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Tactile sensing is important to Robotics for providing contact sensory information

that can lead to improved grasping of objects, and aid in achieving dextrous manipula

tion. Because soft skin-like materials are generally viscoelastic, tactile sensors exhibit

hysteresis. To be useful in a dextrous hand, this dynamic behavior of the sensor must be

modeled and compensated for. A varietyof tests were performedon a thumb shaped tac

tile sensor containing an eight by twenty array of tactile elements. Each element meas

ures the strain of the rubber finger material at a certain point below the surface of the

finger. To characterize the finger behavior, a precision force application device was

designed. Static tests were performed to determine the steady state linearity of the ele
ments with respect to force magnitude. The frequency response was determined in the

range of 0.10 to 20 Hertz. Permanent deformation due to stress is seen to be predictable.
TheMaxwell-Kelvin model forviscoelasticity was fit to thestress-strain dataobtained by
probing thefinger and recording theapplied force and thestrain response of a single ele
ment Results show that the Maxwell-Kelvin model is better than a simpleelastic model.
A linear second order model was also fit to the stress-strain data. The model was

inverted topredict themagnitude of the force of a point contact given the strain informa
tion of one tactile element. The second order inverse model predicted the force better
than the elastic model.
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1. Introduction: Viscoelastic Modeling of a Tactile Sensor

Tactile sensing is useful for shape interpretation and control of contact forces,

Allen (1987), Dario and De Rossi (1985). It is one ingredient to achieving dextrous

manipulation of objects for which there is little apriori information. Berkemeier and

Fearing (1989) show that a ringer tip shaped tactile sensor can be used to determine cer

tain attributes of an object given a global class constraint. For example, after success

fully grasping an object classified as a surface of revolution, only three tactile curvature

measurements are needed to determine the direction of its axis and its location. Fearing
and Hollerbach (1985) show that three strain measurements in an elastic material are

sufficient to determine the location, magnitude, and direction of the force of a line con

tact Both of these studies assume a steady state strain reading. In theprocess of grasp
ing, however, a finger imparts time varying forces on the object being grasped and visa
versa. Since most compliant materials, and thus tactile sensing fingers, tendto be viscoe
lastic, a model isneeded tocompensate for these viscoelastic affects. The intent is topro
cess the strain data of a viscoelastic material so that the finger appears to be elastic.
Time varying forces, permanent deformation from past stresses, and creep and relaxation
dynamics, can make it difficult to interpret the tactile sensordata. This is the motivation

for studying the viscoelastic behavior of a tactile sensor. Knowledge of this behavior
will beused to develop schemes toestimate the magnitude of a point contact force at the
surface ofthe finger given the strain response ofone element ofa tactile array.

The viscoelastic behavior of the rubber skin of the tactile sensor is reminiscent of

human skin. Dinnar (1970) investigates the viscoelasticity of human skin. The strain of
human tissue increases under constant stress and does not return quickly to its original
dimensions. Nevertheless the human nervous system can still interpret and use tactile
data.

A simple four parameter Maxwell-Kelvin model is investigated forthetactile sensor
as was done for human tissue by Dinnar (1970). The model is fit to data obtained from

several experiments. The data is obtained by measuring the force applied to the finger
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and recording the strain response of atactile element directly below the force probe. The
strain ofthe tactile element is shown to be linear for loads ofless than 35 grams and less
linear as the load increases. This non-linear effect is incorporated into the Maxwell-
Kelvin model, but no improvements based on the inclusion of nonlinear effects have
been achieved. The Maxwell- Kelvin model predicted the finger response better than a
simple elastic model. A general second order transfer function was also fit to the data,
and its inverse was used to predict the forces at the surface of the finger.

Cutkosky and Howe (88) investigate dynamic tactile sensing by moving a sensor
against an object and measuring the stress rate directly. Their experiments were focused
on determining texture characteristics. Knowledge oftexture is useful for grasping since
it is related to the friction between a robotic finger and an object. They measure the
current generated bypiezo-electric film to obtain stress rate. Later, Cutkosky and Howe
(89) used an accelerometer near the skin surface ofasensor to mimic the human ability
to sense quick yet small displacements. Sensing this kind of motion could be useful for
detecting the onset of slip and aid in maintaining a grasp. The consideration of viscoelas
tic effects was not necessary for their study since they were interested in directly measur
ing strain rate and strain acceleration, and not strain itseif. The following treatment of
dynamic tactile sensing refers to the study of the time and frequency domains of the
strain of a tactile element that senses only strain and not strain rate or strain accelera
tions. Ideally asensor would employ perhaps all three types of strain sensors.

