

Copyright © 1989, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

V

SOVAR: SMART MEMORIES FOR

OUT-OF-ORDER EXECUTION

VLSI ARCHITECTURES

by

Gregory Ameriada Uvieghara

Memorandum No. UCB/ERL M89/41

14 April 1989

SOVAR: SMART MEMORIES FOR

OUT-OF-ORDER EXECUTION

VLSI ARCHITECTURES

by

Gregory AmeriadaUvieghara

Memorandum No. UCB/ERL M89/42

14 April 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of Qdifornia, Berkeley

94720

Dedicated to myjunior brother,ChrisIsrael Uvieghara
for all his support,sacrifice and dedication

to thefamily business.

SOVAR:Smart Memories for Out-of-Order Execution VLSI Architectures

Gregory Ameriada Uvieghara

Ph-D- Department ofElectrical Engineering
and Computer Science

ABSTRACT

Advances in semiconductor fabrication capabilities and CAD (Computer Aided Design) tools

have made it feasible to design and fabricate single-chip processors. With increasing integration,

more and more complexity is being put on chip to achieve higher and higher performance. One

approach is touse the increasing integration to provide larger on-chip conventional memories on

traditional sequential execution CPU chips. (A trend in this direction has been an increase in the

use oflarger and larger on-chip caches for implementing von Neumann architectures.) The oppo

site approach is touse the increasing chip real estate to implement less dense but more functional

(smart) memories. These smart memories can be employed to support out-of-order execution

architectures, which are non-von Neumann machines that attempt to achieve higher performance

than traditional von Neumann architectures by waiving the sequential execution requirement.

Although the advances in semiconductor technology and CAD now make itfeasible to implement

single-chip out-of-order execution architectures, there are several circuit design challenges that

must be surmounted. These challenges relate to the smart memories that are needed for imple

menting out-of-order execution models. This dissertation addresses the circuit design challenges

of the smart memories that are required for implementing out-of-order execution VLSI architec

tures and proposes some solutions.

Prof. David Albert Hodges

Chairman, Dissertation Committee

Acknowledgements

First of all, I want to proclaim my heart-felt gratitude to Oghene (God), my Father for His love

and faithfulness. I also want to thank Him for giving me asecond chance and for guiding me even when

I was in rebellion. I want to thank my Savior, the Lord Jesus Christ for saving, healing and delivering

me. I am grateful to God, the Holy Spirit for directing meto participate in the Ph.D. program, and for

leading methroughout, especially during the chip verification , chip testing and dissertation write-up. I

also thank the Holy Spirit for clearing my thoughts and for giving me creative insights into circuit

design. I am thankful to ElShaddai (the God that ismore than enough) for providing the finances even

from far-away lands and for bringing meincontact with the right kinds of people at the right times.

I wish to express my sincere thanks to Rev. Kenneth Hagin for his teaching on faith that helped

me tremendously during the trying moments. I thank Pastors Joe andJean Perez,BrotherBob andSister

Cheryl Cambridge for helping me inthe last crucial months with love, faith, hope, anew anointing and

knowing God's will. I am especially thankful toPastor Jean Perez for being sensitive to the Holy Spirit

in helping me realize how the Ph.D. program fits in Chukwu's (God's) perfect will. I don't have enough

space to express my thanks to Revs. Momoh, Etidia, Ejomah, Freeborn, Friesen, Copeland, Ogbeta,

Chief Mosheshe and other ministers who helped mewith their prayers and ministries.

I am grateful to Prof. Johnson, "Chief Abiola and Dr. (Mrs.) Yetunde Taiwo and Prof, and Mrs.

Aladekomo for "supercarving" and for christianly fellowship. I thank Kevin Komegay, Valerie Taylor,

Karen Martin, Glen Dunning, Art King and Jim Kelly for memorable moments and hours ofwitnessing

on Telegraph Avenue. I also thank Greg Uehara for all the enriching moments of christian fellowship. I

express my gratitude to Dr. Kola Aiyesimoju and Dr. Franklin Osaisai for loans and various forms of

assistance.

HI

On the academic side, I start by expressing my profound gratitude to Prof. David Hodges, my

research adviser, for all his fatherlike support. He was more than a research adviser to me: he was also

an intellectual Dad. I am especially thankful to him for his personal concern, his stimulation of my

creativity, and his insightful, yet constructive criticisms. He stimulated my creativity by drawing the

best out ofme. He criticized my half-baked ideas without any alienation or friction. His personal care

was such that he was able to generate funds for the research from aforeign country.

I thank Prof. Yale Patt, aqualifying exam committee member, whose insights and pressure at the

early part of the research led to my first proposal. I am grateful to Prof. Robert Brodersen, qualifying

exam committee chairman and dissertation committee member, for his insightful comments during the

exam and for editing the dissertation. I am appreciative ofthe cooperation of Prof. Frederick Balderston,

amember of my qualifying exam and dissertation committees. My discussion with him reminded meof

my B-school days by revealing the business perspective. I thank my late MTT Professor, Prof. Kuh who

encouraged me to apply to Berkeley. I would like to thank Prof. Alvin Despain for allowing me to use

his DARPA MOSIS account to fabricate my chip. I am also grateful to Profs. Richard Muller and

Alberto Sangiovanni-Vicentelli for all their cooperation during my 1984 health debacle.

Ihave special thanks for Dr. Wen-mei Hwu, who collaborated with me from the Computer Archi

tecture viewpoint I thank him for hiscareful and detailed explanation of out-of-order execution. In the

area of circuit design, I am eternally grateful to Yoshinobu Nakagome (visiting Hitachi researcher,

1987/88) who implemented the Barrell Shifter. I am particularly grateful to him for his thorough circuit

design review ofthe RAT and ALU, and the RAT noise margin tests. I appreciate all the help I received

from Dr. Deog-Kyoon Jeong (D.K.). I thank him for availing me ofhis extensive circuit design experi

ence, his pads, and his clock generator. I also thank him for his verification ofmy ideas and for helping

me with various CAD tools. I am grateful to Dr. Daebum Lee for helping me with his VLSI circuit

design insights, his SPUR experience, his ALU and information on the SPUR CPU. Iacknowledge with

IV

thanks the contribution to the thesis topic selection by Dev Chen, the intense review of the Abstract by

Greg Uehara, the sense amplifier discussion by Sehat Sutarja, the setting up of the test bench by Ken

Lutz and forvarious forms of technical assistance by Joey DoembergandPhil Schrupp.

I thank Marvin Baron for helping me with immigration and financial problems, Ruth Tobey for

helping me with a loan, and Genevieve Thiebaut, Beth Rhine, and Pearl Tranter for various forms of

administrative assistance. I am grateful to Cheryl Craigwell forrefreshing jokes andlaughs.

I am indebted to my financial sponsors, DARPA and the Hitachi Central Research Laboratory,

Japan.

On my family side, I start by expressing my gratitude to my late Dad posthumously, for his go-

getter philosophy thathasbrought me this far. I am eternally grateful to my Mum, for paying verycare

ful attention to my education in my early years of school, for being sensitive to God, the Holy Spirit in

1984 on my behalf, for supporting me throughout my Ph.D program and for forfeiting alot for the pro

gram. I don'thave enough words to thank my immediate junior brother, Israel Uvieghara for taking care

ofthe family business, thereby freeing meto participate inthe Ph.D. program without any burdens.

Finally, I thank other family members for all their help. I am grateful toJustice Akpomudjere and

Chief Akamune for all their support of the family business while I was abroad pursuing the Ph.D. pro

gram. I thank Uncle Chris Ogwu, and his wife, Tees, and Malechi and Tony Ogwu for transmitting my

phone messages to Warri. I thank Emma Osakwe and his wife, Mabel, for introducing me to Rev.

Momoh, Meschack and Justy Ilobi for prayers and giving metheir car tovisit the Irri ministry, Fide and

Christy Ossom for prayers and help during the 1985 crisis, and Onome, Angela, Augusta, Victor, and

Mathias for their prayers and support throughout the program.

Table of Contents

1. Introduction 1

1.1.SmartMemories 1

1.2. Smart Memories for Out-of-Order Execution Architectures 3

1.3. Dissertation Outline $

2. HPSm :AnOut-of-Order Execution VLSI Architecture Case Study 8

2.1. Introduction g

2.2. Overview g

2.3. Major Components 9

2.4. Global Busses and Signals 11

2.5. Detailed Pipeline Timing !5

2.6. Conclusions , 20

3.NT: A Smart Instruction Memory Case Study 22

3.1. Introduction 22

3.2. Memory Architecture 22

3.3. Basic Operations 24

3.4. Circuits 29

3.5. Simulation Results 32

3.5. Conclusions 33

4. RAT: A Smart Data Memory Case Study 35

4.1. Introduction 35

4.2. Memory Architecture 35

VI

4.3. Basic Operations 36

4.4. Circuits 37

4.5. Experimental Results 48

4.6. Conclusions 54

5. Smart Memory Design Issues 56

5.1. Introduction 56

5.2. Issues and Proposed Solutions 56

5.3. Cost/Functionality Study ; 64

5.4. Conclusions 65

6. Conclusions 67

6.1. Future Work 67

6.2. Final Conclusions 67

1.

1.1. Smart Memories

CHAPTER 1

Introduction

Traditionally, in a digital system the logic/control section is conceptually separate from the data

storage section as in Fig. la, witha distinct boundary separating the twosections. The memories in the

data storage section are just conventional READ/WRITE memories. But when the logic/control section

partially overlaps the data storage section, anew species ofmemory, smart memory, emerges as in Fig.

lb. This memory-logic hybrid derives its "smartness" from embedding logic in memory. It may be

necessary to intermingle memory and logic in this way to improve the performance ofthe overall sys

tem. Thegranularity of themtermingling may be at thelevel of a datacell (i.e. eachcellhasembedded

logic) orat the level ofamemory subsystem (i.e. several cells share some embedded logic). So, one can

visualize a "smartness" spectrum where onone end you have "full smartness" (i.e. each cell has embed

ded logic) and on the other end you have conventional memories (i.e. no cell has embedded logic). One

can also define a logic-memory "conceptual distance" spectrum that corresponds to the "smartness"

spectrum: "conceptual distance" of 0 for "full smartness" but "conceptual distance" of «> for conven

tional memories.

The content addressable memory (CAM) is a smart memory thatcanbe used to illustrate thefore

going points. It has a logic-memory "conceptual distance" of "0". In the conventional memory, the

address is given to access the data, while in the CAM, the data is given to access the address. Such a

memory is used where it is necessary to know what memory words contain a certain bit pattern (like in

parallel processing, expert systems, and artificial intelligence applications). If an N-word RAM is used,

Ncycles would be needed to sequentially search through the N words of the memory to determine the

memory words thatmatch the given bit pattern. But by employing some logic in eachdata cell, a CAM

can simultaneously match each memory word against the bit pattern in a parallel fashion. In other

words, it performs parallel data search without extensive address handling. Therefore, a CAM can be

viewed as an efficient hardware substitute for aRAM plus asearching algorithm. Adding acomparator

logic to the RAM cell inFig. 2a gives the CAM cell inFig. 2b. The detailed circuits are inFigs. 3a &

3b. In Fig. 3b, the EXCLUSIVE-OR circuit isthe comparator added to each RAM cell to give the CAM

cell.

The video RAM (VRAM) is another smart memory that readily comes to mind. It has anon-zero

logic-memory "conceptual distance" since clusters of simple data cells share the embedded logic. The

VRAM is a smart memory that combines a conventional RAM with serial access registers and some

control logic to support bit-mapped graphics display systems [1]. Abit-mapped graphics display system

is a technique that is needed to efficientiy implement real time graphic simulators, higher resolution

displays, and combined text and graphics incolor on asingle screen. This technique provides unlimited

flexibility in the images which can be displayed by allowing each pixel on the screen to be individually

controlled by one or more bits of information in abit-mapped memory. Traditional RAMs are inade

quate in supporting bitmapped graphics display systems because they do not have the necessary

bandwidth to supply information for refreshing the screen while also allowing a graphics processor

sufficient access to the memory to update it [2]. In comparison, the VRAM is ideally suited for bit

mapped graphics systems because of the way ituses 2 ports. The first port is aparallel port that allows

data to be written to and read from the memory in anormal fashion, while the second port is connected

to ahigh-speed internal shift register so the memory can turn out serial data at video frequencies.

In the area of computer architecture, smart memories are needed to relieve the so-called von Neu

mann bottleneck [3], [4]. The von Neumann botdeneck is the separation ofprocessor from memory as

inFig. la and is themain determinant of the upper bound of the performance of von Neumann architec

tures [3]. The botdeneck is opened only slighdy in very high performance vonNeumann machines like

the Cray-1, by employing a wide, high speed channel between the processor and memory [3]. This

approach, however, does not address the problem fundamentally. The Connection Machine is a non-

von Neumann machine that solves the botdeneck problem by permitting the processor and memory to

co-mingle, thereby eliminating the botdeneck altogether [5]. Aspecific Connection Machine implemen

tation -the CM-1- achieves this goal by linking 64K single bit processors, each with 4K bits ofprivate

memory as shown inFig. 4 [6]. Inthis machine, processing isintegrated into and distributed throughout

the memory in such a way that an allocation ofmemory for any piece ofdata automatically allocates

processing for that data. Here, the combination of4K bits ofconventional memory with 1-bit ALU and

supporting logic gives a smart memory with anon-zero logic-memory "conceptual distance".

