

Copyright © 1989, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

RETIMING AND RESYNTHESIS: OPTIMIZING

SEQUENTIAL NETWORKS WITH

COMBINATIONAL TECHNIQUES

by

Sharad Malik, Ellen M. Sentovich, Robert K. Brayton,
and Alberto Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M89/28

10 March 1989

x

RETIMING AND RESYNTHESIS: OPTIMIZING

SEQUENTIAL NETWORKS WITH

COMBINATIONAL TECHNIQUES

by

Sharad Malik, Ellen M. Sentovich, Robert K. Brayton,
and Alberto Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M89/28

10 March 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

RETIMING AND RESYNTHESIS: OPTIMIZING

SEQUENTIAL NETWORKS WITH

COMBINATIONAL TECHNIQUES

by

Sharad Malik, Ellen M. Sentovich, Robert K. Brayton,
and Alberto Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M89/28

10 March 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Retiming and Resynthesis: Optimizing Sequential Networks with
Combinational Techniques

Sharad Malik Ellen M. Sentovich Robert K. Brayton
Alberto Sangiovanni-Vincentelli

Department of Electrical Engineering and Computer Science
University of California, Berkeley, CA 94720

February 23, 1989

Abstract

Sequential networks contain combinational logic blocks separated by registers. Application of combinational
logic minimization techniques to the separate logic blocks results in improvement that is restricted by the
placement of the registers; information about logical dependencies between blocks separated by registers is not
utilized. Temporarily moving all the registers to the periphery of a network provides the combinational logic
minimization tools with a global view of the logic. We propose an algorithm for optimizing a sequential network
by moving the registers to the boundary of the network using an extension of retiming [1,2], resynthesizing
the combinational logic between the registers using existing logic minimization techniques, and replacing the
registers throughout the network using retiming algorithms.

1 Introduction

Over the past decade, combinational logic optimization has attained a significant level of maturity. The problems
and approaches in combinational logic synthesis are well understood: almost fully for the two-level logic case (e.g.
[4]), and to a lesser extent in the multi-level logic case (e.g. [3,5]). In comparison, sequential synthesis is just
beginning to be recognized as a problem domain in its own right. Most existing efforts in sequential synthesis can
be classified into three categories. The first approach is to consider the portions of combinational logic between
register boundaries and use combinational logic optimization techniques on these separate blocks. However, this
is restrictive inasmuch as it does not permit the interactions between gates separated by register boundaries to
be examined in the optimization process. The second approach ([1,2]) involves moving registers across portions of
combinational logic in order to minimize the cycle time and the number of registers used. This procedure, termed
retiming, does not change any of the combinational logic blocks. Thus, it does not consider further optimizations
that could have been obtained with that option. The third approach considers only a special class of sequential
circuits, viz. finite state machines(FSMs). Operations on state transition graphs(STGs) and results fromautomata
theory have been used to optimize implementations of STGs. One drawback with this approach is that all the
manipulations and optimizations are attempted at the STG level and it is not clear how this will be reflected in
the final gate-level implementation of the machine. Researchers have proposed different cost criteria such as the
number of edges and the number of states in the STG as a metric for operations at the STG level. Unfortunately,
none of these is a consistent reflection of the gate-level complexity.

In this paper we describe a new approach towards optimizing sequential circuits. As in [1,2] we assume a syn
chronous implementation with edge triggered registers. We characterize the maximal sub-network in the sequential
network for which the registers can effectively be ignored and the sub-network be considered as a combinational
block. This permits existing combinational logic optimization techniques to be used on this block. This approach
is more powerful than the first of the approaches stated above, since it examines interactions between portions of
logic separated by registers. As a result, the optimization process makes full use of dependencies between gates.
Moreover, we guarantee that it is complete, i.e., we find the largest sub-network for which we can do this opera
tion. This ensures that we do not miss any optimization that we couldobtain by considering interactions between

