Copyright © 1989, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

FLIP: A GRAPHIC USER INTERFACE
FOR MANAGEMENT AND UTILIZATION
OF FACILITIES

by

Alex C. West

Memorandum No. UCB/ERL M89/39

18 April 1989

FLIP: A GRAPHIC USER INTERFACE
FOR MANAGEMENT AND UTILIZATION
OF FACILITIES

by

Alex C. West

Memorandum No. UCB/ERL M89/39

18 April 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

FLIP: A GRAPHIC USER INTERFACE
FOR MANAGEMENT AND UTILIZATION
OF FACILITIES

by

Alex C. West

Memorandum No. UCB/ERL M89/39

18 April 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

FLIP : A Graphic User Interface
for Management and Utilization of Facilities

Alex C. West

Computer Science Division — EECS
University of California
Berkeley, CA 94720
(awest@wilson.berkeley.edu)

Abstract

A program called FLIP (Facility Layout Information Program), version 2.7, is first
described in general, then a more detailed user’s guide is presented, and finally a programmer’s

guide discusses some implementation details.

Table of Contents

1. Introduction

2. System Description
2.1. What Has Been Used in FLIP’s Implementation ?

2.2. Overview

2.3. Limitations, Bugs, Need for Future Work

3. User’s Guide

3.1. Getting Started

3.2. Initial Configuration and Basic Functions

3.3. Where Should the Mouse be Placed ?

3.4. Menus vs. Typed Input

3.5. On-Line Help Information

3.6. The Command Menus

3.6.1. General Menu

3.6.2. Geometric Menu

3.6.3. Utility Menu

3.6.4. Equipment Menu
3.7. Coordinate Systems and Units

3.8. How to Use FLIP to Alter Information in the Database
3.9. Mode and Stacking of Operations

3.10. FLIP as an Intermediary

4. Programmer’s Guide
4.1. Database Schema and Coordinate Systems

4.2. General Graphic Tools Supporting FLIP
4.2.1. The Graphic Tool xcom

4.2.2. The Graphic Tool xevents

4.2.3. The Graphic Tool xmenuenv
4.2.4. The Graphic Tool xtext

4.3. General-Purpose Modules in FLIP
4.4. Flow Control in FLIP

el < <l
AW bsE AN~ OOCO

RDEBRBRBB®S

t This research was supported by Semiconductor Research Corp. and National Science Foundation under grant number MIP-

8715557

General Menu

7?77 GENERAL HELP 7277
Help about one menu entry

Explain new features I

Report bugs , comments , etc.l
. {Keep log of all typed & ou‘t.pu:l
Update Mode |
EXIT PROGRAM
Geometric Menu

Zoom in

Place mouse on window & click a button to relesse box

Zoom out

Draw Grid

Compute Area

Iconify all windows
Utility Menu

Show Utility Colors

Show All Utilities
Hide All Utilities

CG1 GL1 CG2

GL2

CG3

Show only 1 Utility
Side View of Utilities

Print Junction Info

Print Connection Info

List Equip Connected
Equipment Menu

Hide from View
Show Textual Info
List Utilities Connected
Turn ON

Turn OFF

List Equiment in Use

List Reservations

Storage
432F

0ld Lab
432

-- FLIP console window --

FLIP> I

Figure 1. FLIP soon after start-up.

Introduction

1. Introduction

A laboratory or factory contains a collection of objects (walls, partitions, doors, equipment,
outlets, utility networks, etc.) of various complexity that have associated pieces of information
(location, name, shape, parts, maintenance history, user instructions, etc.). Storing a suitable sub-
set of this information in computer databases opens up new possibilities of retrieval, manipula-
tion and display. Different computer programs may then be employed to make use of part or all
of the stored information in order to support technical staff in maintaining and upgrading the
complex physical facilities.

2. System Description

The program FLIP (Facility Layout Information Program) is a graphic user interface that
permits entry, viewing and modification of a group of objects that together can be used to
represent to some approximation an actual laboratory or factory floor. Each object belongs to a
pre-defined set of types and contains geometric and/or textual information. In addition, other
utility programs that take equipment names as input may be directly invoked from FLIP. In other
words, FLIP can be used either for its own capabilities or as an intermediary between the user and
some other programs.

All geometric information used by FLIP is three-dimensional, even though the user is
presented a two-dimensional view most of the time. Utility networks and some other objects are
color-coded. FLIP is equally menu-driven and text-driven, i.e. commands may be either selected
from menus or typed in at the user’s choice. Various selections also give the choice of either
using the mouse or, equivalently, typing in a name or value. With few exceptions, FLIP manages
to completely isolate its users from the details of the underlying database representation. Both a
general help function and help information on most individual commands are available on-line.

FLIP has been installed and is in current use on SUN 3/110-color workstations in the
Microfabrication Laboratory (or Microlab) at Berkeley. Early implementation development was
done on a VaxStation II/GPX. All the sample FLIP images used in this paper (for example,
figure 1) are based on actual Microlab data entered as of present.

2.1. What Has Been Used in FLIP’s Implementation ?

FLIP is written in C and runs on UNIX or ULTRIX. The underlying database is Relation
Technology’s INGRES. Communication with INGRES takes place by means of the
INGRES/EQUEL/C embedded query language, which allows database constructs interspersed
with C code. Graphic operations make use of the X Window System, version 10, which is
accessed by means of function calls to the Xlib library.

Several graphic modules were written with FLIP in mind; however, their function is general
enough (e.g., menus) for them to be eventually replaced by better or more sophisticated ones
developed outside the FLIP project. For example, various *‘toolkits’’ coming with X11 may one
day be used to upgrade various parts of FLIP’s graphic performance. General graphic modules
and the rest of FLIP’s source code amount to just over 10,000 lines of C code (including com-
ments.)

System Description . 3

2.2. Overview

Figure 2 shows the most general block diagram of FLIP’s function. The emphasis here is
the fact that keeping a single database helps avoid problems of duplication and inconsistency. In
this context, FLIP is merely one of the many programs that can be employed to enter, alter and
display information on the facility. By maintaining a modular approach, it is also easier to
upgrade, modify and add new programs as the need arises. Notice that FLIP can also be used as
an intermediary to invoke some other independent programs.

Figure 3 shows an approximate block diagram representation of FLIP's intemal structure.
Additional details are discussed in section 4, the Programmer’s Guide. Shown in figure 4 is a
sample situation showing a typical mode of operation in FLIP; all utility networks are displayed
and a detail is zoomed in.