12. Smart Memories for Out-of-Order Execution Architectures

The out-of-order execution architecture is another non-von Neumann computing style that can

employ smart memories. By executing instructions out-of-order, out-of-order execution architectures

hope to achieve higher performance than traditional sequential execution machines. Out-of-order execu

tion machines can use a centralized control like the scoreboard used in the CDC 6600 [7], or a decen

tralized control like the Tomasulo Algorithm used in the IBM 360/91 floating-point unit [8]. HPS

(High Performance Substrate) [9] is an out-of-order execution microarchitecture that uses the latter

approach. It uses data flow techniques to coordinate out-of-order execution. Inother words, execution is

driven by the availability of data. Operations whose operands are not ready do not block subsequent

ones; rather they wait in rest areas (Node Tables) until their operands arrive. HPS employs a modified

Tomasulo Algorithm to achieve maximum concurrency while preserving any precedence. In thedecen

tralized control approach used byHPS, some of thecontrol is distributed throughout the memories mak

ing them "smart". For sake of clarity, let the HPS smart memories be divided into 2 classes: smart data

memories (memories that store only data) and smart instruction memories (memories that store both

data and instructions). The smart memories for HPS are listed below:

Type

CPU SMART MEMORIES:
1) Register Alias Table (RAT)
Smart Data Memory (SDM)

2) Node Table (NT)
- SmartInstruction Memory (SIM)

3) ActiveInstruction Table (AIT)
- SmartInstruction Memory (SIM)

Features

i) Has 3 ports for concurrent accesses
by 3 function units,

ii) Has 3 back-to-back cells to support
Branch Prediction and Exception
Handling,

iii) A 5-bit multi-port CAM field
for associative distribution of results
into currentand backupcopies,

iv) Maintains the data dependency
information for each registerentry
by having a tag field,

v) Does 15 accessesper cycle: 6 READs,
3 WRITES and 6 associative WRTTEs.

i) Buffersmicrooperations
awaiting data/control operands.
Uses CAM for associative
WRITE into waiting entries.

ii) Haspriority encoding schemeto
schedule microoperations.

iii) Discards appropriate
microoperationsduring
Branch or Exception Repair.

i) Usedfordetecting and retiring
completed instructions,

ii) Uses a content addressable

4) Memory Write Buffer (MWB)
- Smart Instruction Memory (SIM)

5) Node Cache
- Smart Instruction Memory (SIM)

FLOATING POINTUNIT (FPU)
SMART MEMORIES:
1) FPU RAT
same as CPU RAT.

CACHE CONTROLLER
SMART MEMORIES:
1) Repair Stack

- SmartInstruction Memory (SIM)

2) Other Smart Memories
- Smart Instruction Memories (SIMs)

counter to keep track of the
unexecuted microoperations.

iii) Keeps trackof the exception status
for each instruction,

iv) Does sequential retirement using a
shift register,

v) Discards appropriate instructions
during repair.

i) Used in memory management unit.
ii) Needs CAMto do memory data forwarding.
iii) Does sequential retirement using a

shift register,
iv) Discards appropriate instruction

during repair.

i) Used in the instruction unit as a
smart on-chip instruction cache.

ii) Uses a multi-port CAM.
iii) Supportsbranch predictionand

exception,handling.

i) Discards appropriate memorywrites.

i) Smart memories for instruction
decoding and instruction unit
stall signal generation.

The "smartness" of the HPS memories poses significant circuit design challenges. In the first

place, the increased functionality reduces the bit density. Yet, it is imperative to have the memories

on-chip to exploit the high-speed advantage of on-chip communications. Therefore, one of the major

circuit design challenges is to maximize the bit density without sacrificing the functionality. A longer

cycle (because of the manyoperations that haveto be performed per cycle), andhigherpowerdissipa

tion and higher peak currents (because of the multiplicity of bit lines and match lines that have to be

precharged) are other problems resulting from the enhanced capability of these smart memories. Other

difficulties include layout irregularity (resulting in pitch-matching problems etc.), longer (therefore

more capacitive) bit lines, and increased design effort. Making these memories multi-port to support

increased on-chip parallelism compounds the above problems. This dissertation explores the circuit

design alternatives needed for implementing Smart Memories for Out-of-Order Execution VLSI

Architectures. HPSm [10], a single-chip version of HPS, would be used as the reference out-of-order

execution architecture. .

13. Dissertation Outline

In Chapter 2, a brief description ofHPSm would bepresented togive the necessary motivation for

the smart memories that will bediscussed. The Node Table (NT), the HPSm Smart Instruction Memory,

would be described in Chapter 3, while the Register Alias Table (RAT), the HPSm Smart Data

Memory, would be described in Chapter 4. Chapter 5 gives a broad treatment of smart memory design

alternatives and costs. The thesis ends with Conclusions in Chapter 6.

References

[1] Jean-Daniel Nicoud, "Video RAMs: Structure And Applications" inIEEE Micro, February 1988.

[2] Raymond Pinkham et. al., "A High Speed Dual Port Memory with Simultaneous Serial and Random

Mode Access for Video Applications", IEEE Journal ofSolid State Circuits, December 1984, pp.999-

1007.

[3] R. Zippel "The Database Accelerator: Architecture", SMP Internal Memo #1, MIT, April 1986.

[4] Jon P. Wade "An Integrated Content Addressable Memory System" Ph.D Thesis, MIT, May, 1988.

[5] W. D. Hillis, "The Connection Machine (computer architecture for the new wave)," MIT Artificial

Intelligence Laboratory, Rept. 646, September 1981.

[6] W. Daniel Hillis, "The Connection Machine," Ph.D. Dissertation, Electrical Engineering and Com

puter Science Department, MIT, Cambridge, MA, 1985.

[7] James E. Thornton, "Parallel Operation in the Control Data 6600," AFIPS Proc. FJCC, pt. 2, vol 26,

1964, pp. 33-40.

[8] Tomasulo, R. M., "An Efficient Algorithm for Exploiting Multiple Arithmetic Units," IBM Journal

ofResearch and Development, vol. 11,1967, pp. 25-33. Principles and Examples, McGraw-Hill, 1982.

[9] Yale N. Patt, Wen-mei Hwu, and Michael Shebanow, "HPS, A New Microarchitecture: Rationale

and Introduction", Proceedings ofthe 18th International Microprogramming Workshop, Asilomar, CA,

December, 1985.

[10] Wen-mei Hwu, "HPSm: Exploiting Concurrency to Achieve High Performance in aSingle-chip

Microarchitecture" Ph.D. Dissertation, Computer Science Division, EECS Dept., University ofCalifor

nia, Berkeley, CA. 94720,1987.

Data Storage Section

Signals

Logic/Control Section

CONVENTIONAL

READ/WRITE

MEMORIES

<"•» >

Fig. 1a : Conventional Digital System

Data Storage Section

CONVENTIONAL

READ/WRITE

MEMORIES

Signals

Completion/

Ready Signal

<"" >

Logic/Control Section

Fig. 1b: Digital System With Smart Memories

Conventional Memory

RAM.Cell
RAM

BL

WL

Fig. 2a

Fig. 3a

LOGIC

+ XOR

Smart Memory

CAM.C&U.
RAM

BL

WL

CAM

Cell

Fig. 2b

Fig. 3b

BL

m_

<

Processing Element 1

Write Read

Flag Flag

Rags

4>

4K Memory

S

"i r*

Processing Element 2

Write Read

Rag Rag

Rags

*

*

4K Memory

\ \
00.000000

ROUTER

Fig. 4: CM-1 Processor Unit

Processing Element 64K

Write Read

Rag Rag

Rags
-to

4K Memory

\ \

>

2.

CHAPTER 2

HPSm: An Out-of-Order Execution VLSI Architecture Case Study

2.1. Introduction

This chapter gives the system context ofthe smart memories to be discussed inlater chapters. It

provides a qualitative description ofHPSm [1] - the single-chip version ofHPS - that is being used as

the research vehicle forthestudy of smart memories for out-of-execution VLSI architectures. Itsblock

diagram and data path are shown inFigs. 1&2 respectively.

22. Overview

HPSm is adata flow engine that can be viewed as a5-stage pipeline as shown inFig. 3 [2]. How

ever, itmust be stressed that the HPSm pipeline isunlike the classical pipeline inthe sense that the exe

cution ofoperations are data-driven. For this reason, Fig. 3is teimed asimplified view of the pipeline.

In the 1st stage (FETCH), a 64-bit very long instruction word (VLIW) [3] consisting of3 "RISC-

like" instructions (e.g ALU operation) is fetched by the IU using branch prediction. This instruction is

decoded into adata dependency graph with each operation forming anode in this graph. Tags are allo

cated to the output result and input operands of each operation for data flow graph construction pur

poses. In the MERGE stage, the merger merges the decoder output (instruction data dependency graph)

into the current data flow graph. The merging process uses amodified Tomasulo Algorithm [4] and the

RAT.

The EXECUTE stage executes operations in a data-driven manner. The operations after having

been decoded into data flow nodes are sent to 3 node tables : 1node table for each function unit. Opera

tions wait in the node tables until their operands arrive. An operation whose operands are ready is exe

cuted by the function unit attached to the node table. If more than one operation is ready, a scheduling

algorithm is used to determine the oldest eligible operation for execution. After execution, the results

are distributed on the distribution bus to 3 node tables (2 ALU NTs and MEM NT) and the RAT. Con

trol information about completion is sent to the IU (so that new instructions can be brought into the

engine) and the RETIRE and other control units.

Finally, in the RETIRE stage, an instruction retires from the machine after all its operations have

been executed and all instructions before it have retired. Operations whose operands are not ready do

not block the execution of other operations : they just wait until their operands arrive. The machine is

therefore data-driven; hence, the name "data flow".

23. Major Components

The HPSm microarchitecture (see Chapter 5of Reference [1]) consists of 6 major components: the

instruction unit (IU), 4 smart memories (the Register Alias Table and 3 Node Tables), the function

units, the Floating Point Unit (FPU) and the Memory System (see Fig. 1.). The first four components are

designed for implementation in a single (11.5mm x 11.5mm, 1.6 urn) CMOS chip. This chapter will

concentrate on the smart memories and howthey are connected in the HPSm CPU chip. The FPU and

Memory System would not be discussed; the interface to them will only be mentioned whenever

appropriate.

10

23.1. Instruction Unit

The IU (Fig. 2.) fetches instructions, determines the next instruction address, performs branch

prediction, executes unconditional jump and branch instructions, assigns tags to instructions and gen

erates SAVE/REPAIR signals.

232. NodeTable (Smart Instruction Memory)

For each function unit, the corresponding node table (NT) buffers the operations (e.g. ALU ADD)

waiting for their operands to arrive. Using the Tomasulo Algorithm, itenforces data flow dependencies

between operations and removes data antidependencies *. It schedules operations and discards appropri

ate operations during repair. This smart memory will be covered indetail inChapter 3.

233. Register AliasTable (Smart Data Memory)

The Register Alias Table (RAT) is a smart register file that has high bandwidth to support 15

accesses per cycle. It maintains dependency information for each register entry, provides the source

operand values and the tag ofthe operation producing the source operand values, removes data output

dependencies and repairs the contents ofeach register entry if necessary. This smart memory will be

covered in detail in Chapter 4.

23.4. Function Units

The function units perform branch prediction verifications, arithmetic and logic operations, data

memory accesses, and coprocessor data transfers.

An operation. A, has an aim data dependency on another operation, B, ifboth share the same register but Amust read from the register
before Bwrites into itso that Adoes not get the unintended value. An operation, C, has an output data dependency on another operation, D if
both must write into the same register but Cmust write before Ddoes so that the operations that depend on C's result do not get D's result in-

11

2.4. Global Busses and Signals

The global busses are the REGISTER ADDRESS bus (3x6 bits in Fig. 4), the TAG bus (3x5

bits in Fig. 5), the READY bus (3 x 1 bit in Fig. 6), the VALUE bus (3 x 32 bits in Fig. 7), and the

CHECKPOINT IDENTIFICATION bus (3 x 1 bit in Fig. 8). The global signals are the EXCEPTION

SAVE signal (1 bit), the EXCEPTION REPAIR signal (1 bit), the EXCEPTION STATUS signal (3

bits), the JUMP TARGET PENDING signal (1 bit), the BRANCH PENDING signal (1 bit), the

BRANCH REPAIR signal (1 bit), the BRANCH VERIFY signal (1 bit), the NODE TABLE OVER

FLOW signal (1 bit), and the IUSTALL signal (1 bit). Figure 9 summarizes the timing of the global

busses and signals.

2.4.1. REGISTER ADDRESS Bus

The REGISTER ADDRESS bus connects the RAT, the IU, the NT's and the function units (Fig.

4). It is made up of 3 sub-busses; one for each function unit. Each sub-busconsists of 1 VALIDbit and

5 ADDRESS bits. The VALID bit inhibits or permits an access while 5 ADDRESS bits indicate the

register entry to be accessed. The bus switches before the rising edges ofthe 4-phase clocks and stays

stable for a phase as shown inFig. 9. Inphase 1 (phase 2), the IU drives each sub-bus with the register

address of the source 1 (source 2) operand for the corresponding function unit. In phase 3, each FU

drives its address sub-bus with the VALID bit indicating whether the result on its VALUE sub-bus is

valid, and drives the ADDRESS sub-bus with the destination address for the result. In phase 4, the IU

drives each sub-bus with the destination register address for each microoperation inthe VLIW.

2.4.2. TAG Bus

The TAG bus connects the IU, the RAT, the NT's and the FU's (Fig. 5). It consists of 35-bit sub-

busses. The TAG bus switches before the rising edges ofthe 4-phase clocks and stays stable for aphase.

12

In phase 1 (phase 2), the RAT drives the TAG bus with the tags fetched from the source 1 (source 2)

registers ofthe issued microoperations. In phase 3, the FU's drive the TAG bus with the tags ofthe dis

tributed results. In phase 4, the IU drives the TAG bus with the tags of the results of the issued

microoperations.

2.43. READY Bus

The READY bus connects the IU, the RAT, the NT's and the FU's (Fig. 6). It consists of 3 1-bit

sub-busses. The READY bus switches before the rising edges ofthe 4-phase clocks and stays stable for

aphase. Inphase 1(phase 2), if the operand 1(operand 2) addressing mode is register, the RAT drives

the corresponding READY bus with the READY bit fetched from the source registers. Otherwise the

READY bus is driven to "1". In phase 3, the FU's drive each READY sub-bus to indicate if the

corresponding VALUE sub-bus contains a valid distribution result. In phase 4, the IU drives the

READY bus to "0".

2.4.4. VALUE Bus

The VALUE bus connects the IU, the RAT, the NT's and the FU's (Fig. 7). It consists of3 32-bit

sub-busses. The bus switches before the rising edges ofthe 4-phase clocks and stays stable for aphase.