gates. Converting this sub-network to a combinational logic block can be viewed as a retiming process in which
all the registers have been pushed to the periphery of the sub-network. However, our technique is more powerful
than conventional retiming. We permit negative registers to be pushed to the periphery. This is equivalent to
temporarily "borrowing" registers from the environment, and is a legitimate operation as longas these registers are
"returned" to the environment at the end of the optimization process. This additional allowance is very powerful
since it permits a larger portion of the logic to be viewed as a single block than was permitted by conventional
register movements and retiming. The resynthesis phase operates on this combinational logic block and resynthe-
sizesit according to a specified cost function. This could be minimizing the area, the delay or meeting a particular
area/delay tradeoff. Finally, we re-distribute the registers in this combinational block. We guarantee that there
will be some legal re-distribution of the registers even with the negative registers, i.e., we will be able to return the
registers that were borrowed from the environment. The re-distribution can be done while satisfying constraints
such as minimizing the number of registers subject to a specified cycle time (if theseconstraints are satisfiable) by
using the algorithms described in [2].

The sequential circuit corresponding to a finite state machine offers an interesting case to apply our theoretical
formulation. In this case any cut through the combinational logic that breaks the feedback cycle, results in a se
quential network that satisfies the conditions under which all the registers can be ignored. Thus, depending on the
cut we make, we can consider several different combinational blocks for combinational optimization. This is signifi
cantly different than the way combinational optimization has been used thus far in state machine optimization, viz.
considering only the cut at the registers. Weproposea Sliding Window Optimization technique that considers
a large number of these different combinational blocks. The efficacy of this technique is demonstrated through an
example. Next, the relationship between this optimization process and sequential redundancy is examined. Finally,
we look at the relationship between operations at the STG level, the state assignment problem and the operations
permitted by this resynthesis and retiming process.

The remainder of this paper is organized as follows. Section 2 gives the theoretical formulation and results
on which our approach is based. In Section 3 we consider the application of this formulation to the problem of
optimizing a circuit implementing a finite state machine. Finally, in Section 4, we conclude by summarizing our
approach and stating the future directions of our research in this area.

2 Theoretical Formulation

We modela sequential circuit by a directed acyclic graph called a communication graph1 where each vertexv
represents either

a) an input/ouput pin or

b) a combinational logic block.

The vertices in the graph are connected by directed edges. We place the restriction that each input pin has
no incoming edges and exactly one outgoing edge, and that an output pin has no outgoing edges and exactly one
incoming edge. An internal edge connects vertex u to vertex v if both u and v represent combinational logic
blocks, and the logic represented byv explicitly depends on the value computed at u. A peripheral edge connects
eitheran input pin to the logic block that represents that input or connects a logic block that computes the value of
an output to the corresponding output pin. Eachedge e has a corresponding weight w(e) representing the number
of registers between the two vertices it connects. An example ofa communication graph is shown in Figure 1. We
use the terms circuit, network, and graph interchangeably whenever there is no ambiguity.

A path is a sequence of edges and vertices that are connected in the graph. The weight of a path is the sum of
the weights of all the edges along the path. In Figure 1, the path from input ii to output ox has weight 2, while
the path from input t'2 to o\ has weight 3.

2.1 Retiming: An Overview

Retiming is an operation ona communication graph whereby registers are moved across logic blocks insuch a way
as to minimize the clock cycle or minimize the number of registers, while maintaining the behavior of the circuit.

This is related to the definition of a communication graph presentedin [1]

© ©
Figure 1: Communication Graph

© ©
Figure 2: Retimed Circuit

Retiming algorithms were first proposed by Leiserson et al [1,2]. The movement of registers can be quantified by an
integer L(v) (called the lag of v) for each vertex t>, which represents the number of registers that are to be moved
in the retimed circuit from the out-edges of vertex v to its in-edges.

Definition 1 A legal retiming is the assignment of an integer L(y) to each vertex such that

a) L(v) = 0ifv is an I/O pin and

b) w(e) + L(v) —L(u) > 0 where e is the edge from vertex u to vertex v.

