Copyright © 1989, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

SOVAR: SMART MEMORIES FOR
OUT-OF-ORDER EXECUTION
VLSI ARCHITECTURES

by

Gregory Ameriada Uvieghara

Memorandum No. UCB/ERL M89/41

14 April 1989

SOVAR: SMART MEMORIES FOR
OUT-OF-ORDER EXECUTION
VLSI ARCHITECTURES

by
Gregory Ameriada Uvieghara

Memorandum No. UCB/ERL M89/42
14 April 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Dedicated to my junior brother, Chris Israel Uvieghara
for all his support, sacrifice and dedication
to the family business.

-~

SOVAR:Smart Memories for Qut-of-Order Execution VLSI Architectures
Gregory Ameriada Uvieghara

Ph.D. Department of Electrical Engineering
and Computer Science

ABSTRACT

Advances in semiconductor fabrication capabilities and CAD (Computer Aided Design) tools
have made it feasible to design and fabricate single-chip processors. With increasing integration,
more and more complexity is being put on chip to achieve higher and higher performance. One
approach is to use the increasing integration to provide larger on-chip conventional memories on
traditional sequential execution CPU chips. (A trend in this direction has been an increase in the.
use of larger and larger on-chip caches for implementing von Neumann architectures.) The oppo-
site approach is to use the increasing chip real estate to implement less dense but more functional
(smart) memories. These smart memories can be employed to support out-of-order execution
architectures, which are non-von Neumann machines that attempt to achieve higher performance
than traditional von Neumann architectures by waiving the sequential execution requirement.
Although the advances in semiconductor technology and CAD now make it feasible to implement
single-chip out-of-order execution architectures, there are several circuit design challenges that
must be surmounted. These challenges relate to the smart memories that are needed for imple-
menting out-of-order execution models. This dissertation addresses the circuit design challenges

of the smart memories that are required for implementing out-of-order execution VLSI architec-

Dind L.

Prof. David Albert Hodges

tures and proposes some solutions.

Chairman, Dissertation Committee

i
Acknowledgements

First of all, I want to proclaim my heart-felt gratitude to Oghene (God), my Father for His love
and faithfulness. I also want to thank Him for giving me a second chance and for guiding me even when
I was in rebellion. I want to thank my Savior, the Lord Jesus Christ for saving, healing and delivering
me. I am grateful to God, the Holy Spirit for directing me to participate in the Ph.D. program, and for
leading me throughout, especially during the chip verification , chip testing and dissertation write-up. I
also thank the Holy Spirit for clearing my thoughts and for giving me creative insights into circuit
design. I am thankful to E! Shaddai (the God that is more than enough) for providing the finances even

from far-away lands and for bringing me in contact with the right kinds of people at the right times.

I wish to express my sincere thanks to Rev. Kenneth Hagin for his teaching on faith that helped
me tremendously during the trying moments. I thank Pastors Joe and Jean Perez, Bfother Bob and Sister
Cheryl Cambridge for helping me in the last crucial months with love, faith, hope, a new anointing and
knowing God’s will. I am especially thankful to Pastor Jean Perez for being sensitive to the Holy Spirit
in helping me realize how the Ph.D. program fits in Chukwu’s (God’s) perfect will. I don’t have enough
space to express my thanks to Revs. Momoh, Etidia, Ejomah, Freeborn, Friesen, Copeland, Ogbeta,

Chief Mosheshe and other ministers who helped me with their prayers and ministries.

I am grateful to Prof. Johnson, "Chief" Abiola and Dr. (Mrs.) Yetunde Taiwo and Prof, and Mrs.
Aladekomo for "supercarving” and for christianly fellowship. I thank Kevin Kornegay, Valerie Taylor,
Karen Martin, Glen Dunning, Art King and Jim Kelly for memorable moments and hours of witnessing
on Telegraph Avenue. I also thank Greg Uehara for all the enriching moments of christian fellowship. I
express my gratitude to Dr. Kola Aiyesimoju and Dr. Franklin Osaisai for loans and various forms of

assistance.

iii

On the academic side, I start by expressing my profound gratitude to Prof, David Hodges, my
research adviser, for all his fatherlike support. He was more than a research adviser to me: he was also
an intellectual Dad. I am especially thankful to him for his personal concern, his stimulation of my
creativity, and his insightful, yet constructive criticisms. He stimulated my creativity by drawing the
best out of me. He criticized my half-baked ideas without any alienation or friction. His personal care

was such that he was able to generate funds for the research from a foreign country.

I thank Prof. Yale Patt, a qualifying exam committee member, whose insights and pressure at the
early part of the research led to my first proposal. I am grateful to Prof. Robert Brodersen, qualifying
exam committee chairman and dissertation committee member, for hié insightful comments during the
exam and for editing the dissertation. I am appreciative of the cooperation of Prof, Frederick Balderston,
a member of my qualifying exam and dissertation committees. My discussion with him reminded me of
my B-school days by revealing the business perspective. I thank my late MIT Professor, Prof. Kuh who
encouraged me to apply to Berkeley. I would like to thénk Prof. Alvin Despain for allowing me to use
his DARPA MOSIS account to fabricate my chip. I am also grateful to Profs. Richard Muller and

Alberto Sangiovanni-Vicentelli for all their cooperation during my 1984 health debacle.

