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ABSTRACT

This paper presents exact nonlinear control laws for a flexible spacecraft consisting of a
rigid body with an attached Euler-Bernoulli modelled flexible beam. Equations of motion and
kinematics for the structure are derived. In the case of significant beam damping, it is shown
that a rigid body control law (derived using the methods of exact linearization) is sufficient
for performing the desired maneuvers. In the case of negligible beam damping, it is shown
that a modified control law consisting ofa rigid body control law and a beam boundary control
law also performs the desired attitude maneuvers. Implementation issues are also dis
cussed.

Research supported by Hughes Aircraft Company, El Segundo, CA 90245;
and the National Science Foundation Grant ECS 8500993.



1. INTRODUCTION

It is now well known that a number of nonlinear control systems of engineering interest can
be transformed by a static state feedback and a nonlinear change of coordinates into an
equivalent linear system [De L. 1], [De L. 2], [Mey. 1]. In particular, in the area of attitude
control, the method has proved to be quite useful. Dwyer [Dwy. 1] used this method of lin
earizing transformations to obtain exact nonlinear continuous time control laws for large
angle rotational maneuvers for a rigid body by use of external thrusters. Similar methods
are employed in [Dwy. 3] to design control laws for a rigid body controlled by both external
thrusters and momentum wheels.

This method has also been successfully been used for designing a nonlinear attitude control
law for a satellite with flexible appendages. In [Mon. 1], the control law was derived for a
satellite with its flexible appendages modelled by their finite dimensional modal approxima
tion. However, implementation of the control scheme required information about the beam
velocities and displacements at several points of the beam. In practice, these are difficult
measurements to make.

The purpose of this paper is to outline the design and implementation of a nonlinear feed
back control law for a satellite with flexible appendages without the restrictions of [Mon. 1].
The spacecraft to be considered will be a rigid body with a single flexible appendage attached
to the rigid body. The appendage will be modelled as an Euler-Bernoulli type beam, rather
than its finite dimensional approximation. The control law will be derived using linearizing
transformations in the spirit of the above papers, but the implementation will be considerably
different than [Mon. 1] in that it will not depend on the beam displacements and velocities,
but rather on the forces and moments at the point of attachment. These quantities can easily
be determined by the use of strain rosettes.

2. PROBLEM DESCRIPTION AND MATHEMATICAL MODEL

The problem considered in this paper is the so-called attitude control problem. This con
sists of finding a control law to change the orientation of the spacecraft to that of a specified
orientation. This might be the case, for instance, if the satellite were to be pointed at an
earth based ground station. We now consider the spacecraft model, and the resulting kine
matics and dynamics in order to solve theproblem.

The physical model is depicted in Figure 1. The structure consists of a rigid body in which
a thin, flexible, cantilevered beam-like appendage of length L is attached.

Affix a "body" coordinate frame, denoted {0B, bv b2, b3}, to the rigid body center of mass
Ob- ^i» &2 ^ ^3 are orthonormal vectors which coincide with the rigid body principal axes
of inertia; in addition, assume the b3 axis coincides with the centroidal axis of the undeflected
beam. Control inputs (not shown in Figure 1) consist of three thrusters and three momen
tum wheels, where for i=l, 2, 3, the torque jets Jj producing a torque x{ about the bj axis, and
the ith momentum wheel spins about an axis parallel to bt, thus also producing a torque x-'
about bj.

Finally, let {0E, ev e2, e3) denote the inertial frame. The attitude problem thus becomes
that ofaligning b^ b2, b3 with ev e2, e3 using the control jets..



Change of Basis

As shown in [Kane 1, p. 4] the orientation of the body frame with respect to the inertial
frame may be determined at each instant t by the direction cosine matrix Y € lR3x3 defined
as follows:

[bib2b3]= [e^e^Y. (2.1)

Note that Y is a coordinate transformation that maps vectors from the body frame to the
inertial frame. That is, (assuming 0B coincides with 0E) if y^Vjbj +v2b2 +v^, then the
components of Y(vx v2 v£T are the components of the vector v resolved along the inertial
axesej.ej.ej.

This matrix may be parametrized by the so called "Gibbs Vector", or "Rodrigues vector"
[Kane 1, p. 16] £ e 1R3 defined as

£=tan(<|>/2)e (2.2)

where <(> is the angle of rotation (in radians) of the body frame about the instantaneous axis
of rotation e. s 1R3. Note that £ -» ±«> as <|> -> ±k. The parametrization of Y by £ is [Kane 1,
p. 17]

Y© =2(l+£T£)-1[I +££T +£x]-I (23)

where I is the 3x3 identity matrix, T denotes transpose and £x is the matrix representation of
the cross-product with £ i.e., if£=(^, §2, £3)T, then

£x = °-*3 *2
^3 0 "^

L-S2 $i 0 .

There are, of course, other parametrizations of Y by attitude variables. In fact, most
authors use either Euler quaternions or Euler angles for the parametrization Pwy. 1, 3],
[Mon. 1], [Vad. 1]. However, as discussed in Pwy. 2], the Gibbs vector is probably the
best choice of kinematic variable for control synthesis in that it avoids state constraints
and/or feedback singularities that are usually present when other variables are used.

Kinematics

If weR3 denotes the angular velocity of the body frame with respect to the inertial frame
(in body coordinates), then the differential equation satisfied by £ is [Kane 1, p. 62]
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£=|[I +UT +£x]co. (2.4)

Solution of this differential equation (starting from some initial attitude Z,(t^)) allows compu
tation of£(t) for all t>tQ, and hence by (2.3) Y(£) for all t>tQ. In other words, solution of this
differential equation allows determination of the orientation of the body frame with respect to
the inertial frame forall t>tQ.

Spacecraft and Reaction Wheel Dynamics

First, some notation will be needed. Let I0 be the rigid body inertia tensor (including torque
jets and locked wheels) calculated with respect to the body frame {0B, b2, b2, b3). Let IA=
diag(Iwl, 1^, 1^) eR3x3 where 1^ is a component of the inertia tensor associated with
wheel i, calculated about a frame located at the center ofmass of each wheel. Let Qw €R3
denote the angular velocity of wheel i about its axle (in body coordinates), let mB be the
mass of the rigid body, and let i=(x1, t^, t3)t denote the torque due to the thrusters. Final
ly, fjjg is the force the beam exerts on the body at cb3 (in body coordinates), while MbB
(also in body coordinates) is the moment the beam exerts on the body at cb3.

Now consider a free-body diagram drawn around the rigid body portion (excluding
thrusters) of the spacecraft Note that the angular momentum of the rigid body, calculated
about Ob and, denoted by h, is Iq© + IAQ.W. Taking the rate of change of h with respect to
the inertial frame yields

10© + IAOw+mxI0Pi +coxIAQw =x+cb3xFbB+_MbB. (2.5)

The right-hand side of (2.5) is the net external torque (calculated about 0B) applied to the
rigid body. It is composed of the torque due to the torque jets, and the net moment that the
beam applies to the rigid body. Next, apply Newton's third law of motion to the free-body
with respect to Oe, an inertial frame. Since y. gives the coordinates of Ob with respect to the
inertial frame,

mB£=Y(£)FbB (2.6)

where F^B is multiplied by Y since F^ is in body coordinates. Note also that it is explicitly
assumed that there is no net force due to the torque jets.

Now draw a free-body diagram about the momentum wheels alone. Compute the rate of
change of the angular momentum associated with the momentum wheels with respect to the
inertial frame, and write out the components associated with the wheel axles, to obtain, in
matrix form,



IA(m + Q.w)=£ (2.7)

where t = (x{ , x2 , x3' )T, x{ is the torque exerted by the ith motor on the rotor of the ith
wheel. Complete details for this calculation, and the others above, can be found in many
sources, for example [Hug. 1, p. 67].