END USER
Graphic
Interaction
execvp .
UNIX System Calls :> FLIP
(Program Invocation)
EQUEL/C

OTHER LAB SUPPORT ¢
PROGRAMS

! Database Queries

UNIFIED

LAB DATABASE

DATABASE (INGRES TAELES)

ADMINISTRATOR

Figure 2. Highest-level block diagram.

4 System Description

END USER

Grapghic

Interaction

&

VIEW GENERATOR

DATA-ENTRY
EDITOR

GRAPHIC
CAPABILITIES

MEMORY STRUCTURE
MANAGER

DISPLAY /7 INPUT

EQUEL/C
QUERY GENERATOR

il

GRAPHIC
CPERATIONS

TEXT
OPERATICONS

EVENTS HANDLER
&

CONTROL-FLOW
MANAGER

EQUEL/C

Database Queries

LAB DATABASE

(INGRES)

Figure 3. Block diagram of FLIP’s intemal structure.

2.3. Limitations, Bugs, Need for Future Work

o It should be possible to use FLIP to invoke a much larger variety of other programs than just

those that take equipment names as input.

e A few additional functions should be added to avoid having to ever modify the database
directly. (For example, FLIP currently offers no operations to store or modify labels in the data-

base, nor operations to delete walls from the database.)

e The database schema (see section 4.1) should be revised and expanded. It would also be very
desirable to have some general way of letting users describe new types of objects and operations

on them.

System Description

uondurasaq wI)sAS

(uonipuar p/g arewrxoiddy) *ousos 4111 eordAL “p amSig

Y. sprinkler

Utility Hetworks

General Menu

77? GEHERAL HELP ???

75,78, -6.68

Place mouse on uwindow & click a button to releszs box

vamm

Help about one menu entry

1
g
.g"

DlIJLP’J

Explain new Features

lRopoﬂ. bugs , comments , etc.

IK«plotofolltu»dt

iUpdate Mode

EXIT PROGRAM

Menu

Geometric

Zoom in

3 crzonic werk windoy

Zoom out

Draw OGrid

Compute Area

Iconify all windouws

Utility Meru

- Remove palette -

Add Wall

Extend Wall

Add Door

Add Junction
Add Connection
|[Extend Connection
[Extract Coordinate

Add Equipment
Modify Equipment Text

Show All Utilities

Hide All Utilities

Show only 1 Utility

Side View of Utilities

Print Junction Info

Print Connection Info

List Equip Connected
Equipment renu

Hide from View

GL1

LG

Show Textual Info

JList Utilities Conneoted

Turn ON

Turn OFF

List Equiment in Use

List Reservations

Pumps Database

Connect Equip to Utility

Delete Element
JLeave Update

Gases Database

-- FLIP console window

FLIP> z in
{Command understood as

FLIP> z in
{Command understood as

FLIP> in 2
{Command understood as

FLIP> B

s “Zoom in"]

: "2oom in”]

¢ "Zoom in”]

e Unlike some other programs using the X Window System, FLIP does not allow the user to
store a personalized start-up configuration in a file.

e A tentative plan to add digitized photographs (possibly with added captions) to the type of
objects that FLIP handles, was never carried out.

e No feedback to the user is given when operations are temporarily suspended and placed on a
stack of stopped operations, nor when they are later resumed (See section 3.9.)

¢ It would be nice to make greater use of the 3-dimensionality of the information.
e Units of measure should be shown whenever a numerical quantity is presented to the user.

o FLIP expects the database to be initialized, i.e. to have all the INGRES tables set up as
required. There should be an option to have FLIP do the initialization.

e The need is felt for a *“Kill Operation’’ function that could abort any update operation while in
the middle of it. Currently, the operation needs to be carried to the end and then denied
confirmation (which FLIP always prompts for.)

e Adding the capability of showing a ‘‘You are here’’ mark on the layout view, has been sug-
gested by some people.

e The choice between ‘‘one-shot’’ and ‘‘repeated’’ modes of operation (see section 3.9) is a
difficult one for some operations and it is not clear whether the choices made by FLIP are the best
ones.

o It would be convenient if screen redrawing could be sped up (maybe by setting up some hash
table for the data in memory.)

e Data inconsistency may be produced if many users run FLIP concurrently and perform update
operations (see section 4.1.) :

3. User’s Guide
The previous sections provide a general idea of what FLIP is used for, of what it looks like

and of what parts it is composes of. We will now turn our attention to some of the most impor-
tant details of actually using FLIP.

3.1. Getting Started

Like many other graphic programs using the X Window system, FLIP expects the shell
environment variable DISPLAY to be correctly set to the name of the graphic server that you
want to send the picture to. The reason for this need is that X is a nerwork system, i.e. you might
Tun your program on one computer and have the display appear elsewhere. The shell variable
DISPLAY can be set by issuing the command

setenv DISPLAY computer :number
where computer is the name of the computer that the graphic monitor is connected to, and
number specifies which of the graphic monitors to use, in case there is more than one. (If there is
only one, use :0) Many people set the variable DISPLAY in their *“.login’’ file.

FLIP is started by simply typing flip . It is possible to provide one or both of the following
two arguments :

-y Verbose mode. Some details of the database operations are printed out,
: together with some other information.

System Description 7

-d dbase_name Use a different database than the default one; dbase_name must be the name
of a valid INGRES database, with all the necessary tables already set up.

During start-up, a small window may appear, and soon disappear, in the upper left-hand
comer of the screen. The small window is the xtext window, whose function will be explained in
section 3.2. The somewhat mysterious occasional appearance and prompt disappearance is per-
fectly normal and has to do with the way the graphic tool xtext works, explained in section 4.2.4.

3.2, Initial Configuration and Basic Functions

When FLIP is first started, it has three windows and four command menus. The three win-
dows are the Global window, with purple border, the Detail window, with green border, and the
Console window, a light blue color.

Inside the Global window, FLIP generates an overall view of the facility as seen from
above, i.e. its parallel projection onto the floor. Black lines represent walls and partitions; grey
line represent the rough outlines (bounding boxes) of pieces of equipment. Notice that moving
the mouse above this window ‘‘drags along’’ a little black box, called magnifying glass. A
magnified view of whatever is under it appears in the Detail window, which is where all graphic
selections and operations are performed (hence its header of "FLIP: graphic work window".) The
magnifying glass can be ‘‘frozen’’ in position in the Global window by clicking any of the but-
tons on the mouse. A second click will restore the magnifying glass’ mobility. The window
header provides a constant reminder of the status of this feature, as well as a position feedback in
the coordinate system and units used for the facility.

