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Abstract

Database management systems that maintain his
torical data provide the facility of storing past
states of the database for subsequent retrieval.
Such systems may periodically transfer historical
data from magnetic disk to optical disk. In order
to efficiently maintain historical data, a database
management system needs indexing mechanisms
thatprovide efficient accesspaths to historical data
that may be stored on optical disk. These indexes
must be space-efficient, and may themselves be
partially or completely contained on either
medium. In this paper we propose two indexing
structures based on R-Trees that are well-suited for
historical data which may span magnetic disk and
optical disk media. Wecompare theperformance
of these indexes to two other indexing candidates
that are each contained entirely on one medium.
Our testresults indicate thatourproposed indexes
perform well when compared to an index that is
contained entirely on optical disk. We conclude
by discussing our plan for future work to design
other types of indexing structures for historical
databases.

1. Introduction

Most current database management systems
do not provide access to historical data, i.e. past
states of the database. Typically, such data must
be painfully extracted from database log files or
audit trail files. Depending on the age of the his
torical data andthe extent of theon-line portion of
the logoraudit trail, such anoperation may require
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the mounting of one or more magnetic tapes or
disk packs which contain the desired data.

With the advent of write-once read-many
(WORM) optical disk technology, support for
large historical data archives in a database
management system may soon become cost-
effective. Since WORM optical disk block con
tents may notbe modified aftertheirinitial writing,
the issue arises as to how bestorganize a historical
databasearchive and associated indexes on such a
write-once storage medium, given thatthecontents
of the historical data archive are not known in
advance and the archive grows incrementally over
time.

We believe that there are advantages to
allowing indexes for historical data relations to
span magnetic disk (MD) and optical disk (OD)
media, as opposed to being exclusively restricted
toeither medium. Thetwo major advantages are:
(1) improved search and insert performance as

compared to indexes that are completely
containedon optical disk, and

(2) reducing the cost per bit of disk storage
required for indexes as compared to storing
historical data indexes entirely on magnetic
disk.

1.1. Previous Related Work

The advent of optical disk technology
spurred interest in databases that do not delete the
past states of data [COPE82], [MAIE82].
Although many have dealt with the semantic issues
concerning historical databases [MCKE86],
[SNOD86], implementation ideas and indexing
techniques for historical databases are much
scarcer.

Lum et al. proposed a simple indexing
scheme to support historical data relations
[LUM84], but this technique required following a
chain of historical tuple instances in descending
time order to locate a particular tuple. Extremely
bad performance is inevitable when a query
requests data far in the past

Several data storageorganizations for histor
ical dataare also proposed in [AHN86]. However,
his approach for a secondary index technique was
to use a conventional multi-attribute index aug
mented with Tmin and Tmax index record fields
(Jmin and Tmax refer to the transaction commit
times of the transactions which inserted and
deleted the given version of a tuple, respectively).
However, Ann limited his consideration to indexes
maintained on magnetic disk only. Since the size
of such indexes may become prohibitively large,



we feel that historical indexes which are not at
least partly contained on optical disk will be of
limited utility.

Vitter proposed an indexing structure
intended to be completely contained on optical
disk, which he referred to as an Allocation Tree
[VITT85]. Allocation Trees have theproperty that
they provide fast access to the last item inserted
intoa list on a write-once memory, and were pro
posed as a mechanism for efficiently accessing the
most-recently allocateddisk page in an opticaldisk
file system. Allocation Trees are also a candidate
for an indexing technique for supporting historical
data searches involving time-range queries. The
Allocation Tree index will be described in more
detail in Section 2.7.

Easton proposed a variation of B-Trees
[BAYE72] for write-once optical disks, which he
calls Write-Once Balanced Trees (WOBT)
[EAST86]. As in Vitter's proposal, Easton's
WOBT is designed tobecontained entirely on opt
ical disk. Moreover, toretrieve successively older
versions of a data or index record, one must follow
disk page pointers that point back to previously
written disk pages. The WOBT index is better
suited for snapshot retrievals that access all data
that was valid at a given time in thepast, butdoes
not perform as well on queries that access all ver
sions ofa tuple with a given key value.

