
 

 

 

 

 

 

 

 

 

Copyright © 1989, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



AN ALGORITHM FOR OPTIMAL SLEWING

OF FLEXIBLE STRUCTURES

by

T. E. Baker and E. Polak

Memorandum No. UCB/ERL M89/37

11 April 1989

(Revised June 4, 1990)



AN ALGORITHM FOR OPTIMAL SLEWING

OF FLEXIBLE STRUCTURES

by

T. E. Baker and E. Polak

Memorandum No. UCB/ERL M89/37

11 April 1989

(Revised June 4, 1990)

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



AN ALGORITHM FOR OPTIMAL SLEWING

OF FLEXIBLE STRUCTURES

by

T. E. Baker and E. Polak

Memorandum No. UCB/ERL M89/37

11 April 1989

(Revised June 4, 1990)

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



AN ALGORITHM FOR OPTIMAL SLEWING OF FLEXIBLE STRUCTURES'

by

T. E. Baker and E. Polak

Department of Electrical Engineering

and Computer Science

University of California

Berkeley, Calif. 94720

ABSTRACT

We present an optimal control algorithm which can be used for computing the accelerations

required for optimal slewing of flexible structures subject to initial and final conditions, as well as

constraints on the acceleration and the deformation of the structure during the slewing maneuver.

The algorithm can be used to solve both fixed-time and free-time optimal control problems, with the

dynamics described either by ordinary or partial differential equations. We illustrate the performance

of the algorithm with computational examples.
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1. INTRODUCTION

Controlled flexible structures are found in aerospace systems as well as in various earthbound

mechanisms with flexible links. Control is used to ensure precise pointing/positioning, input follow

ing, and disturbance rejection. Since large slewing maneuvers are usually described by nonlinear

dynamics, it is very difficult to control them effectively by feedback laws. Hence it seems meaningful

to use open loop optimal control to bring a flexible structure close to the desired state and then use

feedback control based on linearized models to ensure the final accuracy. Although coupled systems

of ordinary differential equations are commonly used for modeling flexible structures, models con

sisting of linear partial differential equations coupled with nonlinear ordinary differential equations

offer greater modeling precision and simplicity in identification. Because of this, we have developed

an optimal control algorithm which can be used with either type of model.

The research literature on the optimal control of flexible structures parallels that on the optimal

control of finite dimensional systems. Thus, in [Gib.l, Gib.2, Gib.31, Gibson presents a detailed solu

tion of the linear quadratic regulator problem for structures with PDE dynamics, including conditions

for the convergence of modal approximation schemes, hi Junkins and Turner [Jun.l] (see also

[Chu.l, Ben.l Bur.l, Flo.l] for related results), we find one of the first methods for solving a class of

open-loop optimal slewing problems involving a rotating structure described by a linear PDE coupled

with a nonlinear ODE. They assume initial and final conditions on the state, but no control or state-

space constraints. For fixed time problems, they use a quadratic performance criterion. They use the

Rayleigh-Ritz method to approximate the original optimal control problem by an optimal control

problem with finite dimensional dynamics. They solve this problem using the Pontryagin Maximum

Principle and a fairly expensive, iterative homotopy technique [Sch.l] for solving the resulting non

linear two-point boundary value problem. For minimum-time optimal slewing problems they assume

linear dynamics and use Pontryagin Maximum Principle and Newton's method to solve the

corresponding optimality conditions. More recently, Ben-Asher, Burns and Cliff [Ben.l] have used

the method of assumed modes [Mei.l] to reduce the problem of slewing a beam in minimum time

subject to a torque constraint, to an optimal control problem with finite dimensional dynamics and

then solved it by fairly standard techniques. A serious shortcoming of the results in [Jun.l, Ben.ll is

that they do not provide an analysis of the relation between the solutions they obtain by discretization

and the solutions of the original problems. A totally different approach was taken by Araya [Ara.l],

who used the Balakrishnan e-technique [Bal.l], to decompose minimum-time slewing problems with

PDE dynamics, proposed in the NASA SCOLE design challenge [Tay.l], and torque constraints into
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an infinite sequence of unconstrained, fixed time problems, whose solutions converge to the solution

of the original optimal control problem. However, he did not propose a numerical technique for

obtaining approximate solutions to these unconstrained problems.

In this paper we present an optimal control algorithm for solving both minimum-time and

fixed-time slewing problems, with control and end-point inequality constraints, for flexible structures

described either entirely by ODEs or by linear PDEs coupled with nonlinear ODEs. An important

aspect of our algorithm is that it takes into account the approximations resulting from numerical

integration. In [Kle.l] we find a discretization theory for the solution of unconstrained optimal con

trol problems via the Armijo gradient method. Unfortunately, this theory cannot be extended to the

solution of constrained optimal control problems via methods of feasible directions because it fails to

ensure that the algorithm does not hang up near the boundary of the feasible region. Because of this,

we devised a special phase I - phase II method of feasible directions (related to [Pol.3]) for solving

finite dimensional optimization problems of the form min {\j/°(x) IV(*) <0 , j = 1,2 ,..., m },
x e X

with X c R" a convex compact set, as well as a new precisionrefinement test.