The Console window is where FLIP prints out prompts, instructions and feedback for the
user. Users’ typed input appears in it, too, just like on a regular terminal. A second text window,
called xtext window, pops up as needed. (See figure 5) Its function is to allow display and editing
- of information in textual form. Notice that the functions of the two windows, even though both
involve text, are kept separate so that the basic monitoring of what is going on in FLIP, done
through the Console window, may still go on unencumbered while files are being viewed or
edited in the xtext window.

The various operations that FLIP can do are grouped by category in various menus. Each
menu has a distinguishing name that indicates the general category of operations that its entries
select. Other menus that are specific to a given operation pop up as needed while the operation is
being carried out. The commands available through the menus will be discussed in detail in sec-
tion 3.6.

3.3. Where Should the Mouse be Placed ?

Generally speaking, place the mouse on the window or menu that you are selecting from or
operating on. However, it is not necessary to place it on the Console window in order to type on
it; you can type into the Console window with the mouse on any of FLIP’s windows, including
the menus, but with the exception of the xtext window, which is the only other window besides
the Console that expects typed input. This method allows the user to specify which of the two
windows will get the typed input and also reduces the amount of mouse motion necessary to get
work done.

It is important to realize that, even though both handle textual information, the Console
window and the xtext window not only have different roles but are also implemented in a totally

8 User’s Guide

=== Invoking "more” ---
[To advance slowly, keep pressing RETURN with mouse *inside* this window]l

1. How to wiew this help information

The text shown in this window is fFiltered through the "more" program.
If unfamiliar with it, please type h after placing the mouse inside this
bsindow, In order to give any other "more" commands to scan through this
text, the mouse must be inside this text window.

2. General overview

FLIP (Facility Layout Information Program) is a 3-dimensional user-
interface for display and manipulation of graphic and textual information
about the layout of the Microlab and its wutility networks and equipment.
Some pre-existing programs that act on equipment can also be invoked through
FLIP (look for them in the Equipment Menu,)

3. Configuration and basic Functions

When FLIP is first started it has three windows and four menus, The
three windows are the Global Window, with purple border, the Detail Window.
with green border, and the Console Window., of a light blue color,

Inside the Global Window. FLIP generates an overall view of the lab as
seen from above, Black lines represent walls and partitions: grey line

c-More——(24%)

Figure 5. The xtext window presenting general help infon'na\tio_n

different way. In some ways, the xtext window acts as a more separate entity from FLIP than the

Console window does. This fact is due both to design choice and to implementation details (sec-
tions 4.2.1 and 4.2.4.)

3.4. Menus vs. Typed Input

If typed input is expected by a routine (i.e., if you are prompted for it in the Console win-
dow), then anything typed on any FLIP window other than xtext (as-explained in section 3.3) will
be passed to the routine that requested it; otherwise, any typed input that you provide unsolicited
by FLIP will be matched against the entries of the menus currently displayed and if any entry
matches it, the corresponding operation will be executed. So, to select an entry from a menu, you
have the choice of placing the mouse on the desired selection and pressing one of its buttons, or
of typing its name instead.

Names need not be typed accurately or in full. In fact, the input-recognizing routine is
insensitive to case and to additional blanks in between words. Furthermore, it is tolerant of omis-
sion of words, extraneous words, change of word order, and it will match individual words even
if one is a leading substring of the other or if they differ by a ‘‘single misspelling’’ (omission or
addition of a single letter, substitution of a single letter, or inversion of two consecutive letters.)

User’s Guide 9

3.5. On-Line Help Information

To find out what major changes have taken place in the last version or two, select the
"Explain new features" entry.

To obtain help on a specific menu entry, select the entry "Help about a menu entry”; once
you do that, the next one (only one) menu entry you select will not perform its ordinary function
but instead it will give you help information about it. (This special mode lasts for only one selec-
tion and then resets automatically.)

3.6. The Command Menus

The following subsections list the entries and the meaning of the four main command
menus. The information is also available on-line. Other menus pop up as needed (e.g., to
confirm or abort an operation just performed.) Of particular interest among them is the ‘‘Update
Menu’’ , described in section 3.8. Notice that, to a good extent, FLIP tries to use the labels of the
menu entries to provide a reminder of the state of the various operations.

3.6.1. General Menu

??? GENERAL HELP ???
This entry will give you a general overview of FLIP and will explain how to use it. The
textual information presented to you is filtered through a program called "more".

Help about one menu entry
When this entry is selected, the next one (ONLY one) menu entry you select will not per-
form its ordinary function but instead it will show you a verbal description of its effect --
as it is taking place right now. From then on, all menu entries will automatically resume
their usual meaning.

Explain new features
A brief description of some of the major recent changes in FLIP will be shown. When-
ever you haven’t used FLIP in a while, check this entry to see if there is anything new that
might be of interest to you.

Report bugs , comments , etc.
In case that you...

(1) encounter a bug, or something that looks like a bug to you
(2) have a suggestion on how to do something better

(3) would like to see new features added

(4) have a question that the HELP functions can’t answer

(5) <etc.> :

...then you can use this entry to have the mail program automatically invoked with the
right address. Type in your message as you normally do with the mail program (e.g.,
entering a period . at the beginning of a line terminates your message and sends the
mail.)
Keep log of all typed & output

This entry is used to start and terminate the process of keeping a log of all text that
appears on the Console window. When selected, it will prompt the user to enter the name
of a file where all text is to be copied into. Then, it will toggle its name to "Stop keeping

10 User’s Guide

log file" and re-selecting it will turn the log off.

Update Mode
This entry, which will be included in your menu only if your login name was found to
belong to the "labstaff" group, will enable you to pop-up a new menu that will give you
access to a number of update operations that will modify the database used by FLIP.

Exit Program
This is the entry to select when you are ready to leave FLIP. You will be prompted by a
pop-up menu to confirm your decision to exit.

3.6.2. Geometric Menu

Zoom in -
Each time that a mouse button is pressed on this entry, the size of the "magnifying glass"
that follows the mouse on the global view of the lab is decreased by a small fixed amount,
producing the result of zooming in on the detailed view.