I have special thanks for Dr. Wen-mei Hwu, who collaborated with me from the Computer Archi-
tecture viewpoint. I thank him for his careful and detailed explanation of out-of-order execution. In the
area of circuit design, I am eternally grateful to Yoshinobu Nakagome (visiting Hitachi ‘researcher;
1987/88) who implemented the Barrell Shifter. I am particularly grateful to him for his thorough circuit
design review of the RAT and ALU, and the RAT noise margin tests. I appreciate all the help I received
from Dr. Deog-Kyoon Jeong (D.K.). I thank him for availing me of his extensive circuit design experi-
ence, his pads, and his clock generator. I also thank him for his verification of my ideas and for helping
me with various CAD tools. I am grateful to Dr. Dacbum Lee for helping me with his VLSI circuit

design insights, his SPUR experience, his ALU and information on the SPUR CPU. I acknowledge with

iv

thanks the contribution to the thesis topic selection by Dev Chen, the intense review of the Abstract by
Greg Uehara, the sense amplifier discussion by Sehat Sutarja, the setting up of the test bench by Ken

Lutz and for various forms of technical assistance by Joey Doemberg and Phil Schrupp.

I thank Marvin Baron for helping me with immigration and financial problems, Ruth Tobey for
helping me with a loan, and Genevieve Thiebaut , Beth Rhine, and Pearl Tranter for various forms of

administrative assistance. I am grateful to Cheryl Craigwell for refreshing jokes and laughs.

I am indebted to my financial sponsors, DARPA and the Hitachi Central Research Laboratory,

Japan.

On my family side, I start by expressing my gratitude to my late Dad posthumously, for his go-
getter philosophy that has brought me this far. I am eternally grateful to my Mum, for paying very care-
ful attention to my education in my early years of school, for being sensitive to God, the Holy Spirit in
1984 on my behalf, for suppoi'ling me throughout my Ph.D program and for forfeiting a lot for the pro-
gram. I don’t have enough words to thank my immediate junior brother, Israel Uvieghara for taking care

of the family business, thereby freeing me to participate in the Ph.D. program without any burdens.

Finally, I thank other family members for all their help. I am grateful to Justice Akpomudjere and
Chief Akamune for all their support of the family business while I was abroad pursuing the Ph.D. pro-
gram. I thank Uncle Chris Ogwu, and his wife, Tees, and Malechi and Tony Ogwu for transmitting my
phone messages to Warri. I thank Emma Osakwe and his wife, Mabel, for iﬁu'oducing me to Rev.
Momoh, Meschack and Justy Ilobi for prayers and giving me their car to visit the Irri ministry, Fide and
Christy Ossom for prayers and help during the 1985 crisis, and Onome, Angela, Augusta, Victor, and

Mathias for their prayers and support throughout the program.

3.NT : A Smart Instruction Memory Case Study

4. RAT: A Smart Data Memory Case Study

Table of Contents

2.1. Introduction

2.2. Overview

ooooooooooo

oo

oo

--

2. HPSm : An Out-of-Order Execution VLSI Architecture Case Study

oooooooooooooooooooooooooooo

...

..

...

ooooooooooooooooooooo

ooooooooo

2.3. Major Components

2.4. Global Busses and Signals

.......................

2.5. Detailed Pipeline Timing

ooooooooooooooooooo

.............

ooooooooooo

ooooo

2.6. Conclusions

ooooooooooo

ooo

oooooooooooooooooooooooooooooooooooo

3.1. Introduction

...............................

3.2. Memory Architecture

ooooo

3.3. Basic Operations

3.4. Circuits

ooooo

...

ooo

ooo

ooo

oooooooooooo

oooooooo

oooooooooooooo

.....

4.1. Introduction

oooooooooooooo

4.2. Memory Architecture

oooooo

11

15

20

22

22

22

24

29

32

33

35

35

35

4.3. BaSiC OPETALONScuevererurureerrererrerrensnressssesesessassessessassssssssssssssssnsassssssessssesesssssssssssssssssens

4.4. Circuits

4.5. Experimental Results
4.6. CONCIUSIONScovverirereensnernerensneernsaesseserossssesessnnesens

5. Smart Memory Design Issues

5.1. Introduction ...

...........

oooooooooooooooooo

ooooooooo

oooooo

5.2. Issues and Proposed Solutions

5.3. Cost/Functionality Study

5.4. Conclusions

oooooooooooooooooooooooooooooo

ooooooooooooooooooo

oooooooooooooooooooooooooooooo

oo

.............................

6. Conclusions

ooooo

ooooooooooooo

oooooooooooooooooooooooooooooo

oo

oooooooo

0000000000000000000000000000c0000000000000000

ooo

36

37

48

54

56

56

56

64

65

67

67

67

CHAPTER 1

Introduction

1.

1.1. Smart Memories

Traditionally, in a digital system the logic/control section is conceptually separate from the data
storage section as in Fig. 1a, with a distinct boundary separating the two sections. The memories in the
data storage section are just conventional READ/WRITE memories. But when the logic/control section
partially overlaps the data storage section, a new species of memory, smart memory, emerges as in Fig.
1b. This memory-logic hybri_d derives its "smartness" from embedding logic m memory. It may be
' necessary to intermingle memory and logic in this way to improve the performance of the overall sys-
tem. The granularity of the intermingling may be at the level of a data cell (i.e. each cell has embedded
logic) or at the level of a memory subsystem (i.e. several cells share some embedded logic). So, one can
visualize a "smartness" spectrum where on one end you have "full smartness" (i.e. each cell has embed-
ded logic) and on the other end you have conventional memories (i.e. no cell has embedded logic). One
can also define a logic-memory “"conceptual distance" spectrum that corresponds to the "smartness”
spectrum: “"conceptual distance" of 0 for "full smartness” but "conceptual distance” of = for conven-

tional memories.