The edgeweights of the retimed circuit, wr(e) —w(e)+L(v)—L(u), must be nonnegativefor all edgese, representing
a nonnegative number of registers connecting the two logic blocks. A legal retiming has been proven [l] to generate
a circuit that is functionally equivalent to the original circuit. The circuit shown in Figure 1 can be retimed by
assigning a lag of-1 to vertex c (L(c) = -1) and a lag of 0 to all other vertices. The resulting retimed circuit is
shown in Figure 2. Note that the path weights from the inputs to the outputs are unchanged.

2.2 Extensions to Retiming

The retimingoperationcan be extendedby introducing the concept ofa "negative" register, that is, an edge weight
in the graph that is negative. Allowing a negative edge weight n on a peripheral edge is equivalent to "borrowing"
n registers from the environment. The registers are "returned" by a subsequent retiming step whereby n registers
are forced to each edge with weight —n. Negative edge weights are allowed on the peripheral edges only. The

o-Q

o

Example Circuit

(a)

fc><

jp-{-
P4

e

Resjnthesize

(c)

Borrow

(b)

^D

Return

(d)

Figure 3: Example: Use of a Negative Register

Jp

k3

observation that the peripheral edge weights can temporarily take on negative values allows retiming operations
and subsequent optimizations that otherwise would not be possible. An example circuit is shown in Figure 3(a)
(in schematic drawings, combinational logic blocks are represented by conventional gate symbols or circles, and
registers by rectangles). If a lag of -1 is assigned to the gate g2, the edge between input e and gate gl would have
weight -1, as in Figure 3(b). This is equivalent to borrowing a register at input e. During subsequent combinational
resynthesis, the redundant connectionfroma to flfl allows the removal of gate flfl (Figure 3(c)). Finally the circuit is
retimed with L(g2) = 1. This returns the register borrowed at input e resulting in the circuit shown in Figure3(d).
This smaller implementation could not be obtained without allowing the edge weight to temporarily take on a
negative value.

We define in addition to legal retiming, a specific type of retiming that exploits the negative register concept
while pushing the registers to the boundaries of a network.

Definition 2 A peripheral retiming is a retiming such that

a) L(y) = 0 where v is an I/O pin and

b) w{e)-r L(v) —L(u) —0 where e is an internal edge from vertex u to vertex v.

A peripheral retiming moves all registers to the peripheral edges, leaving a purely combinational logic block between
two sets of registers. For example, by assigning a lag of 1 to vertex b in Figure 2, we obtain the circuit in Figure 4,

© ©
Figure 4: Peripherally Retimed Circuit

which is a peripheral retiming of both the circuit in Figure 1 and that in Figure 2.
Note that the definition of a peripheral retiming permits negative edge weights on the peripheral edges, which

corresponds to the negative register concept presented at the beginning of this section. Permitting negative registers
on peripheral edges is a legitimate operation.

Proposition 1 A circuit that undergoes a peripheral retiming and a subsequent legal retiming is equivalent to the
original circuit.

The proof of this has been omitted for brevity.

2.3 Conditions for Peripheral Retiming

Not all' circuit structures permit a peripheral retiming: the circuit in Figure 5 has no peripheral retiming because
the register cannot be is pushed to the output or to the input without leaving one of the internal edges with a
negative weight. For example, if the register is moved toward output 02, a negative weight is forced on the edge
between vertices c and e; if this negative edge is pushed toward the inputs, a negative weight is forced on the edge
between vertices b and e. A similar problem occurs when the register is pushed toward the inputs.

It is important to characterize the circuit structure that allows a peripheral retiming since these circuits can
undergo a resynthesis optimization on their entire combinational logic block. For. this purpose we define the path
weight matrix of a network.

Definition 3 A path weight matrix, W, of a sequential network is an m x n matrix, where

1) m is the number of inputs

2) n is the number of outputs

3) W{j = * if no path exists between input i and output j

4) Wj —~ if two paths between input i and output j have different weights

5) W{j = 2^, w(e) *f a" paths between input i and output j have the same weight.
path ii—Oj

In addition, we define the satisfiability condition on the path weight matrix, which is intimately related to the
existence of a peripheral retiming.