In phase 1(phase 2), if the operand 1(operand 2) register address is not "Register 31", the RAT drives

the corresponding VALUE bus with the operand values fetched from the source registers. Otherwise, if

the register address is "Register 31", the IU drives the VALUE bus with the FETCH PC value; other

wise the IU drives the bus with the sign extended result of the source register number (for literal mode).

In phase 3, the FU's drive the VALUE bus with their evaluation results. In phase 4, the contents ofthe

bus are don't care.

13

2.4.5. CHECKPOINT IDENTIFICATION Bus

The CHECKPOINT IDENTIFICATION bus connects the IU, the NT's and the FU's (Fig. 8). It

consists of 3 1-bitsub-busses. It is used only in phases 2 and 3. In phase 2, the IU drives the bus with

the CHECKPOINT IDENTIFICATION of the currendy active checkpoint. In phase 3, the FU's drive

the bus with the identification of the checkpoint to whose exception-repair range (see Chapter 4 of

Reference [1]) the finishing microoperation belongs to.

2.4.6. EXCEPTION SAVE Signal

The EXCEPTION SAVE signal is generated by the IU and is monitored bythe IU, the RAT, the

NT's, and the FPU (Fig. 10). It indicates whether an exception check action is to be performed in a

cycle. It switches at the rising edge of <h3 (Fig. 9) and remains stable for the entire cycle. It crosses the

chip boundary.

2.4.7. EXCEPTION REPAIR Signal

The EXCEPTION REPAIR signal isgenerated by the IU and ismonitored bythe IU, the RAT, the

NT's, the FPU, and the memory system (Fig. 10). It indicates whether an exception repair action isto be

performed ina cycle (see Chapter 4 ofReference [1]). It switches atthe rising edge of (j>4 (Fig. 9) and

remains stable for the entire cycle. It crosses the chip boundary. ^

2.4.8. EXCEPTION STATUS Signal

The EXCEPTION STATUS signal is generated by the function units and is monitored by the IU

(Fig. 11). It consists of3 1-bit sub-signals. It indicates what type ofexceptions occured during the FU

evaluation ofthe last cycle. Itswitches at the rising edge of(J>3 and remains stable for aphase (Fig. 9).

14

2.4.9. BRANCH VERIFY/REPAIR Signals

The BRANCH VERIFY/REPAIR signals are generated by the SECONDARY.ALU and moni

tored by the FPU, the IU and the NT's (Fig. 12). They switch at the rising edge of (J>3 and remain stable

fortheentire cycle. They cross thechip boundary.

2.4.10. BRANCH PENDING andJUMP TARGET PENDING Signals

The BRANCH PENDING and the JUMP TARGET PENDING signals are generated by the IU

and monitored by the FPU, the IU and the NT's (Fig. 13). The BRANCH PENDING signal indicates

whether there is a branch prediction yet to be verified by the SECONDARY_ALU (see below). The

JUMP TARGET PENDING signal indicates whether there is an active microoperation which is going to

write into REGISTER 31. The signals switch at the rising edge of <J>4 and remain stable for the entire

cycle(Fig. 9).They crossthe chip boundary.

2.4.11. NODE TABLE OVERFLOW Signal

The NODE TABLE OVERFLOW signal is generated by the NT's and is monitored by the instruc

tion cache controller (Fig. 14) that isoff-chip. It indicates whether any ofthe NT's is full. It switches at

the rising edge of<j>i and remains stable for the entire cycle. Itcrosses the chip boundary.

2.4.12. INSTRUCTION UNIT STALL Signal

The INSTRUCTION UNIT STALL signal is generated by the instruction cache controller and is

monitored by the IU, the NT's, and the FPU (Fig. 15). The signal crosses the chip boundary and is set

TRUE inphase 2 if at least one of the following is true:

(1) the instruction cache misses;

(2) the NODE TABLE OVERFLOW signal isTRUE;

15

(3) the BRANCH PENDING signal is TRUE and the instruction

output latch contains a conditional branch microoperation;

(4) the JUMP TARGET PENDING signal is TRUE and the instruction

output latch contains a jump instruction.

2.4.13. NEW CONDITIONAL BRANCHand NEW JUMP Signals

The NEW CONDITIONAL BRANCH and the NEW JUMP signals are generated by the instruc

tion cache controller and monitored by both the IU and the instruction cache controller. The NEW

JUMP signal indicates whether a jump microoperation has just been fetched. The NEW CONDI

TIONAL BRANCH signal indicates whether a new conditional branch microoperation has just been

fetched.

2.4.14. NEW MICROOPERATIONS Signal

The NEW MICROOPERATIONS signal is generated by the IU and is monitored by the NT's

(Fig. 16). Itprovides the opcodes, the destination register addresses, and the destination tags for the new

microoperations in phase 4.

2.5. Detailed Pipeline Timing

2.5.1. Core Timing

This subsection gives a detailed description of the HPSm pipeline. The simplified pipeline dis

cussed in section 2.2 above followed an instruction from its entry into the machine to itsexit. It did not

shed enough light onthe role of the smart memories. In this subsection, the pipeline isviewed from the

standpoint ofthe smart memories rather than from that ofan individual instructioa Let the core timing

16

[1] ofthe pipeline be defined as the minimum signal propagation timing for each microoperation. That

is, the core timing is the ideal timing for any microoperation without events such as IU stalls, multiple

cycle FU evaluation, and delays due to data dependencies.

The core timing is shown in Fig. 17. Each HPSm microoperation spends at least 4 cycles in the

pipeline. The 4 cycles are in turn divided into 8sub-cycles as described below:

Sub-cycle

sub-cycle 1

sub-cycle 2

sub-cycle 3

sub-cycle 4

sub-cycle 5

Description

This sub-cycle is theentire first cycle during
which theFETCH.PC is determined by the IU.
This involves incrementing the last FETCH_PC, adding
anoffsetto it, and selecting 1 of the 6 potential PC's
according tothe conditions by the instruction decoding,
external interrupts anddata pathexecution.

This sub-cycle is madeup of phases 1,2, and3 of
the second cycle. In this sub-cycle, the FETCH_PC is
transmitted off-chip to the instruction cache and used to
access the tag and data stores.

This sub-cycle is phase 4 of the second cycle. In
this sub-cycle, the first part (the source addressing modes
and registernumbers) of the fetched instruction is fetched
from the instruction cache.

This sub-cycle is phase 1of the third cycle. The
first sourceoperands are fetched from the RAT if
the modeis not literal or the register is not
REGISTER 31.

If the mode of asource operand is literal, the sign
extended result of the registernumber is chosen to drive the
TAG, the READY, and the VALUE busses. If the mode is
register and the register is REGISTER 31, the IU drives
the TAG, the READY, and the VALUE busses.
The operands are latched into the NT's at the
risingedge of <|>2.

This sub-cycle is phase 2 of the third cycle.The
second source operands are fetched from the RAT if
themode is not literal orthe register is not
REGISTER 31.

If the mode of asource operand is literal, the sign

sub-cycle 6

sub-cycle 7

sub-cycle 8

17

extended result of the register number is chosen to drive the
TAG, the READY, and the VALUE busses. If the mode is
register and the register is REGISTER 31, the IU drives
the TAG, the READY, and the VALUE busses.
The operands are latched into the NT's at the rising edge
of <j>3. The second part of the fetched instruction
(opcodes and output operand specifiers) is fetched from
the instruction cache in this sub-cycle. The IU STALL
signal (evaluated in sub-cycles 3 and 4) is also transmitted
on-chip in this sub-cycle.

This sub-cycle is phase 3 of the third cycle. The
inputoperands of the fetched microoperations,if theyare not
ready, will monitor the TAG, READY, and VALUE busses
in this sub-cycle to receive the operand values.

This sub-cycle is phase4 of the third cycle.
If both input operands of the incoming microoperations are
ready, and Hie pending bit is "1", the microoperation
becomes eligible for execution. If there is no older
eligible microoperation in the sameNT, the microoperation
is fetched from the NT and submitted for execution.

This sub-cycle consists of phase 1,2, and 3 of
cycle4. The FU evaluates a microoperation and puts its
result on the TAG, READY, and VALUE busses.

2.5.2. Extended Timing

Ifevents like stalls and delays occur, a microoperation can spend more than 4 cycles in the HPSm

pipeline. When the core timing is extended for some microoperations, it may not be extended for the

subsequent microoperations. The events that can prevent amicrooperation from immediately advancing

from one stage to the next are discussed below.

18

2.5.2.1. Instruction Unit Stalls

The IU can stall due to instruction translation buffer misses, instruction cache misses, jump target

pending, node table overflow, ordouble pending branch prediction.

2.5.2.1.1. Jump Target Pending Stall

The jump target pending stall occurs when the next fetch address cannot be determined at the

moment ajump operation is executed. In the HPSm microarchitecture, control transfer to an arbitrary

program location is performed by having a microoperation loading REGISTER 31 with the target

address and then execute a jump microoperation. Ifthe microoperation loading REGISTER 31 has not

finished execution when the jump microoperation is fetched, all the microoperations within the fetched

instruction will be prevented from being latched into the NT's and from reserving the output RAT

entries. They will keep repeating their third sub-cycle of the core timing until the jump target pending

signal goes to "0". None of thesubsequent instructions will befetched.

2.5.2.1.2. Node Table Overflow Stall

The node table overflow stall, occurs when at least one of the NT's is full. The microoperations

within the fetched instruction will be prevented from being latched into the NT's and from reserving the

output RAT entries. They will keep repeating their third sub-cycle of the core timing until the node

table overflow signal goes to "0". None ofthe subsequent instructions will be fetched.

232.13. Double Pending Branch Prediction Stall

The double pending branch prediction stall occurs if another conditional branch is encountered in

the instruction stream before the prediction for the previous one has been verified. The second condi

tional branch instruction will be forced to go through the third sub-cycle of the core timing until the

BRANCH PREDICTION PENDING signal goes to "0". None of the subsequent instructions will be

19

fetched.

2S2.2. Data/Control Dependency Delays

Ifat least one ofthe input operands is not ready at the time amicrooperation reaches sub-cylce 6,

itwill be forced to go through sub-cycle 6again until both the input operands are ready. This means that

the delayed microoperation will stay in an NT and monitor the TAG, the READY, and the VALUE

busses to receive the input operand(s). There can be several microoperations waiting at sub-cycle 6 in

the NT's atthe same time. The microengine continues issuing the subsequent instructions.

2.5.2.3. Function Unit ConflictDelays

If there ismore than one microoperation eligible for execution at the same time in the same NT,

only the oldest firable microoperation is fired to the attached FUforexecution. Theothers will have to

wait until they become the oldest firable entry; therefore, they are forced to go through sub-cycle 7

again. The microengine continues issuing the subsequent instructions.

232.4. Multiple-cycle FU Evaluation

Ifthe microoperation takes more than one cycle to evaluate, itwill not finish sub-cycle 8until the

FU finishes the evaluation. Since all the multiple-cycle FU's are pipelined inthe HPSm microarchitec

ture, a multiple-cycle FU evaluation does not block any ofthe subsequent instructions.

20

2.6. Conclusions

The foregoing paragraphs reveal that HPSm is an out-of-orderexecution microarchitecture where

several eventsoccur in the various components in anoverlapped and decentralized manner. HPSm uses

this decentralized control approach to maximize the throughput and to avoid the complexity problems

of controlling anout-of-order execution machine in a centralized fashion. It is clear from the above dis

cussion that smart memories are needed to support HPSm's style of decentralized control. Theroles that

the smart instruction memories (NT's) and the smart data memory (RAT) play in supporting the decen

tralized control are borne outby theabove paragraphs.

The roles of the smart memories were clarified by looking at the pipeline not only from the

viewpoint of the instructions but also from the viewpoint of the memories. The above sections reveal

the activities in the smart memories when an instruction can be executed with the core timing (i.e.

minimum timing with no stalls) and when it cannot because of stalls. The NT is discussed in the next

chapter while Chapter 4 covers the RAT. The paramount constraint on the design of these smart

memories is that they must satisfy the requirements specified in this chapter in asingle-chip environ

ment

21

References

[1] Wen-mei Hwu, "HPSm: Exploiting Concurrency to Achieve High Performance in a Single-chip

Microarchitecture" Ph.D. Dissertation, Computer Science Division, EECS Dept., University of Califor

nia, Berkeley, CA. 94720,1987.

[2] Wen-mei Hwu and Yale Patt, "HPSm, a High Performance Restricted Data Flow Architecture Hav

ing Minimal Functionality", in The 13th International Symposium on Computer Architecture Confer

ence Proceedings, Tokyo, Japan, June 1986.

[3] Joseph A. Fisher, "The VLIW Machine: A Multiprocessor for Compiling Scientific Code" IEEE

Computer, vol. 17,July1984,pp. 45-53.

[4] Tomasulo, R. M., "An Efficient Algorithm for Exploiting Multiple Arithmetic Units," IBM Journal

ofResearch and Development, vol. 11,1967, pp. 25-33. Principles and Examples, McGraw-Hill, 1982.

HPSm Block Diagram

flddr

prefetch status

£hjj£jk check. status ins ruct»pnt status instri ction.

Merger

RAT c

i
Scheduler

ALU MEM

chip boundary

data memory system

Figure 1

t

Iet
INT
Sftfcvv... .••.•

CON
INT.- J
& : .:!

rx
RET

—E

CON

repair, etc

cffstrTbTmon

»>.**

. -Data -CacHcT*

>^ ?rnaln;;memory

S_13_LLS

FPU

cr
q c f
t

T
\ \ N

T
i o o 2 X E •T

3
a w "*

J

1 1
?

s
c
h

e
d

u
le

o
.

n
.