The content addressable memory (CAM) is a smart memory that can be used to illustrate the fore-
going points. It has a logic-memory “"conceptual distance” of "0". In the conventional memory, the
address is given to access the data, while in the CAM, the data is given to access the address. Such a

memory is used where it is necessary to know what memory words contain a certain bit pattern (like in

parallel processing, expert systems, and artificial intelligence applications). If an N-word RAM is used,
N cycles would be needed to sequentially search through the N words of the memory to determine the
memory words that match the given bit patten. But by employing some logic in each data cell, a CAM
can simultaneously match each memory word against the bit pattern in a parallel fashion. In other
words, it performs parallel data search without extensive address handling. Therefore, a CAM can be
viewed as an efficient hardware substitute for a RAM plus a searching algorithm. Adding a comparator
logic to the RAM cell in Fig. 2a gives the CAM cell in Fig. 2b. The detailed circuits are in Figs.3a &
3b. In Fig. 3b, the EXCLUSIVE-OR circuit is the comparator added to each RAM cell to give the CAM

cell.

The video RAM (VRAM) is another smart memory that readily comes to mind. It has a non-zero
logic-memory “conceptual distance" since clusters of simple data cel;s share the-embedded logic. The
VRAM is a smart memory that combines a conventional RAM with serial access registers and some
control logic to support bit-mapped graphics display systems [1]. A bit-mapped graphics display system
is a technique that is needed to efficiently implement real time graphic simulators, higher resolution
displays, and combined text and graphics in color on a single screen. This technique provides unlimited
fiexibility in the images which can be displayed by allowing each pixel on the screen to be individually
controlled by one or more bits of information in a bit-mapped memory. Traditional RAMs are inade-
quate in supporting bi.tamapped graphics display systems because they do not have the necessary
bandwidth to supply information for refreshing the screen while also allowing a graphics processor
sufficient access to the memory to update it [2]. In comparison, the VRAM is ideally suited for bit-
mapped graphics systems because of the way it uses 2 ports. The first port is a parallel port that allows
data to be written to and read from the memory in a normal fashion, while the second port is connected

to a high-speed internal shift register so the memory can tumn out serial data at video frequencies.

In the area of computer architecture, smart memories are needed to relieve the so-called von Neu-
mann bottleneck [3], [4]. The von Neumann bottleneck is the separation of processor from memory as
in Fig. 1a and is the main determinant of the upper bound of the performance of von Neumann architec-
tures [3]. The bottleneck is opened only slightly in very high performance von Neumann machines like
the Cray-1, by employing a wide, high speed channel between the processor and memory [3]. This
approach, however, does not address the problem fundamentally. The Connection Machine is a non-
von Neumann machine that solves the bottleneck problem by permitting the processor and memory to
co-mingle, thereby eliminating the bottleneck altogether [5]. A specific Connection Machine implemen-
tation -the CM-1- achieves tﬁis goal by linking 64K single bit processors, each with 4K bits of private
memory as shown in Fig. 4 [6]. In this machine, processing is integrated into and distributed throughout
the memory in such a way that an allocation of memory for any piece of data automatically allocates
processing for that data. Here, the combination of 4K bits of conventional memory with 1-bit ALU and

supporting logic gives a smart memory with a non-zero logic-memory "conceptual distance".

1.2. Smart Memories for Out-of-Order Execution Architectures

The out-of-order execution architecture is another non--von Neumann computing style that can
employ smart memories. By executing instructions out-of-order, out-of-order execution architectures
hope to achieve higher performance than traditional sequential execution machines. Out-of-order execu-
tion machines can use a centralized control like the scoreboard used in the CDC 6600 [7], or a decen-
tralized control like the Tomasulo Algorithm used in the IBM 360/91 floating-point unit (8). HPS
(High Performance Substrate) [9] is an out-of-order execution microarchitecture that uses the latter
approach. It uses data flow techniques to coordinate out-of-order execution. In other words, execution is
driven by the availability of data. Operations whose operands are not ready do not block subsequent

ones; rather they wait in rest areas (Node Tables) until their operands arrive. HPS employs a modified

Tomasulo Algorithm to achieve maximum concurrency while preserving any precedence. In the decen-
tralized control approach used by HPS, some of the control is distributed throughout the memories mak-
ing them "smart". For sake of clarity, let the HPS smart memories be divided into 2 classes: smart data
memories (memories that store only data) and smart instruction memories (memories that store both

data and instructions). The smart memories for HPS are listed below:

Type __ Features
CPU SMART MEMORIES:

1) Register Alias Table (RAT)

Smart Data Memory (SDM)

i) Has 3 ports for concurrent accesses
by 3 function units.

ii) Has 3 back-to-back cells to support
Branch Prediction and Exception
Handling,.

iii) A 5-bit multi-port CAM field
for associative distribution of results
into current and backup copies.

iv) Maintains the data dependency
information for each register entry
by having a tag field.

v) Does 15 accesses per cycle : 6 READs,
3 WRITE:s and 6 associative WRITEs.

2) Node Table (NT)
- Smart Instruction Memory (SIM)

i) Buffers microoperations
awaiting data/control operands.
Uses CAM for associative
WRITE into waiting entries.

ii) Has priority encoding scheme to
schedule microoperations.

iii) Discards appropriate
microoperations during
Branch or Exception Repair.

3) Active Instruction Table (AIT)
- Smart Instruction Memory (SIM)
i) Used for detecting and retiring
completed instructions.
ii) Uses a content addressable

counter to keep track of the
unexecuted microoperations.
iii) Keeps track of the exception status

for each instruction.
iv) Does sequential retirement using a
shift register.
v) Discards appropriate instructions
during repair.
4) Memory Write Buffer (MWB)
- Smart Instruction Memory (SIM)
i) Used in memory management unit.
ii) Needs CAM to do memory data forwarding.
iii) Does sequential retirement using a
shift register.
iv) Discards appropriate instruction
during repair.
5) Node Cache
- Smart Instruction Memory (SIM)
: i) Used in the instruction unit as a
smart on-chip instruction cache.
ii) Uses a multi-port CAM.
iii) Supports branch prediction and
exception handling.
_—
FLOATING POINT UNIT (FPU)
SMART MEMORIES:
1) FPURAT
same as CPU RAT.
%
CACHE CONTROLLER
SMART MEMORIES:
1) Repair Stack
- Smart Instruction Memory (SIM)
i) Discards appropriate memory writes.
2) Other Smart Memories i) Smart memories for instruction
- Smart Instruction Memories (SIMs) decoding and instruction unit

stall signal generation.

