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ABSTRACT

An industrial manipulator we found today has a simple parallel-jaw gripper

for interacting with the workpiece or the environment. Since the gripper can not

impart small motions to the grasped object, tasks that can be executed are rather

limited. This motivates a strong need for more flexible, versatile and multiiingered

robot hands.

In this dissertation, we use geometrical tools to formulate, analyze and

solve problems related to the kinematics, planning and control of a dextrous robot

hand.

Starting with a review of rigid body motions in R3, the basic velocity and

force transformation relations under changes of coordinate frames are developed.

Then, this dissertation uses the exponential notation to derive the forward kinematic

map and the manipulator Jacobian. The results are then applied to derive the

equations of. motion of a manipulator in both the Newton-Euler formulation and

the Lagrangian formulation.

The geometry of a surface, including the metric tensor, curvature form and

connection form, is studied. These concepts are crucial to the development of con

tact equations for motion of two rigid bodies under contact. Three basic kinematic

relations, the kinematics of contact, the grip Jacobian and the hand Jacobian, un

derlyinga robot hand system arecarefully examinedand formulated. The operation

of a robot hand system in terms of these kinematic relations is explained.

Two fundamental planning problems associated with task planning for a

robot hand system, grasp planning, motion planning for dextrous manipulation,



in

are examined. It is argued that task requirement should be the be the primary

consideration in grasp selection. Two grasp quality measures that incorporate the

task models are proposed and a performance measure that balances the two is used

as the objective function for optimization. The problem of dextrous manipulation

is defined. This hopefully will set up the framework for future research in this area.

To gain further insight of this problem, motion of two rigid bodies under rolling

constraint is studied. First, the differential equations for rolling motion are derived

using the contact equations. Then, Chow's theorem is invoked to determine the

existence of motion between two contact configurations. Finally, the Gauss-Bonnet

theorem is used to solve the path finding problem.

Two manipulation modes of a robot hand system are defined. Then, start

ing with a review of control strategies for a manipulator, a basic control scheme for

coordinated manipulation by a robot hand system is presented. The scheme is then

extended to robot hand system with redundant degrees of freedom and to rolling

motion. Simulation results based on a two-fingered robot hand system are shown.
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Chapter 1

Introduction

1.1 Why Study Robot Hands

The need for a more flexible manufacturing system has been the driving

force for the rapid development in robotics over the last three decades. The first

industrial robot was introduced by Unimation Inc. in 1959. The key to this device

was the use of a computer in conjunction with a manipulator to produce a machine

that could be "taught" to carry out a variety of tasks automatically. To enhance

the flexibility of these machines, sensory feedbacks, such as tactile, vision and force,

were added in the 60's and 70's. At Stanford, Bolles and Paul ([BP73]) using

both visual and force feedback, demonstrated a computer-controlled Stanford arm

connected to a PDP-10 computer for assemblying automotive water pumps. At

the Drapper Laboratory Nevins et al ([NW74]) investigated sensing technologies

based on compliance. This work developed into the instrumentation of a passive

compliance device called remote center of compliance (RCC) which was attached

to the mounting plate of the last joint of the manipulator for close parts-mating

assembly. In 1988, Adept Inc. introduced a force-controlled industrial robot, which

used direct-drive technology developed by H. Asada ([AY87]).

An industrial manipulator we found today has a simple parallel-jaw gripper

(or end-effector) at the end for interacting with the environment. As a typical

scenario when it performs a task, the gripper will first grasp the object and then the

entire arm will move to achieve a desired motion of the object. Since the gripper

can not impart small motions on the grasped object, tasks that can be executed



by an ordinary manipulator are very coarse, e.g., pick-and-place operations, spray

paintings. To execute more sophisticated tasks such as scribing with a grasped pen,

bolting a nut onto a screw, where small motions of the object are required, there is a

strong need for a more flexible, versatile and multifingered robot hand (or dextrous

robot hand).

The added functionality of a dextrous robot hand includes:

• The potential for increasing the number of contact points with the object,

thereby yielding a more stable grasp. In addition, the ability to reach a wide

range of grasp configurations will allow more types of objects to be grasped

than with the simple gripper.

• The ability to adjust grasp configurations within the hand. This enables a

task to be executed with some of the most efficient grasp configurations.

• The ability to impart displacements and large changes of orientation of the

grasped objects. Observation of the human hand reveals that almost all ma

nipulation of small objects is done entirely within the hand. In some cases,

obstacles in the environment prevent the whole arm from moving along with

the object, whereas fingers can reach into more restrictive environments to

perform tasks arms can not reach.

• A potential for high fidelity controL A dextrous robot hand considered as a

micro-manipulation system has high bandwidth while an arm, considered as

a macro-manipulation system, has large workspace. A robot hand augmented

with a proper manipulator can achieve high bandwidth while retaining large

workspace.

• The ability to sense information about the environment. Hands equipped with

tactile sensors or force sensors have the potential for locating and identifying

parts. The information obtained can be used for guiding the operation of the

hand or for modeling the world for autonomous manipulation systems.

All of these capabilities of a dextrous robot hand will be necessary for

extending the classes of tasks possible with autonomous manipulation systems.



1.2 Previous Work

The last decade has seen a rapid growth of research activities in both

mechanical design of robot hands and determining how to use the vast amount of

flexibility resulting from the relatively simple structure of the hand.

Okada ([Oka79]), intending to emulate human functions, designed a three-

fingered hand, with eleven joints, controlled by computers. Salisbury ([MS85]) de

signed a hand that has a thumb with two joints and two fingers with three joints each.

Starting from contact models and kinematic analysis, Salisbury proposed a control

algorithm, now known as Stiffhees Control, for imparting motion to grasped objects.

One of the most mechanically sophisticated hands, the Utah/MIT hand, was devel

oped at University of Utah ([JWBI86]). The computer architecture multiprocessor

serving the Utah/MIT hand was developed at MIT ([Nar88]). The Utah/MIT hand

has four fingers with four joints each, and is pneumatically driven.

J. Kerr ([Ker85]) formally extended some of Salisbury's work identifying

special grasp configurations with linear algebra. He also investigated the kinematic

relations and the use of internal grasp force for fine motion control. A chapter of

his thesis is devoted to hand workspace. J. Trinkle ([Tri87], M. Cutkosky( [Cut86]),

V. Nguyen ([Ngu86]) and H. Hanafusa and H. Asada ([HA77]) have done works in

grasp planning and fine motion manipulation.

D. Montana ([Mon86]) and Cai and Roth ([CR87]) studied the kinematics

of contact between two rigid objects. They established similar sets of equations,

called the contact equations, that govern motion of the contact points in response

to relative motion of these objects.

P. Hsu ([Hsu88]), Nakamuraet al ([NNY87]) and Zheng and Luh ([ZL85])

have studied control strategies for coordinated manipulation by multiple-robotic

systems, which can be treated in the same framework as for robot hand system.

R. Fearing ([Fea87]) developed a robot finger mounted with tactile sensors.

The main deficiency with work in the field of hands is the lack of a unifying

approach to the analysis and design of hands. There is very little work on the

analysis of hands in general, or methodologies of design driven by some desired

functionalities. This thesis endeavors to develop general methodologies applicable

to a wide variety of hands.



1.3 Preview

This thesis covers three different topics relating to the analysis and op

eration of dextrous robot hands. They are kinematics, planning and coordinated

control. The following is a summary of the contents of each chapter.

Chapter 2 - Manipulator Kinematics and Dynamics. This chapter starts with

a review of rigid motions in R3. It develops basic transformation relations for ve

locity and force under change of coordinate frames. Then, it studies manipulator

kinematics using the exponential notation. The results are then used to derive the

equations of motion for a manipulator in both the Newton-Euler formulation and

the Lagrangian formulation.

Chapter 3 - Robot Hand Kinemaitcs. The geometry of a surface, including the

metric tensor, curvature form and connection form, is studied. These concepts are

then used to develop the contact equations for motion of two rigid bodies under

contact. This is a a summary of Montana's work on the kinematics of contact.

Finally, the three basic kinematics relations in a robot hand system are formulated

and then tabulated. The operation of a robot hand system using these kinematics

relations is explained.

Chapter 4 - Planning. Two fundamental planning problems associated with task

planning for a robot hand system, grasp planning, motion planning for dextrous ma

nipulation, are examined. It is argued that task requirement should be the primary

consideration in grasp selection. Two grasp quality measures that incorporate the

task models are proposed and a performance measure that balances the two is used

as the objective function for optimization. The problem of dextrous manipulation

is defined. This hopefully will set up the framework for future research in this area.

To gain further insight of this problem, motion of two rigid bodies under rolling

constraint is studied. First, the differential equations for rolling motion are derived

using the contact equations of Chapter 3. Then, Chow's theorem is invoked to de

termine the existence of motion between two contact configurations. Finally, the

Gauss-Bonnet theorem is used to solve the path finding problem.

Chapter 5 - Coordinated Control for Robot Hands. Two manipulation modes

of a robot hand system are defined. Then, starting with a review of control strategies

for a manipulator, a basic control scheme for coordinated manipulation by a robot



hand system is presented. The scheme is then extended to robot hand system with

redundant degrees of freedom and to rolling motion. Simulation results based on a

two-fingered robot hand system are shown.

Chapter 6 - Conclusion. The entire thesis is reviewed and the major conclusions

are presented. Limitations in this work, and areas for future work are discussed.
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Chapter 2

Manipulator Kinematics and

Dynamics

2.1 Introduction

A robotic hand consists of a number of lingers which are open kinematic

chains, or manipulators. Manipulator kinematics is the subject that studies motion

of the manipulator without regard to the forces which cause it. The relationships

between the motions of a manipulator and the forces and torques which cause them

are subjects of manipulator dynamics.

This chapter reviews some of the fundamental concepts concerning ma

nipulator kinematics and manipulator dynamics. The two goals which we want to

achieve here are:

1. To provide a rigorous and yet concise treatment of these familiar and exten

sively studied subjects using geometric tools. The payoffs of undergoing this

rigor are: (a) A better physical insight in the derivation procedures, (b) The

results can be presented in a more compact and a more comprehensible form.

2. To introduce notation and preliminary concepts needed for the thesis.

Rigid Motions of R3

A common way to represent the motion of a workpiece, or the end-effector

of a manipulator, is to affix a Cartesian frame to the object. This enables us to



identify the configuration space of the object with the group of Euclidean ( or rigid

) motions of R3, which is a well-known example of a Lie group - a toplogoical group

with added differentiable structures. Consequently, a trajectory of the object can

be represented by a curve in the Euclidean group and we study motion of the object

by studyingflows on the Euclidean group,... etc. The reader is referred to [War71],

and Chapter 4 of [AM78] for further study of Lie groups and Lie algebra.

Manipulator Kinematics

An important map in the study of manipulator kinematics is the forward

kinematic map. Denavit-Hartenberg notation (see [Cra86]) is one of the traditional

approaches of representing this map. Morerecently, R. Brockett ([Bro83]), uses the

exponential mapping on a Lie group to introduce the exponential formula for the

forward kinematic map. This notion is further developed by B. Paden ([Pad86]) for

the study manipulator singularties and inverse kinematics. The simplicity and the

geometric clarity of the exponential formula are explored here using the manipulator

Jacobian as an example.

Manipulator Dynamics

We further apply the exponential formula and the definition of the adjoint

map to formulate the recursive Newton-Euler equations of motion for a manipulator.

One will find that, the recursive relations for velocity and acceleration are much sim

pler and more intuitive in the exponential notation than in the Denvait-Hartenberg

notation. Furthermore, it is straightforward to calculate the Lagrangian equations

of motion for a 3R manipulator in closed-form.

2.2 Rigid Motions of R3

Consider the Euclidean space R3 with the usual inner product || • ||.

Definition 2.1 A rigid motion ofH3 is a map iff : R3 —• R3 such that \ij)(x) —

ij>(y)\ = k-3/|,Va:,yGR3.

Example 2.1 For r 6 R3, define if>: R3 —• R3 by i/>(x) = x + r. Then, if; is a rigid

motion, called translation by r. D
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Example 2.2 Let ij) : R3 —• R3 be a linear transformation such that |^(re)| =

\x\ Vx € R3. Then, tp is a rigid motion because \j>(x) - if>(y)\ = \ij>(x —y)\ = \x - y\.

i\) is called an orthogonal transformation. •

Fix a Cartesian frame in R3 with the origin at a point "o". Then a point

x 6 R3 can be written as

x - ]T x'e,-, t = 1, ...3,

where c,* is the usual basis and x* is the coordinate of x relative to the basis, or

frame. Consequently, an orthogonal transformation can be represented by a 3 by 3

orthogonal matrix of determinant ±1. Denote by 0(3) the group of such matrices

and 50(3) the subgroup of 0(3) whose determinant is +1. SO(3) is also called the

proper orthogonal group of R3.

The proper orthogonal group 50(3) has a special physical meaning as

revealed by the following example.

Example 2.3 Consider the motion of a rigid body about a fixed point "o" (Figure

2.1). Attach a Cartesian frame to the body with its origin at V\ Choose a reference

configuration and identify it with the identity element, e, of 0(3). A configuration

of the rigid body then is represented by an element, R, of 0(3). R transforms the

coordinates of a point at the current configuration to the coordinates of the same

point at the reference configuration. A trajectory of the rigid body thus can be

represented by a curve, R(t) € 0(3), t 6 [0,co), with R(Q) = e. Since the motion

is assumed to be at least continuous, it follows that det R(t) = 1 and therefore

R(t) 6 50(3). In other words, the configuration space of a rigid body about a fixed

point may be identified with SO(3). D

Define for given A 6 50(3) the left translation by A, Ca<> by

CA : 50(3) —• 50(3): B i—• AB (2.1)

Since Ca o Cat = £a-at = ^e> where e is the identity element of 50(3), Ca is a

diffeomorphism of SO(3) with the inverse given by Cat . To evaluate the derivative of

(2.1) with respect to B at the identity, we consider a curve B(t) 6 50(3), t 6 [0,oo),

with B(0) = e, and $\t=oB(t) = £. Then,

^\t=oCA(B(t)) =i^oA•B(t) =A- £TeCAZ,



Figure 2.1: Motion of a rigid body about a fixed point "o".

The map Ia=TcCa> defined by

IA : so(3) —> Ta50(3) : £ —• A£,

11

(2.2)

is called the tangent map of Ca at the identity, where Ta50(3) is called the tangent

space to 50(3) at A, and so(Z) = Te50(3) the Lie algebra of S0(3). Recall that a

vector space V over R is a Lie algebra if in addition to its vector space structure

it possesses a product, that is, a map V X V —• V, taking the pair (v, w) to the

element [v, w] of V, which has the following properties:

1. It is bilinear over R:

[aiv2 -I- a2v2, w] = ai[vi, w] + a2[v2, w],

[v,aiwx + a2w2] = ai[v, w2] + a2[v, w2];

2. It is skew commutative:

[v,w]= -[w,v];

3. It satisfies the Jacobi identity.

[u,[v,w]] + [w, [u, v]] + [v, [w, u]] = 0.

Proposition 2.1 so(3) consists of 3 by 3 skew symmetric matrices, and is a Lie

algebra with the Lie algebra bracket given by

[6, &] = £i-6-&-6

*'e'f [•> *] ** simply the matrix commutator.



Proof. Differentiating the expression

A{t)TA{t) = e,

at the identity yields

AT(0) + i(0) = 0,

Thus, A(0) = —AT(0) is skew-symmetric.

We can identify so(3) with R3 via the following isomorphism

lui 0 —W3 wi

5:R3i—• so(3): w2 '—• W3 0 —w\

u>3

x =

3°

1

—w2 W\ 0

The ordinary cross product, x, of R3 becomes the Lie-algebra bracket, [ ], of so(3)

via the following identity.

S(w xv) = S(w) •S(v) - S(v) •S(w) =[S(w), (v)].

Definition 2.2 Let A(t) € 50(3) be a curve representing a trajectory of a rigid

body. Then, A(t) € T,4(t)50(3) and the rotational velocity of the body is a 3-vector,
w € R3, obtained from A(t) through the following procedure:

TASO(Z) ^ 50(3) ^ R3 :A(t).—• AT •A(t) 1-^ S'^A* •A) = w, (2.5)

where

Iat : Ta50(3) —-> so(3)

is the tangent map of Cat evaluated at A.

Theorem 2.1 Let ij> : R3 —• R3 be a rigid motion. Then there exists a unique

orthogonal transformation R and a unique translation by r such that

ij){x) = Rx'+ r.

Proof. Let r = iJ>(Q). It is straightforward to show that the map x 1—• ip(x) —r,

preserves norm and is linear, thus is an orthogonal transformation. •

It follows from Theorem 2.1 that, by writing an element x 6 R3 in the form

.1

12

(2.3)

(2.4)

(2.6)



Reference configuration •

Figure 2.2: Motion of a free rigid body.

a rigid motion, g, assumes the form

R i
9 =

0
, R£0(3),reRi

13

(2.7)

(2.6) and (2.7) are known as the homogeneous representation of rigid transformation.

Clearly the set of rigid transformations, under matrix multiplication, form a group,

known as the Euclidean group of R3 and is denoted by E(3). Theorem 2.1 allows us

to identify E(3) with the semi-direct product of0(3) with R3, i.e., E(3) = 0(3) kR3.

The subgroup of E(3) which consists of proper orthogonal transformation

followed by translation is denoted by SE(3)(= 50(3) K R3).

Example 2.4 Consider motion of a rigid body shown in Figure 2.2. Attach a

Cartesian frame to the body and choose a reference configuration. Identify the

reference configurationwith the identity element,e, of SE(3). Then a trajectory of

the rigid body can be represented by a curve g(t) GSE(3), t € [0,oo), and ^(0) = e.

SE(3) is the configuration space of the free rigid body. •

Proposition 2.2 Let TgSE(3) be the tangent space to SE(3) at g, and se(3) =

TeSE(3), the Lie algebra of SE(3). Then, se{3) consists of 4 by 4 matrices of the

form

S{w) v
z =

0 0

Proof. This follows from differentiating the expression

, where v, w € R .

g-\t)-g(t) = e



at the identity.

We identify se(3) with R6 via the following isomorphism.

S(w) v
T : se(3) R°:f =

0 0

V

W
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(2.8)

iA,For notational convenience we sometimes let f=T(£) denote the 6-vector extracted

from £ € se(3). The sixvector | is called the twist coordinates of f.

Definition 2.3 Letg(t) G SE(3),t G [0, oo), be a curve representing a trajectory of

a rigid body, then g(t) GTg^SE(3) and the velocity of the rigid body is a 6-vector,

G R6, obtained from g(t) through the following procedure:
v

w

Tg(t)SE(3) lg-Ht)
se(3)

g »-r->flf-1-^ =
RTR RTf

0 0

R6

v

w

RTr

S-1{RTR)

(2.9)

where lg-i(t) is the tangent map ofthe left translation £g-i(t) evaluated at g(t).

Remark 2.1 We call w = S~1(RTR) the rotational velocity and v = RTr the

translational velocity, of the rigid body. D

We now study the effect on the velocity representation under change of

coordinate frames. Consider again motion of a free rigid body in R3 (see Figure

2.3). Fix two Cartesian frames C\ and C2 to the body and let C2 be related to

C\ by a constant configuration h = (r,R) G SE(3). In other words, r G R3 and

R G 50(3) are the position and orientation of C2 relative to C\. If <7i(<),<72W £

SE(3),t G [0,oo), are two representations of a trajectory of a rigid body relative to

frame C\ and C2, respectively, then the following relation exists

92(t) = h~1-g1(t).h. (2.10)

Let
Vi

W\

G R6be the velocity of the rigid body obtained from gi(t), and
v2

w2

R6 be the velocity of the rigid body obtained from g2(i), then it follows from Eq.

(2.10) that

v2

w2

RT -RTS(r)

0 RT

Adu.h-i

vi

W\

(2.11)
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Figure 2.3: Velocity transformation under change of coordinate.

The 6 by 6 matrix given in Eq. (2.11) is a representation of the similarity trans

formation of (2.11), known as the adjoint map of SE(3). For each g G SE{3), the

adjoint map, Adg, defined by

-lAdg : se(3) —> se(3): £.—• g •£ •g (2.12)

is a Lie-algebra isomorphism with the inverse given by Adg-i. The lie-algebra

bracket, [•, •], on se(3) is

[6,6] = 6-6-6-6. (2.13)

After identifying se(3) with R6 using (2.8), the Lie-algebra bracket (2.13) becomes,

for & =
Vi

W\
,6 =

v2

w2

IL 6] =
Vl X W2 + W\ X v2

Wi X w2
=adfi(£2), (2.14)

a generalized cross product to R6, and the matrix representation of Adh-\ is given

by Eq. (2.11).

In studying manipulator kinematics and dynamics, there is a need to cal

culate relative velocities of more than two rigid bodies. The rest of the section is

devoted to investigating the relations between velocities of multiple rigid bodies.
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Notation 2.1 Let Ci and Cj be two coordinate frames in R3, where i and j are

arbitrary subscripts. Then, gij = (r.j, R{j) denote the position and orientation of

Ci relative to Cj, and (vij, Wij) the corresponding velocity defined as in (2.9).

