

Copyright © 1989, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

ALTERNATIVES IN COMPLEX OBJECT

REPRESENTATION: A PERFORMANCE

PERSPECTIVE

by

Anant Jhingran and Michael Stonebraker

Memorandum No. UCB/ERL M89/18

15 February 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

ALTERNATIVES IN COMPLEX OBJECT

REPRESENTATION: A PERFORMANCE

PERSPECTIVE

by

Anant Jhingran and Michael Stonebraker

Memorandum No. UCB/ERL M89/18

15 February 1989

ALTERNATIVES IN COMPLEX OBJECT

REPRESENTATION: A PERFORMANCE

PERSPECTIVE

by

Anant Jhingran and Michael Stonebraker

Memorandum No. UCB/ERL M89/18

15 February 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Alternatives in Complex Object Representation: A Performance
Perspective

AnantJhingran and Michael Stonebraker

Computer Science Division
Universityof California,Berkeley

ABSTRACT

With database systems finding wider use in CAD, Office Information Systems
(OIS) and logic programming applications, the importance ofefficiently representing and
manipulating complex objects is growing. In thisstudy we lookat a classification of the
alternatives for representing complex objects. We then consider the performance aspects
of one representation technique based on object identifiers. It is shown that clustering of
subobjects with theirreferencing objects is rarely a goodidea. In contrast, we show that
caching the intermediate results ofquery processing canyield large benefits.

1. Introduction

Database management systems have proven tobecost-effective tools for organizing and maintaining
large volumes of data. However, in recent years new database applications have occurred which do not
store standard business-oriented data. In a significant number of these applications, there is a need to
represent complex objects with few structural constraints. Some examples of these applications are CAD
and engineering databases [BAT085, KIM87, LORI85], Office Information Systems (OIS), and logic pro
gramming [ZANI85].

Loosely speaking, complex objects are "entities" that are either composed of, or related to, other
(complex) objects. Forexample, consider the traditional complex object in VLSI [LORI85]:

cells

I 1
paths instances

rectangles

VLSI cells are made of paths and instances ofother cells. Paths are, in turn, made ofrectangles. Here, a
cellisa complex object because it iscomposed ofother subobjects.

Complexity of objects is notdue only to IS-PART-OF relationships. The domain of an attribute of
an object can be other objects. This is supported by a mechanism similar to set-valued aggregation
([SMIT77]). Forexample, consider the following complex object

This research was sponsored bythe National Aeronautics and Space Administration under grant NAG 2-530, and bythe
Army Research Office under contract DAAL03-87-G-0041.

-2

Scientist

Name

Year Degree School Org. Pres.

A scientist has a name, an age, (a setof)education qualifications, and membership in some organizations.
His education is characterized by the indicated attributes. Similarly each organization has a name anda
president.

To encompass both theabove mentioned possibilities, weusethefollowing definition:

A complex object is an object that has one or more (complex) objects as the value of one or
more of its attributes.

Our definition ofcomplex objects is similar to the one in [VALD86]. Moreover, anobject can bea tuple in
an extended relational environment such as [LORI85], or it can be an "object" in oneof the more recent
object-oriented models. The setofobjects associated with anattribute ofanother object aretermed subob
jects of that object. In this study we look at the performance of the alternatives for representing the rela
tionship between an object and its subobjects. The semantics of the term "object" arenota consideration
in our study.

Therestof thepaper is organized as follows. In Section 2 weconsider several representation alterna
tives for complex objects. Section 3 then establishes the background for the representation analyzed inthis
study (object identifier based representation). It also discusses various strategies that can beused to process
queries againsta database utilizing sucha representation. In Section 4 wediscuss thesimulation framework
which is used for making performance comparisons between the alternatives presented in Section 3. The
next two sections then present the results ofour experiments. Finally, the paper ends with some concluding
remarks in Section 7.

2. Approaches to Complex Object Representation

While there have been numerous proposals for representation of complex objects of various sorts
([BAT084, COPE85, BANE86, KIM87]), there has been little work on the performance aspects of the
choices. Furthermore, these studies have generally concentrated on one or two representations, with few
looking at the tradeoffs between many alternatives. For example, the emphasis by a group at MCC
([COPE85, VALD86]) is on a "decomposed storage model" ofcomplex objects. The accompanying per
formance data is used tojustify their choice. [LORI85] presents a scheme for representing complex objects
ina relational environment However, it fails topresent any performance analysis ofthescheme.

Our approach is more general. Instead ofproposing and then defending a data model and implemen
tation, we are studying as many alternative representations as possible. Hence we seek to identify the
salient features of the representation possibilities and to provide a framework in which performance com
parisons can be made. More specifically, for our study we have abstracted the main representation
schemes, whichwe call the primary representation alternatives.

Retrieval of information pertaining to complex objects is generally a costly operation (typically
involving more than one data set). This can be speeded up if some information is precomputed (i.e., before
the retrieval in question) and cached. There are various levels at which this precomputation can be done,

3-

and various ways that it can be stored. In our framework we capture this idea by allowing objects tohave
an auxiliary cached representation.

The primary and the cached representation form the axes ofa representation matrix, which forms a
unifying framework for our study.

We use a very simple example ofcomplex objects toillustrate the basic options that are available. In
this example and the remainder of this paper, we use record structures (relations) and tuples for notational
convenience. Let

group (name, members,...)

bea collection of complex objects. Some of thegroups are:

elders: All persons with age > 60

children: All persons with age <15

cyclists: Allpersons withcycling as theirhobby

Moreover, there is information onthevarious subobjects, e.g.:

person (name, age,...) /* Contains information on persons */
cyclist (name,...) /* Contains information on cyclists */

2.1. Primary Representations

We have identified three primary ways of representing the relationship between an object and its
subobjects. They are discussed below.

