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ABSTRACT

With the ever-increasing complexity involved in the process of design verification and

testing of digital circuits, new approaches and new tools for logic validation are needed.

Without high-quality logic validation tools, a design may never be successfully imple

mented and manufactured. In this thesis, new algorithms for various logic validation

tools are presented. New algorithms for combinational logic verification have been de

veloped. Efficient parallel logicverification schemes for large complex circuits that nor

mally require significant amounts of CPU time to verify have also been developed. An

efficient deterministic test generation algorithm has been proposed and implemented

that works well for mid-sized sequentialcircuits. For very large sequential circuits, an

Incomplete Scan Designapproach has been taken that can be used in conjunction with

the deterministic test generation algorithm. A fault coverage estimation method for

mixed-level circuits has been proposed. Given a test set, this fault coverage estima

tion method can produce an accurate fault coverage projection with significantly lower

computational cost than a deterministic fault simulator. With the increasing density

of on-chip components, multiple-fault testing of chips has begun assuming increasing

importance. An implicit fault simulation algorithm for multiple-fault detection has

been developed and implemented. Finally, synthesis-for-testability methods have been

developed that produce folly testable, multi-levelor PLA-based, sequential circuits.

Alberto Sangiovanni-Vincentelli
Thesis Committee Chairman
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CHAPTER 1

Introduction

Logic Validation refers to the process of design verification and testing. There are many

reasons why a particular chip coming from a fabrication line may not work. It may be due to

a simple production problem where two metal lines are shorted because they are too close to

each other on the chip or it may be because of an error introduced during the design process.

Design verification addresses the latter problem by ensuring that no errors have been intro

duced from the beginning to the end of the design cycle. Testing refers to those tasks needed

to assure that a chip functions correctly as it is designed. Results of the testing process may

also be used to help identify the causes of a low fabrication yield and this activity is called

fault diagnosis.

With the advances in integrated circuit (IC) technology, the number of components

which can be placed on a single chip has increased rapidly. This has greatly increased the

complexity of the design and testing processes and hence the need for automation. New

approaches and new tools for logic validation are desperately needed. Without high-quality

logic validation tools, a design may never be successfully implemented and manufactured. In

this chapter, a review of the various logic validation tools and their application in the design

process is presented.



1.1 Combinational Logic Verification

Synthesis systems [1] that can generate automatically mask-level layout of integrated circuits

from high-level descriptions have been receiving considerable research and development

effort. In particular, synthesis systems for Application-Specific-Integrated-Circuit area is a

popular choice for automatic IC generation from high-level specification.

A typical, simplified synthesis system is shown in Figure 1.1. An integrated circuit is

described by ahigh-level, programming-language-like specification. The design is partitioned

to reduce the problem to a set of simpler subproblems through combinational block extrac

tions. Each combinational block can be implemented by PLAs or multi-level logic using

two-level logic minimizers [2] or multi-level logic optimization systems [3]. Technology map

ping is applied to target the logic designs towards a specific technology. Place-and-route

tools are used to produce the final layout.

The synthesis process is in general avery complex one and so verification at each stage

of the synthesis process is indispensable. Logic verification tools are used to compare the

logic design ofintegrated circuits at different levels and are needed to make sure that no logic

errors have been introduced in the synthesis process. For example, in a synthesis system

where a design is translated (synthesized) into a lower level from a higher level description,

logic verification is usually performed between functional level (before logic synthesis) and

gate level (after logic synthesis), as well as between gate level (before layout generation) and

layout level (after layout generation). Because of the great complexity of the optimization

tools in use today, it isessential to verify that both the designer and the tools themselves have

not introduced any design errors during synthesis. Combinational logic verification is an

indispensable step in total design verification for manually or automatically generated designs.

1-2 Test Generation

Testing of ICs is a process used to ensure that a particular chip satisfies its functional

specification. For testing acircuit, binary patterns, called test patterns or tests, are applied to



RTL
Description

1 '

Combinational
Blocks

1 ' "

Logic Logic
Verification Optimization

n

<r

Combinational
Blocks

1 r "

Physical Logic

Desian
Verification

1

i

Layout

M()del

Fig. 1.1 A typical synthesis system

the inputs of the circuit and the response of the circuit is compared with the expected one.

Basedon the outputs of the circuit under test, bad chips are identified on a go/no-go decision.

If the yield of the fabrication process is low, further diagnosis tests may be performed on the

malfunctioning chips to identify the causes of the faults. Application of all possible input pat

terns for combinational circuits, and all possible sequences for sequential circuits, will



guarantee that the chips passing the test are all functionally good. Using exhaustive testing

method, the number of test vectors required for a combinational circuit is 2" and

2n x (2m+1 - 1) for a sequential circuit, where n is the number of primary inputs and m is the

number of memory elements in the circuit However, the exhaustive testing method is infeasi-

ble, in terms of testing time per circuit, when the number of inputs is large.

In practice, a set of test patterns that are aimed to detect a high percentage of modeled

faults is used. The modeled faults are abstraction of the physical failures. The most widely

used fault model has been the stuck-type model [4]. Physical failures are assumed to

correspond to a line in the gate-level description of the circuit stuck at a 0 or 1 value and an

assumption is made that only one fault can occur at a time. It has been empirically shown

that a high percentage of the chips passing the set of test patterns for stuck-type faults are

correct working chips.

Test generation for combinational.circuits has traditionally been considered to be a

search problem [5] [6]. A test pattern for a fault is generated by searching through the input

space to find an input pattern that excites the fault and propagates its effect to one of the pri

mary outputs. The cost of test generation can be very high and it has been proved that the

problem of test generation is NP-complete [7]. It is especially expensive to generate tests for

circuits that contain a large number of redundant faults. Redundant faults are faults for which

no test can be found after searching, implicitly or explicitly, across the entire input space.

The cost for trying to prove no tests exist for redundant faults, i.e. redundancy identification,

can be more than 90% of the total test generation time.

In the past few years, great advances have been made for combinational test generation

[8] [91 [10]. Test generation and redundancy identification for very large combinational cir

cuits can now be performed efficiently by intelligently utilizing the topological information of

the circuits under test. However, test generation for sequential circuits has remained very

much an unsolved problem.



Generating tests for sequential circuits is considerably harder than for combinational cir

cuits. Even if the combinational part of a sequential circuit is made fully testable, it may still

be impossible to obtain a high fault coverage for the sequential circuit Some of the inputs

and outputs of the combinational part are outputs and inputs respectively of the memory ele

ments, i.e. flip-flops. Test patterns generated considering only the combinational part cannot

be readily applied and fault effects cannot be observed directly at the inputs of these memory

elements. The controllability and observability of the combinational part can be greatly

reduced with the presence of memory elements. Previous approaches to solve the problem of

sequential test generation are either extensions to the classical D-Algorithm [II] [12] [13] or

based on random techniques [14] [15]. When the number of states of the circuit is large and

the tests demand long input sequences, they can be quite ineffective for test generation.

A popular approach to solving the problem of test generation for sequential circuits is to

make all the memory elements controllable and observable, i.e. Complete Scan Design [16]

[17]. Scan Design approaches have been successfully used to reduce the complexity of the

problem of test generation for sequential circuits by transforming the problem into that of

combinational test generation which is considerably less difficult However, there are situa

tions where the cost in terms of area and performance of complete scan design is unaccept

able. In addition, Complete Scan Design is a very conservative approach to the sequential

testing problem, i.e. latches are made scannable without first examining the sequential testabil

ity of the circuit. This can introduce unnecessary area and performance penality. New and

novel approaches for sequential test generation are therefore required.



1.3 Fault Simulation

Fault simulation is an essential tool for test generation and grading of test sets. In test genera

tion, whenever a test is found for a fault, fault simulation is used to determine what other

faults are also detected by the test so as to avoid unnecessarily generating tests for them.

Fault simulation is also used to determine the fault coverage of a given test set, i.e. functional

tests, to decide whether more tests are needed. The three typical methods of fault simulation

for single stuck-at fault model are parallel, deductive [18] and concurrent [19]. For multiple

stuck-at fault model, there is no efficient and feasible fault simulation approach, which has

posed a major problem for multiple-fault detection.

The computational cost of fault simulation, even for single stuck-at fault model, is usu

ally very high. It is known that [20] the CPU time and memory requirements for fault simula

tion for single stuck-at faults are proportional to the square of the number of gates in the cir

cuit This poses a serious limitation to its use for evaluating test patterns for VLSI circuits.

One means to alleviate the problem is to use estimation methods based on statistical analysis

[21] [22] rather than deterministic approach. The computational complexity of these estima

tion methods are greatly smaller and yet an accurate fault coverage projection can be

obtained.

Fault simulation for multiple-faults is a very difficult problem due to the enormous

number of fault combinations have to be considered. The traditional fault simulation

approaches used for single stuck-at fault model is unsuitable and impractical even for small

circuits. Alternative approaches based on examination of masking relations [23] among faults

involve cumbersome manipulation of Boolean equations and are only feasible for small and

restricted type of circuits. In order to perform multiple-fault detection, efficient fault simula

tion techniques for multiple-fault model are required.



1.4 Synthesis For Testability

As described in Section 1.2, generating tests for sequential circuits is a very hard problem and

the cost for trying to prove no tests existing for redundant faults can be more than 90% of the

total test generation time. It is therefore very attractive to synthesize fully and/or easily

testable sequential circuits. This will guarantee the testability of the synthesized sequential

circuit without the use of scannable memory elements and reduce the complexity of the

overall test generation process.

It has been well known that optimal logic synthesis can produce fully testable combina

tional logic designs [24]. The synthesized circuits are guaranteed to be free of redundant

faults. On the other hand, the relationship between synthesis and testability for sequential cir

cuits is not understood as well as in the combinational case. And to date no sequential logic

synthesis algorithms exist that will guarantee that the resulting sequential circuit is fully

testable without resorting to post-design design-for-test techniques such as scan-based

methods. Synthesis systems that address the testability problem simultaneously to produce

100% testable sequential designs are very desirable. Synthesis-For-Testability method has

emerged both as an exciting research topic and an important tool to alleviate the testing prob

lem.

1.5 Organization of Dissertation

The organization of the dissertation is as follows. A new combinational logic verification

approach and its parallel implementation [25] on a multi-processor system is described in

Chapter 2. In Chapter 3, a novel approach [26] to test pattern generation for sequential finite

state machines that represents a significant departure from previous methods is described. An

Incomplete Scan Design methodology for very large sequential circuits is also presented in

Chapter 3. A mixed-level fault coverage estimation method [22] based on statistical fault

analysis for single stuck-at fault model is described in Chapter 4. In Chapter 5, an implicit

fault simulation approach for multiple fault detection is discussed. Synthesis for testability
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techniques [27] [28] [29] for PLA-based and multi-level logic implementations of finite state

machines are described in Chapter 6.



CHAPTER 2

Logic Verification Algorithms And Their

Parallel Implementation

2.1 Introduction

Logic verification tools compare the logic design of integrated circuits at different levels to

make sure that in the synthesis process, no logic errors havebeen introduced. For example, in

a synthesis system environment where a design is translated (synthesized) into a lower level

from a higher level description, logic verification is usually performed between functional

level (before logic synthesis) and gate level (after logic synthesis), as well as between gate

level (before layout generation) and layout level (after layout generation). Because of the

great complexity of optimization tools in use in synthesis systems today, it is essential to ver

ify that both the designer and the tools themselves have not introduced any design errors dur

ing synthesis. Combinational logic verification is an indispensable step in total design

verification for manually or automatically generated designs.

Several formal verification techniques ( e.g. [30] [31] [32] [33] [34] [35] ) have been

proposed in the past but only a few have been applied due to their complexity and computa

tional requirements. In PROTEUS [36], a number of efficient techniques for combinational

logic verification have been developed and implemented. The PROTEUS system includes

four basic approaches: verification by justification, verification by cube comparison,

verification by exhaustive simulation, and verification by cover generation and simulation.

The last approach, called LOVER ( LOgic VERification ) in PROTEUS, is novel and has

given some excellent results compared to existing techniques. Most of logic verification algo-
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rithms suffer from the problem of multiplicative blow-up. LOVER was developed with the

specific goal of eliminating this problem.

In this chapter, new LOVER-based approaches for verifying the Boolean equivalence of

two combinational logic circuits are presented. These approaches compare favorably to other

LOVER-based approaches.

Large complex logic circuits require significant amounts of CPU time to verify. Parallel

logic verification algorithms are therefore extremely attractive. However, to date, no logic

verification technique has been efficiently parallelized.

Parallel logic verification algorithms based on the LOVER approach have been

developed for the first time. Novel approaches to parallelizing both general and specific

LOVER-based approaches are presented. These parallel implementations can be used over a

large number of processors while maintaining high overall efficiency.

This chapter is organized as follows. In the next section, the attractiveness and applica

tions of parallel logic verification and tautology checking schemes is discussed and the

LOVER approach to logic verification is reviewed. In Section 2.3, embellishments to the

basic LOVER approach is described and new verification algorithms is introduced. The paral

lelism inherent in the general LOVER approach and a multi-processor implementation exploit

ing this parallelism is described in Section 2.4. In the same section, a highly parallel version

of a specific LOVER-based algorithm, which features a novel parallel enumeration algorithm

based on PODEM, is described. Experimental results are presented in Section 2.S to show

that large speed-ups can be achieved when either of these parallelisms are exploited.

2.2 Preliminaries

In this section, the applications of parallel logic verification and tautology checking are first

discussed. Then, the difficulties in parallelizing existing logic verification schemes are dis

cussed. Finally, the LOVER approach to verifying the equivalence of two logic circuits is

described.
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2.2.1 Applications Of Parallel Logic Verification

Combinational logic verification is equivalent to the Boolean tautology problem. Tautology

checking has a variety of applications in the logic synthesis area. Two-level logic minimizers

can be implemented using tautology checkers alone [2]. Exact logic minimization can expend

huge amounts of CPU time. Parallel tautology checking can form the basis for exact or

heuristic logic minimization on parallel computers which can result in being able to perform

minimizations much more quickly. Recently, multi-level Boolean minimization techniques

have been developed which use primarily tautology checking operations [37]. These tech

niques produce excellent results but can be used only on small circuits due to CPU-time limi

tations. Parallelizing these techniques can result in being able to handle larger circuits.

Redundancy checking of stuck-at faults in a combinational circuit is also equivalent to

the logic verification problem - if the faulty and fault-free circuit are Boolean equivalent, the

fault in question is redundant. Combinational test generation algorithms spend significant

amounts of time attempting to identify or generate tests for redundant faults. Redundancy

checks can be performed more quickly using parallel logic verification schemes.

2.2.2 Difficulties In Efficient Parallel Logic Verification

Parallelizing logic verification algorithms on a coarse grain is quite easy. For example,

different outputs of a circuit can be verified in parallel on different processors, using, for

instance, RouYs VERIFY algorithm [31]. However, if the number of processors is larger than

the number of outputs in the circuit then high efficiencies cannot be obtained. Even if the

number of processors equals the number of outputs, verifying one output may take much

longer than verifying the others resulting in considerable processor idling times and low

efficiences. Ideally, one would like all the processors to do exactly the same amount of work

so as to obtain maximum efficiency. This is quite difficult to do and efficient schemes for

parallel logic verification have not been proposed thus far.
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2.2.3 LOVER

LOVER incorporates a two-set/two-phase approach to logic verification which avoids the mul

tiplicative blow-up problem in traditional logic verification methods and has achieved excel

lent results in comparison to existing approaches [36].

Let A and£ be the two circuits whose equivalence has to be verified. A cube c from

CaN ( the ON-set cover ofcircuit A) is enumerated and simulated on B to check ifB pro

duces a 1 at its output If so, the enumeration/simulation process continues with another cube

from C°N. If, on the contrary, a0 appears, the verification is completed with the conclusion

that A and B are not Boolean equivalent. If an x ( unknown) appears, c is split ( cube-split)

into smaller cubes and re-simulated until a known value appears at the output of B. Cube-

splitting and simulation are implicitly exhaustive. The process continues until all cubes from

C°N have been simulated. A similar process for C$FF ( the OFF-set cover of circuit A) is

then started and processed to the end.

This method is called a two-setAwo-phase approach because there are two sets ( the

ON-set CON and the OFF-set C0FF ) that are to be explicitly verified; and two phases (the

enumeration phase and the simulation phase) that are to be performed for each set verification.

It is important to note that this framework does not specify which enumeration or simulation

algorithm to use. This gives a large degree of freedom in the LOVER approach to verification

- many different kinds of simulation and enumeration algorithms can be used. Since simula

tion is a relatively well understood and developed area, the emphasis is generally placed on

developing efficient enumeration algorithms.

Using LOVER, there are only (n0NA+noFFA )cube enumeration and simulation passes

to be performed where n0AM and nOFFA are the number ofcubes in C%N and CJ?FF, respec

tively. Though both n0NtA and /ioFFiA can be exponentially related to nt ( the number of

inputs to the verified circuits) in the worst case, the overall complexity is additive rather than

multiplicative. So the problem of multiplicative blow-up is avoided.
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In [36], it is indicated that performance of LOVER algorithms vary mostly because

different enumeration algorithms are used. Various methods can be used in LOVER for

enumeration - justification algorithms as seen in most test pattern generation techniques

become enumeration algorithms after suitable modifications to the termination criterion.

Noting that another process, namely cube simulation, follows enumeration using the

results from enumeration, the interaction between these two processes should be considered in

order to achieve the best overall performance. Although it is generally desirable that the

number of cubes enumerated should be as small as possible, the possibility of cube-splitting

deserves attention. While verifying two circuits, A and B, an efficient enumeration algorithm

may enumerate C°N or C°FF very efficiently with only a few cubes, but if most of these

cubes need to be split several times during simulation on circuit B, the overall verification

time suffers.

For ease of reference, in the remainder of this chapter, a LOVER algorithm using a

specific justification algorithm X is referred to as LOVER-X. Among all the approaches

presented in PROTEUS, it was found that the LOVER-SDIJUST approach was the most

efficient Hence, LOVER-SDIJUST has been used as an example for parallelizing the general

LOVER-based approach as described in Section 2.4.1.

2.3 Efficient Enumeration Algorithms

In this section, two enumeration algorithms based on the PODEM justification algorithm are

described [38]. LOVER-based approaches are compared to previous approaches to logic

verification.
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2.3.1 LOVER-PODEM

Enumeration in LOVER can be performed based on the decision tree concept in PODEM [61.

By modifying the termination condition of the implicit enumeration algorithm used in

PODEM, both the ON-set and OFF-set can be implicitly, but exhaustively, enumerated. This

is illustrated in Figures 2.1 and 22.

An example circuit with 5 inputs and a single output is shown in Figure 2.1. The deci

sion tree in LOVER-PODEM while enumerating the ON-set of the output is shown in Hgure

Fig. 2.1 An example circuit
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2.2. Note that some OFF-set cubes may be generated. In general, two decision trees are

required: one for the ON-set verification and the other for the OFF-set.

Each node in the decision tree represents a primary input (PI) assignment Initially, all

primary inputs are assigned unknown values (corresponding to the node START in the deci

sion tree of Figure 2.2).

Given an initial objective, i.e. to set a primary output line to a 1 or 0, a path is traced

from the objective line backwards to a primary input to obtain a PI assignment A 1 initial

objective corresponds to the enumeration of the ON-set and a 0 initial objective corresponds

to the OFF-set enumeration. In our example, the objective was to set the primary output line

to a 1. The first PI assignment was to set input C to 0 (Figure 2.2).

After each new PI assignment the circuit is simulated using the current set of PI assign

ments to see if the value at the objective line has been set up. If not the backtrace process

continues. For example in Figure 2.2, after setting input C (to 0) the value of the primary

output is unknown, so the backtrace process continues, selecting and setting inputD (to 0).

If the desired value has been achieved, a cube in the corresponding set has been found.

In our example, after D has been set, the desired value of the output (= 1) has been set up.

The cube -00- has been enumerated in the ON-set of the circuit (Figure 2.2). When verifying

against another circuit this cube would be simulated on the other circuit

If the opposite value has been set up, the algorithm backtracks to the last PIassignment,

tries the alternative value and flags the node to indicate that both assignment choices has been

tried. If the alternative has already been tried, the node is removed and the backtrack process

continues until an unflagged node with a possible alternative is reached. The backtrack pro

cess is also applied when a desired value has been set up at the objective line. After

enumerating cube -00-, the algorithm backtracks to the last PI assignment namely D, and sets

it to a different value of 1 (Figure 2.2). This is different from PODEM in which the enumera

tion process terminates when the desired value is set up at the objective line. When the
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DECISION TREE

Fig. 2.2 Decision tree of LOVER-PODEM
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decision tree is found to be empty in the backtrack process, the total input space for the

corresponding set has been implicitly, but exhaustively, enumerated.

2.3.2 PLOVER: A Variation Of LOVER-PODEM

In the above enumeration process, the ON-set and OFF-set are enumerated separately with the

initial objective being set differently in each case. One can observe that however, in the

enumeration process, backtracking is performed whenever the value of the objective line is set

regardless of the value attained. In the enumeration of one of the two sets, cubes in the other

set are actually being generated simultaneously but discarded. This represents a wasted effort

in the enumeration process. A variation of the LOVER-PODEM method, called PLOVER, is

therefore proposed.

In PLOVER, only one decision tree is used with the initial objective set to either a 1or

a 0 for the primary output Cubes in both the ON-set and OFF-set are collected whenever the

value of the output is set. Simulation of cubes from both sets are performed together rather

than separately. The verifications of both sets are interleaved to avoid wasted enumeration

effort The choice of the initial objective, either a 1 or 0, is unimportant in terms of the com

pleteness of the ON-set and OFF-set being generated. It only influences the size of the sets,

the set corresponding to the initial objective tends to be more compact. Experience has shown

that the enumeration process can be made more efficient if advanced knowledge of the rela

tive sizes of the two sets is available by setting the initial objective corresponding to the

bigger set
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2.3.3 Comparisons With Other Logic Verification Schemes

The LOVER-based algorithms compare favorably with other techniques to combinational logic

verification. In Table 2.1, LOVER-SDIJUST and LOVER-PODEM are compared with Roth's

VERIFY algorithm and exhaustive simulation (EXHSIM) on benchmark circuits [39]. The

CPU times are on a VAX 11/8650runningULTRIX. Exhaustive simulation would have taken

days for the two larger circuits.

2.4 Schemes for Parallel Logic Verification

The LOVER framework supports various schemes for parallel logic verification. This section

contains the description of a static scheduling scheme which can be used regardless of the

enumeration algorithms used, and a highly efficient dynamic scheduling scheme using the

LOVER-PODEM/PLOVER verification algorithms.

2.4.1 Static Scheduling: Parallelism Inherent In The LOVER

Framework

The parallelism inherent in the LOVER framework regardless of what enumeration and simu

lation algorithms are used can be exploited using a static scheduling scheme [38]. In this

scheme, each processor works largely independent of the others with very little inter-processor

communication. The enumeration algorithm used has no influence on the speed-up but only

on the absolute CPU time expenditure. The synchronization overhead for this scheme is

CKT LOVER-SDUUST LOVER-PODEM VERIFY EXHSIM

alu4 7.2s 8.3s 131.0s 1.3s

C432 U6h 2.15h >25h -

C880 4.3h 4.2h >25h -

Table 2.1 Comparisonsof verification algorithms
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minimal and the scheme is easily implemented.

A pair of cone circuits can be verified using 1-4 processors as summarized in Table 2.2.

Mode 1 is identical to the uni-processor version of the algorithm for each cone. Mode 2 uses

two processors one verifying the ON-set and the other the OFF-set Mode 3 uses three pro

cessors, two enumerating the ON and OFF-sets and the third performing simulations. Mode 4

uses four processors, two each for simulation and enumeration.

Simulation is in general more efficient than enumeration. This is because typically

several simulations of the circuit are required as part of the enumeration process before the

output value becomes known. Using experimental data over a range of logic circuits, it has

been determined that among the three processors dedicated to a cone circuit, typically one of

the two enumeration processors represents the bottleneck and determines the time it takes to

completely verify that cone circuit. Thus, Mode 4 is rarely used since the empirical evidence

shows that simulation is usually about twice as fast as enumeration ( when using LOVER-

SDUUST ) making a fourth processor redundant.

mode

no.

no. of

processors
comments

1 1 serial algorithm (parallel in cones for entireckt)
2 2 parallel in sets
3 3 parallel in sets and phases (shared simulation phase)
4 4 parallel in sets and phases

Table 2.2 Modes in static scheduling



20

2.4.1.1 Mode Selection

Given a circuit, a mode is selected for verifying each output so as to maximize efficiency.

Estimates of the complexity in enumerating the cones are used in mode selection. These esti

mates are relative and are made by examining the structure of the logic network - for exam

ple, the number of levels in the network, the number of reconvergent fanouts, and the relative

number of gates at each level. Given these estimates and the number of processors to be

used, a mode is selected which results in each processor performing as equal an amount of

work as possible, relative to the other processors.

Let the number of processors be np and the number of outputs n0. The outputs are

sorted in decreasing order of estimated complexity. If np £ 4 x n0, then Mode 4 is selected

for each output regardless of output complexities. Else, if 3 x n0 £np<4xnot then Mode 4

is selected for the first np - 3 x n0 outputs and Mode 3 for the rest of the outputs. If

2xn0 £np <3xn0 then Mode 3 is selected for the first np - 2 x n0 outputs and Mode 2

for the rest.

If the number of processors is less than twice the number of outputs, i.e. np £2xn0,

then for efficiency reasons more than one cone may beallocated to a single processor. This is

because it may be advantageous to use Mode 3, i.e. three processors, for a complex cone cir

cuit. When the number of processors available is small compared to the number of outputs,

efficient parallel verification can beachieved by assigning sets of outputs to the different pro

cessors, such that the sum totals of enumeration and simulation tasks to be performed by each

processor are approximately the same. If the sets of tasks are exactly identical in complexity

and CPU time requirements, an ideal 100% overall efficiency can obtained.

To find a good grouping of cones in multi-output circuits, the estimates of the complex

ity in enumerating the cones are used. Initially, Mode 1 is assumed for all outputs and a

grouping of outputs is found such that each group has minimally varying complexity. If a

group has a single cone circuit which represents the bottleneck, then the mode for that
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output/group is increased and the remaining outputs are regrouped into fewer groups, again

with minimally varying complexities. If this increases estimated efficiency then the new

grouping/mode is adopted. Now, the bottleneck may be a different group or the same one.

Modes are increased for the bottleneck groups till either Mode 3 is reached or efficiency

drops.

2.4.1.2 Experimental Results Using The Balance Parallel Computer

A parallel LOVER-SDUUST algorithm has been developed and implemented on the Sequent

Balance 8000 multi-processor [40] using the static scheduling scheme described.

In Table 2.3, the results obtained on two circuits from [39] using 1-8 processors on the

Sequent multi-processor are given. Two different implementations of each example circuit,

which were equivalent, were verified against each other. Because the two circuits being com

pared were different in each example, cube-splitting was required during simulation. The per

centage of cube-splitting was approximately 10% in both examples. The absolute verification

time is proportional to the number of cubes that have to be split during simulation. Cube-

splitting also affects the speed-ups that can be obtained via parallelization, but to a much

lesser extent

CKT #inputs ^outputs
speed-up/mode

2 3 4 5 6 7 8

C880 60 26 1.90/1 2.60/1 3.30/2 3.82/2 4.70/3 4.70/3 4.70/3

C432 36 7 1.95/1 2.80/1 3.50/2 4.30/2 5.40/2 5.40/2 6.10/3

Table 2.3 Results using static scheduling
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Both these circuits are complex and the uni-processor verification time on the Sequent is

about 38 and 17 hours respectively using the LOVER-SDUUST algorithm. Respectable

speed-ups have been obtained over 8 processor configurations for both examples. The highest

mode used for any cone circuit on different processor configurations is also indicated.