Proposition 2.3 Consider motion of three coordinate frames C\, C2 andC$. The

following relation exists between their relative velocities.

t>3,l

L W3>1.
= Ad -i

$3,2

^2,1
+

*>3,2

tl>3,2 J

where Ad -i, the adjoint map of SE(3), is given by

Ad-x =
*»»,2

£3,2 -RhS(rz*)

Proof. The configuration of C3 relative to C\ is composed according to

03,1 = 02,1 * 03,2 =

Thus,

#2,1#3,2 #2,11*3,2 + T2,\

0 1

(2.15)

(2.16)

6,1 = 03,1 *03,1 = 03,2 *02,l(02,l ' 03,2 + 02,1 ' 03,2) = 03,2 ' 6,1 *03,2 + 6,2-

Expanding the above equation into translational and rotational component, and

noting that the operator S satisfies

and

yield

and

S{w)v = w x v, Vw, v GR3,

RS(w)RT = S(Rw),VR G50(3), w GR3,

^3,1 = #3,2^2,1 ~ -R3\2^(r3,2)^2,l + ^3,2

W3,l = #3,2^2,1 + W3.2-

Combining (2.19) and (2.20) gives the desired result.

As a consequence of Proposition 2.3, we have

(2.17)

(2.18)

(2.19)

(2.20)



17

Corollary 2.1 Suppose that C3 is fixed relative to C2. Then the velocity of C3

relative to C\ is related to that of C2 by the adjoint transformation.

V3,l #3,2 -#£2<SK2) ' v2,i

«>3,1 0 #3,2 . W2>1 .

This is simply a restatement of the result given in Eq. (2.11).

(2.21)

Corollary 2.2 Suppose that C2 is fixed relative to C\. Then, the velocity of C3

relative to C2 is the same as the velocity of Cz relative to C\, i.e.,

"3,1 = v3,2, andw3ti = w3,2. (2.22)

This shows that the velocity of a rigid body is independent of the choice of the

inertia reference frame.

2.3 Manipulator Kinematics

A manipulator, or an open kinematic chain consists of a number of rigid

bodies, called links, connected in a chain by joints. Each joint is either of revolute

type or prismatic type. Manipulator kinematics studies motion of the end effector

in response to motion of the joints. For example, the forward kinematic map relates

position of the joints to configuration of the end effector, and manipulator Jacobian

relates joint velocity to velocity of the end effector. This section explores these

notions using tools from differential geometry. See ([Pad86], [Bro83] and [Cra86])

for further references.

Definition 2.4 An element £ of se(3) is called a twist. Like a screw one finds

in a hardware store, a twist has the attributes of pitch, magnitude and axis. Let

-1Z = T
v

w

be a twist. Its pitch, p£, magnitude, m^, and axis 1$ are defined by

K =

77t£ =

and l{ is the line defined by

00 otherwise;

\w\ ifw ^ 0,

|v| otherwise;



1. ifwjLQ, then,

h
{w XV % % „!

where o is the origin of the coordinate frame.

2. ifw = 0, then l^ is any directed line with directionv.
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• *

Example 2.5 1. f = T"1

of a revolute joint.

0

w

2. £ = r-1
V

0
is called a oo-

is called a zero-pitch twist. It describes motion

is called a co-pitch, twist. It describes motion of a prismatic

joint.

•

Definition 2.5 The exponential mapping of SE(3) is defined by thefollowing con

vergent series of matrices.

00 tn

exp : se{3) —• SE{3): £ •—• £
n=0

(2.23)

Properties of the exponential mapping are summarized as follows (see

[AM78] for the proof):

• It is a local diffeomorphism.

• It commutes with the adjoint map of Section 2.2 in the sense

exp(Adff_!.{) = expfoT1 -(.g) = g"1 .expf.0, V$ GSE(3)9( Gse(3). (2.24)

• For ft,& € se(3) and g G SE(3) we have

^ •^(6) =^^^(^6) (2.25)

where ad^(£2), the Lie-algebra bracket of se(3) is defined in Eq. (2.14).

• Using Eq. (2.25) and differentiating Ad^g.ex[yt^-i£2 with respect to time *
yield

^^.expt^)-1^ =^<*(r«ptex)-i '^{Adgix). (2.26)

Eq (2.24) is a key result for studying manipulator kinematics, while Eq. (2.26) is a

frequently used identity in manipulator equations of motion.
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Figure 2.4: (a) A one-link manipulator with revolute joint, (b) a one-link manipu

lator with prismatic joint.

Example 2.6 (1) Consider the one-linked manipulator shown in Figure 2.4(a),

where the link is connected to the base by a revolute joint and the joint

axis points outward from the paper. To describe motion of the manipulator,

we attach a Cartesian frame, C\, to the link. The origin of C\ is at the

joint axis and the z-axis of C\ coincides with the joint axis. Now, choose

a reference configuration of the manipulator and identify the joint position ,

8, with zero. At a given value of 0, the configuration of C\ relative to the

reference configuration is given by

0i(0) = expftfl, where ft = T"1
0

and ez = (2.27)

ft is the twist representing the joint axis relative to frame C\. Expanding Eq.

(2.27) using (2.23) yields

9i{B) =

cos0 sin0 0 0

-sin0 cos0 0 0

0 0 10

0 0 0 1

Note that 0 ranges from 0 to 27r, and thus the joint space is 51, the circle

group.

(2) Suppose we wish to describe motion of the manipulator relative to a different

frame, say C2, which is displaced from C\ by a constant h G SE(3). Let g2{9)
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be the configuration of C2 relative to the reference configuration at 8. Then,

the following relation holds between g\(8) and g2{8).

92(0) = h-l.gl($)'h.

Using Eqs (2.24) and (2.27) we have

g2{8) = h~x •exp ft0 •h = exp(Adh-ift0)= exp ft0,

where

ez and f are, respectively, the joint axis and the vector from the origin of

C2 to the joint axis, expressed relative to C2 frame. In other words, & ** *te

twist representing the joint axis relative to C2 frame. Readers who are familiar

with line geometry should also recall the transformation of line vectors under

change of coordinate frames ( [BR79]).

(3) Figure 2.4(b) shows an one-linked manipulator with prismatic joint. Attach

a coordinate frame to the link so that its z— axis coinciding with the joint

axis. Choose a reference configuration and identify the joint length, 8, with

zero. At a given value of 8, the configuration of C\ relative to the reference

configuration is given by

RT -RTS(r) ' 0 ' (RTez) x (RTez) ' A ez x f

0 RT . e* . RTez ez

<7i(0) = expftfl, where ft = T"1
0

Change coordinate frames from C\ to C2 and let g2{8) be the configuration of

C2 relative to the reference configuration at 8. Then we have

g2{8) = h~l -gi-h = exp(Adh-i£i8)= expft0,

where h is the configuration of C2 relative to C\ and

h =
RT -J2T5(r)

0 RT 0
=

" RTez '
0

A ez

0

Again, £2 is the twist representing the joint axis relative to C2 frame. Recall

here, too, the transformation ofa free vector under change ofcoordinate frames

( see [BR79]).

. •
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Generalizing from these examples, we wish to define the forward kinematic

map of a manipulator with n-degrees of freedom. Call the last link the end-effector,

and let Q denote the joint space, which is the Cartesian product of the configuration

space of the joints. The configuration space of a revolute joint is 51, and the

configuration space of a prismatic joint is R1. In other words,

Q = 51 x ... x 51 x R x ... x R,
> w • > £ ?

where n\ is the number of revolute joints, and n2 is the number of prismatic joints.

Definition 2.6 Consider a manipulator with n-degrees of freedom. Attach a coor

dinate frame, C, to link n of the manipulator, and choose a reference configuration.

Set the joint position, &i,i = l,....n, to zero at the reference configuration. The

forward kinematic map, T, then assigns to each point in the joint space a point in

the configuration space of the last link. The formula of J7 is given by

^:Q^SE(3):(81,...8n)

where ft, 2=1, ...n, is defined by:

--1

&=<

e* x rt

0

exp(ft0i) •... •exp(ftA),

for revolute joint;

--i for a prismatic joint.

(2.28)

(2.29)

Remark 2.2 For both revolute and prismatic joints, e,- is the direction vector of

the joint axis; while for a revolute joint r; is the vector from the origin of C to the

axis. •

Example 2.7 Consider the planar manipulator shown in Figure 2.5. Each link is

of unit length and its joint axis points outward from the paper. The joint space is

the three-torus, i.e., Q = 51 x 51 x 51. Choose the configuration in dotted lines as

the reference configuration. Then, the forward kinematic map is given by

T :.Q —• SE(3): (8U82,83) —* exp(ft^) •exp(ft02) •exp(6^), (2.30)

where

& = r-1
—ez x ex

, ft = r-1
-ezx 2ex

and ft = T"1
-ez x 3ex

e* ez ez

ez and ex are the usual basis vectors.
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Figure 2.5: A planar manipulator of three-degrees of freedom.

Consider again a manipulator with n-degrees of freedom. Let 8(t) =

(8\(t),...8n(t))T G Q,t G [0,oo), be a trajectory of the manipulator in the joint

space. The joint velocity is 8{t) GTq^Q. We wish to determine the velocity of the

end effector as a function of the joint velocity.

Differentiating the forward kinematic map (2.30) with respect to time and

using the chain rule, yields

-JF(0(*)) = £ exp(ft^) •... •exp(ft^)^,- •exp(ft+10l+1) •... •exp(ftA). (2.31)
dt

1=1

Eq. (2.31) can be rearranged in the form

^mt)) =mib&i, (2.32)

where

ft = {exp(ft+10t+1) •... •exp(ftA)}-1 • ft •{exp(ft+10t+1) •... •exp(ftA)}. (2.33)

If, we define,

&($)= (exp(ft+i0i+1) .... •exp(ftA)), i = 1, ...n - 1, (2.34)

to be the forward kinematic map of the manipulator with the first t joints locked at

zero. Then, ft is the twist representing the ith joint relativeto the end effector frame
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when the manipulator is at the configuration (0,...O,0,+i,...0n). Using Definition

v

w

2.3, the velocity of the end effector is a 6-vector, G R6, given by

8,

v

w

-r(tw,).j[r(ft),...r(ft,)]

8n

(2.35)

The n by 6 matrix

[r(&),...r(£.)]=JW (2.36)

which relates the joint velocity to velocity of the end effector is called the manipu

lator Jacobian of the forward kinematic map. It is composed of the tangent map of

T and the left translation map lg-\, where g —T{&).

We summarize here a procedure for deriving the manipulator Jacobian,

J(8), at a configuration 8 € Q.

Algorithm 2.1

Step 1: Choose a reference configuration of the manipulator and identify the joint

position vector, 8, with zero. Letft, i = 1, ...n, be the twist representing the ith

joint axis relative to the reference configuration.

Step 2: Evaluate Fi(8),i = 1, ...n- 1, using Eq. (2.34), where Fn(8) = e.

Step 3: Compute &= F^W-&• F(8),i= l,...n.

Step 4: Set J{8) = [T^ft),...,^^)].

Example 2.8 Recall the planar manipulator studied in Example 2.7. We wish to

derive the manipulator Jacobian, J(8), at 8 = (0,15°, 15°). Following Algorithm

2.1, we have

Step 1: ft, ft and ft are given by Example 2.7.
Step 2:

0.966 0.259 0 -0.034

-0.259 0.966 0 0.259

0 0 10

0 0 0 1

.F2(0) = exp&03 =



and

Step 3:

and

Step 4:

Tx{8) = expft02 •exp ft03 =

0.866 0.5 0 -0.168

-0.5 0.866 0 0.76

0 0 10

0 0 0 1

6 = *PW •&•*(*) =

0 -1 0 -0.0742

1 0 0 -1.3915

0 0 0 0

0 0 0 0

0 -1 0 0.2765

1 0 0 -2.0314

0 0 0 0

. ° 0 0 0

0 •-1 0 0

1 0 0 -1

0 0 0 0

0 0 0 0

6 = *T1W-6-*iW =

6 = 6 =

J(0) =

-0.0742 0.2765 0

-rl.3915 -2.0314 -1

0 0 0

0 0 0

0 0 0

1 11
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D

2.4 Manipulator Dynamics

We now consider the equations of motion for a manipulator - the way in

which motion of the manipulator arises from torques applied by the actuators or
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from external forces applied to the manipulator. It is well known that the equations

of motion can be formulated differently if different principles were used. Two formu

lations which are particularly suited for applications to manipulators and which we

will consider in this section are the Newton-Euler formulation and the Lagrangian

formulation.

We will start with the Newton-Euler equations of motion for a single rigid

body and the relations for static force transformation. Then, we will derive itera-

tively the Newton-Euler equations of motion for a manipulator. Finally we formulate

explicitly the Lagrangian equations of motion for a 3R manipulator (a 3-degrees of

freedom manipulator with revolute joints).

2.4.1 Rigid Body Dynamics and Static Force Transformation.

Consider the rigid body shown in Figure 2.6. Fix a coordinate frame to

the mass center of the body and choose a reference coniiguration. The copy of the

coordinate frame at the reference coniiguration is labeled with Cr, which is called

the inertia reference frame. The inertia tensor, J, of the rigid body relative to the

body frame is a 3 by 3 matrix given by

2ii = <

-fBp(X)XiX^X, ift#i;
(2.37)

{ JBp(X)(\X\*-{Xy)d*X, ifi = j,

where B C R3 is the set of R3 occupied by the body, and p(X) is the mass density

function of the body. Integrating the density function over B yields the total mass

of the body

=/ p(X)d3X.
JB

Let
A

m

be the net external force/torque pair exerted on the rigid body1.
nb

Also, let g(t) € SE(3),t G[0, oo), be a curve representingthe trajectory of the rigid

1In the rest of the thesis, force or wrench willmean both force and torque, whereas a force relative
to a coordinate frame means (1) both the force and the torque vectors are expressed relative to this
coordinate frame and (2) the origin of the coordinate frameis also the torque origin and the exerting
point of the force vector.
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Figure 2.6: Motion of a free rigid body

body. Then the Newton-Euler equations of motion of the rigid body are

mid 0

L ° J.

V

w

+
w X mldV

w x Tw
= fb] (2.38)

where as usual, v, w are the translational and rotational velocity of the rigid body,

and Id is the 3x3 identity matrix. Note that the first equation has a slightly

different form from the usual Newton's equation of motion because v is expressed

in a non-inertia frame.

We now study transformation relations for force under change of coordinate

frames.

Proposition 2.4 Consider two coordinate frames, C\ and C2, which are related by

' h ' ' h'
.ni . n2

a constant h e SE(3) (see Figure 2.3). Let G R6 be the expressions

of the same force relative to C\ and C2, respectively. Then the following relation

exists.

[/l' = Adrh.t • ' h '
n2

A R 0

S(r)R R

' h 1
. n2 J

Proof. This follows from the Principle of Virtual Work. Let

(2.39)

vi v2

101
>

w2

be the virtual displacement per unit time of the rigid body relative to C\ and C2.



Then, the virtual work, 6W, per unit time is

6W = {
Vl

W\
»

A

7ll
>= (

v2

w2
»

A

712

27

Substituting the transformation relation (2.11) for the velocities yields the desired

result. •

2.4.2 Newton-Euler Formulation

Consider the manipulator shown in Figure 2.7. Without loss of generality

we may assume that the manipulator lives in a gravity-free environment. To derive

the Newton-Euler equations of motion, we need to calculate the velocities and accel

erations of the links. For this, we fix a coordinate frame, C,-, i = 1, ...3, to the mass

center of link i and choose a reference configuration of the manipulator, where the

joint position, 8i is identified with zero. The copy of the link frame at the reference

configuration is labeled with Ct>, i = 1, ...3, which is also called the inertia reference

frame of link i.

Notation 2.2 Let hij € SE(3),i > j, denote the configuration of Cir relative to

CjT. Also, let |/ =

relative to frame Cjr,

e] X rj
,J > i, be the twist representing the ith joint axis

For example, assuming in Figure 2.7 that C,> is positioned half way from the link

axis and each link is of unit length, then

and

ci — & — & -
si — ?2 — ?3 —

h2,i = /*3,2 =

~ez x Ty.ex

ez

0 1

2 _, andff
3,
2**x

Proposition 2.5 Thefollowing relationexists between theparameters defined above.

g = Ad.-i •g, where j > i. (2.40)
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A
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Figure 2.7: A 3R manipulator.

Proof. This follows from the figure and Example 2.6. •

At a point 8 = {8\, 82,83) in the joint space, the forward kinematic map of

link i is Link 1:

*i = exptf*i. (2.41)

Link 2:

^2 = expg0x. exp$82. (2.42)

Link 3:

Tz = exp^i -exp^2 -exp^3. (2.43)

Thus, the velocity of link t, i —1, ..3, can be computed using Eqs (2.41) ~ (2.43) and

we claim that the results can be rearranged into the following recursive formulae

and

v2

w2

vz

Wz

Vi

= £*i;

- c%i282 + ^(fcj.i.expef^)-1 *

= izh + Arf(^)2.exp^0s)-1

W\

V2

W2

(2.44)

(2.45)

(2.46)
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In other words, the velocity of link i is simply the sum of the velocities of joint i

and link i —1. We prove (2.45) for example. First, by definition and the chain rule,

we have

JF"1 •T2 =-(exp^r1^! exp$82 + &82.

Now substitute Eq. (2.40) into the above equation and note that Adgh = Adg •Ad/,,

the desired result follows.

The Newton-Euler equations of motion for link i are

mild 0 Vi
+

Wi x miVi
—

fi

0 li Wi Wi + liWi ni

(2.47)

where m,- and Jt- are, respectively, the mass and the inertia tensor of link i, and

fi

ni

v2

W2

and

vz

Wz

is the net force exerted on the link.

To obtain the link acceleration, we simply differentiate the velocity with

respect to time and use the properties of the exponential mapping. This leads to

the following recursive formulae.

- ff02 +-^(fe.i'O'Pllfe)-1

- tzOl +Ad(/»S,2-exp*f*)-i

W\

Vi

Wi

V2

W2

- fr= fi*i;

+ Ad{expt*<h)-l 'ad-i*(Adh~\ '

+Ad(exp*»*)-1 *ad-H(Adhl\ '

(2.48)

Vl );
W\

(2.49)

02 ).
w2

(2.50)

Remark 2.3 • Link velocities and accelerations are calculated recursively start

ing from the first link outward to the lask link.

• The acceleration of link i is the sum of the accelerations of joint i and link

i —1 and a cross-product like term.

D

We now use inward iterations to compute the net force exerted on the links

and the required joint torques for the Newton Euler equations of motion.
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Notation 2.3 Let
Fi

Ni
G R6 denote the force exerted on link i by link i — 1

relative to Ci and r,- denote the required joint torque.

We start with link 3 of the manipulator. Let

the manipulator applied to the environment, then the net force exerted on the link

is given by

A

nz

=

^3

Nz
—

Jext

next

text

^ext

6 R6 be the force

Rearranging the equation we get

F* 1=[h1+f/- ]. (2.51)
_Nz J [ nz J [ next J

The required joint torque, Tz, for a revolute joint is found by taking the projection

of Nz along joint axis, e^, i.e.,

r3 = (el Nz). (2.52)

The net force exerted on link 2 is the sum of forces exerted by link 1 and

link 3. Expressing these forces relative to C2, we have

A

n2

F2

N2
- AdT^ •

03,2

^3

N3

where gz,2 6 SE(3) denotes the configuration of Cz relative to C2 and is given by

93,2 = (exp #0i •exptfay1. h3,2 •(exp £30i •exp$82 •expg83)

= /i3,2-exp^3.

Thus, the recursive formula for force computation of link 2 is

*2

N2

A

n2

and the required joint torque, r2, is

" AdThSt2-exptl)-i '

r2 = (e22, N2).

Finally for link 1 we have

Fi " A
^(^.l-expef)-1

Fz

Nz

F2

N2

(2.53)

(2.54)

(2.55)



and

n = (e\, JVi>.

This completes the derivation of the Newton Euler equations of motion.
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(2.56)

2.4.3 Lagrangian Formulation

The Newton-Euler Equations of motion derived in the previous subsection

are in iterative form. For numerical simulations these results are very convenient

to use. However, when it comes to control the manipulator, we are often more

interested in closed form expressions. One approach is through combining Eqs (2.48)

~ (2.56). Another approach, which we will consider here, is to derive the equations

of motion using the Lagrangian formulation.

The Lagrangian formulation starts with the derivation of the kinetic energy.

At a point (8,8) in the velocity space, the kinetic energy of the 3R manipulator has

the form

K = y£Ki(8,8),
i=i

where Ki, the kinetic energy of link i is calculated as follows: Let

be the inertia tensor of link i. Then,

mild 0

0 li

1, Vi Vi
Ki = 2< ,Mi

Wi Wi
)•

Substitute the velocity Eqs. (2.44) ~ (2.46) into Eq. (2.58), we have

Ki = j(g*i, M^to);

K2 = \(&82, M2^82)-r(882, M^d^^^fa)

(2.57)

(2.58)

(2.59)

+ 2*iW<A,li«pfl«»)-i«'i» ^^W-ptf*)-1®*); (2-6°)
and

Kz = 5<g*3, ^3^3> +(^3, MzAd{hz2CX9il9i).^l82)
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+ (^3, M3Ad(h3ie^^exp^3)-i£0i)

+ 2^(/,».2eXP*3*3)~IS^2' M3Ad(h3,2exP^)-l^2)
+ ^(h^exptSW-dfo, AMd^j^^e^^^-ig-^i) (2.61)

+ 2^Ad(h*>1 exp**'2 exp^^)-ill^l» M3Ad(h9tl exp*»fc exp^e3)-l^l^>-
The calculation of the kinetic energy expression for a manipulator with many degrees

of freedom can be facilitated by using data structures such as labeled trees. See

[GL87] for further details.

Define

M\ =AdJh2l exp*20!)-i *M2 •Ad{h21 exp^02)-i»

M\ =AdJ^ exp^s^ exp^<?3)"1 *M* 'Ad(h*A exp^«2 exp**03)-i»
and

Ml =Arffh3l2 exp^3)-i *M3 ' -Ad(fclil exp^3)-i.
where Mj,,; = 2,3, i = 1,2, is the inertia tensor of link j reflected to link i.