2.1.1. Procedural Representation

Ina procedural representation, the setofsubobjects associated with anobject is identified by a pro
cedure, which, when executed, evaluates tothe corresponding subobjects. For our purposes, this procedure
is a retrieve-only query on the underlying database. Considering our example above, the relation group
might look like:

name members ...

elders
retrieve (person.all) where
person.age >= 60

...

children
retrieve (person.aU) where
personage <= 15

...

cyclists
retrieve (person.all) where
persoiuiame = cyclisLname

...

This representation issupported in POSTGRES, a next generation database system being developed
at Berkeley ([STON86,ROWE87]).

2.2. Object Identifier (OID) Representation

Here the set of subobjects of an object is represented by storing a list of their identifiers with the
object Therelation group in the example database inOID representation might look like:

name members ...

elders 7643 1436715651... ...

children 4541765418771... ...

cyclists 4367 1871... ...

The numbers in group.mcmbcrs are the OID's of thecorresponding members. These identifiers can
beofmany types (physical location based, system unique generated identifiers, primary keys ofthe objects,
etc.). A detailed discussion of the relative merits of each approach can be found in [KHOS86]. In our
study, we use the simplest OID's that provide location transparency — the concatenation of the relation
identifier and the primary key of a tuple. In most of the recent object-oriented database systems
([BANE87, COPE84, HORN87]), complex objects are represented using OID representation, orsome vari
ation of it

22.1. Value-Based Representation

In this representation scheme, subobjects arestored directly in the objects that reference them. More
over, they have no associated identifiers, and hence cannot be referenced from elsewhere. Basically, the
"value" (i.e., a concatenation of the values of each of its attributes) of a subobject is stored with the
referencing object Ofcourse, when a subobject is shared by more than one object we need to replicate its
value wherever required.

Thus our exampledatabasemightlook like:

name
members

...

name age ...

elders

John 62 ...

...

Mary 62 ...

Paul 68 ...

...

children

Jill 8 ...

...BUI 12 ...

...

cyclists
Mary 62 ...

...Mike 44 ...

...

The original NF2 model [SCHE86] supports this complex object representation. Moreover, EXTRA
([CARE88]) has an "own" data type which provides a similar representation.

23. Cached Representations

Generally speaking, the three primary representations capture different levels of knowledge about
subobjects. In procedural representation, how to get the subobjects is known, but not their identities or
contents. Object Identifiers capture the identities of the subobjects, but not their contents. Finally, in a

value-based representation, the object contains all the information about itssubobjects.

Itoften makes sense toprecompute and cache (on the disk) some information about subobjects that is
closer to avalue-based than the existing primary representation. Using this technique, one can avoid paying
the sometimes large cost todetermine the values ofsubobjects. If the primary representation isprocedural,
we can cache the OID's or the values of subobjects. If the primary representation already uses OID's, we
can still cache the values of subobjects. Thus, the cached representation canbe classified into OID's and
Value-Based. Ofcourse, wemay choose not tocache anything.

If the primary representations isprocedural, then caching the values of"elders" might look like:

name members •••

elders

retrieve (person.aU)where
person.age >= 60

...John 1621...

Mary 1621...

Paul 1681...

... 1 ... 1 ...

children
retrieve (personall) where
personage <= 15

...

cyclists
retrieve (person.all) where
persoruiame = cyclisLname

...

Caching can be of two types. In outside caching, the relevant information of subobjects is cached
away from the object that references them. These cached values can beshared with other objects that refer
ence exactly the same setofsubobjects. In inside caching, however, the information about the subobjects is
cached with the referencing object In this scheme, there can be no sharing of cached information. The
example shownaboveutilizes insidecaching.

2.4. Representation Matrix

InFigure 1,a representation matrix formed by the two axes, primary and cached representations, is
shown. Some points in the matrix are shaded — they represent alternatives which do notmake sense. For
example, if the primary representation is value-based, then caching does not add to the performance —an
object hasall therequired information about thesubobjects.

It is our aim to study the properties ofeach unshaded box inFigure 1, and to determine the query
processing strategies applicable to each. Some of the properties that need bestudied are: storage require
ments, cache maintenance costs, and query processing costs. These must be evaluated as a function of a
variety of parameters (e.g., thefrequency of updates).

In a previous study ([JHIN88]), we studied procedural representations in detail. The cached
representations analyzed were none and values, and various query processing strategies for each were con
sidered. Itwas shown that caching works, and that outside caching is, in general, better than inside caching.
This isespecially true when the size ofthe cache is limited and there is some sharing ofsubobjects.

In this study we will have a similar look at the possibilities in the column, OID representation. Ina
future study we will discuss the performance consequence of the other points in the matrix; as well as

Cached

Representation

compare points across the columns.

[J
H

I

N

Procedures

-6-

........

. __

..._

T
h
i
s

P
a

P
e

r

:yw////>y/''/''

OID's Value-Based

•

Primary Representation

Figure 1: The Representation Matrix

OID's

Values

None

3. Strategies in OID Representation

When the primary representation is OID, there exists another axis of choice which is not shown in

the matrix in Figure 1. The two possibilities on this axis are whether or not the subobjects are clustered
with the referencing objects. This gives us four points to explore and compare. Figure 2 shows the four
possibilities, alongwith the query processing (QP) strategies (tobe explained later) for each option.