The first example saturates after 6 processors because verifying one output in the circuit

is significantly more time consuming than any of the others, and a maximum of three proces

sors can be used on a single cone given a static scheduling scheme. This output thus becomes

the bottleneck in the parallel verification process. Since Mode 3 provides the highest degree

of parallelism, i.e. 3 processors for a single output, it is used when the number of processors

is equal to or exceeds 6. Three processors work on the bottleneck output and the remaining

on the rest of the outputs. Better results are obtained in the second example, although it has

fewer outputs, because no single output overwhelms the others in complexity. Three proces

sors are required for the bottleneck output in this case, only when the number of processors

equals 8.

In the following section, a dynamic scheduling scheme which enables an arbitrary

number of processors to be used to verify a single cone circuit is described. Using this

scheme, high processor utilization (and overall efficiency) can be obtained regardless of the

number of processors available and the complexity of individual cone circuits.

2.4.2 Dynamic Scheduling

A dynamic scheduling scheme using the new PODEM decision tree based enumeration

method PLOVER is devised [38]. Based on this scheme, high processor utilization on any

kind of circuit is achieved. In the following section, how the enumeration method can be

efficiently parallelized using dynamic scheduling will be described. Initially, for ease of

explanation, a single-output circuit will be assumed while describing the parallel algorithm.

Later, means of extending the algorithm to handle multiple-output circuits will be described.
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In the LOVER framework as described in Section 2.2, the two main tasks performed in

the verification process are enumeration and simulation. Cubes are continuously enumerated

on one circuit and simulated on the other to check any functional discrepancies between the

two.

The chiefgoal of dynamic scheduling is to continually distribute equal amounts of work

among processors to avoid wasteful idling and achieve high processor utilization. Good pro

cessor utilization during enumeration can be achieved by repeatedly breaking up the enumera

tion task(s) into smaller ones and assigning them to different processors - an enumeration

algorithm that is tailored for such a parallel application has been devised.

The parallel enumeration algorithm is based on the PLOVER algorithm described in

Section 2.3. The input space is divided up into disjoint sub-spaces and each processor

enumerates implicitly all possible input patterns in an assigned sub-space in parallel. Sub-

spaces are further broken up, again disjointly, if some processors finish their assigned

enumeration in the input sub-space before the others. Thus, even if the initially assigned sub-

spaces are very different in enumerative complexity, processors which complete their tasks

early don't remain idle but help other processors in completing their enumeration task.

Cube simulation on the cone circuit can be performed by any processor whenever the

accumulated number of cubes generated by a processor is equal to the number of cubes that

can be simulated in parallel by a parallel simulation algorithm. By proceeding in such

fashion, a equal amount of verification work is assigned to each available processor and full

utilization of processor time is achieved by continuously keeping all processors at work in

parallel.
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2.4.2.1 A Parallel Enumeration Algorithm

The enumeration algorithm used in PLOVER described in Section 2.3 is well suited for a

parallel application. Whenever a new PI assignment is made, two disjoint input spaces are

implicitly developed by the decision tree. These two input spaces correspond to the 0 and 1

values of the newly assigned input and the old values of all the previously assigned inputs.

Some input values may still be unknown. Since these two input spaces are disjoint, they can

be enumerated by two different processors in parallel with the guarantee that the resulting two

sets of enumerated cubes will also be disjoint Thus, no redundant enumeration work is done

using this technique - each processor enumerates on a different branch of the decision tree.

Disjoint input spaces are continually generated by all the processors doing the enumera

tion every time a new PI assignment is made. After a processor performs a PI assignment, it

picks one of the disjoint spaces and continues enumeration on that space. As soon as a pro

cessor completes enumerating its present input space it then picks up another branch which

corresponds to previously generated input spaces by other processors which have not yet been

enumerated. This process continues till the entire input space has been enumerated. The

selection of a new input space by a processor on the completion of its initially assigned task

(this input space would have been generated by some other processor) entails an initialization

overhead. It is therefore desirable to select the largest unenumerated input space available

which corresponds to the spacewith the minimum numberof assigned primary inputs.

In the example decision tree of Figure 22, the PI assignments, C=0 and C=l,

correspond to two disjoint input spaces. Processors can enumerate on these two different

branches of the tree in parallel.
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2.4.2.2 Implementation

The decision tree is an ordered list of nodes and is implemented as a stack. Each processor

owns a separate stack which corresponds to the input space currently being enumerated by it.

Whenever a new PI assignment is made, a new unflagged node is pushed onto the top of the

stack. And whenever a backtrack step is made, the node on the top of the stack is examined.

If the node is unflagged, the alternative value is assigned to the corresponding input and the

node is flagged to indicate both choices have been tried. If the node is found to be flagged, it

is popped from the stack. Enumeration of a particular input space is completed when the

stack becomes empty. The stack is therefore treated as a FILO queue by the owning proces

sor. When a stack is being manipulated by a processor, no other processor is allowed to

access it

The selection of a new input space by a processor is done by popping nodes from the

bottom of the stack of another processor and pushing them onto the processor's own stack.

This popping and pushing process continues until the first unflagged node is reached. This

unflagged node is flagged and the corresponding input is assigned the alternative value creat

ing a new disjoint input space on which the processor enumerates. The popping of nodes

begins from the bottom of the stack rather from the top so as to obtain the largest

unenumerated space to minimize initialization overhead. The implementation of the parallel

enumeration algorithm is illustrated in the pseudo-code below.

2.4.23 Incorporating Dynamic Scheduling Into A Global Verification

Scheme

Circuits with an arbitrary number of outputs can be efficiently verified using the dynamic

scheduling scheme described thus far by using all the processors to verify each output, and

verifying the outputs sequentially. Another option is to perform enumeration directly on the

multiple-output circuit rather than using conning - each output has to be set to 1 or 0 for

every cube enumerated.



parallel_enumerateO
{

while (enumeration_not_finished) {
if (outputJsjiotjset) {

find_new_pi_assignmentO;
push a new unflagged node on top of its stack, SI;
simulate the current setof pi assignments;

else {
if (output is a 1)a cube from ON-set is generated;
else a cube from OFF-set is generated;
while (SI is not empty AND node on top of SI is flagged) {

pop a node from the top of SI;
}
if (an unflagged node is found) {

flag node and assign alternative value to the pi;
simulate the current setof pi assignments;

else {
select select a non empty stack S2 of another processor,

while (node atbottom of S2 is flagged AND S2 is not empty) {
pop the node and push on top of SI;
assign the pi value corresponding to that node;

if (an unflagged node is found) {
pop the node and push on top of SI;
flag node and assign alternative value to the pi;
simulate the current set of pi assignments;

else go to select;
}

}
}

}
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Greater efficiency is gained by incorporating the dynamic scheduling strategy into aglo

bal verification scheme. Initially, each processor tries to pick and verify an output enumerat

ing and simulating over the entire input space. Ifaprocessor runs out ofunverified outputs it

then helps the processors which have not completed their outputs, via dynamic scheduling.

Thus, the overhead of selecting new input spaces to enumerate on is minimized. To further

minimize the initialization overhead incurred in the selection ofanew input space by a pro

cessor on the completion of its initial assigned task during dynamic scheduling, a feature
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called a preferred stack mechanism is implemented. This feature restricts a processor to

enumerate on unfinished input space of one cone circuit before switching to another one by

assigning different priorities to input spaces of different cone circuits during input space selec

tion. This prevents a processor from unnecessary switching between unfinished input spaces

of different cone circuits and increases overall efficiency.

2.4.2.4 Results

Results for five examples using dynamic scheduling are given in Table 2.4. In the table, h, m

and s stand for hours, minutes and seconds respectively. The first two examples are bench

mark circuits from [39]. The number of outputs for the five examples are 3, 26, 2, 1 and 8

respectively. Two different, but equivalent, implementations of each example circuit (the

second implementation was obtained by performing a partial collapse of the original bench

mark implementation) were verified for equivalence. Regardless of the number of outputs, the

number of processors used and the great variations in logic complexities among different

cones circuits in the benchmarks, in every case except example 5, the speed-ups are very close

to the ideal values. The reason that the speed-up deviates from the ideal value when the

number of processors is large in example 5 is because the verification time is so small, circuit

read-in time becomes significant; it is about Us and represents over 40% of the total run-time

in the 8-processor case and over 50% in the 12-processor case. If the circuit read-in time is

deducted from the total run-time, the speed-up in the verification phase is again close to the

ideal value.

The amount of cube-splitting affects absolute performance but not the speed-ups

obtained due to parallelization. This is because of the load balancing characteristic of the

dynamic scheduling scheme. The percentage of cubes that had to be split during simulation

varied between 5 and 15% for the examples of Table 2.4.

A profile of the time each processor spent enumerating and simulating on the various

outputs in example C880 is shown in Figure 2.3 for a 8 processorconfiguration. In the figure,



CKT

Number of processors
1 2 4 8 12

ABS.

time

speed
up

ABS.

time

speed
up

ABS.

time

speed
up

ABS.

time

speed
up

ABS.

time

speed
up

C432* 10.9h 5.49h 1.99 2.78h 3.92 1.38h 7.92 0.97h 11.22

C880 33.9h 17.0h 1.99 8.54h 3.98 4.28h 7.92 2.97h 11.41

exl 69.7m 35.0m 1.99 17.7m 3.94 9.10m 7.68 6.25m 11.14

ex2 95.4m 48.4m 1.99 242m 3.96 12.2m 7.84 830m 1122

alu4 104s 573s 1.81 353s 2.95 23.2s 4.49 18.3s 5.67

C432* : only the first three outputs

Table 2.4 Results using dynamic scheduling
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the time profiles for each output have been normalized and the absolute verification time for

each output is indicated to the right of the plot As can be seen, the outputs which take a

long time to verify have been shared out amongst many processors illustrating the excellent

load balancing characteristics of the dynamic scheduling scheme, which is key to obtaining

high overall efficiences.

2.5 Conclusions

In this chapter, new algorithms based on the LOVER approach for combinational logic

verification is presented. For the first time, parallel logic verification schemes has been

developed and high overall efficiencies overa large number of processors is achieved.

Parallelism inherent in the LOVER approach can be exploited using a static scheduling

scheme. The advantage with this approach is that it is independent of the enumeration and

simulation algorithms used. High speed-ups have been obtained on benchmark circuits.

A dynamic scheduling scheme using a PODEM-based enumeration algorithm has been

developed. Excellent results have been obtained on different circuits with arbitrary numbers

of processors. High efficiences of over95% have been obtained using this scheme.
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CHAPTER 3

Sequential Test Generation

3.1 Introduction

Test generation for sequential circuits has long been recognized as a difficult task [41] [42] [4]

[43]. Unstructured random sequential designs are very difficult to test. One common

approach to improve the testability of a sequential circuit is to add test points to the circuitry

so that tests can be applied more readily and fault effects can be observed better. But this

method is not systematic and relies on designer ingenuity.

A popular approach to solving the problem of test generation for sequential circuits is to

make all the memory elements controllable and observable, i.e. Complete Scan Design [16]

[17]. Scan Design approaches have been successfully used to reduce the complexity of the

problem of test generation for sequential circuits by transforming the problem into that of

combinational test generation which is considerably less difficult The design rules of Scan

Design also constrain the sequential circuits to be synchronous so that the normal operation of

the sequential circuit is free of critical races. However, there are situations where the cost in

terms of area and/or performance and/or testing time of Complete Scan Design is

unaffordable. In addition, even though the general sequential testing problem is very difficult,

there are cases where test generation can be effective. Simply making all the memory ele

ments scannable in a sequential circuit without first investigating how difficult is the problem

of generating tests for it could unduly incur unnecessary area cost

The difficulty in generating a test usually lies with: 1) setting the states of the memory

elements into a certain combination so that the fault under test is excited; 2) propagating the

fault effect to the primary outputs. An input sequence is usually required in both cases (if
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such a sequence exists). In general, the longer the length of the shortest input sequence

needed to perform Steps 1) and 2), the more difficult it is to find an input sequence to test the

circuit. Both approaches mentioned above attempt to shorten the length of the input sequence.

In the Scan Design approach, the length of the input sequence is reduced to one when all

memory elements are made scannable.

Several approaches [11] [14] [12] [44] [15] [13] have been taken in the past to solve the

problem of test generation for sequential circuits. They are either extensions to the classical

D-Algorithm or based on random techniques [14] [15]. When the number of states of the cir

cuit is large and the tests demand long input sequences, they can be quite ineffective for test

generation. This is because no a prioriknowledge of the length of the test sequence is avail

able. In the extended D-Algorithm methods, a large amount of effort may be wasted in trying

to find short sequence tests for faults that require long ones. Random testing techniques are

based on continuous simulations and grading of test vectors according to simulation results.

They too can be very time consuming for difficult faults that have only a few long test

sequences. In this chapter, a new approach to test pattern generation for sequential finite state

machines that represents a significant departure from previous methods is described.

An efficient deterministic sequential test generation algorithm based on extensions to the

PODEM [6] justification algorithm has been developed. The problem of generating tests for

faults that require a lengthy input sequence is handled efficientiy by the intelligent use of

information contained in a partial State Transition Graph (STG) and the integration of new

algorithms based on the concept of state space enumeration.

It is assumed that the sequential circuit under test is synchronous and free of races under

simple design rules. It is also assumed that there is a reset state for the synchronous sequen

tial machine and memory elements such as D flip-flops are identified and represented as logi

cal primitives to facilitate loop cutting in transforming the synchronous sequential circuit into

an iterative array. A part of the State Transition Graph (STG) of the finite state machine
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using purely structural information is extracted first i.e. the gate-level description of a

sequential circuit The construction of the partial STG is based on an efficient algorithm that

finds paths from the reset state to different valid states (states reachable from the reset state)

in the STG. For circuits with relatively few states, a partial STG including all valid states is

built For circuits with a large number of states, only a subset of valid states is included in

the partial STG. The partial STG is then used in conjunction with efficient fault excitation-

and-propagation and state justification algorithms to generate tests for line stuck-at faults.

Tests have been successfully generated for finite state machines with a large number of states

using reasonable amounts of CPU time and obtained close to maximum possible fault cover

ages.

For very large sequential circuits, an Incomplete Scan Design methodology has been

developed. First using the sequential testing algorithm, test sequences are generated for a

large number of possible faults in the given sequential circuit A minimal subset of memory

elements is then found, which if made observable and controllable will result in easy detec

tion of all remaining irredundant but difficult-to-detect faults. The deterministic test genera

tion algorithm is again used to generate tests for these faults in the modified circuit (the cir

cuit with the identified memory elements made scannable ). Detection of all irredundant

faults as in the Complete Scan Design case, but at significantly less area and performance

cost, is guaranteed. The length of the test sequences for the faults can be bounded by a

prescribed value - in general, a trade-off exists between the number of memory elements

required to made scannable and the maximum allowed length of the test sequence.

Preliminaries and basic definitions are given in the next section. Previous approaches to

solving the sequential test generation problem is described in section 3.3. The deterministic

test generation algorithm is described in Section 3.4 [26]. This algorithm has been imple

mented in the program, STALLION. Results obtained on several circuits using STALLION

are presented in Section 3.5. In Section 3.6, the Incomplete Scan Design methodology [45] to
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sequential test generation is introduced. Algorithms to identify the critical memory elements

are presented. Results using STALLION in conjunction with the Incomplete Scan Design

approach are given in Section 3.7.

3.2 Preliminaries

3.2.1 Introduction

A general sequential circuit is shown in Figure 3.1. It is realized by combinational logic and

feedback registers. The general sequential test generation problem involves finding primary

input sequences which can excite the faults in the circuit and propagate their effects to the pri

mary outputs. No access to the inputs and outputs of the memory elements (the next state and

present state lines, respectively) is given.

The initial state of the machine ( e.g. when powered on ) may be unspecified or

specified. The fault model used in test generation also varies. Certain assumptions are made

regarding the sequential circuit to be tested.

Primary ,
Inputs

(PI)

Present

States

(PS)

Figure 3.1: A Sequential Circuit

Primary
Outputs

(PO)

Next

States
(NS)
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(1) The machine is assumed to have a reset state, R. All input test sequences begin from

this reset state.

(2) The fault model is assumed to be single stuck-at.

(3) The memory elements are assumed to be represented as distinct logic primitives. Tests

are generated for all single stuck-at fault in the combinational logic part of the sequen

tial machine including faults on the present state lines, primary inputs, next state lines

and primary outputs. Faults within the flip-flops are not considered.

3.2.2 Difficulties in Sequential Test Generation

In combinational test generation, a single test vector suffices to excite a fault in the circuit and

propagate its effect to the primary outputs. A sequential machine, however, has to be first

placed in a state which can excite the fault and only then can the effect of the fault be pro

pagated to the primary outputs. Placing the machine in the required state and propagating the

effect of the fault to the primary outputs may each require a sequence of input vectors.

In sequential test generation, the search space for a test sequence for a fault is usually

very large. For a synchronous sequential circuit with m inputs and n memory element, the

search space for a fault is 2m x 4". The maximum possible length of a test sequence is

r + s - 1 where r is the number of states of the good machine and s is the number of states

in the bad machine. In general, r and s is not known in advance. The worst case complexity

of the problem is 4n times the complexity of generating a single test vector for the combina

tional part of the circuit Some faults in the circuit may be redundant, i.e. they cannot be

detected by any test sequence. Large amounts of effort may be wasted in trying to generate

tests for redundant faults, which are, in general, quite difficult to identify.
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3.2.3 Basic Definitions

The conventional iterative array model [4] used in sequential test generation is shown in

Figure 32. The combinational logic block of the original sequential machine (Hgure 3.1),

with a fault, F, to be detected in it, has been duplicated in each time-frame. Beginning with

the present state lines in time-frame 1, PS1, set to the reset state values, it is required to pro

duce an input sequence, PIlyPl\ .., P/", for some r, which when applied to time-frames

1, 2,.., n propagates the effect of the fault, F to the primary output lines of the n-th time

frame, POn. This input sequence is called a test sequence for the fault

A state is considered as a bit vector of length equal to the number of memory elements

(latches or flip-flops) in the sequential circuit In general, a state is a cube, Le. the values of

the different bit positions ( state lines ) may be 0, 1 or x (don't care). A state with only 0's

or l's as bit values is called a minterm state.

A state is said to cover another state if the value of each bit position in the first state is

either a x or is equal to the value of the corresponding bit position in the second state.

PSJ

Figure 3.2: Iterative Array Model for Sequential Circuit
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The process of finding an input sequence which places the machine, initially in its reset

state, R, into a given state, S, is called state justification. The input sequence in question is

called a justification path. State justification may be forward statejustification or backward

state justification, depending on whether the search is conducted from R forwards or from S

backwards.

The search space in sequential test generation is deemed to be the product of two

spaces, namely the input space and the state space. The dimension of each space is equal to

the number of Boolean variables in the space. For example, the dimension of the input space

is equal to the number of primary inputs. These spaces correspond to the universal input cube

and the universal state cube respectively (the universal cube is a cube with all x entries of

length equal to the dimension of the space).

A space can be enumerated by exhaustively searching a set of cubes which add up to

the universal cube corresponding to that space. Minterm enumeration implies thateach cube

searched is a minterm. Minterm enumeration on a n-dimensional space, implies 2" combina

tions have been searched. Implicit enumeration (or implicit cube enumeration or cube

enumeration) involves exhaustively searching a n-dimensional space via cubes such that the

number of cubes searched is significantly less than 2".

In a sequential circuit, a fault may be redundant, i.e. untestable. There are two kinds

of redundancies in a sequential circuit The first kind is deemed combinationally redundant

- the effect of the fault cannot be excited or propagated to the primary outputs or the next

state lines, beginning from any state, with any input vector. A sequentially redundant fault

is a fault which can be excited by some input vector but itseffect cannot be propagated to the

primary outputs.
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3.3 Previous Work In Sequential Testing

3.3.1 The Extended D-algorithm for Synchronous Circuits

The test generation procedure for a self-initializing test sequence based on the iterative array

model using the extended D-algorithm approach is as follows:

(1) Determine the maximum number of time frames, p, allowed for test generation.

(2) Choose an initial value for p and construct the iterative array model with yt of unknown

value. (If a reset state is given, yt will be assigned the value of the reset state.)

(3) Choose the time frame q from which the D-drive must be organized. Apply the D-

algorithm to find a test for the multiple fault fp so that a D or D appears at one of the

outputs z\Z2,..*p. If a test is found, exit; otherwise, continue.

(4) If possible, increment p by 1 and return to Step 3); otherwise, exit with no test

Since the length of test sequence cannot be determined a priori, a large amount of effort

may be wasted in trying to generating tests with inappropriate choice of p.

33.2 Weighted Random Test-pattern Generator

In a random test-pattern generator, sequence of random patterns are applied to the circuit In

general, all primary inputs (PFs) of the circuit have the same weights, i.e. each PI is exercised

approximately the same number of times averaging over a long period of time. In the

weighted random test-pattern generator [14], different weights are assigned to the Pi's in pro

portion to their relative importance, i.e. some PFs are exercised more often than others. Single

input change between two consecutive patterns is assumed.

One way to determine the weight assigned to each PI is to measure the amount of gate

switching activity produced inside the circuit as the result of exercising that PI. A set of ran

dom patterns is simulated on the circuit The number of gates changing for the first time from

a logic 1 to 0, and vice versa, due to the switching of any of the PFs, is counted. The switch

ing activity count is then accumulated over the complete set of random patterns. By
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comparing the activity created by all PFs, different weights can be determined for all PFs.

However, this method suffers from the fact that the importance of the order of patterns applied

to detect a fault is ignored. Furthermore, test sequences consisting of more than one change

between consecutive patterns cannot be generated.

A dynamic adaptive technique has been used to partially alleviate the problem of ignor

ing the order of test patterns mentioned above in weighted random test-pattern generation.

This technique introduces the rates of changes of activity into the function of determining the

weight for each PL Results show that this technique achieves a significant improvement in

fault coverage over the static weighted random test-pattern generators. A reduction technique

is used to reduce the total number of random patterns generated as random approaches usually

create a large number of test patterns. Random pattern techniques offer no guarantees of test

coverage/redundancy identification unlike deterministic test pattern generators.

3.4 A Deterministic Sequential Test Generation Algorithm

3.4.1 Introduction

Given a reset state for the sequential machine, two different strategies can be employed to

detect faults in the machine.

(1) Forward propagation from the reset state.

(2) A two-stage process of forward propagation and state justification.

In the iterative array model, (1) corresponds to fixing the present state lines in the first time

frame, PS1, to the reset state values, and attempting to find n and PI1,.. ,PIn so as to pro

pagate the fault(s) to POH.

In (2), the test generation process is decomposed into more tractable subproblems. First

an input sequence, 71 =(/>/', PIM,.., PIn ) and an initial state SO that excite and propagate

the effect of the fault to the POH is found. This step is called the fault-excitation-and-

propagation and 71 is called the fault propagation or simply the propagation sequence.
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Next, state justification on 50 is performed, Le. a path from R to 50 is found, consisting of

another sequence of input vectors, 70 = (PI1,Pl\.., PI*~l). 70 is called the set-up

sequence or the justification sequence. The test sequence is the concatenation of the set-up

and propagation sequences, 70 and 71.

It should be noted that both fault propagation and state justification, in general, need a

sequence of input vectors. An irredundant fault may be such that its effect can be propagated

to the next state lines alone in the i-th time frame. Time frames /+1 through n are required

to propagate the effect of the fault to the primary outputs. Similarly, given an initial state,

50, even a minimum-length justification path for 50 may require more than one input vector.

In Figures 3.3 & 3.4, these two approaches are illustrated. A sequential circuit with 2

latches is shown in Figure 3(a). A stuck-at fault on a line in the combinational logic is to be

detected. The State Transition Graph of the circuit, with the reset state marked R is shown in

Figure 3.3(b). In Figure 3.4(a), the test sequence, TS, produced using Approach 1 is shown

pi D

O
D 7>

U
• Line Stuck-at-1

(a) Sequential Machine (b) State Transition Graph
Figure 33
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(highlighted in the State Transition Graph). In Figure 3.4(b) the propagation sequence, PS,

and initial exciting state, Q, using Approach 2 are shown. The state justification sequence,

JS, is shown in Figure 3.4(c).

In this section, a deterministic sequential test generation algorithm, incorporating new

techniques for fault propagation and state justification based on extensions to the PODEM

10

TS = 01011

(a) Test Sequence using Approach 1

R ,i

Q = 10

PS = 11
JS = 010

(b) Propagation Sequence (c) Justification Sequence
Figure 3.4
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justification algorithm, is presented. In the new algorithm, two different steps of forward fault

propagation and state justification, are performed. Information contained in a partial State

Transition Graph of the sequential circuit is exploited to facilitate detection of faults requiring

long test sequences.

This section is organized as follows. In Section 3.4.2, the overall strategy used in gen

erating test sequences for single stuck-at faults is described. Extraction of the fully or par

tially connected State Transition Graph from the logic level sequential circuit is described in

Section 3.4.3. The fault excitation-and-propagation and state justification algorithms are

described in Section 3.4.4 and 3.4.5 respectively. The detection of a special class of redun

dant faults is described in Section 3.4.6.

3.4.2 The Overall Strategy

A test generation procedure which assumes the existence of a complete State Transition Graph

(STG) description of the fault-free sequential circuit is first outlined.

Assuming that the complete STG of the fault-free sequential circuit is available, test

generation for a fault under test can be done by first finding an input sequence 71 and an ini

tial state 50 that excite and propagate the effect of the fault to the primary outputs within 4n

time-frames, where n is the number of latches in the sequential circuit. Then, every path

from the reset state, R, to any state51 that covers 50, a potential setup sequence, in the com

plete STG is fault simulated. Since the STG corresponds to the fault-free machine, it is not

guaranteed that the path from R to 51 exists under faulty conditions. If a path 70 (setup

sequence) to a state 51 thatcovers 50 can be found under fault conditions, a test sequence 72

is generated by concatenating the path 70 with 71. Even though a setup sequence 70 may

not be found, the fault may still be detected by one of the potential setup sequences through

fault simulation. If this is the case, that particular potential setup sequence itself can serve as

a test sequence 72. If no test sequence can be found, a new fault propagation sequence 71

and a new initial state 50 which is disjoint from all previously generated ones is searched and
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the procedure is repeated.

The algorithm is complete, Le. if a fault is testable, a test will be found given sufficient

time. The main drawbacks of this method are: (1) the memory storage for the complete STG

may be unreasonably large and the generation of the complete STG may demand astronomical

CPU time; (2) fault simulation of all potential setup sequences is extremely time consuming.

A remedy to (1) is to generate the potential setup sequences on-the-fly using a state

justification algorithm that searches for paths from the reset state to the 50's under fault-free

conditions. Another alternative to (1) is to perform state justification under faulty conditions

so as to ensure that the justification path found is a setup sequence. In either case, no infor

mation of the STG is required/used.

A test generation algorithm following the ideas presented above is as follows.

Algorithm Structure 1

(1) Find an (new) fault propagation sequence 71 and an (new) initial state 50 that will

excite and propagate the effect of the fault under test to the primary outputs within 4n

time frames using the fault-excitation-and-propagation algorithm (described in Section

3.4.4). If no solution exists, exit without a test.