Definition 4 A matrix W is satisfiable if

a) Wij ? ~, Vi, Vj

Figure 5: Circuit with no valid peripheral retiming

b) Boa, 3fa, l<i<m,l<j<n, aif fa € / such thai for each Wy ^ *, Wij = cti + fa.
Finally, we state the relationship between a satisfiable path weight matrix and the existence of peripheral

retiming.

Theorem 1 A sequential network has a peripheral retiming if and only if its path weight matrix is satisfiable.

Note the significance of this result: it gives a complete characterization of the class of sequential circuits for
which all the registers can be pushed to the boundary allowing resynthesis on the combinational block.

A peripheral retiming involves finding a set of o/« and0's that satisfy the path weight matrix, and moving the
registers accordingly. The path weight matrix contains information about the number of registers between each
inputand each output. a< and fa dictate how many registers will appear at the ith input and the jth output edge
respectively, in the peripherally retimed circuit. A matrix that is satisfiable has no ~ entries, and has at least one
set of a'{8 and /3<s such that a* + fa = Wfj. For the circuit in Figure 1, the path weight matrix is as follows:

h 2
<2 3

and can be satisfied by choosing, for example, ori = 1, ct2 = 2, fa = 1, resulting in the circuit shown in Figure 4.
Note the the path weight matrix for the circuit in Figure 5, which had no' peripheral retiming, is as follows:

»i

*2

Ol 02

0 0

0 1

Applying the conditions necessary to satisfy the matrix, we obtain:

<*i + Pi = 0

<*l + fa = 0

<*2 + fa = 0

<*2+fa = l.
Subtracting Equation 1 from Equation 2:

fa-fa = 0.

Subtracting Equation 3 from Equation 4 we obtain

fa - fa = 1.

The contradiction implies that the path weight matrix is not satisfiable.

(1)

(2)

(3)

(4)

2.4 Legal Resynthesis Operations

Permitting negative registers on the peripheral edges is a legitimate operation as long as the resynthesized circuit
has a legal retiming. This leads us to ask the following question: can we guarantee that the resynthesized circuit
always has a legal retiming? To examine this further we need to define a synchronous communication graph2.

Definition 5 A synchronous communication graph is one in which each path between an input pin and an output
pin has a non-negative path weight.

The following theorem precisely states the conditions in which a legal retiming exists.

Theorem 2 A communication graph has a legal retiming if and only if it is synchronous.

Note that since the initial communication graph had no negative edges (it represents a real circuit) it is syn
chronous. Peripheral retiming preserves the synchronous property since retiming does not change the path weight
between an input and an output pin. However, resynthesis can change the communication graph and hence it may
destroy the synchronous property.

Let us see how this can happen. Let G\ be the communication graph before resynthesis and G2 be the graph
after resynthesis. If there was a path between input i and output j in G\ and there is a path between them in
G2, then the path weight for this path in G2 is or* + fa. This is the same as the path weight W{j in C?i. Since Gi
was synchronous, this path weight is non-negative. Now consider the case in which no path existed in G\ between
input t and output,; and resynthesis creates a path. The path weight for this path in G2 is 0^ + fa. Since a< and
fa may be negative and G\ did not force a non-negativity constraint on a,- + fa (since no path existed between
input i and output j), it is possible that a*+ fa may be negative, thus destroying the synchronous property. Note
that output j does not actually depend on input i; however, resynthesis created a pseudo-dependency between the
two.

An example is shown in Figure 6(a). This circuit has a peripheral retiming shown in Figure 6(b). Resynthesis
discovers that the three-input OR gate flfi, can be replaced by a two-input OR gate <fe (Figure 6(c)). The commu
nication graph for this circuit is not synchronous since there exists a path of negative weight (-1) between input a
and output outl. By Theorem 2 we know that this circuit has no legal retiming.