2
5

.

s
c
h

e
d

u
le

_f
ca

L

s
c
h

e
d

u
le

•

3 0
)

o o D C

J
^

M
4

o
1

D>
1

o
I

c
r

.

i
o

^
: : \ c

o c
r

o c

J
d P P I p o c 3 e
n

FETCH INSTRUCTION / DEC
/

MERGE NODES

EXECUTE

DISTRIBUTE RESULTS

RETIRE CHECKPOINT

Fig. 3: HPSm Simplified Pipeline

The Register Address Bus

NT NT NT

(Node Table) (Node Table) (Node Table)

1st ALU / \2ndALU/^ N^ CACHE/

< *

Figure 4

The Tag Bus

IU

(Instruction Unit)

Figure 5

RAT

(Register Alias Table)

The ready Bus

IU

(Instruction Unit)

t^i a

RAT

(Register Alias Table)

iii

r~
NT NT NT

(Node Table) (Node Table) (Node Table)

I

\ 1st ALU X \2ndALU/^ \^ CACHE/

Figure 6

The Value Bus

RAT

(Register Alias Table)

Figure 7

IU

(Instruction Unit)

The Checkpoint Identification Bus

IU

(Instruction Unit)

I
NT

(Node Table)

NT

(Node Table)

NT

(Node Table)

N^lst ALU / Ns2ndALljy'̂ N^ CACHE /

Figure 8

Global Bus and Signal Timing Table

hi 1

'i'\ • ' i l
phi 4 —™~""~"~~~"

regieter
eddreaa bua

tag bua

raady bua

(—. y •—» x ' '"- x -"M"°" D
y—— , X" "-' X ,"""6'"'0" X a",l",,,°" ~)
V—"M»TO, x "»•"' ~X " ""'""' ^ "'"""""'" ^

value bua

checkpoint Ii
bua

exception
aava signal

exception
repair signal

—}C3^^xZiZXZ=Z3^^^^
?777>f7777777777^ -. X _s=!S y&22Z22Z^

DC

xz

jsr ^^^^^^^^^CZZZZZ^^^^>
branch
verify/rapalr

brarch/jump Urget
pending ^^^^

DC

Figure 9

The E-SAVE and E-REPAIR Signals

iu

(Instruction Unit)

RAT

(Register Alias Table)

NT NT NT

(Node Table) (Node Table) (Node Table)

N^lst ALU / \2nd_ALU/^ N. CACHE

Figure 10

andf\o FPU J
\memo

The Exception Status Signal

IU

(Instruction Unit)

I
NT

(Node Table)

JTX

NT

(Node Table)

NT

(Node Table)

\ 1st ALU y/ \J2nd ALUy/^ \^ CACHE /

Figure 11

The B-repair and B-verify signals

IU

(Instruction Unit)

RAT

(Register Alias Table)

NT

(Node Table)

1st ALU

Figure 12

NT

(Node Table)

\2nd ALU/'

H to FPU/ to

NT

(Node Table)

\^ CACHE /

^he Branch Pending and Jump Target Pending Signals

IU

(Instruction Unit)

RAT

(Register Alias Table)

NT

(Node Table)

NT

(Node Table)

NT

(Node Table)

C
to FPU and

memory

N^lstALU / \^2nd ALU/ N^ CACHE/

Figure 13

The Node Table Overflow Signal

IU

(Instruction Unit)

RAT

(Register Alias Table)

NT

(Node Table)

NT

(Node Table)

NT

(Node Table)

\ 1st ALU \2nd_ALUy^ \^ CACHE

Figure 14

C
FPU ancT

memory

The Instruction Unit Stall Signal

IU

(Instruction Unit)

RAT

(Register Alias Table)

NT NT NT

(Node Table) (Node Table) (Node Table)

c

N^lstALU / \^2nd ALUy^ XcACffi/

Figure 15

from

memory

The New Microoperations Signal

NT

(Node Table)

RAT

(Register Alias Table)

NT

(Node Table)

NT

(Node Table)

\JstALU / X^ndALUv' N^ CACHE /

Figure 16

Pipeline Timing - 2nd Design
phase 1 phase 2 phase 3

next fetch pc generation

pulse

(?)
1-cache data/tag store access

f latch fetch pc "}

© ©
generation (t-cache tag compare, stall logic, and transmit on-chip)

evaluate srcl
shin NT first part

f latch 1st part of Instruct Ion }

ALU evaluation

flatch Into NT output stage ^

Figure 17

evaluate src2
,/* shift NTsecond part
^\ transmit Ins second pa

©

©
compare tag and write

value and ready

dlstrlb Into RAT

and NTs

phase 4

©
IU stall signal

transmit first part of

the Instruction on-chip

©

update RATtag and rdy

/yo schedule and fetch NT

3.

3.1. Introduction

CHAPTER 3

NT : A Smart Instruction Memory Case Study

The Node Table (NT) is a smart instruction memory that buffers microoperations awaiting

data/control operands. It discards the appropriate operations during EXCEPTION and BRANCH repairs

and after firing an entry for execution. Three NT's are used inthe HPSm CPU chip: one for each func

tion unit as shown inFig. 1. The NT isa fully associative memory: all access to each entry is regulated

by the contents rather than by the address of the entry. In other words, it is an "addressless" memory.

Figure 2shows the NT with its fields and its relation to the global busses and signals.

3.2. Memory Architecture

The logical format of the NT is shown in Fig. 3. Each NT entry represents a "RISC-like"

microoperation (e.g. ALU ADD): a 3-bit CONTROL field, a 15-bit OUTPUT RESULT field, a 40-bit

1ST OPERAND field, and a 40-bit 2ND OPERAND field. The fields are in turn broken down as fol

lows:

3.2.1. CONTROL Field

The CONTROL field has a VALID bit to indicate if the entry isempty, a BRANCH PENDING bit

to indicate if theentry is waiting fora branch prediction to beconfirmed, and a CHECKPOINT IDEN

TIFICATION BIT toindicate what checkpoint the operation belongs to [1].

22

3.2.1.1. VALID Bit

The VALID bitcan becleared (see Fig. 3) by any of the following conditions:

23

(1) The BRANCH REPAIR signal is "1" and the BRANCH_PENDING

signal in the same entry is "0",

(2)The EXCEPTION REPAIR signal is "1",

(3) The entry has just been fired, or

(4) The CPU is RESET.

32.12. BRANCH PENDING Bit

The BRANCH PENDING bit receives its value from the BRANCH_PENDING signal in phase 2

(see Fig. 3). It is set to "1", ifthe BRANCH VERIFY signal is "1" and the BRANCH REPAIR signal is

"0", indicating that acorrect branch prediction has just been verified. It is not accessed through any bit

line. The BRANCH PENDING bit participates in the scheduling operation and in clearing the VALID

bit during BRANCH REPAIR.

322. OUTPUT RESULT Field

The OUTPUT RESULT field has a5-bit OPCODE field to indicate the operation to be performed

on the entry, a5-bit OUTPUT REGISTER # field to indicate the destination RAT register for the result,

and a 5-bit OUTPUT TAG field to indicate the tag for the result.

323. 1ST OPERAND and 2ND OPERAND Fields

Each operand field has a7-bit TAG CAM field to indicate the tag ofthe operand, 1RDY bit to

indicate if the operand isvalid (or ifthe entry is waiting for this operand to arrive as the result ofan FU

evaluation) and a 32-bit VALUE field for the value ofthe operand.

24

Since each entry has 98 bits, it infeasible to implement the NT exactly as depicted by the logical

format Rather, the 2ND OPERAND field is folded underneath the 1ST OPERAND field as shown in

Fig. 4. The extemal SCHEDULER control uses the VALID bit and the AGE field (shows "age" of

entry) to determine the oldest firable entry and the entry to be written into. The FIRE ROW DRIVERS

use thecontrol result from theSCHEDULER to drive the appropriate FIRE WL high. The DISTRIBU

TION ROW DRIVERS buffer the OPERAND TAG match lines to drive the OPERAND DISTRIBU

TION WLs during distribution.

33. Basic Operations

The timing sequence is illustrated in Fig. 5. All signals are aligned to the 4-phase clocks of the

HPSm CPU chip asshown in the figure. In the sequel, phase i is defined as the time segment from the

rising edge of fy to the rising edge offo+1. Inphase 1(phase 2), the 1ST OPERAND (2ND OPERAND)

is fetched from the RAT and written into the first available entry. Also, inphase 2, the OPCODE, OUT

PUT RESULT TAG and OUTPUT REGISTER # is fetched from the IU and written into the first avail

able entry. In the third phase, all entries in the NT awaiting their operands associatively receive values

from the distribution bus if the stored tags match the distributed tags. Finally, in phase 4, the

SCHEDULER FIREs the oldest firable entry. The VALID bit of the fired entry is then set to "0" to

scratch this entry from the NT.

3.4. Priority Encoding Scheme

The NT needs a priority encoding scheme so that it can choose the oldest eligible instruction for

execution inthe case where there ismore than one executable instruction. Designing an efficient scheme

is the most intractable part ofthe NT design. The difficulty lies in establishing the oldest firable entry

25

and performing garbage collection after the oldest entry has been fired so that the fired entry is not

retired.

Two broad classes of priority schemes can be employed. The first one uses "smarter" data cells by

implementing some of the priority control ineach cell while the other implements all the control outside

the memory core. The SHIFT-REGISTER priority encoding scheme is an example of a scheme in the

first class. In this case, the entries are ordered bytheir positions in the NT. The SHIFT operation is used

to shift the latest entry into the first entry, while the other entries are shifted into the empty entry posi

tions below them. This SHIFT operation not only establishes the oldest entry but also performs garbage

collection. This SHIFT-REGISTER scheme has the typical disadvantage ofshift register memories [2]:

the SHIFT signal ishighly capacitive since itgoes to all the cells. Driving the SHIFT signal would lead

to high dynamic power and peak current These problems are compounded by the fact that 3 NT's are

needed in the HPSm CPU chip. The SHIFT-REGISTER approach was rejected in favor of a

POINTER-MECHANISM scheme to be discussed next The latter scheme is an example ofimplement

ing the priority control outside the core. It therefore moves all the complexity from the core to the peri

phery where it can be easily handled with available CAD tools.

The POINTER-MECHANISM method reverses the process of the SHIFT-REGISTER approach.

Ithas 2 pointers at any given time : one that points to the entry for insertion of the next instruction in

phases 1and 2, and another one that points to the entry to be fired. Instead ofshifting the entire contents

ofthe NT, itjusts shifts these pointers. Any instruction can be inserted into any entry and any entry can

be fired from any position. Therefore, this scheme maintains an AGE information for each entry that

indicates the order in which the data was written into the NT. (The SHIFT-REGISTER approach, in

contrast, does not need an explicit AGE information since the age ofeach entry is implied by its physi

callocation in the memory.)

26

3.4.1. The SCHEDULER Finite State Machine

Figure 6 shows all the possible occupation states of the NT. The SCHEDULER is a finite state

machine (FSM) as shown in Figure 7. It uses the AGE information along with the VALID BIT, and

READY BITs of each entry to determine the pointer positions. AGE in Figure 7 is an UP/DOWN

RESETTABLE counter. The VALID BIT indicates what entry is occupied while INSTR_RDY is the

READY bit that informs the SCHEDULER if the instmction is READY(i.e. the READY BITs of the

1st and 2nd operands are SET). The FIRE_WL and INSERT_WL SCHEDULER outputs in Figure 7 are

the pointers. They are qualified by theappropriate clocks to drive theNT FIRE and INSERT word lines.

For each AGE counter, the SCHEDULER generates the UP, DN(DOWN), and RESET signals. The

state transition diagrams that describe thebehavior of theSCHEDULER FSM would bediscussed next

3.4.1.1. INSERT State Transition Diagram

In phases 1 and 2 after a new instmction has been written (inserted) into the NT, the state of the

NT can change inone of several ways. Depending on the initial configuration of the NT, the state makes

atransition to another configuration as shown in Figure 8a. Figure 8b focuses on one entry, ENTRY.i.

Since the NT for the HPSm has 4entries, there are only 5possible states -1 "EMPTY" state plus 4pos

sible positions for ENTRY.i.

A CPU RESET puts all entries at STATE 0, where they are all empty. If insertion is made into

another ENTRY.j, ENTRY.i is forced to remain at STATE 0 by RESETting the Age.COUNTER for

ENTRY.i. If an insertion is made into ENTRY.i, the Age_COUNTER of ENTRY.i is counted UP to

increase its AGE and advance itsPOSITION. If ENTRY.i is at STATEs 1,2, or3, when an insertion is

made into another ENTRY.j, the Age.COUNTER ofENTRY.i isalso counted UP. Therefore, an occu

pied entry advances inage as long as insertion is taking place inother entries. In STATE 4,an insertion

is not possible since the NODE TABLE OVERFLOW signal (see Chapter 2) generated by the NT

prevents the HPSm IU from fetching anynew instructions.

27

3.4.1.2. FIRE State Transition Diagram

Figure 9a shows the transitions between the possible NT configurations as entries are fired from

the memory. Figure 9b depicts how the state ofa particular entry, ENTRY.i, changes as NT entries are

fired. The SCHEDULER uses the VALID BITof "0" to make surethatENTRY.i cannot be fired if it is

in STATE 0. Whenever ENTRY.i is fired, it is automatically RESET to discard it from the NT. If

another entry, ENTRY.j is fired, ENTRY.i's AGE is counted DOWN if ENTRY.i was older than

ENTRY.j before it was fired; otherwise ENTRY.i's AGE isleft unchanged.

3.4.1.3. Overall State Transition Diagram

The overall picture that combines both the effects of firing and insertion on a particular entry,

ENTRY.i, is shown in Figure 10. For insertion, the main point is that all occupied entries increase in

AGE as entries are inserted into the NT. Therefore, the ordering ofthe entries by the AGE is updated

correctly after each insertion. All fired entries are reset no matter their AGE. The garbage collection

after any entry is fired is accomplished by simply counting DOWN the AGE of each non-fired entry

whose AGE ishigher than that ofthe fired entry. The non-fired entry whose AGE islower than that of

the fired entry isleft unaltered. In this way, the ordering ofthe occupied entries inthe NT ismaintained

after an entry has been fired.

Updating the AGE information after insertion and firing in the way described in the last paragraph

gives aclean way of doing garbage collection after firing the oldest eligible instruction. Resetting the

AGE counter or just counting the AGE counter UP or DOWN avoids the complexity of moving all the

pieces ofdata in the NT todo compaction asin the case of the SHIFT REGISTER method.