Figure 1. Force applicator system. The strain in the beam is controlled to

provide aknown contact force between the probe and finger.
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The experiments were conducted using a motor-beam force applicator, seeFigure 1.
Acontrol system using strain gage feedback from the aluminum beam was implemented
and forces of up to 120 grams with a command error of +/- 1 gram can be applied (100
grams corresponds to 0.98 Newtons of force). Theroot-mean-square errorof the noise of
the strain gage signal was 0.14 grams. Stress is defined as force per unitarea. Thecontact
between the probe and the finger was hemispherical, having an area of 7mm\ so a 100
gram load is about 1.4 x 10s Nlm2 stress.

2. General Characteristics of the Tactile Sensor Being Studied

The tactile sensing finger used in this study was developed by Fearing (1987). It is
cylindrical with a hemispherical tip, designed to be compatible with the Stanford/JPL
hand. The finger contains an eight by twenty array of capacitors, which are the crossing
points of conductive strips, see Figure 2. The capacitance is measured by applying a
drive signal to one ofthe strips and measuring the voltage at one ofthe strips that crosses
the drive strip. Each crossing point is onecapacitive tactile element

Multiplexor
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Figure 2. Diagram of the Array of Capacitive Tactile Elements. From
Fearing (1987).

Figure 3shows the two capacitor plates ofan element pressed closer together by the
deformation of the rubber. As the distance between the plates changes the capacitance
changes, see equation (1). For adielectric constant of4the capacitance is about 1pF.
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C =capacitance of a tactile element

K9 = dielectric constant

e0 - permittivityof free space

A = area=2.5mm by 5.1 mm = 12.75 mm2

d9 =0.7 mm
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Figure 3. Strain ofthe rubber causes achange inthe separation of capaci
tor plates. FromFearing (1987).

Figure 4 shows the capacitance of a tactile element shown in an electrical circuit

Cs designates the capacitance of the sensing element Q is a lumped capacitance that
represents the capacitance between unseiected strips, the cable capacitance, and the input
capacitance of the amplifier. For very high frequencies with Q much greater than the C„
the subsurface strain can be nicely approximated byameasurable voltage, see equations
(2) through (6). The voltage is amplified and processed to give the desired strain infor
mation.

IV,I =
li?,//l//G)C,l

U//ttC,+A,//l//ttCf
Wd\ m

C,Ri(0

Vl +[©K,(C,+C,)]2
IK, I (2)

C, = capacitanceof a tactile sensor element

Ct = capacitance of unseiected elements, line capacitance and input capacitance of the
amplifier lumped together

Ri =input resistance of amplifier

V, = sensed voltage



Figure 4. Tactile element capacitance, Cs, shown in the context of an
electrical circuit

Vd =drivevoltage, 10volt amplitude, 200kHz sinewave

V0 = sensed voltage when there is no strain

o) = frequency ofdrive signal, 2nx 200 kHz

for C, » C, and large go,

C.R,<o

qRiCi a
Cs

\VA

subsurface strain in the z direction,

Relating voltages tocapacitances and displacements using (3) and (1):

1V^I —IVg 1 C, ~ C, Vd-\ld0 d9-d &d
ivvi c^ - i/d

c,

Using (4) and (5) strain can be written as a function of measurable voltages:

(3)

(4)

(5)
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£x =
\v,\ (6)

Figure 5a is asketch of the inside of the finger. The finger is made up of a plastic
(Delrin) core that supports twenty copper strips parallel to its axis. Surrounding the core
and strips is a rubber mesh with seven copper strips that wrap around the core. Adisk is
put on the end ofthe cylindrical core for sensing at the tip ofthe finger. The rubber mesh
is a dielectric to the capacitive tactile elements. The sensing array is covered by rubber
for protection and force transmission.

Inner Outer
Electrode Electrodes

UPPER

RING

Figure 5. (a) Finger construction (b) the crossing points of the axial and
radial electrodes are the capacitive tactile sensor elements. From Fearing
(1987)
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The capacitance between the axial and radial electrodes is sensed by applying a 20
volt peak to peak 200 kHz sinusoid to a radial electrode and sensing the voltage on an
axial electrode. The resulting signalcontains the strain information of the material at the

crossing point of two electrodes. The sensed voltage is amplified and processed to give
the percentage deflection of therubber mesh dielectric. The experiments were conducted
one element ata time, butother circuitry exists to timemultiplex the information of an 8
by 8 arrayof tactile elements.