Zoom out
Each time that a mouse button is pressed on this entry, the size of the "magnifying glass"
that follows the mouse on the global view of the lab is increased by a small fixed amount,
producing the result of zooming out on the detailed view.

Draw Grid
This entry allows you to place a grid on the detailed view; you are prompted to specify a
mesh size (expressed in database units) and a point (wall comer or utility junction) to
align the grid with. After the selection, this entry toggles its name to "Remove <size>
grid", where <size> is the mesh size. Re-selecting it will remove the grid.

Compute Area
This entry allows you to find the area of an arbitrary polygonal region defined on the top-
view projection of the facility. The polygonal region may be concave or convex and may
have any number of vertices. Each vertex may be either an arbitrary point or a wall
comer. Vertices must be specified in order, either clockwise or counterclockwise. To
specify a vertex, use the mouse as follows:
(A) If the vertex is an arbitrary point, place the mouse exactly where you want it to be and
click the MIDDLE mouse button.
(B) If the vertex is a wall comer, place the mouse close enough to it for a little box to
appear, then click the RIGHT mouse button. (Notice: pressing the RIGHT mouse button
will always select whatever wall comer is highlighted with a box, no matter where the
mouse is.)
After you have selected all the vertices as instructed above, press the LEFT mouse button.
There is absolutely no need to re-select the first vertex; the polygon will automatically be
closed by joining the first and last vertices as soon as the LEFT button is pressed.

Iconify all windows
Select this entry to iconify at once ALL of FLIP’s windows, including menus. An icon
with the name "Entire FLIP" appears in the upper left-hand comer of the screen. To de-
iconify this icon, just click any of the mouse buttons on it or, alternatively, use your win-
dow manager.

User’s Guide 11

3.6.3. Utility Menu

Show Utility Colors
When selected, this entry will draw a palette of symbolic utility colors, each with its
actual name next to it, and then will change its name to "- Remove palette -", with the
obvious meaning.

Show All Utilities
Selecting this entry will cause all utility networks to be drawn, superposed to walls, parti-
tions and pieces of equipment.

Hide All Utilities
Selecting this entry will hide from view all utility networks.

Show only 1 utility
Selecting this entry will pop-up a new menu that will allow you to choose *one* utility
network to be drawn, superposed to walls, partitions and pieces of equipment. This selec-
tion will override any previous one made as to what utilities will be drawn.

Side View of Utilities
This entry will give you the opportunity to view the parallel projections of all the utility
networks on the back and right-hand side of a box (extending from floor to ceiling), which
you can specify by clicking the mouse to define its comers. (See figure 6.) When done

with this type of operation, click back on the same entry, which in the meantime will have
changed its name to "-Terminate side view-"

Print Junction Info
This selection will allow you to point to the junction of a utility network that is currently
displayed in the magnified view window and obtain some information about it. (Its kind,
height and utility that it belongs to.)

Print Connection Info
This selection will allow you to point to two endjunctions of a utility network connection
that is currently displayed in the magnified view window and obtain some information
about it. (Its material name and size.) '

List Equip Connected
This entry allows you to see a list of names of pieces of equipment that are connected to a
given utility network, which you are asked to specify through a menu. The converse
operation is available through the entry "List Utilities Connected”, found in the Equip-
ment Menu.

3.6.4. Equipment Menu!

Hide from View
The outlines of the pieces of equipment are normally displayed in light grey. If you don’t
want them to appear in the magnified view (perhaps to reduce clutter or speed up the
drawing), select this entry. Once selected, it will toggle its name and function to "Show
Equipment"

Show Textual Info
Invoking this entry will allow you to select a piece of equipment by either pointing to it
with the mouse or typing in its name. Once the selection is successfully made, textual
information about the equipment will be displayed.

! The last several entries in the Equipment Menu appearing in Figures 1, 4 and 6, are not part of FLIP — See section 3.10

12 User’s Guide

apIny s, 13s)

€1

SINI[1IN JO MIIA 9PIS PUE PUD 9 ANTL]

Utility Networks

sprinkler

FLIF: g hie werk L]
General Menu _sroF work window

77?7 GENERAL HELP 777

M 208

W10

Help asbout one menu entry

Explain new Features

20803
H2=0
B <4003
il «e0

.|gases

Report bugs , comments , etc.

Keep log of all typed & outpu

Update Mode

EXIT PROGRAM

air

Geometric Menu

Zoom 1n

n2

Zoom out

02

Remove 2,30 Grid

chws

Compute Area

Cws

Iconify all windouws

di

R [————

Utility Menu

icw

- Remove palette -

1hw

Show All Utilities G & Cam -

sewer

Hide All Utilities

storm

Show only 1 Utility

vdrain

= Terminate side vieu -

cleanvac

Print Junction Info

Ipumps

Print Connection Info

< Add Hew Hame >

List Equip Connected GL1 G
Hide from View) I _
Show Textual Info FLIP>

- — FLIP> grid

LisLi ULt eles Lonneoted [Command understood as : "Draw Grid"]

Turn ON FLIP>

Turn OFF »xx GRID CONSTRUCTION »»=

List Equiment in Use (STEP 1) Enter size of mesh (in database units) ; 2,3
[Size is : 2,300]

List Reservations

(STEP 2) Click mouse on vertex or Jjunction to align grid with...
Pumps Database [Point coords : 80,500, 0.000]

1
Gases Database [Command understood as : “Show only 1 Utility”]

FLIP>

-> Click name on palette menu or type it in...
srinkler
[Command understood as ; “sprinkler "]

FLIP> view side
[Command understood as : "“Side View of Utilities”]

FLIP> ->Click mouse button on desired position...ll

List Utilities Connected
This entry allows you to see a list of names of utilities that a given piece of equipment is
connected to. You are asked to select the equipment by pointing to it or by typing in its
name. The converse operation is available through the entry "List Equip Connected"
found in the Utility Menu.

3.7. Coordinate System and Units

All objects share a single, right-handed, Cartesian coordinate system. The unit of measure is
arbitrary but it must be consistently used for all coordinates. At the moment the first two points
are entered through FLIP, a choice is made as to what coordinate system and unit of measurement
is being used. Afterwards, the only way to change coordinate system or unit is by means of direct
intervention on the database. The headers of the Global and Detail windows provide a constant
feedback for the position of the mouse or of the ‘‘frozen’’ magnifying glass , expressed in the
coordinate system and units used for the facility.