28

3.4.2. SCHEDULER Implementation

The shift of the priority scheme complexity from the core to the periphery increases the complex

ityof the SCHEDULER inacombinatorial manner. This is so because any entry can be acandidate for

insertion or firing. It is clear from Figure 6 that the number of possibilities "explodes" combinatorially

as N, the number of entries, increases. Fortunately, N=4 for the HPSm NT. The most recent Berkeley

CAD tools (MISII, WOLFE, VULCAN, and OCTTOCIF) were employed to contain the SCHEDULER

complexity. It is inefficient to implement the SCHEDULER with a PLA because of its combinatorial

nature. (For instance, it is inefficient to implement an ALU with aPLA because flattening an ALU into

just a2-level logic is inefficient) Therefore, the SCHEDULER is implemented with multi-level logic

using standard cells. The CAD tools mentioned above allow alot of flexibility, quick turnaround and

extensive verification of the SCHEDULER implementation. The input description of the SCHEDULER

that is fed into theCAD tools is in Appendix I.

In addition, a personal CAD routine was written to generate the vectors corresponding to all the

possible configurations. These vectors were used to verify the correctness of the SCHEDULER imple

mentation.

29

3.5. Circuits

33.1. Cells

33.1.1. Tag Cell

The tagcell shown in Figure 11 is a single port write-only (WOM) CAM cell. The SRAM cell at

the top is used to store the data while the 3 comparators below are used for the associative operation.

Tags for the 1st(2nd) operand is written into the cell in phase 1 (phase 2) with the INSERT.WL word

line. In <J>3, the match lines are precharged while the bit lines are discharged. In phase 3, while

INSERT.WL is held low, 3tags that accompany 3results from the HPSm FU's are broadcast to the tag

cell by driving the bit lines. The match line corresponding to the external tag that matches the stored tag

is left high. The XOR comparator discharges any match line associated with a tag mismatch. Because

the tag is never read out, the highly capacitive (93fF) internal node (1) that connects to all the compara

tors does not pose a problem.

33.1.2. Value Cells

The value cells for the 1st and 2nd operands are shown in Figure 12. The value cell is an SRAM

cell that is written into with INSERT.WL and read from with FIRE.WL. The distribution word lines

(DIST.WLl, DIST.WL2, DIST.WL3) are used to associatively write results from the HPSm FU's. They

are connected to thematch lines of thetagcell inFigure 11 with the DISTRIBUTION ROW DRIVERS

in Figure 4. The difference in the FIRE bit lines is the only difference between the 1st operand and the

2nd operand value cells. This difference isnecessary since the two operands must be fetched for execu

tion (in the ALU for instance) at the same time. BL2 and BL3 are used as FIRE bitlines to reduce the

capacitive load on BLl. The function unit result bus (FU.BUS) is sent through the value cells to avoid

the complexityof routing the bus aroundthe NT.

30

33.1.3. RDYBIT Cells

The schematics for the cells for the 1st and 2nd operand READY BITs are in Figure 13. The

RDYBIT cell is similar to the value cell but for two differences. First since it is not needed for execu

tion, it is never fired. Second, its value is sent to the SCHEDULER to indicate if the instmction is

READY. To reduce the capacitive loading on the internal node, the buffer, B2, is used to isolate the

internal node of the cell from the signal (RDYBIT.sigLine) that is sent to the SCHEDULER. B2 is

placed on the "negative" side ofthe cell since it isan inverter. Another buffer, Bl, isused on the "posi

tive" side to reduce any voltage offset in the cell introduced by B2. The use of the data of the RDYBIT

cell as control signal reflects the fully associative feature ofthe NT. Itcan be seen from looking atFig

ure 13 that the inclusion oflogic in the data cells (by including Bl and B2) make smart memory data

cells larger than conventional data cells.

33.1.4. BRANCH PENDING Cell

The BRANCH PENDING cell in Figure 14 is another example ofa cell whose data isused ascon

trol information. Inphase 2, the BRANCH PENDING bit is written into the cell using INSERT.WL to

indicate if the corresponding instmction is waiting fora BRANCH PREDICTION to beconfirmed. This

information is sent to the SCHEDULER using the buffer, Bl. When the BRANCH is confirmed, (i.e.

BRANCH_VERIFIED is "1" and BRANCH.REPAIR is "0") the PI PMOS and Nl NMOS transistors

are used to SET the BRANCH PENDING bit

33.13. OPCODE Cell

The OPCODE cell, in Figure 15, is a 1-port SRAM cell that is written into withINSERT.WL and

read from with FIRE.WL. The CID, OUTPUT REGISTER #, and OUTPUT TAG fields employ the

OPCODE cell.

31

33.2. Detailed Operations

The timing chartof the NTsignals is in Figure 16. Thelumped SPICE model of the NTis shown

in Figs. 17a-17c. All the entries are lumped into one entry while all the columns ina field are lumped

into one column.

33.2.1. SCHEDULER and PENDING BIT Column

Figure 17a shows the schematic for the SCHEDULER and PENDING BIT Column. The

SCHEDULER isa finite state machine with the AGE counters and the NT core supplying its inputs as

discussed insection 3.4. In the WL QUALIFIERS, the toFIRE.WLs and toINSERT.WLs are qualified

with the EN.FIRE (ENABLE FIRE), ENJNSERT.lst (ENABLE INSERT 1st) and EN_INSERT.2nd

(ENABLE INSERT 2nd) signals to drive the FIRE.WLs and INSERT.WLs at the appropriate times.

Only one PENDING BIT is needed for each entry; this bit is aligned with the 2nd operand row ofthe

NT as shown inFigure 17a. Ofall the word lines only the INSERT.WL_2 is used by the PENDING BIT

column. The other word lines are sent across the column to the other fields.

The buffers for writing the BRANCH PENDING signal (see Chapter 2) is implemented in the

WRITE BUFFERS. The WRITE BUFFERS also contain the logic for combining the BRANCH VER

IFY and BRANCH REPAIR signals (see Chapter 2). The INSTR.RDY Logic block is implemented in

the empty slot above the PENDING BIT cell. It generates the INSTR.RDY signal by combining the

PENDING BIT and the information about the readiness ofthe 1st and 2nd operands, to indicate if the

instmction is executable. RDYBIT Logic is implemented besides the PENDING BIT cell. It uses a

NOR gate with the 1st, 2nd, and 3rd match lines (ML1_2, ML2_2, ML3_2) and the 2nd operand RDY

BIT (RDYBIT.sigLine_2) to determine the readiness of the 2nd operand. Using the match lines rapidly

reflects the most recent change made to the RDYBIT (during result distribution) in the INSTR.RDY

Logic block. (The RDYBIT Logic for the 1st operand is part ofINSTR.RDY Logic.)

32

33.2.2. TAG FIELD and RDYBIT Column

The lumped model of the TAG FIELD, the DISTRIBUTION ROW DRIVERS and the RDYBIT

column is in Figure 17b. The WRITE BUFFERS drive the bit lines during insertion and distribution.

Thematch lines from the TAG FIELD are qualified in phase 3 with theML2WL in the row drivers to

drive thedistribution word lines (DIST.WL_1 and DIST.WL_2).

33.23. VALUE, OPCODE and MISCELLANEOUS FIELDs

Figure 17c is the schematic of the VALUE, OPCODE and the MISCELLANEOUS (CID, OUT

PUTREGISTER #, and OUTPUT RESULT) FIELDs. The WRITE BUFFERS of the fields drivethe bit

lines in phases 1, 2 and 3. The WRITE BUFFERS of the VALUE and MISCELLANEOUS fields also

contain dynamic latches for storing the function unit result and for driving the distribution busses. The

VALUE and OPCODE fields have READ BUFFERS that send the operands and opcode to the function

unit for execution. Since the cells are SRAM cells and the bit line capacitance is not excessive (0.55pF

maximum), no sense amplifiers are used.

3.6. Simulation Results

3.6.1. NT Layout

The NT layout is in Fig. 18. Its size is 1.32mm x5.54mm, ithas 9,527 transistors and itdissipates

0.25W running at lOMhz.

3.6.2. SPICE Results

The SPICE results for the TAG and VALUE fields of the lumped model discussed above are

shown in Figs. 19a-19d for two scenarios. The first scenario is when there is a tag match during the dis-

33

tribution of results while the second scenario is when there is atag mismatch. The results reflect that the

implemented NT satisfies the timing requirements imposed by the HPSm CPU.

3.7. Conclusions

NT, a smart instmction memory, was described in the above sections. It combines a finite state

machine with data cells for storing instmctions (operands, opcode and control information). The above

discussion reflects the fully associative characteristic of the NT. The use of the POINTER-

MECHANISM method for implementing the priority encoding scheme trivializes the garbage collection

function and allows the use of simpler data cells. RAT, asmart data memory, is discussed inthe next

chapter.

34

References

[1] Wen-mei Hwu, "HPSm: Exploiting Concurrency to Achieve High Performance in a Single-chip

Microarchitecture" Ph.D. Dissertation, Computer Science Division, EECS Dept., University of Califor

nia, Berkeley, CA. 94720,1987.

[2] D.A. Hodges and H.G. Jackson, "ANALYSIS AND DESIGN OF DIGITAL INTEGRATED CIR

CUITS" McGraw-Hill, 1983.

*

i i 1

I-cache

3

^ ^

> 8
5

/
g

4

l-
H

o a o 3 C

0Q
l

*

S
N

-
-

9
.

^
—

-<
w

•"
1

*—
4

H
^

V

4
X

|

4
k
a

r
f

s
c
h

e
d

u
le

0
4

—
•

! 1 l I 6 s c
r

O c a i i 1 t ! i { j 1 t c I { j

^
i

•
^

1

ii
«

#
—

*
-

o

^
„

>

p

4

^̂
s4

<
4

-
2

;

[1

o e

%
•-

-

s
c
h

e
d

u
le

o
h

0 I
t-

A
p

d

'
ti

-4
-

<
*

-

<
*

-

<
*

—
e
n

J
f

VO
L

<

a
W

-

>

s

sS
-*

—
2

"
i

•
^ 3

1
*

>
i

s
c
h

e
d

u
le

J
1

-IU stall -

—exception repair-j
—branch repair

—branch pend

tag bus

* ^ * t

valid,
penamg

Fig. 2 : NT with Global Busses and Signals

to function units

1 Q

Tag Ready Value misc

^ V-t value bus

IU

new microoperations
(IU)

IU

short literal
D i'1 id

fetch PC J

t:
2 flrd=?!lassigned tag lr | distrib tag IT

I-unit function units RAT

b tag \r I srcl lag \r I src2 lag \r
i

distrib value
Di'1 * iij

•J crr>1 i/aluo Jsrd value

x t
src2 value .D

RAT function units RAT

2
ready bus

2 readydestin clear U

IU

55ih readvK srd ready JrflrSEEERlr'
distrib ready

FU'S

srd ready

RAT

flsrc2 ready [s

RAT

RAT

E
X

C
E

P
.R

E
P

B
R

A
N

C
H

V
E

R

B
R

A
N

C
H

R
E

P

B
R

A
N

C
H

P
E

N
D

IU
.S

T
A

L
L

(N
T

.O
V

E
R

F
L

O
W

or
JM

P
_T

A
R

G
_P

E
N

D
or

D
B

L
_P

E
N

D
_B

R
_P

R
E

D
o

rC
A

C
H

E
.M

B
S

)

B
B

I
I

T
T

(D
(D

0
)

C
O

N
T

R
O

L

F
IE

L
D

G
.

P U
«

E
(5

)
T

(5
)

T
(5

)

O
U

T
P

U
T

R
E

S
U

L
T

F
IE

L
D

T
R

A
D

G
Y

V
A

L
U

(7
)

(1
)

(3
2)

1
S

T
.

O
P

E
R

A
N

D

F
IE

L
D

F
ig

.
3:

N
T

L
og

ic
al

F
or

m
at

T
R

A
D

G
Y

V
A

L
U

E

(7
)

(!
)

(3
2)

2
N

D
.

O
P

E
R

A
N

D

H
E

L
D

_

—

i o

»

5 O
"

: 3 h
J 1

fl. 3|h

**j i

OC UJ; d

£ O 3 H

! **

Q. 3! H
1 1

oc lu: co

j*
i

O

!

cl: o O: Q

*

lu:

& i J

>

-•i 2

< -i

i n

i\ i

S UJ

ii i

^ •'
i
oc

"ii w

Q >

3!
i *
i m

5 i"
— i h

,_ Q

DC O 15 C

_ c/>; h oc

i c 1 > i

. d 3 h
J OC CO

- o| z

s'

6 O

i

a. tu

"l* *•

51 *
OC <j Z Q

•j 8'

H < a
1 i

CO

9 a.
i

UJ z

I N
, 1

O -J z c
j i

: m -

1 »

—
Z CO h- OCj oc a >i -i o aj _ o

oc

u.

O £j Q OC _ j> UJ
i oc

oc co j
i LU

s
< ; c UJ !

* > < -1 ! — o j a —! H

(0 o X JUJ Q Z) j -J UJ DC

CD

E

o
LL

75
o

'55

Q.

«-

• MB

LL

C
L
K
1

C
L
K
2

C
L
K
3

C
L
K
4

W
R
I
T
E
1
S
T

O
P
E
R
A
N
D

W
R

IT
E

2
N

D

O
P

E
R

A
N

D

C
A

M
W

R
IT

E

R
E

S
U

L
T

S

F
IR

E

O
P

E
R

A
T

IO
N

*
PH

AS
E

1
^

PH
AS

E
2

M
PH

AS
E

3
K

PH
AS

E
4

\

n

n

\
O
n
s

2
5

n
s

5
0

n
s

7
5

n
s

F
ig

.
5:

N
T

T
im

in
g

S
eq

u
en

ce

i~
~

A

1
0

0
n

s

» OCCUPIED

ENTRIES FORMULA

N

<V 1
(e.g. 1 for N=4)

N

Ct-N
(e.g. 4 tor N=4)

N

(e.g. 6 lor N=4)

N

(e.g.4forN=4)

N

(e.g. 1 for N=4)

ALL POSSIBLE CONFIGURATIONS

1

2

3

4

•

•

«

1 1 1 1

• • •

1

2 2 2 2 2

3 3 3 3 3

4 4 4 4 4

•

•

•

•

•

•

•

•

•

•

M 14 K M H

1 1 1 1 1 1

• • •

1
2 2 2 2 2 2 2
3 3 3 3 3 3 3

4 4 4 4 4 4 4
•

•

•

•

•

•

•

•

•

•

•

•

•

•

M 4 N M 4 4 14

1 1 1 1

• • •

1

2 2 2 2 2

3 3 3 3 3

4 4 4 4 4
•

•

•

•

•

•

•

•

•

•

M 14 H 14 H

1

• • •

1

2 2.

