Vol C-18, November, 1969,
[NCUBEB89]
NCUBE User’s Manual, NCUBE Corp. Beaverton, Oregon.
[Pa81]J. H. Patel, (1981), "Performance of Processor-Memory Interconnections for Mul-
tiprocessors", IEEE Trans. on Computers, Vol. C-30, October 1981, pp 771-780.
[PeWoMa79]
J. K. Peacock, J. W. Wong, E. G. Manning, (1979), "Distributed Simulation Using
A Network of Processors," Computer Networks, Vol. 3, February 1979, pp 44-56.
[RaChGo72]
C. V. Rmx}amoonhy, K. M. Chandy, M. J. Gonzalez, (1972), "Optimal Scheduling

Strategies in a Multiprocessor System,” IEEE Transactions on Computers, Vol C-

164

21, pp. 137-146, Feb 1972.

[ReFu87]
D. Reed, R. Fujimoto, (1987), Multicomputer Networks: Message-Based Parallel
Processing, The MIT Press, 1987.

[ReMaMc87]
D. A. Reed, A. D. Maloney, B. D. McCredie, "Parallel Discrete Event Simulation:
A Shared Memory Approach," ACM Sigmetrics Conf. on Meas. and Model. of
Comp. Systems. pp 36-38, 1987. e

[RiWa89]
R. Righter, J. Walrand, (1989), "Distributed Simulation of Discrete-Event Sys-
tems," Proc. of IEEE, Vol. 77, No.1 January 1989.

[RiWa88]
C. Rich, R. Waters, (1988), "Automatic Programming: Myths and Prospects”, IEEE

" Computer, August 1988, pp 40-51.

(Se8S5JH. J. Seigel, 1985, Interconnection Networks for Large-Scale Parallel Processing,

Lexington Books, Lexington, Mass. USA, 1985.

[Sc70]L. Schrage, (1970), "Solving Resource Constrained Network Problems by Implicit
Enumeration-Nonpreemptive Case," Oper. Res. Vol. 18, pp 263-278, Mar-Apr
1970.

[Se85]C. L. Seitz, (1985), "The Cosmic Cube," Communications of the ACM, Vol.28,
No. 1, Jan 1985, pp 22-33.

[Se84]C. L. Seitz, (1984), "Concurrent VLSI Architectures," IEEE Trans. on Computers,
Vol 33, No. 12, December 1984, pp. 1247-1265.

[U173)J. D. Ullman, "Polynomial Complete Scheduling Problems," ACM Operating Sys-
tems Rev. Vol. 20, no. 3, pp. 96-101, Oct. 1973.

165

[St87]H. J. Stone, (1987), High-Performance Computer Architecture, Addison Wesley,
Reading, Mass. USA. 1987.

[Wa88]
J. Walrand, (1988), An Introduction to Queueing Networks, Prentice-Hall,
Englewood-CIliffs, NJ, 1988.

[Wi66]
N. Wirth, "A Note on Program Structures for Parallel Processing," Communications
of the ACM, 9 May 1966, pp 320-321.

[ZeMo83]
J. Zeman, G. Moschytz, "Systematic Design and Programming of Signal Proces-

sors, Using Project Management Techniques," IEEE Trans. on ASSP, Vol ASSP-
31, No. 6, December 1983.

	Copyright notice1989
	ERL-89-122 (1 of 2)
	ERL-89-122 (2 of 2)