Now summing Eqs (2.59) ~ (2.61) the total kinetic energy can be written

as

K=| £ ^iJi«i=^T•M{9) •i (2-62)
where M(8) 6 R3x3 is called the inertia matrix of the manipulator and its entries

are given by

rou = <& (Mi + JHJ + Jfj)!});

m22 = (^(M2 + M32)|22>;

wiss = (§, Af3||>;

and

mi2 =m2i =(H (M2 +AfJ)iW(fcaiieap<|fc)-ig>;

™13 =™31 =(ff> ^3^(fc,tlexp^e«p^fl,)-ill>;
m23 =m32 =(H MzAd^^g^-iQ).

The Lagrangian equations of motion for the manipulator, in the absence

of gravity, are
d^K dK /OM.

-7 ' 7XT = r, (2.63)dt d8 98 ' v '
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where 8 =

' 81 ' Tl

82 ,T = r2

.'3. . T3 .

are the joint position and joint torque vector, re

spectively.

Apply Eq. (2.62) to Eq. (2.63) and rearrange the results, the equations of

motion have the form

' = = ' (2-64)M(8)8 + N(8,8) = r

where

*(.,*>-(£*w)*-i#^
and its entries are calculated as follows:

and

Ni(8j) = J2(±rnu(m-^^M(8)8
d

= y^X-7-Tnu(8))8j (since M(8) is independent of0i)
dt

^nW = (H,2Ml'adi{(Adh2Jl82))
+ (i\, 2Ml •adi{(Adhai^^gfc +Adh,Jl82))
A dmn- dmUx

'92 + —^—^35d8i ddi

(2.65)

(2.66)

-m12W = (il Afl^^^-ad^

(2.67)
A dmi2i 0mi2i

""2 + a/» 03>
aft. 00a

—m13W = <|g, M3Ad(fc8ie^^e^30s)_xr^^

(2.68)
A 57W13 . * 0mi3 .

- 'd82~2 + ^8z'Z'

*('.*> = i:|™*(^i-^(^mw)*
dm22> dm2za

m(,2 t :rr—"3 — ~
dt di

ldmil« +(
2 a&

amX2 ami3^ .

(2.69)
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where we have used the fact that

dm\ #77112 a dmi2 • /A „N

"*— w^+wr*- (2-70)
From Eqs (2.66) ~ (2.68), ^§}Si = 1,2,3,.; =2,3, can be obtained by comparing
the coefficients. Thus, we only need to calculate 3^122(0) and 3fm23(0)« But,

^m22W =<& M3 •flrfg(2Arffciiag*3)>;

and

d
^m23(^) =<g, M3 •^(iW^g^s)).
dz

Finally, we have

whereas

*3(Mj = E^M^-^^w)' (2-71)
t^miz ami2xa a 1^22^2 1 flm-u62

~ {'W~~^)l2~2~d8T)02~2'd8r01

—77133(0) = 0.

This completely specifies all entries of N(8,8), which is sometimes called the vector

of centrifugal and Coriolis forces.

2.5' Conclusion

This chapter studied some of the fundamental concepts concerning rigid

motions of R3, manipulator kinematics and manipulator dynamics.

Since the configuration space of the end-effector of a manipulator forms a

Lie group, it is natural to apply Lie group theory to study manipulator kinematics.

In particular, left translation is used to define the body velocity of a rigid body.

If right translation were used, we would have obtained the spatial velocity of a

rigid body (See [MW87] for further details). The adjoint map serves as a similarity

transformation for velocities under change of coordinate frames. Further details

about the Euclidean group can be found in ([Lon85] and [Li87]).

The forward kinematic map is written as a product of exponentials, where

the exponents are the twists representing the joint axes of the manipulator. This
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notation, in our view, is more intuitive and geometric than the Denvait-Hartenberg

notation. Using the exponential formula to solve the inverse kinematics and study

manipulator singularities have been discussed in [Pad86]. We have used the expo

nential formula and left translation to define the manipulator Jacobian, where the

columns of the Jacobian matrix are twists representing the joint axes viewed by

an observer sitting at the end-effector frame. Thus, the Jacobian matrix can be

constructed using a camera at the end-effector.

The exponential notation is also used to formulate the Newton-Euler equa

tions of motion for a manipulator. The infinitesimal generator, ad, of the adjoint

map (or action), Ad, gives the Coriolis and centrifugal forces in the dynamics equa

tions. Thus, it can be viewed as the generalized cross product to R6.

We conjecture from Section 2.4.3 that the use of the exponential formula

may facilitate deriving symbolically the equations of motion because the terms in

volved are the inertia tensors, the adjoint map and its infinitesimal generator instead

of the sine and cosine functions. We are currently considering this possibility along

with the work of T. Kane ([KL83]), R. Featherstone ([Fea84]) and R. Grossman

([GL87]).
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Chapter 3

Robot Hand Kinematics

3.1 Introduction

In the second chapter we have denned a robot hand as a set of open kine

matic chains, or fingers, connected in parallel to a common base, called the palm.

We now define a robot hand system (or a hand manipulation system) to be a robot

hand together with an object to be manipulated. We assume that whenever a finger

contacts the object the contact occurs at the fingertip(i.e., the surface of the last

link) only.

Given a robot hand system where the object is in grasp by the fingers, a typ

ical task requires the object to be manipulated so that either a prescribed trajectory

can be followed or a new grasp configuration can be attained. To fully understand

this manipulation process, we need to explore the basic kinematic relations under

lying a robot hand system. A kinematic relation describes the dependence of one

set of motion parameters on another such set due to the geometry and mechanics

of the physical world. Two prominent examples of a kinematic relation we have en

countered so far are the forward kinematic map of a manipulator which relates the

position and orientation of the end-effector to the joint angles of the manipulator,

and the manipulator Jacobian which arises from the forward kinematic map and

relates the end-effector velocity to the joint velocity.

There are three basic kinematic relations within a robot hand system: (1)

The hand Jacobian which relates the velocity of the finger joints to the velocity

of the fingertips. Since each finger is an open kinematic chain, the hand Jacobian

38
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arises naturally from the forward kinematic map of the fingers; (2) the transpose

of the grip Jacobian which relates the velocity of the object to the velocity of the

contact points and (3) the kinematics of contact which describes the motion of the

contact points over the surface of the object and the fingertips in response to relative

motions of the fingers and the object.

Using the machinery developed in the previous chapter and methods from

differential geometry, this chapter attempts to give a detailed account of these basic

kinematic relations.

The Geometry of a Surface

A robot hand is designed to handle objects of varied shapes and the fin

gertips themselves may have different shapes. When a finger is brought into contact

with an object, the geometry of the fingertip and the object may affect, in a sig

nificant way, the contact forces that can be transmitted and the relative motions

that can be constrained. In order to systematically analyze these effects, we need to

study the geometry of a surface, one of the most extensively studied topics in differ

ential geometry. The readers are referred to ([Spi74], [KH78]) for further references.

To describe a surface, we first cover it with local coordinate charts. Then locally

a surface is characterized by the metric tensor, curvature form and the connection

form.

The Kinematics of Contact

The kinematics of contact describes the motion of a point of contact over

the surface of twocontacting objects in response to a relative motion of these objects.

The contact equations, derived independently by D. Montana ([Mon86]) and C.

Cai and B. Roth ([CR87]), embody this relationship. Early work in this subject

with simplifying assumptions include J. Kerr ([Ker85]), J. Trinkle ([Tri87]) and M.

Cutkosky ([Cut86]). We present the results of D. Montana in Section 3.3.

The Kinematics of a Robot Hand System

In addition to the contact equations derived by D. Montana, the grip Ja

cobian, introduced by K. Salisbury ([MS85]) constitutes another basic kinematic
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relation in a robot hand system. We derive in Section 3.4 the grip Jacobian and

the hand Jacobian. We argue, using our understanding of contact constraints, that

the contact velocity determined by the transpose of the grip Jacobian must equal to

the contact velocity determined by the hand Jacobian in order to maintain a grasp.

We also use the dual notion to explain how forces are transmitted in a robot hand

system. Finally, we summarize all these kinematic relations in a table and use them

to explain the operation of a robot hand system.

3.2 The Geometry of a Surface

This section reviews briefly the geometry of a surface. The notation used

here closely follows that of ([Kli78] and [MP78]).

Definition 3.1 A space curve is the image of a C2 map c : I —• R3, where I is an

interval. The pair (c,I) is called a parameterization of the space curve, c is regular

*/c(i)#0,V<G J.

Notation 3.1 U will always denote an open subset ofR2. A point in U will be

denoted by u GR2, or by (uu u2)eRx R, or (u,v) GR XR. Let f :U —• R3 be a
differentiable map, dfu : TUR2 —• 2/(u)R3 denotes the tangent map off, and /„,/«
denote the partial derivatives of f with respect to u and v, respectively.

Definition 3.2 An embedded surface (or an embedded 2 manifold) in R3 is a subset

S C R3 such that for every point s G S, there exists an open subset SB of S with

the property (1) s G S8, (2) S3 is the image of a C3 map f : U —• R3, where

fu X /„ ^ 0,V(tt,v) € U, and (3) f : U —• S9 C R3 is a diffeomorphism.

Sa is called a coordinate patch and the pair (/, U) is called a (local ) coordinate

system of 5. The coordinates of a point s G Sa are given by (w, v) = /-1(s). The

vectors E\ = fUiE2 = /„ are called the coordinate vector fields of S, and they

together form a basis for Tf^S. The collection ofcoordinate patches {S8} which
covers 5, i.e., 5 = U58, is called an atlas of 5. By a curve in 5 we mean a curve

c : I —• R3, which can be expressed as /ou(r) for some curve u : J —> U in U.
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Figure 3.1: (a) A sphere of radius p, (b) A football.

Example 3.1 The sphere 5 of radius p is an embedded surface. To prove this, let

U = {(«,v) GR2, —} < u < -, —7T < v < it} and consider the following coordinate
systems

/ : U —• R3 : (u,v) \—• (/> cost* cost;, —pcost*sinv,psinu) (3.1)

and

/ : U —• R3 : (u,v) \—• (—pcost*cosv,psinu,pcosusinv).

The image of / is the sphere minus the south pole, north pole and an arc of the

great circle connecting them (see Figure 3.1(a)), i.e.,

f(U) = S - {0,0,±p}\j{-pcosu,0,psmu},-Tr/2< u < tt/2.

Similarly, the image of / is

}{U) = 5 - {0, ±p,0} U{pcos u, psin«, 0}, -7r/2 < u < tt/2.

The partial derivatives of / and / are

fu = (—psinticosv,psinwsint;, pcosu)

fv = (—p cosusin v,—p cosu sin v,0)

and

fu — {psmucosv, pcosu, —p sin u sin v)

fv = (pcosusinv, 0,/>costicosv)
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Clearly, /„ x fv # 0 and fu X fv ^ 0, V(u,v) G U. Moreover, Si = f(U) and

52 = f(U) cover S. Thus, 5 is an embedded surface. •

We denote by S2 the unit sphere (i.e., p = 1) of R3.

Example 3.2 The football x2 + y2 + £ = 1 (Figure 3.1(b)) can be parametrized
by the following coordinate system

/ : U —> R3 : (u,v) •—• (cos ucos v, —cos t* sint;,csinu)

and

/ : Cf—• R3 : (tt,v) i—• (—cost* cost?, sinu,c cosusinv)

where U is given by the previous example. D

Definition 3.3 Let S be an embedded surfaceand f : U —• R3 a coordinate system.

The inner product on R3 induces a quadratic form on Tf^S by restriction. This
form is called the first fundamental form and is denoted by I or Iu. Relative to the

coordinate basis {E\,E2}, Iu is represented by the following 2x2 matrix

Iu =
/«•/« fu ' fv A 011 912

fv'fu fv'fv 921 922

(/, U) is called an orthogonal coordinate system if g\2 = g2\ = 0,V(tt,v) G U.

The following proposition shows that a surface admits an orthogonal coordinate

system.

Proposition 3.1 Suppose that Xi and X2 are tangential vector fields on f :U —•

R3 which are linearly independent at each u G U. Then, in a neighborhood Uo of

each uo we can change variables if) : Vq • Uq so that f o ij) = / has coordinate

vector fields Ei propositional to Xi.

Remark 3.1 (1) Let Xi = Ex and X2 = E2 - (E2, ^i)r^p-, then {Ei,E2} gives
an orthogonal coordinate system for S. (2) If U is simply connected, it is possible

to find a globally defined change of variables xj) : V —• U, satisfying the theorem.
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Proof. (1) Consider the vector fields X,(u) = d/~1Xj(u) defined for each u G U.

Suppose we could find a changeof variables n : U —• V, n(u) = (va(u), v2(u)) for

which

dv\X2) = 0, (fv2(Xi) = 0. (3.2)

Then, in terms of the canonical basis vectorfields (e?i, e2) on V, dnu(X{) —dvx(Xi)e\-\-

0 and dnu(X2) = 0+ dv2(X2)e2. Consequently, if i> = n~x :V —• U, then / = /o ^
satisfies Ei = dfv(€i) = df^v) od^„(e,) = a,(v)X,-, where a,- = (dv^Xi))'1. Thus,
V» is the required change of variables. Note that since {Xi,X2} are linearly inde

pendent, at* is well defined.

(2). Let {ei,e2} be the canonical basis vector fields on U and write X,(u) =

S?c=i €tek- By the standard existence theorem for ordinary differential equations,

we may assert the existence, locally, of integral curves Cj(r) of X,(u). That is,

for |t| sufficiently small, we may find curves ci(t),C2(*) in V with c,(0) = uo and

c;(t) = Xi(ci(t)). We wish to solve (3.2) which is equivalent to

£«J(u)+gd(«) =0, (3.3)

with the initial conditions v*(ci(t)) = t. A standard result in partial differential

equations allows us to do this in a neighborhood of uo, provided that for (i) ci(t)

and X2(ci(t)) are linearly independent and for (ii) c2(t) and Xi(c2(t)) are linearly

independent. But c,(t) = Xi(ci(t)), so these conditions are satisfied by hypothesis.

Also, t —v'(ci(t)), i •£ j, implies that

i=^(Aait))) =dv\ci(t)) =dv'(U<*))).
Therefore dv* ^0,2= 1,2. •

One can check that the coordinate systems of the sphere given by Example

3.1 and that of the football given by Example 3.2 are both orthogonal. From now

on, we will assume, without loss of generality, that the surface in consideration is

covered by orthogonal coordinate systems.

Definition 3.4 A Gauss map of a surface S is a continuous map n : S —• 52,

such that n(s) is normal to S. We say that S is orientable if a Gauss map exists.
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We will also use n to denote the composition map n o f : U —• S2 and dun :

TUR2 —• T/(U)R3 the tangent map ofn. The quadratic form

-dun •dfu : TUR2 X TUR2 —• R

is called the second fundamental form of f at u, and is denoted by II (or IIU). The

matrix representation ofIIu with respect to the canonical basis {ei,e2} o/TuR2 and

the coordinate basis {Ei,E2} ofTf^S is

nu = -
nu • /„ nu' fv a ^11 hi2

nv ' fu nv ' fv h2i h22

Note that n • /„ = 0 implies that /in = n • fuu and etc.

Example 3.3 Consider the sphere 5 of Example 3.1. Choose the outward Gauss

map

n :S —• S2 : s 1—• s/p.

Thus, relative to the coordinate system (/, U) given by (3.1), the first and the second

fundamental forms are

J =
p2 0

0 p2cos2 u
and II —

p 0

0 p cos2 u

Definition 3.5 Consider a surface S with Gauss map n, and a coordinate system

(f, U). We define the normalized Gauss frame at a point u G U as the coordinate

frame with origin at /(u) and coordinate axes

(3.5)x(u)= jlTr y^ =LE2P z^ =n°^'
Since {x(u), y(u)} forms anorthonormal basis for T/(u)5 at each u GU, the second

fundamental form can be expressed with respect to this basis and the result, denoted

by K(u), is given by

K(u) = M-'lIuM'1 (3.6)

where

'l/ul .0
0 |/.|

is called the metric tensor. Note that

M = = I}J*

JT(u) = [x(u),y(u)]rtzu/||/0||>Z„/||/„||].

E. Cartan ([Car47]) calls K(\x) the curvature form of 5 at u.

(3.7)
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Figure 3.2: Holonomy angle of a closed path in 5

Definition 3.6 Let Sa be a coordinate patch of S, with an orthogonal coordinate

system (/, U).At a point sa G Sa, the connection form T is a 1 x 2 matrix defined by

T = y(u)«[xu(u)/|/«|,xl,(u)/|M],

Consider Figure 3.2. Let c(t) = / o u(t), t G [0, */], be a closed path in 50. Pick a

tangent vector, vo, to 5 at c(0) and parallel translate it along c back to the starting

point.1 Call the new vector v/. If Sc is not flat then Vf is usually rotated from vq

by an angle ip. ift is called the holonomy angle of the path c. The following formula

shows that the holonomy angle is given by the line integral of the connection form

(see [Li89] for the proof.).

tp = fTMudt.
Gauss-Bonnet Theorem ([Tho78]) indicates that ip not only depends on the path c,

but also on the area enclosed by c.

To summarize, a surface S locally is described by the metric tensor, M,

curvature form, K, and connection form, T. These geometric quantities can be

explicitly obtained once a coordinatization of the surface is given.

Example 3.4 Embed the plane in R3 by the following parameterization

/ : u C R2 — R3 : (u,v) •—> (u,v,0).

The axes of the Gaussian frame are

x(u) =

1 0 0

0 • yOO = 1 and z(u) = 0

0 0 1

1Recall from [Kli78], that to parallel translate a vector along a curveonehas to solve the geodesic
equation.



The curvature form, connection form and metric tensor are

K =
0 0

,r=[o, o], m =
1 0

0 0 0 1
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Example 3.5 Consider the sphere 5 of radius p. Let Si = f(U) be the coordinate

patch of S studied in Example 3.1. The Gaussian frame at a point s G Si is given

by

x(u) =

— sin u cos v

sin u sin v

cosu

. y(«) =

— sinv

— cost;

0

and z(u)

cos ucos v

— cos u sin v

sinu

The curvature form, connection form and metric tensor are given by

K =
1/p 0

0 1/p
, T = [0 —tanu//>], and M =

p 0

0 pcosu

3.3 The Kinematics of Contact

This section studies the kinematics of contact. The kinematics of contact

describes the motion of a point of contact over the surface of two contacting objects

in response to a relative motion of these two objects. Using concepts from the

previous section, we derive a set of equations, called the contact equations, that

embody this relationship. The results of this section are due primarily to Montana

([Mon86]).

We now consider the two objects that move while maintaining contact with

each other (see Figure 3.3). Choose reference frames Cr\ and Cr2 fixed relative to

objl and obj2, respectively. Let Si C R3 and 52 C R3 be the embeddings of the

surfaces of objl and obj2 relative to Cri and Cr2, respectively. Let ni and n2 be the

Gauss maps (outward normal) for Si and 52. Choose atlases {5i,s}52i and {52,,}Jl2!

for Si and 52. Let (/i,i, U\,i) be an orthogonal right handed coordinate system for

Sij with Gauss map ni. Similarly, let (f2,i,U2ii) be an orthogonal, right-handed

coordinate system for 52,i with n2.
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Let ci(t) G Si and c2(t) G 52 be the positions at time t of the point of

contact relative to CTi and Cr2, respectively. We will restrict our attention to an

interval i" such that ci(i) G 5it; and c2(t) G 52,j for all t G / and some i and some

j. The coordinate systems (/i,,-, #1,,) and (f2j, U2,j) induce a normalized Gaussian

frame at all points in 5i)t- and 52,j. We define the contact frames, Cci and Cc2 as

the coordinate frames that coincide with the normalized Gauss frames at ci(t) and

C2(*), respectively, for all t G I. We also define a continuous family of coordinate

frames, two for each t G /, as follows. Let the local frames at time t, Cn and C\2, be

coordinate frames fixed relative to Cri and Cr2, respectively, that coincide at time

t with the normalized Gaussian frames at ci(t) and c2(t) (see Figure 3.3).

We now define the parameters that describe the 5 degrees offreedom for the

motion of the point of contact. The coordinates of the point of contact relative to the

coordinate system (/lt,-,Uhi) and (f2tjyU2j) are given by ui(t) = /{^(ciW) £ UU
and u2(t) = f2j(c2(t)) G U2tj. These account for 4 degrees of freedom. The final
parameter is the angle of contact i>(t), which is defined as the angle between the

x—axes of Cn and C\2. We choose the sign of ij) so that a rotation of Cn through

-ip around its z axis aligns the a;—axis.

We describe the motion of objl relative to obj2 at time t, using the local

coordinate frames Cn and C\2. Let vx,vy and vz be the components of transla

tion velocity of Cn relative to C\2 at time t. Similarly, let wx, wy and wz be the

components of rotational velocity.

The symbols Ki, 2\ and Mi represent, respectively, the curvature form,

connection form and metric tensor at time t at the point ci(t) relative to the co

ordinate system (/i,i, #i,i). We can analogously define K2,T2 and M2. We also

let

cos ij) —sin ^

—sin ij) —cos fj)
Rtp = , K2 = R^K^tj,.

Note that K2 is the curvature of obj2 at the point of contact relative to the x- and

y -axes of Cn- Call Ki + K2 the relative curvature form.

The followingcontact equations that describe motion of the point of contact

over the surface of objl and 6bj2 in response to a relative motion between these

objects are due to Montana ([Mon86]).
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Figure 3.3: Showing the definitions of the coordinateframes of two bodies in contact.