1.2. Our Hypothesis

Our hypothesis that motivated the set of
experiments which are the subject of this paper is
that suitably designed composite index structures,
i.e. indexes which may span magnetic and optical
disk, will outperform an index structure that is
contained entirely on optical disk in terms of
search performance, and will approach the perfor
mance of an index that is entirely contained on
magnetic disk. This work investigates the perfor
mance ofseveral indexing strategies for supporting
historical database archives. A simulated work
load was used to drive implementations of these
strategies and produce performance statistics
regarding indexes that were contained in each of
three storage media environments: (1) a magnetic
disk-based historical data index, (2) an optical
disk-based historical data index, and (3) a histori
cal data index that may span magnetic disk and
optical disk.

The first environment was included in the
tests to provide what we expected to be an upper
bound for our performance statistics. The index
structure that we selected for the second environ
ment is based on the Allocation Tree index

[VnT85]. With regard to the third environment,
two page movement policies for migrating histori
cal database indexesfrommagneticdisk to an opti
cal disk-based archive were implemented for this
study. These page movement policies were previ
ously proposed in [STON87]. The index structures
that we utilized in the first and third environments
mentioned above are variations of the R-Tree
index [GTJTT84].

Section 2 outlines twoalgorithms for migrat
ing indexes on historical data relations from a
magnetic disk to an optical disk. Results of the
indexperformance tests are presentedin Section3.
Section4 containsa summaryof our conclusions.

2. Vacuuming Algorithms for Indexes on His
torical Data Relations

2.1. Definition: Dataand Index Vacuuming

We have defined the term vacuum to refer to
the transfer from magnetic to opticaldisk of either
historical data records or index records that refer
ence historical data records.

22. Assumptions

There are many alternatives to managing
current and historical data in a database manage
mentsystem. We havenot assumed any particular
underlying database management system in our
study of index performance, other than to assume
that current and historical data are each maintained
in separate relations, referred to as current data
relations and historical data relations, respec
tively. Updating or deleting a current data tuple
results ina historical data tuple being appended to
the historical data relation, whereas inserting a
new tuple appends that tuple in a current data rela
tion and has no effect on historical data relations.
Current and historical relations may have separate
and possibly different indexes associated with
them. The justification for this is that there should
not be an adverse impact on the performance of
operations on current data relations introduced by
the support of historical data relations. Also, the
queries that are performed against the current and
historical relations may be different, which would
favor having different indexes on each of the rela
tions. However, it may be advantageous to allow
"recent" historical data to remain in the current
data relation on magnetic disk until such time as a
system process transfers a collection of such his
torical tuples to the historical relation on optical
disk. Current data relations and their associated
indexesreside on magneticdisk, whereas historical
datarelations arecontained on optical disk.



2.3. Two Vacuuming Algorithms

Two index vacuuming algorithms which
were proposed in [STON87] have been imple
mented for this study. Both of these algorithms
produce variations of an R-Tree index which span
magnetic andoptical disks. An R-Treewaschosen
asa basis from which to design such indexes, since
it provides fast access to two-dimensional data
objects. Given that historical data may be
regarded as existing in a multi-dimensional space,
with time as one dimension, an R-Tree index is a
logical choice of index structure for such a collec
tion of data. All of the R-Tree variations in this
study use one dimension of the index for indexing
the time ranges defined by the Tmin and Tmax
fields in each tuple, and another dimension for
indexing an interval data attribute of a relation. In
ourR-Tree performance tests, we used the "Linear
Cost Node Splitting Algorithm" [GUTT84], and a
minimum node fill requirement ensuring that each
node other than the root was at leasthalf full. The
index structures compared in this study are
described in the following sections.