Our optimal control algorithm consists of a master algorithm which (a) uses the finite element

method together with a numerical method for integrating ODE's to construct a finite dimensional

approximating problem Pq, (b) calls our new finite dimensional algorithm and proceeds solving Pq,

and (c) when a discretization refinement test is satisfied, it arrests the solution of Pq, constructs a

higher precision approximation Pq+l and repeats (b) using the last point for Pq as the first point for

As can be seen from the computational example in Section 3, the use of our algorithm can be

extended to the solution of minimum-time and fixed-time slewing problems, with control and state

space inequality constraints. State space constraints are accomodated by transcribing constraints of
T

the form max g(zu(t)) <0into the form Jmax {0 ,g(zu (t))} dt <0. Provided the algorithm is

initialized in the infeasible region and an algorithm steering parameter (to be defined later) is set to a

low value, the iterates constructed by the algorithm approach a solution from outside the feasible

region and the deleterious effects associated with such transcriptions do not materialize.



2. THE OPTIMAL CONTROL ALGORITHM

We are now ready to deal with optimal control problems. We will assume that the dynamics of

our system are transcribable into the form:

i(t)=Az(t) + h(z(t),u(t)), te[0,T], z(0) = z0, (2.1a)

where the state vector z(t) is an element of a Hilbert space, H, so that (2.1a) can, in fact, be apartial

differential equation, and the control u(t) e 1RP is finite dimensional.

Assumption 2.1: We will assume that

(i) A is an infinitesimal generator of aC0 semigroup1.

(ii) The operator h (•, •) is continuously differentiable.

(iii) The control u is an element of the pre-Hilbert space L£i2[0 ,T]£(L£[0 ,T] ,M£ with

flwll^j [ Bw(f)02rfT L.

(iv) We assume that (2.1 a) has aweak solution, which willbedenoted by z" •T (t). •

The open sets in the L£t 2[0,71 topology are those that are open in both the L^fO, T] topol

ogy. We need the boundedness associated with the L„ topology. However L*, is too fine a topology;

the L2 topology is sufficiently coarse for showing the differentiability properties that are needed for

optimization. For notational convenience, wewill denote the space L£t 2[0,1] by L^, 2.

Because unavoidable discretization techniques may lead to serious computational and theoreti

caldifficulties (see [Cul.1, Cul.2]) in free time optimal control problems, we propose to scale the time

to the interval [0,1], so that the final timeT becomes ascale variable. This scaling changes (2.1a) to

z(t) = TAz(t) + Th(z(t),u(t)), re [0,1], z(0) = z0. (2.1b)

At this point, to simplify notation, we combine thetwo problem variables u and T into a single

variable, by defining x = (u , T). In addition to assuming that (2.1b) has a weak solution, which we

will denote by zx(t), we will assume that the differential, 5zx(r ,5*), of this solution, where

8* = (8m , 8T), is given by the weak solution of thelinearized equation

For a discussion of semigroup theory see[Bal.2] or [Paz.1]. When (2.1a) represents anODE, weexpect that A =0 holds. We note
in passing that PDEs derived using Lagrangian dynamics have the form (2.1a) and hence that (2.1a) represents a broad class of dynamical
systems described either by ODEs or PDEs.



8z(r) = 7
A , dh(zu'T(t),u(t))

dz du

+ [Azx(t) ,u(t)) + h(zx(t), u(t))]ST , t € [0,11, 8z(0) = 0 . (2.1c)

The following result was established in [Bak.l, Sec. 3.3]:

Proposition 2.1: Suppose that the function h (•, •), in (2.1a, 2.1b) satisfies:

(i) For every pair of bounded sets S c H and U c JR?, there exists a Ksu < °o such that for all

(a) \h(z* ,u*)-h(z .u^ZKsuih* -zl + lu* -ul],

oh ,4. j, N ah
—(z* ,u*)- —
dz dz

(b) l-^-(z* ,k*)--^(z ,m)1<^5£/[0z* -zV + lu* -Ml],

(c) ll-^-(z* ,k*)--^(z ,ii)l£li:5l,[lz*-ill+ltf*-iil];
du du

(ii) Forevery 0 <7 < «> andu e L£( 2[0 , 7], (2.1a) has amild solution, zx(•), and for any bounded

subset U cRf and 7 e (0, «>), there exists a bv j <<» such that if w e L£, 2[0 ,7] is such that

w(Oe U forallr e [0,7],thenBzx(OB<fy/j for all and* e [0,7].

Under these assumptions, (2.1b) has a solution 8zx(r , 8jc) which is the differential of zx{t) with

respect to the control u and the time scaling parameter7. •

Now consider the optimal control problemwith control and end point inequality constraints:

min {gV(D) I*V(1)) £0, 7 = 1,2 m,
x e L_>2xR

ii(f) € (/ Vr e [0 ,1], 7 e [7„ ,Tf]} , (2.2a)

where T0 > 0 is assumed to be arbitrarily small and Tf < °o. We assume that the set U <=• W is

compact and that all the functions gj : H-»R are locally Lipschitz continuously differentiable.

If, for j =0 ,1 ,..., m, we define the functions V : L,,,, 12 x IR -»IR by y (*) =gJ(zx(l)), we

can rewrite (2.2a) in the more explicit form

minfW) IV(*)<0, j =1 ,2 , ...m , x e X} , (2.2b)

where X^UxT, with U^ (u e U.t2 Iu(Oe UVr e [0,1]} and T^ [7„ ,7/ ]. We will use



the norm fl-Bx on X defined by fl* flx k flu 02 +72.