The "smartness” of the HPS memories poses significant circuit design challenges. In the first

place, the increased functionality reduces the bit density. Yet, it is imperative to have the memories

on-chip to exploit the high-speed advantage of on-chip communications. Therefore, one of the major
circuit design challenges is to maximize the bit density without sacrificing the functionality. A longer
cycle (because of the many operations that have to be performed per cycle), and higher power dissipa-
tion and higher peak currents (because of the multiplicity of bit lines and match lines that have to be
precharged) are other problems resulting from the enhanced capability of these smart memories. Other
difficulties include layout irregularity (resulting in pitch-matching problems etc.), longer (therefore
more capacitive) bit lines, and increased design effort. Making these memories multi-port to support
increased on-chip parallelism compounds the above problems. This dissertation explores the circuit
design altemnatives needed for implementing Smart Memon;ies for Out-of-Order Execution VLSI
Architectures. HPSm [10], a single-chip version of HPS, would be used as the reference out-of-order

execution architecture. .

1.3. Dissertation Outline

in Chapter 2, a brief description of HPSm would be presented to give the necessary motivation for
the smart memories that will be discussed. The Node Table (NT), the HPSm Smart Instruction Memory,
would be described in Chapter 3, while the Register Alias Table (RAT), the HPSm Smart Data
Memory, would be described in Chapter 4. Chapter 5 gives a broad treatment of smart memory design

alternatives and costs. The thesis ends with Conclusions in Chapter 6.

References
(1] Jean-Daniel Nicoud, "Video RAMs: Structure And Applications" in /EEE Micro, February 1988.

[2] Raymond Pinkham et. al., "A High Speed Dual Port Memory with Simultaneous Serial and Random
Mode Access for Video Applications", JEEE Journal of Solid State Circuits, December 1984, pp.-999-
1007. |

[31R. Zippel "The Database Accelerator: Architecture”, SMP Internal Memo #_1 , MIT, April 1986.
[4] Jon P. Wade "An Integrated Content Addressable Memory System" Ph.D Thesis, MIT, May, 1988.

[5] W. D. Hillis, "The Connection Machine (computer architecture for the new wave),” MIT Artificial

Intelligence Laboratory, Rept. 646, September 1981.

(6] W. Daniel Hillis, "The Connection Machine," Ph.D. Dissertation, Electrical Engineering and Com-

puter Science Department, MIT, Cambridge, MA, 1985.

[7] James E. Thomton, "Parallel Operation in the Control Data 6600," AFIPS Proc. FJCC, pt. 2, vol. 26,
1964, pp. 33-40.

(8] Tomasulo, R. M., "An Efficient Algorithm for Exploiting Multiple Arithmetic Units," /BM Journal

of Research and Development, vol. 11, 1967, pp. 25-33. Principles and Examples, McGraw-Hill, 1982.

[9] Yale N. Patt, Wen-mei Hwu, and Michael Shebanow, "HPS, A New Microarchitecture: Rationale
and Introduction”, Proceedings of the 18th International Microprogramming Workshop, Asilomar, CA,

December, 1985.

[10] Wen-mei Hwu, "HPSm: Exploiting Concurrency to Achieve High Performance in a Single-chip
Microarchitecture” Ph.D. Dissertation, Computer Science Division, EECS Dept., University of Califor-

nia, Berkeley, CA. 94720, 1987.

Data Storage Section Loglc/Control Section

-

CONVENTIONAL
READ/WRITE

MEMORIES

Fig. 1a : Conventional Digital System

Data Storage Section Loglc/Control Section

CONVENTIONAL Complation/
READWRITE
MEMORIES

Fig. 1b: Digital System With Smart Memories

Conventional Memory Smart Memory

RAM CAM
Cell - | ose — Cell
Fig. 2a Fig. 2b
[RAM.Cell CAM Cell
RAM + RAM
BL BL BL BL
=] =]
1 I L
-+ xon —
\/’J
XorR L _— @ =TT
ML FF—I_I_I_'_I'_I_I_I_;

Fig. 3a Fig. 3b

Processing Element 1

Wirite Read
Flag Flag
4K Memory
Flags '»I
X
1-bit
Truth ALY

Table

Processing Element 2

Write Read
Flag Flag
t 4
»
4K Memory
Flags
™
X
1-bit
Truth ALU
Table

0O 0.0 0 0 0 O O

Processing Element 64K

Write Read

Flag

1-bit

Truth ALY
Table

-

ROUTER

Fig. 4: CM-1 Processor Unit

CHAPTER 2

HPSm : An Out-of-Order Execution VLSI Architecture Case Study

2'

2.1. Introduction

This chapter gives the system context of the smart memories to be discussed in later chapters. It
provides a qualitative description of HPSm [1] - the single-chip version of HPS - that is being used as
the research vehicle for the study of smart memories for out-of-execution VLSI architectures. Its block

diagram and data path are shown in Figs. 1 & 2 respectively.

2.2. Overview

HPSm is a data flow engine that can be viewed as a 5-stage pipeline as shown in Fig. 3 [2]. How-
ever, it must be stressed that the HPSm pipeline is unlike the classical pipeline in the sense that the exe-

cution of operations are data-driven. For this reason, Fig. 3 is termed a simplified view of the pipeline.