A recent addition to FLIP’s database schema (described in section 4.1) allows the storage of
a character string containing the name of the unit (e.g., ‘‘meters’’ .) No operation is currently pro-
vided in FLIP to store or modify such name, and it must be done directly through the database.
Furthermore, only one of the most recently operations added to FLIP, namely ‘‘Compute Area’’,
will show the unit name after the numerical values it computes.

3.8. How to Use FLIP to Alter Information in the Database

FLIP has an update mode that provides a graphic editor and other operations to allow
qualified users to make changes in the database that FLIP reads from. To be a ‘‘qualified’’ user
your login name must belong to the group *‘labstaff’’ . You can find out what groups you belong
to by typing groups in the UNIX shell (i.e., outside of FLIP.) When FLIP is started from the
computer account of a user who has update privileges, an additional entry called "Update Mode"
will automatically be included in the "General Menu." Invoking such an entry will bring up the
menu shown in figure 8, called the "Update Menu". Notice that no special qualification is
required to use FLIP in the viewing mode. Update operations are restricted as a form of protec-
tion for the data in the database. A detailed description of the various object types that can be
modified with the graphic editor is found in section 4.1.

The Update Menu is the starting point for all update operations, and other menus pop up as
needed. No detailed entry-by-entry explanation for the update menus is currently available, but
very detailed directions are printed out in the Console window as prompts during the execution of
update operations. A summary of the meaning of the various entries is as follows :

Add Wall Define position of new wall

Extend Wall Prolong an existing wall along a chosen direction

Add Door Define position on an existing wall of new door

Add Junction Define position and utility type of a new junction in utility network

Add Connection Define connection and material type between existing junctions

Extend Connection Prolong an existing utility connection along a chosen direction

Extract Coordinate Display information available about a wall/door endpoint or a
Junction

14 User’s Guide

ARdd Wall
Extend Wall
Add Door

Add Junction
ARdd Connection
Extend Connection

Extract Coordinate
Add Egquipment
Modify Equipment Text
Connect Equip to Utility

Delete Element
Leave Update

Figure 8. Update Menu

Add Equipment Define location, dimensions and network connections of a piece of
equipment that must already exist in the ‘‘process’’ table

Modify Equipment Text Edit the text file associated to a piece of equipment
Connect Equip to Utility ~ Specify network connections to a piece of equipment
Delete Element Delete junctions, connections and equipment

Leave Update Hide Update Menu

3.9. Mode and Stacking of Operations

Many viewing operations may be defined to have either of two modes : one-shot or
repeated. In the former case, the operation terminates as soon as the user completes the
specification (e.g. by selecting something with the mouse); in the latter case, the operation
remains active until the user explicitly tums it off (e.g. by pressing the RETURN key.) In some
cases, the nature of the operation makes one of the two types clearly preferable, but it many cases
there seems to be no clear answer. In a few instances, the mode of a particular operation was
changed in earlier versions of FLIP to accommodate users’ preferences.

If you are in the middle of any operation in FLIP, you may initiate a new one. The old
operation will be stacked and will automatically resume when the new one is finished. The only
limitation is that no new update operation may be started while in the middle of another update,
to avoid the inherent problems of concurrent updates (this provision is enforced by the fact that
the update menu disappears in the middle of update operations.) There is no limit to the number
of incomplete operations that may be stacked but, unfortunately, no new prompt is given when

User’s Guide 15

the execution of the old operation is resumed, so it is important to keep mental track of where you
are.

3.10. FLIP as an Intermediary

It was mentioned earlier that FLIP, in addition to its own built-in functions, has the capabil-
ity of acting as an intermediary between the user and other programs that take equipment names
as input. This is done as follows. A file that on our system is named
/usr12/1ab/micro/labroot/lib/flip/flip.ext needs to be created with the following format :

Namel

Program1

Name2

Program?2

The above file will be read at start-up and the strings Name1, Name2, etc., will be automatically
added at the end of the Equipment Menu as new entries.> Whenever one of these new entries is
selected, the user will be prompted to select a piece of equipment. At that point, the correspond-
ing program will be executed as if directly typed to a terminal, with all occurrences, if any, of the
symbol @ replaced with the name of the equipment. All I/O that the program may require will

be done through the xtext window. A sample flip.ext file, using two imaginary programs equip
and stat_rep, could be :

Enable Machine
equip-on @
Disable Machine
equip -off @
Report Status
stat_rep -v @

4. Programmer’s Guide

The following is a list of the files that include most of the code for FLIP. Each file name is
followed by a brief description of what the file contains. The rest of FLIP consists of general-
purpose graphic modules described in section 4.2. All the descriptions in this guide are some-
what sketchy, and for the fine details the reader is referred to the actual source code 3.

flip.h Definitions File

main.c Main Program and Some General Routines

init.c Routines for Initialization

color.c Routines for Color Allocation and Color Mapping

dbm.qc Interface to Ingres (with embedded INGRES/EQUEL/C code)
memory.c Routines for Operations on Data in Memory

2 This is the case of the last few entries appearing in the Equipment Menu in Figures 1,4, and 6
3 Available from the author or from the Microfabrication Laboratory, Cory Hall, UC Berkeley. (flip@argon.berkeley.edu)

16 Programmer’s Guide

handler.c Routines for Handling XEvents, Input Events from xcom Window

and FLIP-Specific Events

geom.c Routines for Geometric Operations

gfx.c Routines for Several Graphic Operations

string.c Routines to Manipulate Strings

misc.c Miscellaneous Routines

menu.c Miscellaneous Menu Routines

menul.c Routines for ‘‘General Menu'’

menu2.c Routines for ‘‘Geometric Menu'’

menu3.c Routines for ‘‘Utilities Menu'’

menu4.c Routines for ‘‘Equipment Menu’’

update.c Declaration of Main Data-Entry Menu and Some Support Rou-
tines for Update Operations

update0.c Support Routines for Data Entry

update2.c Data Entry Routines for ‘‘Add Wall’’, ‘‘Extend Wall’’, ‘“‘Add
Door’’

update3.c Data Entry Routines for ‘‘Add Junction’’, ‘‘Add Connection’’,
““Extend Connection’’, ‘‘Extract Coordinate’’

update4.c Data Entry Routines for ‘‘Add Equipment’’, ‘‘Modify Equipment

_ Text”’, ‘‘Connect Equip to Utl’’
update5.c Data Entry Routines for ‘‘Delete Element’’

4.1. Database Schema and Coordinate Systems

Figure 9 shows the entity/relationship diagram of the relational database that FLIP expects.
Figure 10 lists the INGRES tables used by FLIP. All database tables need to be set up prior to
running FLIP.