Cached

Representation

-t- Values

None

DFSCACHE

DFS

BFS

BFSNODUP

No

^^^^^^^^^^^^^^^^^^^

DFSCLUST

Yes

Clustering
DFS: Depth-First Search

BFS: Breadth-First Search

BFSNODUP: BFS with Duplicate Removal

DFSCACHE: DFS in presence of Caching

DFSCLUST: DFS in presence of Clustering

Figure 2: Representations and QP StrategiesStudied in this Paper

We do not explore the case when there is both clusteringand caching, for reasons mentioned later.

We will use the following query toexplain the query processing strategies available tous:

retrieve (group.members.name) where

group.name = "elders" or

group.name = "children"

which asks for the names of the members ofthe groups, elders and children, using a multiple-dot notation
similar to [STON86, JHIN88]. This query has characteristics similar to transitive closure queries on arbi
trary networks. Instead ofexploring all subobjects that are transitively related to the selected objects, the
above query requires only objects that are directly related to the selected tuples. Queries involving more
than two dots in the target listrequire more levels ofrelationships tobeexplored.

We next discuss in detail the implications on query processing ofeach ofthe representation possibili
ties shown in Figure 2.

3.1. No Caching, No Clustering

There are two broad techniques for obtaining the transitive closure —depth-first exploration (gen
erally termed as recursion), and breadth-first exploration (generally termed as iteration) [BANC86]. From
the discussion above, each ofthese has acorresponding strategy for processing queries on complex objects.

[1] DFS: For each OID of "elders", fetch the corresponding subobject from the relation person, and
return its name. Repeat the same for the OID's of "children".

[2] BFS: Collect the OID's from qualifying tuples ofgroup into a temporary relation temp whose single
attribute is OID. Next execute thefollowing query:

retrieve (person.name) where
person.OID = temp.OID

The optimal joining strategy in this query depends on the sizesof the relations involved. Iterative
substitution is best when temp is small In that case, subobjects arefetched exactly as inDFS, and
consequently BFS is likely toperform slightly worse than DFS (due tothe extra cost of forming the
temporary relation). In contrast, merge-join is the optimal strategy when the size ofthe temporary is
large. Clearly BFS will outperform DFS in this case. Consequently, whenever we talk ofa competi
tiveBFSstrategy, we implya merge-join.

[3] If subobjects are shared, then temp in BFS may have some duplicates. In that case it may be
profitable toeliminate the duplicates before executing the above query, and we call the correspond
ing strategy BFSNODUP.

3.2. Value Caching, No Clustering

As discussed before, caching helps save some orall of the page accesses required for fetching the
values ofsubobjects. In the presence ofcaching, a depth-first processing ofthe query requesting names of
elders and children will proceed thus:

Check if the value of the subobjects of "elders" is cached. If so, fetch theattribute name from the
cache. Otherwise, fetch the subobjects from the person relation (this iscalled materialization), cache
their values, and return the attribute name.

-8-

Repeat the above for "children".

We define a unit of subobjects to be a collection of subobjects which belong to one relation and
which are referenced by oneobject. Inourexample database, there are three units, one for each of thethree
complex objects shown. It isbest tocache the values of the subobjects ofaunit together inone place, since
they will often be needed together.

It is easy tosee that in the depth-first strategy outlined above (henceforth called DFSCACHE), units
can bematerialized and cached if they are not already cached. In aquery processing strategy utilizing the
cache, it is important that the cache is periodically "refreshed" (this aspect is called cache maintenance).
If this isnot done, then updates will invalidate the units in the cache, and it will dwindle, leading to poor
performance.

In contrast toDFSCACHE, abreadth-first approach toquery processing will prevent us from caching
any freshly materialized unit. Tosee this, consider the following breadth-first strategy:

Check if the unit for "elders" is cached. If not, append the corresponding OID's to temp. Do the
same for "children". In the worstcase, temp willcontain OID's for bothchildren and elders.

Now execute the following query:

retrieve (person.all) where

person.OED = temp.OID

If this query is processed by a merge join, then thetuples willbereturned sorted on theOID's. Since there
is no relationship between ordering of OID's and ordering of units, the identity of the units would be lost
Consequently, in the basic BFS strategy, we cannot cache anything. Modifications to the basic strategy can
permit cache maintenance, but the corresponding strategies lose the competitiveness of a breadth-first
approach. Of course, if the above query is processed using iterative substitution, the performance will be
slightly worse than DFSCACHE. Hierefore, abreadth-first query processing strategy in the presence of
caching is unviable, whatever be thejoining strategy.

Updates to the subobjects invalidate cached values. We employ a very simple invalidation scheme.
Associated with each subobject is a lock called an invalidation lock (I-lock, for short) for each unit that it
belongs to. Consequently, when a subobject is updated, weinvalidate all the (cached) units whose Mocks
are held by the subobject inquestion. Details of this implementation can befound in [JHIN88, STON87].

In [JHIN88] we found that for a procedural representation, the parameters that determine the relative
performance of inside and outside caching are the frequency ofupdates, the level of sharing, and the size of
the cache. None of these isaffected bythe choice of the primary representation. Consequently, inside cach
ing should also lose tooutside caching over most of the parameter space when OID representation isused.
Therefore werestrict our attention in this study tooutside caching.