2.4. Index MD-RT: The Single MD R-Tree
Index

The Single MD R-Tree Index is identical to
the proposal in [GUTT84]. An R-Tree is a
height-balanced tree with index records in its leaf
nodes containing pointers to data objects. The
nonleaf nodes contain pointers to other index
records, and also contain values which bound the
index interval in a given dimension. In all of our
tests involving R-Trees, we used two-dimensional
R-Trees. Thus, all of the nonleafnodescontained
both minimum and maximum values for the hor
izontal and vertical dimensions. R-Trees strive to
maintain minimum coverage of the key space
being indexed as well as minimum overlap of the
key space among sibling index records. The R-
Tree search algorithm descends the tree from the
root inamanner similar tothe B-Tree search algo
rithm. However, more than one subtree under a
node visited may need to be searched, since sub
trees may contain overlapping regions.

The following two MD/OD R-Tree indexes
are R-Trees which may span magnetic and optical
disk, i.e. certain of their nodes may be stored
eitheron magnetic or optical disk.

23. Index MD/OD-RT-1: The Single MD/OD
R-Tree Index

The Single MD/OD R-Tree Index is con
structed from a standard R-Tree by the following
simple vacuuming algorithm. Whenever the R-

Tree index on magnetic disk reaches a threshold
size near its maximum allotted size, the Vacuum
Cleaner Process (VCP) moves some fraction of the
left-most (oldest) leaf pages to the archive. In our
implementation of this algorithm, up to one quarter
of the leaf nodes on magnetic disk are candidates
for vacuuming during each index vacuuming
operation of the VCP. Following the vacuuming
ofthe leaf nodes, the VCP then vacuums all parent
nodes of the vacuumed nodes that point entirely to
nodes on the archive. This nonleaf node vacuum
ing is applied recursively to higher level nodes.
The root node is never acandidate for vacuuming.

2.6. Index MD/OD-RT-2: The Dual MD/OD R-
Tree Index

The Dual MD/OD R-Tree Index consists of
a pair of R-Tree indexes, both rooted onmagnetic
disk. The first R-Tree is contained completely on
magnetic disk, and the second is rooted on mag
netic diskand has its lower levels on optical disk.
The Dual MD/OD R-Tree Index is constructed
from a standard R-Tree by the following vacuum
ing algorithm. The VCP is invoked when the size
of the first R-Tree index on magnetic disk reaches
a threshold near its maximum allotted size. When
first invoked, the VCP vacuums all of the first R-
Tree's nodes, except its root node, to the optical
disk and allocates aroot node onmagnetic disk for
the second R-Tree. Then, a new R-Tree is con
structed on magnetic disk as new historical data
index records are inserted into the index. Subse
quently, each time the VCP is invoked, it vacuums
all of the first R-Tree's nodes except theroot node,
and inserts the immediate descendants of the first
root into the corresponding level of the second R-
Tree on magnetic disk. As more vacuuming
operations occur, the number of magnetic disk
nodes of the second R-Tree will increase, due to
conventional R-Tree node splitting which may pro
pagate up to the root node.

Over time, there would continue to be two
R-Trees. The first would be completely on mag
neticdisk and periodically archived. Insertions are
made to the first R-Tree while searches are per
formed by descending both R-Trees.

2.7. Index OD-AT: The Allocation Tree Index

The version of Allocation Trees imple
mented for this performance study is the first of the
two types that Vitter described in [VnT85], which
has some similarities to trees developed by Rath-
mann [RATH84], Allocation Tree records are
inserted in a breadth-first manner, and the tree is
searched in a depth-first manner. A simple



characterization of Allocation Trees is a linked list
of increasingly deeper depth-first search trees,
where each successive search tree is one level
deeper than its predecessor in the list