3 3

44

•

•

•

•

H H

Fig. 6. NT Possible Configurations

CPU RESET

AGE Counters

Fig. 7. SCHEDULER Finite State Machine

» OCCUPIED

ENTRIES

TRANSITION

AFTER

INSERTION
ALL POSSIBLE CONFIGURATIONS

1

2

3

4

•

•

H

1 1 1 1

• • •

1

2 2 2 2 2

3 3 3 3 3

4 4 4 4 4

•

•

•

•

•

•

•

•

•

•

» 4 14 14 4

1 1 1 1 1 1

• • •

1

2 2 2 2 2 2 2

3 3 3 3 3 3 3

4 4 4 4 4 4 4
•

•

•

•

•

•

•

•

•

•

•

•

•

•

14 14 H * * 14 H

1 1 1 1

• • •

1

2 2 2 2 2

3 3 3 3 3

4 4 4 4 4

•

•

•

•

•

•

•

•

•

•

M H 4 4 4

1

...

1

2 2

3 3

4 4

•

•

•

•

4 14

Fig. 8a. NT Configurations After INSERTion

CPU RESET
Insert kilo

Current ENTRYJ
Insert into

Another ENTRY j
Insert into

Another ENTRY.J

Fig. 8b. ENTRY.i AGEState Transition Diagram for INSERTion

Insert into

Another ENTRY.|

t OCCUPIED

ENTRIES

TRANSITION

AFTER

FIRING
ALL POSSIBLE CONFIGURATIONS

1

2

3

4

•

•

14

1 1 1 1

...

1

2 2 2 2 2

3 3 3 3 3

4 4 4 4 4

•

•

• •

•

• •

•

14 H 14 14 H

1 1 1 1 1 1

...

1

2 2 2 2 2 2 2

3 3 3 3 3 3 3

4 4 4 4 4 4 4

•

•

•

• • •

•

•

•

•

•

•

M M 4 H 1 < H

1 1 1 1

• • .

1

2 2 2 2 2

3 3 3 3 3

4 4 4 4 4

•

•

•

•

•

•

•

•

•

•

14 M f4 N N

1

• • •

1

2 2

3 3

4 4

•

•

•

•

M M

Fig. 9a. NT Configurations After FIRing

CPU RESET

AgeCOUNTER: RESET

Fig. 9b. ENTRY.! AGE StateTransition Diagram for FIRing

CPU RESET
Insert into

Current ENTRYJ
Insert into

Another ENTRY.|

Ago.COUNTER: UP

Age_COUNTER: RESET

Insert into

Another ENTRY.)

Fig. 10. ENTRY.i AGE State Transition Diagram

Insert into
Another ENTRY J

BL3 BL2 BL1 INSERT.WL BL1 BL2 BL3

(

^

*

K/H
d)

KN
~ -^Xzr-—'

ML1

<* ^ ML2

^ ^
Hwt3—

Fig. 11: NT TAG Cell

VALUE CELL (1st Operand)

BL3 BL2 BL1 INSERT.WL

DIST.WL1

DIST.WL2

D1ST.WL3

FIRE.WL

VALUE CELL (2nd Operand)

BL3 BL2 BL1 INSERT.WL

J~~L

DIST.WLl

DIST.WL2

DIST.WL3

RRE.WL

BL1 BL2 BL3 FU.Bus

,_n

BL1 BL2 BL3 FU.Bus

Fig. 12: NT VALUE Cells

RDYBIT Cell (1st Operand)

BL3 BL2 BL1 INSERT.WL 1L1 BS BL3

J-L r~i_

DIST.WL1

DIST.WL2

DIST.WL3
_r—i

dm

i
111?:.

RDYBIT.aigLinQst

RDYBIT Cell (2nd Operand)

BL3 BL2 BLl INSERT.WL BLl BL2 BL3

J~T-

DIST.WL1

DIST.WL2

DIST.WL3

H

RDYBIT.slgLln«_2nd

Fig. 13: NT RDYBIT Cells

BR VER'BR REP.bar BR VER'BR REP.bar

BR PEND

PEND_Brr.slgUne

Fig. 14: NT BRANCH PENDING Cell

BL1 INSERT.WL BL1

Fig. 15: NT OPCODE Cell

24 40 M

INSERT: let OPNO INSERT 2nd OPNO DISTRIBUTE RESULTS

CORE Timing: ;

EN INSERT.Irt J \
EN INSERTS

EN WRITE

NT_ML.2.0IST.WL.b«r-RAT^B2BJMr

NT PRECH.ML*ttr I

NT_0)SCH.MUI^AT_DtSCaML

NT.PRECH.BL«t:phl4'NT.ML.2.DIST.WL.bar

EN FIRE

BR_PENKNQ^«r

BR_REPAIR I

BR VERIFY !

SCHEDULER timing:

EN OUT.REG

EN DNsEN ftlRE

EN_UP_EN_DNJb«r

/

XI
>G

Fig. 16: NT Timing Chart

72

FIRE OPCOOE.OPNDS&MISC

X

X

Fig. 17a: NT Lumped Model (Part 1)

MLfWL; I

Fig. 17b: NT Lumped Model (Part 2)

V
A

L
U

E
F

ie
ld

>
<

O
P

C
O

D
E

F
ie

ld
-•<

M
IS

C
.

F
ie

ld

|READ
/W

RITE
B

uffers

1
&

K
Y

1
-

lJ~LrJ~L-
i-r~LTJ~1-

F
ig.17c:

N
T

L
um

ped
M

odel(P
art3)

o0
5

_
J

0
0

L
L

Fig. 19a: TAG FIELD - INSERT. 1st OPERAND (0); INSERT.2nd OPERAND (0);
DISTRIBUTE (1) - MATCH; FIRE (1).

••TAnm•:TAG3L
+:TAG.BL.b*r

-: DISOLBLi (-PRECH.ML)
$:TAGDATA.nodc In
0:TAGJ5ATA.nodc.bar_l«
<:TAG.DATAj»de_2nd
>:TAG.OATAjwde.bar_2bd

?:INSERT.WL_lit

TAOBL
13S0D4O0 2JOXK00 3.7SCD*C0 lOOOOtOO

OjO 4.999D*00X
1.0X0-09 5.IKM0X
2.0XD-09 5.1S4D*4»X
3JS0D-09 SJMVOOX
4.000049 jjno*oox
5J00OD-O9 S.iajD*00
&00OD-O9 5.1t3D*00
7AMO-09 5.1«2D*O0
lOXD-09 S.162D»00
94000-09 3.7S3D*03X
ijoood-o* 2.6190*00x0
1.1O0D-C* 1.634D+00X 0
IJMD4S lMIDtOOX 0
1J0CD4S 7.3*30-01 X
I.4OGD4S5.9O2D-01X
IJKD-Ot 4.71 ©-01
1.60GD4S 2.996D-01
1.70004* 139S04I
1J0OD4* 54MD42
1.90004* 2.232042
2.000D48 9.046D-03
2.10QD4* 4.141D43
2J9GD-0* 20!
iMCD-n i .iuo-0}:
2.40004*-»i7D42:
2J00D4t'3.40ID-(B:
240QD4*.3.90SD42:
2.700D4*.3.915O42
2 J00O4S .3.907042
2.900D4S .3.901042
3.00OD-0S -3.89SD-02
3.ioqd4*-3.1*7042 :
33d0d os 1.61 id-co
3J00D4* 1JS9D42:
3.400D4S4.40SD42*
3J0CO4* 1.51ID41
3.60CO4S 2.765D41 X
3.70CD4* 3.724D41 X
3JOCD-OS 3J83D01X
3.900D48 2JO0D-OIX
4.000D4* 1.234041
4.IOOD-08 5.016D42
4200D4I 2.03ID42
4J0CD48 7.6I6D43
4.400D4* 3J60D43
4JD0DCS 1596D43
4j600D4* t.72SD44
4.700D4I 4JUD44
4J00O4I-2.I36D42
4:90004* 7.017D42
5.00004* iMUD-m x
S.100D4* 322SD41 X
S.200D4* 6.931D42
SJ0OD4* 671 (DOT
5.40CO48 I.57SD43
SJ0OD4S 3492D44
540OD4S3.393DO2
5.700D4* 3.S63D42
5J00D4* I.153D42
5.900D4* 4.764D43
6j00OD4* 23870-03
6J00D4* 1.097D43 ;
U00D4* 5 J66D44 :
6J00D4S 3427D44 C
6.40004*2.000044 (
650OD-OS I.340D44 C
6400D4* UI6D44 C
6.70CO4I 9.4*90-05 C
6 JOCD-Ot U74O-0S C
6.90CO4* MSID-05 K
7 .00004* LSI7D45 <
7J0CO4* 9£59D45 <
7.20CO4*-Z47(D42X
7joaD-o8.3.47srwn <
7400D4*.3.466D42 C
75MD4S-3.45SD42 C
740004*-3.46*042 k
7.70004*3-556042: :
7J0OD4*-3.72*042:
7«O0D4*.3.900D423
jood4-4.055D42 3
.10CD4-4.19SD42J
1200D4*-4.299D42J
••300D4I-4.37CD42:
M00D4* -4.424D42:
•jqqd4*-4.4*2042: :
(jOooos4.4aaa2::
*.7ooo4«-4.504042::
M0OD4*-4.514042: :
J0CO4-4.519D42: :
iiriiYjujtTIVB' :
9JooD-o«-4jaiD-oa :
9200D4*-4.520042: I
9J0GD-0I-4.SI7D-02: I
940004*-4.514042::
9JOOD-01-4jiihmb ::
9.*ood4*-4.512042::
9.700D4*-4.50*042: I
9 jocd-c*-4.5000-02::
9.90CD4I-4.493D42: I
1-0X0-07-4.417042:

INSERT la OPERAND(0)

BQ

?o INSERT2nd OPERAND(0)

•BQ

Vx
*X DISTRIBUTE. MATCH(1)

EEQ

PIRBO)

Fig. 19b: VALUE FIELD - INSERT. 1st OPERAND (0); INSERT.2nd OPERAND (0);
DISTRIBUTE (1) - MATCH; FIRE (1).

*:VALBL

+:VAI~BL.bax

-:VAL.DATA-nodc

S:VALDATA.nodc.bar
0:HREWL_lit
<: INSERT.WL 1st
>:DIST.WLl_l«t

?:VALJV£os.out

TOXBCt) VAU8L
• - - o* 13500400

04 4.9990*00X7
1400D49 53240*401 I
2400049 53240*00: :
3400D49 5323D*00
4.0X049 53220*00^
5.000D49 53220*00: :
640OD49S321D*O0: :
7.000D49 53200*00 f,
•jOOOO-09 5.1960*00
9A0GD49 3534D*00X
140CO48 2.1830*00 XS
1.I00O-0S 1313O*00X S
130004*7405041
1300D48 5353041
1.40004* 4301041
15DCD4S I541D4]
1.600O4S 6501D42
1.7O0D4* 24SSD42
IJO0D48 73*2043
IJ00O4* 3444043
24KD4S 14UD43
2,1000-0* 9422D44
2300D4* 73360.04 k
2300D4* 7349D44 C
2.400D4* -2.5*7042 K
2500D4S -3*570-02 ft
2400D4*-4.4S3D42
2.700048 •4.472D-Q2
2J0CO4*-4472D42
2400D41-4.4S6D42
3.000D4*-4.439D-02
3.100O4* 4.441 D-02
3300D4S-1.6SD42
33000-0*2.100042
3400D4S J.062D-02X1
330004*1.6830-01 X
3.600O-0* 2.987D41 X
3.700048 3.762D41 X
3JO0O4* 255ID41X
3.90OD48 1.UCD41
4400D4S 3.470D42
4.1000-08 l.llSO-023
43O0D4* 3375D43)
4300D4S 13940433
4.40004*5.732044 J
45000-0*2.117044)
440CO48 3.173D44JI
4.7000-et 2.446D443I
43000484.5710423
4.900D4S.3336D423
540OD48.3.(78042 3
5.I00D48.3.944D423
S300D4S.3.936D429I
5300048-3.930042 3
5.400048-3.929042
5500D4S -3.921 D42
5400D48-7.92SD42
5.700D-0* 13200*00
5 J00D4* 2J63D*00
5.900D4S 33100*00
6400D4S 43910*00
6.100D48 4.7020*00
6300048 43600*09
630CD4* 4 J36D*0D
6.400D4S 4.9690*00
63000-0* 45710*00
640094* 4.7310*00 X
6.700O4* 4.4150*00 X
6J00O-0* 43460*00 X
6.900048 43220*00
7.0000-08 43610*00
7.100048 4.7830*00 X*
7300D4S 45230*00 X>
7300D4S 4.4090*00 X
7.400O-0* 33630*00
75D0D.0* 34060*00
7.6X008 330ED*00
7.700D4S 3.4620*00
7J00D4* 34520*00
7500D4S 3.4550*00
•400048 3/060*00
8.100048 34230*00
8300D4S 34240*00 XS
•300048 34260*00
8400D48 34290*00
•30OD4S 34340*00 X
•490D48 34410*00 X
8.700D4S 3.44(0*00 X
•J0OD4* 34350*00
•30004*34610*00
949004*346*0*00
9.100D4* 34740*00
930004*34*00*00
9300D4* 34*60*00
9400D4* 3.4910*00
95KO08 3.4960*00
9400048 33000*00
9.700048 34990*00
9J0CO48 34960*00
9.900D4S 3.4950*00
1400D47 34950*00 X

23000*00 3.7500*00 54000*00

INSERT la OPERAND (0)

********"Mt**************************************^

Fig. 19c: TAG FIELD - INSERT.lst OPERAND (0); INSERT.2nd OPERAND (0);
DISTRIBUTE (1) - MISMATCH; FIRE (0).