In the 1st stage (FETCH), a 64-bit very long instruction word (VLIW) [3] consisting of 3 "RI_SC-
like" instructions (e.g ALU operation) is fetched by the IU using branch prediction. This instruction is
decoded into a data dependency graph with each operation forming a node in this graph. Tags are allo-
cated to the output result and input operands of each operation for data flow graph construction pur-
poses. In the MERGE stage, the merger merges the decoder output (instruction data dependency graph)
into the current data flow graph. The merging process uses a modified Tomasulo Algorithm [4] and the
RAT.

The EXECUTE stage executes operations in a data-driven manner. The operations after having
been decoded into data flow nodes are sent to 3 node tables : 1 node table for each function unit. Opera-
tions wait in the node tables until their operands arrive. An operation whose operands are ready is exe-
cuted by the function unit attached to the node table. If more than one operation is ready, a scheduling
algorithm is used to determine the oldest eligible operation for execution. After execution, the results
are distributed on the distribution bus to 3 node tables (2 ALU NTs and MEM NT) and the RAT. Con-
trol information about completion is sent to the TU (so that new instructions can be brought into the

engine) and the RETIRE and other control units.

Finally, in the RETIRE stage, an instruction retires from the machine after all its operations have
been executed and all instructions before it have retired. Operations whose operands are not ready do
not block the execution of other operations : they just wait until their operands arrive. The machine is

therefore data-driven; hence, the name "data flow".

2.3. Major Components

The HPSm microarchitecture (see Chapter 5 of Reference [11) consists of 6 major components: the
instruction unit (IU), 4 smart memories (the Register Alias Table and 3 Node Tables), the function
units, the Floating Point Unit (FPU) and the Memory System (see Fig. 1.). The first four components are
designed for implemeqtation in a single (11.5mm x 11.5Smm, 1.6 pm) CMOS chip. This chapter will
concentrate on the smart memories and how they are connected in the HPSm CPU chip. The FPU and
Memory System would not be discussed; the interface to them will only be mentioned whenever

appropriate.

10

2.3.1. Instruction Unit

The 1U (Fig. 2.) fetches instructions, determines the next instruction address, performs branch
prediction, executes unconditional jump and branch instructions, assigns tags to instructions and gen-

erates SAVE/REPAIR signals.

23.2. Node Table (Smart Instruction Memory)

For each function unit, the corresponding node table (NT) buffers the operations (e.g. ALU ADD)
waiting for their operands to arrive. Using the Tomasulo Algorithm, it enforces data flow dependencies
between operations and removes data antidependencies *. It schedules operations and discards appropri-

ate operations during repair. This smart memory will be covered in detail in Chapter 3.

23.3. Register Alias Table (Smart Data Memory)

The Register Alias Table (RAT) is a smart register file that has high bandwidth to support 15
accesses per cycle. It maintains dependency information for each register entry, provides the source
operand values and the tag of the operation producing the source operand values, removes data output
dependencies and repairs the contents of each register entry if necessary. This smart memory will be

covered in detail in Chapter 4.

2.3.4. Function Units

The function units perform branch prediction verifications, arithmetic and logic operations, data

memory accesses, and coprocessor data transfers.

* An operation, A, has an anti data dependency on another operation, B, if both share the same register but A must read from the register
before B writes into it so that A does not get the unintended value. An operation, C, has an output data dependency on another operation, D, if

both must write into the same register but C must write before D does o that the operations that depend on C's result do not get D’s result in-
stead.

11

2.4. Global Busses and Signals

The global busses are the REGISTER ADDRESS bus (3 x 6 bits in Fig. 4), the TAG bus (3 x 5
bits in Fig. 5), the READY bus (3 x 1 bit in Fig. 6), the VALUE bus (3 x 32 bits in Fig. 7), and the
CHECKPOINT IDENTIFICATION bus (3 x 1 bit in Fig. 8). The global signals are the EXCEPTION
SAVE signal (1 bit), the EXCEPTION REPAIR signal (1 bit), the EXCEPTION STATUS signal (3
bits), the JUMP TARGET PENDING signal (1 bit), the BRANCH PENDING signal (1 bit), the
BRANCH REPAIR signal (1 bit), the BRANCH VERIFY signal (1 bit), the NODE TABLE OVER-
FLOW signal (1 bit), and the IU STALL signal (1 bit). Figure 9 summarizes the timing of the global
busses and signals.

2.4.1. REGISTER ADDRESS Bus

The REGISTER ADDRESS bus connects the RAT, the IU, the NT’s and the function units (Fig.
4). It is made up of 3 sub-busses; one for each function unit. Each sub-bus coqsists of 1 VALID bit and
5 ADDRESS bits. The VALID bit inhibits or permits an access while 5 ADDRESS bits indicate the
register entry to be accessed. The bus switches before the rising edges of the 4-phase clocks and stays
stable for a phase as shown in Fig. 9. In phase 1 (phase 2), the IU drives each sub-bus with the register
address of the source 1 (source 2) operand for the corresponding function unit. In phase 3, each FU
drives its address sub-bus with the VALID bit indicating whether the result on its VALUE sub-bus is
valid, and drives the ADDRESS sub-bus with the destination address for the result. In phase 4, the IU

drives each sub-bus with the destination register address for each microoperation in the VLIW.

2.4.2. TAG Bus

The TAG bus connects the IU, the RAT, the NT’s and the FU’s (Fig. 5). It consists of 3 5-bit sub-

busses. The TAG bus switches before the rising edges of the 4-phase clocks and stays stable for a phase.

12

In phase 1 (phase 2), the RAT drives the TAG bus with the tags fetched from the source 1 (source 2)
registers of the issued microoperations. In phase 3, the FU’s drive the TAG bus with the tags of the dis-
tributed results. In phase 4, the IU drives the TAG bus with the tags of the results of the issued

microoperations.