Finally, substituting (2.7) into (2.5) yields

do - lp)& + ©xIqG) +mxl^ =T- x/ +cb3 xF^ +Myj. (2.8)

BEAM DYNAMICS

Consider now a free-body diagram drawn around an infinitesimal segment of the beam
located between zb3 and (z+dz)b3. Let u = (uv u2, u3+z)T denote the position (in body
cooridinates) of a point p whose undeformed position is zb3, and let u denote the rate of
change of u with respect to the inertial frame. Let F(z) denote the force acting on the section
of the beam at z, and F(z + dz) the force acting on the segment of the beam at (z+dz)b3.
Then writing Newton's third law with respect to the inertial frame yields

l+wxu + 2©xu + cox(coxu) +dF(z) + Y'lx=0. (2.9)

where we have assumed a beam mass perunit length of unity, and

AFM ._ lim E(z + dz) - F(z)

We will model the beam as an Euler-Bernoulli type beam, with Voight-Kelvin damping
[Pop. 1, p. 116] (often referred to as viscous damping), and for simplicity we will ignore tor
sion. Let Hi denote the flexural rigidity of the rod in the ith direction, and let 1^ be apositive
constant reflecting the rate of energy dissipation of the beam in the ith direction, i=l, 2, 3.
Assume for simplicity that the beam has its principal axes of inertia parallel to the principal
axes of the rigid body, sothat the expression for F(z) becomes [Pop. 1, pp. 116, 381-383]

F(z)=^a'(u) +ka'(u) (2.10)

where ^i=diag(M.1, ^ |i3), k=diag(k1, k2, k3) and a'(.):=(-^-, ^p,- ^-)T . Hence,
for such a beam dF(z) becomes

dF(z)= ji9(u) +k9(u) (2.11)
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u *^ f a4(-) ^ ^ YT Twhere dM^--^-, "TT".- TTV • Insert (2-n)mt0 (2-9)t0 obtain

U+obxii +2©xu +cox(oixu)+|Li3(u) +k3(u.) +Y_1x =0 (2.12)

The boundary conditions for this fixed end - free end beam are (see [Pop. 1, pp. 385-386,
124,128])

u(c)=0, ufOOsu^cH) Ul"(c +L) =0 u2"(c +L)=0 (2.13)
ufXc +L)=0, u2'"(c +L) =0, u3'(c +L) =0

A derivation of these equations using Lagrangian techniques, rather than free-body dia
grams can be found in [Bai. 1].

3. CONTROL LAW DETERMINATION

To achieve the objective of aligning the body frame with the inertial frame, which means
that Y=I, examination of (2.3) shows that 4(0 should become 0. This indicates the control
law strategy: find a control law in which £(t)->0. Note from (2.4) that necessarily «->0, and
from physical intuition, the beam stops vibrating and returns to its undeformed state. In oth
er words, the control law should essentially stabilize the rigid body/beam system.

For simplicity, we will control the satellite by using the torque jets only. (See the second
remark at the end of Theorem 3.1 for further comments). This corresponds to setting x'=0,
IA=0 and£w=0 in (2.8) above.

To design the control law, the method of linearizing transformations will be used. (For a
thorough explanation of this procedure, see Pe L. 1], [Sas. 1], and, in particular, [Isi. 1].)
More precisely, we desire to find a static state feedback and a nonlinear change of coordi
nates to transform the coupled nonlinear-partial differential equations (2.4), (2.6), and (2.8)
into a "normal form" [Isi. 1, p. 8], i.e. a system with linear input-output dynamics, and a cor
responding unobservable, possibly nonlinear subsytem. Strictly speaking, since (2.4), (2.6),
and (2.8) contain partial differential equations, the methods mentioned above do not neces
sarily apply. However, we will proceed blindly along these lines and investigate what hap
pens.

Theorem 3.1. - Consider the system described above by equations (2.4), (2.5), (2.6).
(2.3), (2.12) and (2.13). Assume that x'=0, so that these equations become

£=^[I +&t+£x]cd. (2.4)
IqW + coxIqG) =x +cb3 x F^ +MbB. (2.5)

mBi=Y©FbB (2.6)



Y©=2(l+^-l[i +££T+£x]_I (23)

u +©xu +2pjxu +©x(p3xu)+^9(u) +k3(u) +Y_1x =0 (2.12)

u(c)=0, Uj'W^XcH) uf(c +L) =0 u2"(c +L) =0 (2.13)
uf'fc +L)=0, u2"'(c +L) =0, u3'(c +L) =0

Suppose now that we can determine F^B(t) and MbB^) by on-board measurments. (See
Appendix A for an example of how this might be done). Suppose also that the mass of the
rigid body is much larger than the mass of the beam. If weapply the control law

1=coxIqG)+2(1 +£T£)I0(I -£x)(-K - "£) -I0(£Tw)m- cbgxFbg -Ny (3.1)

where P> 0 andy> 0 then

(i) The attitude £(t)-»0 exponentially, and £(t)-»0 exponentially;
(ii) The angular velocity ©->0 exponentially, and d)-»0 exponentially;
(iii) The beam deflections u and beam velocities u both go to zero exponentially.

Proof of(i) -We choose £ =(^, $2, £3)T to be the "dummy" output function. Then, following
the linearization procedure given in [Isi. 1, sec. 2.3, 3.3], we intend to "differentiate the out
put until an input appears". Differentiating £ yields (2.4), which will be repeated here for con
venience.

£=£(I +l£T+&0ffl (2.14)

Since noinput appears in this expression differentiate again

i=f(4a +̂ T +̂ x))03+^d+^T+£x)^.
dt l 2 at

The calculation of the derivative in the first term is rather tedious; after computation we
plug its value in and obtain

I=4(&Tm)(m+^Tm+ixp3)+i(i+^T+^x^
*> 2

=\ (I +££T +£x)[(£Tco)G> +&\. (3.2)
Insert (2.8) and use the fact that l0 is invertible to obtain

t =\ (I +££T +£x)[(£Tco)co +Iq'1 {-coxIqCO +cb^F^ +MbB +1)]. (3.3)
Now set,
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1=1-cb3xFbB'MbB (3.4)

where, again, F^ and MbB nave ^en measured, and 1 is a vector of real valued functions.

(E can be thought of as the new exogenous input) Insert (3.4) into (3.3) to obtain

1= ^a +̂ +̂ xX^T^Oi +Io-M-wxIoPi+m (3.5)

But this is exactly the form of the equation one gets for a rigid body without flexible
appendages [Dwy. 2]. Since the term outside the square brackets is nonsingular, we can
apply the following control law

i= coxI003+I0[l(I +̂ T +£x)r1w-I0(£T©)©

=mltf»+2(1 +£T£)I0(I -£x)w - I^7©)© (3.6)

where w is a vector of real valued functions, and again can be thought of as a new exogenous
input. Applying (3.6) to (3.5) then yields the linear system

I =w. (3.7)

On this controllable linear system, the poles can be placed as desired. For example, let

w= -p£-£. (3.8)

where P>0 and y>0. Inserting (3.8) into (3.7) and writing (3.7) in state space form yields

' o I

-pi -ri i
(3.9)

which implies (since p>0 and y>0) that £(t)->0 exponentially, and i(t)->0 exponentially.
From (2.4), co = 2(1 +£T£)(I - £x)£ whence it follows that G)->0 exponentially. From (3.2)
and (3.9) we also have that co->0 exponentially. Since a combination of (3.4), (3.6), and
(3.8) yield (3.1), (i) and (ii) are proved.

Finally, since the beam is damped and w, ri)->0 exponentially, it can be shown that if the
rigid body has a much larger mass than the beam then the beam deflections and velocities go
to zeroexponentially. (See Appendix B for the proof). Thus (iii) is proved. •

Remark - The interpretation of the control law is simple. First, the effect of the flexible
body on the rigid body is removed by (3.3), and then the decoupled rigid body is controlled by
(3.5) (which of course must be the same as the control for the rigid body alone as given in
[Dwy. 2]).



Remark - In the case where momentum wheels alone are used to control the structure, the
control law is very similar to the one in Theorem 3.1. The equations of motion and kinemat
ics for this structure are nearly identical to those in the statement of Theorem 3.1, with the
exception that (2.8) should be used instead of (2.12). In this case, it is easy to verify using
exactly the methods in the proof of Theorem 3.1 that the control law

x=- coxloco -©xl^ - 2(1 +^(VIaX1 "&<X-P£ - TS) +
(Io" IaX£T^ +<*3xEbB +MbB (3.10)

with P>0 and 7>0 satisfies theconditions (i), (ii), and (iii) of Theorem 3.1.