Thus, resynthesis must ensure that it does not introduce a pseudo-dependency with a negative path weight;
this is the only condition that the resynthesis must satisfy. This will not significantly reduce the usefulness of the
retiming and resynthesis approach for two reasons. First, based on existing combinational logic optimizations, it
seems relatively difficult (and hence less probable) for this to occur. Second, this condition can easily be checked
after resynthesis and the resynthesis rejected if this does happen. \

2.5 Summary of the Algorithm

Given a synchronous circuit with a satisfiable path weight matrix, we can optimize it by pushing the registers to
the boundary, resynthesizing the interior logic, and finally replacing the borrowed registers. The algorithm can be
summarized as follows:

1. Formulate the path weight matrix for the circuit.

2. Compute or* and fa for 1 < i < m, 1 < j < n.

3. Place a* registers after each input i and fa registers before each output j; remove (replace by wires) all other
registers.

4. Resynthesize the interior combinational logic block using standard techniques.

5. Formulate the path weight matrix for the retimed circuit.

6. If the path weight matrix has no negative entries, find a legal retiming for the circuit according to a cost
criterion (minimize clock cycle, minimize state).

2This is related to the definition of a synchronous circuit presented in [1]

-p^>outl

»o

PO-

o

PD-

8»0

(a)

r$2> outl

o

7=£>

out3

out2

O

^) - out3

_ outt

O-^D-1
.1

0>)

PO

SO- D

(c)

O

17^ outl

- out3

out2

Figure 6: Introducing Pseudo-dependencies with Negative Path Weight

3 Optimizing FSM Implementations

We now focus our attention at optimizing perhaps the most prevalent and important class of sequential circuits:
FSM implementations. We will show how our general formulation applies in this case and the resulting optimization
algorithms that develop from this. We first consider a specific example and then give the general optimization
procedure.

3.1 An Example

Figure 7(a) shows a gate level schematic of an FSM implementation. We break the feedback cycle by cutting the
net p. This results in a pseudo-input pjn and a pseudo-output pjmt. The circuit is then redrawn with the signal
flow unidirectional (Figure 7(b)). A peripheral retiming of this circuit is shown in Figure 7(c). The optimization of
the combinational block discovers that out2 is always equal to 0 and thus the AND gate g\ is not needed. Also, x\
may be replaced by the constant 0 without changing the logic. Thus, gi and 0*3 are not needed either; these gates
can be removed (Figure 7(d)). The circuit is retimed to a legal retiming (Figure 7(e)). The feedback connection is
made and the final circuit is shown in Figure 7(f). This circuit has one less register and two fewer gates than the
initial circuit; this represents a significant gain.

Conventional optimization techniques would have only considered breaking the feedback cycle at the registers.
Optimizing the resulting combinational circuit leads to no improvement in this case.

3.2 The Generic Optimization Procedure

Figure 8(a) shows the block diagram of a generic FSM implementation. Let us consider any cut (a breaking of a
net) that breaks all the cycles (Figure 8(b)). The resulting logic can then be re-drawn so that the signal flow is
unidirectional (Figure 8(c)). PSI and PSO are the pseudo-inputs and pseudo-outputs introduced in the circuit
because of the cut. I\ and I2 are the sets of primary inputs feeding the two blocks and 0\ and O2 are the sets of
primary outputs available from the two blocks. If any primary input feeds both logic blocks, then it must be given
different names in the two blocks. Thus, /1 n I2 = <j>. The path weight matrix for this network is:

Oi 02 PSO
PSI 1 0 1

h 1 0 1
h 0 * 0

This matrix is satisfiable. The following is an assignment of the a's and /?'s that satisfies it: a = [0 0 —1]
and 0 = [1 0 1], (This is not a unique assignment, several satisfying assignments exist). This corresponds to
the peripheral retiming shown in Figure 8(d). Thus, we see that for any such cut, there always exists a peripheral
retiming.