Now, let m4 {1,2 ,...,m}, let y; L^ 12 xR -> R be defined by \j/(;c) =max;- es V(jc),
and let y+(jc) = max {0 , \\f(x)}. Finally, with y > 0 given, for any x , x e X, let

F(x Ix)dmax{V)0f)-V)(^-W4JCO.V0c)-vS)}- (2.2c)

Note that F (3c I 3c) = 0.

It should be obvious that if x is a local minimizer for the problem (2.2b), then it must also be a

local minimizer for the problem

minF(x I x). (2.2c)
X € A

We can use this observation to obtain a simple first order optimality condition for (2.2b) (see [Pol.5]

for an analogous development for the finite dimensional case), as follows.

Fory =0,1,2 m, and any x , x e X, let

ty(x I3c)^(zJ(l))+<V(z*(l)) ,8zx(l ,x -3c))H +VHx -xl£ , (2.3a)

where (•, •}Hdenotes the inner product on H, and Vg'(z) e H* = H is defined by the formula for

the Frechet differential of gJ(): dgj(z ,Sz)= {Vgj(z), hz )H. Thus, <\fj(x 13c) is a first order,

quadratic approximation to the value \\fJ(x). Similarly, we get a first order, quadratic approximation

to the value F (jc I 3c):

P(x \x)&max max {$°(x I3c) - \|/°(x) - W+(*) . fyj(* ' *) - V+(*)} • (2.3b)
j G m

Next we define an optimality function 9 : X ->R and asearch direction function § : X -> X by

9(jc)^ min P{x* Ix), (2.4a)
x* e X

5(x) ^ arg min Ptf Ix). (2.4b)
x e X

The following theorem is a straightforward extension of a result in finite dimensional optimiza

tion (see [Pol.5]). For a proof see [Bak.2].

Theorem 2.1: (a) The functions 8() and £(•) are both continuous, (b) If Jc e X is a local minim

izer for (2.1b), then



Q(x) = 0. (2.5)

•

Our first observation is that expressions such as {V^-/(zx(l)), 8z*(l ,x -x)) H can be com

puted using adjoints. Our second observation is that the numerical solution of ordinary or partial dif

ferential equations requires discretization of at least one variable and hence that we cannot utilize an

analogue of a nonlinear programming algorithm in solving (2.2b) without addressing this source of

difficulty. To ensure that our final implementable algorithm has the desired convergence properties,

we must use discretizations in the solution of the ODEs or PDEs which guarantee that the resulting

family of approximating optimal control problems is consistent with respect to the requirements of

the convergence theorem which we will present at the end of this section.

To make matters concrete, we may assume that H is the space of r-times differentiable func

tions from [0,1] into Rp. Next we introduce a set of 2q* orthogonal spline functions

{CJ.O} «?i c H, where qs e N, for "spatial" discretization2, write zx{t)(s) in the form

*x(Ofr)=£{£CO<(OCO. (2.6a)
i=l

and compute the projection Tlz0 of z0 onto the subspace of H spanned by the splines. Let

a> =(©£ ,»..©£*), and let Zqt be amatrix with columns ££, i =1,2 ,..., 2q\ Then (2.6a) can be
written in the shorter form

z*(OCO =ZqM(s)G*t ,x). (2.6b)

On the subspace spanned by the splines, our dynamics have the form

Zq.(s)<oqXt ,x) = Th(Zqt(s)(Oq,(t ,x) ,u(t)), (2.6c)

Z?i(,s)<o(0,x) = Ylz0(s) , Vj e [0,1]. (2.6d)

Next we use the orthogonality of the splines to set up the differential equations for the functions

©£(* ,x):

2For many dynamical systems, a system of second order PDEs coupled with ODEs isamore "natural" description than (2.1a). In
that case all calculations are carried outwith the original dynamics. Asaresult, since theweak form of a solution is used, it is often possi
bletousesplines that are onlyr/2-times differentiable, which results inconsiderable computational simplification (in theexample inSection
3, we use standard Hermit cubicsplines). Then Newmark's method [New. 1]is used fortemporal discretization. See [Sir. 1] fordetails.
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<(' .*) =/< t£(*) .Th(Zqt(s)(iXt ,x) .ii(0)) h* . / =1,2 ,3 2q' , (2.6e)

l

<(0,*) =J(q,(j),nzo(s)>H<fc . *=1,2,3.....2*. (2.6f)
o

Then (2.6b,c) can be written as a first order vector differential equation

<b(0 =YMt), u(t)) , Vr e [0.1]. ©(0) =©o , (2.7a)

in which the function Y(-, •) is defined by (2.6e). Finally, we discretize the normalized time interval

[0,1] into 2q' equal intervals, set Aqi =1/2*7', and replace (2.7a) by the difference equation resulting

from the useof theEuler method of integration:3

©((/: + DA^) = (0(kAqi) + F((0(kAqi) , u{kAqi ,7)) , k =0 , 1, 2 2q' - 1 , co(0) = co0 . (2.7b)

Let/??i : [0 , oo) -> {0,1} be defined by

A flforf e [0,AJ

let Vqt c U be the setof controls which are constant over our time grid, i.e., if u(t) e U?#, then for a

sequence of vectors {uk }£jjl c U,

2*-l

"(0= Z ukpqt(t-kAqt). (2.8b)

It is easy to see that the sets U^ are nested, i.e., if q <r then U^ c Ur. Next, let <&xt(kAqi),

k - 0 ,1 2*-l, denote the solution of(2.7b) corresponding to acontrol in Uqi and 7 e T. Then

we see that for t e [0,1], our numerical integration procedure yields the following approximation to

the actual solution zx(t):

»*.*(')£ Z\X(*A*>*('-*V- (2.8c)

Hence, for x e X?( ^ U?| xT, the use of our numerical integration procedure yields the following

approximating values to y*(x):

3Euler's method results inthesimplest exposition. Infact, any method which is first order orbetter maybeused provided care istak
en to ensure that the resulting discretizations satisfy our assumptions.