2.4.3. READY Bus

The READY bus connects the IU, the RAT, the NT’s and the FU’s (Fig. 6). It consists of 3 1-bit
sub-busses. The READY bus switches before the rising edges of the 4-phase clocks and stays stable for
a phase. In phase 1 (phase 2), if the operand 1 (operand 2) addressing mode is register, the RAT drives
the corresponding READY bus with the READY bit fetched from the source registers. Otherwise the
READY bus is driven to "1". In phase 3, the FU’s drive each READY sub-bus to indicate if the
corresponding VALUE sub-bus contains a valid distribution result. In phase 4, the IU drives the
READY bus to "0". |

2.4.4. VALUE Bus

The VALUE bus connects the IU, the RAT; the NT’s and the FU’s (Fig. 7). It consists of 3 32-bit
sub-busses. The bus switches before the rising edges of the 4-phase clocks and stays stable for a phasé.
In phase 1 (phase 2), if the operand 1 (operand 2) register address is not "Register 31", the RAT drives
the corresponding VALUE bus with the operand values fetched from the source registers. Otherwise, if
the register address is "Register 31", the IU drives the VALUE bus with the FETCH PC value; other-
wise the IU drives the bus with the sign extended result of the source register number (for literal mode).
In phase 3, the FU'’s drive the VALUE bus with their evaluation results. In phase 4, the contents of the

bus are don’t care.

13

2.4.5. CHECKPOINT IDENTIFICATION Bus

The CHECKPOINT IDENTIFICATION bus connects the IU, the NT's and the FU's (Fig. 8). It
consists of 3 1-bit sub-busses. It is used only in phases 2 and 3. In phase 2, the IU drives the bus with
the CHECKPOINT IDENTIFICATION of the currently active checkﬁoint. In phase 3, the FU’s drive
the bus with the identification of the checkpoint to whose exception-repair range (see Chapter 4 of

Reference [1]) the finishing microoperation belongs to.

2.4.6. EXCEPTION SAVE Signal

The EXCEPTION SAVE signal is generated by the IU and is monitored by the IU, the RAT, the
NT’s, and the FPU (Fig. 10). It indicates whether an exception check action is to be performed in a
cycle. It switches at the rising edge of ¢3 (Fig. 9) and remains stable for the entire cycle. It crosses the

. chip boundary.

24.7. EXCEPTION REPAIR Signal

The EXCEPTION REPAIR signal is generated by the IU and is monitored by the IU, the RAT, the
NT’s, the FPU, and the memory system (Fig. 10). It indicates whether an exception repair action is to be

performed in a cycle (see Chapter 4 of Reference [1]). It switches at the rising edge of ¢4 (Fig. 9) and

A
remains stable for the entire cycle. It crosses the chip boundary. .

2.4.8. EXCEPTION STATUS Signal

The EXCEPTION STATUS signal is generated by the function units and is monitored by the IU
(Fig. 11). It consists of 3 1-bit sub-signals. It indicates what type of exceptions occured during the FU

evaluation of the last cycle. It switches at the rising edge of ¢3 and remains stable for a phase (Fig. 9).

14

2.49. BRANCH VERIFY/REPAIR Signals

The BRANCH VERIFY/REPAIR signals are generated by the SECONDARY_ALU and moni-
tored by the FPU, the IU and the NT"s (Fig. 12). They switch at the rising edge of ¢3 and remain stable

for the entire cycle. They cross the chip boundary.

2.4.10. BRANCH PENDING and JUMP TARGET PENDING Signals

The BRANCH PENDING and the JUMP TARGET PENDING signals are generated by the IU
and monitored by the FPU, the IU and the NT’s (Fig. 13). The BRANCH PENDING signal indicates
whether there is a branch prediction yet to be verified by the SECONDARY_ALU (see below). The
JUMP TARGET PENDING signal indicates whether there is an active microoperation which is going to
write into REGISTER 31. The signals switch at the rising edge of ¢4 and remain stable for the entire

cycle (Fig. 9). They cross the chip boundary.

24.11. NODE TABLE OVERFLOW Signal

The NODE TABLE OVERFLOW signal is generated by the NT’s and is monitored by the instruc-
tion cache controller (Fig. 14) that is off-chip. It indicates whether any of the NT’s is full. It switches at

the rising edge of ¢; and remains stable for the entire cycle. It crosses the chip boundary.

2.4.12. INSTRUCTION UNIT STALL Signal

The INSTRUCTION UNIT STALL signal is generated by the instruction cache controller and is
monitored by the IU, the NT’s, and the FPU (Fig. 15). The signal crosses the chip boundary and is set
TRUE in phase 2 if at least one of the following is true:

(1) the instruction cache misses;

(2) the NODE TABLE OVERFLOW signal is TRUE;

15

(3) the BRANCH PENDING signal is TRUE and the instruction
output latch contains a conditional branch microoperation;
(4) the JUMP TARGET PENDING signal is TRUE and the instruction

output latch contains a jump instruction.

2.4.13. NEW CONDITIONAL BRANCH and NEW JUMP Signals

The NEW CONDITIONAL BRANCH and the NEW JUMP signals are generated by the instruc-
tion cache controller and monitored by both the IU and the instruction cache controller. The NEW
JUMP signal indicates whether a jump microoperation has just been fetched. The NEW CONDI-
TIONAL BRANCH signal indicates whether a new conditional branch microoperation has just been
fetched.

2.4.14. NEW MICROOPERATIONS Signal

The NEW MICROOPERATIONS signal is generated by the IU and is monitored by the NT’s

(Fig. 16). It provides the opcodes, the destination register addresses, and the destination tags for the new

microoperations in phase 4.

2.5. Detailed Pipeline Timing

2.5.1. Core Timing

This subsection gives a detailed description of the HPSm pipeline. The simplified pipeline dis-
cussed in section 2.2 above followed an instruction from its entry into the machine to its exit. It did not
shed enough light on the role of the smart memories. In this subsection, the pipeline is viewed from the

standpoint of the smart memories rather than from that of an individual instruction. Let the core timing

16

(1] of the pipeline be defined as the minimum signal propagation timing for each microoperation. That

is, the core timing is the ideal timing for any microoperation without events such as IU stalls, multiple

cycle FU evaluation, and delays due to data dependencies.