**^

•:TAG3L
+:TAG.BL.bax

-: DISCRBU (-PRECH.ML)
S:TAGJ)ATAuxxle 1st
0: TAGUATA.aode.o«r_lst
<:TAG.DATAjK>dc_2nd
>:TAGJ3ATAjKxJcb*r_2nd

?: INSERT.WL_lst

TOjCB TAQJU.
•**S0©>7>- 04 13500*00 23000*00 3.7500*00 54000*00

04 4.9990*00 X
1.0X049 5.1(40*00
24D0O49 5.1*40*00
34000-09 5J*4O*00
4jOOOD49 5.1830*00
5400049 54830*00
6400D-09 5.1*30*00
7400O49 5.1*20*00
•40OD49 5.1620*00
940OD49 3.7*30*00
1400O4* 34190*00
1.10004* I434D*00
13O0D4* 1.04*0*09
1300O4I 73*30-01
1.400D4S S.902D4I
1300D-0* 4.71SD4I
140OD4* 2596D41
1.7D0D4* I395D41
130004*54*6042
1500D4* 23S2D42
2400D4* 9J046D43
2J00O4* 4.141D43
23O0D4* 2429D43
2300D4* 1.1(0043
2.400D4(-23I7D42
2300O4*-3.405D42bC
2400041 -3.906D42
2.70OD4*.3.9ISD42
2300D48 -3.907042 *
2500O48-3.901D42 K
3400D4S-3.895D42 K
3.1000-0*.3.07042
3300D4S.1.61ID42
33000.08 1389D42
34O0D48 4.405D42
33000-08 13IID41
3400D4I 2.763041 X
3.700D4* 3.724D4I X
3 JKD4* 3383D41X
3.90OD-08 2300D4I
4400D48 I334D41
4J0OD-0* S416D423J*
43D0O4* 2.093D42J
4300D4I 76I6D433
4400D4* 3360043:
430OD4S 1396D43:
4400O4*C.72(D44 3
4.70004*4300443
4300D4»-Z136O42
4.90004* 7417042 X'
540004* 331SD4I X
5J0OD4* 3325D41
5300D4* 6531D42
530004) 6.710O43
S400O4* 137SD43
5300D4* 3.924044
5.600D48.1708042
5.7000-0*7376041 X
5500D4* 1.9210*00
S500D4* 25*80*00 .
6400D4S 3.7720*00 X
6.IO0D4* 43790*00 X
630004*43960*00 M
6300D4* 4.7*20*00 3C
6.4000.0*43790*0031
6300D.OS 4.9330*00 X
6400D4I 4.9610*0031
6.700O-0* 4.97(0*00 X
6300O4* 4.9*70*00 X
650004*4.9920*0031
7400D4* 45950*00 X
7.I00D4S 4.9970*00 X
7200D4S 5.0970*00 X
7300D4* 5.1560*00 X
7.400D4* 5.1550*00 X
73D0D4* 5.1540*00 X
7400D4* 5.1540*0031
7.700D4* 5.1530*00 3C
730004* 5.1530*00 X
7.90OD4* 5.1520*00 X
(400D4B 5.1520*0931
•-18004* 5.1510*00 X
8300D4B 5.1510*00 X
•30CD4* 5.1510*00 X
840OD48 5.1500*00 X
8300D46 5.1500*00 3B
•400D4* 5.1500*003?
8.700D4* 5.1490*00 X
•50QD48 5J49D*00X
•500D48 5.1490*00 X
9400D48 5.14(0*09 X
9.10OD48 5.14(0*00 K
93O0D4* 5.14(0*00 X
9300D4* 5.1470*09 X
940004* 5.1470*00*
930GD4* 5.147D*003c
940004* 5.146D*00X
9.700D4* 5J46D*00X
9400D48 5.1460*00 X
9500D48 5.1450*00 K
1400D47 5.1450*09 X

***>

Fig. 19d: VALUE FIELD - INSERT. 1st OPERAND (0); INSERT.2nd OPERAND (0);
DISTRIBUTE (1) - MISMATCH; FIRE (0).

***:

•:VALBL
+:VAL.BL.bu

«:VALJ)ATAj»de

S: VALDATA.node.btf
0:HRE.WL 1st
<: INSERT.WL 1st
>:DIST.WLl_lst

?:VAL_FU3ia.out

roam vaubl
- 04

04 4.9990*00 X
14X049 53240*00
2.000D49 53240*00
3430049 53230*00
4400049 53220*00
54000-09 53220*00
6400D49 53210*00
7400049 53200*00
S400D49 5.1960*00
9400049 33240*00 X
140CO48 2.1830*00 XS
1.I00D4S 1313O*00X S
130QD-0S 740SO41X
13O0D48 S353D41
1.400D4S 4301D41
I300D4S 154ID4I
1400D4* 6391D42
1.700048 246SD42
IJ0OO48 7382D43
I50Q04S 3444D43
240OD48 1411D43
3400048 9422D44' :
2300048 7336D44: !
23O0D48 7349D44:
2.400048-23*7042 t
230004*-3.*S7D42 (
2400D4*-4.453O42
2.700D4S4.
230004*4472042'
2500D4S-44S6D42 I
340CO4*-4.439D42 :
340OD4*-4.44lD42 C
3300O4I-I.623O42 L
330OD4* 2400042
3400D4S 5462D42
330004* 14B3D41
3400048 25S7D41X
3.700O4* 3.762D41 X
3300D4* 2351D41X
3.900D4S I.11SD41
440004(3470042
4.100D4(141(042
430OD4* 337SD43
4300D48 1394043
4.40OD48 5.7S2D44
45D0D4I 2.117D44
440CO4* 3473044
4.70004* 2.446D44
4300D4* .2.57(042
450004*33360421
S400D4* -337SD42
S.10OD4(-3.944D42
53O0D4*-3.936042
53000-0-3.930042
5400D4(-3.929D42
5300D4I-3.921 D42
54000-0-7.92*042
S.7O0D4* 13220*00 X
S50OD4* 23710*00 X
5500D4I 34110*00 X
640OD4* 43*70*00 X
6400O4* 44920*00 X *s
6300D4* 43340*00 XV
6 J0CD4* 45350*00 X
640004*458*0*00 X
630004*45850*00 X
6400D48 4592D*00X
6.700D4* 4.9960*00 X
6300048 4 5970*00 X
<500D4S 459*0*00 X
740OD4S 45990*00 X
7400D4S 4.9990*09 X .
7300D48 54540*00 X* "*•
7300D4B 43910*00
7400048 4.1200*00
730CO48 3501D*00
7400048 3.79*0*00
7.7O0D4* 3.7300*00
730004*34*90*00
7500D4* 34610*00
•40004*34430*00
S40GD4S 34310*00
830004*33740*00
8300048 33010*00
•400048 25210*00
830OD48 23010*00 X •
•4D0D48 24740*00 X •
8.700D48 1476D*00X •
830CO48 13350*00 X -
8.900048 14590*09 X •
9400D48 8370O41X -
940CD4* 63410-01X-
93O0D48 54S6D41X-
930004*33*3041
940004*2570041
9300D4S 2350D41
9400O4S 1.722D41
9.70004* 13S9D41
9300D4* 1J50D4I
9500D4S 1.147D41
1400047 1.146D41

13300*00 23000*00 3.7300*00 54000*00

APPENDIX I

***************««3(tl|C****«**)|c*l||l|t4'i|t«««9|>*)fC***********)tc**************i((*»*

APPENDIX I: SCHEDULER Description asCADTools Input.
************:M>****%******************%*****;M<*****^

NAME = SMART.PLA;
INORDER - BUS_VALID.BIT

AGE_1[3] AGE_1[2] AGE_1[1] INST RDY_1
AGE_2[3] AGE_2[2] AGE_2[1] INST_RDY_2
AGE_3[3] AGE_3[2] AGE_3[1] INST_RDY_3
AGE_4[3] AGE_4[2] AGE_4[1] INST_RDY_4;

OUTORDER - toINSERT.WL.l toF!RE.WL_l toTJP_l toDN.l
toINSERT.WL_2 toFIRE.WL_2 toUP_2 toDN_2
toINSERT.WL_3 toFIRE.WL_3 toUP_3 toDN_3
toINSERT.WL_4 toFIRE.WL_4 toUP_4 toDN_4
QFULL;

POS_l.l= AGE_1[2]&AGE_1[1];
POS_1.2= AGE_1[2]&(!AGE_1[1]);
POS.1.3 = (!AGE_1[2]) & AGE_1[1];
POS_1.4 =(!AGE_l[2])&(!AGE 1[1]);
POS_1.5 = AGE_l[3];
POS.2.1 - AGE_2[2]& AGE_2[1];
POS_2.2= AGE_2[2]& (!AGE_2[1]);
POS.2.3 = (!AGE_2[2])& AGE_2[1];
POS_2.4 =(!AGE_2[2]) & (!AGE_2[1]);
POS_2.5 = AGE_2[3];
POS_3.1a AGE_3[2]&AGE_3[1];
POS_3.2= AGE_3[2]& (!AGE_3[1]);
POS.3.3 - (!AGE_3[2]) & AGE_3[1];
POS_3.4 - (!AGE_3[2]) & (!AGE_3[1]>;
POS_3.5 = AGE_3[3];
POS.4.1 = AGE_4[2]&AGE_4[1];
POS_4.2= AGE_4[2]& (!AGE_4[1]);
POS_4.3 = (!AGE_4[2]) & AGE_4[1];
POS.4.4 - (!AGE_4[2]) & (!AGE_4[1]);
POS_4.5 = AGE_4[3];

EMPTY_l=POS_1.5;
EMPTY_2 - POS_2.5;
EMPTY_3 = POS_3.5;
EMPTY_4 = POS_4.5;
QFULL =!(EMPTY_1 +EMPTY 2+EMPTY 3+EMPTY_4);
NES.IS£NTRY_1 - EMPTY.l;
NES.IS.ENTRY_2 - (!EMPTY_1)&EMPTY_2;
NES.IS.ENTRY_3 =(!EMPTY_1)&(!EMPTY_2)&EMPTY_3;
NES.ISJENTRY_4 =(!EMPTY_1)&(!EMPTY_2)&(!EMPTY_3)&EMPTY_4;

FTRE_l.lst = POS_l.l & INST_RDY_1;
FTRE_1.2nd = POS.1.2 & INST_RDY_1;
FTRE_1.3rd - POS.1.3 & INST_RDY_1;
FTRE_1.4th =POS.1.4 & 1NST_RDY_1;
OTHER.FIRE.lst.WL_l =FTRE_2.1st +FIRE_3.1st +FIRE_4.1st;
OTHERFIRE.2nd.WL_l =FIRE_2.2nd +FTRE_3.2nd +FTRE_4.2nd;
OTHER.FTRE.3rd.WL_l =FTRE_2.3rd +FIRE_3.3rd +FIRE_4.3rd;
FIRE.lst.WL_l = FTRE.l.lst;

FIRE.2nd.WL_l =FIRE_1.2nd &(!OTHERJTRE.lst.WL_l);
FIRE.3rd.WL_l =FIRE_1.3rd &(!OTHERJTRE.lst.WL_l) &

(!0THER.FIRE.2nd.WL_l);
FIRE.4th.WL_l - FIRE_1.4th &(!OTHERJFERE.lst.WL_l) &

(!0THERJTRE.2nd.WL_l) &(!0THERJTRE.3rd.WL_l);
toFIRE.WL_l =FIRE.lst.WL_l +FIRE.2nd.WL_l +FIRE.3rd.WL_l

+ FIRE.4th.WL_l;
FIRE_2.1st- POS.2.1 & INST_RDY_2;
FIRE_2.2nd- POS.2.2 & INST_RDY_2;
FIRE_2.3rd =POS.2.3 &INST_RDy3;
FIRE_2.4th=POS.2.4 & INST_RDY_2;
0THERJTRE.lst.WL_2 =FIRE_l.lst+FIRE_3.1st +FIRE_4.1st;
OTHER.FIRE.2nd.WL_2 - FIRE_1.2nd +FIRE_3.2nd +FIRE_4.2nd;
OTHERJTRE.3rd.WL_2 - FIRE_1.3rd +FIRE_3.3rd +FIRE_4.3rd;
FIRE.lst.WL_2 = FIRE_2.1st;
FIRE.2nd.WL_2 =FIRE_2.2nd&(!OTHERJTRE.lsLWL 2);
FIRE.3rd.WL_2 - FIRE_2.3rd &(!0THERJTRE.lst.WL_2) &

(!0THER.FIRE.2nd.WL_2);
FIRE.4th.WL_2 - FIRE_2.4th &(I0THER.FIRE.lst.WL_2) &

(!OTHERJTRE.2nd.WL_2) &(!OTHER.FIRE.3rd.WL_2);
toFIRE.WL_2 =FIRE.lst.WL_2+FIRE.2nd.WL_2 +FIRE.3rd.WL 2

+ FIRE.4th.WL 2;
FIRE_3.1st= POS_3.1 & INST_RDY_3;
FIRE_3.2nd - POS_3.2 & INST_RDY_3;
FERE_3.3rd - POS_3.3 &INST_RDY~3;
FIRE_3.4th - POS.3.4 &INST_RDy3;
0THERJTRE.lst.WL_3 =FIRE_l.lst+FIRE 2.1st +FTRE_4.1st;
OTHERJTRE.2nd.WL_3 - FIRE_1.2nd +FIRE_2.2nd +FIRE_4.2nd;
OTHERJIRE.3rd.WL_3 =FIRE_1.3rd +FIRE 2.3rd +FIRE 4.3rd;
FIRE.lst.WL_3 - FIRE_3.1st;
FIRE.2nd.WL_3 - FIRE_3.2nd &(!0THERJTRE.lsLWL_3);
FIRE.3rd.WL_3 =FlRE_3.3rd&(!OTHERJTRE.lsLWL_3)& (!OTHER.FIRE.2nd.WL_3);
FIRE.4th.WL_3 =FIRE_3.4th &(!OTHERJTRE.lst.WL_3)