(2) Find a (new) path 70 (potential setup sequence) from the reset state to the initial state

50 using a state justification algorithm in the fault-free machine. If no solution exists,

go to (1).

(3) Fault simulate the potential setup sequence 70. If it detects the fault, generate the test

sequence 72 directly from 70 and go to (5). Else if it is a valid setup sequence, go to

(4). Else if 70 neither detects the fault nor is a setup sequence go to (2).

(4) Concatenate the setup sequence 70 that represents the justification path from the reset

state to the initial state 50 with 71 to form 72 which is the test sequence for the fault

under test
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(5) Exit with a test sequence.

Even though this algorithm is potentially effective, state justification in general is

difficult when the setup sequence is long. In addition, some states may need to be justified

more than once. Enhancements to this basic algorithm are discussed in the next section.

Enhancing the Basic Strategy: As mentioned in Section 3.2.2, state justification can be

performed in two different ways, via forward searching or backward searching. These two

different search techniques are illustrated in Figure 3.5(a) and Figure 3.5(b). In forward state

justification, if a single input vector which places the machine from R to the state to be

justified, Q, cannot be found, a state Q', reachable from R via a single input vector is found.

Then, a path from Q' to Q is searched for. In backward state justification, if a single input

vector which places the machine from R to the state to be justified, Q, cannot be found, a

state Q', which reaches Q via a single input vector is found. Then, a path from R to Q' is

searched for.

Both forward and backward state justification, in faulty or fault-free machines, can be

extremely time consuming as the search space is very large. It is true that, given the

justification algorithms used, some states are easier to justify backwards rather than forwards

and vice versa.

Thus, an important enhancement to the test generation strategy, which combines the

advantages offorward and backward state justification, is to generate a partial STG contain

ing as many valid states (and paths from the reset state to them) as possible through forward

searching/enumeration (as described in Section 3.2) and to use a backward justification algo

rithm on-the-fly during test generation if the initial state, 50, required for a fault does not

exist in the partial STG. Note that the partial STG may contain all the valid states in the

complete STG but contains much fewer edges. States and edges may be added to the partial

STG via backward justification during test generation.
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The second drawback of Algorithm Structure 1, that the fault simulation of all poten

tial setup sequences is very time consuming, does not actually pose a problem. From the

observations in the experiments carried out, if 70 is an invalid setup sequence, it is very

likely to be a test sequence by itself. There is no need to concatenate, 70 with 71 to produce
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a test sequence, 72. Therefore, there is rarely the need for fault simulation of more than one

potential setup sequence for a fault.

Finally, an efficient test generation algorithm combining the advantages of forward

enumeration and backward justification by using the partial STG is as follows.

Algorithm Structure 2

(1) Find an (new) fault propagation sequence 71 and an (new) initial state 50 that will

excite and propagate the effect of the fault under test to the primary outputs within a

prescribed number of time frames using the fault-excitation-and-propagation algorithm

(described in Section 3.4.4). If no solution exists, exit without a test.

(2) Search for a path (potential setup sequence) 70 from the reset state to 50 in the partial

STG. If it is found, go to (5).

(3) If the partial STG includes all valid states, go to (1).

(4) Find a path 70 from the reset state to the initial state 50 using the backward state

justification algorithm (described in Section 3.4.5). If no solution exists, go to (1).

(5) Fault simulate the potential setup sequence 70. If it detects the fault, generate the test

sequence 72 directly from 70 and go to (7). Else if it is a valid setup sequence, con

tinue. Else go to (1).

(6) Concatenate the setup sequence 70 that represents the path from the reset state to the

initial state 50 with 71 to form 72 which is the test sequence for the fault under test

(7) Exit with a test sequence.

The initial state 50 can be a cube containing don't care bits or a minterm with every

state bit specified. In the case of a cube, a path from the reset state to a minterm covered by

50 can serve the purpose of a setup sequence.
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3.4.3 State Transition Graph Extraction

The input to the logic-level extraction program is the combinational logic specification of the

finite state machine as well as information about latch inputs and outputs, i.e. present and next

state lines. The output is a partial State Transition Graph (STG) of the finite state machine.

A node in the STG represents a distinct minterm state and an edge between two nodes

represents an input combination (cube) that drives the finite state machine from one specific

state to another.

The STG extraction algorithm first cube-enumerates all fanout edges from the given

reset state. Whenever a new edge is found, it is added to the current STG if the next state it

fans into does not exist in the STG. Each next state is then picked as a new starting state.

The procedure is repeated until no more distinct valid states can be found. Since each state

reachable from the reset state is picked as a new starting state and the fanout of each starting

state is enumerated, all the edges in the complete STG will be implicitly, but exhaustively

enumerated. The partial STG constructed is a tree, i.e. there is only a single path from the

reset state to any other state. This is to restrict the storage space for the partial STG so that

synchronous sequential machines with a very large number of states can be handled.

The algorithm used to cube-enumerate the fanout edges from a state is an extension to

the implicit enumeration algorithm of PODEM [6]. Initially, all the primary inputs and next

states of the logic-level finite state machine are set to unknown values. The logic-level circuit

is simulated with the present state lines fixed at their specified values. An unknown next state

line is then picked and a path is backtraced from it to an unknown primary input with the

objective of setting the value of the chosen next state line to a known value. A 1 or 0 is

assigned to that primary input The circuit is then simulated again. The setting of primary

inputs and simulation of the circuit is continued until all next state lines are set to known

values - a fanout edge is enumerated. Whenever an edge is found, but rejected because it

leads to a state already in the partial STG, backtracking is performed on the input cube to
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where a primary input was first set to a known value. The opposite value is assigned to it.

The simulation and primary input setting is then repeated. When no more backtracking can

be done, all the edges from a state are implicitly, but exhaustively enumerated.

The extraction process can proceed in either a depth-first or a breadth-first fashion. In

the breadth-first fashion, the path from the reset state to any state in the partial STG is the

shortest one. The test sequences generated are shorter but the total number of test sequences

is greater than using a depth-first algorithm. There are hard limits, L1 and L2, for the total

number of states to be included in the final STG and the number of states at each level from

the given initial state. L1 is used to restrict the memory usage and L2 restricts the maximum

length of the test sequence. The pseudo-code below illustrates the partial STG extraction pro

cess in a depth-first fashion. ExtractO is initially called with the reset state of the sequential

circuit and the level equal to 0.

Extract(State, level)
{

PresentState = State;
Primarylnput = unknown;
simulate the circuit;

while (not all edges have been enumerated) {

if ((TotalNumStates £ L1) I
(NumStates[level] > L2)) break;

if (not all NextState lines are set) {
findjiewj>i_assignment();
simulate with current set of pi assignments;

}
else {

if (NextState is not in the partial STG) {
add NextState to partial STG;
TotalNumStates = TotalNumStates + 1;
NumStates[level] = NumStates + 1;

Extract(NextState, level + 1);
}
else (

backtrack to the last set primary input



and assign an alternative value to it;

simulate with current set of pi assignments;

}
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In Figure 3.6, the STG extraction process for the sequential machine of Figure 33 is

illustrated. Beginning from the reset state, the extraction algorithm proceeds in depth-first

fashion, building up the partial STG.

An alternative to the backtracing/backtracking approach to STG enumeration described

above is forward simulation on the input space given a starting present state. The forward

simulation process begins with all the input lines set to unknown values. Inputs are set ran

domly to 0 or 1 in a pre-specified order till all the next state lines are all set to known values.

Backtracking on primary input values is done after setting all next state lines. However, this

R

oo

R

®

Figure 3.6: STG extraction
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approach is less efficient than the approach described earlier because a primary input value

may be unnecessarily set in order to set the next state lines. This can lead to a great amount

of redundant simulations. On the contrary, in the backtracing/backtracking approach, the

backtracing process makes sure that the next primary input to be set and the simulation fol

lowing the value-setting always contribute to the setting of the next state lines.

3.4.4 The Fault Excitation-and-Propagation Algorithm

The Fault Excitation-and-Propagation algorithm (FEP) is based on the decision tree concept of

the test pattern generation algorithm PODEM. It uses 9-valued simulation as opposed to the

conventional 5-valued simulation used in PODEM to handle the multiple-fault effect in

sequential test generation ( a fault is repeated in each time-frame ). FEP uses the conven

tional iterative array model, shown in Figure 3.2, for generating an input propagation sequence

71 and an initial state 50 to excite and propagate the effect of the fault under test to the pri

mary outputs within a prescribed number of time-frames. The initial state 50 produced by

FEP is a fault-free state ( line values 0, 1 or x ). The iterative array is considered wholly as a

combinational circuit with primary inputs of different time-frames time-indexed {PI1, PI2, etc)

and the present state lines of the first time-frame treated as pseudo inputs (PS1, PS2, etc).

The initial state 50 is specified by the pseudo input values. FEP first tries to propagate the

fault effect to the primary outputs of the first time-frame. If it fails, it will use the primary

outputs of the second time-frame for fault propagation and so on until the prescribed number

of time-frames is reached.

If a fault is combinationally redundant, FEP will not be able to propagate the effect of

the fault to the primary outputs or the next state lines of the first time-frame. FEP continues

to the second and succeeding time-frames only if the effect of the fault has been propagated to

the next state lines of the previous time-frame.

FEP uses two decision trees, one for the primary inputs of different time-frames and the

other for the initial state 50, as opposed to only one in PODEM. The two decision trees are
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built through backtracing and backtracking processes similar to those used in PODEM. The

present state lines of the first time-frame are treated similarly to the primary inputs during the

fault excitation-and-propagation process. Values of the present state lines and primary inputs

of different time-frames are continuously set one at a time through the backtracing process

and the iterative array is simulated whenever a primary input or a pseudo input is set to a

known value. The value-setting-and-simulation process continues until the effect of the fault

under test is excited and propagated to the primary outputs of at least one of the time-frames

or when the backtracking limit is reached. Backtracking takes place whenever it can be esta

blished that under the current set of primary input and pseudo input assignments, the effect of

the fault under test cannot be excited and/or observed at the primary outputs of the specified

time-frame with further input assignments. Backtracking during the search for 71 and 50 is

done on both decision trees.

FEP employs the concept of disjoint state space enumeration to make sure that all the

tests it generates for a specific fault will have disjoint initial states 50; this is necessary

because of the loop in the test generation process described in Section 3.4.2. Whenever the

search for a new test is begun, the primary input decision tree (D1) for the previous test is

scratched completely but the present state decision tree (D2) of the initial state 50 is retained.

Immediately, backtracking is done on D2. Then, the value-setting-and-simulation process is

carried out as described above. The reason that tests generated for a specific fault by FEP

should all have disjoint 50's is related to how FEP is used in the test generation process as

described in Section 3.4.2. For a specific fault, a new test is requested only if a path from the

reset state to the 50 in the previous test cannot be found, neither in the extracted STG nor

through the state justification algorithm described in Section 3.4.5. Therefore, all tests gen

erated for a specific fault should have disjoint 50's.

A single decision tree could have been used instead of two separated ones as described

above. Instead of completely resetting all primary input values to unknown, i.e. scratching the
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entire primary input decision tree, when a new search is started, one can simply backtrack on

the single decision tree to where a pseudo input ( present state line ) is first set to a known

value and assign it the opposite value. This means that some primary inputs may be preset to

0 or 1 values when beginning the search for a new initial state 50 ( which is disjoint from the

previous one, since one state bit value has been changed to an opposite value ). Due to the

inherent characteristics of the enumeration approach of PODEM, it is more efficient to begin a

search with as small a number of preset primary inputs as possible. Therefore the double

decision tree method is used.

3.4.5 The State Justification Algorithm

Given a goal state 50, the state justification algorithm (SJ) attempts to find a path (setup

sequence) from the reset state to it 50 can be a cube containing don't care state bits or a

minterm with every state bit specified. In the case of a cube, SJ needs only to find a path to

any minterm state that is covered by 50.

SJ performs backward justification from 50 to R, given a prescribed limit on the

number of backtracks, to bound CPU time usage. First, SJ sets the next state lines to 50 and

enumerates all the fanin edges to 50. SJ then checks to see whether any of the states the

edges fanout from cover the reset state or a state in the partial STG. If such a state exists, a

path is found. Otherwise, SJ picks each fanin state as a new goal state and carries out fanin

edge enumeration again. The procedure is repeated until a path is found or no path can be

found. SJ actually proceeds in a depth-first fashion and there is a limit on the maximum

length of the justification sequence.

The fanin-edge enumeration algorithm is an extension to the PODEM enumeration algo

rithm. Here, multiple lines (the next state lines) values have to be justified simultaneously

rather than a single output line as in PODEM. The conceptof state space enumeration is also

employed in SJ. There are two decision trees to be maintained as in Section 3.4.4, i.e. one

(Dl) for the primary inputs and the other (D2) for the present state lines. All the present
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state lines and primary inputs are set to unknown values initially. Through backtracing and

backtracking processes, the primary inputs and present state lines are continuously set to some

known values, 1 or 0, until all the next state lines are found to be set to their specified values

through simulation. Whenever the search for a new fanin edge is begun, D1 is completely

scratched but D2 is retained. Immediately, backtracking is done on D2. Then, the enumera

tion procedure is repeated again with a new fanout state. All edges ( fanning out of disjoint

states ) fanning into a state have been implicitly enumerated when no more backtracking is

possible. The pseudo code below illustrates the state justification algorithm proceeding in

depth-first fashion. Breadth-first search is an alternative.

Justify_State(5tote)
{

PresentStateLines (ps) = unknown;
Primarylnputs (pi) = unknown;
simulate the circuit;

while (not all fanin states to State are enumerated) {
while (not all the NextState lines are justified) {

find_new_pi/ps_assignmentO;
simulate circuit with current set of pi/psassignments;

if (there are conflicts on NextState line values) {

backtrack to the last set pi in D1 or ps in D 2
and assign an alternative value to it;

simulate with current set of pi and ps assignments;
}

}
if (a fanin state is found) {

if (fanin state covers reset state or any state in partial STG) {
a path is found;
return;

}
else Justify State(fanin state);

}

if (a path is not found) {

/* scratch Dl */
scratch all pi assignments;



backtrack to the last set ps in D 2 and
assign an alternative value to it;
simulate with current set of ps assignments;

}
}

}
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3.4.6 Detection Of Redundant Faults

The difficulty in test generation for sequential circuits does not just lie with finding tests

for the difficult-to-detect but testable faults. The determination of redundant faults is equally

formidable if not more difficult Obtaining a low fault coverage does not necessary mean that

the test generator is inadequate if it can be shown that the fault coverage is close to the max

imum achievable value. However, to determine whether faults, that no test has been gen

erated for, are redundant or testable may demand an astronomical amount of CPU time.

As defined in Section 3.2, two classes of redundant faults exist in a sequential circuit

Combinationally redundant faults are detected using the fault-excitation-and-propagation algo

rithm, FEP. In general, they are easier to find than sequentially redundant faults.

For the purpose of judging how close the fault coverage obtained by the new sequential

test generator is to the maximum possible value, all sequentially redundant faults based on

Theorem 3.1 given below are found and other undetected faults are treated as possibly testable

faults. This gives a lower bound on the number of redundant faults in a given circuit

Definition 3.1: An edge in the State Transition Graph is said to be corrupted by a stuck-at

fault if the effect of the fault can be excited and propagated to the primary outputs and/or next

state lines by the input vector corresponding to the edge with the present state lines values set

to the fanin state of the edge.

Theorem 3.1: In order for a stuck-at fault to be detected, the fault should at least corrupt one

fanout edge from a valid state that is reachable from the reset state in the state transition
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graph.

Proof: In order to detect a fault a test sequence starting from the reset state and ending with a

corrupted edge in the STG is needed. If a fault does not corrupt any fanout edge from a valid

state in the STG, no test sequence can detect the fault since no corrupted edge can be reached

from the reset state. D

Determining this special class of redundant faults requires the extraction of a partial

STG containing all valid states reachable from the reset state. The procedure to find these

redundant faults is based on the FEP algorithm described in Section 3.4.4. A single time

frame is used and all next state lines are treated as primary outputs. ( During test generation,

the fault effect has to be propagated to the primary outputs alone, and therefore FEP may

require multiple time-frames ). It should be noted that FEP attempts to find a fault-free state

and input vector which detects the given fault All tests are generated, for a potential redun

dant fault with disjoint initial states. If none of the initial states covers any of the states in

the partial STG, the fault under test is redundant

3.5 Sequential Test Generation Results

The test generation algorithms described in the previous section havebeen implemented in the

program STALLION [26]. STALLION consists of about 10,000 lines of C code and runs in

a VAX-UNIX environment.

Results and time profiles using STALLION for eight finite state machines which are

described in Table 3.1 are given in Table 32 and 3.3 respectively. In the tables m and s

stand for minutes and seconds respectively. For each example in Table 3.1, the number of

inputs (#inp), numberof outputs (#out), number of gates (#gate), number of latches (#lat), and

the number of equivalent faults (#eqv. faults) are indicated. In Table 3.2, the number of test

sequences (#test seq.), total number of test vectors in all the test sequences (#vect), maximum

test sequence length (max. seq. len.), fault coverage, percentage of provably redundant faults
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(using Theorem 1), total fault coverage including detected and provably redundant faults (tfc),

and CPU time on a VAX 11/8800 are indicated for each example. CPU times for extracting

the partial State Transition Graph, test sequence generation, fault simulation, miscellaneous

setup and for the entire test generation process are given in Table 3.3. In Table 3.2 and Table

3.3, m stands for minutes and s for seconds.

As can be seen the new test generation technique obtains close to the maximum possible

fault coverage in all the examples. The extraction of the partial STG consumes a relatively

small amount of CPU time with respect to the total TPG time in all cases. Fault simulation

constitutes a large percentage of total TPG time in most cases except in sse, as can be seen in

Table 3.3. The fault simulator uses a parallel-fault event-driven technique and a more sophis

ticated one using concurrent techniques will significantly speed up the test generation process.

The reason that test generation time is the dominant constituent in the total CPU time in sse is

because a great amount of time is consumed in trying to find tests for the large number of

redundant faults.

The first five examples are finite state machines obtained from various industrial

sources. The example sbc is the snooping bus controller [46] in the SPUR chip set It was

CKT #inp #out #gate #lat

#eqv.
faults

cse 7 7 192 4 680

sse 7 7 130 6 486

planet 7 19 606 6 2028

sand 9 6 555 6 1932

scf 27 54 959 8 3338

mult4 9 9 170 15 506

sbc 40 56 1011 28 3008

stage 131 64 2700 64 9155

Table 3.1: Statistics for 8 example circuits



CKT

#test

seq. #vec

max.

seq.

len.

fault

cov.

(%)

red.*

mult

(%)

tfc§

(%)
CPUt
time

cse 96 472 8 99.71 0.29 100.0 53.2s

sse 46 284 10 84.57 15.23 99.8 69.9s

planet 80 1191 26 97.39 2.56 99.95 12.6m

sand 165 1077 24 94.36 5.18 99.54 22.4m

scf 136 2238 21 94.37 3.86 98.23 83.0m

mult4 17 120 24 96.25 2.96 99.21 40.6s

sbc 168 1063 24 95.68 2.66 98.34 62.1m

stage 139 425 26 93.97 6.03 100.0 154m

* percentage of provably redundant faults
§ total fault coverage including detected and provably redundant faults
t All times are obtained on a VAX 11/8800

Table 3.2: Results for circuits

CKT
STG

Extraction

Test

Generation
Fault

Simulation Miscell. Total

cse 0.9s 8.3s 43.8s 0.2s 53.2s
sse 0.4s 52.2s 17.1s 0.2s 69.9s

planet 3.2s 1.2m 11.4m 0.7s 12.6m

sand 4.6s 10.7m 11.6m 0.6s 22.4m

scf 13.9s 11.5m 71.2m 1.2s 83.0m
mult4 27.5s 9.7s 6.5s 0.2s 43.9s

sbc 12.4m 28.3m 21.4m 1.3s 62.1m

stage 10.1m 50.8m 94.1m 1.0m 154m

Table 3J: Time profiles for example circuits
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synthesized using the multiple level logic optimization system MIS [3].

So far, it has not been able to perform direct comparisons with other deterministic

sequential test generation systems ( Any sequential test generation program which is publicly

available cannot beobtained ). However, in [47], performance figures were quoted for the D-
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Algorithm-based test generation system in [44], STG, for some publicly available benchmarks.

Figures from [47] are reproduced here along with STALLION'S results for the same examples

in Table 3.4. TheCPU times are in seconds on a VAX 11/8650. In all aspects and for all the

examples STALLION'S results are vasdy superior to STG.

STG does not have an interactively running fault simulator. Thus the fault list is not

updated and the test generator produces tests for each fault separately. Also, for each test a

new initialization is attempted. These two factors increase the run time for STG.

The example planet has faults that require long test sequences ( Table 3.2 ). Because

of this, the differences between the performances of STG and STALLION are more marked in

planet than in the other two examples.

3.6 An Incomplete Scan Design Approach

3.6.1 Introduction

In the previous sections, a sequential testing algorithm effective for mid-sized sequential finite

state machines is presented. In this section, a new Incomplete Scan Design approach to test

generation for large sequential circuits is presented. First using the efficient sequential testing

algorithm, STALLION, test sequences are generated for a large number of possible faults in

EXAMPLE STALLION STG

tfc§ #vect CPU

time

tfc§ #vect CPU
time

sse 99.80 284 69.9 99.50 676 1134

mult4 99.21 120 40.6 93.15 148 1490

planet 99.95 1191 754.0 61.00 132 19388

§ total fault coverage including detected and provably redundant faults

Table 3.4: Comparison with STG [44]
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the given circuit A minimal subset of memory elements is then found, which if made

observable and controllable will result in all remaining irredundant but previously difficult-to-

detect faults being easily detected in the modified circuit by STALLION. Detection of all

irredundant faults as in the Complete Scan Design case can be guaranteed, but at significantly

less area and performance cost The length of the test sequences for the faults can be

bounded by a prescribed value - in general, a trade-off exists between the number of memory

elements required to made scannable and the maximum allowed length of the test sequence.

Related work in this area has involved using functional vector sets to initially detect

faults in the sequential circuit [48]. After functional vector fault simulation, a set of memory

elements is made scannable so as to ensure that test sequences each consisting of a single test

vector can detect the remaining undetected faults. The new approach described is not res

tricted to using single vector test sequences to detect faults. A minimal set of critical memory

elements is found which when made scannable allows the sequential test generation algorithm

to detect the faults via multiple vector test sequences.

This section will focus on the algorithm used in the identification of the minimal subset

of memory elements. The overall strategy used in the identification of the critical memory

elements is described in Section 3.6.2. Heuristic selection algorithms used in the last stage of

the identification process are described in Section 3.6.3.

3.6.2 The Global Strategy

The overall structure of the Incomplete Scan Design algorithm is shown below. The algo

rithm incorporates the sequential test generation algorithm, STALLION, described in Section

3.4. It is given the sequential circuit S and a set of faults to be detected, F. It produces a set

of test sequences, T, each beginning from the reset state of the machine, R, and identifies a

set of memory elements, M, to be made scannable. The T are such that they detect the faults

F in SM, the sequential circuit S, with the memory elements, M, made observable and con

trollable.
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Incomplete Scan Design Algorithm

(1) Given the sequential circuit 5, for each fault f e F, attempt to find a fault-excitation-

and-propagation sequence, Pf, which will propagate the effect of / to the primary out

puts if possible else to the next state lines. The length of Pf is limited to

MAX_PROP_LEN. If Pf does not propagate / to the primary outputs, a set of next

state lines, NSf, to which the effect of / can be propagated to, is found. The set of

faults which can be propagated only to next state lines is called FNS.

(2) All distinct state vectors in Pf°, the first vector in the sequence Pf are found. Call this

set of distinct state vectors, K.

(3) Generate MAX_STATE states, Qt, at different levels, i, from R, in the State Transition

Graph (STG) of 5. i varies from 1 to MAXJ£VEL.

(4) For each k e K, find the memory lines to made scannable such that each state q e Qt

covers k. For each k generate MAXjOHOICE best ( with the least number of lines )

choices for line sets, which if made scannable will result in the covering of k by

a e Qi.

(5) Given K and MAXJOHOICE choices of line sets for each k e K, and a line set NSf

for each / e FNS, select a line set for each k and a single line from each NSf line set

so the number of distinct lines to be made scannable, M, is minimized.

In Step 1, propagation sequences are found for faults in the sequential circuit S, using

the sequential test generation algorithm, STALLION. While running STALLION, the present

state lines of S are set last so the state vectors K, found in Step 2, have as many don't care

bits in them as possible. STALLION produces a starting state, 50, and an input vector

sequence, /, which propagate the effect of the fault to either the primary outputs or the next

state lines of 5. If the effect of the fault is propagated to the primary outputs, then it only

remains to justify 50, else the complete set of next state lines to which the effect of the fault
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can be propagated, NSf, has to be found as well.

In Step 3 a large set of states in the State Transition Graph of 5, and paths from the

reset state leading to each state are found. These states are extracted using the STG extraction

algorithm described in Section 3.4.3. The number of states and the lengths of the justification

paths are bounded by MAXJSTATES and MAX_LEVEL respectively.

The distance between two arbitrary bit vectors of length N,A(i) and B(i), where each

bit can take the values of 0, 1 and x ( don't care ) is defined as the number of bits where

A(i) is 1 and B(i) is 0 or vice versa over i = 1 ,.. N. Given a state q e Qt and a state

k € A*, the distance between q and k then gives the number of state line values that q and k

differ in. It is easy to see that if the state lines which are different between q and k are made

controllable, any justification sequence for q has to work for k. Don't care bits in k do not

contribute to distance since they can take the values of 0 or 1. So to minimize distance

between the states in K and Qt, the number of don't care bits in K is maximized by setting

the state lines last in Step 1.

In Step 4, for each pair of q and k, the set of lines which are to be made scannable for

the justification sequence of q to be usable for k is found. Then, for each k, MAXJOHOICE

such line sets with the least number of lines and secondarily the smallest justification sequence

length are selected.

Given these MAX_CHOICE sets of lines for each k, a heuristic algorithm ( Step 5 ) is

used to select one particular line set (corresponding to one particular q e Qt ) for each k, so

as to minimize the total number of distinct lines in all the line sets selected. Simultaneously,

for each fault /, which could notbe propagated to the primary outputs, a line from NSf (the

set of next state lines to which / can be propagated ) is selected. Two selection algorithms

which have been employed are described in the next section.

After the heuristic selection process, a minimal number of state lines to be made scann

able and justification sequences for K are identified. A set of test sequences, 7\ is formed by
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concatenating the justification sequences, J, with the propagation sequences, P, generated

using STALLION. T will detect all undetected faults in SM, namely, F.

3.6.3 Heuristic Algorithms For Selection

The subproblem to be solved is as follows. There are N elements ( each corresponding to a

fault), each with a set of line groups. The number of line groups may vary. It is assumed

that for any given element, none of the line groups is a superset or subset of any otiier line

groupof the same element. The goal is to identify a line group for each element such that the

number of distinct lines in the selected line groups is minimum. Some of the elements may

have a set of line groups each containing a single line. For example, during test generation,

faults that can only be propagated to next state lines will result in an element with the pro

perty mentioned above.

Two heuristic algorithms which produce minimal solutions are described below. Algo

rithm 1 is a very fast greedy algorithm run with different starting points. Algorithm 2 first

finds all lines which are definitely required, if any. For example, if for any element, a line

exists in all its choices, that line is definitely required. Then, N€ best elements and line

groups in these elements are picked at a time. The complexity of this algorithm is 0( NN* ).