The core timing is shown in Fig. 17. Each HPSm microoperation spends at least 4 cycles in the

pipeline. The 4 cycles are in turn divided into 8 sub-cycles as described below:

Sub-cycle Description
—_— . JCSCTphon _

sub-cycle 1

This sub-cycle is the entire first cycle during

which the FETCH_PC is determined by the IU.

This involves incrementing the last FETCH_PC, adding
an offset to it, and selecting 1 of the 6 potential PC’s
according to the conditions by the instruction decoding,
external interrupts and data path execution.

sub-cycle 2

This sub-cycle is made up of phases 1, 2, and 3 of

the second cycle. In this sub-cycle, the FETCH_PC is
transmitted off-chip to the instruction cache and used to
access the tag and data stores.

sub-cycle 3

This sub-cycle is phase 4 of the second cycle. In

 this sub-cycle, the first part (the source addressing modes

and register numbers) of the fetched instruction is fetched
from the instruction cache.

sub-cycle 4

This sub-cycle is phase 1 of the third cycle. The

first source operands are fetched from the RAT if

the mode is not literal or the register is not
REGISTER 31.

If the mode of a source operand is literal, the sign
extended result of the register number is chosen to drive the
TAG, the READY, and the VALUE busses. If the mode is
register and the register is REGISTER 31, the IU drives
the TAG, the READY, and the VALUE busses.
The operands are latched into the NT’s at the

rising edge of ¢».

sub-cycle 5

This sub-cycle is phase 2 of the third cycle. The
second source operands are fetched from the RAT if
the mode is not literal or the register is not
REGISTER 31.

If the mode of a source operand is literal, the sign

17

extended result of the register number is chosen to drive the
TAG, the READY, and the VALUE busses. If the mode is
register and the register is REGISTER 31, the IU drives

the TAG, the READY, and the VALUE busses.

The operands are latched into the NT’s at the rising edge

of ¢3. The second part of the fetched instruction

(opcodes and output operand specifiers) is fetched from

the instruction cache in this sub-cycle. The IU STALL
signal (evaluated in sub-cycles 3 and 4) is also transmitted
on-chip in this sub-cycle.

sub-cycle 6

This sub-cycle is phase 3 of the third cycle. The

input operands of the fetched microoperations,if they are not
ready, will monitor the TAG, READY, and VALUE busses
in this sub-cycle to receive the operand values.

sub-cycle 7

This sub-cycle is phase 4 of the third cycle.

If both input operands of the incoming microoperations are
ready, and the pending bitis "1", the microoperation
becomes eligible for execution. If there is no older

eligible microoperation in the same NT, the microoperation
is fetched from the NT and submitted for execution.

sub-cycle 8

25.2. Extended Timing

This sub-cycle consists of phase 1, 2, and 3 of
cycle 4. The FU evaluates a microoperation and puts its
result on the TAG, READY, and VALUE busses.

If events like stalls and delays occur, a microoperation can spend more than 4 cycles in the HPSm

pipeline. When the core timing is extended for some microoperations, it may not be extended for the

subsequent microoperations. The events that can prevent a microoperation from immediately advancing

from one stage to the next are discussed below.

18

2.5.2.1. Instruction Unit Stalls

The IU can stall due to instruction translation buffer misses, instruction cache misses, jump target

pending, node table overflow , or double pending branch prediction. .

2.52.1.1. Jump Target Pending Stall

The jump target pending stall occurs when the next fetch address cannot be determined at the
moment a jump operation is executed. In the HPSm microarchitecture, control transfer to an arbitrary
program location is performed by having a microoperation loading REGISTER 31 with the target
address and then execute a jump microoperation. If the rnicrooperation loading REGISTER 31 has not
finished execution when the jump microoperation is fetched, all the microoperations within the fetched
instruction will be prevented from being latched into the NT’s and from reserving the output RAT
entries. They will keep repeating their third sub-cycle of the core timing until the jump target pending

signal goes to "0". None of the subsequent instructions will be fetched.

2.5.2.1.2. Node Table Overflow Stall

The node table overflow stall occurs when at least one of the NT’s is full. The microoperations
within the fetched instruction will be prevented from being latched into the NT’s and from reserving the
output RAT entries. They will keep repeating their third sub-cycle of the core timing until the node

table overflow signal goes to "0". None of the subsequent instructions will be fetched.

2.5.2.1.3. Double Pending Branch Prediction Stall

The double pending branch prediction stall occurs if another conditional branch is encountered in
the instruction stream before the prediction for the previous one has been verified. The second condi-
tional branch instruction will be forced to go through the third sub-cycle of the core timing until the

BRANCH PREDICTION PENDING signal goes to "0". None of the subsequent instructions will be

19

fetched.

2.5.2.2. Data/Control Dependency Delays

If at least one of the input operands is not ready at the time a microoperation reaches sub-cylce 6,
it will be forced to go through sub-cycle 6 again until both the input operands are ready. This means that
the delayed microoperation will stay in an NT and monitor the TAG, the READY, and the VALUE
busses to receive the input operand(s). ’I’pere can be several microoperations waiting at sub-cycle 6 in

the NT’s at the same time. The microengine continues issuing the subsequent instructions.

2.5.2.3. Function Unit Conflict Delays

If there is more than one microoperation eligible for execution at the same time in the same NT,
only the oldest firable microoperation is fired to the attached FU for execution. The others will have to
‘wait until they become the oldest firable entry; therefore, they are forced to go through sub-cycle 7

again. The microengine continues issuing the subsequent instructions.