4. ATTITUDE CONTROL WITH BEAM BOUNDARY CONTROL

In the previous section, attitude control was obtained by decoupling the rigid body from the
beam, and applying a rigid body control law. By decoupling the two components we are then
left with an uncontrolled, damped beam. However, if the damping is small, or essentially
negligible, then oscillations in the beam can continue for an undesirably long time. In this
section we will consider the problem when the beam damping is assumed to be zero, i.e., k=0
in (2.12). Since there is no damping in the beam, it is easy to see that the control law of The
orem 3.1 will not work because the beam oscillations will not die off. Thus, if we are to
employ a decoupling linearization law in the spirit of Theorem 3.1, beam control will be need
ed to stabilize the beam.

With these ideas in mind, now consider the structure shown in Figure 1, with the following
modifications: At the beam tip (undeflected position is (c+L)£3) append 3 point force actua
tors and 3 point velocity sensors. The three actuators are situated with directions parallel to
the three coordinate axes, while the three velocity sensors measure the velocity of the beam
tip with respect to the inertial frame. Finally, assume that no damping is present in the
beam. With these modifications the equations in Theorem 3.1 become

i=|[I+&T+£x]G>. (2.4)
IqCO +coxloco =x+cb3 x F^ +^4bB. (2.5)

mBX =Y©EbB (2.6)

Y© =2(1+£T&-1[I +££T+£X]_I (23)

u +a>xu +2coxu +©x(coxu)+^i3(u) +Y"xy =0 (2.12)

u(c)=0, u1'(c)=u2'(c)=0 uftc +L) =0 u2"(c +L) =0 (2.13)
uf'tc +L) -Fjft), u2'"(c +L) =-F2(t), u3'(c +L) =-F3(t)



whereFj(t), i=l, 2,3, is the the point force actuator associated with the ith axis.

For the applications in this paper, it turns out that a very desirable form for the Fj(t), i=l,
2, 3, is choosing simple velocity feedback, i.e.

Fj(t) =-otjUi (c+L), a^O i=l,2,3 (4.1)

Theorem 4.1 - Consider the modified system described above, together with the control law

x=P3XIQC0+ 2(1 +iT£)I0(I -£x)(-A£- b£) -I0(£Tco)co -cj^xF^ -MbB (4.2)

uftc +l) =cxu^c +L) u2'"(c +L) =pu2(c +L) u3'(c +1) =tu3(c +L) (4.3)

where A>0, B>0, cx>0, p>0, 7>0. Also assume that £=0. Then the attitude is corrected
(i.e., £(t)-»0 exponentially), and the beam velocities and deflections go to zero exponential
ly-

Proof of Theorem 4.1 - See Appendix C. •

Remark - The interpretation of the control law is again simple. The rigid body torque law
(4.2) decouples the rigid body from the beam, and then stabilizes the rigid body. The beam
boundary control law (4.3) exponentially stabilizes the beam. Thus we are again left with
two decoupledexponentially stable systems, as in Theorem 3.1.

5. CONCLUSIONS

This paper has considered the attitude control problem for a flexible satellite consisting ofa
rigid hub and a elastic beam, modelled as an infinite dimensional Euler-BemouUi beam. A
control law was demonstrated for the case where the beam contained viscous damping, and a
modified law in the case where beam damping was absent. The novelty in the proposed law
was twofold: it was seen to be easily implementable using strain rosettes, and it stabilized
Ml the beam modes, rather than a finite number of them. Several problems still are worth
investigating, among them robustness, shaping of beam response, sensor and actuator place
ment, and implementation issues dealing with limitations on achievable torque in the control
jets.
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APPENDIX A - DETERMINATION OF SHEAR FORCES AND MOMENTS

Determination of beam forces and moments is highly problem specific. In this appendix, we
will consider the determination of forces and moments due to a rectangular beam attached to
a rigid body. See Figure 2.

The problem with determining these quantities is they cannot be directly measured, but
rather must be determined through some other quantity which can be measured. The sim
plest way of doing this is by use of strain gauges and rosettes. The reader unfamiliar with
these devices can find a simple discussion in [Pop. 1, p. 311] or a more complete discussion
in [Het 1, chapt 5-9].

1. STRESS AND STRAIN TENSORS

Only a very brief discussion of material properties will be given here, mainly to fix nota
tion. Readers interested in a more detailed exposition are referred to [Pop. 1, Chapters 3, 4]
or [Lan. 1, Chapter 1].

Let the position ofa particle P in the beam be rxi + t$ +r^ (where i, j, k refer to the unit
vectors along some x, y, z coordinate axes). Upon application of forces to the beam, defor
mation occurs and the point Pmoves to (r2 +Uj)i +(r2 +u2)i +(r3 +u3)k.

Let exjx- denote the ij-th component ofthe strain tensor defined as
e 1 / 3Uj 3U: 9uk 3U: .
xixj= iCax-j +axf +ax] a^) <au)

with summation over k, where xx:=x, x2:=y, x3:=z.
Now consider an infinitesimal cubic volume element centered about a point P of the beam,

with faces of area AA. Let ^x.x. denote theij-th member of thestress tensor defined as

Vj-^O^M-lAS (A1.2)

where ^Xjj is the Xjth component of the force acting on face j of the cube. (Faces 1and 4
have outward normals parallel to the x and -x axes, respectively, faces 2 and 5 refer simarily
to y and -y, and 3 and 6 refer to z and -z.)

By assuming homogeneous, isotropic material, and also assuming small strains, we get
Hooke's Law relations between stress and strain

exx = tfxx/E - V<*yy/E" va2Z/E (A 1.3)
eyy =cyym - vaxx/E - voJR (A1.4)

Ezz =<WE "^xx/E "vVE (A1.5)
^y^x/3 (A1.6)

-12-



eyz =VG (A1-7)
exz = <WG (A1.8)

where E is the Young's modulus for the material, v is Poisson's ratio, and G is the shear
modulus.

In general, the contributions to Poisson's ratio is small and hence for simplicity it will
be ignored. Then equations (A 1.3 - A 1.5) simplify to

exx = °xx/E (A1.3a)

Cyyas°yy/E (Al.4a)
£zz =azz^ (A1.5a)

2. FORCES AND MOMENTS AFFECTING BEAM

Consider a rectangular beam as shown in figure 2. Recall that the neutral surface (or elas
tic line) is the portion of the beam which does not change length during deformation. In the
case shown here, it is simply the z-axis. In determining stresses due to bending moments,
the fundamental assumption is that the strains vary linearly as their respective distances
from the neutral surface. With such an assumption, and using equilibrium conditions for an
arbitrary beam segment, it is easy to show that the bending moment about the x-axis =: M
is [Pop. 1, p. 182]

Mx=Ix<Vx (A2.1)

where Ix= Jx2dA =ab3/12. Similarity,

My =Iyazz/y (A2.2)

where My is the bending moment about the y-axis and I =Jy2dA =ba3/12.
If the bar undergoes a moment Mz about the z-axis, the torsional shear distribution is

somewhat difficult to compute. However, it turns out that the distribution (see Figure 3) has
a maximum occuring at the midpoint of the longest side (in this case, the side parallel to the
y-axis). Themaximum shear stress turns outto be [Pop.l, p. 167]

(azx)max =Mz^a2a

where it is assumed that a>b, and a is aparameter depending on the b/a ratio, and ^ is the
moment about the z-axis. Hence,

Mz =(azx)maxba2a (A2.3)
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By symmetry, it is also clear that (<Jzy)max =Mza/b2a, which occurs at the midpoint of the
shorter side (the side of length b). Hence we must also have

Mz =(CTzy)maxa/b2a (A2.2b)

To determine the shear stresses in the beam, recall that the shear distribution for a rectangu
lar bar subjected to a shear force in the x-direction Vx is parabolic in nature and given by
[Pop. 1, p. 232]

<vxi> =2r( Q-)2_Xi2) Xi e [0,b/2]
(See figure 4) This shows that the shear stress is zero at the boundary (xx=b/2) and has a
maximum at xx=0 of value (azy)max =Vxb2 /81^ Solving for Vx,

Vx =-jp Wmax=-2S (Vmax (A2.4)
Similarity,

Vy =-^VazxW =-2J5 <azxW (A2.5)

where Vy is the shear force in the y-direction.
Finally, to determine the axial stress induced by a tensile or compressive force, note that

the average stress over a cross-section is simply F^A = -o^ since the cross-section is
constant over the length of the beam (when considering axial forces alone). Hence, Fz, the
axial force in the z-direction, is

Fz="Aazz (A2.6)

In the following, only small deflections will be considered, so that the principle of superposi
tion holds. That is, the resultant strain in the system is the algebraic sum of the individual
strains when applied separately. Superposition of stresses as well as strains also follows
from the previous assumption of Hooke's Law.