3.3. Clustering, No Caching

Clustering subobjects with their referencing objects is often proposed and its virtues have been pro
pounded in several studies (e.g., [BANE86]). In our example, it means omitting group and person, and
instead storing all objects and their subobjects in one relation called cluster. A depth-first processing of
the query requesting the names of elders and children is straightforward (the general strategy is called
DFSCLUST).

In a breadth-first approach, cluster is scanned for the qualifying objects (in this case, "elders" and
"children"). The OID's from these qualifying records are then collected in temp, and the following query
is executed:

retrieve (cluster.name) where

cluster.OID = temp.OID

For efficient merge join to occur for this query, cluster needs to be sorted on OID. However, if cluster
stores each subobject with (one of) its parents, thenit is impossible to ensure that the relation is sorted on
OID. This can be seen from our example database. If we choose to cluster person tuples with group
tuples, wecan ensure an order among the tuples from group, and an order among the tuples of person that
are clustered with the same tuple from group, but we cannot ensure a global OID order. Consequently a
BFS strategy in the presence of clustering becomes unviable.

The effectiveness of clustering depends on the level of sharing of subobjects between the objects.
Consider the following sets:

OS ={(pj)\s is a subobject of o)

OU = {(oji)\object o contains unit u)

US = {(uj)\unit u contains subobject s)

Then OS can also be expressed as:

OS={(pj)\(o,u)eOUK(uj)eUS}

Two objects, o i and o2,share thesame subobject s if oneof the following twoconditions holds:

[1]

3 us.t. (oijt)eOUh(o2Ji)eOUh(uj)eUS

i.e. the two objects share the unit containing the subobject The expected number of objects contain
ing the same unit is called UseFactor.

[2]

3 uxji2s.t. (oi#i)e OUi(o2,U2)e OUhiu^e USh(u2f)e US

i.e. the units in the two objects share the subobject The expected number of units that share the
same subobject is called OverlapFactor.

From [1] and [2], the expected number ofobjects that share the same subobject {ShareFactor) isgiven by:

ShareFactor =UseFactor^OverlapFactor

Let

C ={(oj)\subobject s is clustered with object o)

be the clustering assignment with C c S. Depending on the values of UseFactor and OverlapFactor,
clustering either succeeds or fails. Three cases arise:

[1] ShareFactor=\: (Both UseFactor and OverlapFactor are unity.) Each subobject belongs toexacdy
one parent object, and is best clustered with it This is obviously the ideal condition for clustering,
and here C -S.

10

[2] OverlapFactor=1: Subobjects ina unit areshared in their entirety byanexpected UseFactor parent
objects. Furthermore, no other object shares the subobjects in this unit Thus if we cluster these
subobjects with oneof its parents (say o), theother parents canaccess thesubobjects by fetching the
physically clustered page(s) near o. Thus while the ideal situationis achieved for o, the situation for
other parentsis not too bad, since theirsubobjects are stillphysically clustered, albeitelsewhere, and
can be fetched in one random access. Thechoice of o depends on theaccess patterns. In theabsence
of any knowledge, o should randomly chosen from UseFactor possibilities, and this is the approach
used in our study.

[3] OverlapFactor >1: With an increasing OverlapFactor, it is impossible to ensure that the subobjects
of an object o are either physically clustered with it or physically clustered together somewhere
else.To see this,considerthe following assignments of subobjects to units:

U-i = {s-zs-ijojiji}

Uo={So,S\^2^3*Sa}

Ui^fsisijifsJd

where Ut refers to /* unitandsj refers to the jA subobject Further assume thatUseFactor = 1and
hence U% occurs in the object o,. Letusassume that in clustering subobjects with their parents, we
assign subobjects of U-\ and U\ to their respective parents before treating C/0. Consequently the
subobjects of oq(which has the unitUo) are now present in two places — some with o~\ and therest
with o\. Thus to fetch the subobjects of Go, we have todoat least two random accesses. The larger
the OverlapFactor, the worse this situation is likely tobe. Inanextreme case, no two subobjects of
anobject areclustered together, andhence a random access isrequired foreach subobject

3.4. Caching, Clustering

Both clustering and caching attempt to improve performance by reducing the number of page
accesses required to fetch the values of thesubobjects. However, theapproaches taken in the two cases are
different Thus it does notmake sense tocombine the two, and we ignore this representation option.

4. Experimental Setup

Theapproach used by us todo a performance comparison between various strategies wasthefollow
ing:

[1] Store a close approximation to the database structures in a relational DBMS.

[2] Map thequeries and the processing strategies into corresponding queries andexecution plans on the
DBMS.

[3] Runa sequence of queries (containing a mix of retrieves andupdates, satisfying some parameters) on
thedatabase andnote theaverage I/Otraffic. This average I/Ocostwastheperformance yardstick.

We used commercial INGRES to store our databases. A main memory buffer size of 100INGRES
data pages was used throughout our study. The relations involved inourexperiments were the following:

11

ParentRel (OID^etl ,rct2,ret3,dummy,children) /* This contains the objects */
ChildRel (OID jetl ,ret2,ret3,dummy) /* This contains the subobjects */
CIusterRel (cluster#,OID,retl ,ret2,ret3,dummy.children)

/* In presence ofclustering, this contains both the objects and the subobjects */
Cache (hashkey.value) /* In presence of caching, this contains the cached values */

Rctl, ret2 and ret3 are integer fields and occur in the target lists of the retrieve queries. Dummy isachar
acter field which serves to "pad" atuple to adesired width. Each tuple of ParentRel is acomplex object
and the OID's of its subobjects are kept in its "children" attribute (which is a character field). Both
ParentRel and ChildRel are structured as B-trees [RTI86] on OID. This facilitates the merge-join in BFS.

