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Exploiting Cellular Automata in the Design of Cellular Neural

Networks for Binary Image Processing"1*

++L.O. Chua and B£. Shi

ABSTRACT

We examine similarities between cellular neural networks (CNNs) [1,2] andcel
lular automata (CA) [3,4] to derive rules which are useful in converting CA binary
image processing applications to a CNN implementation. We show that any single
iteration operation possible on a CA as described in [3] can be executed with a CNN.
We also give some results and discussion regarding implementing multiple iteration
CA operations on CNNs. We conclude with examples which were designed using the
results presented here.

I. INTRODUCTION

Both cellular neural networks (CNNs) and cellular automata (CA) have applications in image pro

cessing [1,2,3,4]. The architectures of cellular neural networks and cellular automata are very similar.

Both are composed of arrays of cells, each having an internal state whose dynamics are driven by the

states of its nearest neighbors and an external input The main difference between the two architectures

is that while the states of cells of CA evolve in a discrete state space in discrete time, the states of cells

of CNNs evolve in a continuous state space in continuous time.

Preston and Duff describe the theory and applications of cellular automata in [3] with an

emphasis upon image processing. Much of their discussion assumes an architecture based on the CLDP4

machine described by Duff and Fountain [4]. In this machine, each pixel in the image plane has a

boolean processing element (cell) associated with it Although CLIP4 can process a 96 by 96 pixel

image with 64 levels of gray scale, the gray scale values must be held in memory external to the pro

cessing array. In fact, Preston and Duff discuss primarily operations on binary images. Li this case,

♦ This work is supported in part by the Office of Naval Research under Grant N00014-89-J-1402 and the National Sci
ence Foundation under Grant MIP-86 14000 and by aNational Science Foundation Graduate Research Fellowship
++ The authors are with the University ofCalifornia at Berkeley Electronics Research Laboratory
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the image can be held in registers internal to the processor array. We shall assume this to be the case

in the following.

At each discrete time iteration, a supervising controller determines the computation to be per

formed by the processing array. Each iteration consists of two phases: a processing phase preceded by

a propagation phase. In the processing phase, all the cells' states are updated simultaneously. The

value of the next state of each cell is a boolean function of its current value and the inputs from its

nearest neighbors. This operation is referred to as a cellular logic transform. The propagation phase

establishes the input values. In the classical definition of a cellular automata, each cell propagates its

value to its neighbors. Preston and Duff refer to this as local propagation. Preston and Duff also allow

for global propagation. In this case, a cell will propagate a signal based on the value of its own state

and whether it has received a signal from one of its neighbors. For example, assume that the state of

cells associated with background pixels is 0 and the state of cells associated with image pixels is 1. If

a cell propagates a signal if it receives a propagation signal and its own value is 1, then a signal will be

propagated throughout a connected component in the image. This propagation phase allows data to be

passed over the entire array, overcoming many of the restrictions of the local interconnectivity of the

processing elements.

On the other hand, in the CNN described by Chua and Yang each pixel has an analog processor

associated with it Theoretically, due to the analog nature of the processors, a gray level image of arbi

trary precision can be held internally in the processing array. However, the CNN can be designed to

ensure that the output state of each cell will settle to either ±1. We shall discuss CNNs in more detail

in Section n.

The natural question which arises is what types of operations can be accomplished by both the

CNN and CA. Clearly, designing applications for CA is much easier than designing applications for

CNNs. The synchronous discrete time/state dynamics of CA is much easier to understand than the

asynchronous continuous time/state dynamics of the CNN. In addition, the processors of a CNN are

hard wired together so that there is no external control. We simply initialize the state and input and

allow the circuit to settle. However, we expect the CNN to have advantages in processing gray level



images. Moreover, CNNs are ideally suited for VLSI implementation. Since the cells of a CNN operate

asynchronously, there is no need for a clock signal to be routed to each cell. This considerably

simplifies the VLSI layout especially for large arrays of cells. It also eliminates problems associated

with clock skew when a clock signal is propagated for long distances on a chip. For example, the

CLIP4 processing array alone consists of 1152 integrated circuits. On the other hand, a CNN designed

to perform noise removal on a 20 by 20 pixel binary image has been implemented on a single chip!

In this paper, we restrict ourselves to binary image processing operations and examine the inter

section of the applications of CNNs and CA in this area. Our approach is to exploit the similarities

between CNNs and CA in order to convert image processing operations implemented on CA to a CNN

format We shall see that the two phases of a CA iteration defined above can be replicated by a CNN.

Therefore, any single iteration operation possible on a CA can also be accomplished on a CNN. Our

results are not as neat for operations requiring multiple iterations.

Some of the ideas we present here have been presented in other contexts associated with artificial

neural networks, and will be familiar to those readers who have been following the neural network

literature. We will identify these as they arise. This paper combines these results into useful rules

which assist in the design of CNNs for image processing (and possibly other) applications. In Section

n, we define a cellular neural network and slightly extend the definition of multiple layer CNNs given

in [1] to encompass some new results in CNNs. In Section m, we define a class of CNN cell array

layer for which the map from input and initial conditions to output steady state has a simple closed

form. Using layers of this class, we show that any single iteration of local or global propagation fol

lowed by a cellular logic transform can be accomplished by a CNN. In Section IV, we discuss imple

menting multiple iteration operations of CA on CNNs. We then restrict the discussion to CA applica

tions involving infinitely iterated operations based on local propagation and present some results in this

area. For example, we give a necessary and sufficient condition for a vector of binary output slr.u -„ to

correspond to an asymptotically stable equilibrium point of a multiple layer CNN with asy»iwiiu7ie

coefficients. This condition is expressed in terms similar to the analogous condition for CA. Section V

uses the results of the Section III, in the design ofaCNN which removes the corners of abinary image
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corrupted by noise. In addition, this section presents simulation results of other image processing CNNs

designed with the techniques presented here. Finally in Section VI, we provide an extension of the dis

cussion in Section IV with an example of a CNN which finds one projection of the Radon Transform of

a binary image.