3. FORCE AND MOMENT DETERMINATION FROM STRAIN ROSETTES

In order to determine the forces and moments affecting the beam, strain rosettes are
mounted on the beam as shown in Figure 2. With the rosettes placed as shown, the follow
ing information is obtained:

-14-



Rosette 1:
eyy eyz

_ ezy ezz_ x = b/2, y=0, z=c

Rosette 2: ^x exz

_ ezx ezz _ x = 0, y=a/2, z=c

Rosette 3: ^7 Sz

_ezy ezz _ x = -b/2, y=0, z=

Rosette 4:
^x exz

_ Ezx ezz _ x = 0, y=-a/2, z=<

(A3.1)

(A3.2)

(A3.3)

(A3.4)

From these measurements, the forces and moments affecting the beam can be determined
by use of equations (A2.1)-(A2.6), superposition, and Hooke's Law relationships. Specifi
cally, at rosettes 1 and 3 equations (A2.1), (A2.2), and (A2.6) shows that ( y=0 at both 1
and 3 so that there is no contribution due to Mx)

azz =-Fz/A +Myx/Ix

=* jcyzzll +̂zzl3 =-2jFz/A
.aJ 1"^3 =2Myb/2Ix =Myb/^

^ {Fz =-4^Jl +̂zzl3)
lMy =Ix/b(azzl1-azzl3)

Similar arguments show that

Mx=Iy/a(azzl2-azzl4)

By the Hooke's Law relationships, a = Ee__. Hence,
zz ~wzz*

F« —4(^,Ii +«bI3)

Mx=lym^(ezz\2-eJ4)

(A3.5)

(A3.6)

(A3.7)

Since the rosettes at each of these positions determine the strains in the parentheses, F ,
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My, Mx, are determinable from the experimental data.

Finally, to determine Mz, Vx, and Vy consider figure 3. Since the stresses are additive at
one side of the cross-section, but subtract from one another on the other side, it is easy to
solve for the quantities Mz, Vx, and Vy. Proceeding along these lines, use figure 3 and
equations (A2.3), (A2.4) and (A2.5) to obtain

ezyI1G =crzy|1 =+M2o/b2a +3Vy/2ab (A3.8)
Ezy 13G =azy 13 =-Mza/b2a +3Vy/2ab (A3.9)
8zx 12G =CTzx 12 =+Mz/ba2a +3Vx/2ab (A3.10)
^4° =<*zxU = -M2/ba2cc +3Vx/2ab (A3.ll)

Since e^Jj, e^Jj, ezxl2» e^U are known by measurement, and since b, a, and a are
known, equations (A3.8)-(A3-11) is a system of 4 equations in 3 unknowns. From this sys
tem, a least-squares solution for Mz, Vx, and V can be found.

Note that if c is small, the moments and forces acting on the body by the beam are close to
thecorresponding values at the pointof attachment. Thus,

MbB' = Mxi +Myj+ Mzk (A3.12)

£bB'= Exi+Eyi-*-^ (A3.13)

If i, i k are parallel to the bv b2, k3 axes, respectively, then M^' =MfcB ^d IW =
Fjjg. Otherwise there is a (fixed) rotation matrix Q, as in the discussion of kinematics in

section 2, such that \bx b2 b3]Q = [i j k]. Then the components of M^b and EbB ^
Q[components of M^' ]and Q[components ofF^'], respectively.

Remark - If we add Kelvin-Voight damping to our model of the form, i.e. we add damping of
the form

°ii=Eeii+lijjfii
°jk=Gejk +iljkd£jk j#k,

then the formulas change very simply:

A , . . . , A
F2 =- ^(£zzll+eJ3) "^(ezzll+EzzIs)'
My =Ix(ezzli-ezzl3)/Eb +Ix(ezzli-ezzl3)^zzb
Hc= Vezzl2 "^'4)^ +̂ Jl'Kz I4 )/^zza
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Forthe torsion and shearcalculations, just rewrite the LHS of (A3.8)-(A3.11) to obtain

^ 11G +TlzySzy 11 =azy 11 =+MzO/b2a +3Vy/2ab
ezy 13G +̂ zAy 13 =azy 13 =-Mzo/b2a +3Vy/2ab
ezx'2G +Tlzxezxl2 =azxl2= +Mz/ba2cc +3Vx/2ab
ezxUG +VzAkU =azxU =-NybAx +3Vx/2ab

and again compute a least-squares solution for NL, V„ and V„.
£. y x

All of these computations presuppose that the strain derivatives can be determined. Of
course, one could get an approximation of these quantities by on-line finite differences, i.e.

whereT is the time between strain samples.
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APPENDIX B - Proof of Theorem 4.1, part (iii).

To show that the beam deflections go to zero exponentially, we will use methods of func
tional analysis. More exactly, we will show that the eigenvalues of a particular linear opera
tor are all strictly negative (Lemma B.3), and then we use a theorem from analytic semigroup
theory to conclude that the operator generates an exponentially stable semigroup (Theorem
B.4). This result, combined withaBellman-Gronwall type proof will yieldtheresult.

It is convenient to write (2.12) in state space form as

0 I

-M3M+ i-M^WL -k3(.)+ JUa'(.)l
m mB B

u(0)=u0,u(0)=u0

where use has also been made of (2.6).

Notation: Let Hk[c, c+L], k=0,1,... bedefined as

H°[c,c+L] ={f€ L2[c,c+L] }

c_

0

_co x u + 2cox u + cox(coxu)

(B.l)

Hk[c, c+L] ={f e L2[c, c+L] If, f... f* € L2[c, c+L]}

For simplicity ofnotation Hk will denote Hk[c, c+L], and similarily L2 will denote L2[c, c+L].

Now let A denote the linear operator in the first term on the right side of (B. 1), i.e.

A =
0 I

-M9W +J_ ^'«lc -k3(.) + i- k3'(.)l
mB m B

c_

(B.2)

Before considering the specifics of the operator A, it is convenient to first examine the opera
tor A' defined as

A' =
0 I

A': (u, u) -> (u , -\id(u) -k9(u)) (B.3)

Note that since A' is a differential operator, it is, in general, an unbounded operator. Let the
space A' operates on be (L2xL2xL2xL2xL2xL2), together with the corresponding inner prod
uct
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K g] =Kfi, h> f3' f4' f5' f6)T» («1» «2» $3» «4» *5- e6)T] =[fl> gj +tf2> fij +tf3' S3] + tf4> 84] +
[f5,g5] +[f6,g6]. (B.4)

where [•, •] denotes the ordinary inner product in L2[c, c+L]. Let the domain of A', denot
ed D(A0,be

D(A0 ={f =(flt f2, f3, f4, f5, f6)T I fl6H4, f2eH4, f3eH2, f4eH4, f5€H4, f6eH2, together with
the initial conditions f1(c)=f2(c)=f3(c)=f4(c)=f5(c)=f6(c)=0, f1/(c)=f2,(c)=f3'(c)=
f4'(c)=f5'(c)=f6'(c)=0, ^i1f1"(c+L)+k4f4"(c+L)=|i2f2/'(c+L)+k5f5/'(c+L)=n3f3,,(c+L)
+k6f6"(c+L)=0, ^1f1/"(c+L)+k4f4'"(c+L)=^2f2/"(c+L)+k5f5/"(c+L)=M.3f3"/(c+L)
+k6f6"'(c+L)=0}. (B.5)

Note that D(A0 is dense in (L^L^L^L^L^2) (See Appendix C , Proposition C.2 for a
proof of this fact) Now consider the "abstract" differential equation

x =A'x ,x(0) =x0e D(A') (B.6)

Before proceeding, we need to introduce some definitions and notation from the semigroup
literature. The interested reader can find excellent expositions on this subject in many texts,
e.g. [Paz. 1], [Kat. 1], [Bal. 1].