A static linearity test that was done by Fearing (1987) was repeated and Graph 1
(see graph section at end of paper) shows the results. For loads less than 35 grams the
strain appears to be linearly related to the stress; however, as the load increases the per
centage deflection does not increase linearly. For example, a 10 gram load yields a 1.8 %
deflection, but a70 gram load yields only a 1.5 %more deflection than does 60 grams.
Note however, that in an operating range ofplus or minus 10 grams about any point the
strain vs. stress can be approximated by astraight line. The test was conducted using a7
square mm hemispherical probe and applying loads up to 100 grams at 10 gram incre
ments. The finger was allowed to rest for 19 seconds between loadings and anew finger
offset was taken before applying the next load. One tenth ofa second after the load was
applied, the finger response was averaged over 10 samples separated by .001 seconds.
This was done to measure the initial jump of the response instead ofthe delay or drift
The entire experiment was done five times and the result averaged. The *-axis shows the
actual force applied as sensed by the strain gage on the force applicator beam. Graph lb
shows the same experiment for alarger, 16 square mm, flat force probe. The strain mag
nitude is not as great This was to be expected since the same force over alarger area
yields less pressure and thus less stress. Notice that the percent deflection does not fit a
straight line at lesser loads. This has to do with the larger probe not approximating a
point force as well as the smaller probe. This is significant since it emphasizes the fact
that the strain ofasingle element is dependent on contact shape of aprobe directly above
the element The following experiments and analysis were done with the smaller probe
to approximate apoint force more accurately.

The smaller probe experiment indicates that the strain becomes nonlinear at a
smaller load than a different finger tested by Fearing (1987). The difference could be
attributed to the use ofadifferent set ofamplifying electronics, but itwill be shown later
that the same set ofelectronics yields different model parameters for different elements.
This discrepancy suggests that different fingers or different elements on the same finger
can give slighdy inconsistent results. To rectify this discrepancy, each element should be
tested before use as a part of a cafibration procedure. It is already known that the
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sensitivity of various elements is not uniform, so the gain of each element needs to be
calibrated. In addition to calibrating the static gain, a dynamic calibration would be
advantageous.

The frequency response of the sensor shows a flat magnitude response from 0.1 to
20 Hertz, see Graph 2a. The phase lag, shown in Graph 2b, increases with frequency.
Higher frequencies were not tested since the force stimulator does not track the desired
input verywell at frequencies greater than 20Hz.

A sinewave with a slowly swept frequency was applied using the force stimulator.
Graph 3 gives the impression that the magnitude ofthe frequency response of the sensor
is flat up to 54 Hz. Note that the mean strain increases with time. This indicates that the
viscoelastic drift of a step response superimposes with a sinusoid of exponentially
increasing frequency. The flat response implies that there are no complicated dynamics
in this frequency range.

The step response is more illuminative than the frequency response, since it shows
three distinguishable attributes of a viscoelastic material. The strain response to a 50
gram step load is shown in Graph 4. Notice that the step response shows an initial jump,
aconstant drift and adelay that is apparently exponential. These characteristics provide
the motivation for fitting the response to the Maxwell-Kelvin model for viscoelasticity
(see section 3).

The most obvious characteristic is the initial, seemingly instantaneous jump of the
strain response. Another effect of interest is the permanent deformation caused by an
applied stress over time. The permanent deformation is shown in Graph 5. There was a
0.2 %residual deformation for a50 gram load applied for 20 seconds, and roughly twice
the residual deformation for a 100 gram load applied for 20 seconds. The consistency of
the permanent deformation implies that it can be predicted.

One method for compensating for the deformation would be to take a new offset
when no force is being applied. This approach has two disadvantages. First of all, the
finger may be used to grasp an object for aseveral minutes, so that taking another offset
may be inconvenient Also, if the offset is retaken before the dynamic exponential factor
has had a chance to decay, an erroneous offset would be obtained. Graph 6 shows the
response to repeated 20 gram step loads. If the offset were taken even after 5 seconds of

rest, an immediate error of0.2 % deflection would occur.
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3. The Maxwell-Kelvin Model of Viscoelasticity.
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Figure 6. Maxwell-Kelvin Model of Viscoelasticity
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The transfer function for the Maxwell-Kelvin model and its step response can be
derived as done by Mase (1970). The model, shown in Figure 6, has two spring elements
and two dashpot elements. Here the springs are ideally linear with their strain propor
tional to the stress applied. The dashpots represent aviscous response. The time rate of
change ofthe strain ofadashpot is proportional to the stress applied. The first spring in
series with a dashpot represents the Maxwell type response for a viscoelastic medium.
The spring element reacts immediately to stress and the dashpot accounts for the drifting
effect Equations (7a) and (7b) give the relationships between strain, e, and stress, a, for
the spring and the dashpot elements, respectively.

-*« *-*« (7ab)

G\ = spring or elastic constant

Nx = dashpot or viscous constant

Graph 7a shows the step response of a Maxwell medium. The strain response with
respect to time fora step stress of a0 is:

e(')=cr*7'+e- (8)

where % = initial strain.