Allocation Trees, as described by Vitter,
store data records within the index structure. R-
Trees, on the other hand, may store either data
records or data page pointers in its leaf nodes
depending on whether theindex is being used as a
primary orsecondary index, respectively. In order
to make meaningful comparisons of the perfor
mance characteristics of these two indexes, we
must store either data records ordata page pointers
in both indexes. We decided to do the latter, and
thus considered both the Allocation Trees and R-
Trees in our experiments tobe secondary indexes.
Therefore, the Allocation Trees which we imple
mented had data page pointers, hereafter referred
to as external data descriptors, of 32 bytes (two
4-byte words for Tmin and Tmax, one 4-byte tuple
identifier, and 20 bytes for a key descriptor and
value). These are tobedistinguished from internal
index descriptors which point to other Allocation
Tree nodes onthearchival optical diskmedium.

All leaf nodes in Allocation Trees contain
external data descriptors only, whereas all nonleaf
nodes may contain both external data and internal
index descriptors. Thus, in this sense Allocation
Trees are unlike B-Trees orR-Trees, both of which
store pointers to other index pages in nonleaf
nodes,anddata page pointers in the leaf nodes. In
Allocation Trees, any proportion of data to index
descriptors in the nonleaf nodes is permitted,
except that there must be at least two internal
index descriptors per nonleaf page1. Five percen
tages of internal index descriptors in the nonleaf
nodes were used inour tests: 2%, 25%, 50%, 75%,
and 100%.

2.8. Branching Factors

Five page sizes were tested for all of the
indexing structures. We assumed that logical
pages are always physically contiguous on one
track on both magnetic and optical disk, and may
be read inone I/O operation on either type of disk.
The maximum possible branching factors (the
maximum number of internal index entries per
nonleaf page) for the Allocation Tree and R-Tree
indexes are shown in Figure 1.

^trictly speaking, at least one is required, but
a minimum of two guarantees reasonable search
performance.

3. Performance Tests

The test database employed in our perfor
mance tests was simulated by constructing indexes
generated using a random number generator for
both the time domain (Tmin and Tmax) and data
fields. The number of index records generated
ranged from 30,000 to 100,000. We restricted our
selves to this range due to our limited magnetic
disk resources. In the case of both the R-Tree and
Allocation Tree indexes, each time range interval
limit pair, specified by Tmin and Tmax, was gen
erated by incrementing its predecessor by a ran
dom amount uniformly distributed over the range
[1000, 10000] while satisfying the obvious con
straint that Tmin be less than Tmax.

Since R-Trees may be used to index two-
dimensional data objects, where one dimension
may index interval data and the other dimension
may index either interval or point data, we were
faced with the decision as to what type of data to
index. Interval indexes in both dimensions are
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Figure 1: Branching factors for various page
sizes and indexes



required for indexing spatial data objects. We
expect historical indexes on time intervals and
point data to bethe more common variety in prac
tice. An example of this type of index, presented
in [STON87], may be created by (using POST-
Quel):

index on archive EMP is EMP-INDEX
(I with interval-ops,
salary with float-ops)
using R-tree and fill-factor = .8

The above index supports time intervals and salary
data. A query such as:

retrieve (EMP.name)
using EMP[T1,T2]
where EMP.salary = 10000

to find all thenames of employees whowere active
at some time within the time interval represented
by [T1,T2] and whose salary was $10,000 would
be converted internally withinPOSTGRES into:

retrieve(EMRname)
where interval(Tl,T2)

overlaps EMP.I
and EMP.salary = 10000

which can be efficiently executed using the R-Tree
index as an access path. However, for the pur
poses of this study, we decided to index interval
data in both dimensions, as this is the more
difficult case for R-Trees to deal with efficiently.
An example of a query that would benefit from
such an index is:

retrieve (EMPjiame)
using EMP[T1,T2]
where EMP.performance

overlaps [25%, 75%]

This query finds the names of all employees who
were active at some time within the time interval
represented by [T1,T2] and whose performance
interval rating overlapped the interval [25%, 75%].