Definition B.l Let T(t) for all t e [0, 00) be a bounded linear operator in a Banach space X.
(T(t)} is said tobe astrongly continuous semigroup (or, simply, s. c. semigroup^ if

(i) T(t+s) =T(t)T(s) =T(s)T(t), for any t>0, any s>0.
(ii) T(0) =I (B.7)
(iii) IIT(t)x - xll -> 0, as t-*0+, for any x e X.

Definition B.2 A strongly continuous semigroup (T(t)} satisfying IIT(t)ll < 1 for all
t e [0, 00) is called a contraction semigroup. If there exists K>0, 8>0 such that the semi

group satisfies IIT(t)ll <Ke"5t, then T(t) is termed an exponentially stable semigroup.

Definition B.3 A semigroup (T(t)} is said to be analytic if there exists a sector A of the form

A={z € C: <)>! <arg(z) <<t>2, <l>i <0 <<|>2 }
containing the real axis with

(i) z -* T(z) is analytic in A.
(ii) T(0) =I, lim T(z)x =x, for any x e X. (B.8)

z -»0
z e A
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(iii) T^+Zj) =T(z2)T(z2) =T^T^), for any Zje A, and any z^ A.

Proposition B.l Consider the linear operator A' defined in (B.3), together with the space
(L^L^^^L^L2) together with the corresponding inner product Then A generates a
strongly continuous semigroup T(t), in fact a contraction semigroup.

Proof of Proposition B.l Since this proposition is a simple consequence of Theorem B.l,
the proof of this proposition will be deferred until that time. •

In order to show that beam deflections go to zero exponentially, it is necessary to show
that IIT(t)ll £ Mexp(co0(t)) for some co0 < 0. ( Since A' generates a contraction semigroup,
we are guaranteed that co0 £ 0). This has been shown in [Gib. 1, Thm 6.1] for a one dimen

sional beam, but the co0 obtained there has no clear relationship to the operator A. Analo

gous to the finite dimensional case, it will be shown that co0 is actually the maximum real
part of the eigenvalues of the linear operator A' . Unfortunately, strong continuity of the
semigroup is not sufficient to conclude that co0 =sup{Re(X) | A,€G(A')}. However, ifAgen
erates an analytic semigroup, then we have the following result [Tri. 1,p. 387].

Proposition B.2 - Suppose a linear operator A generates an analytic semigroup T(t) on the
space X. Then T(t) satisfies IIT(t)ll <Mexp(co0(t)), where co0 =sup{Re(A.)l Xea(A)} .

For simplicity we will restrict our attention to the transverse beam vibrations in the bj
direction, which corresponds to the variables fv f4 e D(A'). Recall that the beam displacem-
nts are decoupled due to the assumption that the beam principal axes of inertia are parallel to
the bv b2, and b3 directions. (See the "Beam Dynamics" subsection in section 2). So it is
easy to see that no generality is lost by restricting attention to the fv f4 terms. Strictly
speaking, a separate proof should be given for the f3, f6 terms corresponding to axial dis
placements since the displacements are governed by a different differential equation. How
ever, from the proof for the tranverse displacements, it will be easy to see the extension to
the axialcase. So now consider the operator

A =
0 I

-»*± +*u (B.9)

8z4 " 3z4"_
where the subscripts onk and (Ihave been suppressed forsimplicity.

Theorem B.l A generates an analytic semigroup N(t).

Remark - The proof of this result can be found in [Mas. 1, Theorem 1.1], and [Hua. 1, Theo-
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rem 4.1]. Aconceptually simpler proof, following ideas of [Che. 1], will begiven below.

The following theorem (see [Kato 1, pp. 489-490], also see proof of [Paz. 1, Thm 5.2, p. 61])
will be crucial in proving the analyticityof N(t).

Theorem B.2 Let A be a closed linear operator on a Hilbert space X. Then A generates an
analytic semigroup T(t) if 3 M>0,0 e (0, n/2) such that

\KXI-AY1\\<M/\X\ (B.10)

for all Xg C/{0) sufficiently large contained in the sector larg(X) I <%/2+ 9.

Before proving Theorem B.l, two more lemmas will be needed.

34f»)Lemma B.l Letcf denote theoperator ——. ForA given in (B.9),
3z4

(Xi- Ay1 = (X2i +(\i+kX)zyl (XI + k3) I

-\x3 AJ

(B.ll)

Proof of Lemma B.l: Brute force calculation. •

Lemma B.2 With3 as above, 3 00, C>0, and9 € (0, tt/2) suchthat

\\(X2l +(|i +kA,)3 Yl\\< C/\X\2 (B.12)
\\(x2i+(\x+kx)5 yli n< cvai (b. 13)

for all Xe C/{0) sufficiently large contained in the sector larg(X) I < tu/2 + 9.

Proof of Lemma B.2: An easy integration by parts shows that 3 is a self adjoint operator in
L2. Let Ea denote the resolution of the identity associated to 3. (See [Kat. 1, p.356] for the
definition of Ea and the associated spectral theory.) Then, using the spectral decomposition
theorem for normal operators [Kat. 1,p. 356], oneobtains

(X2 +0i +KX$ )'1 = J(X2 +(|i +kX)a)"1dEa and (B.14)

(X2 +flu +kX)5 )-!3 =Ja(X2 +(p. +kX)a)-1dE(X (B.15)

(This representation is the infinite dimensional analog of the the dyadic expansion for self-
adjoint matrices.) Toprove the lemma, it is enough to show that
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KX2 +(\i +KX)aYl\<C/\X\2 and (B.16)
\(X2 +(\i +kX)ayla\ £ C/\X\ (B.17)

for a e a(3) (a(3) is the spectrum of 3) and Xin an appropriate sector. Note also that

(Jt2 +(H +kX)a)= (?L+ ka+Vk2«2~4nQl+ ka"Vk2a2-4^)
2 y 2

=:a +r+(a))(X +r(a)) (B.l8)

Recall that a(3) = {yn4l yn satisfies cosYnlcoshynl =-1), (use the method of [Cou. 1, p.
296], but change the boundary conditions) and note that I ynl -» <». Suppose now that the
structure is lightly damped, i.e. k is small. Assume that k is sufficiently small so that k2a2 -
4jia <0 for some a ea(3). Figure 5 shows a possible distribution of the zeroes of (X2 + (|i
+ kX)a) for the case of light damping. For a < 4|i/k2, the zeroes are distributed on a circle

of radius |i/k. For a >4|i/k2, the zeroes are real, with lr+(a)l > 2|i/k and n/k < lr~(a)l <
2n/k. For example, in Figure 5, {-r+(o0, -r~(oO} and {-r+(ct*), -r"(a*)} are possible
zero locations when 04 < 4p/k2 and 0^ > 4\i/k2, respectively. Let a* correspond to the
zeroes with minimum argument (r+(a*) and r"(cx*) in Figure 5). Now choose e sufficiently
small so that

arg(ka+j( V4^a - k2a2)) - 7t/2 - e >0

This can always be done since arg(ka + j(V4p.a - k2a2)) - ^c/2 is bounded away from
zero. So now define 9 = arg(koc + j(V^a _ k2a2)) - n/2 - e and note that 9 € (0, 7t/2).
Suppose now X is in the sector

larg(X) I £tc/2+ 9

For the purposes of proof, wecan assume by symmetry that Xlies in the half plane Im(X.) >0.