Theorem 3.1 (Kinematic equations of contact) At a point of contact, if the relative

curvature form is invertible, then the point of contact and angle of contact evolve

according to

Ul = Mi\Ki + K2)-l
-wt

w3

u2 = M^R^Ki + fa)-l
-w.

w3

V> = wz + TiMiui-|-T2M2U2,

0 = vz.

K,
Vx

V..

+ Ki
Vx

V
y J

(3.8)

(3.9)

(3.10)

(3.11)

Proof. Since Cji(J) is fixed relative to Cri, the velocity of Cci relative to Cri,

according to Corollary 2.2, is the same as the velocity of Cci relative to Cn. .

Similarly, we have

Vcl.rl

Wcl.rl

Vc2,r2

ti>c2,r2

«cl,/l

^cl,/l

Vc2,/2

Wc2,/2

At time t the position and orientation of Cci relative to Cn(t) are r&tn

R&,li = Id, Proposition 2.3 states that

t>cl,/2

_ Wcl,/2 _
=

Vcl,/1

. Wcl,/1 _
+

V/1,/2

(3.12)

(3.13)

0 and

(3.14)



Since rcitC2 = 0, we have

Vcl,l2

U>cl,l2

RIl,c2 ° Uc2,/2

0 RZl,d2 J [ Wc2>12
Combining Eqs. (3.12) ~ (3.15) yields

+
Vcl.rl V/1,/2

W/1,/2

RZl,c2 o
o R?i,c2

Vc2,r2

V>c2,r2

Vcl,c2

Wcl,c2

+
l>cl,c2

^cl,c2

We now calculate the terms in Equation (3.16). First, observe that

Therefore,

Also, by definition

•£cl,c2 =
Rrj, 0

0 -1

Vcl,c2 = 0, S(wchd2) =

, rcl,c2 = 0-

0-^0

0 0 0

V/1,/2 =

vx

vv

vz

, W/1,/2 =

-

wx

V>y

. W* .
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(3.15)

(3.16)

(3.17)

(3.18)

To examine the motion of Cci relative to Cri, ^et £i(ui),yi(ui) and 2i(ui) be the

axes of the Gaussian frame for objl at the point of contact ui G Un. Then

rci,ri = ci(t) = /ii(u!(t)), J2cl>rl = [xi(ui{t)), yi(ui(t)), zi(m(t))] (3.19)

and

Vcl.rl = Rcl,rl *̂ cl.rl = 1*1,01, ZX)T [(/i,)Ul, (/l,)Wl] Ui =

We also claim that

M1U1

0
(3.20)

™cl,rl = S 1(Rcl,rl'Rcl,rl)

= S-1 ([xi,yi, zi]T [[(a?i)Ul, (xi)^]ui, [(yi)Ul, (yi)»Jui, [(zx)Ul, (2i)t,Jui])

_ c-i

f 0 -TiMiiii
TiMiiii 0 JTiMiUi

K[-{KiMiUi)T 0
(3.21)

J/



To see this, note that the 1-1 entry of (3.21) is given by

*?" *K*i)«i.(*i)«i]*i =JSt"*1"* =0;
the 2-1 entry by

Vi ' K^Oun^ikJui = TiJIfiiii;

and the 1-3 and 2-3 entries by

tf
[(*i)«i»(*i)«i]ui = KiMivti.

We similarly find that

- c-iWc2,r2 = $

\

Vc2,r2 =
M2U2

0

0 -r2M2u2

T2M2U2 0 K2M2VL2

-(K2M2u2)T 0 })

Substitute Eqs. (3.17) ~ (3.23) into Equation (3.16), we get

Afiui +

K1M1U1 +

Vx

vv

vz = 0,

w.'y

= Mxxi2,

= —Rnj,K2M2ii2,

T1M1VL1 + Wz = lj> —T2Af2U2.

\
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(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

Rearranging the above set of equations gives us the desired results. •

Eqs. (3.8) ~ (3.10) are called the first, second and third contact equations,

and Eq. (3.12) is called the constraint equation because it expresses the constraint

on the relative motion necessary to maintain contact.

Example 3.6 Let objl be the flat surface of Example 3.4, and obj2 be the unit ball

studied in Example 3.5 (see Figure 3.4). Use the coordinate patches studied in these

examples and reorient the objects, if necessary, so that ip — 0 at 0. The contact

equations are



Figure 3.4: Motion of a unit ball over the plane

til —Wy - VX

Vi WX~Vy

u2 — -Wy

v2 wx sec u2

+ V>2 — wx tan u2

, where Ui =

Definition 3.7 Sliding contact is defined by

w3

w. = 0;

w.

til

. V1 .

, u2 =
u2

. V2 .
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(3.28)

(3.29)

Substituting Eq. (3.29) into Eq. (3.28) we get the contact equations for sliding

motion

til ' -l" 0

vi 0 -1

u2 = 0 vx + 0

V2 0 0

. i> . 0 0

Definition 3.8 Rolling contact is defined by

vx
= 0.

vu. (3.30)

(3.31)

Similarly, substituting Eq. (3.31) into Eq. (3.28) we get the contact equations for



rolling motion

Figure 3.5: A unit disk on the plane

«i

vi

u2 = 0 wx+ -1 wv.

v2

. 1>

0 ' -1 '

1 0

0 wx + -1

- sec t*2 0

tant£2 0
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(3.32)

Definition 3.9 When the relative motion is rotation around the common normal,

Then, Eq. (3.28) becomes

wx

w,,

= 0, and = 0.

Ul =0, U2 = 0, ^ = wz.

(3.33)

(3.34)

For such motion the point of contact is fixed on both surfaces and only the angle of

contact changes. D

Example 3.7 (The classical example re-visited) Let's consider the classical exam

ple of a unit disk rolling on the plane, as shown in Figure 3.5 (See [Gol80], and

[Gre77]). The point of contact has coordinates (^2,^2) over the plane and coordi

nates t*i over the disk. Embed the disk into R3 with the following parameterization

/ : Ui C R —• R3 : t*i'i—• (cosMi,sin«i,0).

We define the Gaussian frame of the disk by the frame with origin at f(ui) and

coordinate axes

x(t*i) = /', z(wi) = /", and y(ui) = z x x.
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Let if) be the angle of the disk relative to the t>2-axis. Also let (vx, vy, vz) be the

components of translational velocity of Cn relative to C\2, and (0, wy,wz) be the

components of rotational velocity. Following the proof of Theorem 3.1, we derive

the following contact equations for the disk.

til -1 ' 0 " 0 0

u2

v2

=
—cosV

sint/j
Wy +

0

0
Wz +

cos^>

sinV>
vx +

—sinV>

cosip

. 4. 0 1 0 0

= 0.

t^3.35)

•

3.4 The Kinematics of A Robot Hand System

Analogous to manipulator kinematics, the kinematics of a robotic hand

studies the relations between motion of the object being manipulated and the mo

tion of the finger joints. For example, like the manipulator Jacobian and its trans

pose, the hand Jacobian and the transpose of the grip Jacobian relate the velocity

of the object to the velocity of the finger joints; while the grip Jacobian relates

applied finger forces to the net force on the object and the transpose of the hand

Jacobian relates the applied finger force to the equivalent joint torque necessary for

maintaining static equilibrium. But, unlike the manipulator Jacobian which arises

from position constraints specified by the forward kinematic map, the constraints

on the hand Jacobian and the grip Jacobian arise from contacts between the fin

gertips and the object. Contact constraints are usually unidirectional in nature,

are nonholonomic and more difficult to work with than simple position constraints

(holonomic). Moreover, the parameters specifying the hand Jacobian and the grip

Jacobian evolve according to the contact equations of Section 3.3. Thus, it takes

a great deal more effort to understand robot hand kinematics than manipulator

kinematics.

Definition 3.10 A robot hand system consists of a set of open kinematics chains,

called fingers, and an object to be manipulated. The 0th links of all the fingers are

attached to a common base, called the hand palm. The surface of the last link of a

finger is called the fingertip.
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Figure 3.6: A hand manipulation system

Assumption 3.1 We assume that

1. Each finger contacts the object over its most distal link, or the fingertip, only.

2. Both the object and the fingertips are rigid and convex so that contacts occur

over isolated points rather than over areas of their surfaces.

Figure 3.36 illustrates a three-fingered robot hand system that satisfies the

above assumption.

Consider a A;—fingered robot hand system.

Notation 3.2 For i = 1, ...&, let mi denote the number of joints of finger i, and

&i = (0i,i, •••0tfmi)T> ft = (*t,i, •••Tt\roi)r € Rm*' denote the joint position and the joint
torque vectors, respectively.

We fix a set of coordinate frames to the system as follows. The reference

frame of the system, Cp, is fixed to the hand palm, it is also called the palm frame;

the body coordinate frame, C0, is fixed to the mass center of the object, it is also

called the body frame; for i = 1,...k, the finger frame, C/,-, is fixed to the last link
of finger i.

Choose a reference configuration of finger i, and identify 0,- with zero at the

reference configuration. Let Fi{9i) be the forward kinematic map of finger i relative
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to the palm frame, Cp. Then the velocity of C/,- relative to the palm is related to

the joint velocity by the Jacobian of ^,(0,).

vfi,P

wfi,P

= Ji(Oi)0i. (3.36)

Eq. (3.36) gives the first kinematic relation of the robot hand system.

Let S0 be the embedding of the surface of the object relative to Cf,, and

Si be the embedding of the fingertip of finger i relative to C/,-. Choose coordinate

charts for S0 and S,\ Let cot(i) e SQ and Cfi(t) G 5,- be the position at time t of the

contact point between the object and finger t relative to C0 and C/,-, respectively. We

will restrict attention to a time interval I so that Coi(t) belongs to a single coordinate

system of S0 and c/,-(t) belongs to a single coordinate system of 5,-.

At time t, C«(t) denotes the local frame of the object at the point of contact

with finger i. By our early definition, Cbi(t) is fixed relative to Cfc. Similarly, C/,-

denotes the local frame of finger i at the point of contact, and is fixed relative to

c}i.

Let (vx, v*y, vz) be the components of translational velocity of Cbi(t) rel

ative to Cu(t), and (w*x, w*y, wz) the components of rotational velocity. Since the

local frames Cw(<) and Cu(t) share a common origin (i.e., r^/,- = 0), according to

Proposition 2.3, the following relation exists between the velocities of Cn and C/,-.

where

vbi,P

wbi,P

is the orientation matrix of C\,i relative to Cn.

R*i o

0 R*.

" vi'
vi

vli,p
+

v*z

. Wli>p. vj*x

Wy

. wi.

cos <f>i s'm4>( 0

—sm<f>i —cos (pi 0

0 0-1

(3.37)
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On the other hand, by Corollary 2.1, the velocity of Cbi is related to the

velocity of Cb by a constant transformation

Vbi,p

v>bi,P

= Ad-i
9bi,b

Vb,p

L Wb,P J

(3.38)

where gbi,b is the configuration of Cbi relative to the object frame, Cb- Similarly we

have for finger i that

vH,p

L w">p J
Ad-i

9H,fi

Vfi,P

where guji is the configuration of Cn relative to C/,\

Combining Eqs. (3.36), (3.38) and (3.39) with Eq. (3.37) yields

where

Ad-i
9bi,b

T £Jfi =

n,P

wb,P J
= JfiOi +

Vx

vz

w\

w\

W
z .

r<h o

0 .R+

When a robot finger grips the object with a prespecified contact model(see

[MS85] and [Ker85] for a detailed account of contact models) certain components

of the relative velocity are constrained to zero. For example, for a frictional point

contact we have

^d i-JiiOi):

= 0,

for a frictionless point contact we have

t>i = 0,

and for a soft-finger contact (see [MS85] for its definition) we have

vi

= 0 andwj = 0.

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)
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The general form of constraint given by a particular contact model is

«i

B? = 0, (3.45)

w:

w

where Bj £ Rn»x6 is called the selection matrix, or the basis matrix by J. Kerr

([Ker85]). For example, for a frictional point contact,

T _
*/ =

10 0 0 0 0

0 10 0 0 0

0 0 10 0 0

Assuming that a contact model in the form of Eq. (3.45) has been given,

we now apply it to Eq. (3.40) and obtain a constraint equation that relates the

velocity of the object to the velocity of the finger joints.

B'M^
vb,P

wb,P
= Btffiii.

Define m = ££=1 m,-, n = £?=i ni and

0i

0 = GRm, BT = Di*,g{Bf,...B%}.

Bk

Then, Eq. (3.45) can be concatenated for i = !,...& into the form

where

vb,P

v>b,P J
= JhB,

nXroJh = Bd •Diag{Jn, ...Jfk} € R

(3.46)

(3.47)

(3.48)



is called the hand Jacobian, and

GT = BT

Ad-v
9bl,b

Ad-i
9bk,b J

is called the transpose of the grip Jacobian.

Eq. (3.47), which relates the velocity of the object to the joint velocity of

the fingers, is called the fundamental constraint equation for the robot hand system.

Violation of the fundamental constraint equation may cause the object to drop.

Thus, an important objective of the robot hand controller design is to enforce this

constraint relation.

The contact constraint can also be viewed in terms of the number of in

dependent wrenches, or forces, that one object is able to apply on the other. For

example, under a frictional point contact, a robot finger can exert a pushing force

along the contact normal and two components of frictional forces in the tangent

directions on the gripped object. On the other hand, under a soft finger contact, a

robot finger can apply in addition to the three contact wrenches under a frictional

point contact a torque about the contact normal to an object. Let n,- be the num

ber of independent contact wrenches applicable by finger i to the object. Then the

resulting contact wrench can be expressed, relative to the local frame Cw, as

fbi

nx6
GR

= BiXi
™>bi
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(3.49)

(3.50)

where Bi € R6xn is the basis matrix, and x,- = (*,-ti, ...«t,n,)T € Rni is the magnitude
vector of applied contact wrenches along the directions of Bi. Note that for a

frictional point contact, Xi is constrained to the friction cone, Ki, specified by

Ki ={Xi eRn', xif3 <0, x\i +x\2 <fi2xl3}
where \i is the coefficient of static Coulomb friction.

Transforming (3.50) to the object frame gives the contribution of finger

forces from finger i

r A
nib

= AdT-i ' BiXi.
9bi,b

(3.51)
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On the other hand, the required joint torque for maintaining static equilibrium in

the presence of contact wrench BiXi, is given by

Ti = J)iBiXi. (3.52)

Finally, summing Eq. (3.51) for i = 1, ...k yields the net force on the object

where

fb

m,b

= Y] AdT_! •BiXi = Gx
?-i gbi.b
•=i

G= [At^ , ...Ad -i ]•Diag{5i, ...Bk) GR6xn

(3.53)

is the grip Jacobian, and

x = [x?,...xl]TeRn

is the vector of applied finger forces.

Define K = Ki © ... © Kk be the force cone. Then it is necessary that the

magnitude vector x lie in K in order to maintain contact. Also, concatenate Eq.

(3.52) for i = 1, ...k to yield the required joint torque vector for static equilibrium.

t = J% ' x, where r = (3.54)

Tk

We summarize the velocity and force transformation relations in Table 1,

see also Figure 3.7 for a more intuitive picture. The vector A G Rn is called the

contact velocity.

Force Torque Relations Velocity Relations

Body to Fingertip " fb "
mb

= Gx A = G' Vb,p

wb,P

Fingertip to Joints T = J<(0)S Jh(0)9 = A

Table 1. Force/velocity transformation for a robot hand system.



Force/Torque

Space

Velocity

Space

Joint
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Contact Object

Figure 3.7: Force/velocity transformation for a robot hand system.

The operation of the robot hand system can be most effectively explained

using Figure 3.7:

In the velocity domain, the hand Jacobian transforms velocity of the finger

joints to velocity of the contact points. On the oher hand, the transpose of the grip

Jacobian transforms velocity of the object to velocity of the contact points. In order

to maintain contact, the contact velocity specified by these two transformations

must be the same. Thus, the fundamental constraint relation arises.

In the force domain, the grip Jacobian transforms the applied finger forces

to the object frame. On the other hand, the required joint torque for maintaining

static equilibrium is given by the transpose of the hand Jacobian.

The parameters specifying the transformation matrices, G and Jh, however,

envolve according to the contact equations of Section 3.3. To be more specific, we

distinguish two types of frictional point contact:

(1) Fixed frictional point contact

"4"
vi = 0 and

w*x
y

. wl .
= 0; (3.55)
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(2) rolling contact

*;

= 0 and w*z = 0. (3.56)

Let \ioi(t) 6 R2 be the coordinates of Coi(t) € R3 relative to the chosen coordinate

chart of S0, and u/,(t) e R2 be the coordinates of c/,(tf) 6 R3 relative to the chosen

coordinate chart of S,-. Then, for a fixed frictional point of contact we have

Uot 0

*/. = 0

. * . wz

(3.57)

where w*z is the rotational rate of finger i about the contact normal. It is clear from

Eq (3.49) that the grip Jacobian, G, is constant for a fixed frictional point contact.

But, Jh implicitlydepends on ^, as indicated by Eq. (3.41).

For rolling contact, the coordinates of contact involve according to

Uoi *2X
*/« = MJ>
i> _ Toi + TfiR^.

-l(Koi + Kji)
—w:

w:

(3.58)

where (w*yi w*x) are the components of rolling velocity. G and Jh depend implicitly

on the rolling velocity, as revealed by Eqs. (3.58), (3.48) and (3.49).

To manipulate an object often requires solution of the following inverse
problems.

Problem 3.1 (a) Given a body wrench fb

mi,
€ R6, find a contact wrench xeRn

that lies in K and solves the equation

Gx =
fb

mi,
(3.59)

(b) Given an object velocity

equation

vb,P

L w*,p J
€ R6, find a joint velocity 9 that solves the

jhe = gt vb,P

wbfP
(3.60)
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Remark 3.2 We also call r = Jf[x, where x is a solution to Eq. (3.59), the joint

torque that solves Problem 3.1 (a). •

Denote by ft the triplet (G, K, Jh) and call it a grasp. We have

Definition 3.11 A grasp ft = (G,Jjf,Jj,) is said to be stable if Eq. (3.59) has a

solution for every body wrench, and manipulable if Eq. (3.60) has a solution for

every object velocity.

Remark 3.3 (1) A stable grasp has been called a force-closure grasp([MS85]). It

is important to note that stability is not to be understood in the sense of Lyapunov

since we are not discussing stability of a differential equation. (2) A manipulable

grasp is also called a grasp with full mobility (see [Kob85] and [MS85]). D

If K = Rn, grasp stability and manipulability are easily characterized.

Proposition 3.2 (1) A grasp is stable if and only if G is onto. (2) A grasp is

manipulable if and only if R( Jh) D R{Gf), where R(') denotes the range space.

We remark that the conditions (1) and (2) superficially appear to be dis

tinct, but they are related. In particular, a stable grasp which requires zero joint

torque to balance a non-zero body wrench will not be manipulable. Conversely,

a manipulable grasp which requires zero joint motion to accommodate a non-zero

body motion will not be stable. Figure 3.8 (a) shows a planar two-fingered grasp,

where each finger is one-jointed and contacts the object with a point contact with

friction. Clearly the grasp is stable and a force fy can be resisted with no joint

torques. But the grasp is not manipulable, since a y-direction velocity on the body

cannot be accommodated. Figure 3.38 (b) shows a grasp of a body in R3 by two

three jointed fingers. The contacts are point contacts with friction. The grasp is

manipulable, though the object can spin around the t/-axis with zero joint velocities

9. However the grasp is not stable since a body torque rn about the y-axis cannot

be resisted by any combination of joint torques.

In view of the preceding remarks, we will require a grasp to be both ma

nipulable and stable, i.e.,

R(G) = R6 and R(Jh) D R(G<). (3.61)
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\
+2 \

^ , , V; *—

5>-

r\
^—3*-k %

•

(a

y

—•* A

) k (b) *

Figure 3.8: (a) A stable but not manipulable grasp, (b) a manipulable but not stable

grasp.

The first condition suffers from the drawback that the force domain is left completely

unconstrained. As we have seen earlier that the forces are constrained to lie in the

force cone K, taking into account the unidirectionality of the contact forces and

finite frictional forces, in which case the image of K n R(Jh) under G should cover

all of R6. Thus, we have

Corollary 3.1 A graspunderunisenseandfinite frictionalforces is both stableand

manipulable if and only if

G(K n R(Jh)) = R6, and R(Jh) D R(G*).

When a grasp is stable, the solution contact wrench has the form

where GT(GGT) x *" is theminimal norm solution to theinverse problem, and

xq e Rn is any vector in the null space of G that renders x into the force cone K.

Let 77(G) be the null space ofG. It is important to observe that a vector x G77(G)
contributes no net wrench upon the object. But, it reflects how hard the object is

squeezed. Hence, 77(G) is called the internal grasp force space. It is critical during

the course of manipulation that a proper set of internal grasp forces be realized.

This ensures the fundamental constraint relation.

fb

mb

x = GT{GGT)~l fb
+ x0

(3.62)

(3.63)
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Similarly, when a grasp is manipulable the solution joint velocity has the

form

9=JZWD-W \Vb*
wb,p

where the first term is the minimal norm solution to the inverse problem and 9q €

r}(Jh) is any joint velocity that causes no motion of the contact points. n(Jh) is

called the internal motion space, which arises from robot fingers with redundant

degrees of freedom.

3.5 Conclusion

Robot hand kinematics is perhaps one of the most complicated subjects in

robotics: not only does the system have many degrees of freedom, holonomic and

nonholonomic as well as unidirectional constraints are involved. This makes a robot

hand system nonholonomic. There are three basic kinematic relations in a robot

hand system:the contact equations, the grip Jacobian, and the hand Jacobian. These

kinematic relations have been summarized in Table 3.1.