Therefore, in our tests the R-Tree index
records had an additional index interval range
defined for an integer data attribute where each
record's interval limit values were uniformly dis
tributed over the range of [1,2*10**9] and satisfy
ing the condition that the lower limit be less than
the upper limit. Such a wide variation between
adjacent interval values in one dimension consti
tutes a nearly worst-caseinput for R-Trees.

Each of the four index types described above
were compared for insert and search performance,
as well as index space requirements. To measure
search performance, a large number of random
interval searches were generated over the entire
time interval contained in the index.

Each performance test consisted of two
phases, an insert phase and a search phase. Each
test program beganwith anempty index tree. Dur
ingthe insert phase, an inputdata file wasread and
an index tree was constructed. Insert performance
was measured for the last 10% of the records,
when the tree was nearly its final size. During the
search phase the program performed a series of
100 random searches. The following queries were
used to generated these searches (in SQL):

Query 1:
select*

from test_relation
where tmax >=rand_time_min

and tmin <=rand_time_max;

Query 2:
select*

from test_relation
where tmax >= rand_time_min

and tmin <=rand_time_max
and vmax >=rand_val_min
and vmin <=rand_val_max;

In both queries, tmin, tmax, vmin, and vmax are
attributes of testjrelation. The
rand_time_min/max and rand_val_min/max
correspond to randomly generated search intervals,
respectively. Query 1 generates a random search
interval and Query 2 generates a random search
"rectangle", i.e. a two-dimensional search space
composed of two search intervals. The random
search intervals were generated by creating a ran
dom interval witha length that was uniformly dis
tributed over the range [0, 50%] of the difference
of the maximum and minimum values of the index
records in a given dimension. Each query was
repeated 100 times using different random search
arguments. A series of 100 query executions
retrieved approximately 20% and 10%of the index
records when processing Query 1 and Query 2,
respectively.

Two setsof experiments were performed. In
the first set we varied the page size of the index,
using sizes of 1,2,4, 8, and 16 Kb, where in each
of these tests the number of index records was
50,000. In the Allocation Tree tests, for each page
size we varied the percentage of space in the non-
leaf nodes used for internal index descriptors, as
previously mentioned. In the second set of tests,
we varied the number of index records while using
a page size of 1024 bytes. We repeated the tests
with indexes consisting of from 30,000 to 100,000
records, in increments of 10,000 records. In the
Allocation Tree tests in which we varied the
number of index records, we chose to have 50% of



the nonleaf page space used for internal index
descriptors, which provides a good balance
between insert and search performance. In the
tests involving the MD/OD R-Tree indexes, the
size of the magnetic disk area usable for the index
was 256 Kb. Our choices for the number of index
records and the size of the magnetic disk area
usable for the index were dictated by our limited
magnetic disk resources. Although these parame
ter values may be small with respect to "realistic-
historical data indexes, they were large enough for
analyzing the performance characteristics of the
various indexes.

3.1. Performance Test Results: Varying the
Page Size

The set of graphs to be discussed next are all
plotted as a function of the page size. Figures 2
and 3 show the weighted average number of index
pages read per search to find all the qualifying
index records, for all of the R-Tree variations and
for Allocation Tree indexes which had 2%, 25%,
or 50% of the nonleaf node space used for index
descriptors. The weighted average number of
pages read per search was computed using the fol
lowing formula:

weighted average # of pages read per search =
(average # of MD pages read per search) / W
+(average # of OD pages read per search)

The weighting factor, W, is used to normalize the
average number of magnetic and optical disk 1/Os
per search. We chosea weighting factor, W, of 7
since the average device block transfer time for a
magnetic disk is typically 30ms, while the
corresponding statistic for a 2 Gb write-once opti
cal disk is approximately 210 ms [LMSI87]. The
value of such a scaling factor may decrease in the
future as optical disk performance improves.