The larger the Ne is, the better the solution can potentially be (Nt = N is exhaustive search )

but more CPU time is required. It have been found that N4 = 3 gives near-optimal results

within acceptable run times.



Algorithm 1

Algorithm 2

for( i = 1; i £ N; i++ ) {
Element = e[i\;
for (j as 1; j £ Element.NumChoices; j++) {

Solution = greedy( ElementChoicelj], Element);
}

}
select best Solution ;

greedy( lineGroup, element) {

Lines = Lines {j lineGroup ;
for (i = 1; i < N; i++) {

if ( e [i] * element) {
for (j = 1; j £ e [i].NumChoices; j++) {

card = ILines {j i[i].Choice[j] I
}
pick k so card is minimum ;
Lines = Lines {j e [i].Choices[k] ;

}

}
}
retum( Lines);

find all required lines. Lines ;

while (choices to be made) {

pick Ne elements, eh .. en and choices

for the elements, C\,.. Cs minimizing
ILines {j e{ [c,- ] I i = 1,Nt

)
mark choices made for et

62
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3.7 Results Using Incomplete Scan Design

In this section, results obtained on several circuits using STALLION in conjunction with an

Incomplete Scan Design methodology are presented. Results obtained on seven circuits are

summarized in Table 3.5. In the table, the number of inputs (#inp), outputs (#out), gates

(#gate), and latches (#lat) in each circuit is indicated. The percentage of combinationally

redundant faults (which cannot be detected even using Complete Scan Design), initial fault

coverage achieved by STALLION, the number of latches made scannable, the final fault cov

erage in the modified circuit and the CPU times used for selection on a VAX 11/8650 are also

given. The CPU times for sequential test generation varied between a minute for the smaller

examples to an hour for the largest example sbc on a VAX 11/8650 (Table 3.2). It should be

noted that the CPU time used for sequential test generation can be bounded by limiting the

number of backtracks allowed. However, if this is done, quite possibly fewer faults will be

detected and more scan latches may be required.

EXAMPLE #inp #out #gate #lat red.

fault

%

initial

fault

cov.

scan

latches

final

fault

cov.

CPU

time

(sees)

sse 7 7 130 6 0.0 84.57 3 100.0 4.9

sand 9 6 555 6 0.21 94.31 2 99.79 53

scf 27 54 959 8 0.51 94.67 2 99.49 1.8

donfile 2 1 232 12 0.0 63.60 5

9

96.34

100.0

11.1

143

sckt4 3 6 160 21 1.09 26.55 6

9

9193
98.91

2.1

2.4

sbc 35 51 1011 33 2.83 81.25 5

10

95.68

97.17
9.1

17.1

lexl 27 52 395 97 0.0 75.86 39 97.94 6.3

Table 3.5: Incomplete Scan Design Results
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As can be seen, making a small subset of latches scannable increases the fault coverage

obtained to the maximum possible value or very close to the maximum possible value for all

the circuits. For instance in example sckt4, making 9 out of 21 latches scannable raised the

fault coverage from 26.25% to the maximum possible value of 98.91% ( 1.09% of the faults

are combinationally redundant). Depending on the fault coverage required, differing numbers

of scan latches suffice. Trade-offs can be made for each example as indicated in Table 3.5.

The examples donfile and sckt4 originally have a large number of sequentially redun

dant faults, which is why the fault coverage obtained by STALLION for these two examples

is low. Making some memory elements scannable allows detection of these faults increasing

the fault coverage to the maximum possible value.

The results demonstrate the advantages in using a combined approach of sequential test

generation and Incomplete Scan Design. A large percentage of faults are detected using the

efficient sequential test generation algorithm and the remaining irredundant faults are detected

by the same algorithm after making a minimal subset of flip-flops observable and controllable.

3.8 Conclusions

A novel approach to test generation for synchronous sequential finite state machines has been

presented in this paper. An efficient deterministic test generation algorithm for sequential cir

cuits have been developed. The efficacy of the new method stems from the integration of

several new algorithms that are based on the concept of state space enumeration. The new

approach involves extracting a partial State Transition Graph and using it in conjunction with

fault excitation-and-propagation and state justification algorithms in generating tests. The prob

lem of generating tests for faults that require a lengthy input sequence is shown to be handled

efficientiy by the new method through the intelligent use of the path information contained in

the STG and the coordinated interaction of the various algorithms. Tests have been success

fully generated for finite state machines with a large number of states using reasonable

amounts of CPU time and close to maximum possible fault coverages are obtained. A new
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method of detecting a special class of redundant faults in determining how close the fault cov

erage obtained to the maximum possible value has also been described.

For very large sequential circuits, an Incomplete Scan Design approach to test genera

tion have been developed. In this approach, the test generation algorithm is first used to gen

erate tests for a large subset of faults in the circuit A minimal set of critical memory ele

ments is then found, which if made observable and controllable will result in easy detection of

all remaining irredundant but difficult-to-detect faults. The deterministic test generation algo

rithm is again used to generate tests for these faults in the modified circuit (the circuit with

the identified memory elements made scannable ). Detection of all irredundant faults as in the

Complete Scan Design case can be guaranteeds, but at significantiy less area and performance

cost.
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CHAPTER 4

Mixed-Level Fault Coverage Estimation

4.1 Introduction

Fault simulation is an essential process for VLSI design and serves as an important part of the

test-generation process. It is used to determine the fault coverage of a given test (test pattern

or test sequence), that is, to find all the faults detected by the test There are three typical

methods of fault simulation: parallel, deductive [18], and concurrent [19] fault simulation and

the last method has been shown to be most effective. The computational cost of fault simula

tion is usually very high. It is known that [20] the CPU time and memory requirements for

fault simulation are proportional to the square of the number of gates in the circuit This

poses a serious limitation to its use for evaluating test patterns for VLSI circuits.

Recently, Jain and Agrawal [21] proposed a statistical fault analysis technique, called

STAFAN, which is able to produce an accurate test coverage projection given a set of test

vectors. Only fault-free simulation results are required for the fault coverage calculation and

the computational complexity is greatly reduced. Presently, this method can only be used for

circuits modeled with basic Boolean gates. In many cases, however, it is desirable and advan

tageous to be able to apply the technique of STAFAN to mbced-level circuits consisting of

MOS transistors, logic gates and combinational functional blocks. First this will provide the

designers the capability to zoom-in at a particular portion of the design. Secondly, it will

greatly enhance the usefulness of the metiiod in the early phase of the design when some parts

of the circuit are only functionally known. Thirdly, test coverage for transistor stuck-open and

stuck-closed faults in CMOS circuit can also be estimated for a given set of test vectors.
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In this chapter, algorithms for estimation of fault coverages for mixed-level combina

tional circuits are presented [22]. The concept of STAFAN is reviewed in Section 4.2. The

observability formulae developed for combinational Multiple-Input Multiple-Output (MIMO)

functional blocks is described in Section 4.3. A STAFAN-like technique applied to CMOS

transistor circuits for estimating transistor fault detection probabilities is described in Section

4.4. A mixed-level FAult Coverage Estimation tool (FACE) is described in Section 4.5.

Results obtained for some circuits to evaluate the efficiency of the estimation tool are

presented in Section 4.6.

4.2 Preliminaries

STAFAN computes a detection probability estimate for each line fault in a logic circuit based

on the concepts of controllability and observability. These two measures are defined as proba

bilities of controlling and observing the line. Fault-free simulation results are used to compute

estimates of controllability and observability. The detection probability estimate of a fault is

given by the product of the appropriate observability and controllability. Fault coverage is

estimated from the computed detection probabilities.

Each line / in a logic circuit is associated with four quantities, one-controllability

Cl(/), zero-controllability C0(l), one-observability Bl(l), and zero-observability B0(l).

C 1(1) and C0(/) are estimated as

one-count

where

Cl(/) =

C0(/) =

N

zero-count

N

N = number of vectors simulated ;

one-count = number of times / is set to 1 ;

zero-count = number of times / is set to 0 ;
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B 1(/)(£0(/)) is the probability of observing line / at a primary output when the value

of / is 1(0). Observability is computed by the following procedures : i) set all primary out

put lines B1 and B0 to 1 ; ii) propagate observabilities through logic cells based on observa

bility formulae. The probability of detecting line / stuck-at-l(s-a-l) is estimated as

Dl(0=BO(/)xCO(0;

And the probability of detecting line / stuck-at-O(s-a-O) is estimated as

DO(l) = Bl(l)xCl(l);

Special procedures are used to unbias the detection probability estimates. Certain

assumptions are made in computing observabilities for lines with fan-out branches to reduce

the amount of computation time. The estimated fault coverage is the sum of all the estimated

detection probabilities divided by the total number of faults. Results for practical circuits

show that in most cases STAFAN fault coverage estimates are very close to exact fault cover

age, even though the estimates for any single line may be inaccurate [49].

43 Observability Propagation Formulae

The computation of controllabilities for input and output lines of a functional block is per

formed as described in Sections 4.2. The formulae that allow backward propagation of obser

vabilities from the outputs of a MIMO functional block to its inputs are described here [22].

For the sake of simplicity, first consider a single-output logic block as shown in Figure

4.1. Line / is one of the inputs and line m is the output line. The value of line / can be

observed through the output either as a 0 or a 1 whenever the line is sensitized. This means

the observabilities of line / are dependent on the one-observability and the zero-observability

of output m and the sensitization of line /. For the one-observability B 1(1) of line /, this can

be translated mathematically into the following formula:



where

B 1(1) = B l(m) x P(m=l//=U 1(0) x?(S l(/)//=l)

+ B Q(m) x P (m=0//=U 1(0) x P (S !(/)//=!) ;
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P(m=l//=1,S 1(0) = conditional probability that outputm equal to 1 when line / is equal

to 1 and being sensitized ;

P(m=0/l=\£ 1(1)) = conditional probability that output m equal to 0 when line / is equal

to 1 and being sensitized ;

P(S l(/)//=l) = conditional probability that line / is being sensitized when it is

equal to 1;

the formula can be simplified to

B 1(1)= [B l(m) x P(m=U=U 1(0) + BQ(m) x P(m=0J=lJS 1(1))] / C 1(0

where

C 1(1) = one-controllability of line / ;

The computation of the P*s terms in the observability formula is demonstrated by

explaining how the valueof F(m=l,/=1^1(/)) is obtained. A counterSM(1,1) is kept for the

input line for the computation of P(m=\J=lJSl(l)). The counter is incremented whenever

the output m is equal to 1 and / is equal to 1 and being sensitized. Sensitization condition is

Combinational

Logic

m

Fig. 4.1 Multiple-Input-Single-Output Block
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checked by changing line / to its opposite value and evaluating the functional block again. If

the output is changed to 0, line / is being sensitized. The value of /,(m=U=l,51(0) is the

value of counter SM (1,1) divided by the numberof vectors N being simulated j.e.

/>(w=i,/=i,si(0)= SM[]tl) ;
N

The value of P(m=QJ=lJS\(l)) can be similarly obtained by keeping another counter

SM(0,1) and its value is given by

P(m=0,/=Ul(/))= SM®'1) ;
N

Zero-observability of line / can be similarly derived as

BQ(l) = [B l(m) xP(m=U=OJ0(l) + B0(m) x P(m=QJ =0,50(1))] / C0(O

»

where

C0(0 = zero-controllability of line / ;

For a MIMO block with n output lines, the input line /. can be observed through any

output If fll(/,m) is the probability of observing /=1 through output m, the total one-

observability of line / is

B 1(1) = Prob{/=l is observed through one of the outputs)

= 51-52+ 53-54 + + (-l)n~lSN

where

51 = 5>l(/j);
7=1

52 = ]£Prob{/=l is observed through output i and j} ;

S3- 2J*rob{/=l is observed through output i J and k) ;

SN - Prob[/=l is observed through all outputs) ;
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The exact computation of the observability formula would require adetailed analysis of

the topological structure of the circuit The computational cost could be very high. The com

putation would be greatly simplified if the assumption that all output lines have observation

paths independent of others is made. The formula is reduced to

Bl(l)=CjB\(lJ);

This is analogous to the computation of observability for a line with several fanout

branches for which the assumption that all fanout branches have independent observation

paths is proved experimentally feasible [50].

Similarly, the zero-observability can be derived as

B<Kl) =CjB0(lj);

The above formulae can be greatiy simplified for primitive logic gates based on their

logic properties. For example, the P(m=U=OJ0(l)) term and the /»(m=0,/=l,51(O) term

are both equal to zero for an AND gate. The simplified formulae for logic gates are

equivalent to those derived in [21].

4.4 Computation Of Transistor Fault Detection Probability
The fault model used for CMOS transistor gates consists of transistor stuck-open and stuck-

short faults. Most prevalent physical failures are representable by this fault model [51]. It is

also assumed that the path from ground dominates the path from Vdd in aCMOS gate, i.e., a

Vdd to GND path caused by astuck-short fault in aCMOS gate will force the gate output to

a logic zero. Hence, PMOS transistor stuck-short faults are treated as undetectable. In order

to apply the principle ofSTAFAN at transistor level, each CMOS transistor gate is replaced

by an equivalent logic model A simple example is used to illustrate how transistor fault

detection probabilities can be computed based on the logic model.
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Fig. 4.2 A 3-Input CMOS Gate

Fig. 43 Logic Model of the CMOS Gate
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A simple CMOS gate is shown in Figure 4.2. The equivalent logic model is shown in
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Figure 4.3. This model can be used in simulation of the mixed-level circuit and detection pro

babilities of each line stuck-at fault in the logic model will be estimated using formulae

described in Sections 4.2 and 4.3. This information is used to compute all transistor fault

detection probabilities as described below.

4.4.1 NMOS Transistor Stuck-short Faults

The NMOS transistor stuck-short faults correspond to gate input line s-a-1 faults in the logic

model [52]. For example, the stuck-short fault of transistor NA in Figure 4.2 corresponds to

the input line A s-a-1 fault in Figure 4.3. The detection probability for transistor NA stuck-

short is equal to the probability of detecting the input line A s-a-1, i.e.,

DS(NA) = D\(A);

Similarly, all NMOS transistor stuck-short detection probabilities can be obtained.

4.4.2 NMOS And PMOS Transistor Stuck-open Faults

The detection of transistor stuck-open faults requires two-pattern tests [53]. In order to detect

a NMOS transistor stuck-open in a CMOS gate by a test vector, one of the necessary condi

tions is that the previous gate output is set to one. Similarly, to detect a PMOS transistor

stuck-open fault the previous gate output should be 0. The dependence of detecting transistor

stuck-open fault on the memory state of the gate output will be reflected in the stuck-open

fault detection probability formula given below.

Two special counters SN and SP are keptduring the simulation for computing the pro

babilities of detecting transistor stuck-open faults in a CMOS gate. SN is incremented on a

vector only if the CMOS gate previous output is equal to 1 and the present output is equal to

0. SP is incremented if the previous output is equal to 0 and present output is equal to 1.

Again using the same example CMOS gate, it will be shown here howthe detection probabili

ties of transistor stuck-open faults can be obtained. The stuck-open fault of transistor NA

corresponds to the input line A s-a-0 fault The probability of detecting NA stuck-open is



given by

where

DO(NA) = D0(A)x *"
NxCO(Z) '

DQ(A) = probability of detecting line A s-a-0 ;

SN = value of counter SN ;

N = number of test vectors ;

C0(Z) = zero-controllability of the gate output;

SN

NxC0(Z)

The stuck-open fault of transistor PA corresponds to the input line A s-a-1 fault The proba

bility of detecting NA stuck-open is given by

SP

= Prob(previous output = 1/present output = 0} ;

where

DO(PA) = Dl(A)x
NxC\(Z) '

D\(A) = probability of detecting line A s-a-1 ;

SP = value of counter SP ;

N = number of test vectors ;

C 1(Z) = one-controllability of the gate output;

SP

NxC\(Z)
= Prob{previous output = 0/present output = 1) ;
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SN SPn and account for the dependence of detecting stuck-open fault on
iV XO \j\£i j iV XC> 1 \JLt j

CMOS gate memory state.

The above formulae allow using a single logic model to estimate both transistor stuck-

open and stuck-short faults. Observabilities could also be effectively propagated through

CMOS transistor gates with the logic models.



75

4.4.3 Unbiasing Transistor Fault Detection Probability

As shown in [2], fault detection probabilities obtained from the simulation of N vectors are

biased estimates containing random errors. Unbiasing requires modifying the detection proba

bility as

D l W(D)
where

D = detection probability estimate ;

W(D) =1+(rV-1) x&-x —2— ;
O (l-D)

The value of p is determined experimentally. By matching estimated fault coverage with fault

B2simulation results for an actual circuit the value of -^ = 5 is found to experimentally pro-
6

duce good estimates for other gate-level circuits [2]. However, it was found that this P value

is unsuitable for CMOS transistor circuits where unconventional stuck-open faults are present

Estimated fault coverage tends to be over-optimistic. A more appropriate value, after experi-

B2
mentation with several circuits, is found to be -^ = 3.

4.4 Implementation

The mbced-level fault coverage estimator is implemented in the program FACE [22]. It

accepts input files consisting of primitive logic gates, functional blocks and CMOS transistor

gates. The main parts of the program are a function extractor, a gate-level modeler, a logic

simulator and a fault coverage estimator. Various components of the tool are described

below.



76

4.5.1 Function Extractor and Gate-level Modeler

These two programs map all the CMOS transistor gates into equivalent logic models. The

function extractor first builds up a connectivity graph representing the transistor circuit It

then identifies all the gate nodes and generates the logic expressions [54] [55]. A tree-like

data structure similar to those mentioned in [56] is used to store the logic expressions. The

gate-level modeler uses the logic expression information to generate equivalent logic models

for all the CMOS gate. These logic models are attached to the existing logic subcircuit to

build up an equivalent Boolean network. This equivalent network is used by the logic simula

tor and the fault coverage estimator to calculate detection probabilities.

4.5.2 Logic Simulation

The logic simulator is a three-valuedsimulator programmed to simulate logic circuits made up

of Boolean gates and functional blocks. It employs both event-driven and circuit leveling

techniques. Functional block evaluation is much more costly in terms of CPU time compared

to gate evaluation. A purely event-driven simulator will not be suitable: a functional block

which has several inputs changed during the simulation may get evaluated several times due

to different delays in signal paths. With the leveling technique, the functional block will be

evaluated only after all its inputs have changed. The simulation algorithm is described as

below :

It is important that the representation of the functional blocks allows fast evaluation. As

noted in Section 4.3, the computation of observability for MIMO block inputs involves many

functional block evaluations. There aremany ways to describe/represent a functional block in

logic simulation. The truth table is the most straightforward one that allows fastest evaluation

using indexing technique. The main drawback of this representation is the memory require

ment for storing the table : it is proportional to 2" where n is the number of inputs to the

functional block. Here the ON-set cover representation [2] of the functional block is used.

This is a good compromise between memory requirement and evaluation speed. This table is



Logic Simulation Algorithm:
(

presentjevel = 0;
highestJevel = maxJevel;
while (cell-list is norempty) {

if (cellJevel is equal to presentjevel) {
evaluate the cell;
for (each output line of the cell) {

if (value of line has changed) {
schedule cells driven by this line ;

}
}
remove cell from the list

}
else {

put cell back into the list;

}
presentjevel = presentjevel + 1;
if (presentjevel > highestJevel) {

find new highestJevel and lowestJevel;
presentjevel = lowest level;

}
}

}
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usually available for PLA-implementation block during the synthesis phase. Other logical

descriptions of a functional block, i.e. Boolean expressions and truth table, can be readily

transformed into this representation using CAD tools such as ESPRESSO II-MV and

EQNTOTT developed in University of California at Berkeley. The ON-set cover representa

tion is a compact form of describing a full truth table. A matrix representation of ON-set

cover for a 4-to-l multiplexer is shown in Figure 4.4. 50 and 51 are the selection inputs,

Di 's are the data inputs and Z is the output

The evaluation of the functional block is performed by comparing the input vector with

the input part(cube) of each row of the matrix and setting the output according to the output

part(cube).



SO SI Dl D2 D3 D4 Z

0 0 1 - - - 1

0 1 - 1 - - 1

1 0 - - 1 - 1

1 1 - - - 1 1

Fig. 4.4 ON-set cover table for a 4-to-l multiplexer
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4.5.3 Fault Coverage Estimator

This program functions to update all the counters after simulation of each vector and compute

the controllabilities, observabilities and detection probabilities for all the logic faults and

transistor faults.

4.6 Results

Fault coverage estimation results were obtained for three CMOS circuits and a 8-bit multiplier

circuit Results are summarized in Table 4.1 and Table 4.2. Circuit 1 and Circuit 2 in Table

4.1 are CMOS implementations of two benchmark circuits from [39]. The average differences

between actual fault simulation results and FACE'S estimates for the three transistor circuits

vary from 0.62 percent to 2.51 percent

The 8-bit multiplier circuit is represented in three different ways for fault coverage esti

mation to test the mixed-level capability of FACE. In configuration 1, the 8-bit multiplier is

described as interconnections of twenty functional blocks. In configuration 2, some of the

blocks are replaced by their gate-level equivalent circuits. Finally, some of the gate circuits

are described at transistor level. Results in Table 4.2 show that good correlation between
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Inputs/
Outputs
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Final Coverage
Fault

Sim.

%

FACE

%

Average
Difference

4-bit

ALU 326 14/8 31 652 64.9 65.2 0.62

CKT1 624 36/7 42 1248 62.2 62.6 2.51

CKT 2 1802 60/26 68 3604 71.2 71.7 1.71

TABLE 4.1 FACE results for three cmos circuits
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estimate and actual coverage is obtained for all three configurations. For configuration 3, the

coverage curve for transistor faults and logic faults are plotted in Figure 4.5 and 4.6. From

the two graphs, it can be seen that FACE coverage estimates follow closely the fault simula

tion results for both transistor and logic faults.

Canfiit. fTnn. fGstn fBlocks

No.
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No.
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Logic
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No.
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tut

Trrotitor
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Logic
PtBlt

Fait

Simtfb)
PACE

%

Average
Diff.

Ftalt

Sixo(«)

PACE

PACE

Avenge
Diff.

1 0 0 20
~

3S6 10
- - -

985 98.5 0l85

2 0 292 12
-

3230 194
- - -

95.1 93.0 0.83

3 470 203 12 940 2646 194 6B.S 700 0.90 954 925 1.1

TABLE 4.2 FACE results for 8-bit multiplier in 3 configurations
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Fig. 4.5 Transistor fault coverage for a mixed-level 8-bit multiplier circuit

80



100

20 40 60 80 100 120 140 160 180 200

No. of vectors

Fig. 4.6 Logic fault coverage for a mbced-level 8-bit multiplier circuit
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4.7 Conclusions

Statistical techniques are applied in evaluation of test patterns for fault coverage estimation at

mixed-level Observability formulae are developed for MIMO functional blocks and metiiods

are described for computing transistor fault probability. Results show that good match

between fault coverage estimate and the actual value can be obtained with greatly reduced

computational complexities. For a set of test vectors, fault coverage can beestimated for both

transistor and logic faults in a mbced-level circuit
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CHAPTER 5

Fault Simulation for Multiple-Fault Detection

5.1 Introduction

The most popular fault model used for testing is the stuck-at fault model. For a circuit with n

lines, there are a total of 2n stuck-at faults. If combinations of these faults may simultane

ously occur, there are a total of 3n - 1 multiple-fault combinations. The number of faults can

be reduced by applying fault equivalence [57] and dominance [58], and the concepts of check

point [59] and prime [60] faults. However, the total number of multiple-faults has been still

considered unacceptably large. For this reason, it has been often assumed that at most a sin

gle fault can occur at one time in a circuit. However, there are situations where the single-

fault assumption is inadequate and the multiple-fault model cannot be avoided [61] [4].

Another application of multiple-fault detection is in the area of logic synthesis. Redundant

multiple-faults correspond to a set of multiple lines that can be removed from a circuit at the

same time resulting in a reduction of the circuit size. This would not have been possible if

the single stuck-at fault model have been used.

The traditional approach of test generation - generate a test vector for a chosen fault and

evaluate the test vector through fault simulation of the total fault list - is impractical even for

small circuits. To store explicitly all the fault combinations for a circuit of reasonable size

would require a prohibitive amount of computer-memory storage. Algebraic approaches have

been proposed for multiple-fault detection [62] [60]. But their complexity and ineffective use

of topological information on the test circuit make their applications only practical for trivial

circuits. A possible approach to multiple-fault detection is to convert a Single-Fault Detection

Test Set (SFDTS) into a multiple-fault detection test setby augmenting the SFDTS with tests
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for the undetected multiple faults. It has been observed that a SFDTS designed to detect only

single stuck-at faults usually detects most multiple stuck-at faults. However, the identification

of the undetected multiple-faults associated with a test set is itself a formidable task.

Conventional fault simulators are not suitable for the evaluation of test sets for

multiple-fault detection. Explicit fault simulation of all multiple-fault combinations would

require an unreasonable, if not prohibitive, amount of CPU time. An alternative approach to

fault simulation for identifying undetected multiple-faults is to examine the masking relations

[23] among faults associated with a test set This approach involves cumbersome manipula

tion of Boolean equations and masking graphs and is only feasible for restricted type of cir

cuits.

Identification of undetected multiple-faults can only be performed efficientiy if fault

combinations are evaluated implicitly. In [63], an approach based on effect-cause analysis

was introduced. This method avoids the explicit analysis of the masking relations and utilizes

the network topology to guide the multiple-fault diagnosis process. The new implicit

multiple-fault simulation approach proposed in this chapter is a great improvement over [63].

In the new fault simulation approach, the problem of identification of undetected multiple-

faults is considered as one of implicit enumeration of the fault space. Fault combinations pro

ducing the same output responses as the fault-free circuit for a test set are implicitly

enumerated. A new 15-valued simulation method is used to facilitate vertical implication that

relates values of the same line for different test vectors. Using the 15-valued simulation

method, the masking relations among faults are implicitly analyzed. Topological information

is used, based on the concept of dominators [64], to facilitate the enumeration process.

This chapter is organized as follows. In the next section, previous work on fault simula

tion for multiple-fault is described. In Section 5.3, the simulation model for the enumeration

of the fault space is described. The 15-valued simulation method is described in Section 5.4.

The fault-space enumeration process is explained in Section 5.5. Procedures used to speed up
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the enumeration process are discussed in Section 5.6. Results obtained for several examples

are presented in Section 5.7.

5.2 Previous Work

The identification of undetected multiple-faults associated with a test set were mostly done by

examining the masking relations among faults [62] [23] [60]. A fault fj is said to mask a

fault ft for test / if the test t detects /,- but not the multiple-fault (fi,fj). This represents a

fault masking condition for /,- associated with t. The identification procedure can be summar

ized as follows.

(1) For each test /* in a test set T, find the set of faults Ft{ that can be detected by it For

each fault/ in Fl(, determine the fault masking conditions associated with/ for /,-.

(2) Deduce from the fault masking conditions the set of multiple-faults not detected by the

test set T. The deduction is performed by iteratively determining whether the fault f}

that masks the fault/, is guaranteed to be detected by the test set T (GTBD). If this is

true, then fault /,- is also GTBD and the masking condition is resolved. The set of

masking conditions that cannot be resolved corresponds to the set of undetected

multiple-faults.

Step 1 involves cumbersome manipulation of Boolean equations and the set of masking

conditions which represents explicitly the set of undetermined multiple-faults can be very

large. The examination of fault masking conditions in Step 2, performed using the masking

graph [62] [23] or a tabular approach [60], is very inefficient
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5.3 Simulation Model

The set of basic faults used for multiple-fault fault simulation is the set of prime faults [60].