H. CELLULAR NEURAL NETWORKS

As presented in [1], a cellular neural network is composed of an array of cells each having an

associated state. For image processing operations each pixel in the image plane has an associated cell.

Since we will only discuss image processing operations, for the remainder of this paper we shall assume

that the image plane is divided into M by N pixels. For a single layer CNN, the state of each cell is a

scalar variable. For an L layer CNN, the state is an L-dimensional vector. A completely equivalent

way to view a multiple layer CNN is as an L by M by N array of single layer cells. We shall adopt

the latter interpretation as it simplifies the discussion and is intuitively appealing. Thus, each cell will

be denoted C(*,/,;) where 1<k £L, 1£i £ M and 1£j £N. The output ykJj of C(kjJ) is a

piecewise-Iinear function of its state:

This restricts the output of each cell to lie in the interval [-1,1]. See Figure 1. Typically, we associate

+1 values of input and output with image pixels and -1 values with background pixels.

The state v of the CNN is defined to be the vector of the states of all the cells in the network.

The input u to the CNN is defined to be the vector of the inputs to the cells. Similarly, the output y of

the CNN is defined to be the vector of the output of the cells. It will also be useful to define the kth

cell array layer as the set of cells in the kth layer of the CNN and denote the associated state by vk.

The state of each cell can assume a continuum of values. Its time derivative is an affine function

of its current state and the outputs of itself and its nearest neighbors. This restriction to nearest neigh

bor interactions is imposed to limit the number of interconnections between cells. Due to »!v. complex

ity and number of interconnections required, a reasonably sized fully interconnected network, such as

the Hopfield[5], is practically impossible to build with today's VLSI technology.
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To clarify the term nearest, we define the distance between C(kjJ) and C(ljn,n) to be

d(k,iJ;ljnji) = max[ \m-i\t\n-j\ }. Note that this distance is independent of the layer. Using

this metric, we define the r-neighborhood of a cell C(Jfc,i J) to be

Nr(k,i,j) = {C(ltm,n) \d(k4,j,!,mtn)£r; 1 £/ ZL\\Zm£M\ l£n£N }

For C(*,i,;), we define the smallest r-neighborhood which contains all the cells which determine the

cell's dynamics as the active neighborhood of C(kJJ). The restriction to nearest neighbor intercon

nections dictates that the size of the maximum active neighborhood of the CNN is much smaller than

both M and N. For many applications, the active neighborhood will be the cell's 1 or2-neighborhood.

We often wish image processing operations to be invariant under translation of the image. This

condition requires that the nature of the interaction between the cells be uniform over the entire array.

Of course, the cells on the boundary must be treated separately. Usually this is done by creating ima

ginary cells outside of the boundary whose values are constant For these CNNs, the state equation of

one cell from each layer is enough to specify the equations for the entire array. Since these state equa

tions are affine functions, the state equations are uniquely specified by the vectors of coefficients of the

affine relations. We will define these vectors of coefficients to be the CNN's cloning template.

For this paper, the differential equations governing the state of each cell are similar to the equa

tions presented in [1]. The state v^j of COM J) satisfies the following differential equation:

*kJJ_ _ »-iv . L r r--Kk vki.i + mmm mm „„. ,^-v-k « w
Tplar-r B=-r os»-r £»•#•

where r is the size of the active neighborhood and Ck, Rk are positive constants for all k. A circuit

c*-^SB-**"lv*A/ +ZZ Z^.Y(a»P)'VY^^+6+ Z E**(«.P>-«*«oj4a +/* (1)

realization [1] of this equation is shown in Figure 2, along with adiagram illustrating the connectivity

pattern of a single cell in layer 2 of a three layer network. To ensure that we have ±1 steady state out

puts we should have i4tJk(0,0) >Rkl for all it.

The coefficients of Aktl weight the effect of the output of the yth cell array layer on the derivative

of the state of the kth cell array layer. The coefficients of Bk weight the effect of the input on the

derivatives of the state of the *th cell array layer. As discussed above, AktV Bk and Jk arc independent

of / and /. The coefficients of the AktT Bk and Ik for 1<*,v <L form the cloning template for this



CNN. Because of the two dimensional and local nature of the interactions, it is convenient to express

the coefficients of AA>T and Bk as 2r+l by 2r+l matrices where the center element corresponds to the

coefficient which weights the cell's own outputor input See Figure 8 for an example with r = 1.

This equation differs from that presented in [1], in that we include contributions to the dynamics

of layer k from layers of higherindex than k. This assumption was taken in [1] to ensure stability for

multiple layer CNNs with symmetric coefficients within layers. By symmetric coefficients within

layers, we mean that Akjt(ot,p)=sAkjk(-a,-P). However, recently a connected component detecting

CNN[6] and a thinning CNN[7] have been developed using asymmetric coefficients. In addition, the

thinning CNN is a multiple layer CNN whose cells' state equations have the form (1). Unfortunately,

not all CNNs of this form will be stable.

Those familiar with the neural network literature will recognize the above equations as being

similar to those of the Hopfield type neural networks. However, the key differences are that we restrict

ourselves to local interconnects and use a piecewise linear sigmoid nonlinearity which allows for ±1

steady state outputs without the assumption of infinite gain in the sigmoid non-linearity. We also allow

for the self feedback term from the cell's output to its input In addition, although a multiple-layer

Hopfield network is encompassed in the form of its dynamical equation, we are not aware of any

research explicitly relating Hopfield networks and multiple-layer neural networks[8].

HI. SINGLE ITERATION CELLULAR AUTOMATA OPERATIONS

In general, we do not know if a CNN is stable nor can we easily predict the stale trajectories

short of simulating them. We now examine a class of CNN cell array layer for which, under certain

conditions, CNNs made exclusively of this type of layer are stable regardless of the symmetry of the

coefficients. Under these conditions, there exists a simple closed form expression for the map from

input and initial conditions to steady state output These types of layers can be used to implement the

processing phase of a CA iteration.

Definition: A CNN cell array layer, k, is said to be in the linear threshold class if and only if

AkJc(iJ) = 0 for all (/,/) * (0,0).
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Essentially, this definition prohibits any interconnections among the cells within a linear threshold layer.