Vi .*(*) =8JK ,q, (D) . j =0 ,1 ,2,... ,m . (2.9)

Next, for * , 3c e X^ and Sx =(8m , 87) =x - x, the sensitivities of the difference equation

(2.7b) to the perturbation 8x, in the control and scale factor are given by the solution b(oqi(kAqi, bx),

of the linearized difference equation:

dFWkAqi),u(.kAqt),f) dFWk\),u(kAqt),f)^Sa)((* +DA,,) =8a>(*A„) + ^ 2 6aX*V + ^ q- 6uk

+F((Q(kAqi), u(kAqi), 7)87 , * =0 ,1,2,..., 2q' , Sco(0) =©o. (2.10a)

Clearly, b(aqt(kAq$, dx) can beused to define the function

hzl,qt it ,hx) £ £ z*s<(* A*> 8* ))/?,,(* - *Aqt). (2.10b)

Hence, given any x , x g Xqt, we define the first order, quadratic approximation to \j/£ ?i(;c) by

+V4Hx-*l|, >=0,1,2, ...fm . (2.11)

In turn, these definitions lead to the following analogs of (2.3b), (2.4a) and (2.4b), respectively. For

any* ,x e Xqi,

Pq.,qM IJ)£maxmax{*j)r°f<7<(x \ x)-yjjt >qi(x)-yyqi+(x),
J G m

where yqi,qt+(x) 4max {0 ,\|^(,qt(x)}, with yqi tJx) £maxy. 6- y> tq${x),

e*,.*(*)= mi5 ^*.*C* ' *)» (2.12b)

5f, .*(*) =arg min ^<?,.*(* I*) • (2.12c)

To complete our analysis we need the following assumption which can be expected to be

satisfied in most practical situations:



Assumption 2.2: There exists a Kz < «»and a monotone decreasing function e : IN —» R, such that

e(q)>0 for all q e IN and e(q)->0 as <7 -»«>, such that for any positive integer q, if

min {qs , qt } > q, then forallx , x e X^,

hx(l)-zxM>qi(l)^<Kze(q) , (2.12d)

D8z*(l ,x -x)-zxt tqi(l ,x -x)^<K2e(q). (2.12e)

D

Our algorithm does not require knowledge of the constant K2, but it does require knowledge of

e(•). However, when Hermite splines (with 2q'~l mesh points) are used for spatial discretization and

Newmark's method (with 2q' nodes) isused for time integration, one can usually sete{q)= 2q.

Proposition 2.2 : There exists a K < «» such that for any positive integer q, if min{qs , qt } > q,

then forallx , x e Xq>i

•Y7'00-<.*(*)I ^Ke{q), j =0,1,2 m, (2.13a)

\ty(x \x)-$liqt(x \x)\<Ke(q),j =0,1,2 m , (2.13b)

mx)-Qqttqi(x)\<Ke(q), (2.l3c)

!$<*)-$* f*fr)lj **«(*). (2.13d)

Proof: Since Xqi is bounded and the functions gj() are locally Lipschitz continuously differenti

able, there exists a LipschitzconstantL < «» such that fory = 0,1 , ...m,

ls'"(z(D)-*yV(l))l <ZJz'(l)-z(l)l I, (2.14a)

DV^(z(l))-V^'(z'(l))D<LIIz'(l)-z(l)B, , (2.14b)

for all z , z' e H that we need to deal with.

Next, by construction, \fqt>q, then Xq c X?i, and hence, ifmin {qs , qt } >q, and x e Xq,

it follows that x e X?f and hence, from (2.14a) and (2.12d), that

\gj^x0))-gj(zltqi(l))\<Uzx(l)-zxiiqi(\%<LK2e(q). (2.14c)

Hence (2.13a) follows. A similar argument leads to (2.13b)
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Next, for any x , x e X, let y°(;c Ix)k$\x Ix)-\|f°(jc)-tvj/+(J), and, for ; e m, let

\j/(x Ix)^ ty(* I3c) - Y+(x). Similarly, for any qs ,qt e IN+, and any x , 3c e X, let

V$.,qM \x)£$$tiqt(x \x)-y!lttqi(x)--yvqMiqi+(x), and, for j e m, let

\j/£><7i(;c Ix)^^l>qt(x I*)-V*. *+(*)• Then (2.13b) obviously holds with fyj(x I3c) replaced

by yj(x Ix) and with <pr> qi(x I3c) replaced by yl,q,(x I3c). Let m ^ {0 ,1 ,2 ,..., m }.Then

we see that 0(3c) = min max \j/y(x I 3c) and 0?# (?i(3c) = min max \j/£ ?j0c I J). Now by definition

of5(0.