For quasi-static manipulation, solvability of the two inverse problems is of

critical importance. It determines if a robot hand can impart motions to the grasped

object.

+ 90 (3.64)
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Chapter 4

Planning

4.1 Introduction

Consider a typical task(for specificity, consider scribing with a grasped

pen) to be executed by a robot hand system. The entire operation can be carried

out in three consecutive phases: (1) The robot hand grasps the object subject to a

set of accessibility constraints. For example, if the pencil is initially lying on the

desk then the bottom face of the pencil is not accessible. (2) If the initial grasp

configuration is not satisfactory for executing the task, the object may be dropped for

regrasp otherwise it is manipulated within the hand to an new grasp configuration.

Note that regrasping creates new constraints and is not likely to achievea satisfying

grasp. (3) When a final grasp configuration is achieved, the object is manipulated to

follow a desired trajectory while exerting a set of contact forces on the environment

until the task is completed. During the final phase, the fingers may contact the

object with either a fixed point of contact or rolling contact.

We call the three phases the initial grasp phase, dextrous manipulation

phase and coordinated manipulation phase. A flow diagram which illustrates the

execution of a typical task is shown in Figure 4.1.

Task planning for a robot hand system, according to T. Lozano-Perez

([Loz82]), is to transform task-level specifications, such as scribing or peg-in-hole,
into finger/object-level specifications, such as a desired trajectory of the object or

a desired sequence of motions of the fingers. As suggested by the flow diagram of

Figure 4.1, task planning for a robot hand system can also be divided into three
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consecutive phases: (1) (Task oriented)grasp planning, (2) motion planning for dex

trous manipulation and (3) trajectory planning for coordinated manipulation. Each

of these planning phases are defined as follows:

Grasp planning: A task has certain favored grasp configurations which

are most efficient for executing the task. Grasp planning is to transform the task

requirement into criteria for selecting a grasp. Motion planning for dextrous

manipulation: An initial grasp configuration may not be the optimal grasp. Thus,

the object has to be manipulated within the hand to the optimal grasp configura

tion. This process is called dextrous manipulation. Motion planning for dextrous

manipulation amounts to planning a sequence of finger motions so that dextrous

manipulation can be carried out. Trajectory planning for coordinated ma

nipulation: Assume that the fingers contact the object by either fixed points of

contact or rolling contacts, trajectory planning for coordinated manipulation is to

plan a trajectory of the object so that (1) the task gets executed and (2) the contact

constraints are maintained.

This chapter studies several problems associated with task planning for a

robot hand system.

Grasp Planning

By reviewing early works in grasp planning, we argue that the only criterion

for grasp planning should be the task requirement. Then, we propose a procedure for

task modeling. Using the task model, we develop two quality measures for evaluating

a grasp, and the optimal grasp is the one that maximizes the quality measures.

Consequently, grasp planning is transformed into an optimization problem.

What Is Dextrous Manipulation?

We formulate precisely in mathematical terms the dextrous manipulation

problem and provide a guideline for future works in this area. The work of Sec

tion 4.3 constitutes an important step towards a full understanding of the dextrous

manipulation problem.
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Figure 4.1: A flow diagram for task execution by a robot hand
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Motion Planning with Rolling Constraint

The two types of nonholonomic constraints involved in a robot hand system

are: Rolling constraint and constraints due to finger relocation. These constraints

are what make dextrous manipulation possible. To explore the use of nonholonomic

constraints in dextrous manipulation we study motion of two objects under rolling

constraint. In particular, we address the following two problems: (1) Given two

contact configurations determine if an admissible path exists between them. (2)

Assuming that a path exists, find such a path. Using the contact equations of

Montana and methods from differential geometry we solve the first problem by

computing the Lie algebra generated by the constrained vector fields. We then show

that the path planning problem can be solved either using results from nonlinear

control or using the notion of path lifting. We explicitly construct a solution when

one of the object is flat.

4.2 Grasp Planning

The problem of graspplanning has not been clearly defined in the literature.

It means differently when spoken by different people. For example, according to

Reuleaux ([Reu75]) over a century ago, and to Lakshminarayna ([Lak78]) more

recently, "grasp planning " is to find a set of contact points upon the surface of a

given object so that the induced grip Jacobian, under the assumption of a frictionless

point contact model, is stable. A somewhat related problem to this is, how many

contact points (or fingers) are necessary to achieve a stable grasp! These problems

have been extensively studied by many others, including J. K. Salisbury ([MS85]),

V.D. Nguyen ([Ngu86]), J. Trinkle ([Tri87]), and B. Mishra, J. Schwartz and S.

Sharir ([MSS86]).

In both [MSS86] and [Lak78], it was shown that the minimal number of

contact points needed to achieve a stable is 4 for a 2-dimensional object and 7 for a

3-dimensional object. When the object is polyhedral, Mishra et al gave an algorithm

that find a stable grasp and run in time linear in the complexity of the object (i.e.,

number of faces/sides).

In [MS85] and [Ngu86], the assumption was relaxed to allow frictional point

contact and even soft finger contact. Nguyen ([Ngu86]) also discussed a procedure
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for positioning two fingers around the object surface to achieve a stable grasp.

According to H. Hanafusa and H. Asada ([HA77]), to Cutkosky et al

([CAHK87]) and to V.D. Nguyen ([Ngu86]), where a finger is modeled by line

springs, " grasp planning" is to find a set of contact points upon the surface of

a given object so that the resulting potential function of the object has a local

minimum. They presented examples to illustrate the derivation of the object poten

tial function by reflecting from that of the fingers. The results, however, are valid

only when the contact constraints are holonomic. In other words, when there, is

rolling contact the object potential function derived using the reflection technique

is ambiguous. Furthermore, rolling contact is inevitable in dextrous manipulation.

There are three drawbacks associated with the first definition of "grasp

planning". First, the kinematics of the robot hand has not been taken into account.

Thus, a set of contact points generated according to the stable grasp criterion may

not be realizable by the robot fingers. Second, even if the contact points are re

alizable many choices of stable grasps to a given object exist. When the task is

specified, some of these grasps may still not be satisfactory for executing the task.

One may recall the grasp given by Figure 3.8, which is not manipulable while is

stable. Third, it is always desirable from an engineeringstand point that the grasp

chosen should be "optimal" with respect to some acceptable criterion. Based on

these considerations, Cutkosky ([Cut86]) and Li and Sastry ([LS88]) havesuggested

that the task requirement should be the only criterion for selecting a grasp, while a

grasp should consist of the contact configurations as well as the kinematic configu

rations of the robot fingers. In other words, a grasp should be judged based only on

how efficiently the task can be executed. This constitutes our philosophy for grasp
planning.

The following questions then naturally arise.

1. What should the definition of a grasp be?

2. How is a task to be modeled?

3. How is the task model incorporated into grasp planning?

For the first question, let's examine our early definition of a grasp, which

consists of the triplet ft=(G,K, Jh). Given the friction properties of the object
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and the robot fingers, the force cone K is determined (assuming uniform friction

forces across the object surface). The grip Jacobian, G, is a function of the contact

configurations, and the hand Jacobian, Jh, is a function of the finger joint variables,

9, as well as the contact locations relative to the fingertips. The objective of grasp

planning is to specify the variables which determine G and J/,. For the remaining

questions, we present a procedure for task modeling in Section 4.2.1. Then in

Section4.2.2 we introduce an objective function which incorporates the task model

and can be used to formulate the optimization problem for grasp planning. We hope

that new techniques can be developed to solve this optimization problem.

4.2.1 Task Modeling

Consider a typical task such as grinding. First, in the wrench space of the

object forces are required to manipulate the object or to act on the environment

through contact with the object. Associated with the task are several special direc

tions which require more forces than the others, e.g., the normal and the tangential

directions for the grinding task. Second, in the twist space of the object, it is neces

sary to command motion of the object. In particular, a task has certain directions

which require faster and larger range of motions than the others, e.g., the tangential

directions of the grinding task. In each space, these special directions are called the

preferred task directions. The relations between the preferred and the less or non-

preferred task directions constitute the intrinsic features of a task. Task modeling

is to determine, in each space, the task directions and the relationship between the

preferred and the non-preferred task directions.

A methodology for task modeling was first developed by Z. Li and S. Sastry

([LS88]) and latter generalized by Z. Li, P. Hsu and S. Sastry ([LHS89]). According

to [LHS89], one associates with each task an ellipsoid, Aa, in the wrench space

and another ellipsoid, Bp, in the twist.space. In each space, the principal axes of

the ellipsoid coincide with the task directions, and the length of a principal axis

is determined by the weight assigned to that task direction. In particular, the

longerest axis of the ellipsoid coincides with the most preferred task direction, the

second longerest axis coincides with the second most preferred task direction and so

on, and the shortest axis coincides with the least preferred task direction. In other

words, the shape of the ellipsoid reflects the task requirement. To demonstrate the
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Figure 4.2: Peg-in-hole task

precise implications of this methodology we study task modeling for the following

two tasks.

Example 4.1 Consider the peg insertion task depicted in Figure 4.2 where the

robot hand grasps the workpiece and inserts it into the hole.

In order to execute the task, a nominal trajectory is planned before grasp

ing. After grasping the hand follows the planned trajectory until some misalignment

of the peg causes the object to deviate from the nominal trajectory and collide with

the environment.

With the body coordinate frame chosen as shown, the likehood of collision

forces in each force direction of decreasing probability wouldbe —fy, ±rz, ±tx, ±fz,

±/x, ±ry and +/y. If we denote by (rj)f=1 the ratio of maximum expected collision

forces in each direction, we obtain a set Aa, parametrized by a £ [0, oo), in the

wrench space by

U=i(/x,...tncR6 (/y+ci)2
+ -T +

rl , (A - c2f
4

r2 r2 1

r5 r6 J

where the constant c\ reflects the offset of maximum expected collision force between

+fy and —fy directions, and c% reflects the gravitational force on the object. The

set AQ is an ellipsoid centered at (0,Ci,C2,0,0,0), with the principal axes given by

the generalized force directions, and axes lengths by the corresponding ratios r,-.

The size of the ellipsoid is scaled by the parameter a.
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Figure 4.3: A scribing task

By appropriately assigning a set of values to the constants (r,-, i = 1, ...6)

and (c,-, i = 1,2) we can decide on the shape of the ellipsoid so that it reflects the

task requirement in the wrench space. In particular, the peg insertion task requires

that (r,- > rj) whenever i > j and c\ to be large when collision forces in +/y direction

are very unlikely.

On the other hand, since the peg insertion task requires precise positioning

the grasp should. provide good manipulation capability ( or dexterity) in certain

directions. First, relatively largemotion is needed in the vy direction, and then follow

wy, vz and vx directions. If we model by (^i)f=1 the ratioof relativemaximum motion

requirement among the six generalized velocity directions we obtain an ellipsoid Bp

in the twist space, parametrized by f3 € [0, oo), by

S, ={(»x,...^)6R«(|+|+|+|+| +|<^} (4.2)
The shape of Bp reflects the task requirement in the twist space. In this case 62 is

the largest ofall, and then follow £5, 63 and Si. Precise values of these constants can

be obtained from experiments or experience through error-and-trial procedures. •

Example 4.2 Consider the scribing task shown in Figure 4.2.1. Human experience
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tells us that, in order to execute the task efficiently, the grasp should provide, (1)

good dexterity at the lead and (2) sufficient normal forces. With the body coordinate

frame shown, the task requirements can be translated into requirements on the two

task ellipsoids by (a) the task ellipsoid Bp in the twist space should have longer

axes in uy and wz directions than in the other directions, and (b) the task ellipsoid

Aa in the wrench space should have longer axis in fx direction than in the other

directions. Applying this reasoning we obtain in (4.3) and (4.4) two task ellipsoids

Aa and Bp that describe the relative force and velocity ratios of the task.

A. ={(/„ ...,r.) 6R6,^££+§+J+l+i+iS«»\ (4.3)
Wrench Space Task Ellipsoid

^={(^,..,^6R«,|+|+|+|+f+|<^} (4.4)
Twist Space Task Ellipsoid

•

To conclude these examples, we emphasize that to each task we can asso

ciate two task ellipsoids, one in the wrench space that represents the relative force

requirement and the other in the twist space that represents the relative motion

requirement of the task. The constants (r,-, 6{, a) that determine shapes of these

ellipsoids can be obtained from experiments or from experience with similar tasks.

Hence, weneedonly to storein a library data for the ellipsoids for a set of interesting

tasks.

There are also other approaches to develop task ellipsoids. For example,

if stiffness control is used for the hand, then the maximum expected positional

uncertainties in each of the task directions may be used to scale the axis of Bp.

Also, during parts mating, jamming can be avoided if certain constraints on the

ratios of the contact forces are satisfied ([Whi82]). Using these constraints on the

force ratios to scale the ellipsoid AQ is another approach.

Generalizing from these examples we will assume that a task is modeled

by two generalized ellipsoids, Aa in the wrench space and Bp in the twist space, of



the form

AQ ={oiAx +c, such that x,c 6R6, \x\ <1, and A6R6x6}

and

Bp ={/3Bx +d, such that h, dGR6, |z| <1, and Be R6*6}

where the structure matrices A, B are given by

Ui
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(4.5)

(4.6)

A = [Ui, ...U6] diag{<ri, ...<r6} = VYV1, Ui € R6,<Ji > 0, i = 1, ...6; (4.7)

U6

and

*i

* = pi,...lfc] diag{^,...M = U£Ut,Ui£R6,i=l,...6 (4.8)

U*

Here, CTt-, (t = 1, ...6,) is the task direction; Oi and Si are the weights assigned to Ui

in, respectively, the wrench space and the twist space. The constants c, d G R6 are

the center positions of the respective task ellipsoids. In the following development,

we may assume without loss of generality that c = d = 0. When the structure

matrix, say A, is nonsingular an alternative expression of Aa would be

Aa ={y €R6, such that (y - crf-^AA'Y^y - c)) <l}. (4.9)

When stiffness control is used for the hand, cr\ is related to Si by &i =

ki • Si, where A;,- is the desired stiffness in direction U{. On the other hand, when

hybrid position/force control is used for the hand, c,- = 0 if direction Ui is position

controlled and Si = 0 if direction Ui is force controlled. Consequently, we see that

our approach to task modeling applies to very general tasks.
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Figure 4.4: A geometrical interpretation of //t(12)

4.2.2 Structured Quality Measures for Grasp Planning

This section combines the task model with the definition of a grasp to

develop two quality measures for a grasp.

Definition 4.1 Considera grasp ft = (G,K,Jh). Let 0J" C Rm be the unit ballin

the finger joint velocity space. We define the structured twist space quality measure

jit(ft) of the grasp ft by

//«(ft) = sup {/?, such that Jh(0?) DG^Bp)} .
0€R+ l J

(4.10)

Remark 4.1 /J*(ft) has the following geometric interpretation ( see Figure 4.4 ):

The unit ball Of1 in the finger joint velocity space is mapped into the contact velocity

space by J/,. On the other hand, a task ellipsoid Bp is mapped back into the contact

velocity space by <?'. ^t(ft) is then the largest /3 such that G\Bp) is contained in

Jh{0^). In other words, //t(ft) is the ratio of the structured output ( i.e., the task

ellipsoid) to the input (i.e., the finger joint velocity). •

Definition 4.2 Consider a grasp ft = (G,K,Jh). Let0% C Rn be the unit ball in

the finger wrench space and <Tmax(Jr/i) the maximum singularvalue of Jh- We define

the structured wrench space quality measure //«;(ft) of the grasp ft by

//w(ft) = sup {a, such that G(0? n K) D Aa} •<t^(Jh) (4.11)
ot€R+

Remark 4.2 See Figure 4.5. The first term in the product is the largest a such

that AQ can be embedded in G(Of) (the output), and the second term is the largest

input torque required to generate the finger wrench Of (the input). The structured

quality measure is given by the gain factor (output/input). •
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Figure 4.5: A geometrical interpretation of ^tu(ft)

The quality measures defined in (4.10) and (4.11) provide useful character

ization of a grasp. Clearly, we can say that a grasp ft is a good grasp with respect to

a given task, modeled by Aa and Bp, if it has higher structured quality measures \it

and fiw than other candidate grasps. Due to unidirectionality and finite frictional

forces, it is, however, not easy to evaluate these measures. In the special case when

K = Rn we have

Proposition 4.1 Assuming that K = Rn, then the structured quality measures

(4-10) and (4.11) are given by

Ma) =°£L2{B'G(jkJi,r1G'B}

and

Proof. Using the following expressions

MOT) ={ye R", fo, (JnJirH) <1}

and

G\Bp) ={pG'Bx, xGR6, \x\ <l}
in (4.10) and notice that G\Bp) C Jh(0?) if and only if

(PGlBx, {JhjQ-10&Bx) < 1.

In particular, the above equation must hold for

(4.12)

(4.13)

(4.14)

P2 su? (G'Bx, (JhJfo^G'Bx) = j32 sup(ar, (G'BYWhJti^G'Bx) < 1
|*|=i |*|=i
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which is equivalent to

fi<^H?{BtG(JhJtrl^B}

By (4.10), we have (4.12).

The proof of (4.13) follows immediately. •

(4.12) and (4.13) can be easily computed using singular value decomposi

tion. If we also want to consider the manipulability of a grasp in a certain direction,

say Ui, we may simply apply Ui to (4.14) and obtain that

Pi = (G'BUi, (JhJir'G'BUi)-1'2 = S^i&Ui, (JhJkr^Ui)-^2.

Here, Pi measures the effectiveness of the grasp in imparting motion at direction Ui,

and a similar relation holds for the stability measure.

Note that (4.12) and (4.13) exhibit an interesting dual relation: Let the task

ellipsoids be the unit balls. If we hold G constant but vary Jh then //*(ft) is directly

propositional to <7min(«7/») and /xw(ft) is inverselypropositional to ffmaxfJ/,). On the

other hand, if we hold Jh constant but vary G then ^w(ft) is directly propositional to

0min(G) and #*(ft) is inversely propositional to vmax(G). This observation implies

that to a certain point it is in general not possible to increase the two quality

measures simultaneously by varying G and Jh- Namely, increasing one quality

measure will sacrifice the other. For instance, if we select a "power grasp " in

the scribing task, that is, a grasp with high quality measure in the wrench space,

then the grasp will be very poor in imparting motion at the pencil lead. Conversely,

if we choose a "dextrous grasp ", that is, a grasp with high quality measure in

the twist space, then the grasp will be very poor in rejecting disturbance forces.

This also suggests that up to a certain point a compromise has to be made between

"dexterity" and "power''. Hence, wepropose to use the following function, called the

performance measure (PM), as our objective function in the optimization procedure.

PM(ft) = [Mt(ft)P •[M^)]1"7; (4-15)

7 € [0,1] is called the selection parameter. 7 > 0.5 indicates that the task is

dexterity oriented and 7 < 0.5 indicates that the task is power oriented. For 7 G

(0,1), the performance measure is zero if either ut(Q) = 0 or nw{Sl) = 0. Also, for

7 near 0, a grasp that maximizes PM will be a dextrous grasp, and for 7 near 0 a



so

Figure 4.6: Planar peg-in-hole task

grasp that optimizes PM will be a power grasp. More importantly, for 7 near 0.5,

a grasp that optimizes PM will be both stable and manipulable.

An outline of the grasp planning algorithm is given as follows:

Algorithm 4.1 (Grasp Planning)

Step 1: Obtain descriptions of the object and the robot hand.

Step 2: Write down the expressions of the grip Jacobian and the hand Jacobian.

Step 3: Model the task according to Section 4-2.1 and choose the selection param

eter 7.

Step 4: Formulate the optimization problem using the performance measure as the

objective function.

Step 5: Solve the optimization problem.

To conclude this section we present a simple example to illustrate the

preceding discussions.

Example 4.3 Consider the planar Peg-in-Hole task, shown in Figure 4.6. For sim

plicity we assume that the body orientation coincides with the orientation of Cp.

Hence, the task direction matrix U is given by U = I 6 R3x3. To execute the task,
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stiffness control is used for the hand ( [Whi82]) and we assume that the desired

stiffness matrix is given by

K = diag(fcx, ky, ke) = diag(5,7,100). (4.16)

From [Whi82] and Example 4.1 we model the task by

U = I € R3x3, S = diag(4,52), A = diag(0.8,0.7,0.02) = K _1 •E.

The objective is to search for grasps that maximize quality measures (4.12) and

(4.13).

Assume a frictional point contact and let the block width and the finger

spacing be 2. To simplify the problem further we make additional assumptions: G

is fixed as in the figure and the object is constrained to move vertically. This leaves

the system with a single degree of freedom. Let 0n be the generalized coordinate of

the system and we study how 0U affecting the structured grasp quality measures.

As shown in the figure, the grip Jacobian is given by

-10 10

G= 0-101

0 -10-1

and the hand Jacobian J/, is

where

Ji =

and

J2 =

cos a —sin a

sin a cos a

cos a sin a

Jh = diag(Ji,J2)

- sinfln - sin(0n + 912) - sin(0n + 912)

cos0n + cos(0n + 0i2) cos (0ii + 012)

sin02i - sin (02i - 022) sin(02i - 022)

_- sina cos a J [ cos 02i + cos (02i - 022) - cos (02i + 022)

where a is the orientation angle of the object. The previous assumptions impose

the following constraints: a = 0, 012 = ir - 20u, 02i = tt —0n, and 0u —022 =

*"_ (#ii + #12)- Figure 4.7shows plots of the quality measures and the performance

measure ( 7 = 0.5 ) as functions of 0n. The structured measure A*t(ft) and PM
attain their maximum at 0n = 0.475 radian (27° degree). Since G is held constant

the task structures have no effect on uw, which is still inversely propositional to

o~max(Jh)' Clearly, the optimal grasp is 0n = 27°. •
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Figure 4.7: Performance measure, grasp quality measures versus 0n

4.3 What Is Dextrous Manipulation?

In the previous section, a performance measure for evaluating a grasp is

defined. The optimal grasp, by definition, is then the one that maximizes the

performance measure. To execute the task, one would like to stay near the optimal

grasp configuration. In practice, however, the optimal grasp may not always be

attainable when a robot hand picks up an object subject to a set ofinitial accessiblity

constraints. For example, observe a girl performing a scribing task with the pencil

initiallylying on the desk. She would first pickup the pencil at a stable grasp. Then,

she manipulates the pencil within her hand to arrive at a better grasp. Finally, she

executes the task near that grasp configuration.