The dynamics of the cells depend only .upon their own states, the states of the other layers, and the

external input

To see the rationale behind this definition, consider a CNN composed of a single linear threshold

layer driven by a constant input If we partition the right hand side of eqn. (1) into a part, h(yUj)t

which depends upon vUJ and apart, g, which does not, we can rewrite the state equation ofvUj as

C|-^ =A(vWj> +* (2a)
where

*(vuj) =-R?*uj +^u(°W(vuj) (2b)
and

8 =EE* i(o,P)MJ+aj4fl +11 (2c)
a B

Figure 3 shows the graph of A(v).

In this case, g =££5 i(a»P)*"/+aj4fl +h is constant Figure 4 depicts the dynamic routes
a B

[9,10] for three characteristic g values. If \g\ >i4u(0,0)-/?f1, then there exists only one equili

brium point for the cell. Since this equilibrium point is globally asymptotically stable, the state of the

cell settles to this point Thus, if g is positive (resp. negative), the output of the cell is +1 (resp. -1).

if \& I<Ai,i(0,0) - Rf1, then there exist two stable equilibrium points and one unstable equilibrium

point. The state eventually settles to one of the stable equilibrium points depending upon the initial

condition of the cell. If we assume binary initial conditions so that y^j^O) =vUt/-(0), then the state

will settle to a value which maps to an output value equal to the output value of the initial condition.

The case of g =Au(0,0) - Rf1 is somewhat problematic. In this case, there are two equilibrium

points. One is stable while the other is unstable. Theoretically, assuming binary initial conditions, this

case is identical to the case where \g \ < Au(0,0) - Rj*. However, in practice due to inevitable ther

mal noise, the trajectories will eventually approach the stable equilibrium point Fortunately, we will

see that for many applications, this case is not encountered. Thus, we can summarize the above results

with the following equation:



lim ylfli/(0 = sgn

8-

(A i,i(0,0) - Rf1 )7uj(0) +EI* itePK-^fj +/i
a B

(3)

Note that if Au(0,0)= R{\ then the final state of the output of the cell depends solely on the external

input unless g = 0.

The left hand side of equation (3) is a signum function of an affine combination of input and out

put variables. This type of function is commonly referred to as a linear threshold function (see appen

dix). Any boolean function which can be expressed in this form mustbe linearly separable by a hyper-

plane in the variable space. In the appendix we show that any boolean function which is linearly separ

able can be implemented with a CNN such that the signum function in (3) is well defined (i.e., the

quantity inside the signum is never zero). This fact implies that any linearly separable boolean func

tion of the input and initial condition of the state can be implemented using a CNN composed of a sin

gle linear threshold layer. In particular, we can implement the logical convolution and binary mask

matching operations of [3] with a single linear threshold layer. To do this, we need only set the Bx

matrix equal to the mask or the convolution kernel, set the current Ik equal to the corresponding thres

hold, set Ai,i(0,0) =Rkl and set the input equal to the image to be transformed.

Minsky and Papert studied linear threshold functions in their book Perceptrons[U]. However,

the above analysis does not imply that CNNs suffer from the same restrictions as perceptrons. Most of

Minsky and Papert's results showed the limitations of perceptrons as pattern classifiers. Here we are

not interested in CNNs as pattern classifiers, except perhaps as pre-processors which extract features for

input to a pattern classifier. Our applications are in the area of image processing involving transforma

tions of the image which extract useful information. As we shall see below, the continuous time

dynamics and multiple layer capability of CNNs extend the possible applications of CNNs beyond those

of simple perceptrons. In addition, we stress that this type of layer is only a small subset of all possible

CNN cell array layers.

The operations possible by these templates would be quite limited indeed if the only boolean

functions which could be implemented are those which are linearly separable. Fortunately, using multi

ple layerfeedforward CNNs removes this restriction.



Definition: A CNN is afeedforward cellular neural network if and only if At j =0 for all i <j.

This definition is equivalent to the definition of a multiple layer CNN given in [1]. If all the

layers of a feedforward CNN are of the linear threshold class and AM(0,0) =Rkl for all k > 1, then

the steady state of each layer above the first depends only upon the steady state outputs of the previous

layers and the input The steady state of the first layer depends only upon the input and its initial con

ditions. Thus, the outputs of all the cells of the CNN depend only upon the initial conditions of layer 1

and the input to the CNN. We have ensured stability by ruling out any feedback paths between cells in

our definition of a feedforward CNN and a linear threshold layer. In fact we have implemented a two

dimensional array of feedforward hidden layer neural networks [8]. It is well known that a feedforward

hidden layer neural network with enough hidden layers can implement any boolean function of its

inputs. In this case, these inputs are the inputs of the nearest neighbor cells. Therefore, if we simply

take the input of the CNN to be the image tobe transformed (the current state in the case of CA), any

single iteration CA operation involving only local propagation can also be accomplished with a CNN

composedsolely of linear threshold layers.

We can extend this result to include global propagation. Recall that a CA cell will propagate a

signal based upon two factors: the value of its current state and whether it has received a propagation

signal from one of its neighbors. Gearly, apropagation rule in which acell will propagate asignal if it

has not received a propagation signal will not lead to global propagation of data. In fact arule of this

type essentially implements local propagation. Global propagation over the array can only be accom

plished by propagation rules in which a cell propagates a signal if it has received a signal from one of

its neighbors coupled with some condition on the value of the current state. Thus, we consider only

rules of this type.

In order to realize global propagation in aCNN, we add an additional layer which performs the

global propagation. If we design layer 1of aCNN so that its cells' outputs are +1 if the cell is pro

pagating a signal and -1 otherwise, we can add a set of feedforward linear threshold layers satisfying

A*tt(0,0) =/?A-1 on top of layer 1to perform acellular logic transform. Under these conditions, the

outputs of the linear threshold layers will depend solely upon the steady state of layer 1 (analogous to
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the propagation signal from each cell) and the input (analogous to the current state of the CA for the

case of single iteration operations). This is clearly equivalent to global propagation of data inCA

Since the other cases are quite similar, we discuss only the case where acell will propagate a sig

nal if it has received a signal and the value of its input is +1. Consider the single layer CNN defined

by the following template:

*u-
0.25 0.25 0.25
0.25 1.25 0.25

L0.25 0.25 0.25 J
*i = [3.0] /, = -1.0

We assume that R j = Cj = 1.0 since we are only interested in the dynamics.