The curves inFigures 2 and 3 show the per
formance data collected for one-dimensional and
two-dimensional searches corresponding to Query
1 and Query 2, respectively. Note that the curves
for the Allocation Tree indexes are the same in
both graphs, since the same number of index pages
are read when an Allocation Tree is used as the
access path to execute either Query 1 or 2, i.e. all
the records that satisfy the given time range search
argument are examined when executing either
query. MD-RT and MD/OD-RT-2 outperform all
of the other indexes in both Figures 2 and 3.
MD/OD-RT-1 has approximately the same search
performance as the OD-AT indexes in Figure 2,
but performs only slightly better than the OD-AT
variationsin Figure 3.
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An interesting point to notice about Figures
2 and 3 is the rather slight improvement in the
two-dimensional search performance over that of
the one-dimensional search performance. Clearly,
the R-Trees do provide some benefit, but because
the data values being indexed vary independently
of the time domain values, the R-Trees do not pro
vide a substantial improvement in search perfor
mance in the two-dimensional searches. However,
Allocation Trees do not provide any improvement
at all in two-dimensional search performance as
compared to one-dimensional searches.

Although the MD-RT index provided the
best performance, this is more a result of the effect
of the weighting fector, W, than the number of
read operations performed when using this index
as an access method. In particular, MD-RT
required the highest number of read operations.
This is due tothe randomizing effect of page splits
that occur when the R-Tree is entirely contained
on a magnetic disk medium, as in MD-RT. The
R-Tree search algorithm descendsthe tree from the
root ina manner similar to the B-Tree search algo
rithm. However, more than one subtree under a
node visited may need to be searched, since sub
trees may contain overlapping regions. As has
been pointed out by [SELL87], "...since it is very
hard to control the overlap during the dynamic
splits of R-Trees, efficient search degrades...". Our
results verify this observation, as is shown in Table
1,which shows thedistribution of TIDs per R-Tree
index page for each of the R-Tree variations
employed in our tests. A 1TD represents a Tuple
Identifier, which in the R-Tree experiments was
merely a counter that was incremented by one for
each newtuple inserted. As a separate experiment,
the data presented in Table 1 was collected from
test runs of MD-RT, MD/OD-RT-1, and MD/OD-
RT-2, each with an index file consisting of 30,000
records, and with a page size of 1 Kb. Since the

Index

Type

MD-RT

MD/OD-RT-1

MD/OD-RT-2

Number of

Leaf Pages

829

816

819

Average Number
ofTIDs per Page

36.19

36.77

36.63

index records were inserted into the R-Tree
indexes in approximately sorted order with respect
to the time domain2, one might expect a lower
range of TTD values per page than those shown in
Table 1 in the absence of page splits. However,
another contributing factor to the wide range of
TLD values per page was due to the excessive par
titioning of the data due to the lack of multi
dimensional clustering. R-Trees are best suited to
indexing data that exhibits a high degree of natural
clustering in multiple dimensions, e.g. two-
dimensional geometric objects. This natural clus
tering provides the R-Tree index an opportunity to
partition the data intorectangles so as to minimize
both the coverage and overlap of the entire set of
rectangles corresponding to the leaf nodes and the
enclosing rectangles thatcorrespond to the nonleaf
nodes of the index.

Returning to the effect of page splits, notice
that the decrease in the average range of TIDs per
page from MD-RT to MD/OD-RT-1, and from
MD/OD-RT-1 to MD/OD-RT-2 are direct side-
effects of the vacuuming algorithms. Thus, an
added benefit to the search performance of R-
Trees is provided by the vacuuming of the index
pages, which makes them no longer eligible for
inserting new records onto, and hence no longer
candidates for page splits. The batch vacuuming
algorithm employed by MD/OD-RT-2 vacuums
the entire magnetic disk R-Tree other than its root
node once the R-Tree has reached its maximum
size on magnetic disk. This vacuuming algorithm
results in an R-Tree structure which experiences
fewer page-splits per page than either MD-RT or
MD/OD-RT-1. The reason for this is because the
R-Tree nodes on magnetic disk have a shorter

^e time ranges as defined by Tmin and
Tmaxbetween adjacent records may overlap.