The database schema has been changed several times over the evolution of FLIP. Some
tables, such as door , as well as some table fields, are really a remnant of FLIP’s early versions
and represent an entity whose necessity is arguable. The fixed database schema may be FLIP’s
biggest limitation. While it is very desirable to have a default schema for users who don’t want to
specify their own, it is also rather difficult to devise a schema that will satisfy all users or let them
take into account local peculiarities.

A good portion of the database is kept in memory, especially information that greatly
affects the redrawing of the main displays. Most of the menus that pop up as needed, for example
the menu that lists the existing types of junctions, read the data directly from the database.
Update operations that alter information kept in memory don’t have an effect on the database
until the operation is completed and confirmed. Since all the in-core information is read from the
database only at start-up, multiple users running FLIP concurrently and performing update opera-
tions may produce data inconsistencies.

All geometric objects kept in memory store both the floating-point coordinates used for the
whole facility (see section 3.7), and the integer coordinates in the coordinate system of the Global
window.

Programmer’s Guide 17

) @

<>

®

o

1 1d)
- » 2 R tstartjunct.] o eceion (raterial_ic
equiprent | T 5 Junct:ion endjunct)
@ - J-4 (utility_id)

(refer_1d)

SOW

Figure 9. E.r. diagram of the database used by FLIP

4.2. General Graphic Tools Supporting FLIP

Several graphic modules were developed to provide support for FLIP’s graphic operations
but are not integral part of FLIP and may be replaced by better or more sophisticated ones when
they become available. At the time when most of FLIP was written, few good graphic tools
based on the X Window System (version 10) existed, and what was available was primarily the
relatively low-level Xlib library. This situation may be changing soon, though, as many graphic
*“toolkits” have become available with version 11 of the X Window System and more may be
developed and improved in the near future.

The following is the list of the graphic tools used by FLIP and a brief description of their
main function.

18 Programmer’s Guide

Table Fields Size Remarks
lab id integerl
height floatd Same floor-to-ceiling height assumed for entire lab
units cl0 Unit of measure for all coordinates (e.g., "meters")
vertex2 id integer2 Two-dimensional vertices represent vertical projections onto floor
X floatd A common coordinate system is used for the entire lab
y float4
wall id integer2 All walls assumed to extend from floor to commeon ceiling
vrix1 integer2 Wall’s first endpoint
vrx2 integer2 Wall’s second endpoint
colorl integer1 Currently unused information
color2 integerl Currently unused information
door id integer2
wall integer2 Wall that door is part of
hinge_vrtx | integer2 Door endpoint with hinges
open_vrix integer2 Door endpoint with latch
height floatd Height of top of door from floor level
label id integer2 No data-entry support currently available for labels
name cl6
x floaid Coordinates are for center of the label
y floatd
visib integerl "Visibility": if > 1 then label doesn’t appear in Global Window
equipment id integer2
refer_id integer4
bottom fload Vertical elevation (from floor) of bottom of bounding box
height float4 Height of bounding box
x1 floatd Coordinates for vertices of bounding box
yl floaid
x2 floatd
y2 floatd
x3 floatd
y3 fload
x4 fload
y4 floatd4
process procid integerd No data-entry support currently available for this table
name vchar/textl12 | Name of piece of equipment
equip_junct | e_id integer2
j_id integer2
junction id integer2
X floatd
y float4
z float4 Height from floor level
kind integerl
utility_id- integer] Utility that junction is part of
junct_kind | code integerl Id for this table
name c20 For example, "outlet”, "faucet”, etc.
connection | utility_id integer2 A "connection” is a portion of utility network between two junctions
startjunct integer2
endjunct integer2
material_id | integerl
size floatd Meaning of size depends on the type of material
material id integerl
name c30 For example, "steel pipe", "coaxial cable", etc.
utility id integerl
kind cl0 For example, "sprinkler”, “110 volts”, etc.
color integer2 Id of symbolic color associated to utility
type c8 For example, "gas", "power", etc.
typeid integerl
description | vchar/text60 | A more verbose description of utility kind
color id integer2 This table isn’t used. It's currently hardwired into FLIP
name €30 Name of color cormresponding to a given number
Figure 10. INGRES tables used by FLIP

Programmer s Guide

19

Xcom Used to turn a window into an I/0 tool

xevents Used to register requests to send X events to given routines
Xxmenuenv Provides pop-up menus to make selections from
Xtext Produces a window good for doing text operations on files

4.2.1. The Graphic Tool xcom

This module turns a window into a “‘dialog box’’ (or *‘text window’") to provide textual
I/O. FLIP uses this tool to implement the Console window. An arbitrary X window (only one at
time) can be designated for use with xcom by the request :

xcom_window(window, font_name, background_color)
Window window;
char *font_name; /*E.g., "9x15" */
int background_color; /* Pixel value */

Afterwards, the function xcom_write may be used exactly like the ordinary printf to print on the
designated X window, and xcom_read may be used to input strings of characters. A cursor is
maintained on the screen and window resizes are properly handled automatically. A major feature
of xcom is that printing on the screen can be done in rwo colors. The complete list of functions
available in xcom is the following:

xcom_window
XCOmM_N_rows
xcom_n_cols
Xcom_putstring
xcom_write
xcom_colorwrite
xcom_setcolor
xcom_defcolor
xcom_event
xcom_pending
xcom_inpqueue
xcom_read
xcom_input_flush
xcom_echo
xcom_noecho
xcom_invoke
xcom_noinvoke

Designate window for use by xcom

Returns number of character rows in window
Returns number of character columns in window
Print character string on window

Behaves just like the ordinary printf

Same as xcom_write but with color as argument

Set value of current color

Set current color to default (black)

Handles key-pressed or exposure events for xcom window
Finds if there is unread available input

Returns number of unread characters in input buffer
Copy entire unread input into a string

Flush away unread input

Make copy of all window output into a given file
Stop action of xcom_echo

Invoke a user-passed function whenever there is 1/0
Stop action of xcom_invoke

4.2.2. The Graphic Tool xevents

This is a very general tool that facilitates the handling of input coming from the window
system. Such input comes packaged in the form of a structure called ‘‘XEvent.”” XEvents are