Definition 4.3 The act of manipulating an object from one grasp configuration to

another without dropping the object is called dextrous manipulation.

The ability to perform dextrous manipulation is one of the unique features

of a dextrous robot hand. Because of this feature a robot hand can grasp objects of

various sizes and execute tasks ranging from simple to sophisticated ones.

Dextrous manipulation is a very complex process. Human hands have

evolved thousands of years to master this capability. One may observe from the
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Figure 4.8: A robot hand system.

girl's scribing task, that her finger usually makes rolling contact, sliding contact, as

well as fixed point ofcontact with the object. Sometimes her finger will break contact

during one regime and makes new contact during another regime (we call such an

act finger relocation). Mathematically very little is known about this process. The

aim of this section is to formulate the dextrous manipulation problem.

First, we need to re-define a grasp configuration.

Consider the hand manipulation system shown in Figure 4.8. Let SE0(3)

be a copy of the Euclidean group designated for the configuration space of the object.

Similarly, let Qi C SE(3) be the set of configurations reachable by the.last link of

finger i, i.e., Qi is the image of the finger's forward kinematic map. Without loss

of generality, we may assume that the forward kinematic map is injective. Thus,

Qi is in one-to-one correspondence with the finger joint space. Let the object and

finger i be at configurations g0 £ SE0(Z) and gt £ Qi, respectively, and they are

in contact. Clearly the contact points are uniquely determined because the relative

curvature form is invertible. Moreover, we conclude from our assumption that there

exist unique finger joint angles 0,- that give the gi. Recall now our early definition

of a grasp, which is given by the contact points and the finger joint variables. Thus,

the configurations of the object and the fingers suffice to determine a grasp.
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Definition 4.4 The configuration space, P, of a robot hand system is given by

P = SE0(3) xQtX ... x Qk,

a point z = (g0,g\, ...gk) € P is also called a grasp configuration.

Remark 4.3 This definition of grasp configuration is more general and more intu

itive than the early one. For a given grasp configuration z 6 P, one of the following

possibilities exists: (1) none of the fingers contacts the object. Thus, ft = (G, K, Jh)

is empty. This is called a null grasp. (2) A subset of the fingers contact the object.

This corresponds to finger relocation and the grasp ft is defined by these fingers

that are in contact with the object. (3) Every finger contacts the object. •

It is important to observe that (a) motion of the object is indirectly con

trolled through contacts with the fingers, and (2) the contact points are unchanged

if the grasp configuration z G P undergoes a rigid motion. To state these facts in

mathematical language, let G = SE(Z) be the group of rigid motion of R3. G acts

on P by right translation, i.e., there exists a map

$:?xG-»?:(2,/i)h-> (g0h,gih, ...gkh).

Referring to Figure 4.9, this corresponds to a rigid motion h on the entire system by

the palm where the hand system is attached to. Clearly, for each h ^ e, the identity

element of G, the map $/, : P —• P : z i—• $(<?, h) is one-to-one. This enables us

to define an equivalence relation ~ on P as follows: z\ ~ z2 if there exists a h € G

such that Z2 —z\h. In other words, two grasp configurations are equivalent if one is

related to the other by a rigid motion. We let P/G denote the space obtained from

P under this equivalence relation. A point [z] in P/G is of the form [z] = zG. P/G

is called the space of shapes([MoTi88]) and there exists a natural projection from P

to P/G, given by

7T : P —• P/G \z\—• zG.

The triplet (P, G, P/G) is called a principal bundle. P is sometimes called the total

space, P/G the base space and G the structure group.

Proposition 4.2 Let M = Q\X..xQk denote the configurationspace of the fingers.

Then, the space of shapes, P/G, is homeomorphic to M.
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Figure 4.9: A global view of dextrous manipulation

Proof. Let [z] = zG = (g0,g\, ...gk)G be an element in P/G. Then, setting h =

g-1 we see that zG ~ (e,^-1,..^-1)©. We call [z] = (e,gi,..gk)G the unique

representative of [z]. For if [z] and [z'\ are two different points in P/G. Then,

[z] ^ [z'] if and only if [z] ^ [zf] if and only if (git ...gk) •£ (g[, —gk)- We define the

homeomorphism / by

/ : P/G —• M : zG •—• (gu ...gk), wherezG ~ (e,gu ..gk)G.

This construction completes the proof. •

M is also called the control space because a trajectory in M can be con

trolled using actuators located at the finger joints. On the other hand, if a grasp is

both stable and manipulable then the object motion can be effected by the finger

motion. Consider now Figure 4.9, where the configuration space is on top of the

control space. Starting at an initial grasp configuration, zq, we wish to arrive at a

final grasp configuration, Zf, by choosing a proper set of finger trajectories, which

can be realized by specifying torque inputs to the motors, and lifting them to the

configuration space. Thus, we have

Problem 4.1 (Dextrous Manipulation) Given two grasp configurations zq, zj in P,
plan an admissible piecewise continuous curve *y(t),t € [0,*/], in M such that (1)



86

7 can be lifted to a curve a in P, i.e., n(ct) = 7 and a connects zo to Zf, i.e.,

a(0) = zo ond ct(tf) = z/.

Roughly speaking, a finger trajectory 7(f) € M,t G [0,*/], is said to be

admissible if the object can be held stably by the robot hand (see [LCS89] for more

details). We are not sure yet how to construct such a curve. There remain many

open questions in this area. What we can do in the next section is to study motion

of two objects with rolling contact constraint, and hope that this will provide further

insight into this problem.

4.4 Motion Planning with Rolling Constraint

In this section, we study motion of two rigid bodies under rolling constraint.

This problem is a basic ingredient in dextrous manipulation. First, label the two

rigid bodies by objl and obj2, respectively (see Figure 4.10). Objl may represent

the fingertip of a robot hand, and obj2 the object being manipulated by the robot

hand. This problem also has importance of its own. For example, in wheeled

mobile robotics ([MN86]), objl may represent the wheel (i.e., 3 degrees of freedom

wheel) of a mobile robot and obj2 the curved surface where the robot travels. In

contour following, objl may represent the end-effector of a manipulator and obj2 the

workpiece.

By commanding rolling motion instead of sliding motion, which is known

to be holonomic, the advantages gained are:. (1) The problem of wear associated

with the contacting bodies is eliminated. (2) The associated control problem becomes

much simpler. Recall that in order to control sliding motion, the coefficient of

friction has to be known exactly, which is in general difficult. Even the world's best

figure skaters have trouble managing controlled sliding. On the other hand, rolling

motion can be achieved by exerting forces which are sufficiently close to the center

of the friction cone (see Chapter 5). (3) As we will see soon the set of configurations

reachable by rolling is much larger than that reachable by sliding. This is due to the

nonholonomic nature of the constraint.

We address the following two problems in particular.

Problem 4.2 (The Motion Existence Problemj Given two contact configura

tions, determine whether an admissible path exists between them.
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Figure 4.10: Motion of an object with rolling constraints

Problem 4.3 (The Path Planning Problemj Assuming that an admissiblepath

exists (or a motion exists) between two contact configurations, find such a path.

Motion planning with nonholonomic constraints is fundamentally different

from motion planning with holonomic constraints. For the latter, an (semi-) alge

braic description of the free space, which a path can be planned, is available. The

free space is specified either in terms of a set of equality, or inequality, constraints

on the configuration variables ([Can88]) or in terms of a set of integrable differential

equations (e.g., sliding). For the former, only a set of nonintegrable differential

equations, which a path has to satisfy, is available.

An outline of our approach to these problem is as follows: First, we use

the results of Section 3.4 to define the configuration space of contact and derive the

system of differential equations for rolling motion. Then we use some known results

from differential geometry to determine the existence of a path. Finally we present

a simple algorithm that determines a desired path when one of the object is flat.

Consider the contact motion of two objects shown in Figure 4.10.

Definition 4.5 1 The configuration space of contact, P, is a five dimensional space,

which is locally describedby the coordinatesof contact relative to objl and obj2, and

the angle of contact, i.e., a contact configurationp6? has the form

p = (u1,vi,u2,v2,<l>)T,

where ui = («i,vi)T, U2 = («2>V2)T are the coordinates of contact relative to objl

and obj2, respectively, and 4> is the angle of contact.

1We assume that the relative curvature form is invertible.
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Note that this definition of P depends on the coordinate systems used for objl and

obj2. An intrinsic definition of P is givenin [Li89].2

4.4.1 Existence of Motion

Along the notation of Section 3.3, let {yx, vy, vz) be the components of

translational velocity of the local contact frame, and (wx,wy,wz) the components

of rotatioanl velocity. Then, rolling contact implies that

vz

= 0 and w. = 0. (4.17)

Substitute (4.17) into the contact equations and rearrange the results, we have

where

Xito) =

p = Xi(p)wx + X2(p)wy, p =

Mf1
M2l

T\ + T2R<f> ^

-1{Ki+K2) , X2(p) =

ui

u2

4>

Mf1

Mr1

Ti + T2^

(4.18)

-1(*!+#,)
-1

0

(4.19)

(4.18) defines a system of differential equations on P. X\(p) and X2(p) are the

vector fields for the infinitesimal rolling motion.

Definition 4.6 A path p(t) € P,t 6 [0,oo), is said to be admissible (or conforms

with the constraint) if it satisfies the differential equation (4-IS) for some piecewise

continuous rolling velocity (wx(t),wy(t)) GR2, t € [0,00).

Definition 4.7 Letpo € P be an initial contact configuration. A point pf 6 P is

said to be reachable from po by rolling if there exists an admissible path p(t) 6 P,

t 6 [0,t/], such that p(0) = po andp(tf) = pf.

2For readers familar with differential geometry, P is defined as follows: Let T0Si be the circle
bundle of Si and T0S2 the circle bundle of S3. Form the product space (X>Si x T0S2) and let
Sl, the circle group, acting on T0S\ by left rotation and on T0S2 by right rotation (i.e., we have
a diagonal action of 5l on (T0Si x T052)). Then, P is the product space quotient the diagonal
action, i.e., P - (T0Si x T0S2)/Sl. (See [Li89], [Wes8l}).
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The following is a restatement of the motion existence problem.

Problem 4.4 (The Motion Existence Problem). Given two contact configu

rations po, pf G P, determine the existence of an admissible path that connects po

top/.

Modifying a result from differential geometry, known as the Chow's The

orem ([Cho40]), we arrive at the following algorithm that solves Problem 4.4. A

proof of correctness of the algorithm can be found in ([HK7.7], [Son88a]).

Algorithm 4.2 (Motion Existence Algorithm)

Input: 1. Coordinate systems {/lf,-, Pi^gy11 ofobjl, and {/2,i, U2jYp?2 ofobj2.

2. Geometrical data, (MuTi,Ki) of objl and (M2,T2,K2) of obj2.

3. The coordinates of two contact configurations po,pf € P.

Output: Determine ifpf can be reached from po by rolling.

Step 1: Compute the coordinate expressions of the vector fields X\(p) and X2(p)

from (4.19).

Step 2: Compute thefollowing Lie bracket vectorfields (see the remarkthat follows)

xs(p) = [XuX2] = -r—Xx - ~z—X2,
6pi dpi

X4{p) = [XUX3], (4.20)

Xs(p) = [X2,X3],

where p = (i*i, v\, u2,v2,if))*.

Step 3: Form the distribution

V(pf = {Xu X2, X3, X4, X5}. (4.21)

For each p£ P, V(p) is a 5x5 matrix. Compute the rank ofV(p).

Output: (a) // rank(v(p)) = 5, Vp € P, then there exists an admissible path

between any two contact configurations.4

3For each p 6 P, V(p) is an involutive distribution, known as the Lie algebra generated by
{Xx(V),X2(p)).

4This says that if V(p) is full rank, then anypoint in the space can be reached by moving along
the integral curves of X\ and X*.
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Figure 4.11: An interpretation of [Xi, X2].

(b) Ifdim(V(p)) = n < 5,Vp € Ps, let NpQ be the maximum integral manifold

ofV through po6. Ifpf€ N^, then an admissible path exists between po

and pf7

(c) Otherwise, no path exists.

Remark 4.4 1. The Lie bracket vector field has the following meanings: Let

X\ and X2 be two vector fields on P, and p 6 P. Define a curve, c, on P as

follows. For sufficiently small t, (1) follow the integral curve of X\ through p

for time t; (2) starting from there, follow the integral curve of X2 for time t;

(3) then follow the integral curve of X\ backwards for time t; (4) then follow

the integral curve of X2 backwards for time *(see Figure 4.11). In other words,

c(t) = ¥_t($_t(¥t($t(p))))

where $*, %t are the integral curve of X\ and X2, respectively. Then, it can

be shown that

c(0) = 2[X\,X2](p)

2. The previous remark also suggests a way of creating a net motion in the

direction [X\, X2] by moving along the directions X\ and X2.

3. Computation of the Lie bracket vector fields, and checking the rank of V(p)

can be done using Macsyma.

•

We now apply the above algorithm to several examples.

&For technical reasons weassumethat V(p) hasconstantrank. Otherwise see([HK77], [Son88a]).
6The existence and uniqueness of JV^ is guaranteed by Frobenius Theorem.
7This condition is rather difficult to check, see [Son88b].
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Example 4.4 Consider a unit ball rolling on the plane, as shown in Figure 4.10.

From Example 3.5 and 3.4, the ball has two coordinate systems and the plane one.

The curvature form, metric tensor and connection form of the ball and the plane

are given by these examples as well.

Step 1: On the first coordinate system of P, the kinematic equations of contact

are

" iii 0 -1
v\ sec «i 0

u2 = -sin^ wx+ -cosip wy (4.22)

v2 —cos if) sin ij)

•ip —tanu\ 0

= Xl(p)WX + X2(p)Wy.

Step 2: Computing the successive Lie brackets of Xi(p) and X2(p), gives

0

and

Xz = [Xi,A"2] =

—sec «i tan u\

—sin tj) tan u\

—cos i*i tan u\

—sec2u\

Xa = [Xij-Xy =

o

0

-COS0

sin^>

0

Xs = [X2, X3] =

0

(1 + sin2 tii) sec3 «i

2 sin ij> sec2 u\

2 cos V> sec2 ui

2 sec2 u\ tan wi

Step 3: Form the distribution

V = {X\, X2,X3,X4,Xs}.
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Figure 4.12: Motion of a unit ball over another ball

It is easy to verify that, through elementary row and column operations, the

determinant of V is identically 1.

Steps 1 through 3 are repeated for the second coordinate system of P and V

is again nonsingular.

Output: It is true that a unit ball can reach any contact configuration on the plane

by rolling! d

Example 4.5 The second example consists of a unit ball rolling on another ball of

radius p (See Figure 4.12). Clearly, P has four coordinate systems.

Step 1: The kinematic equations of contact in the first coordinate system are

«i

Vi

u2

v2

rj,

0

(1 —/3) secu\

—/3sin^

—(3 cos if) sec u2

(5 tan«2 cos if> —(1 —fl)tanu\

= X\wx + X2wy,

where 0 = ^

wx +

-(1 - P)
0

—(3 cos ip

j3 sin.i{) sec u2

—/? tan i*2 sin ^

w,
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Step 2: Using Macsyma, the successive Lie brackets of Xi and X2 are computed.

X3 = [Xi,^] =

where

0

(l-/?)2sec2ui

(3(1 —/3) sin ij> sin u\ sec u\

/3(1 —(3) cos 1/) sin Mi sec Mi sec u2

Xzfi

_ P(l —p) cos V> cos Mi sin1*1 sinu2 + {-/32cos2 u\ + ({3 - l)2} cos 1*2
•^3,5 = -

cos2 «i cos2 u2

0

0

X4 = [Xi,X3] = /3(2/3-l)cos^>

—/3(2/3 —1) sin ^> sin M2 sec 1*2

/3(2/3 —1) sin ipsin 1*2 secu2

»

X5 = [X2, X$] =

0

-{-(1 - /3)3 cos2 «i + 2(1 - /3)3} sec3 ttl

—{/33 sinV> cos2 «i —2/3(1 —/3)2 sin iff} sec2 «i

-{/33cos V> cos2 «i - 2/3(1 —/3)2 cosV>} sec2 mi secu2

•^5,5

where

and

_ {/33 cos ipcos3 Mi - 2/3(1 - (3)2 cos V>cos Mi} sinm2 + a
COS3 Mi COS M2

-^5,5 =

a = {/32(1 - (3) cos2 mi - 2(1 - /3)3} sinMi cosm2.

Step 3: Computing the determinant of

v = {X\,X2, Xz, X4,X5}

gives

COS Mi COS M2 1 + P

V is singular for the following cases
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• /3 = 1 —• p = 0 : This corresponds to obj2 being a single point. Note that

the rank of V is 3 (not 2!). This can also be seen from the multiplicity

of the zeros in the determinant.

• /3=|—¥ p = 1: This corresponds to the case when both objects are
balls of identical radius. In fact, counting the multiplicity of the zeros at

(3 = j, or computing the rank of V, the reachable space has dimension

2! This fact can be interpreted using the notion of holonomy angles (See

Section 4).

• /3 = 0—> p = oo. The result is degenerate because from the previous

example we know that a unit ball can reach any contact configuration on

the plane by rolling.

Steps 1 through 3 are repeated for the other three coordinate systems and the

results are consistent.

Output: It is true that a unit ball can reach any contact configuration by rolling

on another ball of radius p if and only if p is not zero or (p^ 1). D

Example 4.6 (The classic example re-visited). Consider again the classic example

of a unit disk on the plane. Note that the two rotations are different here from

Example 4.4. We get from Example 3.7 the following two vector fields

and

"driving" = X\ =

-1

—cos^>

sin^>

0

Performing the Lie bracket operation, gives

Xz = [X\,X2] =

and "steering" = X2 =

X4 = [X2,X3] =

0

—sinV>

—cos^>

0

0

—cos^

sinV>

0
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Note that [Xu X3] = 0. X3 and X4 are called the "wriggling" and the "sliding"

vector field, respectively. It is then simple to verify that

V = {X1,X2,X3,X4}

has rank 4, for all points in P. This shows that a disk can reach any contact

configuration by "driving" and "steering". •

4.4.2 A Path Planning Algorithm

We now study the path planning problem.

Problem 4.5 (Path Planning Problem) Assuming that an admissible path ex

ists between two contact configurations po,Pf £ P, find onepath.

One approach is to consider it as a nonlinear control problem. The plant

equation is given by (4.18), whereas. p(t) 6 P is the state, (Xi(p),X2(p)) are the

controlvector fields and (wx,wy) € R2 the controlinputs. The objective is find a set

ofcontrolinputs (wx(t),wy(t)) £ R2,t € [0,*/], such that the system (4.18), starting

from po, reaches pf in finite time. Relevant works in nonlinear control literature

include ([Son88a], [Bro88], [Bro81], [HK77], [Sus83]). We are currentlyinvestigating

now about this direction. The solutions are however only approximate.

Making use of the contact constraint, an alternative approach, which gives

exact solutions, is presented here. First, from our driving experiences, we know that

a path relative to the surface of objl (or 0672) determines uniquely a path in the

configuration space of contact. More precisely, we have

Proposition 4.3 Let p0 = {ui(0),u2(0),^(0)} 6 P be an initial contact con

figuration. Then, a path ui(t) £ Si8 , t 6 [0,*/], uniquely determines a path
p(t)eP,te[o,tf].

Proof. It suffices to show that (u2(t),ij)(t)) are uniquely determined by ui(t),t 6

[0, if]. But, from the first contact equation rolling velocity can be expressed in terms
of ui as

-w.'V

wx
= (Ki+K2)Mi ui. (4.23)

8When thecoordinate system inconsideration isclear, we shall notdistinguish theobject surface
from its coordinates in order to simplify notation.



Substituting this into the second and third contact equations yields

M2lRtU2

ui

Afiiii.
_Ti + T2R4,

For given initial conditions (u2(0),^(0)), a theorem (the existence and uniqueness

theorem) of ODE ensures the existence and uniqueness of the solution to (4.24).

This completes the proof. •

We call the solution, p(t) = (ui(*),U2(*)»lH*))>< € [0,*/], from (4.24) the

liftof the path \ii(t) through the point po. Apparently, the lift p(t) G P is admissible,

or satisfies the rolling constraint.

Corollary 4.1 Let po € P be an initial contact configuration and u2(t) 6 S2,t €

[0,tf\, a contact trajectory relative to obj2. Then, there exists a unique lift p(t) 6

P,t e [0,tf], defined by thefollowing ODE.

TxRj, + T2 _

The angle of contact, if), whose evolution defined by (4.24), has a useful

geometric interpretation when obj2 is flat, i.e., T2 = 0. Let ui(*),i 6 [*o,*i]> be a

piecewise regular simple closed curve in S\ representing the contact trajectory of

objl, and Stf* = ^>(*i) —i/)(to) denote the net change of contact angle induced by ui.