0(x) =max \j/'(5(*) \x). r2 14dx
/em v • /

Hence we must have that

6^ ,qi(x) <max \jf£ ,ft(5CF) Ix)
j e m

<max\j/>(5(J) Ix)+L*(<7) =0(x) +L*(<7). (2 l4)
j e m v • y

We complete the proofof (2.13c), by interchanging 0() and 0^ (•) above.

Finally we turn to (2.13d). For every 3c , x e X, let y(x 13c") ^ max yj{x Ix), and let
j € m

xj/^ t<7((x 13c) ^ max \j/£ ^(x I3c). Then, because these functions are maxima of quadratics with
j e m

unit second derivatives, it follows that for all x e X,

\j/(* Ix) - y(5(*) I3c) >VMx - 50f)l|. (2.14f)

Hence for all ^ , <fr e N+,

*<£*.*£) I*)-\j/£(*) Ix)>Vz%tiqi(x)-mti. (2.14g)

Making use of (2.13b), (2.13c), we now obtain from (2.14g) that if min {qs , qt } > q then

Ke(q)>Ke(q) +yqtiqt(£qiiqi(x) Ix)-^, ,?,£(x) I3c)> V4D^ i<7i(3c)-^)B^ (2.14h)

which proves that (2.13d) must hold, with the constant K suitably redefined. D

With these developments out of the way, we can now state our implementable optimal control

algorithm. A close examination will show that the algorithm below consists of a master algorithm

which constructs a finite dimensional optimal control problem Pq, in which the spatial and temporal

discretizations are coordinated, and defined on e \Jqi x T, and then calls our new modification of the

-11-



Polak-Trahan-Mayne phase I - phase II method of feasible directions [Pol.3] to proceed solving this

problem until a discretization refinement test indicates that the discretization must be refined.

Algorithm 2.1:

Parameters: q e N, e, 8 e (0 ,1), y> 1, a, (3 e (0,1), ar , a, e IN.

Data : A vector coefficient sequence u0 = (u§ ,..., u1*'l)e IR^2*, defining the control uQ(t) via

(2.8b), with qt = ctqt and a scaling parameter 70 e [T0 , Tf].

Step 0 : Set i = 0.

Step 1 : Set qt = otq,qs =osq and compute the the optimality function value 0,- = Qqt ^(x,), and

the corresponding search direction tj,- ^^q,, ?,(*») ~*«»defined by (2.12b) and (2.12c).

Step 2 : Compute the step size A,,- (the rule depends onthe sign of \j/^f tqt(xt)):

If V?..qMi) > °»compute

*,=argmax{p* l*eN, ^.^ +P*n,)-N>* ,*(*,-)* P*a6£ } . (2.15a)

u ¥*..*(*+PN.0-Vftif,C*i)>-e«fo)8, (2.15b)

replace <y by q + 1, and go to Step 1.

Else set Xt = p** and go to Step 2.

If V?,.q, (*i) ^ 0. compute

ki =argmax{p* Ik <s IN, Fq§>qi(Xi +p*r|t- Ixi)^p*ae/ } . (2.15c)

u ^.*C*.-+PS I*)>-«(?)*. (2.15d)

replace ^ by ^ + 1, and go to Step 1.

Else set A* = p** and go to Step 2.

Step 3 : Replace x,- by x,- + A.,- rfc, set i = / + 1 and go to Step 1. •

A few remarks are in order here. First, the parameter y can be used the to control the emphasis

the algorithm places on iterates becoming feasible. Thus, when problems such as those in Section 3

are being solved, one should set y to a low value, so as to approacha solution from outside the feasi

ble region. Second, it is shown in [Bak.l, Sec. 7.3] that the Polyak-Levitin constrained Newton

method [Lev.1], can be used for computing both 0£- and Tfo.
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Theorem 2.2 : Suppose that for every x e X such that \|/(x) > 0, 0(x) < 0. If Algorithm 2.1 jams

up, cycling between Step 1 and Step 2, at a point xk\ then xk satisfies the first order condition

Yfo) < 0 and 0(x*) = 0. If Algorithm 2.1 constructs an infinite sequence {xt- } -Zq , then every accu

mulation point 3c of {X{} i^o satisfies the first order optimality condition, for (2.2b), \\f(x) < 0,

0(Jc) = O.

Proof: First we make an observation. Suppose that x e X is such that 0(x) < 0. Then it is

straightforward to show that there is a neighborhood B of 3c and a i € IN such that if x e B and

\l/(x)>0, then

\}/(x+p*Ti(x))-v(x)<p*oc0(x)<1/ip*a0(3c) , (2-16a)

and ifx e B and \|/(x) < 0, then

F(x + p*ri(x) I x)< p*a0(x)< Vftp*a6(?). (2-!6b)

(a) It now follows from Proposition 2.2 that if x is such that 0(x) < 0, then the test (2.15b) or

(2.15d) will fail for a finite value of q, and hence Algorithm 2.1 cannot jam up at such a point

(b) Next we will show that if we denote by qt the value of q used in the construction of xI+1,

then qt -» ©o as i -> «». Since qs =asq and qt = otq, we may simplify our notation in Algorithm

2.1 and replace the subscript qs , qt by the subscript q.