2.5.2.4. Multiple-cycle FU Evaluation

If the microoperation takes more than one cycle to evaluate, it will not finish sub-cycle 8 until the
FU finishes the evaluation. Since all the multiple-cycle FU’s are pipelined in the HPSm microarchitec-

ture, a multiple-cycle FU evaluation does not block any of the subsequent instructions.

20

2.6. Conclusions

The foregoing paragraphs reveal that HPSm is an out-of-order execution microarchitecture where
several events occur in the various components in an overlapped and decentralized manner. HPSm uses
this decentralized control approach to maximize the throughput and to avoid the complexity problems
of controlling an out-of-order execution machine in a centralized fashion. It is clear from the above dis-
cussion that smart memories are needed to support HPSm’s style of decentralized control. The roles that
the smart instruction memories (NT’s) and the smart data memory (RAT) play in supporting the decen-

tralized control are bome out by the above paragraphs.

The roles of the smart memories were clarified by looking at the pipeline not only from the
viewpoint of the instructions but also from the viewpoint of the memories. The above sections reveal
the activities in the smart memories when an instruction can be executed with the core timing (i.e.
minimum timing with no stalls) and when it cannot because of stalls. The NT is discussed in the riext
chapter while Chapter 4 covers the RAT. The paramount constraint on the design of thése smart
memories is that they must satisfy the requirements specified in this chapter in a single-chip environ-

ment,

21

References
(1] Wen-mei Hwu, "HPSm: Exploiting Concurrency to Achieve High Performance in a Single-chip

Microarchitecture” Ph.D. Dissertation, Computer Science Division, EECS Dept., University of Califor-

nia, Berkeley, CA. 94720, 1987.
[2] Wen-mei Hwu and Yale Patt, "HPSm, a High Performance Restricted Data Flow Architecture Hav-
ing Minimal Functionality", in The 13th International Symposium on Computer Architecture Confer-

ence Proceedings, Tokyo, Japan, June 1986.

[3] Joseph A. Fisher, "The VLIW Machine: A Multiprocessor for Compiling Scientific Code" IEEE

Computer, vol. 17, July 1984, pp. 45-53.

[4] Tomasulo, R. M., "An Efficient Algorithm for Exploiting Multiple Arithmetic Units," IBM Journal

of Research and Development, vol. 11, 1967, pp. 25-33. Principles and Examples, McGraw-Hill, 1982.

HPSm Block Diagram

prefetch
h check,] status insfruction instryction
afus
N _ FPU
ALU I MEM RET CON
I I repair
L o e distribution 1

Figure 1

Data-Path Current Design

I-cache

1

chip boundary
Instruction Unit RAT
YV Py
\ 4 A4
\ 4 9 @ ~
@ + % ' —e
IR
o 2)
= = =
=} © <
ALU NT o ALU/CAN NT o ALU/MEM NT €
2 % A
\ \ AR / 4 AR J v Yy
T3 1 I
\/ —\/ \/
ALU U/CON —\FPU/ME
v \ 4

Figure 2

’ FETCH INSTRUCTION / DEC

-

, ' MERGE NODES

-

| EXECUTE

-

| DISTRIBUTE RESULTS

-

I RETIRE CHECKPOINT

Fig. 3: HPSm Simplified Pipeline

The Register Address Bus

10U

(Instruction Unit)

I

RAT

(Register Alias Table)

v

A A A

!
Y

NT
(Node Table)

N/
I1st ALU

h /

NT
(Node Table)

A

*

NT
(Node Table)

Figure 4

The Tag Bus

10U RAT
(Instruction Unit) (Register Alias Table)

NT ' NT NT

(Node Table) (Node Table) (Node Table)
N/ N/ N/
1st ALU 2nd ALU CACHE

Figure 5

The ready Bus

1U RAT
(Instruction Unit) (Register Alias Table)

\ A Yy
: l vy | l vy l \ A
NT _ NT NT
(Node Table) (Node Table) (Node Table)
<
<<

Figure 6

The Value Bus

RAT

(Register Alias Table)

10

(Instruction Unit)

32

1l v 11 v] &

‘NT
- (Node Table)

Nstas

Figure 7

NT
(Node Table)

g

2nd ALU

NT
(Node Table)

]

CACHE

4

The Checkpoint Identification Bus

10

(Instruction Unit)

I

A

y
.

l

NT
(Node Table)

A 4

NT
(Node Table)

A 4

NT
(Node Table)

Figure 8

Giobal Bus and Signal Timing Table

destination

exception
rrrrrrrrrrrr

bbbbbb

X

X

Figure 9

The E-SAVE and E-REPAIR Signals

10 RAT
—» (Instruction Unit) (Register Alias Table)
to FPU and
memory
NT - NT NT
(Node Table) (Node Table) (Node Table)

Figure 10

The Exception Status Signal

10

(Instruction Unit)

AbA

A A A

y

NT
(Node Table)

v

v

NT
(Node Table)

NT
(Node Table)

N/
1st ALU

N/
2nd ALU

N7 /
CACHE

* Figure 11

The B-repair and B-verify signals

1U

(Instruction Unit)

RAT

(Register Alias Table)

NT
(Node Table)

Figure 12

NT
(Node Table)

to FPU

NT

(Node Table)

The Branch Pending and Jump Target Pending Signals

10 RAT

' (Instruction Unit) (Register Alias Table)

< 7 to FPU and
memory

NT NT . NT
(Node Table) (Node Table) (Node Table)

1st ALU 2nd ALU CACHE

Figure 13

The Node Table Overflow Signal

1U

(Instruction Unit)

RAT

(Register Alias Table)

NT

(Node Table)

N\ N/ /
1st ALU

Figure 14

NT
(Node Table)

' to FPU and
memory

NT

(Node Table)

The Instruction Unit Stall Sig