The analysis of the state trajectories for this CNN turns out to be somewhat similar to the

analysis for a linear threshold layer. The state equation of each cell is also given by (2a). However, in

this case, g depends also on other cells in layer 1.

g =0.25 £E yi,-4«j4a +™uij ~ l-0
afi # 0,0

Note that Au(0,0) - Rk~* =0.25.

Consider cell C(l,/J). For utJ =-1, g <-0.25 for all combinations of y^^cj+a- Thus, in

steady state yiti = -1. For uiti = 1, the quantity in the signum will be greater than 0.25 whenever at

least one yijmj+$ equals one. This provides the propagation. There is one subtle point here. Even

though a cell in the background directly adjacent to an image component which is initialized to +1 has

-1 output in steady state, it could start propagation through the adjacent image component due the finite

time required for the transition of its output from +1 to -1. However, we have designed the CNN so

that this transition is essentially instantaneous compared to the time required to start propagation. Thus,

a cell will have +1 output if and only if it is associated with an image component and was either initial

ized to +1 or received a propagation signal from a nearest neighbor.

Another discussion of this global propagation is contained in [12]. Since we have now imple

mented global propagation on a CNN, it fellows that any single iteration CA operation consisting ofa

propagation phase (local or global) and a cellular logic transform can be accomplished with a CNN.
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IV. MULTIPLE ITERATION CELLULAR AUTOMATA OPERATIONS

Before we proceed with some design examples which utilize the above results, we digress to dis

cuss CNN implementation of multiple iteration CA operations. Although the CNN can accomplish any

single iteration CA operation, multiple iteration operations are more difficult If the operation requires

a small number of iterations, we can cascade CNNs designed to do each iteration into one large CNN.

To ensure that the iterations are carried out sequentially, we could design the layers so that the layers

corresponding to the first iteration settle much faster than those corresponding to the second and so on.

We have used this technique in some of the results presented in Section V. However, this is limited to

a operations with small number of iterates since in practice the capacitance and resistance values must

be scaled to slow down the dynamics of progressive layers, leading quickly to impossibly large capaci

tors and resistors for a VLSI chip.

For the rest of this section, we restrict the discussion to implementing CA which continually

iterate the same cellular logic transform with only local propagation. For a CA of this type, an output

vector will be a equilibrium point if it is a fixed point of the boolean map governing the state transi

tions. Due to the local interconnectivity of the CA, this condition is equivalent to a local condition

which must be satisfied at all cells in the array. For example, say the state transition rule for cell ij is

*ij(t+l) - JC*i-ij (')• Xij(t), xi+lJ(t))t where s is aboolean function. Then an output vector {xiti }

is an equilibrium point of the CA if and only if j^ =j(x,_u, xiV, xmj) is satisfied at each cell of the

array. The following results shows that asimilar case holds for CNNs in binary image processing.

Claim 1: If(4) is well defined (i.e., the quantity inside the signum is never zero) for all binary vectors
{9kjj }. then abinary output ziute, y ={ yk;j } satisfies the implicit equation

y*^ = s8n 04M(o,o - Rk~l)9kjj + ZEE ^,W)7^^ +EEMo.PK*^ +/*
Tf,a,B,^,0,0 a B

(4)

for all kjj,ifand only if there exists an equilibrium point v = { v tJJ } ofthe CNN which maps to
y through the output noti-lincarity. Furthermore, this equilibrium point is asymptotically stable and its
basin ofattraction con:r.:r,<; the iwi^orhood in which the states ofall the cells are operating in the
saturated region of tlxe p:ccc*-::c-!!near output non-linearity.

The proof ofthis claim is contained in the appendix. We have noted above that for many appli

cations the assumption of the claim is satisfied. Essentially, Claim 1 states that if a CNN's output
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satisfies (4) for all k,ij, the output of the CNN will no longer change and the state converges to a

stable equilibrium point Due to the local nature of the interactions between the cells of a CNN, this

necessary and sufficient condition for a stable output equilibrium point is also expressed in terms of a

local condition which must be satisfied for all cells in the array. To emphasize the similarity with the

CA case, we can consider the signum function in (4) to be a boolean function since it maps { -1,1 }"

to { -1,1 }. This equation provides a necessary condition for a CNN to execute a CA operation since

the same output vectors must be stable in both cases. Thus, (4) provides a convenient starting point for

converting CA applications to CNN applications.

What can we say if (4) is not satisfied? For a cellular automata we can predict the next state of

the network based upon the boolean rule governing the updates. For a CNN, the continuous time/state

dynamics make the situation more complex. This is where the difficulty in designing cloning templates

for CNN's arises. However, we can obtain a weaker result

Claim 2: If the output vector y corresponding to a state vector x does not satisfy (4) for all k,ij, then
the state of at least one the cells which does not satisfy (4) will enter the linear region of the
piecewise-linear sigmoid output function (Fig. 1).

This claim is also proved in the appendix. Thus, the output states which do not satisfy (4) are

unstable. In fact the proof of Claim 2 shows that for some time the outputs of cells which do not

satisfy (4) progress towards the output state which are dictated by the signum function of (4). Interest

ingly, a CA implementation of the corresponding signum function of the connected component detec

tor^] does settle to the desired steady state. However, because of the complex dynamical behavior

associated with the continuous time/state dynamics of the CNN, in general we cannot view this signum

function as an approximate boolean function which the CNN is implementing. In particular, although

(4) is in the form of a linear threshold logic function, we will show by the example of the Radon

Transforming CNN that this does not limit the CNN to execute only CA operations described by a

linearly separable boolean state transition function.

V. EXAMPLES

We now present a simple example which uses the above results to design a two layer CNN which
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extracts the comers from a noisy image, along with simulation results of other CNNs also designed

using the above results.