We have

Proposition 4.4 —Sip is equal to the holonomy angle of the loop ui (See [Tho78]

for the definition of holonomy angle). In other words, —6ij) = JfRkdA, where k is

the Gaussian curvature of Si and R is the region bounded by u.\.

Remark 4.5 This is a key result to the path finding algorithm. In order to realize

a desired change of contact angle without altering the point of contact relative to

Si, we may plan a closed curve in S\ such that the Gaussian curvature integral over

the region bounded by the loop is equal to the net angle change.

Proof. This follows from Gauss-Bonnet Theorem in differential geometry. For

details see ([Tho78], [KH78] and [Li89]). •

Using (4.25), (4.24) and Proposition 4.4, we have the following algorithm

that generates a desired path when obj2 is flat. The example of a unit ball on the

plane is used for illustration.

M2VL2.
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(4.24)

(4.25)
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Algorithm 4.3 (A Path Finding Algorithm)

Input: 1. Initial and final contact configurations po = (uj, u§, ip°) and pj —

(u{,u>,^/).

2. Geometric data o/objl and obj2: curvature forms (K\,K2), metric ten

sors (M\,M2) and connection forms (Ti,T2 = 0).

Output: An admissible path that links po to p/.

Step 1: Find a path u2(t) £ S2,t£ [0,ti], such that

u2(0) = u£, and u2(h) = n{. (4.26)

Let vti(t) £ Si and ip(t), t £ [0, tj, be the induced trajectory of contact relative

to objl and the contact angle, respectively (i.e., the solution to (4.25)). At

t=ti, the contact point o/objl and the contact angle reach some intermediate

values, denoted by

ui = ui(*i) and $ = if>(ti).

Step 2: Find a closed path u2(t) £ S2,t £ [ti,t2], such that the induced contact

trajectory of objl has the property

ui(ti) = ui and u\(t2) = u{.

Let il>(t),t £ [t\,t2], be the induced trajectory of the contact angle. Att = t2,

the angle of contact reaches some intermediate value denoted by

ty —ij)(t2), where tj)(tx) = •$.

Step 3: Let 8tjj = ^'' —ij> be the desired holonomy angle. Find a closed path ui(t) £
Si,* £ [t2,tf], such that (1) the induced trajectory u2(t) £ S2,t £ [t2,tj], is

also closed and (2) the Gaussian curvature integral over the region bounded by

ui is equal to the desired holonomy angle.

Output: Return the path(\ii(t),XL2(t),ij)(t))£ P,t£ [0,*i,]u[*i,t2]u[i2,</], which

is the union of the paths found in Step 1, 2 and 3.

Remark 4.6 The desired contact point u{ of obj2 is achieved in Step 1. Then,
using a closed curve relative to obj2 in Step 2 the desired contact point u{ of objl
is realized without sacrificing the desired contact point of obj2. Finally in Step 3,
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Figure 4.13: A Lie bracket motion

using a closed curve relative to objl, which also induces a closed curve relative to

obj2, the desired contact angle is realized.

We now use the example of a unit ball on the plane to illustrate the algo

rithm. Clearly, Step 1 can be easily done using existing techniques in robot motion

planning ([Kod87], [Can88]). Step 2 and Step 3 are carried out as follows.

Step 2A: Let iii and u{ be the two contact points ofobjl. We wish to construct a
closedpathu2(t), t £ [ti, t2],in the plane so that the induced contact trajectory

ui(*)»* £ [*i»*2]» ofS2 links iii to u{.

Lemma 4.1 Let iii and u{ be exactly tt/2 distance apart in the unit sphere S2.
Then, the square of side length v/2, shown in Figure 4-13 iritt induce a contact

trajectory ui which links iii to u{.

Proof. We need to demonstrate that the square has the desired features. Label the

point ui and u{ in the sphere by A' and B', respectively, as shown in the figure.
d(A', B') = tt/2. There exists a unique geodesic, i.e., an arc of the great circle,

that connects A' to B'. The great circle will be called the equator. Let A denote

the initial point of contact in the plane. Thus, tracing the geodesic from A' to B'

induces a straight line in the plane with end point B, and d(B,A) = 7r/2 (by arc

length constraint). Going from the point B to the point C in the plane is equivalent

to going from the point B' to the north pole, C", in the sphere. Note that /.(ABC)

and £(A'B'C) are both right angles. Now, tracing the straight line from C to

D in the plane induces a curve in the sphere which ends at the starting point A'.

Consequently, by closing the curve in the plane with a straight line joining D to A,
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we have arrived at the point B' in the sphere. This shows that the square indeed

induces a curve in the sphere which has a net incremental distance tt/2. This is

called a Lie bracket motion. •

We now return to the more general case.

Step 2B: By Lemma 4.1, we may assume thatd(iii,u{) < tt/2. Otherwise, Lemma
4.1 can be applied repeatedly until some intermediate point which is less than

tt/2distance away from u{ is reached. Let / = d(ui,u{) < w/2 bethedistance
of these two points. We wish to construct a closed curve u2(t),t £ [ti,t2], in

the plane such that the induced contact trajectory Ui(t),t £ [ti,t2], has an

incremental distance / along the geodesic connecting iii to u{.

We propose to use for U2 the closed curve ABCDE shown in Figure 4.14,

where x = d(A, B) is to be determined, d(B, C) = d(C, D) = x/2, and

0=2tan-1-4r.
7T/2

We would like to show that for some choice of x, the closed curve ABCDE

will induce a curve VL\(t),t £ [*i,*2], in the sphere that links ui to u{. First,
by tracing the straight line from A to B and then to C induces a curve in

the sphere which starts at A', passes through B' and then comes to the north

pole, C". Note that d(B',A') = x and l(A'B'C') = 90°. Going down from

C to D with an angle 9 and by a distance tt/2 is equivalent to going down in

the sphere from C to some point D' at the equator. Clearly, d(B',D') = 9.

Now, Connect D to A by a straight line, and we claim that (1) /.CDA = 90°

and (2) d(A,D) = x. To see this, note that by definition /.ACD = 9/2 and

AC is common to both the triangles AABC and AACD. Thus, they must

be congruent triangles and the claim follows.

Thus, by tracing the straight fine from D back to A in the plane, we have

followed the equator from D' to some point E', and d(E',D') = x. With u2

being the closed curve ABCDE for some choiceof x, the induced curve ui in

the sphere has its starting point A' and its ending point E', where d(E',A'),
the net incremental distance, is a function of x. Let f(x) = d(E',A'). It is
not hard to see that

f(x) = 2x-9 = 2x-2 tan"1 -^-.
tt/2 '



Figure 4.14: A (general) Lie bracket motion

The hope is to find an x, if possible, that solves the equation
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(4.27).

We claim that there exists a unique x that solves (4^7)- To show this, note

that /(0) = 0 and f(n/2) = ir/2 > I. Thus, solutions exist. For the uniqueness

part, we compute the derivative of f(x), which is given by

*u n « « 2/tt 2 - 2/tt + 4x2/ir2 Af'(x) = 2- 2 ' = ' / '— > 0.

Thus, /(re) is a monotone function and the solution to (4.27), denoted by x*,

is unique!

Consequently, the curve ABCDE, with d(B,A) = x*, has all the desired

features.

Step 3*: We wish to find a closed path vii(t),t £ [t2,tf], in S2 such that (1) the

induced path u2(t),t £ [t2,tf], in the plane is also closed and (2) Ui has a

desired holonomy angle 6if).

We may assume that 0 < —8ij> < 2x. Consider the latitude circle with u\(t) =

Mi(0),and v\(t) = Vi(0) +1, t £ \t2,t2 + 2ir]. We claim that (1) the induced

trajectory \x2 is also a circle and (2) the holonomy angle of vl\~ ranges from 0

«i(0
to 2it for 0 < Mi(0) < tt/2 . To see this, substitute the expression of

into (4.24) and after some algebra, we get

if)(t) —0(0) = —sin ux(0)2 = at, ct ——sinMi(O),

Vl(t)



and

A 4! t _X

i---.. y^ ..-")

Figure 4.15: Another Lie bracket motion

u2(t) = P cos(at + 0o) + 7o> 7o = «2(0) - cosV>o cosui(0)/a,

v2(t) = -/? sin (at + if>0) + 6q, 6q = 1^(0)+ sin^0 cosMi(0)/a.

Thus, we have

(u2(t)->ro)2 + (v2(t)-6o)2 = P2.

This shows the claim.

4.5 Conclusion
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This chapter studied three problems related to task planning for a robot

hand system.

We have proposed a procedure for task modeling. The task model was used

to develop two quality measures for a grasp. We have shown that up to a certain

point, as one quality measures goes up the other goes down. Thus, the performance

measure which balances the two is the proper objective function to for optimization.

We have not worked out the details for the optimization problem yet, and

there remains many open problems in this area.

We have defined precisely the problem of dextrous manipulation. In order

to work on motion planning for dextrous manipulation we need to deal with non-
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holonomic constraints. The two types of nonholonomic constraints in a robot hand

system are: rolling constraint and constraint due to finger relocation. While rolling

constraint can be described by differential equations, there is no mathematical model

for finger relocation. This is what makes dextrous manipulation difficult.

To gain further insight into dextrous manipulation, we have studied motion

of two rigid bodies under rolling constraint. A systematic procedure for deriving

the configuration space of contact and the differential equation for the constraint is

presented. This approach is applicable to objects of arbitrary shapes and under any

contact constraints. For example, one may use this formulation to study motion of

two rigid bodies under sliding or a combination of sliding and rolling constraints.

An algorithm that determines the existence of an admissible path between

two contact configurations is given. First, the distribution generated by the two

constrained vector fields is computed. One then checks to see if the distribution is

nonsingular. If so an admissible path exists between any two contact configurations.

It has also been shown that the path finding problem is equivalent to a

nonlinear control problem. Thus, existing works in nonlinear control theory can be

used. A geometric algorithm that finds a path when one object is flat is presented.
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Chapter 5

Coordinated Control of Robot

Hands

5.1 Introduction

Robot hand control, including the control of a multiple-robotic system, has

been a topic of active research in the past few years.

C. Alford and S. Belyen ([AB84]) proposed the master-slave scheme for the

control of two robot arms manipulating a common object. They assume that each

arm rigidly grips the object, and one of the arm is assigned as the master and the

other the slave. The master arm is position controlled to follow a predetermined

path and the slave arm is force controlled to maintain the contact. This scheme is

generalized by S. Arimoto ([Ari87]) to a multiple -robotic system. Similar works, in

cluding some open-loop control strategies, can alsobe found in ([NNY87], [TBY86],

[ZL85], [MS85] and [CCSS89]). Major drawbacks associated with these approaches

are: (1) Restrictive assumptions on the contact models, such as the requirement

for rigid contact. (2) A lack of stability proof of the schemes. (3) Ignorance of the

dynamical properties of the system.

We present in this chapter a general formulation for the control of a robot

hand system The starting assumptions are: A nominal grasp configuration has been

obtained through grasp planning or dextrous manipulation, and the contact con

straints are specified. Furthermore, a trajectory of the object is carefully planned

(using trajectory planningfor coordinated manipulation).
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This formulation provides control laws for the following types of contact

constraints: (a) a fixed point of contact, soft-finger contact or rigid contact, and (b)

rolling contact. Each control law will ensure that the object can be manipulated to

follow the predetermined path and the contact constraint be maintained.

Control of Robot Manipulators: A Review

First, we will review two strategies for the control of a robot manipulator:

the computed-torque method and the Cartesian space control. We will discuss the

general philosophy underlying these approaches.

Control Algorithms for Coordinated Manipulation by Robot Hands

We use the philosophy for the control of a manipulator to formulate the

control strategies for a robot hand system. Our approaches consists of three steps.

(1) Establish the kinematic constraints; (2) Formulate the dynamics equations of

motion for the whole system and (3) apply the kinematic constraints to the dynamics

equations of motion and then derive the appropriate control inputs to realize the

desired objectives. Finally, we will show simulation results.

5.2 Control of Robot Manipulators: A Review

This section presents a review of strategies to the position control of robot

manipulators. The objective of each control strategy is to specify a set of torque

inputs to motors at the joints so that the end effector of a manipulator follows a

prescribed trajectory. A trajectory of the end effector, from Section 2.2, is a curve

g(t), t £ [0, tf\ in the special Euclidean group SE(3) and has the form

9(t) =
R(t) r(t)

0 1
,R(t)£SO(3), r(t)£&

But, it would be very inefficient to specify all 9 entries in the rotational matrix

R(t). The fact that 50(3) is a 3 dimensional manifold permits us to parameterize

it at least locally by three variables <j> = (4>\,<l>2,<t>z)T £ R3. Traditional choices of

the orientation variables include the Euler angles, roll-pitch-yaw variables and the
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exponential coordinates ([Cra86]). Consequently, a desired trajectory of the end

effector is represented by a curve (rd(t),<j>d(t)),t £ [0,*/], in R6.

The orientation matrix, R(<f>), using the roll-pitch-yaw variables, <j> =

(fa,fa>fa)i has the form (see [Cra86]):

cos ^i cos ^2 cos ^i sin fa sin fa —sin fa cos <f>z cos fa sin fa cos <f>z + sin fa sin <f>z

sin fa cos fa sin fa sin fa sin fa + cos fa cos fa sin $i sin <fo cos <f>z —cos <£i sin fa

—sin <^2 cos fa sin ^3 cos fa cos #3

This enables us to write the angular velocity as a function of fa

W\ —sin fa 0 1 fa

w2 = cos fa sin fa COS <^3 0 fa =U(<f>)j>.

w3 COS <^2 cos fa —sin 4^3 0 fa

(5.1)

U(4>) has full rank as long as the pitch angle, fa, remains in the interval (—x/2, tt/2).

We thus say that the parameterization is locally nonsingular. Note that the Euler

angles are singular around any neighborhood of zero.

We assume that (1) an exact model of the manipulator in terms of its

dynamics equations of motion is available and (2) there are sensors located at the

joints which measure the joint position , 9 and the joint velocity, 9.

With these assumptions, the following control methods specify the joint

torque inputs that enables the end effector to follow the desired trajectory.

5.2.1 Computed Torque Method

The computed torque method has its roots in ([Pau72],[Mar73] and [Bej74]).

It is an example of a class of nonlinear control techniques known as the exact lin

earization method ([Isi85]), which first linearizes a nonlinear system by state feedback

and then designs a compensator based on the linearized system.

The nonlinear dynamics of m degrees-of-freedom manipulator has the form

(see als Section 2.4).

M(9)9 + N(9,9) = r, (5.2)

where M(9) £ RmXm is the symmetric, positive definite inertia matrix, N(9, 9) £ Rm

is the vector of Corilois, centrifugal and gravitational forces, and r £ R m is the joint

torque inputs.
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Figure 5.1: A block diagram of the computed torque method.

By the computed torque method, the first step is to obtain the desired

joint position trajectory, 9d(t),t £ [0,*/], from the desired end-effector trajectory,

9d(t),t £ [0,tf], by solving the inverse kinematics ([Cra86] and [Pad86]). The sec

ond step consists of splitting the torque input, r, into two components: The first

component linearizes the manipulator dynamics by state feedback and the second

component is a compensator based on the linearized dynamics. Overall, the joint

torque input has the form

r = N(9,9) + M(9)(9d - Kve0 - Kpee) (5.3)

where

e0 = 9(t) - 9d(t)

is the trajectory tracking error, Kp, Kv £ RraXm are the position and velocity gains.

To show the control law given by Eq. (5.3) does the desired job we simply

apply it to Eq. (5.2) and after rearrangement of terms, we get

M(9)(e6 + Kvee + Kpe$) = 0. (5.4)

Since M(9) is positive definite, we conclude that

e$ + Kve$ -r Kpeo = 0. (5.5)

and the trajectory tracking error, e$, goes to zero asymptotically with proper choices

of the feedback gains.

A block diagram of the computed torque method is given in Figure 5.1.
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5.2.2 Cartesian Space Control

A drawback of the computed torque method is the need to calculate the

inverse kinematics, which is often computationally intensive. This can be avoided if

we define the trajectory error in the Cartesian space, or sometimes called the task

space ([Kha87]), and close the control loop at the Cartesian space. This is what so

called the Cartesian space control. The philosophy of the Cartesian space control is

exactly the same as that of the computed torque method.

The desired trajectory of the end effector has the form

xd(t)=
rd(t)

fa(t)
eRVe[o,*,].

Define the Cartesian space trajectory tracking error, ex, by

ex = x(t) - xd(t).

x(t) is directly related to the velocity (vT, wT)T by the formulae

*(*) =

Using the manipulator Jacobian of Section 2.3, we have

x(t) = Jx9, „where Jx =

r(t)

i(t)
R(<f>) 0

0 u-\<t>)

v

w

R(fa 0

0 U^(<f>)
J(9)

is called the generalized Jacobian.

Differentiating Eq. (5.7) with respect to time, yields

x(t) = Jx9 + jx9.

Consider now the manipulator dynamics equation in the joint space.

M(9)9-rN(9,9) = r.

(5.6)

(5.7)

(5.8)

(5.9)

Multiply Eq. (5.9) by M"1(9) and then by Jx and substitute Eq. (5.8) into the

resulting equation, we have

x - Jx9+ JXM~1(9)N(9,9) = JxM~1(9)r. (5.10)
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If x qualifies to be a set of generalized coordinates then Eq. (5.10) will be the

dynamical equation of the manipulator in the Cartesian space. Otherwise it has

no real physical meaning. We assume that the manipulator Jacobian and hence the

generalized Jacobian is nonsingular. Under this assumption, it is not difficult to

show that the following control law drives the trajectory tracking error, e x, to zero

asymptotically.

-1/r = N(9,9) - M(9)J~1JX9 + MJx\xd- Kvex - Kpex). (5.11)

The first component, T\, of the control linearizes the nonlinear dynamics and the

second component, r2, is a compensator based on the linearized model. A block

diagram of the Cartesian space control is shown in Figure 5.2.

5.3 Control Algorithms for Coordinated Manipulation

by Robot Hands

This section centers on the development of new control algorithms for co

ordinated manipulation by robot hands. Consider the hand manipulation system

shown in Figure 5.3.

The immediate objective of the control task is to manipulate the object to

follow a prescribed trajectory in space, while exert possibly a set of contact forces

upon the environment. During the course of manipulation, the robot fingers may

make (1) fixed frictional point contact or (2) rolling contact (See Section 3.3). Con-
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Figure 5.3: A robot hand system.

sequently, the secondary objective of the control is to ensure that the appropriate

contact constraints are maintained or reinforced during the course of manipulation.

We call the act of manipulating an object with fixed points of contact

coordinated manipulation, and the act of manipulating an object with rolling contact

rolling motion. The means of control to achieve coordinated manipulation or rolling

motion are the torque inputs to the motors at the finger joints. We develop in the

following a set of control laws for coordinated manipulation as well as'for rolling

motion.

Assumption 5.1 (a) There is available an exact model of the robot hand system,

given in terms of the dynamics equations of the object and of the fingers, and

the kinematics relations of the robot hand.

(b) There are sensors located at the finger joints which measure the joint position

and joint velocity, and also there are sensors which measure the object position

and velocity.

(c) There are tactile-type of sensors located at the fingertips which measure the

contact positions and contact forces.
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5.3.1 Control Laws for Coordinated Manipulation

We start with the derivation of control laws for coordinated manipulation.

The goals of the control are:

• To have theobject follow a desired trajectory parameterized by (r$p(t), <f>itP(t)) £
R6,t £ [0,*/], where <j>iiP(t) does not go through singularities.

• Reinforce the contact constraint at each point of contact.

From the manipulation experience of human hands, an effective way of

maintaining contact constraint is to squeeze the object sufficiently. In terminologies

of this thesis this translates to choosing a trajectory of desired internal grasping

force and realizing it during the course of manipulation. Recall from Section 3.4 that

internal grasping forces are elements of rj(G), the null space of the grip Jacobian,

and G and hence n(G) is constant for fixed points of contact. Thus, the second goal

of the control is to ensure that

• A desired trajectory x£(t) £ n(G),t £ [0,tf], is realized.

There are many ways to choose x*(t), as the degree at which to squeeze

an object may vary from person to person, task to task and environment to envi

ronment. Trajectory planning for x*(t) subject to a given task and a given hand is

another topic of further research (see also [Ker85] and [NNY87]).

With these two objectives in mind, we use the philosophy of the Cartesian

space control to develop a model based control law for coordinated manipulation.

Recall Eq. (5.6), the object velocity can be expressed as a function of .

h,P

. $*>* .

vb,P
=

. Wb>P .

vb,P

™b,P ]

RT(<f>) 0

0 V(<f>) J Lfa,P .

U(fa,p) £ R6x6is invertiable if the parameterization is nonsingular. Differentiating

Eq. (5.12) with respect to time t, yields the acceleration relation

= tJ(fatP) rb,p

ib,p j

n,P =tJ(fa rb,p

<t>b,P J

+ U{<t>b,p)
rb,p

. Kp

(5.12)

(5.13)
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The kinematic relations of a robot hand system have been summarized in

Table 3.1, where the fundamental constraint is given by

Jh(9)9 = Gl vb,P

L wb,P J

G is constant for coordinated manipulation but is time varying for rolling motion.

Differentiate Eq. (5.14) with respect to time yields the acceleration constraint be

tween the object and the fingers.

Jh(9)9 + Jh(9)9 = G< vb,P

wbiP
+ 6*

vb,P

wbtP

(5.14)

(5.15)

The second term to the right hand side of Eq. (5.15) disappear for coordinated

manipulation.

Assumption 5.2 We assume that thegraspfi=(G, K, Jh) is stable and manipulable

through the prescribed trajectory.