CIusterRel has the union of the attributes of ChildRel and ParentRel. In order to ensure that the
subobjects assigned toan object are physically clustered with it an additional attribute, cluster*, isneeded.
CIusterRel is structured as a B-tree on cluster*. An object and the subobjects clustered with it have the
same cluster*, and hence are physically clustered in CIusterRel. In order to randomly access an object
with a given OID, we need an index on ClusterReLOID. In our environment there are no insertions or
deletions, and hence theindex is static. Consequently, it is maintained asan isam structure.

Cache is the relation used to store the cached units. Associated with each unit isahashkey which is
a function of the concatenation of the OID's in that unit Cache is maintained asa hash relation, hashed
on hashkey.

The character fields in the above relations (dummy, children and value) are implemented as fixed
length attributes, but with the blanks "compressed" [RTI86]. This permits implementation of variable
length records. A typical length of a ParentRel tuple is 200 bytes, and of a ChildRel tuple, a hundred
bytes. In all our experiments, the cardinality of ParentRel was fixed at 10,000 tuples. The results for
larger database sizes can be obtained from scaling the results at this cardinality, provided a proportionally
larger cache and main memory buffer isused. The size of the other relations depended on the parameters,
but a typical database occupied around 10MBytes.

Let SizeUnit bethe expected number of subobjects inaunit SizeUnit was fixed at 5 in this study.
Thecardinality of ChildRel isdetermined by the following equation:

IChildRel I= 'Par?ntRel'^SizeUnii _ 50000 m
ShareFactor ShareFactor *- '

The tuples of ParentRel and ChildRel were assigned unique OID's and random values for retl, ret2, ret3
and dummy. LetNumUnits bethenumber of distinct units present inParentReLchildren. Then,

NumUnits = 'ffrentRell = 10000
UseFactor UseFactor

From IChildRel I subobjects, NumUnits units were randomly generated. These units were then randomly
assigned to the objects in ParentRel. The attribute ParentReLchildren stores the OID's of the subobjects
belonging to theunitassigned to thecorresponding object

The otherparameters relevant to this studyare:

[1] Pr(UPDATE): This is the frequency with which updates occur in a query sequence. Each update
modifies a fixed number of tuples of ChildRel in place.

The rest of the queries in a query sequence areof the form:

-12

retrieve (ParehtRel.children.attr) where

vail < ParentReLOID < val2

with attrbeing randomly chosen (for each query separately) from retl, ret2,ret3. In the presence of
clustering, the updates and the retrieve queries are translated into equivalent queries on CIusterRel.

Pr (UPDATE) was varied between 0 and 1.

[2] NumTop: This is the number of ParentRel tuples that are selected by a retrieve query in a sequence
and depends on (val2 - vail). It was varied between 1 and 10,000. Different queries in the same
sequence select different objects (by randomly chosing vail). Consequently, each complex object
has an equal likelihood of being accessed. Hence the clustering assignment C, is randomly chosen
from the set of possibilities.

[3] SizeCache: This is the maximum number of units that can be cached, i.e., the upper bound on
ICacheI. Since the cachetakesup disk space, it is reasonable to place a boundon size of the cache,
and hence the parameter. SizeCache was fixed at 1000 units for this study, making the cache about
10% of a typical database size in our environment

[4] OverlapFactor: The expectednumberof unitssharing a subobject was set at one for the first set of

experiments which are discussed in Section 5. This parameter setting clearly favors clustering. In
Section 6 we describe anexperiment where OverlapFactor wasvaried.

[5] UseFactor: The expected numberof objects sharing a unit was varied between 1 and 50, with the
default being 5.

The performance of thequery processing strategies listed inFigure 2 was studied under varying con
ditions using adriver program written inEQTJEL/C [RTI861. The driver first generated a sequence of ran
dom queries satisfying some parameters. Depending on the query processing strategy being studied, an
optimal plan for each query in the sequence was then generated. The plan was then run on the database,
and the average I/O performance noted. The I/O activity for a sequence of queries was measured using
some system constants in commercial INGRES that can be queried by a user program. The number of
retrieve queries in a sequence wastypically 1000.

5. Performance Results

This section discusses the performance results that were obtained from the experiments executed.
Recall that there are five query processing strategies under consideration in this study. In Section 5.1 we
discuss the three strategies in theabsence of caching and clustering. We show that onlyone(BFS) has wide
applicability and thus discard DFS and BFSNODUP. That leaves us with three strategies (BFS,
DFSCACHE andDFSCLUST), whicharecompared in Section 5.2.

5.1. DFS, BFS, or BFSNODUP?

Figure 3 plots the cost of these three algorithms with varying NumTop.. It is obvious that DFS is a
loser when NumTop exceeds 50 or so. This is because DFS implements a nested-loop joinbetween Paren
tRel andChildRel, whereas BFS can implement a merge join. At lowNumTop, thecostof forming a tem
porary in BFS is significant and hence it performs slightiy worse than DFS. In [GUTT84], a similar
analysis is done for VLSI CAD databases and theconclusion reached is that for NumTop = 1,DFS isbetter
than BFS.

-13-

10000

♦ 1000:

BFSNODUP

10000

NumTop

Figure3:Performance comparison without clustering or caching

(ShareFactor=5)

Theothernotable feature of thisgraph is thatBFSNODUP is not much betterthansimple BFSin our
environmentThus it is not worthwhile to tryand eliminate duplicates, even though ShareFactor =5. It is
clear that the benefits of BFSNODUP will increase withan increase in the numberof levelsexplored. But
our experiments have shown that the benefitso obtained is marginal at best Consequently, BFSNODUP is
not a strategy worth pursuing. However, [GUTT84, BANC86] discuss cases in other environments where

removing duplicates pays off.