For the sake of contradiction, suppose that qt = q* for all / > i* < «», and suppose, without loss

of generality thatxj/^ (x,*) > 0. Then it follows from (2.15b) that

^♦(W-V^fri)^-^*)5 (2.16c)

for all i > i* such that yq*(x,) > 0. It follows from this and (2.15c) that there must exist an ix > i*

suchthat yq* (x,) < 0 for all i > i v Furthermore, by (2.15d), for all i > i b

V%*(xi+{) - vJLOqO <-ee(<7*)5. (2.16d)

Since X is bounded, this is clearly impossible. Hence we conclude that <?,•—» °° as i -><*>.

(c) Now suppose that x is an accumulation point of {xt } -Iq and that 0(x) < 0. It then follows

from Proposition 2.2 and (2.16a), (2.16b) that there exists a neighborhood B of 3c and an i2 such that

for all i > i2such that x,- e B (ofwhich there must exist an infinite number) with ^.(x,) >0,
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Wi+i)- Wi) ^ Wefa) +VftOc,-+1) - Vftfe)<p*cc0(*)/4 +2Kefa) < p*a0(3c)/8 <0 ,

and forall i > i2 suchthatx,- e B with ^.(x,-) £ 0,

F(xl+1 lxl)<2tofa) +F<7,(xl+1 lx,)<2^c(^) +p*a0(x)/4<p*a0(x)/8<O,

(2.16e)

(2.16f)

We needto consider two cases. First suppose that y*,(*i) >0 for allbut a finite number of /. It

then follows from (2.15b) and (2.13a) that

V(xt+1) - v(xt) <2Ke fa) - -|- =-efa) fee fa)0"5) - IK (2.16g)

Since qx[-><*> as i -»«>, we conclude from (2.16g) that there exists an i3 such that the sequence

{V(*i)} i^t, is monotonedecreasing. It now follows from (2.16e) that \|/(xt) -> -°° as t -* «, which

is clearly impossible.

Hence we must consider the second possibility, i.e., that there is an infinite subset / of the posi

tive integers such that for all i e /, \|^(xt) <0. Now suppose that i e /, then, making use of (2.15d)

and (2.13a) we obtain that

V<7,VI(xt+1)<2^to)-e5fa) =-g(<?i) ee(qi)«-*>-2K (2.16h)

Since qt -»°o as i -*oo, we conclude from (2.16h) that there exists an i4 such for all i >/4,

y\fq.(Xi) <0. It now follows from (2.15d) that for all i > i4f

Vi(xi+l)-\f(xi)<2Ke(qi)-ee(qi) =-e(qi) e* fa ^ - 2*

Next,it follows from (2.16f)that for all i > i4 such that x, e B,

VWi) - W/) ^ 2to fa) +y°(xI+1) - X|/°(x,)

< p* a0(x )/4 + 2AT* fa) < p* a0(x )/8 <0.

Since (2.16i) together with (2.16j) imply that \j/°(*,) -* - °° as i -» «,, which is impossible, we have a

contradiction and our proof is complete. •

We recall that optimal control problems, such as (2.2a) do not necessarily have solutions in U.

Similarly, the sequence of controls wt(0 constructed by Algorithm 2.1 need not have accumulation

points in U. This difficulty can be resolved by showing that the conclusions ofTheorem 2.2 arevalid

in the space of relaxed controls (see [Bak.2]). Alternatively, one may resort to arguments involving
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infimizing sequences, as in [Pol.4].

3. COMPUTATIONAL EXPERIMENTS

We will now describe three computational experiments involving the slewing motion of hollow

aluminum tube depicted in Figure 1. The tube is one meter long, has a cross sectional radius of 1.0

cm, and a thickness of 1.6 mm. Attached to one end of the tube is a mass of 1 kg, and attached to the

other end is a shaft connected to a motor. The model below was obtained by neglecting small non

linear terms, the coupling between the flexural and extensional vibrations, and by assuming that the

acceleration can be controlled, instead of assigning a mass to the shaft and assuming that the torque is

controlled. These simplifications were introduced to to reduce the computational burded of solving

the optimal control problem. Our aim is to determine the accelaration necessary to rotate the tube

and bring it to rest The maximum accelaration produced by the motor is 5 rads/sec2. The equations

of motion determined by application of the standard Euler-Bemoulli tube with Kelvin-Voigt visco-

elastic damping are:

mwn (t ,x)+CIwfrrrr(t ,x)+EIwxxxx{t ,x)-mCl\t)w(t ,x) = - ^ m ir> u{t)x ,
l+m/3

t € [0,7], xe [0,1], (3.1a)

with boundary conditions:

w(r , 0) = 0 , wx(t , 0) = 0 , Clw^t , l) + EIwxx(t , 1) = 0 , t g [0 , 7], (3.1b)

M[^\t)w{t A)-^u(t A)-u{t)]^CIwtm{t A) + EIwxxx{t ,\) = 0, t e [0,7](3.1c)

0,(0 = Q(0, te [0,7], (3.1d)