Consider the corner detecting CNN presented in [2]. Although the CNN easily detects the

comers of a noise free image, noise often results in false comer detection. For example, Figure 5(d)

shows the steady state output of the comer detecting CNN introduced in [2] when presented with an

image of the letter "a" corrupted by Gaussian noise of variance 0.3. We see that the noise causes some

comer pixels to be missed and other pixels to be misclassified as comer pixels. It would be helpful if

we could somehow cascade a comer detection CNN with the noise removal CNN to create a two layer

CNN which filters the image beforeextracting the comers.

We could use the noise removal CNN to remove the noise from the input image and then initial

ize the corner detecting CNN to the steady state output of the noise removal CNN. However, this

operation requires an intermediate step in which the output must be read from one chip and passed to

another. Not only will this intermediate step take extra time, new noise will probably be added to the

image during this step and we have the same problem. A CNN which simultaneously removes noise

and extracts the comers would be more desirable.

If we proceeded rather naively, we might cascade the noise removal CNN and comer detection

CNN presented in [2] by connecting the output of the noise removal layer to the input of the comer

detection layer and initializing both layers to the same (noisy) image. The result of this computation is

shown in Figure 5(e). In this case, there are no false positives, but most of the comers are missed.

These corners are missed because the steady state of the comer detection layer is affected by the tran

sient response of the noise removal layer and its own noisy initial conditions.

Let us use the results above to analyze the operation of the comer detection CNN of [2]. The

cloning template of this CNN is:

Au(0,0) = 2.0 Bx =
-0.25 -0.25 -0.25
-0.25 2.0 -0.25
L-0.25 -0.25 -0.25

/i=-3.0.

Here v,c have assumed that /?, =Cx = 1.0 since we are only interested in the dynamics and not

actual implementation. The input and initial conditions of the CNN are the input image.

in
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Since this CNN consists of a single linear threshold layer with constant input we can use (3) to

explicitly characterize the map from input and initial conditions to the output steady state:

Jim yUJ(t) =sgn |yMj(0))+2.0^ +0.25/m - 0.25/t, - 3.o]
where n^ and nx are the numbers of neighbors in the 1-neighborhood whose inputs are -1 and +1

respectively. Since n^ +nx =8 and y^j(0) =uiJt wecan further simplify the above equation to

Hm yvj(r)=sgn [(3.0«lV - 3.0) +(2.0 -0.5/»i)]
The above equation shows that if utJ =-1, then in steady state yUti =-1. If uiti =+1, then yu j=l if

and only if less than five of C(\jLJ)'s neighbors' inputs are high.

Thus, we can redesign comer detection CNN so that the steady state of its output depends solely

on its input. The resulting layer is a linear threshold layer with the following cloning template:

Au(0,0)=1.0 Bx =
-0.25 -0.25 -0.25
-0.25 2.0 -0.25
.-0.25 -0.25 -0.25 J

/, = -1.75.

Again we have assumed that i?i = C\ - 1.0. Given identical input images, the two CNNs will settle to

the exact same steady state. However, because the CNN presented here is independent of its initial

conditions, cascading it with the noise removal layer presented in [2] produces a CNN which setdes to

a steady state very close to the desired steady state (Figure 5(0). In fact the pictures differ only by the

pixel associated with the tip of seraph of the "a". That pixel has been removed by the noise removal

operation! This combined CNN has the additional advantage that only the noise removal layer need be

initialized. The output is independent of the initial state of the comerdetection layer.

Tormulas (3), (4) and the propagation layer have been used to translate many CA applications

preseti-M in [3] to a CNN format such as:

1. Extract the holes in an image
2. Fxiract the objects in the image which contain holes
3. Extract objects larger than a 3x3 square
4. Extract the connected component containing a specified image pixel
5. Find the minimal circumscribing octagonal convex hull.

S.-e Fioure 6 for sample input and output images. The appendix contains the cloning templates and a

o'r ^cn^tion of each of these CNNs.
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Up to this point we have used the linear threshold class as a means of working around the effects

of the continuous time/state dynamics. We now present an example which uses linear threshold layers

to produce a CNN whose operation depends critically upon the effects of the continuous dynamics of

the CNN.

VI. A RADON TRANSFORMING CELLULAR NEURAL NETWORK

Introduction

The CNN described here computes one projection of the Radon Transform of a binary image.

For any given image, define7(x,y) to be the image intensity at the point (x,y) in the image plane. The

RadonTransform of the image is a function *P(p,0), where p and 6 are polar coordinate variables. For

specific values of p0 and 8f> ¥(Po,9o) is the integral of /(x,y) along the line which is perpendicular to

the line 9 = 90 and passes through the point (p0 90). Thus, for fixed 90, the resulting one dimensional

function y(p) =*F(9o,p) is the projection of the image intensity onto the line 9 = 90. See Figure 7.

For binary images, the horizontal, vertical and diagonal projections can be used to find the position and

orientation of an object in the image plane [13].

The CNN template presented here finds the value of g(p,^-) for abinary image. In other words,

the CNN integrates the image intensity along the horizontal rows of the image plane. To obtain the full

radon transformation, the image input can be rotated through all desired angles. The output g(p,—) is

presented as a histogram along the right hand side of the image plane.

An Infinitely Iterated Cellular Logic Transform

In order to utilize the ideas presented in this paper, we first consider one way to compute one

projection of the Radon Transform of a discretized binary image using an infinitely iterated cellular

logic transform. Since the projection operates on each horizontal line independently, to simplify the

discussion we consider only one horizontal line. For each pixel in the image plane, assign the value 1

to that pixel if it is in the image and 0 otherwise. At each time step, image pixels which have a back

ground pixel on their right shift right In other words, the value of each pixel at time r+1 is determined
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by

the following boolean function of the values at time / of the pixel (c,) and its left (/,) and right (r,)

neighbor pixels:

cl+1 = ctrt + ltct. (5)

where cj is the complement of ct. Equation (5) is shown graphically in Figure A2. The boundary con

ditions should be set up so that the pixels on the left hand side of the image plane have /, =0 for all t

and the right hand side cells have r, = 1 for all I. As time progresses, pixels continue shifting until

they reach either the end of the row in the image plane oranother image pixel. In steady state, the pix

els have all "piled up" on the right hand side of the image plane. Since the number of pixels in each

row is preserved, the resulting logical steady state is a histogram representation of the projection opera

tion.