In series with the Maxwell model is aKelvin model, which behaves as acommon delay
device. Its step response exhibits an exponential increase until it reaches a maximum
strain level, see Graph7b.

c

e(0 =7r-(l-* *> (9)
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The total strain for the two models in series is the sum of the individual strains. The
stress on each section in series is the same. The state space equations for the single input
single output, two state system are given by:

s* 0 0 e* 'vn'x
e* 0 G2IN2 e*

+ \IN2
L J L J L J

e = [1 1] **•

efr) _ 11 1
o(s) " Gx sNx sN2+G2

(10a)

(10b)

where the dot denotes differentiation with respect totime and
e„ =strain for dashpot of Maxwell panof the model
£* = strain for Kelvin section of the model

e = total strain

a = input stress.

Using the Laplace operator Y to designate differentiation, the transfer function relating
strain to stress is given below.

(11)

Before implementing the Maxwell-Kelvin model for viscoelasticity it is wise to
recognize its limitations. One significant consideration is the nonlinearity of the parame
ters of the model as seen in Graph 1. This is to be expected since the strain level is quite
high, over 15 %deflection. This nonlinear effect reduces the validity of using alinear
transfer function at all load levels, but near linearity suggests that a method of lineariza
tion about various operating points could be effective. Another problem is the con
sistency of the the model parameters for different tactile elements. Two tactile elements
can differ considerably, as shown in Table ffl. It could be necessary to dynamically cali
brate each sensor element of the tactile array. Also, the effects of age and work harden
ing can change the finger response so that the dynamic calibration may have to be done
after a period of heavy use. An important problem with the Maxwell-Kelvin model is
that it has a pole at the origin. This makes the model simulated response unstable. The
instability is due to the fact that the model predicts that the strain will increase
indefinitely as a constant stress is applied. This is certainly counter-intuitive since the
material is of finite dimension. The reader should bear in mind that the accuracy of this
type of model is valid only under the constraint that the loads on the finger do not last
indefinitely. Also, stress from forces at other points on the finger can reverse the per
manent deformation to put the tactile element back to its original position. Another
consequence of the pole at the origin is that the inverse of the transfer function has a zero
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at the origin. This makes it difficult to predict the stress given the strain by inverting the

transfer function. This problem can be alleviated by a slight modification to the model

that will follow in section 4.

Given the above problems with this model, it is still useful since it makes it easy to
visualize the response contributed by each of the parameters of the model. It provides a
basis for applying signal processing techniques that can be used to extract the contact

forces from the finger strain data. A key advantage to this model is its simplicity.

The model is fit to four different step loads using a parameter identification tool
called maxlike of the MATRDCx (trade mark of Integrated Systems Incorporated) system
analysis software. Maxlike solves the optimization problem of minimizing the root mean
square error, which is given in equation (12a). It uses the Arrnijo gradient decent
method, Polak (1971), to find the optimal set of parameters, GltNuN2t andG2. Another
Matrixx tool called irfm, employs the Runge-Kutta-Merson algorithm, Ferziger (1981), to
obtain the strain estimate of the entire signal based on the current parameter estimate.
From the strain estimate the RMS error and the gradient of the RMS error can be calcu
lated. The stress-strain data was in the form of 100 second trials sampled every 0.1 sec.
For the purpose of comparison, the RMS error was normalized by dividing by the
number of points of the signal and multiplying by the Maxwell spring term Gx to yield
error in grams instead of error in percentage deflection.

Root Mean Squared (RMS) Error:

RMS =
N

Zftl-Ci)

N = number of points

Normalized root mean squared error converted to grams of error

1/2

N 2 V2

RMSH = Gx
N

(12a)

(12b)

The input for the estimation was astep load lasting for 50 seconds followed by a25
second rest The step load was chosen for illustrative purposes. The results are listed in
Table I. The units for the spring terms, Gx and G2 are listed in grams per percentage
deflection. This unit of measure is handy for examining the graphs (1 gram per percen
tage deflection for a7 mm2 probe is 1.4x10s tf/m2). The elastic constant for the 50 gram
load experiment was 4.4x1.4x10s Nlm2=62 Nlm\ This value is greater than the
ZSxltfN/m2 reported by Fearing (1987) for an isolated sample of the rubber. The
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additional stiffness can be attributed to the core. The units for the dashpot terms are in
gram-seconds per percentage deflection (1 gram-second/percent deflection corresponds to
1.4x10s N-sectm1). The value of the drift dashpot, Nu was determined by calculating the
slope of the response from 50 to 75 seconds, assuming that the exponential response had
died out Notice that the parameter values depend on the magnitude of the load. This
was already seen for the immediate jump modeled by the spring of the MaxweU model
(Graph 1shows the elastic constant dependent on applied stress), and itappears to be true
for the spring of the Kelvin model as well. The dashpot terms are more difficult to
explain. The Nx parameter can vary quite a bit this is most likely due to experimental
error, since its contribution is quite small The amount of the contribution of the drift
dashpot is only on the order of 1/6500 %deflection for each gram-second ofload. It was
seen previously that a 50 gram load for 20 seconds caused a 0.2% permanent deforma
tion. This corresponds to avalue of5000 fortf,, quite close to the results ofthe parame
ter estimation here. The dashpot of the Kelvin model, N2, has a reasonably consistent
value of around 500.