Q,(0 = "(O, te [0,7], (3.1e)

where w (t , x) is the displacement of the tube from the shadow tube (which remains undeformed dur

ing the motion) due to bending as a function of time and distance along the tube; u(t) is the accelera

tion produced by the motor, and Q(t) is the resulting angular velocity (in radians per second). We

will denote by 0(0 the angular displacement of the rigid body (in radians). The values for the

parameters in(3.1a)-(3.1c) are: m = .2815 kg/m, C = 6.89xl07 pascals/sec, E = 6.89xl09 pas

cals, / = 1.005 x 10"8m4, M = 1.00 kg. These values are from the CRC Handbook of Material

Science. The tube is very lightly damped (0.1 per cent).
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When time is normalized to lie in the interval [0,1], the dynamics become:

mwu(t ,x)+TCIwtxxxx(t ,x)^T2EIwxxxx(f ,x)-T2mQ2(t)w(t ,x) = -72 m „u{t)x ,
1 +m/3

re [0,1], xe [0,1], (3.2a)

with boundary conditions:

w(f,0) = 0, wx(*,0) = 0, Clw^it ,l) + TEIwxx(t ,1) = 0, t e [0 ,1], (3.2b)

M[T2Cl\t)w(t , l)-w„(* , 1)-72M(0] +7C/Wtox(r , l) +72£/wxce(r , 1) = 0 , t e [0 , 1] ,

0,(0 = 7Q(7), f € [0,1],

n,(0 = 7a(0 r g [0,1]

(3.2c)

(3.2d)

(3.2e)

In [Bak.l] these dynamics were transcribed into the standard form (2.1a) as follows. Let

z(r)eXk2([0 , l])xR,andF :X x R2 -»X be defined by

z(f)=t(i',x)] ' F(?d)Mt).Q(f))&
We define A with domain of A, D (A):

DG4) = {iv =

Q2(Ow(r ,x)-a(r)x
Q2(Ovf(r,l)-a(0

w2 dxl
I ^-H^eZ^aO,!]),

Wl(0) =̂ i(O) =-^i^id)=0.wiO) =̂2} .

A :D (A) -> X is such that A Lw(f ,dJ -

FT d4
A>(t , x)

m 6x4
FT o3

W(t , 1)
M dx>

(3.2f)

(3.2g)

(3.2h)

Referringto Appendix II in [Bak.l], we see thatA is a generator of a compact semigroup and thatF

is a bounded operator.

Ourcomputational experimentsinvolve the following three optimal slewing problems:
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Px: Minimize the time required to rotate the tube 45°, from rest4 to rest, subject to the given

acceleration constraint

P2: Minimize the total energy required to rotate the tube 45°, from rest to rest, subject to the given

acceleration constraint and the maneuver time not exceeding a given bound.

P3: Minimize the time required to rotate the tube 45°, from rest to rest, subject to the given

acceleration constraint and an upper bound on the potential energy due to deformation of the

tube throughout the entire maneuver.

To express the above problems Plt P2» a*10* P3 in the form (2.10b), we make the following

definitions: We will be making use of the following functions. First, let 7 denote the final time.

Then we define

V(a ,7) ^ 7 . (3.3)

The input energy is defined as the integral of the square of the input; hence we define

1

iftu.T) £ ju(t)2dt . (3.4)
0

Next we define

\f(u,T) ^ (0(l)-ii/4)2 (3.5)

to be the square of the angular error at the final time.

Next, turning to the "from rest to rest" requirement, rigid body energy at final time is propor

tional to the square of the angular velocity. Hence we define

W ,7) £ Q(l)2. (3.6)

The kinetic energy due to vibration of the tube at time t is given by

1

K{t ,u) £ ^-jwt(t ,x)2dx , (3.7)
1 0

and the potential energy due to deformation of the tube at time t is given by

4We say thai the tube isat restwhen the total energy of thetube is zero. Thisenergy is composed of theenergy due to rigid body
motion and energy due to vibration and deformation.
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Pit ,u) £^)w„(f ,x)2dx . (3.8)
2 0

Hence we define

tftu.T) £ Kilfu), (3.9)

\fiu ,T) ± Pi\,u). (3.10)

Thetubeisatrestif\jf4(w ,7) = \?iu ,7) = xjrfy ,7) = 0.

For problem P3, we require that the potential energy due to the tube deformation be within a

specified range throughout the entire maneuver. This constraint has the form Pit , u) </(r) for all

re [0,1], where/ (•) is a given positive bound function. This is a state-space constraint which we

have elected to replace by theequivalent requirement y7(« ,7)^0, where

l

y\u ,7) £ J[max{/>(r,iO-/(r) , 0}]2dt. (3.10)
o

Since Pit ,u) is continuous, \\r7iu ,7) = 0 if and only if Pit ,«)</(r) for all t e [0,7].

Transformations such as (3.10) must be used with great care because for any feasible pair iu , 7),

\|f7(w ,7) =0 and V\j/7(k ,7) = 0, and hence 9(m ,7) = 0, which causes our algorithm to stop up at
such a pair. However, the problems caused by this violation can be circumvented by initializing the

algorithm with an infeasible point, keeping the parameter y small, in Algorithm 2.1, and introducing

an £ into the function definitions, as shown below.

It can be shown that the functions y' : Ux 7 -> R are continuously differentiable (in the L^

topology) in u and t for all j e {1,2 7 }. To conform with the format of problem (2.10b), we

relax each of the equality constraints by a small amount. The relaxation can be be chosen to be

sufficiently small so as notto matter from a practical point of view. Thethree problems now acquire

the following mathematical form5, where U = [u e LJO , 1] I Im(r) I<1 Vr e [0 ,1] and

T = [70 ,Tf], with 70>0 very small and Tf < <~ very large.