In conclusion, BFS is the strategy of choice when there is no caching or clustering, and this is espe
cially trueat higher NumTop values. A database system supporting complex objects would be expected to
implement two or threequery processing strategies that have relatively wideapplicability. SinceDFS and
BFSNODUPdo not fall into this category, they are not considered from now on.

5.2. BFS, DFSCACHE, or DFSCLUST?

In this subsection we discuss the relative performance of the threeremaining queryprocessing stra
tegies — BFS, DFSCLUST and DFSCACHE. Three parameters critically affect these strategies. NumTop
determines the relative performance of breadth-first and depth-first approaches. ShareFactor is central to
the performance of clustering. The frequency of updates, Pr(UPDATE), is a significant determinerof the
performance of caching.

Figure 4 plots a three dimensional graph showing the regions where each algorithm performs the
best as a function of the three parameters mentioned above. Thegraph wasobtained by noting the I/Ocost
of eachstrategy overapproximately 300points in theenclosing 3-Dspace, determining thebeststrategy at
each point, and extrapolating these points into regions. DFSCLUST outperforms the other two under the
region covered by the surface ABFGHCA. To the right of the surface marked by BCED,and above the
DFSCLUST region is the region where BFS is the best. In the rest of the region, DFSCACHE is the
optimal strategy.

-14

0.86

ShareFactor

Pr(UPDATE)

Figure 4: Regions whereeach strategy performsthe best

as functions of ShareFactor, NumTop andPr(UPDATE)

We next explain the projections of this graph along the various faces of the enclosing cuboid. This
will help in understanding the regionsof space.

5.2.1. Pr(UPDATE) -> 1

This is the right back face in Figure 4. When updates occur with such high frequency, any caching
strategy is unviable. The reason for this is two-fold. First updates invalidate cached units and hence the
cost of invalidation has to be paid. The second effect of increased frequency of updates is a decreased
number of units thatare cached. ConsequenUy, theretrieve-only queries find fewer cached units andhave
to materialize more units. Thusthecostof theretrieve queries goes up.

With the above two factors, caching is clearly a loser when Pr(UPDATE) -» 1. Theonly question
then remains is whether or not to cluster? We turn to two graphs to answer this question. The cost of a
query is separated into two components — the costof accessing the tuples of ParentRel (ParCost), and
the cost of fetching the subobjects (ChildCost). Consider the case where NumTop=200. Figure 5(a) plots
the ParCost,ChildCost, and TotCost-ChildCost+ParCost as a function of ShareFactor for DFSCLUST,
and Figure 5(b) does the same for BFS.

In Figure 5(a), it is clear the ParCost increases with decreasing ShareFactor. This is because as
ShareFactor decreases, we approach ideal clustering. As a result more and more tuples of ParentRel
have their subobjects clustered with them; consequenUy, the cost for accessing several contiguous tuples of
ParentRel (which the retrieve queries in the sequence ask for) increases. Thus, one disadvantage of clus
tering is the increase in costof accessing contiguous objects.

500i

400- ~-

300—fy~

200-

100-

ShareFactor

DFSCLUST

15

! ParCosi
1 i i i i i i t

123456789 10
•

ShareFactor

BFS

Figure 5: The cost breakups as a function of ShareFactor

In a trend opposite to ParCost, ChildCost decreases as ShareFactor decreases. This is to be

expected since with a decrease inShareFactor, more and more tuples of ParentRel have their subobjects
clustered with them, and thus fetching the corresponding subobjects often involves no additional I/O's.
The trend in total cost is dominated by ChildCost.

In Figure5(b), we note thatParCost is relatively unaffected by ShareFactor for BFS.The interest
ing phenomenon is the decrease in ChildCost with an increase in ShareFactor. This is because an increase

inShareFactor causes a decrease in IChildRel I (from eqn. (1)). ConsequenUy, the cost of the merge join
in BFS decreases. Heretoo,thetrend of total costis dominated by ChildCost.

If weplot the total costs for BFS and DFSCLUST on thesamegraph, the trend in DFSCLUST is an
increase incost with anincrease inShareFactor, and the reverse is true forBFS. ConsequenUy, there exists
a ShareFactor (here 4.7), beyond which BFS is better than DFSCLUST.

It can be shown that as we increase NumTop, the boundary between BFS and DFSCLUST shifts to
lower values ofShareFactor. This isbecause of the inherent disadvantage of DFS strategies at higher Num
Top.

From the above discussion, the back face of the cuboid in Figure 4 is self-explanatory. For large
NumTop, clustering is the way to go only if ShareFactor is very close to 1. Of course, if ShareFactor is
exactly one, thenclustering willbeatanystrategy, regardless of the valueof NumTop.

5.2.2. Pr(UPDATE) -* 0

Clearly, caching is viable here. From the discussion above, clustering continues to be viableat low
ShareFactor. However, here the upper boundary of the DFSCLUST region isShareFactor=S as opposed to
ShareFactor=24 on the back face. Thus caching cuts into the competitiveness of clustering at low Num
Top.

-16

ShareFactor affects caching directly. In outside caching, a cached unit is shared by all objects con
taining that unit. ConsequenUy, for a constant SizeCache, an increase in ShareFactorcauses an increase in

the number of objects which have their units cached. This results in an improved performance of
DFSCACHE.