The CNN Cloning Template

The CNN cloning template is shown in Figure 8. We have again set Rk = Ck - 1.0 since we are

only interested in the dynamics. Scaling the values to implementable values only changes the time

scale of the dynamics, butnot the state trajectories. The CNN consists of three layers. The cells of the

layers I and 3 are initialized to +1 or -1 depending upon whether the corresponding pixel is in the

image or in the background. The cells of layer 2 are all initialized to -1. When the circuit finally set

tles, the output states of layer 1 and layer 3 each contain to the output histogram.

To see the similarity between the operation of the CNN circuit and the iterated cellular logic

transform, assume for the moment the state of the cells in layer 1 is constant. We examine the steady

state of layers 2 and 3 which results from this condition.

Essentially, layers 2 and 3 compute the next logical state of the iterated cellular logic transform.

Notice that all of the templates are of the linear threshold class. Since the boolean function (5) is not

linearly separable in the (/,c,r) boolean variable space (Figure A2), one linear threshold layer is not

sufficient to implement this function.
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Based on the current state of layer 1, the cells whose outputs are +1 in layer 2 are those which

correspond to pixels which should shift right in the next step of the iterated cellular logic transform.

The outputs of the other cells of layer 2 are -1. If the output of a cell in layer 2 is +1, then the output

of its corresponding cell in layer 3 is -1 and the output of the cell to its right is +1. Otherwise the out

puts of the cells of layer 3 remain equal to their initial values. Thus, the output of layer 3 corresponds

to the next logical state of the iterated cellular logic transform. Note that the output of layer 2 and the

initial conditions of layer 3 are sufficient to determine the next output of layer 3.

In actual operation, the state of layer 1 is not constant The design of the Ali3 coefficients

ensures that the outputs of layer 1 track the outputs of layer 3 with some delay due to the time con

stants of the dynamics. In the circuit implementation, this delay is associated with the charging and

discharging of the capacitors of layer 1. Heuristically, based upon the state of layer 1, layer 2 settles to

the data required to update level 3. Then layer 3 setdes to the next logical state. Then layer 1 settles

so thatit reflects the current state of layer 3 and the process repeats.

This explanation might suggest a clocked operation. In fact the layers operate asynchronously.

As one layer updates the next it will have some effect on its own state since the network is no longer

"feedforward". However, each layer is "insulated" from its effect on the next layer by a third layer.

Each layer has the same time constant The circuit works in a somewhat clock-like manner due to the

delays induced by the dynamics at each layer. These finite delays are essential to the correct operation

of this circuit

Simulations of the circuit indicate that the circuit does settle to the desired steady state. See Fig

ure 9. It seems that passing the update information through a sequence of 3 layers enables the circuit

to preserve the total number of image pixels in the image. Although the logic described above could be

implemented with only two layers, simulations run with only 2 layers did not converge due to the rea

soning above. However, acareful examination ofthe simulation results indicates that the actual opera

tion ofthe circuit cannot be approximated by aclocked iterated cellular logic transform. Although the

operation does appear to mimic the operation of aCA at the beginning of the transient toward the mid

dle and end ofthe transient the pixels do not shift synchronously, even in asingle row. See Figure 10.
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Since the shifting occurs only at the rightmost end of each horizontal connected component synchro

nous shifting is not essential to the proper operation of the circuit

VI. CONCLUSION

In this paper, we have explored similarities between binary image processing operations using cel

lular automata and using cellular neural networks. We define aclass of CNN cell array layer for which

the map from binary input and initial conditions to output is given by a simple closed form expression.

Using this expression and layer which executes global propagation, we show that any single iteration

operation possible by a CA is also possible on a CNN. We then discuss the extension of these results

to multiple iteration CA operations. In particular, we give a necessary and sufficient condition for a

binary output vector to have an associated stable state equilibrium point even in the case of asymmetric

coefficients. This condition is expressed in terms similar to that for the analogous condition for CA.

The results presented here simplify the design of many templates, as evidenced by the numerous tem

plates presented in Section V. Although the continuous time/state dynamics and lack of external con

troller make some CA applications difficult to convert to a CNN format we show by the example of

the Radon Transforming CNN, that these results can also be used in the design of CNNs which execute

infinitely iterated cellular logic transforms. This paper has only described a small subset of the possible

CNNs, and thus only a subset of the possible applications. However, we see that this subset is already

quite large. We expect that the continuous time-continuous state dynamics will enable the CNN to be

applied to a much richer class of problems than possible by a CA, notably gray level problems.
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APPENDIX

Al. Linearly Separable Boolean Functions

For our purposes, we can view a boolean function of n variables, s, as a mapping from [0,1 }"

to { 0,1 }. In other words, s assigns a value of either zero or one to each vector of zeros and ones. If

we interpret { 0,1 }* as a subset of R", s is linearly separable if and only if there exists a vector

a e R" and a constant b e 1R such that the following two inequalities are satisfied:

<a,x> 2> b for all x e [ x € { 0,1 }» | *(x) = 1 } (Al.l)

{a*)<b forall xe [xe {0,1}" U(x) =0}. (A1.2)

Geometrically, a linearly separable boolean function is a function for which all the points which map to

1lie on or to one side of an n-\ dimensional hyperplane in R" and all the points which map to -1 lie

on the other side of the hyperplane. For example, in two dimensions the function A +B (A or B is

true) is linearly separable while the function A =B is not See Figure Al. In particular, examination

of Figure A2 reveals that the boolean function (6) is not linearly separable.

Note that if s is linearly separable, we can always find avector a and aconstant £, such that the

inequalities in (Al.l) and (A 1.2) are strict To see this, assume that a and b satisfy (Al.l) and (A 1.2).