Maximum Range of
TIDs per Page

29960

29946

9215

Average Range of
TIDs per Page

27624.35

18110.30

7821.82

Table 1: Distribution of Tuple IDs per Page for the R-Tree indexes



magnetic disk occupancy time on the average, as
compared to MD-RT and MD/OD-RT-1. In Table
1, note that the average number of TIDs per page
is nearly identical in all of the R-Tree organiza
tions tested, namely about 36 TIDs per page,
which corresponds to 72% space utilization (R-
Trees with a page size of 1 Kb mayhold up to 50
index records), for both magnetic disk and optical
disk pages.

Figure 4 shows the average number of pages
read per insert The notable feature of this graph is
that OD-AT with 2% indexing descriptors in the
nonleaf nodes requires a larger number of reads
per insert, especially with page sizes less than 8
Kb. Figures 2-4 illustrate the trade-off between
search and insert performance in Allocation Trees
(OD-AT), which is controlled by theratio of inter
nal index descriptors to external data descriptors in
the nonleaf nodes. A lower ratio provides better
search performance but has more costly inserts,
whereas a higher ratio has better insert perfor
mance but not as good search performance. From
these graphs, it appears that a good balance can be
achieved by having 25% or 50% of nonleaf node
space used forindexingdescriptors.

Figure 5 shows the sizes of the various index
structures. TTie R-Tree indexes are generally
smaller than the Allocation Trees, with the excep
tion of MD/OD-RT-2 with page sizes of 8 Kb and
16 Kb. This is due to the fact that the size of the
optical disk portion of the second R-Tree in
MD/OD-RT-2 increases more sharply with the
larger page sizes, ie. with page sizesof 8 Kb and
16 Kb, as is made clear in Figure 5. This
phenomenon may be explained by Table 2. Table
2 shows that the space utilization, measured as the
percentage of the total number of index record
entries that are used, decreases for MD/OD-RT-2
as the page size increases beyond 4 Kb. Obvi
ously, as the page size increases, the batch vacu
uming algorithm will vacuum pages that have
fewer entries inuse, on the average. This may be
alleviated by modifying the simple batch vacuum
ing algorithm to only vacuum pages that have at
least some minimum threshold percentage of their
space utilized.

3.2. Performance Test Results: Varying the
Amount of Data

The set of graphs to be discussed next areall
plotted as a function of the number of index
records. In each of these tests, thepage sizeof the
indexes was 1 Kb. For all of the tests involving
OD-AT discussed in this section, the internal
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Page Index Space
Size Tvoe Utilization
1Kb MD-RT 71%
2Kb MD-RT 71%
4Kb MD-RT 72%
8Kb MD-RT 79%

16Kb MD-RT 73%
1Kb MD/OD-RT-1 72%
2Kb MD/OD-RT-1 74%
4Kb MD/OD-RT-1 70%
8Kb MD/OD-RT-1 73%

16Kb MD/OD-RT-1 76%
1Kb MD/OD-RT-2 72%
2Kb MD/OD-RT-2 71%
4Kb MD/OD-RT-2 66%
8Kb MD/OD-RT-2 60%

57% |16Kb MD/OD-RT-2

Table 2: Space Utilization of R-Tree indexes
for variousPage Sizes

(nonleaf) nodes contain 50% internal index
descriptors and 50% external data descriptors.
Figures 6 and 7 show the average number of pages
read per one-dimensional and two-dimensional
search, respectively. These graphs correspond to
Figures 2 and 3, which were plotted as a function
of page size, and confirm those results. These
graphs indicate that the performance of OD-AT
tends to degrade more sharply than that of
MD/OD-RT-1 or MD/OD-RT-2 as the number of
records increases.