At large values of NumTop, DFSCACHE loses to BFS because of the inherent disadvantage of a
depth-first strategy.

5.23. Very High ShareFactor

Consider the topface of thecuboid. Clustering is useless here, and theboundary shows that caching
wins if NumTop is low and/or Pr(UPDATE) is low. The reasons for this are obvious.

5.2.4. NumTop —» 1

This is thebackleft faceof thecuboid. It is clearthattheboundary between DFSCLUST andBFS is
independent of Pr(UPDATE). In the absence of caching, this face would have been divided into two
regions separated by the lineShareFactor=2A. Above this line,BFS would be better, and belowit cluster
ingwould win. However, in thepresence ofcaching, theregions forBFS andDFSCLUST shrink.

S3. Summarizing the 3-D plot

In summary, clustering is viable only when the sharing level isrelatively low. Even when clustering
isbetter than BFS, it isoften not better than DFSCACHE, especially ifPr(UPDATE) is low. Two reasons
have been identified for the poor showing ofclustering in some circumstances —the inapplicability ofa
breadth-first search, and the complications due tosharing ofsubobjects.

We have also shown that caching wins in many cases. Hence our results are similar to what were
obtained in our study on procedural representation [JHTN88]. However, the query processing strategy asso
ciated with caching suffers from a drawback. If we try to maintain the cache (i.e. cache freshly material
ized units), we have to abandon a breadth-first approach. As our results show, this leads to a poor perfor
mance whenNumTop is large.

To alleviate this problem, the following SMART strategy which makes the best use of caching is
suggested:

When the query has a low NumTop, use DFSCACHE, and maintain the cache. However, if
NumTop >N (where 7V=300 in our experiments), use a breadth-first strategy, and do not try to
maintain cache. In other words, scan the NumTop tuples and collect into temp the OID's
whose units are not cached; and then implement the merge-join. The status of the cache
remains invariant during die execution of the breadth-first strategy.

If the queries against the database have a good mix (some low NumTop queries, and some large NumTop
queries), then the above solution will make caching outperform BFS for most values ofNumTop, provided
Pr (UPDATE) isnot too high. This is because when SMART uses a breadth-first approach, the size ofits
temporary relation isno larger than the temporary used inBFS (since some units may becached, and hence
their OID's need not be included in the temporary relation). Ofcourse, for low NumTop, SMART isidenti
cal to DFSCACHE, and hence better than BFS. However, if the database sees very few low NumTop
queries, SMART will not be able tomaintain cache and hence will degrade in performance.

17

6. Other Cases

We now discuss some performance results when the parameters were different from the experiments
described in the previous section. We first study the effect of increasing OverlapFactor. Next the conse
quences of subobjects belonging to more than one ChildRel are discussed.

6.1. OverlapFactor > 1

Recall that as OverlapFactor is increased, it becomes more and more difficult in clustering to keep
the subobjects of a unit clustered together in one place. ConsequenUy, DFSCLUST deteriorates. Our next
graph (Figure 7) shows exactiy that Pr(UPDATE) is assumed to be 1, so thatDFSCACHE doesnotenter
the picture.

Cost(DFSCLUST)
Cost(BFS)

1000

NumTop >
Figure7:Effectof OverlapFactor on clustering
(ShareFactor is fixedat 5 for both die curves)

It plots C05t^^^)T^ vs. NumTop for two cases: 1) OverlapFactor=l, UseFactor=5 and 2) Overlap-
Factor^, UseFactor=l. In both the cases, each subobject is shared by an expected number of 5 tuples of
ParentRel, but in different ways.

There is little difference in theperformance of BFS in thetwocases. ConsequenUy theratioreflects
the effects on DFSCLUST. The curve for OverlapFactor=5 is considerably above that of OverlapFac-
/or=l. This demonstrates thedegradation in theperformance of clustering strategies with increasing Over
lapFactor.

Furthermore, the value of NumTop beyond which BFS beats DFSCLUST moves from B to A as
OverlapFactor is increased from 1 to 5. Thus in Figure 4, it canbe demonstrated that theprojection curve
on the plane Pr(UPDATE)=l moves lower with an increasing OverlapFactor. Similarly, thevolume occu
pied by me clustering region decreases.

In summary, there exist object-subobject assignments where clustering performs even worse than
what was demonstrated before.

18

6.2. Subobjects from different relations

Increasing die number of relations from which the subobjects of ParentRel are drawn (called Num-
ChildRel) has little effect onDFS strategies. Consequendy, ithas little effect oneither clustering orcaching
strategies. However, it affects BFS significandy.

As BFS scans through qualifying ParentRel tuples, it encounters OID's from say,n £ NumChildRel
relations. It then needs to execute n queriesof the form:

retrieve (ChildRel[i].attr) where

ChildRel[i].OID = temp[i].OID

where 1£ i < n and temp[i] keeps the OID's from ChiIdRel[i] relation. Thus one might expect that BFS
deteriorates asNumChildRel increases. This is indeed the case, butsurprisingly from theexperiments con
ducted, it turns out thatthe deterioration is far slower than expected.

As NumChildRel increases, so does n. But simultaneously, there is a decrease in the cardinalities of
each ChildRel (this can be shown to be thecase if other parameters are kept constant). Furthermore, there
is a decrease in the sizeof each temporary. ConsequenUy, the cost of each of the n queries goes down —
almost balancing out any effects of increasing number of queries that need to be executed. This continues
till NumChildRel approaches NumTop. At that pointeach temporary contains only oneortwoOID's, and
BFS consequendy deteriorates.