Tabic L Maxwell-Kelvin Model Parameters for Various Load Levels

Units for spring terms, Gx andG2, are gramsl%deflection
Units fordashpot terms, Nx and N* are gram-seconds/%deflectwn
Element 4,2 (4th ring from base, 2nd axial strip)

lOg 30g 50g 80g

Gx 2.4 3.6 4.4 5.3

Nx 5000 5770 6670 8250

N2 500 500 500 300

G2 26 47 66 90

Element 4,6

Gx 4.3 4.8 5.1 5.7

Nx 7140 5000 6670 6560

N2 500 500 500 500

G2 48 65 70 75

Graph 8 shows the simulated response to the 50 gram step load for the Maxwell-
Kelvin and elastic models. Table II shows a comparison between the Maxwell-Kelvin
model and an elastic model for simulating the step response (Graph 4b) offinger element
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4,6. The RMS error of the noise of the strain gage signal was 0.14 grams, and the RMS

error of the noise of the finger signal was 0.022 grams. The strain gage noise was high,
because its signal was amplified by 2100. The models were tuned using the step
responses at various loads. The error for the Maxwell-Kelvin model was four times less

than that of the elastic model for the 80g load. The error difference was greatest at the
largest load. This is expected since the drift is proportional to stress, and the elastic
model does not account for the drift

Table EL Comparison of Maxwell-Kelvin Model and Elastic Model for Step Loads
Values arenormalized rootmean square error given in grams.
Element 4,6

lOg 30g 50g 80g

Maxwell-Kelvin .204 .455 .474 .784

Elastic .456 1.32 1.91 3.12

Graph 9 shows the error that arises when the 50 gram Maxwell-Kelvin parameters
are used to predict the response ofthe 10 gram load. The most apparent discrepancy is
the error in initial jump. After the load was removed at the 75 second mark the actual
andpredicted responses arequiteclose.

Atrue test of the model is to use it to predict the response ofa random input A
pseudo-random input was created by arbitrarily selecting times for a step change in stress
to occur. The step changes have random magnitudes, uniformly distributed from -20
grams to +20 grams. The best result came from using the parameters from the 30 gram
model. This was to be expected since the input happened to be in the 20 to 40 gram
range. Table in shows the error ofsimulating the pseudo-random response for each set
of model parameters. Graph 10 compares the actual response with the response predicted
bythemodel with the30gram parameters.

Table IIL Simulation Error for Each Set of Model Parameters

Values are normalized root mean square error given ingrams.
Element 4,2

lOg Model 8.07

30g Model 2.33

50g Model 7.68

80g Model 14.44
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4. General SecondOrder Transfer Function and Inversion

A general second order model can be derived by making a modification to the
Maxwell-Kelvin model Here the phrase "general second order model" means the transfer
function ofthe model can be expressed as aratio oftwo second order polynomials in V,
the Laplace operator. To arrive at the general second order model, the permanent defor
mation is modeled as an exponential delay with avery large time constant This intro
duces asmall spring value, a, inparallel with the first dashpot, see Figure 7.

c(
rVvVVvS

cp/VVVV^-J—|
^ t

/i/i

k

Figure 7. Modified modelto derive a general 2ndorder transfer function

This additional spring changes the transfer function as seen below.
Transfer function for modified model:

efr) = 1 { 1
a(s) Gx sNx + a

1

sN2+G2

Rearrange to obtain a ratioof polynomials:

_ (NiS+aXsN^Gd + GtQNi+GJl + Gx(sNx+a)
Gl(sNx + a)(sN2+G2)

_ AtiPi +siNfa+aNi+Gx^+GiNx) +(aG2+GxG2+Gxa)
~ stGflfa +s(GxNxG2+GxaN2) +GxaG2

s*+axs +a2

b9s2+bxs+b2

1 <•

H

(14)

(15)

(1©

(17)
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The coefficients of the numerator and the denominator polynomials were deter

mined by the Armijo gradient method as done before. The input excitation signal was

the sum of 6 sinusoids having frequencies: 0.017, 0.23, 0.79, 0.062, 1.9, and 5 Hz. The

offset load was 25 grams and the magnitude of each of the sinusoids was 4 grams. Each

sinusoid was given a random phase shift. The results were...