Any possible multiple stuck-at fault is equivalent to a multiple prime fault The set of prime

faults contains the following faults:

(1) For an AND or NAND gate, if an input of the gate is a fanout branch or a primary

input line, then the input stuck-at-1 fault is included in the prime fault set Similarly for

an OR or NOR gate, an input stuck-at-0 fault is included. (Inverters and buffers are

considered as lines unless their outputs are primary outputs, then they are treated as

NAND/NOR and AND/OR gates)

(2) If all input stuck-at-1 faults of an AND or NAND gate are included as prime faults and

the output of the gate does not fan-out then the output stuck-at-0 fault is included.

Similarly, the output stuck-at-1 fault for an OR or NOR gate is included.

The number of prime faults is significantiy smaller than the total number of stuck-at

faults in a circuit and any possible multiple stuck-at fault is equivalent to a multiple prime

fault One important feature of the prime fault is that only one of the stuck-at faults, i.e.

stuck-at-1 or stuck-at-0, is considered for each prime fault site - each line in the circuit is in at

most any of two states. The simulation model, similar to the fault injection model [58], used

for enumeration of the fault space is constructed based on the prime faults as follows.

(1) If line / in a circuit is a prime fault site and it can only be in any of the two states,

fault-free or stuck-at-0, then line / is replaced by the line model shown in Figure 5.1.

(2) Similarly, if line / is either fault-free or stuck-at-1, then an OR gate is used instead of

an AND gate in the line model in Figure 5.1.

Every prime fault introduces a fault-input (FI) and a logic gate into the simulation

model as shown in Figure 5.1. The value assigned to the fault-input FI represents the status

of the line /. For example, if a 0 is assigned to FI in Figure 5.1, / is stuck-at-0 and a 1 at FI

means / is fault-free. Any fault-input combination (vector) represents a multiple prime fault
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Fig. 5.1 Line model for a prime fault line 1s-a-0

Given a test set and a fault-input vector, if the output responses of the simulation model is the

same as the fault-free responses of the circuit the fault-input vector corresponds to an

undetected multiple-fault associated with the test set

The simulation model can be used to determine whether a multiple-fault is detected by a

test set One multiple-fault and a single test vector is examined at a time, but the great

number of multiple-faults makes it impossible to carry out this procedure explicitly. The

undetected fault space should be enumerated implicitly and the whole test set should be exam

ined simultaneously through vertical implications. Vertical implication is the process by

which the value vi of a line / for an input vector /i implies that the value of / for another

input vector t2 is equal to v2. Vertical implications are accomplished through the 15-valued

simulation method described in the next section.
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5.4 15-valued Simulation

Given a test set and a fault-input vector, a line / in the simulation model for fault-space

enumeration can assert one of the following 4 values for a test in a test set

(1) AO: The value of line / is equal to a logical 0 for any test of the test set

(2) Al: The value of line / is equal to a logical 1 for any test of the test set

(3) 0: The value of line / is a logical 0 for the test tx and there exists at least one test t2 in

the test set for which the value of / is a logical 1.

(4) 1: The value of line / is a logical 1 for the test ^ and there exists at least one test t2 in

the test set for which the value of / is 0.

The first two values are used to facilitate the handling and propagation of the effect of a

fault The last two values are similar to the conventional logical 0 and 1,butasserting any of

the two values implies that there exists at least two tests, t\ and t2, such that the value of line

/ is 0 for f! and 1 for t2 or vice versa.

The set of possible values for a fault-input of the simulation model is {AO, Al), the two

values corresponding to the two possible states of a prime fault site. The set of possible

values for an internal line in the simulation model is {0,1, AO, Al}. Based on the four possi

ble values, a 15-valued alphabet shown in Figure 5.2, is used for fault space enumeration.

The sets defining members of the 15-valued alphabet are unordered. During the fault-space

enumeration process, a line in the simulation model can assert any member of the 15-valued

alphabet

Based on the 15-valued alphabet truth tables of primitive logic gates can be defined for

forward implications during the fault space enumeration. The basic truth table for an inverter

for the first four values of the 15-valued alphabet is shown in Figure 5.3 and the basic truth

tables for 2-input AND and OR gates for the first four values are shown in Figure 5.4 and Fig

ure 5.5 respectively. The complete truth tables containing all possible combinations of input

values for the primitive gates can be constructed from the basic truth tables. For example, if



0 {0}
1 {1}
2 {AO}
3 {Al}
4 {0,1}
5 {0,A0}
6 {0.A1}
7 {1,A0}
8 {1.A1}
9 {AO, Al}
10 {0,1, AO}
11 {0, 1,A1}
12 {0,A0,A1]
13 {1.A0.A1}
14 {0,1,A0,A1}

Fig. 5.2 A 15-valued alphabet

0 1

1 0

2 3

3 2

Fig. 5.3 Basic Truth Table for an inverter
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the sets of possible values for the inputs of a 2-input AND gate are {0, Al} and (1, AO}, then

the set of possible values for the gate output is {0,1, AO}.

The 15-valued alphabet not only facilitates the handling and propagation of fault effects

on the circuit it also enables vertical implication to be carried out so that different values of

the same line for different test vectors can be related. For example, if line / asserts a 0 for

test /b then it is implied that line / cannot asserts A0 or Al for any other test Similarly, if /

asserts A0 for a test /i, then the values for the entire test set must be equal to A0. Vertical

implication allows one to consider all the test vectors of a test set simultaneously when



0 1 2 3

0 5 5 2 0

1 5 1 2 1

2 2 2 2 2

3 0 1 2 3

Fig. 5.4 Basic Truth Table for an AND gate

0 1 2 3

0 0 8 0 3

1 8 8 1 3

2 0 1 2 3

3 3 3 3 3

Fig. 5.5 Basic Truth Table for an OR gate

0 1 2 3

0 0 1 - -

1 0 1 - -

2 - - 2 -

3 - - - 3

Fig. 5.6 The Basic Vertical Implication Table
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examining the multiple-fault detectability of a test set The basic vertical implication table for

the first four values of the 15-valued alphabet is shown in Figure 5.6. Elements of the row

heading represent the values of a line / for a test fi. Elements of the column heading

represent the current values of / for a test /2. Entries in the table correspond to the new

values of / for test t2 vertically implied by tx. A'-' entry means conflict The complete vert

ical implication table for all possible combinations of values for t{ and t2 can be constructed
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from the basic vertical implication table. For example, if the sets of possible values for t\ and

t2 are {0, Al} and {1, AO} respectively, then the new sets of possible values for t\ and t2 are

{0} and {1}.

5.5 Fault-Space Enumeration

Implicit multiple-fault simulation for a test set can be done using the simulation model and

the 15-valued alphabet via fault-space enumeration. The fault-input space of the simulation

model described in Section 5.2 represents the space of all possible combinations of multiple-

faults. Any multiple-fault and its effect on the original circuit can be represented by a fault-

input vector to the simulation model. Given a test set and a fault-input vector, if the output

responses of the simulation model is the same as that of the fault-free circuit, the fault-input

vector corresponds to an undetected multiple-fault associated with the test set The set of

undetected multiple-faults associated with a test set can be determined by implicitly enumerat

ing the fault-input space.

Fault space enumeration is performed through the process of value justification similar

to that of [63], which is an extension of the line justification technique in the D-Algorithm.

Rather than a single test in the D-Algorithm, a test set is worked with in fault-space enumera

tion. Initially, all tests of the test set are placed at the primary inputs of the simulation model,

all fault-inputs are assigned the set of possible values (AO, Al} and all other wires are

assigned the set of values (0, 1, AO, Al} for each test Implications induced by the value

assignments at the primary inputs and fault-inputs are performed. The fault-free output values

for all tests of the test-set are then placed at outputs of the simulation model and the

corresponding induced implications are carried out. After all implications are done, there may

be values at the outputs of gates that need to be justified. One of the unjustified values is

chosen and a decision is made to assign a particular value to one of the inputs of the

corresponding gate. After a decision is made, implications induced by it are performed.

Decisions and implications are carried out until there are no values left unjustified. When all
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values are justified, the current fault-input space represents a set of undetected multiple-faults.

There are three kinds of implications - forward, backward and vertical - performed dur

ing the fault-space-enumeration process. Forward and backward implications are also called

horizontal implications. Forward implication on a gate is performed using the truth tables in

Figures 5.3, 5.4 and 5.5. Vertical implications relating values of the same line for different

tests are evaluated using the table in Figure 5.6. Backward implication on a gate is based on

the truth tables in Figures 5.3, 5.4 and 5.5. Whenever the value of a line / for a test t\ is

changed, forward implications are checked for the outputs of all the gates / fans out to and

backward implications are checked for the inputs of the gate driving /. Vertical implications

are checked for values of / for other tests.

During the enumeration process, backtracking is invoked under two conditions: 1)

Inconsistency arises during the implication process; 2) No values are left unjustified. Back

tracking is the process of returning to the last decision point and trying an alternative decision,

i.e. assigning other possible values to a line. The fault space is enumerated exhaustively, but

implicitly, via the backtracking process. The flowchart of the fault-space-enumeration process

is shown in Figure 5.7.

5.6 Procedures For Speeding-up Enumeration

Based on the simulation model and the 15-valued simulation method, the problem ofidentify

ing undetected multiple-faults can be viewed as a finite-space search problem. Search is con

ducted systematically on the fault-input space of the simulation model through branch-and-

bound techniques. A decision tree is constructed and abacktracking procedure is applied, as

described in Section 5.4, to search exhaustively but implicitly through the entire space.

At any point of the search, the current decision tree corresponds to a subspace of the

entire fault-input space. Whenever a new decision is made, a new node is added to the deci

sion tree - branching; and whenever it can be identified that the entire current subspace is

either a solution (no values left to be unjustified) or not a solution (inconsistency arises),
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Fig. 5.7 Flowchart of fault-space-enumeration process
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backtracking is invoked to leave the current subspace for an unenumerated area - bounding.

The number of backtracks required to enumerate the entire search space greatly influences the

efficiency of the enumeration process. In order to minimize the number of backtracks, the

algorithm needs to be able to recognize as early as possible that the current subspace is either

a solution or not a solution without making additional decisions. This can be done by utiliz

ing intelligently the topological information and improved implication procedure to reduce the

set of possible values a line can have for a test and detect inconsistency early.

5.6.1 Improved Horizontal Implication Procedure

One reason that the enumeration process may fail to recognize early whether a subspace is a

solution or not is that the set of possible values assigned to a line for a test can be unneces

sarily large. This is because during the backward implication process, all inputs to a gate are

considered independent of each other, which in general is not true with the presence of recon-

vergent fanouts. This can be remedied using a learning procedure similar to the combina

tional test generation algorithm SOCRATES [10] as follows.

(1) Select one of the possible valuesa line / can have and assign it to /.

(2) Perform all implications induced by that assignment

(3) If inconsistency arises during the implication process, delete that assignment value from

the set of possible values / can have, perform all induced implications and goto 4. Else

stop.

(4) If inconsistency arises from the induced implications, immediately backtrack on the

decision tree. Else stop.

These three steps are applied toall lines of the simulation model during the enumeration

process whenever a new decision is made. An occurrence of a conflict in (3) implies that /

can never assert the assigned value and an occurrence of a conflict in (4) means the current

subspace is not a solution and immediate backtracking can be carried out on the decision tree.
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The selection of which value to assign to a line / is based on the following criterion to avoid

excessive computations. The criterion is aimed to learn implications that cannot be deduced

from backward implications performed on the circuits.

(1) If / is a point of reconvergence, assign both AO and Al to /.

(2) If / is driven by an OR or NAND gate and the set of values / can have is {0,1} or (0,

1, Al),assign0 to/.

(3) If / is driven by an AND or NOR gate and the set of values / can have is {0, 1} or (0,

1, AO), assign 1 to /.

5.6.2 Improved Vertical Implication Procedure

Using the 15-valued simulation method described in Section 5.3, the set of possible values

assigned to a line can be reduced through vertical implication relating values of the same line

for different tests. It is through vertical implication that fault maskings associated with a test

set are examined and resolved implicitly. The vertical implication process can be greatly

improved by making use of the network topology. The improved vertical implication is based

on the Complete Normal Path (CNP) theorem in [63] and the concept of dominators [64].

Definition 5.1: A complementary path (CP) is a path from a primary input to a primary output

in the simulation model associated with a pair of tests t\ and t2 such that every line on this

path has complementary values 0 and 1 for t\ and t2.

If the number of inversions between two lines l\ and l2 on a complementary path is

even, then values of l\ and l2 are equal forboth tests (and if the number of inversions is odd,

then values of l\ and l2 are not equal for both tests).

The CNP theorem is restated as below and the proof can be found in [63].

Theorem 5.1: If a primary output o of the simulation model has complementary values 0 and

1 for a pair of test tx and f2» then there exists at least one complementary path between some
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primary inputs and o.

In Theorem 5.1, the relations between the values of lines for two tests, t\ and t2> that

produce a pair of complementary values at a primary output is described. Any path between

an input with complementary values and an output with complementary values for a pair of

test ti and t2 is a possible complementary path (PCP). Any line on a possible complementary

path may have complementary values for the pair of tests tx and t2.

Definition 5.2: A complementary dominator associated with a primary outputo and a pair of

tests t\ and t2 is a gate in the simulation model such that its removal breaks all possible com

plementary paths for that output

A complementary dominator is a single-element cutset gate of the subcircuit consisting

of all possible complementary paths to a primary output for a pair of tests.

Corollary 5.1: The outputs of a complementary dominator for a pair of tests must be comple

mentary.

Proof: The proof follows from the fact that there exists at least one complementary path and a

complementary dominator lies on every possible complementary path. •

The property of the complementary dominator can be used to improve the vertical

implication process. For example, assume gate n is a complementary dominator for the pair

of tests tx and t2 and line / is driven by n. If / asserts a 0 for ilf then the value of/ for t2

can be vertically deduced to be 1 using the property ofa complementary dominator. Further

more, if the number of inversions of all paths from a complementary dominator to the

corresponding output are the same, the values of / for tx and t2 can be uniquely determined.

For example, if the values of the primary output for tests tx and t2 are 0 and 1, and the inver

sions of all paths from a complementary dominator to that output is even, then the values of

the output of the complementary dominator for tests t\ and t2 must be 0 and 1. This is

because the complementary values at the primary output must have come from the
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complementary dominator gate. During the enumeration process, sets ofcomplementary dom-

inators for all primary outputs and each pair of tests in the test set are found whenever a new

decision is made. The set of complementary dominators for a primary output associated with

a pair of tests is computed by deriving a subcircuit that contains all the possible complemen

tary paths for that output and find the setof single-element cutset gates for the subcircuit

5.7 Results

An experimental version of the new implicit fault simulation approach, called MULTI, has

been implemented in C on the DEC computer VAX8650. The characteristics of the test cir

cuits used are summarized in Table 5.1. The 5th column indicates the number of prime faults.

The number of redundant single-faults is shown in the 6th column and the number of redun

dant multiple-faults is shown in the 7th column. The number of multiple-faults considered for

each example is 2n, where n is number of prime fault in the circuit The first example is

taken from [4]. It is single-fault irredundant but has redundant multiple-faults. The second

example is from [65] and has one redundant single-fault and several redundant multiple-faults.

The last example is an optimized version of the C880 circuit from the ISCAS benchmark sets

[39].

Results obtained for each example for a test set are shown in Table 5.2. In the table, m

and s stand for minutes and seconds respectively. Most test sets are generated using single-

fault test generation except for the last example, for which a few tests are added to the

single-fault detection test set to ease the computational task (described later). As can be seen,

fault simulations are completed for all examples within reasonable CPU time. Multiple-faults

of all multiplicities are implicitly considered. Most of the undetectable multiple-faults in the

table are proved to be redundant

The amount of computation required for fault simulation is dependent both on the cir

cuit structure and the test set Circuits with reconvergent fanouts and a great number of

redundant single-faults in general require more computations. The presence of reconvergent



Circuits #inp #out #gate
#prime
faults

#redundant

prime
faults

#redundant

multiple
faults

fried.ex 7 1 15 33 0 16

dand.ex 4 1 7 17 1 28

ALU1 14 8 88 166 0 0

ALU2 14 8 88 178 8 256

exl 10 1 34 54 0 0

ex2 29 1 52 78 0 0

C880.opt 60 26 225 613 0 0

Table 5.1: Statistics for 7 example circuits

Circuits #vector

CPU

time

Undetected

multiple
faults

fried.ex 18 2.8s 16

dandex 12 1.2s 28

ALU1 28 30s 0

ALU2 32 50s 256

exl 14 16s 0

ex2 53 186s 0

C880.opt 142 27m 0

Table 5.2: Implicit Fault Simulation Results
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fenouts gives rise to functionally equivalent but structurally nonequivalent faults that have the

same effects on the circuit but cannot be determined to be equivalent faults from the topologi

cal information on the circuit Singly redundant faults may produce a large number ofredun

dant multiple-faults. During the enumeration process, if the improved vertical implication

procedure can be used to determine uniquely many values, then the total amount ofcomputa

tion is greatly reduced. This would be true ifpairs of vectors in the test set are different only
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in a small number of bits and producing different output values. A simple and straightforward

way of reducing the computation, and at the same time, enhancing the multiple-fault detecta

bility of a single-fault detection test set is to add a few tests that are different only in one bit

from some tests in the test set but producing different output values from those tests. This is

done for the last example in Table 52. It can be viewed as a tradeoff between the size of the

test set and the computation expenditure.

5.8 Conclusions

A new implicit fault-simulation method for multiple-fault detection has been presented in this

chapter. In the new fault-simulation approach, the problem of identification of undetected

multiple-faults associated with a test set, is considered as one of implicit enumeration of the

fault space using a simulation model. Fault combinations producing the same output

responses as the fault-free circuit for a test set are implicidy enumerated. This method avoids

the explicit analysis of the masking relations and utilizes the network topology to guide the

enumeration process. A new 15-valued simulation method is used to facilitate vertical impli

cation that relates values of the same line for different test vectors. Through the 15-valued

simulation method, the masking relations among faults for a test set are implicitly analyzed.

Topological information is used, based on the concept of dominators, to improve the vertical

implication process. Horizontal implication process is improved by a learning procedure.
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CHAPTER 6

Synthesis For Testability

6.1 Introduction

Logic Design and testability have traditionally been addressed as two separate entities. Given

the specifications of a digital circuit logic design tools can be used to produce a feasible

design that meets performance and area goals. The design may then be modified later to meet

the test requirements. Testability problem is generally solved independendy posterior to the

design process. Design-for-test techniques, such as scan-based [16] [17] methods, have been

developed to facilitate post-design test generation by reducing the sequential test problem to

one of testing combinational circuits. This further separates the design and test problems.

Logic synthesis has been the subject of many years of research in both academic and

industrial laboratories. The algorithms developed in this arena have matured sufficiently to be

practical for real circuit designs and are rapidly gaining acceptance in the design of complex

digital circuits. A number of commercial systems are available to carry out logic synthesis.

The final implementation obtained by these tools is almost independent of the initial descrip

tion, freeing the designer from a long and tedious logic gate manipulation process.

Logic synthesis has a profound impact on test generation. Designs produced by syn

thesis systems [66] that disregard the testability aspect of the designs can be very difficult to

test The increasing use of logic synthesis tools also has escalated the need for automatic test

generation tools since the logic produced by the synthesis program may have little direct

resemblance to the initial description. It is also well known that there is a strong relationship

between combinational logic synthesis and testing. The task of generating a suitable set of

test patterns for a combinational circuit is closely related to the logic optimization problem. It
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is therefore only natural to address testability simultaneously during the synthesis process such

that circuits produced are highly testable with very little redundancy, if not ideally 100%

testable.

One of the main objectives for synthesis system is to produce optimal logic designs.

Untestable circuits with redundancies certainly are not optimal designs. In fact, optimal logic

synthesis can in theory produce fully testable combinational logic designs. In reality, "per

fect" optimization is not achievable within reasonable computer time, but the heuristic algo

rithms used in the logic synthesis process can reach very good solutions that have very little

redundancy and are highly testable. The later task of automatic test pattern generation can be

significantly sped up for circuits with very little redundancy since the cost of trying to gen

erate tests for redundant faults can be more than 90% of the total test generation time. For

combinational circuits, there exists logic optimization algorithms [24] that not only can ideally

guarantee fully testable design, but also produce as a by-product a set of test patterns with

100% fault coverage for all single stuck-at faults in the design. On the other hand, the rela

tionship between synthesis and testability for sequential circuits is not understood so well as in

the combinational case. And to date no sequential logic synthesis algorithms exist that will

guarantee that the resulting sequential circuit is fully testable without resorting to post-design

design-for-test techniques such as scan-based methods.

Test generation algorithms can in theory be used in conjunction with a sequential syn

thesis system to remove all the redundancies in sequential machines resulting in a fully

testable design. However, in general, this method requires exorbitant amounts of CPU time.

Another solution to the sequential testability problem is the use of scannable memory ele

ments, i.e. complete scan design, in a synthesis system. This approach avoids the sequential

testability problem by transforming it into a combinational one. It is a successful but short-

term solution that solves the testability problem at the expenseof the area and performance of

the design. Both solutions also represent an afterthought operation in the design process to
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guarantee testability, i.e. removing redundancies that are unconsciously introduced during the

design process.

Synthesizing a sequential circuit from a State Transition Graph description involves the

steps of state minimization, state assignment and logic optimization. Each step has a profound

effect on the testability, area and performance of the final implementation. In this chapter,

sequential synthesis procedures for producing highly testable and easily testable Moore or

Mealy finite state machines implemented by multi-level logic or PLA are presented.

Basic definitions and terminologies used are given in Section 6.2. Various types of

redundant faults in sequential circuits implemented by multi-level logic are described in Sec

tion 6.3. For multi-level implementation, two synthesis approaches are described. In the first

approach given in Section 6.4, tailored steps of state minimization, state assignment and logic

optimization are carried out to produce highly if not fully testable sequential machines. And

in the second approach presented in Section 6.5, the synthesized machine is made easily

testable by the use of extra logic and a constrained state assignment. For PLA-based finite

state machines, a synthesis procedure based on constrained state assignment that ensures testa

bility for all combinationally irredundant crosspoint faults is described in Section 6.6.

6.2 Preliminaries

A variable is a symbol representing a single coordinate of the Boolean space (e.g. a). A

literal is a variable or its negation (e.g. a or a). A cube is a setC of literals such that xe C

implies x4C (e.g., {ajbjc) is a cube, and [aja) is not a cube). Acube represents the con

junction of its literals. The trivial cubes, written 0 and 1, represent the Boolean functions 0

and 1 respectively. An expression is a set/ of cubes. For example, {{a)t{b£}) is an

expression consisting of the two cubes [a] and {b,c). An expression represents the disjunc

tion of its cubes.

Acube may also be written as a bit vector on a set ofvariables with each bit position

representing a distinct variable. The values taken by each bit can be 1, 0 or 2 (don't care),
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signifying the true form, negated form and non-existence respectively of the variable

corresponding to that position. A minterm is a cube with only 0 and 1 entries.

A minterm mx is said to dominate another minterm m2 (written as m&md if for each

bit position in the second minterm that contains a 1, the corresponding bit position in the first

minterm also contains a 1.

A finite state machine is represented by its State Transition Graph (STG),

G(yj£,W(E)) where V is the set of vertices corresponding to the set of states 5, where

IIS I\=NS is the cardinality of the set of states of the FSM, an edge joins v4- to v, if there is a

primary input that causes the FSM to evolve from state vt- to state vj, and W(E) is a set of

labels attached to each edge, each label carrying the information of the value of the input that

caused that transition and the values of the primary outputs corresponding to that transition.

In general, the W(E) labels are Boolean expressions. The number of inputs and outputs are

denoted N{ and N0 respectively. The input combination and present state corresponding to an

edge or set of edges is (i, j), where i and s are cubes. The fanin of a state, q is a set of

edges and is denoted fanin(q). The fanout of a state q is denoted fanout (q). The output

and the fanout state of an edge (<, s)eE are o((/, s)) and n((i, s))e V respectively.

Given Nt inputs to a machine, 2 ' edges with minterm input labels fan out from each

state. A STG where the next state and output labels for every possible transition from every

state are defined corresponds to a completely specified machine. An incompletely specified

machine is one where at least one transition edge from some state is not specified.

A starting or initial state is assumed to exist for a machine, also called the reset state.

Given a logic-level finite state machine with Nb latches, 2 b possible states exist in the

machine. A state which can be reached from the reset state via some input vector sequence is

called a valid state in the STG. The input vector sequence is called the justification

sequence for that state. A state for which no justification sequence exists is called an invalid

state. A R-reachable finite state machine has a STG such that input sequences exit which
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N
place the machine in any of the 2 6 states, beginning from the reset state. Given a fault F,

the State Transition Graph of the machine with the fault is denoted GF. Two states in a State

Transition Graph G are equivalent if all possible input sequences when the machine is ini

tially in either of the two states produce the same output response.

A State Transition Graph Gx is said to be isomorphic to another State Transition Graph

G2 if and only if they are identical except for a renaming of states.

A finite state machine is assumed to be implemented by multi-level combinational logic

or PLA and feedback registers. The fault model assumed for multi-level implementation is

single stuck-at on circuit line and the fault model for PLA-based implementation is crosspoint

fault Tests are generated for stuck-at faults in the combinational logic part or crosspoint fault

in PLA.

A primitive gate in a multi-level network is prime if none of its inputs can be removed

without causing the resulting circuit to be functionally different A gate is irredundant if its

removal causes the resulting circuit to be functionally different A gate-level circuit is said to

be prime if all the gates are prime and irredundant if all the gates are irredundant It can be

shown that a gate-level circuit is prime and irredundant if and only if it is 100 testable for all

single stuck-at faults.

In a sequential circuit, a fault may be redundant, i.e. untestable. There are two kinds

of redundancies in a sequential circuit The first kind is deemed combinationaUy redundant

- the effect of the fault cannot be excited or propagated to the primary outputs or the next

state lines, beginning from any state, with any input vector. A sequentially redundant fault

is a fault which can be excited by some input vector but its effect cannot be propagated to the

primary outputs.

To detect a fault in a sequential machine, the machine has to be placed in a state which

can then excite and propagate the effect of the fault to the primary outputs. The first step of

reaching the state in question is called state justification. The second step is called fault
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excitation-and-propagation.

An edge in a State Transition Graph of a machine is said to be corrupted by a fault if

either the fanout state or output label of this edge is changed because of the existence of the

fault A path in a State Transition Graph is said to be corrupted if at least one edge in the

path has been corrupted.

A multiple F-type fault for a line I, (which is the output of a gate and not a primary

output), in a combinational network corresponds to a multiple fault condition on the fanout

branches of line L. The multiple fault depends on the types of gates that L feeds into. For

example, if a line Lx has three fanout branches a, 6, c, that feed into AND, OR, AND gates

respectively, then the multiple F-type fault forL] is a stuck-at-1, b stuck-at-0 and c stuck-

at-1. If the multiple F-type fault for a line is redundant it means that the line (and all its

fanout branches) can be bodily removed.

6.3 Origin of Redundant Faults in Sequential Circuits

There are two classes of redundant faults in a sequential circuit implemented by multi-level

logic, namely, combinationally and sequentially redundant faults. Combinationally redundant

faults (CRFs) are due to the presence of lines/wires in the logic circuit that do not contribute

to the primary output or the next state functions. Replacement of these lines by constants will

not change the functionality of the combinational logic in the sequential circuit CRFs cannot

be detected even if all the memory elements of the sequential circuit are made scannable.