Summarizing, noneof ouralgorithms is significandy affected by NumChildRel, at least if it is much
less thanNumTop.

7. Conclusions

In this study we first identified three broad approaches torepresentation of complex objects in data
base systems — procedural, OID's, and value-based. We also identified the caching possibilities, and then
presented a framework in which performance comparisons between various representations can be made.
The rest of the paper discussed the alternatives in OID representation, and the relative merits of each of
them.

Since the comparisons are performance based, we established a simulation framework in which
experiments were run todetermine the cost of each strategy, given the parameters. We also identified a few
parameters which were central tothe strategies under consideration. From the experiments, wereached the
following conclusions.

In the absence of caching and clustering, a breadth-first approach to query processing is the best.
Furthermore, it isnot worth the effort to try and remove duplicates in an intermediate step in this strategy
forquery processing.

Clustering works, but only in a few circumstances. In most of the parameter space, it is better to
leave the objects and the subobjects in their respective physical locations. Outside caching wins when
updates occur with low tomoderate frequency, and queries request subobjects for only a few objects. It is
also desirable to occasionally do away with the "cache maintenance" aspect ofretrieve-only queries inthe
presence of outside caching. In the presence of agood query mix, this helps maintain the competitiveness
of caching toevenhigher number of object requests.

There exist object-subobject assignment distributions where clustering performs even worse than
what the first set of experiments suggested. This happens when units of subobjects are overlapping.

-19-

Therefore, clustering isappropriate only if subobjects are not shared, or, at worst they are shared in units
—any random sharing is likely tolead topoor performance for clustering.

Finally, the fact that subobjects are drawn from a varied number of relations has little effecton the
performance of any algorithm.

References

[BANC86] Bancilhon, F. and Ramakrishnan, R., "An Amateur's Introduction to Recursive Query Pro
cessing Strategies," Proc. ACM-SIGMODConf., 1984.

[BANE86] Banerjee, J. and Kim, W., "Clustering a DAG for CAD Databases," MCC Technical Report
Number DB-128-85, Microelectronics and Computer Technology Corporation, Feb. 1986.

[BANE87] Banerjee, J., et al., "Data Model Issues for Object-Oriented Application," ACM Trans, on
Office Info. Sys. 5(1), Jan. 1987.

[BAT084] Batory, D.S., and Buchmann, AJ., "Molecular Objects, Abstract Data Types, and Data
Models: A Framework," Proc. VLDB, 1984.

[BAT085] Batory, D.S., and Kim, W., "Modeling Concepts for VLSI CAD Objects," ACM Trans, on
Database Systems, 10(3),Sept 1985.

[CARE88] Carey, M. et al., "A Data Model and Query Language forEXODUS," Proc. ACM-SIGMOD
Conf., 1988.

[COPE84] Copeland, G. and Maier, D., "Making Smalltalk a Database System," Proc. ACM-SIGMOD
Conf., 1984.

[COPE85] Copeland, GJ». and Khoshafian, S.N., "A Decomposition Storage Model," Proc. ACM-
SIGMOD, 1985.

[GUTT84] Guttman, A., "New Features for a Relational Database System to Support Computer Aided
Design," Memo. UCB/ERL M84/52, University of Qtlifornia, Berkeley, 1984.

[HORN87] Hornick, M.F. and Zdonik, S3., "A Shared, Segmented Memory System for an Object-
Oriented Database," ACM Trans, on Office Information Systems, 5(1), Jan. 1987.

[JHIN88] Jhingran, A., "A Performance Study ofQuery Optimization Algorithms on a Database System
Supporting Procedures," Proc. VLDB, 1988.

[KHOS86] Khoshafian, S.N. and Copeland, G.P., "Object Identity," Proc. ofOOPSLA, 1986.

[KHOS87] Khoshafian, S.N. etal., "AQuery Processing Strategy for The Decomposed Storage Model,"
Proc. Conf. on Data Engr., 1987.

[KIM87] Kim, W. et al., "Operations and Implementation of Complex Objects," Proc. Conf. on Data
Engr., 1987.

[LORI85] Lorie, R. et al., "Supporting Complex Objects ina Relational System for Engineering Data
bases," in Query Processing in Database Systems, eds. Kim, W., Reiner, D. and Batory, D.,
Springer-Verlag, 1985.

[ROWE87] Rowe, L.andStonebraker, M., "The POSTGRES Data Model," Proc. VLDB, 1987.

[RTI86] Relational Technology Inc. INGRES Release 5.0Reference Manuals, 1986.

20

[SCHE86] Schek, H.-J. and Scholl, M., "The Relational Model with Relation-Valued Attributes," Infor
mation Systems, 11(2), 1986.

[SMIT77] Smith, J.M. and Smith, D.CP, "Database Abstractions: Aggregation and Generalization,"
ACM Trans, on Database Sys., 2(2), June 1977.

[STON86] Stonebraker, M. andRowe, L., "Design ofPOSTGRES," Proc. ACM-SIGMOD, 1986.

[STON87] Stonebraker, M. et al., "Extending a Database System with Procedures," ACM Trans, on
DatabaseSys., 12(3), Sept 1987.

[VALD86] Valduriez, P.et al.,"Implementation Techniques for Complex Objects,"Proc. VLDB 1986.

[ZANI85] Zaniolo, C, "The Representation and Deductive Retrieval of Complex Objects," Proc.
VLDB, 1985.

	Copyright notice1989
	ERL-89-18