The resulting combinational block (concatenation of N2 and N\) to be resynthesized depends on the choice of
the cut. Since each cut results in a different combinational block, we can consider a series of such cuts and optimize
each of the resulting combinational blocks. In fact, this forms the basis of the Sliding Window Optimization
technique. This is better explained by looking at Figure 9. The combinational logic can be considered to be
wrapped around a circle to reflect its feedback nature. The first cut (Ci) is made at the initial placement of
registers. This represents one window or view of this circular combinational logic. The next cut (C2) can be made
by sliding this window around to look at a different view of the logic. Combinational resynthesis can be used at
each view. The optimization process continues by sliding this window around the circle for at least one revolution.
This may be continued until the resynthesis does not yield any improvement for a complete revolution. Note that
if only cut C\ was used (as in conventional FSM logic minimization) no information is used about the feedback
nature of the logic. In the Sliding Window procedure, each window conveys some of this feedback information.
We believe this aspect of the logic interaction has not been considered so far in optimization techniques and is
significantly more powerful than conventional techniques for optimizing FSM implementations. We would like to

ma pj«

£> &2=&'-°

(b)

oaU

(•)

CONST. 0

p_la

r£> aat2 "A>
pjwt

:£> ^=©- -'-'

£>
(c)

W

oott-0

oaa-0

"£>
p_Mt

S>

:£> :D-
«

(0

Figure 7: Example FSM Optimization

10

Cat

(»)

PSI

PSO

(c) (d)

Figure 8: Generic FSM Optimization

11

ConblnaUoiul Logic

Vlew2

Figure 9: Sliding Window Optimizations

reiterate the importance of permitting the peripheral retiming to allow negative registers at the periphery. Without
this, arbitrary cuts would not be possible 3.

3.3 Relationship to Sequential Redundancy

Let us look again at the example in Figure 7. The gate g\ and the signal x\ can be shown to be sequentially
redundant. It is interesting to note that these were exposed by combinational resynthesis (in this case by checking
for combinational irredundancy). In fact, if we start with an initial combinational logic block of the circuit
(corresponding to the cut at the registers) that is irredundant, and for some viewin the sliding window process the
combinational block has a redundancy, then this must be a sequential redundancy in the original sequential circuit.
As a result, we have a technique by which sequential redundancy can be removed by removing combinational
redundancy. This leads us to ask the more important question: is this method complete? That is, if we make each
view of the circuit combinationally irredundant, then is the final FSM implementation sequentially irredundant?
We are currently working on resolving this question.

Even though the above argument was given with respect to an FSM implementation, it holds for any sequential
circuit. In this case the different views correspond to different sub-networks with satisfiable path weight matrices.

3.4 Relationship to Operations at the STG Level and the State Assignment Prob
lem

The approach outlinedin this paper subsumes the traditional single-cut-at-the-registers and conventional retiming
approaches towards sequential optimization. We now explore the relationship this has to the third approach, viz.
operations at the STG level and also to the state assignment problem. The specific question that we would like to
answer is: given an implementation M\ corresponding to a state transition graph Gi, with a state assignment Si, is
it possible to derive a machine M2 corresponding to an equivalent STG (?2, and a state assignment S2 by applying
only a series of resynthesisand retiming operations on Mi? There need not be a one-to-onecorrespondence between
the states ofG\ and the states of G2. When machine M\ is in state «lt machine M2 could be in one of several states
*2i> «22j •••«2n («i is said to correspond to S21,S22» •••«2n)' We were able to answer this question in the affirmative

Without permitting a negative register, a register cannot be made to migrate across a gate that has a path to a primaryoutput
(migration against the signal flow), oracross a gate that has a path from a primary input (migration in the signal flow direction). This
severely restricts the motion of the registers and the corresponding permissible cuts.

12

for the case in which G2 did not have greater observability than G\. This is clarified through the following formal
statements.