Case I: First consider any a' € a(3) such that a' > 4|i/k2 (see Figure 6). Then r+(a') and

r~(a') are both real. From Figure 6 we see that the distance from 1^(0:') to X is less than or
equal to the distance from r^aO to the ray determined by Qv Hence,

IrV)!! (X +rV))"1! <csc(tc/2 - Qx) =sec^) (B.19)
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Since Ir^cc')! =ka' +Vk2a/2-4na/, and Vy^fl _4|I(X' £0, we must have
2

ka'l (X +r^cO)'1^ £sec^)

which implies

a'l (X +r^a'))"1! £ 2860(9^

Next, by the law of cosines,

IX +rV)l= IX I2 +1 r^oOl2 - 2cos(\|/)l A. II rV)!

so that

U
^2 (

+
I rV)! a

v
rV)l

I X+ rV)l I X+ rV)!
2cos(y)

I X + rfaOl
A I X + r^cOl

Now, if \|/>7tf2, IMI (X +r^aO)"1! £1. If y<7t/2, use (B.19) in the above to obtain

\X
\2

U + r+(aOlJ - 2cos(\|/)sec(91)
\X

U +r+(a')l>
£1

which implies

IXII (X +rV))-1! £cos(y)sec(91) + VCOs2(\j;)sec2(91) + 1
Hence,

K^ +di +^a'^I^K/ai2

(B.20)

(B.21)

= 1

(B.22)

(B.23)

where K=l if \|07r/2, and K=sec(91) + Vsec2^) + 1 if \j/<7t/2. Combine (B.22) with
(B.21) to obtain

l(A,2 +Oi +kX)a')_1a'l <C/IU (B.24)

where C is an appropriate constant. Since both (B.23) and (B.24) are bounded by C/\X\ for
\X\ sufficiently large, the lemma is proved for case 1.

Case 2: Now consider any a" e a(5) such that a" <4\i/k2. Then r+(a") and r~(a") lie on
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the circle in Figure 5. Performing calculations precisely the same way as before, one obtains
(see Figure 7)

IrVOH (X +r^a"))-1! <csc(9j - 9) <; csc(e)
a"l (X +rVO)"1^ £ 2sec(9)/k

Again, if\f>%/2, \X\\ (X +r±(oc"))"11 <1, whereas if\j/<jc/2,

and

\X\\ a +r±(a//))"1l^cos(\|/)csc(91-9)+ VCOs2(\|/)sec2(91 - 9)

(B.25)

(B.26)

<cos(\|/)csc(e)+ VCos2(v)sec2(e) + 1 <csc(e) + VSec2(e) + 1 (B.27)
So that as before

K^ +^ +kXja'O^I^K'AI2
\(X2 +(n+laja'O^a"! <C7IXI.

(B.28)

(B.29)

which concludes the proof of the lemma for the case where the damping is small. If the
damping is large, (there are no imaginary zeroes of X2 + (|i + kX)a for any a €a(3)), then
the proof can be duplicated exactly as in Case 2 by using any 9 < n/2. This concludes the
proofof LemmaB.2. |

Proof of Theorem B.l: Again consider the operator A given by (B.9). Now, for X in the
appropriate sector, Lemma B.2 shows that

IKXI-A)"1!!- sup
f*0

ii (Xi - Aylf ii

< max{ll(A,2I +(n +kX% yl(Xl +kd)ll, ll(X2I +(\i +kX)3 )"1ll,
ll(X2I +(h +kXJ3 )-jm5II, \\X(X2l + ([L +kX$ )"1ll)

< K'/IXI (B.30)

where K' is the appropriate constant, and \X\ is sufficiently large. This inequality, together
with Theorem B.2 shows that Agenerates an analytic semigroup. •

The operator we are really concerned with is A, not A. Let

A =
0 I

-|i3(.) -k3(.)

=: A'+ B

+

LmB

0 0

i-n3'(.)L +JL !£-(.) I
m B
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By using Theorem B.l, and the analogous result for the axial displacements, A' generates an
analytic semigroup. The question arises: Does A generate an analytic semigroup? Thinking
of B as a perturbation of A', the question becomes that of whether analyticity is preserved
under perturbations. As one might expect, only certain classes of perturbations are allowed
in order for this to be true. To show that indeed the B of (B.31) is contained in this class, the
following theorem is needed: [Paz. 1, p.80]

Theorem B.3: Let A be the infinitesimal generator of a uniformly bounded, analytic semi
group. Let B be a closed linear operator satisfying D(B)3 D(A) and

IIBxIl < allAxll for x e D(A). (B.32)

Then there exists a positive constant 8 such that for 0 ^ a £ 8, A + B is the infinitesimal
generatorof an uniformlybounded, analytic semigroup.

A careful examination of the proof of this lemma shows that an estimate of the constant 8
is given by

8= \ (1 +M)"1 where Msatisfies ll(M +A)"1!!^ M/Dtl (B.33)

Theorem B.4 The linear operator A given in (B.2) generates an analytic semigroup T(t)
satisfying IIT(t)ll £M'exp(co0(t)) with co0 =sup{Re(X) | Xea(A)}.

Proof of Theorem B.4: By Theorem B.l, A' generates an analytic semigroup. Since all
the eigenvalues of A' are negative and bounded away from zero (see Figure 5), Theorem B.l
and Proposition B.2 shows that A' generates an exponentially stable semigroup. Thus A'
generates a uniformly bounded semigroup. A simple calculation shows that B is closed while
clearly D(B) => D(A0. So we are left to show that the inequality (B.32) is satisfied for the
given A' and B. For the B defined in (B.31) note that

1 1 crL=mB "Hd'(*i)lc +k3'(x2)lcll = —|| J ^(Xl) +k9(X2) dzi|

= mB IICG^) +k9(x2))ll (B.34)

where C:L2[c, c+L] -> L2[c, c+L] is the linear integral operator

c +

•/:
C + L

C(f)= Jf (z)dz
c
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...... «cf,!It is easy to see that llcll = sup = L. Hence (B.34) becomes
f*0 Hfll

hbxii^ -- Hen iioiacx!) +ka(x2))ii = ^-noiacx!) +w*£)\\

* 4,,A'xn (B35)
So, if L/mB is sufficientiy small (i.e., the rigid body has a much larger mass than the beam)

then the hypotheses of Theorem B.3 are satisfied so that A generates an analytic semigroup
T(t). To get an estimate of the required L/mB ratio, one would set L/mB = 8 of (B.33) with
M=K' of (B.30). To get an accurate estimate of K' requires bookkeeping of the various con
stants in the proof of Lemma B.2. The last claim follows from the the analyticity of T(t) and
Proposition B.2.

Finally, to get an estimate of the exponential decay rate of the generated semigroup T(t),
the eigenvalues must be computed.

Lemma B.3 Consider the linear operator Agiven by equation (B.2). Consider the eigenval
ue problem

Ax = Xx

Then A has eigenvalues

^Vi^^-V i=1>

(B.36)

(B.37)

2

where the Vj satisfy

coshvjLcosvjL + v-m-(cosviLsinhviL +coshvjLsinVjL) =0 i = 1, 2 (B.39)
i B

cosv3L = (sinv3L) / Vjmg. (B.40)

The eigenvectors corresponding to these eigenvalues are
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x1± =([]1,0,0,X.1±[]1,0,0)T

x2± =(0,[]2,0,0,X2±[]2,0)T
x3± =(0,0, []3 ,0,0, X^l ]3)T

(B.41)

(B.42)

(B.43)

where [ ]{ = (2ci7/wx - cn)cosVj(z-c) - c^sinv^z-c) + l/(v{mB)) + c^coshv^z-c) +
ci2(sinvi(z-c) - y(v{mB)), i=l, 2,and

[ ]3 = (sinv3(z-c) - l/(v3mB)) + coshv3(z-c)l/(v3mB). Also, the c- satisfy

cosvjL + coshvjL sinvjL + sinhvjL - 2coshviL/(vimB)
sinhVjL - sinvjL cosvjL + coshvjL - 2coshviL/(vimB)

"il

'i2
= 0 ;=, i=l,2 (B.44)

Proof of Lemma B.3: Direct computation shows that Ax* = k^x*. The conditions that
the Vj and Cy satisfy come from the beam boundary conditions

ui(c) = 0,u'i(c)=0

u"i(c+L) =0,u"/i(c+L) =0
(B.45)

(B.46)

which correspond to zero deflection and velocity at the fixed end, and zero moment and force
at the free end.