Sequentially redundant faults (SRFs), on the other hand, are related to the temporal charac

teristics of the sequential circuit Although SRFs alter the combinational logic function of the

circuit and hence the State Transition Graph (STG) representing the sequential circuit they

cannot be detected without making some of the latches scannable.

A definition of sequentially redundant faults is given as follows [29]:
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(1) An equivalent-SRF is a fault which causes only interchange and/or creation of

equivalent states in the STG of the finite state machine.

(2) An invalid-SRF does not corrupt any fanout edge of a valid state reachable from the

reset state.

(3) An isomorph-SRF transforms the original machine isomorphically, i.e. the faulty

machine is equivalent to the good machine but with a different encoding. (There exists

an isomorphism between the original and the faulty machine.)

An example will be used to illustrate the existence of sequentially redundant faults.

The State Transition Graph (STG) of a finite state machine is shown in Figure 6.1. The

machine has 5 states and the states 010 and 110 are equivalent The logic implementation of

the combinational part of the machine is shown in Figure 6.2. The fault w 1 stuck-at-0 (s-a-0)

changes the original STG to the one shown in Figure 6.3. The corrupted edge is shown via a

dotted line. Since 010 and 110 are equivalent states in the original-STG, the fault wl s-a-0

only causes an interchange of two equivalent states of the machine and is therefore sequen

tially redundant The fault w2 s-a-1 changes the machine to the one shown in Figure 6.4.

The fault creates an extra state HI, that was originally an invalid state which is equivalent to

the true state 110. Therefore the fault w2 is also sequentially redundant The corrupted edge

is shown in dotted lines and the added edges shown in dashed lines.

If the detection of a fault in the combinational logic requires the machine to be brought

to an invalid state (e.g. 101), then the fault isan invalid-SRF. Anisomorph-SRF may change

the original machine to the one shown in Figure 6.5. Note that the faulty machine represents

an equivalent machine with a different encoding. The encodings for the states 000 and 001 in

the original machine have been swapped. An isomorphism exists between the original and the

faulty machine.
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1 110 000 0
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1 000 110 1
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Figure 6.1 Original Finite State Machine
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0 100 010 1

1 100 010 0

0 010 110 1

1 010 000 0

0 110 010 1

1 110 000 0

0 000 001 0

1 000 110 1

0 001 000 0

1 001 100 1

Figure 6.3 Faulty FSM with wl s-a-0
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Theorem 6.1: A redundant fault in a finite state machine is either a CRF or an equivalent-

SRF or an invalid-SRF or an isomorph-SRF [29].

Proof (by contradiction): Assume a fault, F, is a redundant fault but not a CRF or

equivalent-SRF or invalid-SRF or isomorph-SRF. Since F is not a CRF or an invalid-SRF,

there must bean input sequence, beginning from the reset state, that will bring the machine to

a state that can excite the fault and propagate its effect at least to some of the next state lines.

Since F is not an equivalent-SRF or an isomorph-SRF, the fault effect on the next state lines

will not cause an interchange or creation of equivalent states or an isomorphic mapping of

states. This means the good state and the faulty state can be differentiated by a propagation

sequence, i.e. the fault effect is propagated to the primary outputs, which means that the fault

is testable. D

Theorem 6.1 guarantees that a fully testable finite state machine results if it can be

ensured that none of these 4 kinds of redundancies described above exist in the synthesized
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Figure 6.4 Faulty FSM with w2 s-a-1
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Figure 6.5 Faulty FSM with an isomorph-SRF
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machine. Steps in the synthesis procedure designed in the next section are designed to
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achieve this goal.

6.4 Irredundant Fully Testable Sequential Machines

A general model for a Mealy finite state machine is shown in Figure 6.6. It is realized by a

multi-level combinational logic block, which implements the output and next state logic func

tions, and feedback registers. The Moore machine can be viewed as a special case of a Mealy

machine, where the outputs depend only on the present state of the machine.

The optimal synthesis procedure is first described in Section 6.4.1. In Section 6.4.2, it

is proved that the resulting machine has no CRFs, invalid-SRFs or isomorph-SRFs. Experi

mental results indicate that the machine has very few redundancies. In Section 6.43, a

modified synthesis procedure using extended don't care sets in repeated combinational logic

minimization which ensures that equivalent-SRFs do not exist in the synthesized machine is

presented. The synthesized machine is thus made fully testable. In Section 6.4.4, how finite

automata represented at the truth table or at the logic-level can be made fully testable is

briefly discussed. In Section 6.4.5, the effects of redundancy removal on the state encoding of

0 100 010 1

1 100 110 0

0 010 110 1

1 010 001 0

0 110 010 1

1 110 001 0

0 001 000 0

1 001 110 1

0 000 001 0

1 000 100 1

Figure 6.6 General Sequential Machine Model
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the machine is discussed. Preliminary results, which indicate that these procedures are viable

for medium-sized circuits, are given in Section 6.4.6.

6.4.1 The Synthesis Procedure

The procedure consists of the steps of state minimization, state assignment and combinational

logic optimization [29]. These steps are described in the sequel.

(1) State Minimization: Given an original State Transition Graph specification G°, a state

minimum representation, GM, is obtained using algorithms similar to those proposed in

[67]. GM has Aft valid states and satisfies the property that no two states are equivalent

State minimization for completely specified State Transition Graphs can be accom

plished in 0(Nlog(N)) time where N is the number of states in the machine, but is

NP-complete for incompletely specified machines.

(2) State Assignment: Encode the states in GM, namely Q. The number of encoding bits

Aft, can be arbitrarily large (Aft,>log2(llfi II)). State assignment algorithms like those in

[68] and [69] can be used, which find a state assignment that heuristically minimizes the

area of the combinational network after optimization. However, the state assignment

algorithm may have to explore a certain number of possible state assignments in order

to ensure a locally optimal solution (see Definition 6.1).

(3) Combinational Logic Optimization: Given the encoded machine, which is now a com

binational logic specification, a prime and irredundant combinational logic network

which implements both the next state logic and output logic functions is synthesized.

The transitions from the unused state codes, are used as don't cares during the minimi

zation. The number of inputs to the network will be Aft + Nb and the number of outputs

will be Aft, +Nb. Prime and irredundant two-level networks can be produced using

two-level logic minimizers like ESPRESSO [2]. Prime and irredundant multi-level net

works can be synthesized using techniques like those in [24]. The multi-level network

has to be irredundant for a certain class of multiple stuck-at faults as well (see Lemma
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6.2).

There are Aft, latches in the synthesized sequential machine (denoted SM) and 2 b valid

and invalid states in the completely specified State Transition Graph (denoted G).

6.4.2 Correctness of Procedure

It can be proved that the sequential machine synthesized by the procedure of the previous sec

tion is irredundant for all CRFs, invalid-SRFs and isomorph-SRFs.

The following theorem follows from the definition of state minimality. It is given in

[70].

Theorem 62: Given a state minimized (reduced) machine M with N_s states, no machine

with fewer states can realize the same terminal behavior. Also, any machine with the same

number of states that realizes the same behavior has to be M or isomorphic to M [29].

Next it will be shown that stuck-at faults cannot produce a faulty State Transition

Graph that is isomorphic to the true State Transition Graph if the combinational logic imple

menting the next state and output logic functions is two-level, prime and irredundant Iso

morphic faulty and true State Transition Graphs imply that the fault has no other effect than

interchanging the codes of the states of the machine.

Lemma 6.1: Stuck-at faults on the primary input (PI), primary output (PO), present state (PS)

and next state (NS) lines cannot produce a faulty State Transition Graph GF that is iso

morphic to G [29].

Proof: Consider a primary input fault F. Without loss of generality, assume that it is a

stuck-at-1 fault on the 1st primary input line. The effect of this fault is to cause all input vec

tors ik such that /4I„=0 to become, in effect«; where im]=l /,(l]=iJ:[/], 2<,i < Aft. Since

F is combinationally irredundant, there will exist an input vector pair (ilt i2) where

'KU=0. '2iij=l hurhii], 2<i ZNJ such that n(ilt ?)*n(i2, q) \\ o(ilt <?)*0(i2. q) for some



112

q (Else, i, can be replaced by iiui2 in the combinational truth table). First consider the case

where the fanout states are different for ix and i2. If in G, n(ilt q)=q2 and ntfj, ^)=^3, then

in GF we have ^/^hi^^ For GF to be equivalent to G, we need

q3eG a ^2eG and <?3eGF b ^3eG (since there is a corrupted and uncorrupted edge from

? to ?3 in GF). This requires q3eG &q2eGt which is a contradiction. The second case

where the primary outputs of ix and i2 are different is simpler. We have two edges from a

state in G that assert different outputs and go to the same next state, merging in GF. This

means GF cannot be isomorphic toG.

A primary output o exists in GM, if and only if there exists a pair of edges ex and e2

which assert both values of the output, 0/1. When the machine makes the transition

corresponding to the edge which asserts the value of the output different from the stuck value,

the fault will be detected.

If all stuck-at faults on present state lines are combinationally irredundant, for any

present state line i, there are two states qx and q2 whose codes differ in bit i alone. q2and

qx merge in GF due to a fault on present state line i. Hence, llGF,,<llG II and isomorphism

cannot occur.

The argument for the next state line faults is similar to the argument for the present

state line faults. •

Theorem 63: If the two-level combinational circuit implementing the next state and output

logic functions is prime and irredundant then any fault F in the circuit cannot produce a GF

that is isomorphic to G. Also, if a prime and irredundant multi-level circuit is synthesized

using only algebraic factoring techniques from a prime and irredundant two-level network,

then any fault F in the circuit cannot produce a GF that is isomorphic to G [29].

Proof: By Lemma 6.1, faults on the PI and PS lines need not to be considered. In a two-level

network, faults on the intermediate lines and outputs, have the property that they either pro-
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duce a D or a D at the outputs of the network, uniformly for all test vectors that detect the

fault Isomorphism implies an interchange of codes of multiple states. Without loss of gen

erality, assume a two-way swap, between the codes of qlt q2eG to produce GF isomorphic

to G. An edge ex exists from some state sx that goes to q2 in GF instead of qx in G. Simi

larly, an edge e2 from some state s2, that goes to qx in GF instead of q2 in G exists. In the

combinational sense, if ex produces a D at some next state line where qx and q2 differ, e2 has

to produce a D at that line. This is not possible in a two-level network for faults on inter

mediate lines and/or outputs. Therefore, isomorphism cannot occur.

The same argument holds for a multi-level network produced by algebraically factoring

a two-level network. •

In a general multi-level network, however, the faults in the intermediate lines may pro

duce both a D as well as a D at any particular output, due to reconvergent fanout paths with

differing numbers of inversions. The arguments of Theorem 6.3 do not hold, when Boolean

operations are used in multi-level combinational logic synthesis.

Lemma 62: If a prime and irredundant multi-level network C is irredundant for multiple F-

type faults for each line in the network that is the output of a gate and not a primary output,

then for any single stuck-at fault F, in C, there will exist an input vector pair (ilt i£ such

that j'i is a test vector for the fault and i2 is not and i*i produces the same output in CF as i2

does in C [29].

Proof: Consider a prime and irredundant multi-level circuit implementing G. The circuit is

Ievelized from the primary outputs to the primary inputs. Gates generating primary outputs

are assigned level 0 and a gate that drives gates with levels lh h><> U has a level equal to

MINQi) + 1. The gates at level j are gJU gJ2l.. g^}. The outputs of these gates constitute a

set of N} variables /V(/)(0, l^i^Nj. The combinations of IV(j) that are caused by some

primary input combination are denoted IV(j)CA and the combinations that never appear are
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denoted IV{jfc.

Without loss of generality, consider the s-a-0 and s-a-1 faults on /V(l)(l). Some

ivielViXf* has to detect the s-a-0 fault and some /v2e/K(l)C/4 has to detect the s-a-1 fault

Obviously, /v,[l] = 1and zv2[l] =0. If for any ivxeIV(l)CA that detects the s-a-0 fault there

is aiv3e/V(l)CA such that iv3[l] =0, iv3[i] =ivx[i], 2£/ £Aft, then there exists acomple

mentary PI vector pair (iu /3) corresponding to (ivlt iv3) with ix detecting the s-a-0 fault and

producing a faulty output equal to the true output of i3 which does not detect the fault Furth

ermore, (/3t ij) will be a complementary PIvector pair for the s-a-1 fault

Now, consider the case of iv^IV(\fc for all ivxeIV(l)CA that detect the s-a-0 fault.

By the argument above, if for any iv2e/V(l)°* that detects the s-a-1 fault there is a

rv4€/V(l)CA such that iv4[l] =0, tv4[i] =iv2[i], 2<, i £Aft, then (iv^ /v4) constitutes acom

plementary pair for the s-a-1 fault and (iv4> 1V2) constitutes a complementary pair for the s-a-0

fault

The last case needs to be considered is tv&iViyf0 for all toielViXf* that detect the

s-a-0 fault and iv^/VQ/*7 for all iv26/V(l)CA that detect the s-a-1 fault on /V(l)(l). For

any ftfce/VXl)01 that does not detect the s-a-0 or s-a-1 fault, there exists iv, such that

tv/[l] =ivfc[l], ivjfi] =iv*[i], 2 £ i £ Aft, producing the same output as ivk in the true or

faulty circuit IV(\)CA can then be represented using IV (ff* as a set of cubes, ivXKjiv3t

iv2ui'v4, .. ivAuiv/, where the first bit in each cube is a don*t care. This means the line

/V(l)(l) can be bodily removed, i.e. the multiple F-type fault corresponding to /V(l)(l) is

redundant, which is a contradiction. Therefore, a complementary vector pair has to exist for

the stuck-at faults on /V(l)(l) and other IV(l)(k). A similar argument can be made for the

intermediate lines corresponding to the inputs to the gji D.

Using Lemma 6.2, the following theorem, which restricts theoccurrence of isomorphism

in sequential machines, implemented by prime and irredundant multi-level networks that are

also irredundant for multiple F-type faults in the network, can be proved. Q denotes the set
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of states in GM.

Theorem 6.4: If a set of states 2/eg is such that each state in Qt has the property that its

fanout edges assert distinct outputs from all other states in Q or has fanout next states in

Q-Qi, which are distinct from the fanout states of all other states in Q, or possesses distinct

combinations of outputs and fanout next states, then a fault cannot produce an isomorphic

machine causing only interchange of states within Qj [29].

Proof: The case of ||fi/||=2 and where fanout edges from state sx assert a set of distinct out

puts 0i and fanout edges from the second state s2 assert a set of distinct outputs 02 will be

proved first Assume there exists a fault F that produces an isomorphism between these

states. In the isomorph GF, fanout edges from sx (s^ will assert 02 (0{). However, by

Lemma 62, an uncoirupted edge asserting some oeOx or oe02 has to exist in GF. This

edge can only come from sx ors2, respectively. This means that in the faulty machine, either

sx ors2asserts outputs from both Ox and 02» implying that GF is not isomorphic to G. The

argument is easily generalized to HQ/||>2.

A similar argument can be made for states sus2 with distinct next state fanouts or dis

tinct combinations of outputs and next state fanouts. •

Thus, a sequential machine with a GM where all states possess distinct combinations of

outputs and fanout states cannot have faults that cause isomorphism, whether the combina

tional logic is implemented in two-level or general multi-level form.

Definition 6.1: Astate assignment of GM is deemed to be locally optimal with respect to a

subset of states Q^GMt if interchanging the codes of qeQ, does not produce a better logic
implementation after optimization.

The state assignment is locally rather than globally optimal in the sense that interchang

ing the code of q^Qj with q24Ql could produce a better logic implementation. In a multi

level implementation, if there exist states in Gw that do not satisfy the condition ofTheorem
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6.4, then in order to ensure that a redundant fault does not cause isomorphism, the state

assignment of GM has to be locally optimal, with respect to interchanging the codes of these

states. For a two-level implementation, any state assignment is locally optimal, with respect

to all states in GM.

Theorem 6.5: If GM contains 2 * valid states where Nb is the number of latches in 5W, SM

is fully testable, if the prime and irredundant combinational network is implemented in two-

level form, or if a locally optimal state assignment has been found, as per Definition 6.1,

across all states that do not satisfy the condition of Theorem 6.4 [29].

Proof: No fault in the machine can result in an increase in the number of states, since the true

machine has the maximum possible number of states, namely 2 \ Since GM is reduced, we

know that no machine with fewer than 2 * states can realize the behavior of GM. All faults

are combinationally irredundant since the combinational logic is prime and irredundant For

a combinationally irredundant fault F to be sequentially redundant the faulty machine GF has

to be isomorphic to the true machine G. By Theorem 6.3 this is not possible in a two-level

implementation. In a multi-level implementation, if GF is isomorphic to G, the sets of states

satisfying the condition of Theorem 6.4 cannot be involved in the isomorphism. If isomor

phism occurs due to F, it has to involve a set of states, Qi, not satisfying the condition of

Theorem 6.4. The isomorphism produces a GF equivalent toG, with a better implementation

(after optimization) than that of G (with at least one less line). However, this contradicts the

fact that the initial state assignment for GM that produced G is locally optimal under the

exchange(s) of thecodes of states in Q{. Therefore, SM is fully testable. D

The above theorem is quite a strong result Given a State Transition Graph GM, if extra

states can be added to GM such that the resulting graph GM' is reduced and has 2" states,

then the synthesized machine SM' is guaranteed to be fully testable, provided the state assign

ment is locally optimal. Of course, adding the extra states and edges to GM constitutes an
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is N
area overhead. If GM has less than 2 b states, the unused state codes can be used as don't

care states to minimize the combinational specification.

Lemma 63: An invalid state in the State Transition Graph is never required to detect a fault

in SM [29].

Proof: All unused state codes may be used as don't cares during logic minimization. Invalid

states can only correspond to some unused state code. Since the combinational network is

prime and irredundant under this don't care set, there always exists a valid state that detects

any fault (and provides the initial propagation to the next state lines or primary outputs) that

the invalid state detects. D

The preceding results will be used to prove the partial irredundancy theorem for

machines whose GM has Aft < 2 * states.

Theorem 6.6: The sequential machine SM produced by the synthesis procedure may contain

only equivalent-SRFs.

Proof: By Lemma 6.3, no invalid-SRFs can exist By Theorem 6.3, if SM is implemented as

a two-level network, no isomorph-SRFs can exist If SM is implemented as a multi-level net

work, then a locally optimal state assignment as per Definition 6.1, across all states that do not

satisfy the condition of Theorem 6.4, is found. This guarantees that no isomorph-SRFs will

exist SM does not contain any CRFs. Therefore, by Theorem 6.1, only equivalent-SRFs can

exist •
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6.4.3 Eliminating Redundancies Via Extended Don't Care Sets

In this section, it will be shown how the testability of the synthesized machine SM can be

increased by removing possible equivalent-SRFs through succeeding logic minimization steps,

without explicitly identifying these redundancies. Redundancies are identified and removed

implicitly via the use of extended don't care sets.

A simple equivalent-SRF was illustrated in Figure 6.4 (Section 6.3). There exists an

invalid state q which has identical fanout and hence is equivalent to some valid state vx. An

edge from v2 to vx is corrupted by a F to go to 4. F only corrupts one edge in the State

Transition Graph and propagates only one time-frame. In the general case, a equivalent-SRF

can propagate multiple time-frames, when the invalid state q is equivalent to the true valid

state vi, but does not have identical fanout

These redundancies are likely to occur, especially if a large number of unused state

codes exist These redundancies occur because current state assignment algorithms do not use

the freedom of state splitting (Section 6.S), so as to obtain an optimal solution. It is very

difficult to extend state assignmentalgorithms in this direction and hence irredundancy will be

ensured by specifying an extended don't care set in a repeated logic minimization procedure.

(1) State assignment and logic optimizationare performed as before, with logic optimization

using the invalid states as don't cares.

(2) Given the prime and irredundant logic network, the State Transition Graph, G,

corresponding to the network is extracted. All invalid states iveG that are equivalent

to valid states veG are found. It should be noted that G is a completely specified

combinational logic function, corresponding to an encoded State Transition Graph, ip

(3) Given a valid state vlt valid states v^ v3v. vL that are equivalent to vx and invalid

states rvlt iv2,.. ivK that are equivalent to vlt then the fanin of v} is re-specified as

n(fanin(vi)) = DC(vsublt v2,.. vLt ivj, iv2, •• ivK). DCO implies that any (but at least

one) of the enclosed state entries can be used. In practice, if Vj and some or all of the
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ivk, 1 <k < K can be merged into a single cube, c, then every occurrence of vx in the

next state field of G is replaced by c. G with this extended don't care set is made

prime and irredundant via logic minimization to produce G'. This may make a previ

ously invalid state valid.

(4) G' may have some invalid states, which could be different from the invalid states in G.

These invalid state codes are used as don't cares and G' is made prime and irredundant

under this new don't care set to produce G".

(5) If G' = G", exit Else G <- G", go to Step 2.

In the first iteration, there will not be valid states v^ .. vL that are equivalent to any vlt

since the machine is a reduced one. However, after Step 3 above, some invalid states that are

equivalent to v} may become valid.

Theorem 6.7: The procedure above converges, and the resulting machine after convergence

will not have any simple equivalent-SRFs, invalid-SRFs or isomorph-SRFs.

Proof: The procedure converges when succeeding logic minimizations have produced the

same result. Each logic minimization starts with the resultof the previous logic minimization.

Additional don't cares are provided. It is guaranteed that the overall cost function (e.g. the

number of lines in the network) has a finite decrease if the logic function is altered. Since the

cost function is bounded from below, the sequence of logic minimizations must eventually

converge, and on the last call, return an unchanged network, r\. No isomorph-SRFs will exist

in the prime and irredundant network tj by Theorem 6.3 and Theorem 6.4. Since the invalid

states have been used as don't cares to produce T| and the network is unchanged since then

(even though additional minimizations may have been performed), no invalid-SRFs can exist

Finally, using the don't care sets corresponding to the equivalent states, it is ensured

that for each fault F there will exist at least one corrupted edge that goes to a state, qF, that

is not equivalent to the true next state, q, in the true machine G, regardless of whether the qF
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is invalid or valid. r\ is unchanged since the use of the invalid states as don't cares, so an

edge fanning out of a valid state has to exist with this property. qFeGF has to become

equivalent to qeG for F to be redundant, but that would mean that F is not a simple

equivalent-SRF. Therefore, F is testable or not a simple equivalent-SRF. •

More complicated equivalent-SRFs may exist though experimental evidence indicates

that this is extremely rare. In fact a single case of an equivalent-SRF that is not of the form

of the SRF of Figure 6.4 has yet to be found. These redundancies correspond to the case,

where qFeG is not equivalent to qeG but qFeGF becomes equivalent to qeG, making F

redundant A larger set of don't cares can ensure that these equivalent-SRFs do not occur in

the machine. The synthesis procedure described above is unchanged except for introducing an

additional don't care set in Step 3 where G' is produced, as described below.

Step 3b: Given a state q2 that is not equivalent to a valid state qx, the set of input

combinations iM(qx, q2) are found which make this pair not equivalent. If q2 wereequivalent

to qx then iM=$. The don't care specification is n(fanin(qx)) =DC(qx, q2)t with a constraint

on a subset of fanout edges of q2 if q2 is picked rather than qx. The constraint for a single

cycle propagation is that

o(iM{oXy qi), qi) = o(iM(qx, qi), qx) n n(iM(qx, qi), qi) = n(i„(qx, ?2)t qx)

This set of don't cares and associated constraints are found for the different state pairs

that are not equivalent Optimal use of these don't cares and associated constraints, general

ized to multiple-cycle propagation, ensures full testability.

Theorem 6.8: Using the additional don't care set in the synthesis procedure will result in a

fully testable machine.

Proof: By Theorem 6.7, no simple equivalent-SRFs, invalid-SRFs or isomorph-SRFs will exist

in the machine. Using the additional don't cares will ensure that there will always be an edge

from a valid state that is corrupted to qF instead of q such that qFeG *qeG and
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qFeGF *qeG. Therefore, GF and G can be differentiated by distinguishing qF and q and

F is testable. •

The enhanced procedure will remove all equivalent-SRFs in the machine which has

been synthesized as described in the previous section. In practice, only the simple don't cares

of Step 3 suffice to ensure full testability, allowing a locally optimal solution with no redun

dancies to be reached; the more complicated don't cares of Step 3b are not required. That is

fortunate, since current logic optimization programs are quite restricted in the specification and

optimal usage of don't cares.

The procedure is quite CPU-intensive since repeated combinational logic minimizations

have to be performed. Experimental results (Section 6.6) indicate that the machine prior to

using the extended don't care sets is highly testable, and in some cases, fully testable.

Removing the few redundancies can be accomplished using reasonable amounts of CPU time.

The fact that a network has to repeatedly be made prime and irredundant in order to ensure

full testability for a sequential circuit indicates that synthesizing irredundant sequential cir

cuits is more difficult than synthesizing irredundant combinational circuits.

6.4.4 Synthesis from Logic-Level Descriptions

In this section, it will be described how complete or partial re-synthesis of logic-level circuits

can be performed so as to ensure irredundant sequential machines. Given a combinational

specification of a circuit in the form of a truth table, i.e. a previously encoded finite state

machine, the following steps are performed in re-synthesis. The combinational specification

hasNi+Nb inputs and N0+Nb outputs, where Nb is the number of encoding bits used (latches)

in the state assignment process.

(1) The combinational specification is made disjoint in the present state field (the last Nb

inputs). A cube entry in the field is identical to another cube entry or does not intersect

it A two-level covercan be madedisjoint using the disjoint SHARP operation in [2].
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(2) The specification is now treated as a State Transition Table, with each distinct entry in

the present state and next state field representing a distinct state. If some states cannot

be reached from the reset state (invalid states), they are deleted from the description.

The State Table is now state minimized. Some states (represented by cubes or min-

terms) may be removedbecause of being equivalent to otherstates.

(3) The encoded State Transition Table represents a combinational logic specification that

can be made prime and irredundant A fully testable machine can be synthesized via

the procedures of Section 6,4.2 and 6.4.3.

The re-synthesis procedure can be extended to begin from a logic-level description. In

this case, the State Transition Graph of the machine is extracted using the efficient cube-

enumeration techniques presented in [71]. Given this (encoded) State Transition Graph, Steps

1-3 described above are carried out as before.

6.4.5 Effect of Redundancy Removal via Logic Minimization

on State Encoding

If a combinationally redundant line is removed from a logic network (i.e. replaced with a 0

or a 1), network functionality remains unchanged. Similarly, when a sequentially redundant

but combinationally irredundant line is removed from a sequential machine, the terminal

behavior of the machine remains unchanged. However, the State Transition Graph of the

machine, and the state encoding are affected by redundancy removal via repeated logic

minimization.

Two tilings may happen during redundancy removal:

(1) A state may be added to the State Transition Graph, which is equivalent to some other

valid state. An edge is redirected from some valid state to this originally invalid state.

(2) A valid state may be replaced by an originally invalid state. In effect, the encoding of a

symbolic state is changed.
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The occurrence of the first effect is due to the fact that state assignment is performed on

a state minimized Graph. It is well known [72] that state splitting may be required for an

optimal state assignment Unfortunately, the state assignment problem is difficult enough,

without adding the extra degree of freedom of being able to split states. The faulty, but

equivalent, State Graph corresponds to a "better" state assignment with (at least) one state

split into two (or more) components.