Definition 6 A state transition graph G\ has a a greater observability than an equivalent state transition graph
Gi if there exists a state s\ in G\ that corresponds to two different states S21 and S22 in Gi-

Theorem 3 Given a machine implementation Mi corresponding to a state transition graph G\, with a state
assignment Si, it is always possible to derive a machine M2 corresponding to an equivalent state transition graph
G2, and a state assignment S2 by applying only a series of resynthesis and retiming operations on Mi if G2 does
not have greater observability than G\.

Note that the theorem statement does not suggest that the retiming and resynthesis cannot increase the ob
servability, but rather that it cannot guarantee that these steps are enough to derive any specified implementation
with the increased observability.

A minimal STG is defined as follows:

Definition 7 A state transition graph, G\, is minimal if and only if there does not exist an equivalent state graph
Gi in which there exists a state 82 corresponding to two states sn and S12 in G\.

If G\ is a minimal state graph then no other equivalent graph can have greater observability. This leads to the
following interesting corollary.

Corollary 1 Given a machine implementation Mi corresponding to a minimal state transition graph G\, with a
state assignment Si, it is always possible to derive a machine A/2 corresponding to an equivalent state transition
graph G2, and a state assignment S2 by applying only a series of resynthesis and retiming operations on Mi.

Note the significance of this result. It states that if we start with an implementation corresponding to the
minimal state graph, it is always possible to obtain any possible implementation corresponding to an equivalent
state graph with any state assignment through a series of retiming and resynthesis steps. In this case it is possible
to reach any point in the optimization space using just retiming and resynthesis. However, unlike operations at
the STG level, this process operates at the gate level. The cost function here is a more accurate and consistent
reflection of the hardware complexity. It is this property that makes this approach more appealing. Unfortunately,
the theorems in this section indicate only an existence condition without suggesting a search process. We know
that there exists a series of retiming and resynthesis steps that will take us from a given point to another point in
the state assignment space, but we do not know how to use this to determine what the best point is.

4 Conclusions

We have presented an approach towards optimizing sequential circuits by considering the maximal sub-circuits for
which all registers can effectively be ignored. This permits existing combinational techniques to be used on this
sub-circuit. We have presented a complete characterization of these maximal sub-circuits and guarantee a legal
retiming at the end of combinational resynthesis. The concept of "borrowing* latches from the environment is an
important one, for it extends the class of circuits that we can optimize by this technique. Next, we consider the
important problem of optimizing finite state machine implementations. We see how a Sliding Window optimization
procedure can be used to consider several different combinational blocks corresponding to the same sequential
circuit. This permits a greater range of optimization than that permitted by existing techniques. Currently we are
implementing these ideas in SIS, the sequential optimization system being developed at U. C. Berkeley.

References

[1] C.E. Leiserson and J.B. Saxe, "Optimizing Synchronous Systems,'' Twenty-Second Annual Symposium on Foun
dations of Computer Science, IEEE, October 1981, pp. 23-26.

[2] C.E. Leiserson, F.M. Rose, and J.B. Saxe, "Optimizing Synchronous Circuitry by Retiming,*' Proceedings of
the Third Caltech Conference on VLSI, March 1983.

13

[3] R.K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A.R. Wang, "MIS: A Multiple-Level Logic Optimiza
tion System", IEEE Transactions on Computer-Aided Design, vol. CAD-6, no. 6, Nov. 1987, pp. 1062-1081.

[4] R.K. Brayton, G.D. Hachtel, C.T. McMullen, and A. Sangiovanni-Vincentelli, Logic Minimization Algorithms
for VLSI Synthesis, Kluwer Academic Publishers, Boston, 1984.

[5] K.A. Bartlett, D.G. Bostick, G.D. Hachtel, R.M. Jacoby, M.R.Lightner, P.H.Moceyunas, CILMorrison and
D.Ravenscroft, "BOLD: A Multiple-Level Logic Optimization System", Proc. IEEE Int. Conf. on CAD, 1987.

14

	Copyright notice1989
	ERL-89-28