20 Programmer’s Guide

placed on a queue by the window system as they arrive, so a typical application program will
have a central loop reading from the queue and dispatching events to routines. This dispatching
is the part that the tool xevents can help with. It permits the programmer to associate routines
with X windows and XEvents of given types. After all the associations are registered, the main
loop of the program needs only continue calling the function ProcessEvents, which will wait for
the first element in the XEvent queue to become available and then will invoke the appropriate
routine. The following routines make up xevents :

SetEventHandling Register association of function to window and event type
RemoveEventHandling = Remove association

DefineFunctionToInvoke Register association of function to window

ProcessEvents Read from head of XEvent queue and dispatch to appropriate
Sfunction

ProcessGivenEvent Use XEvent passed as argument to do the dispatching

DiscardEvents Flush unwanted elements from XEvent queue

4.2.3. The Graphic Tool xmenuenv

This tool provides the capability of making a selection from a menu of choices. Various
other menu tools are in existence today and it may be possible to create an interface simulating .
xmenueny using other menu programs. Early in the development of FLIP, it appeared that exist-
ing menu tools could not be easily used with the control structure that FLIP then had — but which
has completely changed since — and so I created xmenuenv. Some of its highlights are : 1) the
support it provides for registering and automatically invoking a help function; 2) The largest font
that will fit in the space for an entry name is automatically picked for each individual entry and
gets automatically adjusted if the menu gets resized 4. Weaknesses of xmenuenv include the fact
that menus are not very dynamic entities, and for example all their entries must be specified at
creation time and no entries can be added or deleted afterwards. (Existing entries may be altered,
however.)

All programs making use of xmenuenv should have the statement :
#include <xmenu.h>
which, among other things, defines the data types Menu and Entry . The following functions are
available in xmenuenv . '

DefineMenu Define a menu but don’t display it

CreateMenu Define and display a menu .

ModifyMenu Similar to DefineMenu, but it re-uses the window of a previous
menu ‘

DisplayMenu Bring a menu to view

HideMenu Hide a menu from view

DestroyMenu Hide menu and mark it as non-existent

InvokeMenu Process an XEvent that corresponds to a menu window

4 One person told me he doesn't like to look at entry names of differ sizes; however, if desired, all names can be appear with the
same size by defining a menu with same-length entry labels (padding with blanks as necessary.) The automatic font scaling allows to -
have long descriptive names for some of the entries whose meaning would be obscure if described with a short name, while at the
same time not forcing a small font to all other entries.

Programmer’s Guide 21

MenuEvent Similar to InvokeMenu but if the XEvent corresponded to a selec-
tion then return a pointer to the entry selected
GetMenuChoice Wait until an entry from a menu is selected and return a pointer to

Kill_GetMenuChoice
FirstMenu

it (if an XEvent not belonging to the specified menu is seen while
waiting, it is given to a function passed as argument)

Abandon the wait started in a previous call to GetMenuChoice
Return pointer to first menu created

ModifyEntryName Change name of an entry and correct the display

Highlight Highlight a given menu entry

NoHighlight Remove highlight from a given menu entry

InvokeSelection Behave exactly as if given selection had been selected with the
mouse ‘

WindowAssoc Return a pointer to the entry associated to a given window

SetHelpFunction Designate a function as being the help function

EnterHelpMode The next selection will invoke the help function instead of the

usual function associated to it

4.2.4. The Graphic Tool xtext

This tool provides a dedicated window where text operations, such as viewing and editing a

file, may be done. Its implementation makes use of the familiar terminal emulator program called
xterm.

There are two parts to xtext : one is a server, called xtext_backend, that runs as an indepen-
dent process, and the other is a library of functions, called xtexz_lib, that the client program can
use to communicate with the server. The server is started with a call to the xtext_lib function
xtext_start, which forks off a child process running the program xterm with some arguments.
The arguments passed to xterm include : 1) a specification that the xterm window should be
created in iconized form in the upper left-hand side of the screen; 2) the value of the file descrip-
tor for the reading end of a UNIX pipe that is created by the calling program before forking. This

half of the pipe will be used for interprocess communication between xtext lib and
xtext_backend.

The newly created process acts as a server, i.e. keeps reading from the pipe, interprets the
messages coming through and performs corresponding actions. In addition, just before entering
the interpreting loop, it determines the ID of the window it is associated to and unmaps (hides) it.
Notice that FLIP starts up xtext during initialization, which explains the little iconified window
sometimes appearing in the upper left-hand of the screen and soon disappearing.

It would be possible to modify xtext in such a way that it could be used to implement the
Console window and make the tool xcom unnecessary. However, a major drawback would be the
fact that printing in two colors would no longer be possible (unless the program xterm gets
expanded some day to be able to handle two-color printing.)

The functions available in xtext_lib are :
Xtext_start
xtext_end

Create a separate server process producing an xterm window
Eliminate the xtext window and kill the server process

22 Programmer’s Guide

xtext_clear Clear the xtext window

xtext_map Map (make visible) the xtext window

Xtext_unmap Unmap (remove from view) the xtext window

Xtext_more Display the file passed as argument in the xtext window using the
“more” program

xtext_vi Edit (using “vi”) in the xtext window the file passed as argument

Xtext_instr Execute a generic instruction in the xtext window as if typed to an
xterm terminal program

xtext_command Same as xtext_instr but the command is passed in a different for-
mat

Upon normal termination, FLIP issues the xtext_end command to kill the xtext process.
Abnormal terminations, typically come across while debugging, will not send the request and, as
a result, the xtext process will have to be killed manually. Some day, it might be desirable to util-
ize the currently unused second half of the communication pipe between the two processes, in
order to have xtext periodically check on the status of the calling program and automatically ter-
minate if the program stops responding.