ai = 3.01 a2 = .784 ^ = 5.81 ^ = 13.26 b2 = 253

error of 2nd ordermodel predicting the excitation response = 2.78

error predictingrandom signalresponse= 3.71

Table IV. Pseudo-Random Signal Simulation

Values are normalized rootmean square error givenin grams.
Element 4,2

Elastic Model 4.54

Maxwell-Kelvin Model 3.85

2nd Order Model 3.71

Elastic Model Estimating Force 2.76

2nd Order Model EstimatingForce 2.23

This model was used to estimate the finger response for the same pseudo-random
signal as before. Table IV compares theresults of the second order model with thoseof

an elastic model and aMaxwell-Kelvin model tuned with the same excitation input. It is
prudent to note that the Maxwell-Kelvin parameters converged to different values
(Gi =55, ^ =6000, #2=19.2, and G2=8.4) for the estimation with the sum of sinusoids
excitation signal This is because the solution to the mininnim error problem is not a
unique point but rather a line or surface of points in 4-space. The estimator seemed to
trade offbetween the values of the two spring terms. The reduction of G2 brought down
the value for N2. This discrepancy is no cause for alarm, since the purpose of the model
is to get abetter prediction than an elastic model This purpose is achieved as evidenced
by the error comparisons and the graphs. The error of the elastic, Maxwell-Kelvin, and
2nd order models was less than the Maxwell-Kelvin models tuned with the lOg, 50g and
80g loads. This exemplifies the fact that the excitation signal needs to be in the load
range of interest Graph 11 compares the response of the second order model and
response of the elastic model with the actual finger response for the pseudo-random
input
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Next, the second order model was inverted by taking the reciprocal of its transfer
function. This inverse was used to estimate the force of the contact point at the surface
of the finger given the strain response of the tactile element The error for the second
order inverse simulation isalso shown in Table IV and isroughly 20% less than the error
ofthe elastic model. Graph 12 compares the inverse predicted force of the second order
and elastic models with the actual force applied. Notice that the elastic model does not
predict the zero force level well. This is because of the permanent deformation of the
finger response. The second order model inverse overshoots for the initial jump up to 30
grams and undershoots at the final drop of33 grams. The error caused by the undershoot
can bereduced by limiting the predicted force to be greater than zero. This restriction is
reasonable for this case since we are considering a normal force that can only press into
the finger, and not grab the finger material and pull it up. A large pan of the second
order inverse force estimation error is due to the initial overshoot This implies that
instead ofjust taking the reciprocal ofthe transfer function, a more sophisticated method
of force estimation based on the Maxwell-Kelvin model information may give better
results.

5. Additional Considerations and Future Work

Based on the evidence that the spring terms of the Maxwell-Kelvin model are
slightly nonlinear, a model that used look-up tables for the spring values was designed.
The model was tested with the same pseudo- random input signal but no appreciable
improvement was achieved. Other experiments were done to testthe models.

Fora different tactile element a second order model had greater success in simulat
ing the response to a test signal comprised ofconsecutive 10 gram steps atone second
intervals, see Graph 13. This experiment was conducted using the larger 16 mm2 area
probe. The RMS error was only 0.82 grams. The accuracy could beattributed to the fact
that the steps were consistendy increasing then decreasing. Also, this test lasted a total
ofonly 10 seconds, so the exponential and permanent deformation effects did not play as
significant a role asit did in the 100 second experiments.

The inverse ofthe second order model was taken as before. Graph 14 compares the
actual force applied with the predicted force of the inverse model. The error was small
because the overshoot problem did not contribute much error for the small 10 gram steps.

Incorporating hysteresis as a characteristic of the individual spring elements of the
model is a conceivable approach for explaining the fact that the response does not return
to zero when no force is applied. However, the step responses show that the immediate
drop from unloading is of the same magnitude as the initial jump from loading. Hence,
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hysteresis is not a characteristic of the individual spring elements.

6. Conclusion

The models presented here are not intended to be final models that can be immedi

ately used to compensate for the viscoelasticity of the finger material. The contribution

of this paper was to expose theviscoelastic characteristics of the sensor response and to
suggest methods for dealing with these characteristics. The extent of modeling orsignal
processing of the sensor response will depend on the particular application of this tactile
sensor.