Take 5=min { b - (a,xH x e { 0,1 }, s(x) = 1}. This minimum is greater than zero since it is the

minimum ofa finite set of positive numbers. The vector a =a and constant B - b - ViS satisfy (Al.l)

and (A1.2) with strict inequality. In other words, for any x6 {0,1 }\ (a,x)-£ *0. Thus, any

boolean function which is linearly separable can be implemented in the signum functions of equations

(3) and (4).
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A2. Proofs of Claims in Section VI

Proof of Claim 1:

First assume that (4) is satisfied for all kjj. Define for each kJJ

*vj =*t- \ZSSfa.+a£yy1tHkto+EEM<*.P)-«.--KU«fl+/* 1 (A2.i)
L TAP Op J

Clearly, v = { vkJJ } will be an equilibrium point if y ktfJ =f(vkJJ) for all kJJ. Consider the

case whereykJJ = 1. Then from (4),

(AM(0,0) -Rk-lyykJJ + SEE^t*0^**^ +EE**(a,P)«,«^ +A >0
TAp**A0 a p

AddingRkl-y kjj to both sides yields

EEE4*.y(a>P)yY./+<W+P + EEM^PK^+fl + /* >RklykJJ
TAP o P

Multiplying by fl*"1 and noting that yk4J = 1, we see that vkiiJ > 1, i.e. f(yktiJ) =yktLj. The case of

yk+j =-1 is proved similarly. Thus, f{Vkjj) = ykjj is true for all k,ij and v is the associated

equilibrium point

Now take any binary output vector, y, associated with an equilibrium point v of the CNN. Then

the following equation must be satisfied for all kjj.

0=-Rj*vk,j +[EEE^a.PVyT^j+p +UPktofi'UHaj* +/*]
TAP o p

Assume that y kjj = 1. In this case, vkflj £ 1, which implies

o* -Rk-lyk;j +EEE4*.TtoP)-yT,«^ +EEMocPK^+/*
TAP a p

The same statement holds for y(ykti j) = -1 with the inequality reversed. By assumption the inequality

is strict and the combination of the two statements results in (4).

To show asymptotic stability we must show that for each v = { v ktiJ } as defined in (A2.1),

there exists a p>0 such that any trajectory starting at some v9eB(v,p)= {v | |v-v|<p }

approaches v asymptotically. For this proof, we define |v| = max |vk .• .• |. This definition is not lcstric-
kJJ

tive, since all norms on a finite dimensional Euclidean space are topologically equivalent. Set

p = min { \vkjj-ykJj | }. This is greater than zero as it is the minimum over a finite set of numbers
kjj
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which are greater than zero since the quantity in (4) is well defined. Essentially, we have chosen our

neighborhood such that all the states are operating in the saturated region of output nonlinearity. Now

take any v0 e £(v,p) and consider the state trajectory starting at v0. The state of cell C (*,»',/)

evolves according to the following ordinary differential equation:

Ck±±LL =-Rk-*Vk4J +ij;2:2>4,T(a,p)7Tf,.4Cj^ +EE»*(otP)«.^/4a +/*l (A2.2)
m \ YAP a B J

The quantity in braces is the constant RklVkjj* Thus vkjj approaches vkjj asymptotically for all

kJJ, implying that v approaches v asymptotically. To see that the basin of attraction contains the

neighborhood in which all the states are operating in the saturation region of the piecewise-linear sig

moid non-linearity, observe that in that case the state equation of each cell is also given by (A2.2).

Proof of Claim 2:

Since (4) is not satisfied for all kJJ, there exists a set { *n,injTj }J?=i for which (4) is not

satisfied. U is the number of states for which (4) is not satisfied. As long as all the cells of the CNN

are operating in the saturation region of the sigmoid non-linearity, the cells of the network evolve

according to (A2.2). However, for k,ij e { k^Jn }£i» the quantity in braces is less than minus

one (resp. greater than one) when v ktiJ is greater or equal to one (resp. less than or equal to minus

one). Thus, in some finite time at least one of the cells in kjj 6 { *n,i„J,| }£i will enter the linear

region. It will not immediately return to the saturated region since the quantity in braces is a continu

ous function of the states of the network and therefore will remain close to its original value. Thus, the

cells which do not satisfy (4) tend toward the output state which are given by the signum function in

(4). However, due to the continuous time dynamics they do so at varying rates and in the linear region

the dynamics become much more complex.
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A3. Templates of Example CNNs

1. Hole finder

C,=/?1=1.0 A = -0.1 Au =
0.0 0.2S 0.0

0.25 1.0 0.25
L0.0 0.25 0.0

*i = -1.0

C2=J?2=1.0 /2 = -0.5 A2,2= 1.0 A2,i = -0^

The initial conditions of layer 1 and 2 are all -1. The image is presented at the input of the array. The
imasinary cells outside the boundary of the array should be +1 for layer 1 and -1 for layer 2. The out
put of layer 2 contains the holes in the image. Layer 1 fills in the background of the image which is
connected to the edge of the array. Layer 2 finds the pixels associated with cells whose input and layer
1 outputs are both -1, i.e., the pixels associated with the holes.

B-l = -0.5

2. Object with hole detector

-10C^IO"10 /?! = 1.0 /i = -0.1 Au =
0.0

0.25
L0.0

0.25 0.0
1.0 0.25

0.25 0.0 J
£,=-1.0

C2= R2= 1.0 /2 = -0-l A2,2 =
0.25 025 0.25
0.25 1.0 0.25
.0.25 0.25 0.25J

^ 2,1 =
0.0 -0.2 0.0
-0.2 0.0 -0.2
.0.0 -0.2 0.0 J

*,=
0.0 -0.2 0.0

-0.2 2.0 -0.2
.0.0 -0.2 0.0.

Initial conditions of cells in both layers are -1. Image is presented at input The imaginary cells out
side the boundary of the array should be +1 for layer 1, -1 for layer 2. The output of layer 2 contains
the objects in the image which contain holes in their interior. Layer 1 performs the same function as in
the hole finding CNN, except its settling time is much faster than that of layer 2. Layer 2 propagates a
signal of +1 through image pixels associated with images next to holes.