The occurrence of the second effect is due to a state assignment that is not locally

optimal for the reduced State Graph, even without the addition of extra states. As mentioned

in Section 6.4.2, when a machine has a two-level combinational logic implementation, any

state assignment is locally optimal with respect to all the used state codes. However, the state

assignment may be sub-optimal when considering the invalid or unused state codes. In the

multi-level case too, a state assignment that is locally optimal under the valid (used) state

codes may be sub-optimal when considering the invalid (unused) state codes. The replace

ment of a state code by an unused state code results in a "better" machine.

State assignment techniques (e.g. [69] [68]) do not take state splitting into account in

their attempt to find locally or globally optimal solutions. In our experience, the occurrence

of the first effect is much more frequent If an optimal state assignment can be found exploit

ing the freedom of state splitting, then the resulting logic implementation will be fully

testable. Repeated logic minimization, as described in Section 6.4.3, has the effect of chang

ing a sub-optimal state encoding to a locally optimal encoding that corresponds to a fully

testable machine.
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6.4.6 Results

In this section, some preliminary results obtained using the synthesis procedures described in

Section 6.4 are presented. Intensive optimization is necessary to obtain fully testable designs.

If this optimization can be carried out, then the synthesized machine will occupy minimal

area. There is no area/performance overhead associated with this procedure. However, the

CPU time requirements have to be evaluated.

Redundancies can be explicitly removed via the use of test pattern generation algo

rithms, to produce fully testable sequential circuits. However, redundant lines corresponding

to redundant stuck-at faults can only be removed (replaced with a 0 or a 1) one at a time.

Furthermore, removing a redundant line may introduce new redundancies and so all faults

have to be checked for redundancy on each removal. These two techniques are compared to

the synthesis of irredundant sequential circuits.

Some examples in the MCNC 1987 Logic Synthesis Workshop are chosen as test cases,

whose statistics are given in Table 6.1. Beginning from a State Transition Graph description,

G, the following steps were performed in the synthesis procedure.

(1) State Minimization: The machines were state minimized.

(2) State Assignment: Binary codes were assigned to the states in G using the program

KISS [68]. The encoding length in some cases was greater than the minimum required.

The codes were all minterms, and some minterms were not used. The combinational

logic specification, a truth table, after encoding is denoted T.

(3) Logic Optimization: T, with all the unused state codes specified as don't cares, was

optimized using ESPRESSO, and algebraically factored to produce a multi-level logic

network C. C was prime and irredundant

Tests were generated for the resulting sequential machine M whose combinational logic

is implemented by C. Test generation was accomplished using the program STALLION [26].

The number of encoding bits used in state assignment (#lat), the number of gates in C (#gate)



EX #inp #out #states #edges

exl 2 2 6 24

ex2 2 1 13 57

bbara 4 2 7 45

bbsse 7 7 13 55

si 8 6 20 110

planet 7 19 48 118

dfile 2 1 24 96

styr 9 10 30 165

keyb 7 2 19 170

scf 27 54 128 168

Table 6.1: Statistics of Benchmark Examples
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and the fault coverage obtained (fault cov.) by STALLION are given in Table 6.2. The CPU

times for logic optimization (Lo. time), test generation (TPG time) and the number of test

sequences (test seq.) generated are also given. All the undetected faults were checked for

redundancy using algorithms in STALLION. The number of redundant faults (red. fault) and

the CPU time expended during redundancy identification (r.i. time) and redundancy removal

(r.r. time) are given in Table 6.2. The CPU times for state assignment and the initial state

minimization were negligible and are not given. In the tables, s stands for CPU seconds on a

VAX 11/8650 and m for CPU minutes. For all the cases, the machine produced is highly

testable. The larger examples, scf and planet which have significantly more outputs than

latches are fully testable.

The redundancy identification times in Table 6.2 represent the CPU times required to

explicitly identify redundant lines in the given circuit Explicitly removing these redundancies

in order to obtain a fully testable circuits requires considerably more CPU time as indicated in

Table 6.2 (r.r. time). This method is only feasible for small examples.
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The number of test sequences generated for each example is comparable to the number

of single test vectors generated via a Complete Scan Design approach. However, each test

sequence has multiple test vectors (between 1-10) that have to be applied to the PI lines. In

the Scan Designcase, each test vectorrequires multiple clock cycles to be applied.

The examples of Table 6.2 with less than 100% fault coverage were re-synthesized

using the extended don't care set as described in Section 6.4.3. The CPU time to check for

EX #lat #edges #fault
cov.

1.0.

time

TPG

time

test

seq.

%red

fault

r.i.

time

r.r.

time

exl 3 23 97.92 0.5s 2.0s 19 2.08 1.1s 2.0s

ex2 5 35 98.15 22s 41.8s 22 1.85 6.1s 1.8m

bbara 3 56 100.0 1.2s 104.8s 42 0.0 0.0s 0.0s

bbsse 4 91 100.0 2.1s 3.2m 46 0.0 0.0s 0.0s

si 5 105 99.79 5.5s 303s 74 0.21 4.0s 303s

planet 6 193 100.0 10.5s 141.8s 80 0.0 0.0s 0.0s

dfile 6 77 97.80 6.2s 331.8s 62 2.20 41.8s >lh

styr 5 367 100.0 80.4s 42.1m 165 0.0 0.0s 0.0s

keyb 5 146 98.65 29.5s 21.2m 101 1.35 1.2m >lh

scf 8 402 100.0 121.4s 82.2m 136 0.0 0.0s 0.0s

Table 6.2: Synthesis Procedure Results

EX s.e.

time

#logic
mini.

Lo.

time

fault

cov.

TPG

time

exl 0.5s 1 0.5s 100.0 2.1s

ex2 6.5s 7 22.4s 100.0 40.6s

si 1.0s 1 6.1s 100.0 298.2s

dfile 10.2s 3 25.5s 100.0 747.7s

keyb 14.6s 2 27.8s 100.0 21.6m

Table 6.3: Results using Extended Don't Care Sets in Synthesis
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equivalence between invalid and valid states (s.e. time), number of logic minimizations (#logic

mini.), CPU time spent in logic minimization (l.o. time), the final fault coverage (fault cov.)

using STALLION and the test generation time (TPG time) are indicated in Table 6.3. The

CPU time required for the state equivalence checks and the extra logic minimization steps are

less than sequential test generation and redundancy removal times (Table 6.2), indicating that

the optimal synthesis procedure is more efficient than an explicit redundancy identification

method. Using the simple don't cares (Step 3 in Section 6.4.3) resulted in fully testable

designs in all cases. An example has yet to be found where this is not the case.

6.5 Fully and Easily Testable Sequential Machines

In this section, a synthesis procedure of constrained state assignment and logic optimization to

produce fully and easily testable finite state machines is presented. In contrast to the irredun

dant synthesis procedure in the previous section, extra logic is used to ensure fully testability

and alleviate the difficulty in test generation for sequential machines. This work was also

described by Devadas [73] and can also be found in [74].

The gate-count penalty incurred due to the constraints on the optimization is small. The

performance of the synthesized design is usually better than a unconstrained design optimized

for gate-count alone. The testing time for faults in the combinational logic is smaller than the

testing time using a scan design methodology. The faults in the latches, however, are not

guaranteed to be detected using these test sequences.

Results obtained on benchmark examples show that the area penalties incurred because

of greater gate-count due to the constraints imposed during state coding and logic optimization

are small. The performance of the resulting circuits is better than that of unconstrained

designs optimized for minimum area (This is because one of the constraints imposed requires

combinational logic partitioning in the machine ).

The relationship between state assignment and testability is discussed in Section 6.5.1.

hi Section 6.5.2, the necessary conditions required for a fully testable Moore machine is
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stated. Extensions to Mealy machines are made in Section 6.5.3. In Section 6.5.4, how an

existing state assignment algorithm can be modified to produce a constrained encoding satisfy

ing the testability criterion is discussed. The procedures described in Sections 6.5.2 and 6.5.3

are extended to handle cascades of state machines in Section 6.5.5. Results are presented in

Section 6.5.6.

6.5.1 Relationship between State Assignment and Testability

State assignment can has a profound impact on the testability of a sequential machine [74].

The effect of state assignment on testability for a Moore finite state machines will be dis

cussed here. However, the discussion can easily be extended to Mealy machines. A general

model for a Moore finite state machine is shown in Figure 6.7. It is realized by two logic

blocks, the Output Logic (OL) block and the Next State Logic (NSL) block, and registers. In

a Moore machine, the outputs depend only on the present state (or the outputs of the registers)

of the machine. The output logic block receives inputs from all, or a subset of the outputs of

the memory elements. It is assumed that the machine hasbeen synthesized from a State Tran

sition Graph specification and that both the OL and NSL blocks are combinationally irredun

dant.

Faults in the OL block can be detected by justification sequences to any state which

propagates the effect of the fault to the primary outputs. For any fault in the irredundant NSL

block, there exists a state s and an input vector i which propagate the effect of the fault to

the next state lines. A faulty next state qF instead of the fault-free (true) next state q is

obtained, q and qF need to be distinguished at the primary outputs. If q and qF have

different outputs, the fault will be detected in the next clock cycle. If q and qF are

equivalent states in the faulty machine, the fault cannot be detected.

The codes of q and qF will differ in as many bits as the number of next state lines that

the fault has been propagated to and will be identical in the remaining bits. If it can be

ensured via state assignment that any two states produced as a faulty fault-free pair are not
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Figure 6.7 General Moore Machine Model

equivalent (in the faulty machine) then any fault which is propagated to the next state lines

will always be detectable at the primary outputs. To do this, the faulty nextstate correspond

ing to a given fault and a fault-free next state must be restricted to belong to a small set of

states.

6.5.2 Fully Testable Moore Machines

The conditions for a general Moore machine to be fully testable will be first presented.

Theorem 6.9: Given a n-latch logic-level implementation of a Moore machine (shown in Fig

ure 6.7), if (1) the combinational logic blocks OL andNSL are irredundant (2) the machine is

R-reachable i.e. all 2" states are reachable from the reset state and (3) all 2" states have dis

tinct outputs, the machine is fully testable for all stuck-at faults in OL and NSL.

Proof: Consider a fault, F, in the OL block. Since the block is irredundant (Condition 1),a
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state, s, exists which detects F. This state, s, can be reached from the reset state, R, of the

machine via an input sequence, /, because the machine is R-reachable (Condition 2). State s

will be reached on applying / from R regardless of F since F is in the OL block. Therefore,

a sequence exists, namely /, which can detect F.

Now consider a fault, F in the NSL block. Again, since NSL is irredundant, a state, s,

and an input i exist which propagate the effect of this fault to the next state lines. Instead of

obtaining the true next state, q, a faulty next state qF is obtained, q and qF have distinct

outputs (Condition 3). Therefore, at the next clock cycle the effect of F is propagated to the

primary outputs, s have to be reached from R. A path always exists from s to R (Condition

2). However, this path may or may not have been corrupted by F. If the path has not been

corrupted, F can be detected after reaching s and applying input i. If the path has been cor

rupted, it means that for some edge in the path, the next state reached was different due to F.

In this case, the fault is detected even before reaching s, since two different states were

reached in the faulty and fault-free machine. D

Stuck-at faults on the primary inputs and the present state lines can produce faulty next

states that are greater than distance 1 from the true next states. However, it is proved in Sec

tion 6.4 that these faults always produce a faulty machine that is distinguishable from the true

machine (these faults are usually the easiest to detect in the machine).

The implications of each of the conditions of Theorem 6.9 is now analyzed. Condition

(1) is necessary because a redundant fault in NSL or OL cannot be detected in the sequential

machine. Redundancies are sometimes introduced for performance reasons, but mostiy they

are due to unoptimized logic [24]. An irredundant logic network would have minimal gate-

count With recent advances in multi-level logic optimization, large networks can be made

irredundant

In general, STG specifications of machines have reset states and are R-reachable. How

ever, a STG specification of a machine need not necessarily have Nt=2k states, *=1, 2...
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Given the number of encoding bits to be used, n ( n > [\og(Ns] ), the number of states in a

STG can be raised to 2". These new states need to be reachable from the reset state to satisfy

the R-reachability condition. Given a single unspecified transition edge (minterm or cube)

from a single state in the original STG, edges can be added to the STG so as to ensure that all

the added states are reachable (If the machine is completely specified, an extra input has to

be added ). Most STGs encountered in practical design have a large number of transitions

that are not specified.

Condition 3 is obviously unacceptable, since if the STG specification does not satisfy it

it cannot be made to do so without changing the functionality of the machine. This condition

is now relaxed.

Consider the logic-level implementation of the Moore machine shown in Figure 6.8.

The NSL block has been realized as n distinct single-output circuits or partitions. Each dis

tinct cone circuit and the output logic block receive inputs from all or a subset of the outputs

of the registers. The following theorem shows that a constrained state assignment can ensure

a fully testable circuit

Theorem 6.10: Given a n -latch logic-level implementation of a Moore machine (shown in

Figure 6.8), if (1) the combinational logic blocks OL and NSLit i=l, 2 .. n, are irredundant,

(2) the machine is R-reachable and (3) the state encoding of the machine is such that each

pair of states asserting the same output has codes of at least distance-2 apart from each other,

the machine is fully testable.

Proof: The faults in the OL block are detected as before in Theorem 6.9. Consider a fault F

in the NSL block. Without loss of generality, assume that F is in the first partition. The

effect of the fault when detected is to produce a 0 (1) instead of a 1 (0) at the NSLX. m either

case, the faulty next state produced, qF, will differ from the true state, q, in at most one bit

Since state assignment has guaranteed that all states asserting the same outputs have been
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Figure 6.8 Partitioned Moore Machine Model

assigned at least distance-2 apart codes, q and qF assert different outputs. This means that F

is detected in the next clock cycle. D

A realization of a machine like the one shown in Figure 6.8 implies that logic cannot be

shared between next state lines. Thus, a certain area penalty may be associated with such an

implementation. The performance of the circuit does not suffer due to logic partitioning ( and

in fact may be improved ). However, the implementation shown is an extreme case and can

be generalized. A partition may contain more than one NSLim This means that the logic

between these lines can be shared.
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The number of NSL partitions required is related to the number of states asserting the

same output in the original STG. It will be shown that the state assignment constraint (Condi

tion 3 of Theorem 4.2) can be satisfied quite easily.

Lemma 6.4: Given k bits, k > 2, the 2* possible codes can be split into 2 sets each of cardi

nality of 2*-1, such that codes within each setare at least distance-2 apart

Proof: The proof of the lemma is based on the method of mathematical induction. The

lemma is obviously true for k = 2. Now assume the lemma is true for k = n-1. The 2""1

codes can be split into 2 sets, An.x and Bn_u each of cardinality of 2*~2 and codes within each

set are at least distance-2 apart. Now, let k = n. Two sets, An and Bn, each of cardinality of

2B~1, can be formed using elements ofAn_x and Bn.x. An is formed by appending a 0 to each

element in An_x and a 1 to each element in Bn„x. Bn is formed by appending a 1 to each ele

ment in An.x and a 0 to each element in BR.X. An and Bn are of cardinality of 2n~l and codes

within each set are at least distance-2 apart. D

The following result gives us the required number of partitions of the NSL lines as a

function of the number of states with the same output

Theorem 6.11: If at most k states exist in a State Transition Graph which produce the same

outputs, \log(k% + 1 separate partitions suffice to obtain a fully testable machine.

Proof: In the worst possible case, if there are 2" states in the machine, there exists I-=-1 sets
k

of states and the states within each set asserting the sameoutput

It is required that for each set no two of these k states are ever produced as a fault-

free faulty pairdue to a fault in NSL. This means that the codes assigned to any two of these

states must differ in at least two next state lines belonging to two distinct partitions. By

Lemma 6.4, the number of bits required to generate 2 sets of 2P_1 at least distance-2 apart

codes is p. To generate 2 sets of k codes of at least distance-2 apart \log(kJi + 1 partitions
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is required. There are n - §log(k% + 1) bits remaining. This means there can be

2» -\to8(kH - 1x y 2"~ x 2- I—I

sets each with £ codes which differ in two next state lines belonging to two distinct partitions.

•

There are thus three steps in producing combinational logic specifications for OL and

NSL blocks from a State Transition Graph description. These steps are (1) raising the number

of states in the State Transition Graph to 2n, where n is the number of latches (2) obtaining

constraints for the state assignment on the basis of state outputs and (3) state assignment obey

ing the constraint relations generated. A straightforward solution exists for Steps 1 and 2,

however the optimality of the eventual implementation depends on the choices made during

these steps. For example, in Step 1, transition edges connecting original states in the STG to

the new states can be added in a variety of ways. The new states can be connected in a chain

or separately connected from the original states. Similarly, if the number of required parti

tions is less than the number of next state lines, choices exist for next state lines that can be

grouped together. Next state lines which can share logic maximally should be placed in the

same partition. In Step 3, an optimal state assignment which minimizes combinational logic

while meeting the distance constraints has to be found. This step is further discussed in Sec

tion 6.5.4.

After obtaining the combinational logic specifications, logic optimization algorithms

which can ensure an irredundant logic network (e.g. [24]) can be applied. If redundancies are

required in the logic, this synthesis procedure ensures that all combinationally irredundant

faults are sequentially irredundant as well.

To generate tests for the sequential machine, test vectors are generated for all stuck-at

faults in the OL and NSL combinational circuits. Then, justification paths are obtained from

the STG using simple breadth-first search. It is guaranteed (by the theorems proved in this
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section) that these paths concatenated with the test vectors applied to the primary inputs of the

sequential machine will detect all stuck faults in the machine at the primary outputs.

This procedure has ensured that a faulty state is always propagated to the primary out

puts in a single clock cycle via state assignment This can, in fact be generalized to

multiple-vector propagation. That is, state assignment constraints can be derived which ensure

that a faulty state is propagated to the primary outputs in at most P clock cycles (P>1). A

state assignment algorithm can construct an optimal encoding which satisfies these constraints.

For large P, the constraints are less stringent but more difficult to state succincdy.

A re-statement of Condition 3 in Theorem 6.10 to ensure full testability via /'-vector

propagation sequences can be made. The re-statement for P =2 is given below.

The state encoding of the machine should be such that each pair of states asserting the

same output should have codes at least distance-2 apart or for each pair of states, qx and q2,

which assert the same outputs and have uni-distant codes, the following should hold. Assume

that qx and q2 differ in bit i. An input combination should exist which drives the fault-free

machine from qx and q2to states sx and s2, respectively, such that

(1) sx and s2 assert different output and

(2) s2, which is the state that differs from s2 in bit / alone, asserts a different output from

sx.

6.53 Fully Testable Mealy Machines

In a Mealy machine, the outputs depend on both the present state as well as the primary

inputs. A model for a Mealy machine with each next state line realized as a separate circuit

and with the output and next state logic separated is shown in Figure 6.9.

A theorem in direct correspondence to Theorem 6.10 for Mealy machines will be

proved. First the notion of O-equivalence for a pair of states of a Mealy machine is defined.

Definition 6.2: Two states in a Mealy machine are said to be O-equivalent if for any primary
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Figure 6.9 Partitioned Mealy Machine Model

input combination the two states produce the sameoutput

Theorem 6.12: Given a n-latch logic-level implementation of a Mealy machine (shown in

Figure 6.9), if (1) the combinational logic blocks OL and NSLt, i=\, 2.. h, are irredundant

(2) the machine is R-reachable i.e. all 2" states are reachable from the reset state and (3) if

the codes of states of the machine are such that each pair of O-equivalent states havecodes of

distance-2 from each other, the machine is fully testable.

Proof: Consider a fault F in the OL block. There exists a state, s and input i which detects

this fault by Condition 1. R-reachability and the fact that F is in the OL block imply that
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state s can be reached from R. F can thus be detected.

Consider a fault F in the NSL block. Without loss of generality, assume that F is in

the first partition. Since this partition is irredundant a state s and an input i'i exist which can

propagate the effect of the fault to the next state line. The effect of the fault when detected is

to produce a 0 (1) instead of a 1 (0) at the NSLX. In either case, the faulty next state pro

duced, qF, will differ from the true state, q, in at most one bit Condition 3 guarantees that

q and qF are not O-equivalent since all O-equivalent states have distance-2 codes. This

means that an input **2> exists which will produce a different output in the faulty machine

(which is in qF) from the fault-free machine (which is in q). However, s has to be reached

from R. A path exists from s to R (Condition 2). However, this path may or may not have

been corrupted by F. If the path has not been corrupted, F can be detected after reaching s

and applying input ix followed by i2. If the path has been corrupted, it means that for some

edge in the path, the next state reached was different due to F. There exists a fault-

free/faulty pair (q' , q'F). By the argument above, an input 13 which produces a different out

put for q' and q'F exists, thus detecting F. •

The synthesis procedure for obtaining a fully testable Mealy machine is the same as the

procedure outlined for the Moore machine in Section 6.S.2. To generate tests for the machine,

as before, all the combinational logic tests for the OL and NSL blocks are generated. The

justification path to the state detecting the fault concatenated with the primary input part of

the combinational test vector and the differentiating input vector (for the fault-free/faulty next

state pair) constitutes the test sequence for a given fault

A re-statement of Condition 3 in Theorem 6.12 to ensure full testability via /'-vector

propagation sequences can be made as in the Moore machine case. The re-statement for P-2

is given below.

The state encoding of the machine should be such that each pair of O-equivalent states

should have codes at least distance-2 apart or for each pair of states, qx and q2, which are O-
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equivalent and have uni-distant codes, the following should hold. Assume that qx and q2

differ in bit i. An input combination shouldexist which drives the fault-free machine from qx

and q2 to states sx and s2 respectively, such that

(1) sx and s2 are not O-equivalent and

(2) s2, which is the state that differs from s2 in bit i alone, is not O-equivalent to sx.

6.5.4 Constrained State Encoding

State assignment is the process of assigning binary codes to the internal states of a finite auto

maton. The problem of optimal state assignment is to find an encoding of states which

minimizes the combinational logic part of the sequential machine.

The combinational logic part of the sequential machine can be implemented using a

Programmable Logic Array (PLA) or using multi-level logic. State assignment techniques tar

geting both these implementations have been proposed (e.g. [68] [69]). The program MUS

TANG [69] produces a state assignment that heuristically minimizes the number of literals in

the combinational logic after multiple-level logic optimization.

The technique used by MUSTANG is based on maximizing common factors in the logic

in an attempt to reduce the gate-count of the network. A weighted graph whose nodes

represent states of the machine is constructed. The weights between the edges in the graph

reflect the "gains" in coding the corresponding stateswith uni-distant codes.

An embedding algorithm is used to assign binary codes to the states (nodes in the

graph) so as to maximize the overall gain. The algorithm iteratively selects groups of states

to be encoded. These states are given minimally-distant codes from the unassigned codes.

For the constrained state assignment problem in the synthesis procedure, the graph con

struction part remains the same. During embedding, when a group of states is selected, they

are checked for distance-2 constraints. A minimally-distant set of codes satisfying these con

straints is then assigned to the states. Detail discussion of the state encoding problem can be

found in [69].
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6.5.5 Fully Testable Cascaded State Machines

The procedures described in Sections 6.5.2 and 6.5.3 are relevant when a single finite state

machine is being synthesized. In most industrial chip designs, cascaded state machine imple

mentations are typical

One sequential machine may drive another, as shown in Figure 6.10, and the intermedi

ate inputs/outputs may not be direcdy observable. Primary inputs to the driven finite state

machine (Hi) and primary outputs from the driving machine (POx) may or may not exist A

procedure which does not assume the existence of either n2 or POx will be described since

their absence is the worstcaseof minimum controllability andobservability.

r-^joiTj-* POx

PI2 - - J

Figure 6.10 Cascaded Moore Machines
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The synthesis procedure summarized in Theorem 6.10 will be extended for a cascade of

Moore machines. The same can be done for Mealy machines.

It is assumed there exists a single reset line which resets both Mx and M2 to

corresponding reset states, Rx and R2. If M xand M2 run on the same clock, it is required that

the clock signal to M2 can be disabled by some means such that M2 can remain in whatever

state it is in regardless of the 10 signal from Mx (Figure 6.10). The following result summar

izes the constrained synthesis procedure.

Theorem 6.13: Given the State Transition Graph descriptions of the driving and driven Moore

machines with nx and n2 latches, respectively, each with the partitioned architecture shown in

Figure 6.10, if (1) all 2*1 states in Mxare reachable from Rx and all 2*2 states in M2 are

reachable from R2via some primary input sequence (2) all states in M2 which assert the same

outputs are given codes at least of distance-2 (3) all the combinational logic blocks are

irredundant and (4) all states in Mx (corresponding to.10) which for any present state in M2

produce next states that assert the same output vector are given codes of at least distance-2

apart, then the cascade implementation is fully testable (controllable from Tlx and observable

from POi).

Proof: Consider a fault, F, in the OL block of M2. By Condition 3, a state q2 exists in M2

which detects this fault. This state can be reached from R2 by Condition 1. Thus, F can be

detected by any justification sequence for q2, since the sequence cannot be corrupted by F (F

is in OL).

Next, consider a fault, F, in the NSL block of M2. Without loss of generality, assume

that the fault exists in the first partition. Again, a state q2 in M2 and an input vector iox

corresponding to a state qx in M x exist which propagate the effect of this fault to the next

state lines of M2. M2 can be placed in q2 and then the clock signal to M2 is disabled until

Mx is placed in qx. F can be propagated to the NSLX of M2 producing a fault-free faulty
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state pair (s,sF) in M2. s and sF differ in the first bit alone, and are hence of distance-1.

By Condition 2, s and sF have different outputs. Thus, F is detected at P02 in the next

clock cycle if the justification sequence for q2 is not corrupted by F. If the justification

sequence for q2 has been corrupted by F, it means that, somewhere along the justification

path, the next states in the fault-free and faulty machine are different In this case, F is

detected even before reaching q2, since a fault-free faulty state pair is always propagated to

the primary outputs by the above reasoning.

Finally, consider a fault, F, in the NSL block of Mx. Without loss of generality,

assume that it exists in the first partition. A state qx inMx is required to propagate the effect

of F to NSLX of Mx. This state qx can be reached from R x. Once again, the property of the

fault-free faulty state pair, (s, sF), in Mx is that they are of distance-1. By Condition 4, what

ever state M2 is in, the fault-free faulty next state pair produced in M2 due to the application

of (s,sF) will assert different outputs. The justification path for qx may be corrupted by F.

In this case, F is detected even before reaching qx.H

To obtain test sequences for the faults in the logic blocks of Mx and M2, combinational

test vectors to propagate these faults to the next state lines or outputs, are found. Justification

sequences for the states corresponding to these test vectors are found via breadth-first search

on the State Transition Graph description of the machine. By Theorem 6.13, these sequences

detect all single stuck-at faults in Mx and M2, observable at P02.

The implications of Conditions 1,2 and 3 have been analyzed in Section 6.5.2. Experi

mental results indicate that the area penalties due to these constraints are small. Performance

is enhanced rather than penalized by logic partitioning. The state assignment constraint for

Mx (Condition 4) has to be analyzed.

If a single machine were to be used to implement the cascade, it would essentially be a

product of the two machines. The number of distinct output patterns is the same for the sin

gle composite machine or the cascade. The driven machine will have to assert all the output



142

patterns and therefore will have significandy fewer states asserting the same outputs relative to

the single machine. Therefore, the constraint can be satisfied quite easily.

If M2 is controllable from the primary inputs, i.e. if U2 (Figure 6.10) exists, Condition 4

can be re-stated as follows - all states in Mx (corresponding to 10) which, for any present

state in M2, produce next states that assert the same output vector, P02, for all input combi

nations n2, have to be given codes at least of distance-2. The condition is more relaxed if

M2 is more controllable.