Recovery of a dynamic point contact force has been aided by the consideration of
viscoelastic effects. A second order linear transfer function can be inverted to yield
better results than a stricdy elastic model. Fitting a Maxwell-Kelvin model to the strain
response of the finger demonstrates the model can simulate the finger strain of apseudo
random input better than an elastic model. The error is only small when the parameters
of any model are tuned with a signal in the same strain range as the test signal. The
second order model had about 24 %less error than the elastic model for simulating the
finger response toapseudo-random signal The majority of the error of the second order
model came from the section ofthe signal that was outside an operating range of25 to 30
grams ofload. This implies that the reduction oferror would be more dramatic ifonly the
region near the operating range were considered. It is expected that some form of gain
scheduling could compensate for the error caused by awidely varying strain signaL The
viscoelastic drift is fairly consistent over various load levels at about 0.2 %deflection for
a 1000 gram-second load. Hysteresis of the spring elements of the model isnot the cause
of permanent deformation. The frequency response is flat up to 20 Hz. A method of
dynamic calibration of the tactile sensor elements needs to be employed in order to use
viscoelastic modeling to an advantage. More work is needed in filtering the data to
recover the contact forces, and an understanding ofthe effects ofadynamic shear stress
at the surface of the sensor needs tobe developed.
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itry and software tools, Richard Murray for help with the LYMPH multiprocessor sys
tem, and John Hauser for control system and estimation advice. Supported in part by the
Defense Advanced Research Projects Agency (DOD), monitored by SPAWAR under
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Graph 1. Static linearity test, finger response taken 0.1 sec after each load
was applied, (a) 7mm2 area probe (b) 16mm2 area probe
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Graph 3. Response to a sinusoid with exponentially increasing frequency
from 1to 54 Hertz, (a) Input stress expressed as apoint force (b) Strain of
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Appendix A: Application ofaSmall, Observable, Controlled Force

For investigating the force response of the tactile sensor it is necessary to have a
force applicator. The design goal was to be able to apply aknown and controlled force
from zero to 100 grains (100 grams of force =0.98 Newtons). This was achieved by
using a strain gage to sense the applied force, and feeding back the signal to track the
desired force input Figure (a) shows the force response for a command of 10 gram
increments (also shown on Graph 14). Figure (b) shows the difference between the com
manded force and the force applied for the step increment test Notice that the error set-
des to less than a gram after the step commands. The settling time is about 0.08 sec. The
(RMS) error of the noise of the strain gage signal is 0.14 grams. Graph 4a shows the
actual force applied when a 50 gram step was commanded. The response appears quite
accurate since the time between points was 0.1 seconds. The magnitude of frequency
response of the force applicator is shown by the sinusoid ramped in frequency displayed
in Graph 3a. The response is flat up to about 40 Hz. Near 40 Hz, the response displays a
nonlinear effect Hemispherical and flat contact shapes were used, but experiments with
other shapes could be done by simply attaching the desired probe to the end ofthe force
applicator beam.

Figure 1on page 2shows the force probe attached to the end ofan aluminum beam,
which is connected to the shaft ofa dc-motor. Astrain gage is affixed to the beam. Its
signal is amplified by 2100, passed through an A/D converter and used for reading the
force applied to the tactile sensor and for feedback control. The motor is powered by a
current amplifier that yields 0.19 amps per volt ofinput. To compensate for the resonant
modes of the system a lowpass-notch filter was implemented. The system was digitally
controlled by a Motorola 133XT processor board on the "LYMPH" multiprocessor sys
tem. The A/D and D/A conversion is done using the hardware via a Data Translation
1407 board. The system block diagram isgiven in Figure (c).

The system has several features that make control challenging, including: the reso
nance caused by the motor inertia and springiness of the finger, the lack ofviscous fric
tion to aid in damping, the resonant frequencies of the beam, the static friction of the
motor, the noisiness ofthe strain feedback signal, and the probe losing contact with the
finger.

Alowpass-notch filter was used to compensate for the inertia-spring resonance of
50 Hz and the beam resonance of 190 Hz, see Figures (d) and (e). This worked well,
except that it forced the frequency response ofthe open loop system to drop off after 20
Hz, see Figure (f). Astiffer beam was not used, since the beam had to be flexible enough
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to give areasonably large strain gage reading. A more sensitive strain gage would allow
theuseof a stiffer beamwhich would resonate ata higher frequency. The useof a stiffer
beam could alleviate the need for a notch filter as long as a lowpass filter was used. To

reduce the inertia-spring resonance, attempts were made to increase the viscous friction.

All physical changes to the system to increase the viscous friction also increased the

static friction orchanged theinertia of the system, yielding unsuccessful results. Further
more, since the system was quite difficult to model and behaved in a nonlinear fashion,
simple PID feedback control did not solve the problem. To avoid the time expense of
implementing amore sophisticated control system, the lowpass-notch filter was used.