To obtain the c^, write an arbitrary eigenvector as a linear combination of coshvj (z-c),
cosv^z-c), sinhv^z-c) and sinvj(z-c) = 0 , i = 1, 2 and similarily for the v3 term. These
combinations must satisfy the boundary conditions if they are to be eigenvectors. Since
there are 4 boundary conditions and four unknown coefficients, we get a homogenous system
of 4 equations and 4 unknowns. If the coefficients are to be nonzero, the determinant of the
corresponding matrix must be zero. The determinant of the system is precisely the condi
tions (B.39) and (B.40). Partially solving the resulting system, and inserting the partial
solutionresults in the system (B.44). •

Weare finally prepared to proveTheorem 3.1,part(iii).

Proof of Theorem 3.1, part(iii) - Let T(t) denote the semigroup generated by A. Since the
perturbation terms in (B.l) are Lipshitz in u and u, the use of the "variation of constants" for
mula is admissable (see [Paz. 1,Thm 1.2, p.184]) so that the solution of (B.l) can be written

u(t)

u(t) =T«-to)

- -, t

- JT(t-T)u(t)

i(t)

0

©(T)XU(X) + 2©(T)X U(X) + m(T)x(G)(T)xu(T))
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Take norms on both sides and use the fact that ||axbj| = ||a|| ||b|| |sin(9)| £ ||a|| ||bJI where
9e [0, k] is the angle in radians between a and b to obtain

u(t)

u(t)
fSireXt-to)!!

u(to)|| f
u(tQ) IIT(t-x)ll

<b

ll©WIII|u(x)|| + 2||0)(t)||||u(t)|| + I (B.48)

llm(x)||2||u(x)|| dT

Using Theorem B.4, together withLemmaB.3 then yields

<Mexp(cD0(t-to)) 7JI4 HjfflCflll llu(t)|| + 2|[©(x)|| ||u(x)|| +
1(^1 ^ Mexp(co0(t-T)) ] M^Ml2|

ll®(x)lh|u(x)||

where co0 = sup{ Re(^) IA.ea(A)}. Now define

x(t):=exp(-co0(t-t0))
u(t)

u(t)
=exp(-co0(t-t0))[||u(t)|| +||a(t)||]

Then insert (B.50) into (B.49) and simplify to get

t

x(t)^Mx(t0)+ JMx(x){|| ©(x)|| +2||©(x)|| + ||©(x)||2}dx
to

Now apply the Bellman-Gronwall lemma to obtain

fax
(B.49)

(B.50)

(B.51)

x(t)<Mx(to)exp(jM{||©(x)|| +2||©(x)|| +||©(x)||2}dx) (B.52)
to

Since both ©(t) and ©(t) go to zero exponentially by design we can choose tg sufficiendy
large so that max{||©(t)||, ||©(t)||} <min{ ^-©(/[SM]}, Vt>tQ. Thus

x(t)< Mx(t0)exp[-©0(t-t0)/2] Vt>to.

Substituting (B.50) for x(t), we obtain

u(t)

u(t)
<M

i(to)
exp[©0(t-t0)/2] V^tQ.
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which, since ©0<0, proves the theorem. •

Remark - One minor, but annoying, point should be briefly discussed. In order to prove that
the beam deflections go to zero exponentially, it was necessary to assume that the rigid
body mass was much larger than the beam mass. This plausible assumption was necessary
in order to prove that A in (B.2) generated an analytic semigroup. Recall that A = A' + B
where B is the "perturbation". The perturbation is due to the coupling of the rigid body center
of mass acceleration and the beam dynamics (see (B.l)). If the body mass is much larger
than the beam mass, then (B.l) shows that the perturbation is small. It is intuitively clear
that if the perturbation is small, then the deflections should go to zero exponentially since the
beam is essentially decoupled from the rigid body. Heuristically, this is the content of Theo
rem B.5. Theorem B.5 does not rule out other dynamical behavior in the case where the per
turbation is large. Further analysis will be required to determine whether other phenomenon
can actually occur.
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APPENDIX C - Proof of Theorem 4.1.

In order to prove the result, we need to resort to the methods of semigroup theory similar to
the proof in Appendix B. We first need to show that the solutions to the set of differential
equations exist (Proposition C.3), and that these solutions are exponentially stable
(Theorem C.1). Actually, Theorem CI is a known result due to Chen [Che. 1], and the read
er uninterested in the details may proceed to that point. The proof is included for two rea
sons. First, the proof of this result in [Che. 1] is very terse. Secondly, the method of proof
given here explains how and why various quantities are chosen, which might be helpful for
the reader choosing toapply these methods to another problem.

Consider now the linear operator

A =

0 I

-M3(.) 0 (CI)

, u a, x ( 84(-) a4<-> a2<*> \T(where d(*)H~^4~> "jfc4"»" ~&2V ' and ^agG^i, H, M3)) which corresponds to (B.2)

with zero viscous damping (k), and an ignoring of the -=r ^W c term.

Since we have a (unbounded) linear operator, we must define the space it operates on, its
domain, and since Hilbert spaces are very convenient, an inner product. Let the space A
operates on, X, be defined as

X={(xj x2 x3 x4 x5 x6)Tl Xl e H2, x2 € H2, x3 e H1, x4 e L2, x5 e L2, x6 s L2,
x1(c)=x2(c)=x3(c)=0, x1'(c)=x2'(c)=0 } (C.2)

where the Hk are defined in Appendix B, and let the corresponding "energy" inner product be

ft g]E =Kfl> f2' f3> f4> f5> f6)T> (&V e2» §3' «* &5> ^\ =Hi[fl"' g/1 +Mf2"> ^ +
Hh"> H"l + £f4> *J+tf5» ^ +tf6> *£• (C3)

Let the domain of A, D(A), be defined as

D(A) ={(Xl x2 x3 x4 x5 x6)Tl Xl e H4, x2 6 H4, x3 € H2, x4 e H2, x5 <s H2, x6 e H1,
x1(c)=x2(c)=x3(c)=x4(c)=x5(c)=x6(c)=0, x1'(c)=x2'(c)=x4'(c)=x5'(c)=0, xfCc+L)
=x2"(c+L) =0, x1"'(c+L)=Ctx4(c+L), X2"'(c+L)=px5(c+L), x3'(c+L)=7X6(c+L)}

(C.4)

where00O, p>0, and7>0.
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Remark - A reasonable question at this point is whether the space X with the correspon
ding inner product (C.3) is complete or not. If it wasn't, we would have to complete it, which
woud make the succeeding proofs more complicated. This leads us to the following proposi
tion.

Proposition C.l - The space X defined in (C.2) together with the corresponding inner prod
uct (C.3) is a complete Hilbert space.

Proof of Proposition (C.l) - Recall {x Ix e Hk , x(c)=x'(c)= ... =xk"1(c)=0) with correspon
ding inner product

[x, y]s =[x, y] + [x', y] +... [x k, yk] (C.5)

is a complete inner product space for k=0, 1, 2, ...(it is a Sobelev space). If we can show that
the norm (C.3) is equivalent to the norm (C.5), then the proposition follows. Clearly,

llxllE<Kllxlls (C.6)

Conversely,

C+L

»x«2S= JK*i")2 +(XtO2 +X!2 +(x2")2 +(XjO2 +x22 +(x302+ x32 +x42 +x52+x62] dx

C+L

<! (2-K)llxll2E + j [(Xl02 +x2 +(Xz02 +X;j2 +(x3>2j ^

where K=min{|i1, (^.(lj.l}. Thus

C+Lf X

llxll2s <2llxll2E+ JIJx1"dx)2+ [JXl'dx )+(jW-d*) +(j*2''<*) +(JWdx
c - c

C+Lr xf x 1 x 9 9 X x<2llxll2E+ JI jlVldx]+ (jl '̂ldx) +(Jlx2''ldx)+ ^Jlx2"ldx]2+ (J '̂ldx
c " c C

Next, using the Schwarz inequality, we obtain

(C.7)

dx (C.8)

dx (C9)

C+L/- c+L C+L C+L C+L C+L

<2llxll2E+ Lj -Jlx '̂Pdx +Jlx^dx +Jlx2"l2dx +Jlx2'l2dx +J|x3'l2dx fdx (CIO)
c

By using the same process as above, transform the integral terms involving xx' and x2' into

•31-



terms involving xx" and x2". It is easy to see thatwethenobtain

llxll2s£K'llxll2E

for an appropriate K'. Hence, the norms are equivalent, and the space X and inner product
given by (C.3) constitute a complete innerproduct space. •

Remark - Another reasonable question at this point is why X and the inner product were
chosen as they were. This point is important for applications and is never direcdy addressed
in the literature. X was chosen as ^x^xH^lAlAL2 so that the operator A is closed
(see below): the initial conditions were included so that the corresponding inner product
(C.3) would be equivalent to the "natural" inner product (C.5). The inner product (C.3) was
chosen in order to make A a dissipative operator (see below). This makes it easy to show
that A generates a strongly continuous semigroup (Proposition C.3 below). Finally, the
domain of A, D(A), was chosen not only to ensure that A is defined on it, but also to ensure
that D(A) is dense in X . Generally, one wants to choose the domain as large as possible,
because the domain specifies the allowable initial conditions in the differential equations.