Figure 8 shows the average number of pages
read per insert, and Figure9 shows the sizes of the
various indexes. Both of these graphs feature
curves that are all within a narrow range. In Fig
ure 9, the Allocation Tree index is increasingly
larger than the R-Tree indexes as the number of
records increases, by an amount ranging between
approximately 100 to 400 Kb, for a given number
of records.

4. Conclusions

We have verified our hypothesis that suit
ably designed index structures which are allowed
to span magnetic and optical disk media may out
perform an index structure that is completely con
tained on optical disk, and may approach the per
formance of an index that is entirely contained on
magnetic disk.
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ThetwoR-Tree variations that wehave pro
posed which may span magnetic and optical disk
have been shown to be useful for indexing histori
cal data relations. One variation of the R-Tree,
MD/OD-RT-2, always outperformed the Alloca
tion Tree index in terms of the average number of
read operations per search, in some cases by more
than a factor of two. Also, the periodic transfer of
R-Tree indexes from magnetic disk to write-once
optical disk actually produced better search perfor
mance of the index in terms of theaverage number
of read operations per search. This improvement
in search performance is due to a reduction in the
average number of page splits per index page in
the R-Trees that span magnetic and optical disk
media, since once an index page has been written
on a write-once optical disk, no new records may
be inserted on that page and hence that page can
no longer be splitby theInsert procedure.

Comparing the performance of our two R-
Trees variations that span magnetic and optical
disk media to an R-Tree index that is completely
contained on magnetic disk, the weighted average
number of read operations per search for the MD-
only R-Tree is always below the corresponding
statistic for the two MD/OD R-Trees. This is due
to the effect of the weighting factor, sincemost of
the MD/OD read operations per search occur on
optical disk. Comparing the MD-only R-Tree to
the MD/OD R-Trees in terms of the average
number of read operations per search, we found
that the MD-only R-Tree required more read
operations than either of the two MD/OD R-Trees
for all page sizes. The reason for this isprimarily
due to the randomizing effect of page splits on the
MD-only R-Tree, which causes significant overlap
of the rectangular partitions in thenonleafnodes.

Despite the good performance of R-Trees in
this study, there are two potential shortcomings of
the R-Tree index that are detrimental to its search
performance when the data being indexed consists
of time intervals in one dimension and interval
data in the other dimension. These shortcomings
were evident in our study, since we constructed
nearly a worst-case input for R-Trees. The first of
these problemsis thatR-Trees work best on collec
tions of data that exhibit a natural multi
dimensional clustering, but historical databases
may consist of relations whose data attribute
values vary independently of their time domain
attribute values, and therefore may exhibit only
one-dimensional clustering. When an R-Tree is
used to index a collection of data that lacks natural
multi-dimensional clustering, the result is that the
R-Tree algorithms excessively partition the data
into a set of minimally enclosing multi-
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dimensional spaces. The second problem with R-
Trees for historical databases is that the effect of
page splits causes a good deal of overlap in the
search regions of the nonleaf nodes. R+-Trees
[SELL87] have been proposed to address this
shortcoming of R-Trees. Although R+-Trees
would likely provide an improvement to search
performance for indexing historical databases over
R-Trees, they still would not improve the problem
of excessive partitioning due to the potential lack
of natural multi-dimensional clustering of the
interval data being indexed. These factors suggest
that newindexing structures maybe useful for his
torical databases.

Although our results indicate that R-Trees
may not be the optimal indexing structure for
indexing time intervals and interval data, we
believe that they may provide good support for
indexing time intervals and point data, which we
expect to be more common in practice. Thus, we
plan to experiment with R-Trees that index histori
cal point data, i.e. one-dimensional R-Tree
indexes. We also plan to design and measure the
performance of new indexing structures in con
junction with several vacuuming algorithms in
subsequent performance tests, to determine how
they compare to those discussed in this paper in
terms of search, insert, index size, and space utili
zation performance. Our goal is to design index
ing structures that achieve good overall perfor
mance for a broad range of database applications
that require access to historical data.
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