3. Objects larger than 3x3 square detector

C! = ir10 /?!=1.0 7j=-0.1 Au =
0.0 0.25 0.0

0.25 1.0 0.25
0.0 0.25 0.0

Bx = -1.0

C2= /?2=1.0 /2 = -1.2 A2,2 =
0.25
0.25
0.25

0.25 0.25
1.0 0.25

0.25 0.25J
^2.1 =

-0.025 -0.25 -0.25
-0.025 -3.025 -0.025
.-0.025 -0.025 -0.025

C3=/?3=1.0 /3 = -1.5 A3>3 = 1.0 A3>2=1.0 £3=1.0

Initial conditions of all layers of all cells are -1. Image is presented to input. The imaginary cells out
side boundary of the array are +1 for layer 1 and -1 otherwise. The output of layer 3 contains the
objects in the image which are larger than a 3x3 pixel square. Layer 1 fills in background adjacent to
edge. Layer 2 fills in "holes" bigger than a 3x3 pixel square in layer 1 output. Layer 3 outputs those
image pixel contained in the regions highlighted by output of layer 2.

4. Connected image component containing specified pixels

0.25
1.4

0.25

0.0
0.25
.0.0

C,=/?, = 1.0 7, = -1.0 A,,=i.i

0.25
0.25
0.25

-10c2 = ir10 J?2 = 1.0 72 = -0.1 A2,2 =

0.25
0.25
0.25 J

0.25
1.0

0.25

A,, = -3.0U

0.0
0.25
0.0 J

52 = -1.0
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C3=J?3 = 1.0 73 = -L5 A3t3 = 1.0 A3tl = 1.0 fl3=1.0

Initial conditions of layers 2 and 3 are -1. Layer 1 contains the chosen image pixels. Image presented
to input of CNN. The imaginary cells outside the boundary of the array should be +1 for layer 2 and
-1 otherwise. The output of layer 3 contains objects of image which contain the pixels specified in
layer 1. Layer 2 fills in the edge connected background of the image with a faster settling time than
the other layers. Layer 1 fills in the holes of layer 2 which contain a specified image pixel. Layer 3
selects those image pixels contained inside the regions highlighted by layer 1.

5. Minimal octagonal convex hull finder

Ct=rt, = 1.0 7t = l.l A i.i-

C2 = l?2= 1.0 72=1.1 A2i2 =

C3 =7?3=1.0 73 =1.1 A3f3 =

C4 = fl4=1.0 74=1.1 A4t4 =

0.0 0.0 0.0
0.25 2.0 0.25
L0.0 0.0 0.0 J

0.0 0.25 0.0
0.0 2.0 0.0

0.25

0.0
2.0
0.0

0.0
2.0
0.0

LO.O

0.25
0.0

L0.0

0.0
0.0

L0.25

0.0.

0.0'
0.0
0.25 J
0.25
0.0
0.0 J

Cs=/?5=1.0 7s =-0.85 A5tl=0.25 As>2 = 0.25 A5.3 =0.25 A5,4 = 0.25 A5,4 = 1.0
Initial conditions of layers 1 through 4 are the image. Initial conditions of layer 5 are -1. The ima
ginary cells outside boundary of the array should all be -1. The output of layer 5 is the minimum cir
cumscribing convex set whose boundaries are restricted to lie parallel or 45 degrees to the coordinate
axes. Layers 1 through 4 propagate a signal from the image in the four directions associated with the
octagonal hull. Layer 5 selects those pixels common to all four layers.
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Figure Captions

1: The piecewise-Iinear sigmoid function is the only non-linearity in each cell of a CNN. This non-
linearity maps the state to the interval [-1,1].

2: (a) The state equation of each cell of the CNN can be implemented with the above circuit con
sisting only of a capacitor, resistors, and voltage controlled current sources, (b) The interconnec
tions of a CNN are restricted to nearest neighborcouplings. This figure illustrates the interconnec
tions for a cell in layer 2 of a three layer CNN.

3: The function h(v) determines the contribution to the derivative of a linear threshold layer cell's
state from the current value of its state.

4: The value of g determines the dynamic routes for a cell in a linear threshold layer, (a)
g < -(A u(0.0) - Rf1). (b) |g | <(A ,,,(0,0) - Rf1). (c) g >(A ,.,(0,0) - Rf1).

5: The CNN presented in [2] must be redesigned to detect the comers of a noisy image, (a) The
original noise free image, (b) The original image corrupted by Gaussian noise of variance 0.3.
(c) The comers detecting using the comer detector of [2] on (a), (d) The comers detected using
the comer detector of [2] on (b). (e) The comers detected using the "naively" cascaded CNNs of
[2] on (b). (0 The comers detected using the redesigned CNN on (b).

6: The results of this paper have been used to design CNNs which: (a) detect the holes in an image,
(b) detect the objects which contain holes, (c) detect objects larger than a 3 by 3 pixel square, (d)
detect objects containing specified image pixels, and (e) compute the minimal octagonal convex
hull. See appendix for details.

7: (a) For fixed values of p0 and 60 the Radon Transform *F(po,0o) of an image 7(x,y) is the line
integral of 7(x,y) along line L. (b) For fixed 0O, the function ¥(p,90) is the projection of the
image onto the line 8 = 80.

8: The cloning template of the Radon Transforming CNN shows that it is composed solely of linear
threshold layers.

9: (a) Simulations of the CNN indicate that the Radon Transforming CNN projects the image inten
sity onto the vertical axis, (b) To obtain other projections of the Radon Transform, the input
image can berotated. Here the image has been rotated by 90degrees to obtain the projection onto
the horizontal axis.

10: (a) Although the Radon Transforming CNN has been designed using ideas from cellular automata,
the CNN does not operate like a CA. Although the pixels shift synchronously at the start of the
transient (a), as time progresses, the pixels shiftasynchronously (b).

Al: A + B (A or B is equal to 1) is linearly separable, while A = B is not

A2: The values which map toone and zero by the boolcr.n function (5) are not linearly separable by a
two-dimensional hyper-plane in the (/,c/) variable space.
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