Similarly, if some outputs of Mx, namely POx (Figure 6.10), are direcdy observable,

then all the faults in the NSL block of Mx can be detected at POx by obeying state assign

ment constraints in Mx similar to Condition 2 (rather than the constraints specified by Condi

tion 4).

All the next state lines in Mx and M2 need not be realized as separate circuits, some of

them can be merged. That is a partition may contain more than one NSLi. The number of

distinct partitions requiredis a function of how many states have to be at least distance-2 from

each other (Section 6.5.2). The procedure can be extended to handle multiple cascades of

machines, which may be Moore or Mealy machines.

6.5.6 Results

Results obtained on five State Transition Graphs from the MCNC 1987 Logic Synthesis

Workshop benchmark set, whose statistics are given in Table 6.4, are given in Table 6.5.

First, the machines were encoded and optimized disregarding testability. The number of gates

in the machine, the fault coverage obtained and the test generation timeare given in Table 6.5

under the column labeled OPTIMIZE. Test generation was accomplished using an efficient

test generation algorithm that was recently proposed [26]. In Table 6.5, m stands for CPU-

minutes and s for CPU-seconds on a VAX 11/8650. All machines were resynthesized using

the procedure described in Sections 6.5.2 and 6.5.3. Again, the number of gates, fault cover

age obtained and the test generation time are given. Sequential test generation for these
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circuits was faster because combinational test generation and breadth-first search suffice to

produce the test sequences. The CPU times required for all the examples in both synthesis

procedures are virtually identical, and the maximum CPU time is less than 6 minutes. The

example scf is a Moore machine, the others are Mealy machines.

It can be observed from Table 6.5 that the number of gates needed for testable designs

is usually larger than that of unconstrained optimized designs. The gate-count penalties

incurred are due to three reasons : (1) the constraints imposed during state assignment (2) the

addition of extra edges to the STG to obtain R-reachability and (3) logic partitioning con

straints. Empirical evidence has shown that (3) is easily the most significant factor - the next

EX #inp #out #states #latches #edges

sse 7 7 13 4 59

tbk 6 3 16 4 787

scf 27 54 97 7 168

dfile 2 1 24 5 99

planet 7 19 48 6 118

Table 6.4: Statistics of Benchmark Examples

EX I- OPTIMIZE I-TESTA!BLE

#gates. fault

cov.

tpg
time

#gates fault

cov.

tpg
time

sse 91 84.57 69.9s 129 100.0 5.2s ne

tbk 181 98.57* 72.1s 231 98.57* 4.1s ne

scf 502 96.14 83.1m 541 100.0 71s ne

dfile 124 96.94 104s 144 100.0 2.0s ne

planet 417 98.82 373s 449 100.0 14s ne

* OL block was not combinationally irredundant

Table 6.5: Synthesis for Testability Results
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state lines may have to be realized as separate circuits. Additionally, for a Mealy machine,

unlike in an unconstrained design, the next state and the output logic have to be separated.

Logic partitioning is extensively used to gain higher performance. A Mealy machine

with separate next state and output logic blocks can be clocked faster than a machine with a

single lumped block of logic. This is the case in the example designs of Table 6.4 as well.

Thus, the fully testable machines produced by logic partitioning may provide a better gate-

count/performance trade-off.

The number of gates in a circuit is, in general, indicative of the area required to imple

ment the circuit. However, in some cases, this measure of area may not be very accurate. To

obtain accurate estimates of circuit areas, the synthesized examples of Table 6.4 and 6.5 were

placed and routed using the TimberWolf standard cell placement and routing package [75].

The areas of the resulting designs after place and route for the unconstrained and constrained

cases are given in Table 6.6. For each example, the areas of the designs have been normal

ized to that of the unconstrained design.

In Table 6.6, some constrained designs are about the same size or smaller than the

corresponding unconstrained ones. Logic partitioning, in these cases, has decreased routing

complexity to the extent of balancing the increase in the number of logic gates. The cost

EXAMPLE I-OPT![MIZE H - TESTABLE

#gates area #gates area

sse 91 1.0 129 1.34

tbk 181 1.0 231 1.10

scf 502 1.0 541 1.01

dfile 124 1.0 144 0.98

planet 417 1.0 449 0.86

Table 6.6: Areas of Standard Cell Designs
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function used in multi-level logic optimization is the number of literals ( transistors ) [3],

which may be a poor estimate of the circuit area.

The number of test sequences required varied between 30-70 for these examples. The

number of test sequences can be reduced by applying combinational test compaction strategies

after generating all test vectors for the combinational logic blocks. The average length of a

sequence was 5. Since the test vectors only access the primary inputs and only the primary

outputs are observed, each vector can be applied in one clock cycle.

6.6 Easily Testable PLA-based Finite State Machine

Programmable Logic Arrays (PLAs) are used extensively in the design of complex VLSI sys

tems. Sequential functions can be realized very efficiently by adding feedback registers to the

PLA. Numerous programs for the optimal synthesis of PLA-based finite state machines have

been developed (e.g. [68] [69]). Test generation and design-for-testability techniques for PLA

structures have been active areas of research.

Due to a PLA's dense layout, PLA faults other than conventional stuck-at faults can

occur easily and must be modeled. An extended model, the crosspoint fault model, has been

proposed in [76] and [77]. The crosspoint-oriented test set covers many of the frequently

occurring physical faults, including shorts between lines. Several PLA test generation tech

niques aimed at the crosspoint fault model have been proposed (e.g. [78] [79]). In particular,

an exact and efficient technique which guarantees maximum fault coverage and identification

of all redundant faults was proposed in [80].

Design-for-testability techniques (e.g. [81]) for PLAs require controllability of all inputs

and observability of all outputs of the PLA. Synthesis approaches to producing easily testable

sequential machines, without requiring direct access to the inputs/outputs of the circuit's

memory elements, have not been aimed at the crosspoint fault model.

In this section, a synthesis procedure, which beginning from a State Transition Graph

description of a sequential machine, produces an optimized easily testable PLA-based logic
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implementation is outlined [28]. A procedure of constrained state assignment and logic

optimization which guarantees testability for all combinationally irredundant crosspoint faults

in a PLA-based finite state machine is proposed. No direct access to the flip-flops is required.

The test sequences to detect these faults can be obtained using combinational test generation

techniques alone. This procedure thus represents an alternative to a Scan Design methodol

ogy. Empirical results shows that the efficacy of this procedure - the area/performance penal

ties in return for easy non-scan testability are small.

6.6.1 Crosspoint Faults

The following faults are considered in the crosspoint fault model.

(1) Growth/Missing contact faults in the input plane

(2) Shrinkage/Extra contact faults in the input plane

(3) Appearance/Extra contact faults in the output plane

(4) Disappearance/Missing contact faults in the output plane

(5) Output stuck-at-one faults

Except for fault type 5, essentially two types of faults are present, namely, the missing

contact and extra contact faults. In the input plane, an additional contact on a row reflects an

additional constraint placed on the cube corresponding to the row and has the effect of shrink

ing the set of vertices covered by the cube. On the contrary, a missing contact in the input

plane removes a constraint and thus expands the set of vertices covered by the cube. A miss

ing contact on the ith column of the output plane reflects a removal of a cube from the ON-

set cover of the ith output function. The effect is then the shrinkage of the ON-set of that ith

output function. By the same token, an extra contact in the output plane adds an additional

cube to the output ON-set cover and thus enlarges the ON-set In the sequel, to adopt a

unified point of view on these faults, fault types 1 and 3 are called GROWTH faults and fault

types 2 and 4 are called SHRINKAGE faults.
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6.6.2 Easily Testable PLA-based Finite State Machines

Synthesizing a logic-level implementation of a finite state machine from a State Transition

Graph description involves the steps of state minimization, state assignment and logic optimi

zation. All three steps have a profound effect on the testability of the resulting logic imple

mentation.

In order to detect a fault in a sequential machine, the machine has (1) to be placed in a

state that can excite the fault and (2) the effect of the fault has to be propagated to the pri

mary outputs. State assignment does not affect the first step, i.e. state justification but can

have a profound effect on the second step of fault propagation.

PLA-based Mealy finite state machines will be considered, since a Mealy machine can

be viewed as a more general case of a Moore machine. The PLA implements both the output

logic and next state logic functions. Combinationally irredundant crosspoint faults in the PLA

will be focused on - combinationally redundant faults cannot be made testable in a sequential

machine even using full Scan Design or via state assignment

For any combinationally irredundant crosspoint fault, a present state, s, and a primary

input vector, i, exist, which can propagate the effect of the fault to the next state lines (NS)

or the primary outputs (PO). If the effect of the fault is propagated to PO, then the fault can

be detected in the non-scan sequential machine via a justification sequence for s. That is,

when the machine is in s, applying i will detect the fault On the other hand, if the effect of

the fault is propagated to NS but not PO, then a faulty next state qF instead of the fault-free

(true) next state q is obtained, q and qF need to be distinguished at the primary outputs. If

q and qF are equivalent states in the faulty machine then the fault cannot bedetected.

Depending on the type of crosspoint fault under test the codes of q and qF will have

certain relationships. If it can be ensured via state assignment that any two states produced as

a faulty fault-free pair are not equivalent (in the faulty machine) then any fault which is pro

pagated to the next state lines will always be detectable at the primary outputs. The synthesis
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procedure to be described in the next section does precisely this, in order to ensure testabihty

for all combinationally irredundant crosspoint faults in the sequential machine.

6.6.2.1 The Synthesis Procedure

Definition 63: Two minterms mx and m2 are said to be mutually-dominant if mxz>m2 or

m2=)m1. Two minterms mi and m2 which are not mutually-dominant are said to be

mutually-nondominant if mx±m2.

Lemma 6.5: For any kind of irredundant crosspoint fault in a PLA, the faulty output vector

and the true output vector are mutually-dominant

Proof: Consider a fault, F, in the PLA. If the fault is a GROWTH fault, then F adds to the

ON-set of some outputs, but does not subtract from the ON-set of any output. Therefore, if F

is detected by some input vector i, then for some subset of the outputs whose true value is 0

for i, the faulty value is 1. Outputs whose true value is 1, remain at 1. This means that oF,

the faulty output vector for i, dominates o, the true output vector for i.

If F is a SHRINKAGE fault then F subtracts from the ON-set of some outputs, but

does not add to the ON-set of any output. Therefore, if F is detected by some input vector i,

then for some subset of the outputs whose true value is 1, the faulty value is 0. Outputs

whose true value is 0, remain at 0. This means that oz>oF.

Finally, a crosspoint fault of type 5, namely an output stuck-at-one fault if detected will

produce aoF which differs in one bit from o (a 1 instead of a 0). Again, oF^o.U

A procedure of constrained state assignment which ensures that faulty fault-free next

state pairs are always propagated to the primary outputs within one clock cycle, is summar

ized in Theorem 6.14 below.

Theorem 6.14: Given a n -latch logic-level implementation of a PLA-based finite state

machine, if (1) the machine is R-reachable and (2) if the state encoding of the machine is
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such that each pair of states which do not produce mutually-nondominating primary outputs

for at least one primary input vector are assigned mutually-nondominating codes, the machine

is testable for all combinationally irredundant crosspoint faults.

Proof: Consider a fault F in the PLA. Since the fault is combinationally irredundant a pri

mary input vector ix and a present state s exist which detect the fault at either the primary

outputs or at the next state lines. If the fault is detectable at the next state lines, then the

faulty next state produced qF instead of the true next state q are mutually-dominating by

Lemma 6.S. By Condition 2, a primary input vector i2 will exist which will distinguish qF

and q in the next cycle, since states which cannot be distinguished in the true machine are

given mutually-nondominating codes and never allowed to appear as faulty fault-free pairs. It

is known that s can be justified in the true machine because of Condition 1. However, the

justification sequence may have been corrupted by the fault Also, we have to show that the

distinguishing vector i2 also holds in presence of the fault

The distinguishing vector i2 is such that q and qp produce mutually-nondominating pri

mary output vectors ox and o2 on applying i2 in the true machine. o2 may be corrupted due

to the fault, the vector produced may be o2F*o2. By Lemma 6.5, o2 and o2 are mutually-

dominating. Therefore, ox has to be different from o2 , since ox and o2 are mutually-

nondominating. This means that the distinguishing vector i2 holds in faulty conditions as

well. Note that if ox and o2 were distinct but mutually-dominating this is not the case.

There exists a justification sequence for s, namely /. This path may or may not be cor

rupted due to F. If the path is not corrupted, F can be detected by applying i2 on reaching s.

If the path is corrupted, it means that for some edge in the path, F has been propagated to the

primary outputs or next state lines. If F is propagated to the primary outputs, F is detected

even before reaching s. Else, if F has been propagated to the next state lines, a faulty and

fault-free next state pair n and nF is obtained, n and nF can be distinguished with some

input vector i3 even under faulty conditions. •
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Condition 2, which requires mutually-nondominating codes to be assigned to some state

pairs can be satisfied quite easily.

Lemma 6.6: Given n bits, there are C*x, Cn2,.. Cnn-X sets of mutually-nondominating

n'
codes, where CH0 - i-—-. The maximum number of mutually-nondominating codes

p (n-p)\p\

given an n bits is C"B/2 if n is even and C^+m if n is odd.

The above lemma considers mutually-nondominating codes with the same number of Is

in each code. Given n bits, there are Cnp distinct codes, such that each code has p Is. All

these codes are mutually-nondominating (each code will have a 1 in a position where another

does not). For example, given a 3 bits, there are following sets of multiple mutually-

nondominating codes, (001,010,100) and (011,101,110), whose cardinalities correspond to

C3i and C32 respectively.

In general, State Transition Graph specifications of machines have reset states. How

ever, a STG specification of a machine need not necessarily have Ns=2k states, k-\, 2.. etc.

Given the number of encoding bits to be used, n (n >\\og(Ns] ), the number of states in a

STG can be raised to 2n. These new states need to be reachable from the reset state to satisfy

the R-reachability condition. Given a single unspecified transition edge (minterm or cube)

from a single state in the original STG, edges can be added to the STG so as to ensure that all

the added states are reachable (If the machine is completely specified, an extra input has to

be added ). Most STGs encountered in practical design have a large number of transitions

that are not specified. It should be noted that these extra states may be equivalent to other

previously existing states in the STG. State minimality is not required as a condition for easy

testability, but we require all states to be reachable.

There are thus three steps in producing a PLA logic specification for the output logic

and next state logic functions. This specification is then optimized using a two-level logic

minimizer like ESPRESSO [2]. These steps are (1) raising the number of states in the State
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Transition Graph to 2A, where n is the number of latches (2) obtaining constraints for the

state assignment on the basis of state fanouts and (3) state assignment obeying the constraint

relations generated. A straightforward solution exists for Step 1, however the optimality of

the eventual implementation depends on the choices made during this step. For example, in

Step 1, transition edges connecting original states in the STG to the new states can be added

in a variety of ways. The new states can be connected in a chain or separately connected

from the original states. In Step 3, an optimal state assignment which minimizes combina

tional logic while meeting the dominance constraints has to be found. This step is further dis

cussed in Section 6.6.3.

To generate tests for the sequential machine, test vectors are generated for all irredun

dant crosspoint faults using a program like PLATYPUS [80]. Then, justification paths are

obtained from the STG using simple breadth-first search. These paths concatenated with the

test vectors applied to the primary inputs of a non-scan sequential machine will detect all the

crosspoint faults in the machine so as to be observable at the primary outputs.

This procedure has ensured that a faulty state is always propagated to the primary out

puts in a single clock cycle via state assignment This can, in fact, be generalized to

multiple-vector propagation. That is, state assignment constraints can be derived which ensure

that a faulty state is propagated to the primary outputs in at most P clock cycles (P>\). A

state assignment algorithm can construct an optimal encoding which satisfies these constraints.

For large P, the constraints are less stringent but more difficult to state succincdy.

A re-statement of Condition 2 in Theorem 6.14 to ensure testability via P -vector propa

gation sequences can be made. The re-statement for P-2 is given below.

Definition 6.4: Two states qx and q2 are said to be m-distinguishable if a primary input vector

exists which produces two mutually-nondominating primary outputs ox and o2 when the

machine is in qx and q2 respectively.
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The state encoding of the machine should be such that each pair of states which cannot

be m-distinguishable should be assigned mutually-nondominating codes or the following

should hold for any pair of states (qx,qi) which are not m-distinguishable and have

mutually-dominating codes. An input combination should exist which drives the fault-free

machine from qx and q2 to states sx and s2 respectively, such that

(1) sx and s2 are m-distinguishable and

(2) If qjpqx, then for all s2Z3s2, s2 should be m-distinguishable from sx. Similarly, if

q2<oqx, then for all s2'cs2, s2 should be m-distinguishable from sx.

6.6.22 Combinationally Redundant Crosspoint Faults

A two-level or multi-level circuit can be made irredundant for all single stuck-at faults. Such

circuits are called prime and irredundant circuits. Logic minimization programs like

ESPRESSO can ensure prime and irredundant two-level covers. However, since the

crosspoint fault model is a superset of the stuck-at fault model, PLAs implementing prime and

irredundant covers may not be testable for all possible crosspoint faults. However, typically a

large percentage of crosspoint faults can be made testable via optimization [80]. All

crosspoint faults of type 1,4 and 5 can be guaranteed to be testable via logic minimization.

6.6.3 Constrained State Encoding

Constrained state encoding of the synthesis procedure is performed using the state assignment

program MUSTANG [69]. The technique used by MUSTANG is based on maximizing com

mon factors in the logic in an effort to reduce the area of the network. A weighted graph

whose nodes represent each state of the machine is constructed. The weights between the

edges in the graph reflect the "gains" in coding the corresponding states with uni-distant

codes.

An embedding algorithm is used to assign binary codes to the states (nodes in the

graph) so as to maximize the overall gain. The algorithm iteratively selects groups of states

to be encoded. These states are given minimally-distant codes from the unassigned codes.
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For the constrained state encoding problem in the synthesis procedure, the graph con

struction part remains the same. During embedding, when a group of states is selected, they

are checked for mutual-nondominance constraints. A minimally-distant set of codes satisfying

these constraints is then assigned to the states. The more complex, but less stringent, con

straints given by multiple-vector propagation can also be accommodated.

6.6.4 Results

Results obtained on five State Transition Graphs from the MCNC 1987 Logic Synthesis

Workshop benchmark set, whose statistics are given in Table 6.4, are given in Table 6.8.

First, the machines were encoded and optimized disregarding testability. The number of pro

duct terms in the PLA, the fault coverage obtained and the test generation time are given in

Table 6.8 under the column labeled OPTIMIZE. In Table 6.8, m stands for CPU-minutes and

s for CPU-seconds on a VAX 11/8650. Then, each of the machines were synthesized using

the procedure described in Section 6.6.2. Again, the number of product terms, fault coverage

obtained and the test generation time are given. The example scf is a Moore machine, the

others Mealy machines. In all cases, single-vector propagation constraints were placed on the

state assignment program.

Fordie optimized machine, sequential test generation was accomplishedas follows:

(1) A present state and a primary input vector which propagates the effect of the fault to the

primary outputs or the next state fines is found, if such a vector exists, using PLA

TYPUS [80].

(2) A fault-free justification sequence for the required present state is found via breadth-first

search on the State Transition Graph of the machine.

(3) If the fault has been propagated to the next state lines, then a fault-free distinguishing

sequence is found for the true and faulty states in the State Transition Graph. Such a

sequence may not exist if the true and faulty states are equivalent. If this is the case, a

new test vector is generated which produces a different true and faulty state pair, if
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possible.

(4) The justification sequence, the combinational test vector and the distinguishing sequence

are concatenated to produce a possible test sequence for the fault The sequence may

not be valid because the justification and/or distinguishing sequence may be invalid

under fault conditions. The sequence is fault simulated on the circuit to check if the

fault is indeed detected at the primary outputs.

(5) If the sequence does not detect the fault, a different distinguishing sequence for the

true-faulty state pair is tried, if possible.

A combinationally irredundant fault may not be detected using this procedure because

(a) a distinguishing sequence may not exist for a true-faulty state pair since no constraints

have been placed on the state assignment and (b) even if a distinguishing sequence exists, it

may not hold under fault conditions.

The constrained synthesis procedure ensures that distinguishing sequences'always exist

and always hold under fault conditions. Test generation for the testable machine was accom

plished as follows:

(1) Same as Step 1 described above.

(2) Same as Step 2 described above.

(3) A single distinguishing vector which produces mutually-nondominating outputs is found

for each true-faulty state pair (such a vector is guaranteed to exist).

(4) The justification sequences are checked to see if they are valid under fault conditions.

If the sequence is valid, a test sequence is constructed by concatenating the sequence

with the combinational test vector and the distinguishing vector. If the justification

sequence is invalid, and is not a test sequence for the fault by itself, a new distinguish

ing vector (which is guaranteed to exist) is found for the true-faulty state pair that is

generated by the first corrupted edge in the sequence. The shortened justification
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sequence concatenated with the distinguishing vector constitutes a test sequence for the

fault

Sequential test generation for the testable machine is faster because typically more than

one distinguishing sequence has to be tried to produce a test sequence for the fault in the

optimized machine. Also, rather than having to rault simulate the entire test sequence in the

optimized machine, only the justification sequences have to be fault simulated in the testable

machine.

In all cases, the maximum possible fault coverage was achieved in the testable machine,

i.e. all combinationally irredundant crosspoint faults are detectable in the sequential machine.

The area penalties incurred are due to two reasons: (1) the constraints imposed during state

assignment (2) the addition of extra edges to the STG to obtain R-reachability. As can be

seen the area penalties are quite small, and compare favorably to Scan Design approaches.

The gain in fault coverage and test generation times more than offsets the area penalty.

The number of test sequences required varied between 70-300 for these examples. The

average length of each sequence was 5. Since the test vectors only access the primary inputs

and only the primary outputs are observed, each vector can be applied in one clock cycle.

EX I- OPTIMIZE II- TESTAE,LE

#prod. fault

cov.

tpg
time

#prod. fault

cov.

tpg
time

sse 33 89.56 6.4s 36 92.12 3.6s

tbk 56 90.21 21 Is 61 95.83 15.8s

scf 145 93.31 6.2m 154 96.07 3.3m

dfile 51 94.12 16.2s 54 98.81 6.1s

planet 97 91.72 93s 104 95.67 59.5s

Table 6.8: Synthesis for Testability Results
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6.7 Conclusions

Sequential synthesis procedures that produces fully and/or easily testable logic implementation

of a Moore or Mealy finite state machine from a State Transition Graph description of the

machine are presented. The combinational part of the synthesized machine is implemented by

multi-level logic or PLA. No direct access to the memory elements is required for testing the

synthesized sequential machine.

For optimized fully testable synthesis, the optimal synthesis procedure described

involves the steps of state minimization, state assignment and logic optimization. It is appli

cable to Moore or Mealy finite state machines. The synthesis procedure has no associated

area/performance overhead unlike Scan Design methodologies.

For easily testable synthesis, the synthesis procedure involves constrained state assign

ment and logic optimization. Testing is made significandy easier at the possible expense of

extra logic; though experimental results have shown that the area penalty incurred due to the

constrains on the optimization is small. Test sequences can be obtained using combinational

test generation techniques alone for multi-level logic implementation. For PLA-based imple

mentation, PLA test pattern generation technique and breadth-first search on the State Transi

tion Graph can be used, alone.
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CHAPTER 7

Conclusions

In this dissertation, the problem of logic validation has been addressed. Different tools

required to ensure that a chip is free of design errorsand thoroughly tested were reviewed and

new algorithms for implementing these tasks were presented.

Logic verification, the process of checking the Boolean equivalence of two circuits, was

presented in Chapter 2. New algorithms based on enumeration-and-simulation approach for

combinational logic verification were described. The equivalence of two logic circuits is

checked by generating the ON-set and OFF-set covers of one circuit in cube form and simulat

ing the covers on the other one. Logic verification can be a very CPU-intensive task. This

makes an efficient parallel implementation highly desirable and so new, parallel logic

verification schemes were also described in Chapter 2. A dynamic scheduling scheme using a

PODEM-based enumeration algorithm was presented. Circuits of reasonable size have been

successfully verified. Circuits with covers of enormous size, i.e. parity checking circuits, in

general may require an inordinate amount of CPU time using the enumeration-and-simulation

approach. New and interesting approaches [82] [83] based on Binary Decision Diagrams [84]

for logic verification will be a rewarding research area.

In Chapter 3, the problem of sequential test generation was dealt with. The difficulties

of generating tests for sequential circuits are mainly due to the limited and constrained access

to circuits with memory elements. In general, the controllability and observability of a

sequential circuit is reduced gready compared to a combinational one. Scan Design can be

used to transform the sequential test generation problem into that of the easier combinational

test generation. However, Scan Design may result in unnecessary area/performance penalty.
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A new approach based on state-space enumeration for sequential test generation was described

in Chapter 3. The new approach involves extracting a partial State Transition Graph and

using it in conjunction with fault excitation-and-propagation and state-justification algorithms

in generating tests. Tests have been successfully generated for sequential circuits with

thousands of gates and tens of latches. For very large sequential circuits, an Incomplete Scan

Design approach that can be used together with the sequential test generation process was

presented. This approach enables the detection of all detectable single stuck-at faults using

significandy lower number of scan latches than Complete Scan Design in many cases. The

excitation-and-propagation algorithm in the sequential test generator is based on the PODEM

algorithm. Research for more efficient methods that will make better use of the topological

information of the circuits to guide the search for the excitation-and-propagation sequence will

further speed-up the test generation. More compact forms of representing the sequential

behavior of the sequential circuits, instead of using State Transition Graph, may lead to a

better state-justification method.

A fault simulator is an essential CAD testing tool. The problems of fault simulation for

both single stuck-at and multiple stuck-at fault models are addressed in Chapter4 and Chapter

5. In Chapter 4, a statistical fault simulator for mixed-level circuits using the single stuck-at

fault model is described. Formulae for computing the controllabilities and observabilities of

each wire in a network for a test set are presented. Based on the computed probabilistic

measures, an accurate projection of the single stuck-at fault coverage for the test set can be

obtained with greatly reduced computational complexity compared to deterministic fault simu

lation. Experiments with several example circuits have provided estimated fault coverage

results close to the actual ones.

Fault simulation for multiple faults is much harder than for single faults due to the sheer

number of multiple-fault combinations that can exist A novel implicit fault-simulation

approach was presented in Chapter 5. The problem of fault simulation is transformed into an
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implicit fault-space enumeration one using a simulation model. A 15-valued simulation

method is used to enable vertical implications to be performed. Procedures to speed up the

implication processes, both horizontal and vertical, are described. To improve the vertical

implication process, the topological information of a circuit is utilized. Results for circuits of

size greater than two hundred gates have been obtained within reasonable CPU times. Further

work is to research on test generator which generate compact test sets that not only cover

most multiple-faults but also do not require excessive CPU time for fault simulation.

Circuits with redundancies can make the test generation task enormously more difficult

for both combinational and sequential circuits. The cost of trying to generate tests for redun

dant faults can be more than 90% of the total test generation time. This makes synthesis

methods that can ensure fully testable circuits very attractive. In Chapter 6, synthesis-for-

testability procedures that ensure fully and/or easily testable sequential machines were

presented. The synthesized machines can either be PLA-based or multi-level logic implemen

tations. The input descriptions of the machines are either State-Transition Graphs or gate-

level descriptions. These synthesis procedures involve steps of state assignment state minimi

zation and logic optimization to produce sequential machines that can be fully tested without

direct access to the memory elements. Single machines are considered in the synthesis pro

cedures. Further interesting work is to extend the synthesis procedures for interconnected

sequential machines.
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