4.3. General-Purpose Modules in FLIP

A few subroutines in FLIP are of great generality and completely isolated from the rest of
the program. They can be of interest to other program, too, or maybe one day they may find their
way into more general tools or libraries-and be taken out of FLIP. A selected list of them is the
following:

PolyArea Compute the area of an arbitrary (convex or concave) polygon
CompareWords Match one sentence to a given group of sentences

The first of those two functions, PolyArea , is in file geom.c . A more detailed description
is:

typedef struct {

float x,y;
} point;

float

PolyArea(Plist, n)
point Plist[];
int n;

/* Compute and return the area of an arbitrary (convex or concave) polygon with n
vertices, listed in order in the array Plist. In case of error return a negative
number. Overlapping vertices or edges are permissible; winding polygons are
not. The area is determined by first finding the area of the convex hull of the
polygon and then recursively subtracting the areas of all polygons forming the
concave portions, if any. Error codes: -1. (polygon has less than 3 sides); -2.
(memory allocation failure); -3. (winding polygon)

*/

Programmer’s Guide 23

The second function, CompareWords , and related functions are in file string.c . The func-
tion CompareWords is built on top of a function called StrCmp , and it is used as a building
block for a higher-level function called SearchList . The listing of those 3 functions, from lower
to higher level, follows :

StrCmp(s1, s2)
char *sl, *s2;

/* Case-insensitive, error-tolerant, string comparison. Retumn O if the strings are
equal. Return 1 if they differ only by a single-character substitution (unless string
length is 1). Retumn 2 if they differ only by the inversion of two consecutive char-
acters. Return 3 if s1 differs from s2 only because of a single-character omission
(unless s2 has only one character). Return 4 if s1 differs from s2 only because of
a single-character addition (unless s2 is the empty string.) Return § if the strings
differ by at least 2 characters and one is a leading substring of the other. Return
-1if any of the above matches fails or if either string is NULL.

*/

CompareWords(ptrl, n_wd1, ptr2, n_wd2, match_no, err_no, inversion)
char **ptrl, **ptr2; /* WARNING: argument ptr2 gets trashed */
int n_wd1, n_wd2, *match_no, *err_no, *inversion;

/* Match the two group of words pointed to by the elements in the arrays ptrl and
ptr2. Each array element is expected to point to a null-terminated single word.
The number of elements of the first array is n_wdl and that of the second is
n_wd2. It is slightly more efficient to have n_wdl <= n_wd2. The matches are
done on a word-by-word basis, based on the case-insensitive, error-tolerant word
comparator StrCmp(). Perfect word matches, as determined by StrCmp(), are
looked for first, attempting to find matches that maintain the word order in the
two groups. A second pass will then look for imperfect word matches, still
attempting to retain the positional order for ALL matches (perfect or otherwise) in
the two groups. [The reason for the two separate passes is to avoid using up
words for imperfect matches when they may give perfect ones. E.g., matching
"nat gnat" and "net gnat" might use up the "nat" from the 1st and the "gnat" from
the 2nd, producing just 1 imperfect match instead of the perfect "gnat" = "gnat"
plus the imperfect "nat" and "net".] The variable 'match_no’ is set to the TOTAL
(perfect or not) number of words that match, ’err_no’ is set to the number of
errors (imperfect matches), and ’inversion’ is set to 0 if the matches found main-
tain the same positional order in both group of words and to 1 otherwise.

*/

SearchList(str, str_list, match1, match2)
char *str, *str_list[]J; /* WARNING: 'str’ will be trashed */
int *matchl, *match2;

/* Match the string ’str’ against all the strings in the array of strings ’str_list’. The
last entry in ’str_list’ is expected to be a pointer to NULL. Each string is con-
sidered to be a list of blank(s)-separated words. Return -1 if the search is aban-
doned because the strings ’str’ is too long, Return -2 if the search is abandoned
because one of the strings in str_list is too long. Return -3 if the string str’ con-
tains only blanks. Return O otherwise. The matches are done on a word-by-word
basis, are insensitive to case and are tolerant to slight errors between the two

24 Programmer’s Guide

words [further details under the function StrCmp().] The variable matchl will be
set to the index in the array str_list of the best match found, or -1 if none is found.
The variable match2 will be set only in case of ambiguity of best matches, or -1
otherwise. Best match is the one will the highest number of individual words
that match [further details under CompareWords()); if this number is O then no
match is considered to. have been found. If more than one pair has highest
number of words that match, then the one with fewest errors in individual-word
matches will be selected; if there is more than one, then it will be the one whose
words match in the same order; if more then one, then it will be the one with the
same number of words (this is necessary to distinguish, e.g., "A" from "A B"); if
more than one or none then an ambiguity is declared.
*/

4.4. Flow Control in FLIP

Program execution starts in file main.c . Various initializations are carried out, mostly
using routines in init.c, then the xtext tool is started up, a portion of the database is read into
memory (files dbm.c and memory.c), other initializations follow, and finally the main loop of the
program is entered by calling the function EventHandler (in file handler.c) Prior to such call, all
the routines that create the various X windows will have registered, by means of calls to the tool
xevents, which of the XEvents are to be selected for each window and what routine is to be called
whenever that combination of XEvents and windows are seen. The routine EventHandler con-
tains the main loop of the program. It repeatedly calls the function ProcessEvents, part of the
tool xevents, which reads the next element from the front of the XEvent queue and dispatches it to
the pre-requested routines within FLIP. '

The most complex part of control flow is when some routine expects an input provided by
the X system. The routine cannot just loop and wait for the XEvent to come around because
there may be other XEvents that need immediate attention (e.g., windows may have been resized
and need to be redrawn, etc.) What FLIP does, instead, is to use a group of routines, WaitXE-
vent and related ones, all contained in the file kandler.c . These routines are given as arguments
one or more XEvents and they will enter a loop that keeps looking at the front of the XEvent
queue for any of the desired events. Any other event that may be encountered while waiting for
the desired ones will be sent to the regular event dispatcher contained in the xevents tool (named
ProcessGivenEvent .)

In addition to XEvents, FLIP deals with structures, similar in concept to XEvents, simply
called Event . Each of those structures can be thought of as a local, FLIP ‘‘event’’, representing a
package of information about some higher-level object. Its components are described in flip.h .

Acknowledgements

I would like to especially thank the following people. Prof. David Hodges for making this
project possible. James Hopkin for most of the data entry, as well as for design suggestions and
feedback on this paper. Katalin Voros for extensive critique and proofreading of this paper, and
for user feedback on FLIP’s functions. David Mudie for design ideas and for detailed feedback
on this paper. Bob Hamilton for his help in proofreading.

Programmer’s Guide 25

26

References

1. Jim Gettys, Ron Newman and Tony Della Fera, ‘‘Xlib — C Language X Interface. Protocol
Version 10*’, MIT Project Athena, 1985

2. Tom Muller and Dipti Shabde, ‘‘Facilities Maintenance System, UCB Microlab’’, Spring
1986, unpublished.

 Programmer’s Guide

	Copyright notice1989
	ERL-89-39