We now consider propertiesof the domainof A, D(A).

Proposition C.2 - Consider D(A) defined as in (C.4) Then D(A) isdense inthe space X.

Proof of Proposition C.2 - First, it should be clear that

Y=Kyi y2 y3 v4 y5 ye)7' vie c00. y2€ c~,y3e c~,y4e c~,y5€ c~,y6e c~,
yi(c)=y2(c)=y3(c)=o, yi'(c)=y2'(c)= 0)

is dense in X. It thus suffices to show that an arbitrary C°° function can be approximated
arbitrarily closely by a C°° function satisfying homogeneous boundary conditions. Consider
the following function

g(x)=

s X 9 S

0 / n V A

1

0

2

CXP~' x3T|dx 0<x<8

8 < x < L-8

x X

<X<L
L-5
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Note that g(x) is (i) C°° for any 8>0, (ii) 1 for 8<x<L-8 and (iii) gk(0)=gi(L)=0 for any k=0,
1, 2, ... and j=0, 1, 2, ... . Then if f(x) is a C°° function, then f(x)g(x) is the approximating C°°
function. •

Proposition C.3 - Consider the operator A of (C.1) together with the corresponding space X
and inner product given by(C.3). Then Agenerates a strongly continuous semigroup.

Proof of Proposition C.3 - By the Lumer-Phillips theorem [Paz. 1, p. 14, Theorem 4.3], a
linear operator with dense domain generates a strongly semigroup if A is dissipative, and 3
X > 0 such that the range of XL - A is all of X. By Proposition C.2 D(A) is dense in X.
Note that ifv=(vx v2 v3 v4 v5 v6)T, then using (C.3) and an integration by parts yields

(Av,v) =-oc(v4(c +L))2 - p(v5(c +L))2 -7(v6(c +L))2 <0.

Hence A is dissipative. To complete the proof, we need only show that for some X> 0 the
range of Xl - A is all of X. This is done in two steps: (i) V h 0, the range of Xl - A is
dense in X, and (ii) the range of Xl - A is closed.

Proof of (i) - Take X> 0 arbitrary, and suppose 3 y 6 X such that ((Xl - A)x, y) = 0 for all
xe D(A). If x= (Xl x2 x3 x4 x5 x6)T and y= (yi y2 y3 y4 y5 y6)T, then ((Xl - A)x, y)
= 0 implies

^x1"-x4",y1") =0 (Cll)
^ax2"-x5",y2") =0
|i3a,X3'-x6',y3') =0

(^lXl"" +^x4,y4) =0

(^x2w' +^x5,y5) =0

(-H3X3" +^y6) =0

Set x4=x5=x6=0. Now let xlf x2, and x3 be arbitrary C°° functions satisfying the boundary
conditions x1(c)=x2(c)=x3(c)=0, x1'(c)=x2'(c)=0, x1w(c+L)=x2///(c+L)= x3'(c+L)=0 . Then
clearly (xj x2 x3 0 0 0)T e D(A), and the class of such elements is dense in H4xH4xH2.
Then the equations (Cll) imply y^y^^^y^y^y^. Since y1,/(x)=y2"(x)=y3/(x)=0,
Vx e [c, c + L], the boundary conditions satisfied by these y's imply y1=y2=y3=0. Hence
y=0, and thus the range of XL - A is dense in X.

Proof of (ii) - Let yn =(Xl - A)xn converge to y e X. We must show that 3 x e D(A) such
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that y = (Xl - A)x. SinceA is dissipative, we have

|| yn||2 = \\(Xl -A)xn||2 =X\\ xn||2 -2X( x„, Ax„) + || Axn||2 (C.12)
> X||xn||2 + ||Ax,,!!2 (C.13)
^ MIxJI2 (C.14)

Since yn converges, this implies x„ converges to some value x € X. (Consider a Cauchy
sequence yn - ym). Hence, by (C13), A^ converges. Ifv (xnl x^ x^ xn4 x^ x„6)T
andx =(xx x2 x3 x4 x5 x£T, then

AXfT^ *n5 *n6 ^Ihir -^2Xn2"" Vs***"?

which shows that xx e H4, x2 e H4, x3 e H2, x4 e H2, x5 € H2, x6 € H1. This implies that xe
D(A), from which it follows that y = (XL - A)x. •

Proposition C.3 shows that the operator A of (C.1) generates a strongly continuous semi
group, but says nothing about its dynamic behavior. The following important result makes
the situation clear.

Theorem C.l Consider the operator A of (C.1) together with the corresponding space (C.2)
and inner product (C.3). Then Agenerates an exponentially stable semigroup.

Proof of Theorem C.l - See [Che. 2, Thm. 3.1, page 533]. The idea is a Lyapunov type
argument. •

With this result in hand, weare finally able toprove Theorem 4.1.

Proof of Theorem 4.1 - The rigid body control law (4.1) forces £(t)-K) exponentially
exacdy as in Theorem 3.1. To show that the beam velocities and deflections go to zero, use
exacdy the methods of the proof ofTheorem B.5. More explicidy, let T(t) denoted the expo
nentially stable semigroup generated by the A of (C.l). Then use the proof of Theorem B.5
line for line. •

Remark - From the proof of Theorem 4.1, it is easy to see that any exponentially stable
beam configuration (damped beam, undamped beam with boundary control, etc.) will be suffi
cient for Theorem 4.1 to be true. In particular, Theorem 4.1 holds if the Euler-Bernoulli beam
model (with or without damping) is replaced by a Timoshenko beam model (with or without
damping). This follows clearly if the Timoshenko beam contains Kelvin-Voight type damp
ing, and if it is undamped, boundary velocity feedback control exponentially stabilizes it in
exacdy the same way as the Euler-Bernoulli beam (see [Kim 1]). From an engineering
viewpoint, the only difference is in the calculation of the forces and moments at the point of
attachment, and the calculation of beam response during manuevers, quantities which clearly
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depend on the beam model employed.

Remark - Theorem 4.1 explicidy assumes y =0. Unfortunately, in contrast to Theorem 3.1,
we cannot guarantee that A generates an exponentially stable semigroup if £ * 0. Howev
er, if we assume some irifinitesimally small viscous damping term, then clearly Theorem 4.1
holds if the rigid body mass is much larger than the beam mass. (The reasoning of Theorem
3.1). The only drawback is that the exponential time constant may be undesirably large.
Force thrusters on the rigid body (which are usually present to control the spacecraft center
of mass) could certainly alleviate this problem, but this is extra complexity and fuel consump
tion.
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Figure 1 - Spacecraft Configuration

Rosette #2

Rosette #3

Figure 2 - Rectangular Beam under consideration
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Figure 3 - Shear Stress Distribution

due to torsion

Figure 4 - Shear Stress Distributrion
due to vertical shear
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Figure 5 - Distribution of Zeroes of X2 +(k +|iX)a
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Figure 6 - Proof of Lemma B.2
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Figure 7 - Proof of Lemma B.2


	Copyright notice1989
	ERL-89-14