Consequently, we have that G is onto and R(Jh) D R(GT). Without loss

of generality we may substitute the manipulability condition by the existence of

generalized inverse, J+ = Jjf(J/,.7/[')""1, to the hand Jacobian.

Under these assumptions, the joint acceleration, 9, can be expressed as a

function of the object acceleration.

9 = J+G<
vb,P

L ™b,p J
+ Jt&

VbtP

Wb,p
-J+jh9 + 90. (5.16)

where 90 £ rj(Jh) is any vector of joint motion not afiacting motion of the contact

points. The existence of 90 arises from robot fingers having redundant degrees of

freedom. For example, a finger with four joints in general position has one redundant

degree of freedom under a frictional point contact model. But this redundancy

disappears under a soft finger contact model. When every finger has no redundant

degrees of freedom Jh is square and its generalized inverse becomes the usual inverse.

Consequently, the last term to the right hand side.of Eq. (5.16) vanishes..

Remark 5.1 Consider again Eq. (5.15). Another possibility is to express the object

acceleration in terms of the finger acceleration.

Vb,p

L ^0 J
'it= (GGt)-1G[Jh9 + JhO-G vb,P

wbtP
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Proceeding along this direction will lead to the development of control laws in the

joint space. It would be of interest to examine this alternative. •

The Newton-Euler equations of motion of the object are

m 0 <p
+

WbtP X mvb,p
—•

fb

0 J . ™b>P . wbfP x Iwb,p m,b

(5.17)

where m £ R3x3 is the diagonal matrix with the object mass in the diagonal, T £

R3x3 is the object inertiamatrix with respect to the body coordinates, and [fbl, m£]f
is the applied body wrench in the body coordinates which is also related to the

applied finger wrench x £Rn through

Gx = (5.18)

Notice that gravity and interaction forces from the environment can always be added

to the right hand side of (5.17), and corresponding contact wrenches will be gener

ated to simply counteract them.

By Assumption 5.2 G is onto and we can write the solution to (5.18) in

the form

r A= G+ + xt (5.19)

where G+ = G^GG7")'1 is the left inverse of G, and x0 £ n(G) is the internal
grasping force. Remember that the second goal of the control is to steer the internal

grasping force x0 to its desired value x*(t).

Combining (5.17) and (5.19) yields

= G+
m 0 vb,P WbtP x mvb,p

( I 0 J J [ Wb,p J L Wf>>P X Zv>b,p

The dynamics of the ith finger manipulator is given by

Mi(9i)9i + Ni(9i, 9i) = Ti - J\{fii)BiXi.

+ x0. (5.20)

(5.21)

Here again, Mt(0,) 6 Rm«xm» is the moment of inertia matrix of the ith finger

manipulator, N{(9i,9i) £ Rmi is the centrifugal, Coriolis and gravitational force
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terms, r,* is the vector of joint torque inputs and B{Xi £ R6 the vector of applied

finger wrenches. Define

" N1(91,91)

M(9) = mz.g{M1(91),...Mk(9k)}, N(9,9) =

mNk(9k,9k) _

Then, the finger dynamics can be grouped to yield

M(9)9+ N(9, 9) = t- Jlh(9)x.

T = . (5.22)

rk

(5.23)

Eq. (5.23) is the dynamics equation of the robot hand.

The following theorem provides a control law for a robot hand with non-

redundant degrees of freedom, i.e., m; = m,i= 1, ...k.

Theorem 5.1 Let Assumption 5.2 hold. Define the position trajectory tracking

error, ep £ R6, and the internal grasping force error, c/ £ R6, by

ep(t) = nM

. <M<) J L<P(0 .
<pM (5.24)

and

ef(t) = x0(t) - xdQ(t), (5.25)

respectively. Then the,control law specified by Eq. (5.26) drives ep and e/ asymp

totically to zero.

r = N(9,9) + JhrG+ wb,p x mvblP

wbtP X lwb,p
r-l fM(9)J^Jh9 + MhU

where

+ JUxi-Id [ef) +Mhu\ !>/ -Kvep-Kpep\,
* ^L—' - \Kp\ J

Mh = M(9)Jr1GT + J][G+
m 0

0 J

rb,P (5.26)

(5.27)

Kp,Kv are'the position and velocitygains in the position loop, and Kj is the integral

gain in the force loop and is chosen so that the null space of G is Ki-invariant.



Remark 5.2 1.

GJ^Mh = GJj:TM(9)J^GT +
m 0

0 I
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is called the generalized inertia matrix of the hand system.

2. The first component, T\, of the control law linearizes the system dynamics,

the second component^, is a compensator in the position loop and the third

component, Tz, is a compensator in the internal force loop.

3. As we will see in the proof that the control law decouples the position loop

from the force loop. This is one of the unique features of this control law.

•

Proof. The proof is very procedural and straightforward. First, Eq. (5.16) reads,

9-J^GT vb,P

wbiP
-Jh'JhO.

Substitute Eqs (5.28), (5.20) into (5.23) we have

m\jz1gt

or

vb,p

L ^,P j

J?lG+{•
m 0

0 J

{v<
vbtP

J L*** J

Linearize (5.29) with the following control

+ G+
wb

,p Xmvb,p 1
,p XIwb,p JJ " Jh*o-

r = N(9,9) + JhrG+ wbtP x mvb,p

mu>b,P x Iwb,p m

where T\ is to be determined, we have

1 T.-M(9)J^Jh9-rn

\m(9)j?g*+jZg+\™ °}}\ ** 1=ft -J*x.
{ [ 0 XJJ LwbtP J

Mh
vbtP

u>btp
= fi - J^x0.

(5.28)

(5.29)

(5.30)

(5.31)



Substituting (5.13) into the above equation yields

Mh [u y +ir
Finally, let the control input f\ be

n,P

Kp j

fi = MhU { Tb,P

L*L j )- Kvep - Kpep >+ MhU

Since GJ^TMh = GJ^TM(9)J^lGT +

singular, (5.35) implies that

ep + ifyep + ^rpep = 0. (5.37)

Thus, the position trajectory tracking error, ep, goes to zero with proper choice of

the feedback gain matrices Kv and Kp.

We now substitute (5.37) into (5.34) and notice that Jh is nonsingular.

Thus

e, +KIJef =0. (5.38)
This shows e/ goes to zero by choosing Ki. •

Quite often in industrial applications several manipulators which usually

have more than three degrees of freedom are integrated to maneuver a massive load

([Hsu88]), or to perform a sophisticated task. Under the frictional point contact

model the system is redundant. It is therefore desirable to have a control law for

such a system. We modify the control law of Theorem 5.1 to give a control law for

robot hands with redundant degrees of freedom.

m 0

0 J
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= n - Jix0. (5.32)

rb,p

Kp j
+Jjr(«2-*i/e/)

(5.33)

and apply it to (5.32):

MhU {ep +Kvep +Kpep) =-j£(e, +Kj Jes). (5.34)
Multiply (5.34) by GJ^T, we obtain the following equation.

GJ^MhU {ep +Kvep +Kpep} =-G(e/ +̂ /J«/) =0 (5.35)
where we have used the facts that 77(G) is constant and the internal grasping forces

lie in the null space of G, i.e.,

G(e, +Kije,) =0. (5.36)

is positive definite and U is non-
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Theorem 5.2 Consider a robot hand with redundant degrees offreedom, i.e., mi >

n,-, i = 1, ...k. Let Assumption 5.2 hold. Then the control law given by (5.39) drives

the object trajectory error and the internal grasp force error to zero.

r = N(9,9) + J][G+

+MJ+(JhM-iJZ)Mhb

+MJ+(JhM-iJl)Mh

where

rb,p

. Kp .

wb,p x mvblP

wb,p X Twb,p
- MJ+Jh9

+ MJ+(JhM-1 Jl)(xd0 -Kif ef) (5.39)

b,p

<p\
Kvep - Kpep > ,

Mh = (JhM'1J^)-1GT + G+

and J+ = JZ(JhJZ)-y

m 0

0 J
(5.40)

Remark 5.3 The term given by the right hand side of Eq. (5.40) differs from that

given by Eq. (5.27). •

Proof. Eq. (5.16) now reads,

we have

8= J£GT »6,p

t«t,p
+ JioT J9,P -J+jh9 + 9c (5.41)

L Wb,P J

where 90 £ n(Jh) is any vector of internal motion.

Substitute Eqs. (5.41), (5.20) into the dynamics equation (5.23) and lin

earize the resulting equation with the following control

r = N(9,9) + JhrG+
wb,p X mvb,p

wb,p X Iwb,p
-MJ£Jh9 + TU

MJ+GT+JlG+
m 0

0 I

vb,P

L ™b,p J

Multply the above equation by JhM-1 and realize that Jj,0o = 0, we get

+ M90 = Tt- J%x0.

GT + JhM-ljlG+
m 0

0 J

Vb,p

L ™b,p
= JhM-1r1-JhM-1Jhrxh*o-
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Finally,multiply the aboveequation by (J/,Af-1J^)_1 and use the follow

ing control for T\

ti -

we have

MJt(JhM-xJl) IMhU f ?JP - Kvep - Kpep + MhU
rb,p

Kp
+(xi-KIJef)

MhU{ep +Kvep +Kpep} =-(e, +Ki Jef). (5.42)
Using the same reasoning for the proof of Theorem 5.1 we conclude from Eq. (5.42)

that

ep + Kvep + Kpep = 0,

and

ej+ KIJef = 0.

This completes the proof. •

5.3.2 Control Laws for Rolling Motion

Finally, we extend the basic formulation of Theorem 5.1 to give a control

law for rolling motion. Similar works in this subject include ([CHS89] and [Ker85]).

For rolling motion, the grip Jacobian G and hence the null space of G

is time varying. The contact coordinates that determine G envolve according the

contact equations of Section 3.3. Let V(t) = 77(G) be the null space of G indexed

by time parameter t. In general e/(<) = x0(t) —x*(t) £ V(t) does not imply

Joef(T)dr £ V(t), nor c/(<) £ V(t). Thus, we can not introduce dynamic feedback

in the force loop, as we have done in Theorem 5.1, to create linear force error

equation. Instead we have,

G(t)ef(t) = 0 implies that G(t)ef(t) + G(t)ef(t) - 0.

Lemma 5.1 Consider the following differential equation

x(t) = A(t)x(t).

(5.43)

(5.44)

Let u(A(t)) = Xmax(Am(t) + A(t))/2 be the matrix measure of A(t), where A,

stands for the maximum eigenvalue value( [Vid78]). Then,

lliWII^IW^Hexp/'KACr))*
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In other words, if u(A(t)) < 0, Vi, and A(t) is sufficiently slow time-varying, then,

the system (5.44) is exponentially stable.

Theorem 5.3 Let Assumption 5.2 hold for a robot hand with non-redundant degrees

offreedom. Then, the following control law, along with the contact equations, realizes

both the desired position trajectory and the desired internal grasp force for rolling

motion.

r = N(9,9) + J][G+

+ Jl (xj - ef/6 - G+Gef/6) +MhU

where

Wb,p X mvb,p

wb,p X Iwb,p
-M(9)Jh-1Jh9+ MhU rb,P

Kp

1\Kp'
\IHp.

- Kvep —Kpep*p ( »

Mh = M(9)Jh-1Gt + JthG+
m 0

0 J

-1/VT+ M(9)Jh~1G

(5.46)

and 6 is a sufficiently large number so that the force error equation can be made

exponentially stable.

Proof. The proof is very similar to that of Theorem 5.1 and we give an outline

here. For rolling motion, (5.16) reads

9 = J^G* vb,P

L ™b,p J
+ K1G< vb,P

L Wb,P J

-1 T.-JhLJh9. (5.47)

Substitute Eqs. (5.47) and (5.20) into the system dynamic equation (5.23) and

linearize the resulting equation with the appropriate terms in the control inputs, we

get

Mh
vb,P

Wb,p
= rt- Jlx0. (5.48)

Substituting (5.13) into the above equation and applying the rest of the control

inputs yield

Mh{ep +Kvep +Kpep} =- jf [es +ef/6 +G+Gef/s}

Multiply (5.49) by GJ^T and notice that because

Ge/ = 0, and (Ges + Gej)/6 = 0.

(5.49)

Vb,p

wb,p

(5.45)
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we have

G(e, + ef/6 + G+Gef/6) = 0

which implies that

ep + Kvep + Kpep = 0. (5.50)

This shows that the position error goes to zero. On the other hand, substituting

(5.46) into (5.49), and using the fact that Jh is full rank, we conclude that

(£I+G+G)e/-M/ = 0. (5.51)

Let A(t) = —(61 + G+G). It is easy to see that by choosing 6 sufficiently large,

u(A(t)) is negative for all t £ [to,tf]. Consequently, by Lemma 5.1 force error e/

also goes to zero. •

One can easily come up with a control law for rolling motion by robot

hands with redundant degrees of freedom by combining Theorems 5.2 and 5.3.

5.3.3 Simulation

Consider the two-fingered planar manipulation system shown in Figure 5.4,

where the fingers are identical. The contact is modeled as frictional point contact.

Let the object width and the finger spacing be 2 units. The grip Jacobian and the

hand Jacobian are

r -1 0 1 0

G= 0-101

0 -10-1

and

where

Ji =

and

J2 =

cos a — sin a

sin a cos a

— cos a sina

— sin a —cos a

Jh =
Ji 0

0 J2

—sintfn —sin(9\i + 9\2) —sin(0n + #12)

cos0u + cos(0n + 012) cos(0u + 0i2)

—sin 02i —stn(02i —022) sin(02i —022)

COS 021 + COS(021 - 022) ~ COS(022 + 022)
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Figure 5.4: A two-fingered planar manipulation system.

The grasp will be stable and manipulable for the object along the following trajectory

x(t) = ci sin(i), y(t) = c2 + Ci cos(t),a(t) = c3sin(i).

The dynamics of finger i, %= 1,2, used in the simulation is

Mi =
m\h\ + m\d\ -f m2l\ m2l\h2 cos(0t)2 —0,-,i)

7722/1/12 cos(0jf2 —0i,i) "22(^2 + ^2)

Ni =
"*2^i^20?,2sm(^*,2 - 0i,i) + m\gl\ sin0t-ti

[ m2hh26l2 sin(0it2 - 0;,i) + m2gh2 sin#,)2 J

where mj = mass of link j, dj = radii of gyration of link j, hj = distance between

joint j and the center-of-mass of link j.

The simulation used a program designed to integrate differential equations

with algebraic constraints. Figure 5.4 shows that the initial position error diminishes

exponentially as predicted by (5.37).

The simulation was fed to a movie package which shows the continuous

motion. Figure 5.6 and Figure 5.7 are sequences of sampled pictures from a typical

simulation. In both figures, the line segment at each contact shows the magnitude

and the direction of the total force that is exerted to the object by the finger. The

desired internal grasping forces are set to 0 and 10 units in Figure 5.6 and 5.7
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Figure 5.5: Position error from simulation.

respectively. Note that without the internal grasping force (Figure 5.6), the total

exerted force may be away from the friction cone and consequently break the contact

if this were a real experiment rather than a simulation.

The control laws for coordinated manipulation have been successfully im

plemented on a two-fingered robot hand system designed by R. Murray ([Mur89]).

See [Mur89] for further details.

5.4 Conclusions

A general formulation for the control of a robot hand system is presented.

This formulation provides control laws for coordinated manipulation with fixed

points of contact and with rolling contacts. In each of the control laws, the po

sition loop is decoupled from the internal grasping force loop using the kinematic

structures of the system. Convergence proofof these schemes are given. The schemes

have been simulated and experimentally verified independently by many others (see

[CHS89], [Fie88] and [Mur89]).

The remaining problems are the intensive computations involved in these

control schemes. It would be very attractive to investigate possible simplifications

of these schemes and study the corresponding robustness issues.



i334 1341 i3sa

1317 1399 1414

Figure 5.6: Simulation without internal grasping force.
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Figure 5.7: Simulation with 10 units of internal grasping force.
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Chapter 6

Conclusions

6.1 Review

This thesis has heen intended to provide a rigorous and general analysis

of dextrous robot hands: from two-fingered gripper to multi-fingered multi-jointed

hands.

The work covers three different areas: hand kinematics, planning and co

ordinated control:

The configuration space of a rigid body is identified with the Euclidean

group. Differentiable structure in the Euclidean group allows us to define the velocity

of a rigid body by left translation. The transformation relation for velocity and force

under changes of coordinate frame are given by the ajoint map and the dual adjoint

map, respectively, of SE(Z).

The forward kinematic map of a general n degrees-of-freedom manipulation

is expressed as a product of exponentials, where the exponents are twists represent

ing the joint axes. Each column of the manipulator Jacobian is the twist representing

the corresponding joint axis relative to the end-effector frame. The exponential for

mula is applied to derive the recursive relations for velocity and acceleration of the

links of a manipulator. Finally, the joint torques required for the Newton-Euler

equations of motion are calculated using inward iterations. The Lagrangian equa

tions of motion for a three-linked manipulator are calculated in closed-form.

The geometry of a surface in R3 is reviewed. After coordinating the

surface, the local properties such as metric tensor, curvature form and connection
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form, are examined. The holonomy angle of a path in the surface is related to the

path integral of the connection form and this notion is used in the path finding

algorithm for changing the angle of contact.

Using the basic properties of a surface, the contact equations for motion of

two rigid bodies are derived. The coordinates of contact involve as a function of the

instantaneous contact velocity and the contact geometry. The contact equations for

an unit disk moving in a plane are presented.

The kinematcs of contact gives one of the three kinematic relations within

a robot hand system. The other two are the grip Jacobian and the hand Jacobian,

all of which can be constructed given the contact locations and the joint angles of

the fingers. The hand Jacobian relates the joint velocity to the contact velocity

at the fingertips and the transpose of the grip Jacobian relates the velocity of the

object to the contact velocity. Thus, in order to maintain the grasp, the contact

velocity determined by the hand Jacobian and the contact velocity determined by

the transpose of the grip Jacobian have to equal. The net force exerted on the

object in response to applied finger force is given by the grip Jacobian. The null

space of the grip Jacobian represents the internal grasp force. On the other hand,

the required joint torque in the presence of finger force is given by the transpose of

the hand Jacobian. When rolling contacts are present, the parameters determining

the hand Jacobian and the grip Jacobian involve according to contact equations.

In order to impart fine motion to the grasped object, one has to solve two inverse

problems.

Grasp planning is carefully examined. We argued that task requirement

should be the primarly considerations in the choice of a grasp. For this, a task is

modeled using one ellipsoid in the twist space and another ellipsoid in the wrench

space. Shapes of these ellipsoids reflect the task requirement. The task model is

then used to define two grasp quality measures, one in wrench space and the other in

the twist space. It is shown that up to a certain point the two quality measures have

to be balanced, and this gives rise to the performance measure. The performance

measure is used to formulate an optimization problem for grasp planning.

The problem of dextrous manipulation is formulated. This leaves many

open problems in this area. To gain further insight of dextrous manipulation, we

studied motion of two rigid bodies under rolling constraint. First, the configuration
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space of contact was defined. Then, the differential equations governing rolling

motion were derived. Chow's theorem is invoked to determine the existence of

an admissible path between two contact configurations. Finally, some geometric

techniques were used to find a path when one of the objects is connection free.

Finally, we studied coordinated controls for a robot hand system. Starting

with a review of control strategies for a manipulator, we have developed two control

laws, one for coordinated manipulation with fixed points of contact and another

for rolling motion. Each of the control laws realizes the desired trajectory of the

grasped object while simltaneously maintaining the contact constraint. Simulation

results have shown consistency of the control laws.

6.2 Future Work

The analyses in this thesis have made only a minor dent in the overall

work needed before dextrous robot hands can be used in a productive manner.

While observation of the human hand reveals some of the capabilities of hands, it

also points out the vast complexity required to realize these capabilities.

We list here a few open problems in hand research. Solving these problems

will speed up our understanding of dextrous robot hands.

• Geometric/computer tools for object modeling. These tools can be used for

grasp planning and motion planning for dextrous manipulation and the gen

eration of robot hand kinematics and dynamics.

• Efficient algorithms that generate the kinematics and dynamics of a robot

hand system in perhaps symbolical forms. The dynamics will used for the

determination of controllawsand the kinematics willbe used for task planning.

• Using the procedure outlined in Section 4.2 to develop an expert system for

task modeling. The results should be stored in a database.

• Using the task model and the kinematics of a robot hand system to formu

late the optimization problem for grasp planning. Then, develop efficient

algorithms (see [Pol71] and [Hau86] and the references therein for some opti

mization techniques) to solve the problem.
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• Motion planning for dextrous manipulation is perhaps one of the most complex

and least understood problems in hand research. First, we need to solve the

reachability problem for a nonlinear system of the form

x = B(x)u (6.1)

where z£ilf,an m-dimensional manifold, u £Rn,n < m, are the control in

puts and B(x) £ RmXn are the control vector fields. Recent works in nonlinear

control theory (see [Bro81], [Mon88] and the references therein) and in mo

tion planning (see [Can88], [KR88] and the references therein) can be possibly

applied. Second, we need to further study finger relocation and understand

how anholonomy is introduced through finger relocation. Third, develop tech

niques that can solve motion planning for both holonomic, nonholonomic and

unidirectional constraints.

• Implementation of the control algorithms presented in this thesis on a general

robot hand, and hopefully this will reveal some problems that cann't predicted

through simulation.

• When a robot hand is used for space applications, e.g., repairing a satellite or

grasping a free-flying object, finger motion can have significant effect on motion

of the base where the hand is attached to, because of appropriate conservation

laws. Understanding (relative) stability of the overall system due to motion of

the fingers is another challenging problem. The reader is referred to [Mon88]

, [MR89] and [Sre87] for further details.
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