The static friction problem was overcome by removing the brushes from the motor
and soldering wires direcdy to the commutator. This was successful since the motor only
needed to rotate a few degrees. The noise of the strain gage signal was reduced to the
value of0.14 grams RMS error by averaging it 8times per time interval. The probe los
ing contact with the finger caused the closed loop proportional-derivative control system
to become unstable when small forces (less than 10 grams) were commanded. This prob
lem was alleviated by adjusting the contribution of the feedback gains according to the
force command leveL For acommand of zero grams the feedback gains were zero, and
the gains werelinearly increased asthe command level was increased.
Let:

feQc) =commanded force at the Jfcth intervalin time,

/, = force sensed by strain gage,

fa =adjusted command (is convened to analog voltage and applied to notch filter),
e(k+l) = command error=fe(k+l)-ft(k),

Kd =derivative control gain =0.03,

Kp = proportional control gain = 2.0,

Ke = error control gain = 1.0,

A/ = 0.001 seconds,

then thecontrol lawis given by,

/«(*+!) =fe(k+l) +(KJc(k+WO0) (Kp <?(*+l) +Kd *(*+*>-*(*)) (A1)
A/

The following pages give the technical details ofthe force applicator device.
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Current Amplifier*

Xvvws

Gain:/^/Vi, = 0.19 amps/volt 3dB point: 160 Hz

Power Supply: POWER-ONE International Series HCC15-3-A +/- 15 volts 3amps

Circuit Elements:

A1,A2,A4:

Ql. Q4:

Q2, Q3:

Q5,Q8:

Q6, Q7:

D1,D2,D3,D4:

Quad-Op-Amp TL704CN

PNP 2N2905

NPN 2N2219

PNP 2N6247

NPN 2N6472

Diode 1N4004

*Circuit Design isamodification ofone developed byRaja Kadiyala,
Robotics Lab, EECS Dept,University of California, Berkeley.
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Low Pass Notch Filter*

p/WV*-

± S^QR
CiI

Transfer Function:

(0.n(j) 1
(^2 +©,2)

Vf(s) j/<D, + l (0.
J s2+ — s+q9*

Component Values Determine the Pole and Zero Frequencies:
tf,=6800G,C, =luf => <ot = 147rod/sec, ft =23AHz

R =2.7kQ,C = 22\iF => <d„ =168rod/sec, f0 =26.8Hz
a=(oH/(D0

C,=
1 1
2 + 2a2 C,=

J_ 1
2~2a*

C|«1.13|!f => a=6.6, C2=l.08uF => a=7.4 => ©„ =190i/r
Q=2.8 =» 2QR=l5k£l

*Circuit from Ghausi and Laker (1981), page 217.
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Motor and Strain GageData

Motor: Electro-Craft Model: E-586

Torque Constant: 12.6 oz-in/amp = 910 gram-cm /amp
Armature Inertia: 0.0053 oz-in-sec2 =0.38 gram-cm-sec2
Static Friction No Brushes: = 10 gram-cm
Damping Factor: 0.1 oz-in/KRPM =432 gram-in/(deg/sec)
Armature Resistance: 2.0Q

Armature Inductance: 4.9mH

Note: the brushes were removed and wires were soldered directly onto the commutator.

Strain Gage: Measurements Group

Bridge voltage: 10 volts

Amplifier Gain: 2100

Ratio of force at end of beam toamplifier voltage: 14 grams /volt
Standard Deviation of noise of strain gage signal at A/D converter 0.1 volts

Moment Arm Length: 9 cm
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Finger Amplifier Circuit

uowu

*—A^W-

pA/VSA-r

V, =amplified magnitude ofthe sinusiodal sensed voltage signal from atactile element (= 5volts).
V0 =amplified magnitude of the sinusoidal voltage across atactile element when there isno deflection.
\'d - voltage dropacross the diode=0.6 volts.
Vout = voltagereadby A/D converter
vce =positive power supply voltage = 14.7 volts
Rpf =potentiometer=187 kCI (for element 4,2: the 4th ring from the base, 2nd axial strip).
Rp x=potentiometer =48kCl (forelement 4,2)

The circuit has three stages: pre-ampiification, envelop detection, and final offset and amplification.
The first stage amplifies the 200 kHz signal to overcome the voltage drop across the diode. The diode and
single pole low pass filter acts as an envelop detector. The final stage allows the user to set the offset close
»ni 7om and adjust the final output voltage range by adjusting the potentiometers R ; and R T"hjc n«ti

adjustment assures that the output voltage range will be within the +/-10 volt range ofthe AID converter
thatit can be readby the A/D converter.

The goal is to recover strain in percentage deflection from Vout. The voltage after the envelop detec-
torisV, - VDt and from equation (6) on page 6, we need (V, - V0)/V0. When there isno strain:

= -/?.
Vm - Vr

Vi 22*

and when there is anarbitrary amount of strain:

outt = -R«
Vi

K. =-

V, - Vt

22*

- K

R*
Kp\

+ Vr

Using the above relation for V0, the strain, e, ofthe tactile element can be written in terms ofmeasurable
voltages and known constants. The units are percentage deflection.

Rx
V, - V0 'Rj"~ n \YoUU *Md»)

£ =

v9

SOOVSL

OUT
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