5Note that we find itconvenient at this point toabandon the convention that the cost function isv°(-, •) as well as the linear number
ing of the constraints.
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Pj: min{V(u ,7) I yfiu ,7)-e<0, y*iu ,7)-e£0, yfiu ,7)-e<0,
(3.11a)

\f(u ,7)-e<0, iu ,7)e UxT).

P2: mint^w ,7) Iy\u ,T)-Tf<0, \fiu ,7)-e<0, \|/V ,7)-e<0,
(3.11b)

y^iu ,7)-e<0, Vfy ,7)-e<0, iu ,7)e UxT}

P3: minfVGi ,7) I ^(m ,7)-e<0, y*iu ,7)-e<0, vjr5^ ,7)-e<0,
(3.11c)

\fiu ,7)-e<0, \)/7(m ,7)-e<0, (w ,7)e UxT}.

In our experiments, we set e = 10"^. Thus, with this relaxation, we are requiring that the final value

of the angle © be in the interval [45° -0.5° ,45° +0.5°]. We assume that because of model

simplifications and other inevitable modelling errors, a linear feedback system would be used to

assure final pointing accuracy.

In the computational experiments reported in this paper, the term ft2(r) was neglected inequa

tion (3.1a) - (3.1c). Similar results were obtained in computational experiments in which the term

Q2it) was kept. We used a cubic Hermit spline implementation of the Finite Element Method for

spatial discretization and Newmark's beta-method for temporal discretization of both responses and

sensitivities6. This approach is quite stable and gives accurate simulations. The results ofour experi

ments are shown in Figs. 2-11.

Problem Pt:

For simplicity, we choose the zero function as initial control and 2 for an initial value for the

maneuver time. Figure 2 is a graph of the control after 150 iterations. The number of time steps is

256 and the number of finite elements is48. Figure 3a isagraph of \jr^ tqiiu ,7) as a function of the

iteration number. Figure 3b shows \fqt >qiiu ,7) for the first 15 iterations. The initial discretization

is 32 time steps and 6 finite elements. The discretization is refined at iterations 67, 99, and 123.

After precision refinement, algorithm finds a a control u e U^ and final time 7 e T such that

^fqt,q,iu , 7) < 0 in only a few additional iterations. Note that each time precision of discretization

was increased, the value of vj/^ qiiuL ,7,) increases. This is due to improvement in the accuracy of

the evaluation of the partial differential equation. This increase in constraint violation \j/- (H.T.

6See [Bak.l,Chap. 8] forimplementation details.

19-



decreases each time the discretization is increased and we can show that in the limit the increase is

zero. Figure 4 is the graph of the cost as a function of iteration number. Figure 5 is the graph of

w it , 1), the displacement of the tip of the tube, from the shadow tube, as a function of time. There is

a maximum displacement of the tip of about 5 mm. This is within the range of validity of the Euler-

Bemoulli model. The tip displacement is large between 0.36 seconds and 0.437 seconds. Figure 6 is

a profile of the tube deformation, w(r , x) (see Figure 1), during this interval. The total time for the

entire maneuver is 0.7886 seconds.

Problem P2:

Formulating the slewing problem as a minimum time problem has two drawbacks. First, the

solution to the problem is a bang-bang control (Figure 2). Bang-bang controls may be undesirable

because they may cause damage to the equipment. Furthermore, bang-bang controls tend to excite

the high frequency modes of the system. High frequency modes are less well modeled by system

(3.1a) - (3.1c), and it is therefore best not to excite them. Second, the simple minimum time formula

tion does not take into account the amount of energy expended in performing the maneuver. In cer

tain applications, the total energy available may be limited, while the total time of the slewing motion

is less critical. Fortunately, both of the problems arising from minimum time control can be miti

gated by reformulating the problem. We minimize the total input energy while constraining the final

time to be less that a specified amount. Figure 7 is the graph of the control produced by minimizing

the total input energy while constraining the final time to be less than 0.800 seconds. The resulting

final time is 0.800 seconds. This is an increase of only 1.4 percent in the final time. The control has

become much smoother, and the total energy is reduced from 19.15 to 15.72, a reduction of 18 per

cent Figure 8 is the graph of the control for final time being 1.00 second. This is an increase of 27

percent in time over the minimum time case, but the total energy is reduced to 7.27, a decrease of 62

percent.

Problem P3:

In Figure 9, curve A is the graph of the potential energy of the tube as a function of time for the

control generated in solving the minimum time problem Pv In problem P3, we have the additional

requirement to keep the potential energy, which is a measure of the total tube deformation, below the

parabola (B) for all time. Figure 10 shows the minimum-time bang-bang control for problem P3.The

optimal final time for this case is 0.8177 seconds, an increase of 3.7 percent over the solution of prob

lem Pi. Figure 11 shows the potential energy curve for the optimal control (Figure 10).
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4. CONCLUSION

We have presented an implementable optimal control algorithm which can be used for solving

optimal slewing problems with control and state space constraints, and either ODE or PDE dynamics.

Our computational results show that the algorithm is effective in solving reasonably difficult prob

lems.
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Figure 10. Optimal Control for Problem 3
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Figure 11. Problem 3: Potential Energy
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