&(!OTHERJTRE.2ncLWL_3)&(!OTHER.FIRE.3r(LWL_3);
toFIRE.WL_3 =FIRE.lst.WL_3 +FIRE.2nd.WL_3+FIRE.3rd.WL_3+FIRE.4th;WL_3;
FIRE_4.1st- P0S_4.1 & INST_RDY_4;
FIRE_4.2nd- P0S_42 & INST_RDY_4;
FIRE_4.3rd = POS_4.3 & INST_RDY_4;
FIRE_4.4th = POS_4.4 & INST_RDY_4;
OTHERJTRE. 1stWL_4 =FIRE.l.lst+FIRE_2.1st +FIRE_3.1st;
OTHERJTRE.2nd.WL_4 - FIRE_1.2nd +FIRE_2.2nd +FIRE_3.2nd;
OTHERJFIRE.3rd.WL_4 =FIRE_1.3rd +FIRE_2.3rd +FIRE_3.3rd;
FIRE.lsLWL_4 - FIRE_4.1st;
FIRE.2nd.WL_4 =FIRE_4.2nd &(!0THERJTRE.lst.WL_4);
FIRE.3rd.WL_4 =FIRE_4.3rd &(!OTHER.FIRE.lsLWL_4)&(!OTHERJTRE.2nd.WL_4)-
FTRE.4th.WL_4 - FIRE_4.4th &(!0THERJTRE.lst.WL_4)

&(!OTHER.FIRE.2nd.WL_4) &(!OTHERJTRE.3rd.WL_4);
toFIRE.WL_4 - FIRE.lst.WL_4 +FIRE.2nd.WL_4+FIRE.3rd.WL_4+FIRE.4th.WL_4;

toINSERT.WL_l =BUS.VALID.BIT &NES.IS£NTRY_1;
toINSERT.WL_2 - BUS.VALID.BIT&NES.IS.ENTRY 2;
toINSERT.WL_3 - BUS.VALID.BIT&NES.ISJENTRY_3;
toINSERT.WL_4 - BUS.VALID.BIT&NES.IS.ENTRY.4;

INSERT.AN0THER_1 = BUSJVALID.BIT & (IQFULL)
INSERT.AN0THER_2 = BUS_VALID.BIT& (IQFULL)
INSERT.AN0THER_3 = BUS_VALID.BIT& (IQFULL)
INSERT.AN0THER_4 =BUSJVALID.BIT & (IQFULL)
toUP_l =toINSERT.WL.l +(INSERT.ANOTHER_l & (!EMPTY_1))
toUP_2 - toINSERT.WL_2 +(INSERT.ANOTHER_2 & (!EMPTY_2))
toUP_3 - toINSERT.WL_3 +(INSERT.ANOTHER_3 & (!EMPTY_3))
toUP_4 - toINSERT.WL_4 +(INSERT.ANOTHER_4 &(!EMPTY_4))

FIRED_1.AT.20R30R4 =FIRE.2nd.WL_l +FIRE.3rd.WL_l +FIRE.4th.WL_l;
FIRED_2.AT.20R30R4 - FIRE.2nd.WL_2 +FIRE.3rd.WL_2 +FIRE.4th.WL_2;
FIRED_3.AT.20R30R4 - FIRE.2nd.WL_3 +FIRE.3rd.WL_3 +FIRE.4th.WL_3;
FIRED_4.AT.20R30R4 =FIRE.2nd.WL_4 +FIRE.3rd.WL_4 +FIRE.4th.WL_4;
FIRED_1.AT.30R4=FIRE.3rd.WL_l +FIRE.4th.WL_l;
FIRED_2.AT.30R4 =FIRE.3rd.WL_2 +FIRE.4th.WL_2;
FIRED_3.AT.30R4 - FIRE.3rd.WL_3 +FIRE.4th.WL 3;
FIRED_4.AT.30R4 - FTRE.3rd.WL_4 +FIRE.4th.WL_4;
FIRED_1.AT.4 = FIRE.4th.WL_l;
FIRED_2.AT.4 = FIRE.4th.WL_2;
FIRED_3.AT.4 = FIRE.4th.WL_3;
FIRED_4.AT.4 = FIRE.4th.WL_4;

POSl.ANDJTRED.LOWER_l - POS_l.l&(FIRED_2.AT.20R30R4
+FTRED.3.AT.20R30R4 +FIRED_4.AT.20R30R4);

P0S2.ANDJTRED.L0WER_1 =POS_1.2&(FIRED_2.AT.30R4 +FIRED_3.AT.30R4
+ FIRED_4.AT.30R4);

POS3.ANDJTRED.LOWER_l=POS_1.3&(FIRED_2.AT.4+FIRED_3.AT.4+FIRED_4.AT.4);
toDN_l =(POS l.AND.FIREDXOWER_l +P0S2.ANDJTREDJX)WER_1

+ P0S3.ANDJTRED.L0WER 1);
POS1.ANDJTRED.LOWER.2 =POS_2.1&(FIRED_l.AT.20R30R4

+FIRED_3.AT.20R30R4 +FIRED_4.AT.20R30R4);
POS2.ANDJTRED.LOWER_2 =POS_2.2&(FIRED_l.AT.30R4 +FIRED_3.AT.30R4

+ FIRED_4.AT.30R4);
POS3.ANDJTRED.LOWER_2=POS_2.3&(FIRED_l.AT.4+FIRED 3.AT.4+FIRED_4 AT 4)-
toDN_2 - (POS 1.AND.FIRED10WER_2 +P0S2.ANDJTREDJ£>WER_2

+P0S3.ANDJTRED.L0WER 2);
POSl.ANDJTRED.LOWER_3 - POS_3.1&(FIRED_l.AT.20R30R4

+FIRED_2.AT.20R30R4 +FIRED_4.AT.20R30R4);
POS2.ANDJTRED.LOWER.3 =POS_3.2&(FIRED_l.AT.30R4 +FIRED_2.AT.30R4

+ FIRED_4.AT.30R4);
POS3.ANDJTRED.LOWER_3 =POS_3.3&(FIRED_l.AT.4+FIRED_2.AT.4+FIRED_4 AT 4)-
toDN_3 =(POS l.AND.FIREDIX)WER_3 +P0S2.ANDJTREDJLOWER.3

+POS3.AND.FIRED.LOWER_3);
P0S1.ANDJTRED.L0WER.4 - POS_4.1&(FIRED_l.AT.20R30R4

+FTRED_2.AT.20R30R4+FIRED_3.AT.20R30R4);
POS2.ANDJTRED.LOWER_4 - POS_4.2&(FIRED 1.AT.30R4 +FIRED_2.AT.30R4

+ FIRED_3.AT.30R4);
POS3.ANDJTRED.LOWER_4 =POS_4.3&(FIRED_l.AT.4+FIRED_2.AT.4+FIRED_3 AT 4)-
toDN_4 =(POS l.AND.FERED.LOWER_4 +P0S2.ANDJTREDJL0WER.4

+POS3.AND.FIRED.l6wER_4);

4.

4.1. Introduction

CHAPTER 4

RAT : A Smart DataMemory CaseStudy

RAT [1] is the main smart memory on the HPSm CPU chip and plays the major role ofmanipulat

ing the data flow graph - the central data structure in a data flow CPU. It is analogous to a register file

in a conventional von Neumann CPU but with extra capabilities for enhanced data manipulation and

support for out-of-order execution control. In Figure 1, RAT communicates with3 othersmartinstruc

tion memories (MEMORY NODE TABLE, ALU NODE TABLE, and CONTROL NODE TABLE)

through 3 ports. These smart instruction memories in turn support 3 CPU functional memories

(MEMORY, ALU and CONTROL). RAT has a content-addressable tag field to support associative

operations, and has 2 backup copies per data element to support branch prediction and exception han

dling. Figure 2 shows the RAT with its fields and its relation tothe global busses and signals.

4.2. Memory Architecture

The memory architecture is shown in Figure 3. Information is stored in a 31-word format - 40

bits/word - forming a 1.24K array that is accessible from the external world. The core is partitioned into

3 fields - a 7-bit tag field (a2-bit non-content addressable tag field and a 5-bit content addressable tag

field), a ready bit field (1 bit) and a value field (32 bits). Each field isdivided into 2 halves by a set of

sense amplifiers. Each of the 3 smart instruction memories inFigure 1 logically sees one I/O port look

ing into the RAT which it uses repeatedly for all its interaction with the RAT. By multiplexing each

35

36

port for 2 READs, 1 WRITE and 2 associative WRITES per cycle, the RAT provides the function of a

15-port memory while paying the price of a 3-port memory in terms of area and power. However, the

time-sharing ofthe ports by different operations certainly has an impact onthe cycle time.

Six multiplexers and six decoders are used - 3 for conventional READ/WRITE operations and 3

for assisting the associative WRITE operations. The READ.ENABLE circuitry divide the decoders into

an upper half and a lower half for the upper and lower halves ofthe core respectively. This circuitry is

used to conditionally inhibit some ports during READing. The row drivers buffer and multiplex the tag

word line (for conventional operations) and the tag match line (for content addressable operations) to

drive the ready bit/ value field word lines.

The tag and ready bit fields have 1backup copy while the value field has 2backup copies to sup

port branch prediction and exception handling. So indeed, although only 31 x40 bits are directly acces

sible from the external world, the core really stores 3.47K bits. The programmer-visible cells are called

the current cells (C.celt) while the first and second backup cells are called the transit (J.cell) and set

tled (S.cell) cells respectively. Conceptually, the RAT can be viewed as a ^-dimensional" memory

where the backup copies (the boxes in dotted lines in Figure 3) represent the depth.

4.3. Basic Operations

The timing sequence is illustrated in Figure 4. The RAT is designed to run at the 10MHz clock

frequency required for the HPSm CPU chip. All signals are aligned to the 4-phase clocks of the data

flow CPU as shown in the figure. In the sequel, phase i is defined as the time segment from the rising

edge of <j>; to the rising edge of +M. In each of the first two phases, 3words from 3(possibly different)

locations are read out into the three different ports. (Actually, 0to 3words are read out depending on

the VALID bits of the ADDRESS busses fed into the READ_ENABLE circuitry.) Then in phase 3,

37

computed results from the 3 function units are written into the current and transit cells of the

ready/value fields if the interrogative tags match the stored tags. Phase 4 isused to update the data flow

graph by writing new values into the tag and ready fields (the MERGE operation mentioned in Chapter

2).

The RAT supports branch prediction and exception handling by allowing SAVE and REPAIR

operations. These operations are defined as follows. If a conditional branch is encountered in the

instruction stream, the data flow CPU predicts the branch to be taken and informs the RAT to save (the

SAVE operation) its current values into the transit cells by raising the C2T signal in <t>2. If the CPU

later on discovers that the prediction was incorrect, it informs the RAT to recover (the REPAIR opera

tion) the last saved values by raising the T2C signal in phase 4. This has the effect ofcopying the tran

sit values into the current cells. Exception handling needs all the SAVE/REPAIR functions of branch

prediction. It also requires that the transit values be copied into the settled cells (in <j>! with T2S) and

that the settled values be copied into the current cells (in phase 4 with S2Q. The architecture design is

such that the REPAIR operations from the transit and the settled cells into the current cells inphase 4

do not occur together, therefore the state ofthe current cells isalways well-defined.

4.4. Circuits

4.4.1. Cells

4.4.1.1. Value Triple-Cell

The schematic for the value cell is shown in Figure 5.The layout has an area of 135um x 58um.

The value cell has 3 data storageelements:

(1) 1 pseudo-static cell for the C.cell,

38

(2) 1 dynamic cell for the T.cell (for branch-prediction

and exception handling support) and,

(3) 1 dynamic cell for the S.cell (for exception handling

support).

The READ/WRITE operations are:

(1) a 1-port(one of the 3 available ports) conventionalWRITE to the

C.cell,

(2) a 3-port conventional READ from the C.cell, and

(3) a l-port (one of the 3 available ports) associative WRITE to the

C.cell and the T.cell.

The SAVE/REPAIR operations are:

(1) a current-to-transit SAVE,

(2) a transit-to-settled SAVE,

(3) a transit-to-current REPAIR, and

(4) a settled-to-current REPAIR.

The C.cell is implemented as a pseudo-static cell for two reasons. The first reason has to do with

the high bandwidth requirement of the RAT. The high bandwidth requirement can be met by having

several ports (several bit lines and word lines), several phases oracombination of thetwo. With several

ports, several operations occur in parallel; each operation using its own port. When several phases are

used to accomplish the task, different operations time-share the use of 1port. If acombination of the 2

strategies is used, the right balance has to be struck. More bit lines means ashorter cycle but more area

and reduced noise margins while more phases means less area and increased noise margins but more

control complexity and alonger cycle. In the case ofthe RAT, since 3FU's have to be supported, it is

39

natural to have 3bit lines, 3 word lines for the current cells and 3word lines for the backup cells.

This multiport structure of the RAT is necessary to prevent the cycle from being prohibitively

long from excessive time-sharing of a single port. The multiport structure has certain implications for

the I/O buffer, sense amplifier and data cells. The I/O buffer and sense amplifier have to satisfy more

and more stringent pitch requirements as the number of ports increase. Beyond a certain number of

ports, certain traditional design styles for the data cells have to be abandoned to ensurethat the cells are

compact. First, bit lines cannot be dedicated for READ and WRITE as in RISC I [2]. Second, for the

same reason, the traditional "bit line pair" approach shown in Figure 6acannot be used. This thenleaves

us only with the option of employing some single-ended technique with bitlines shared by both READ

and WRITE accesses. Single-ended cell designs are more critical than those of conventional differen

tially accessed cells. A conventional cell like that in Figure 6a preserves data during aREAD disturb

because of the well-known restoring action ofdifferential access. The single-ended cell in Figure 6b by

Stewart and Dingwall [3] is more compact than a differentially accessed cell but it requires boosted

word lines to WRITE a"1" into the cell and half-VbD bit line precharging along with PMOS or deple

tion loads to protect the cell data during READs [4]. Providing single-ended access using boosted word

lines was rejected for reasons of complexity and process-dependence.

For the proposed pseudo-static cell in Figure 5, READ and WRITE operations are performed on

the Ccell bydirectly controlling the feedback path in the cell. The REFRESH signal iskept high dur

ing aREAD operation while it is taken low for WRITE operations. Keeping the REFRESH signal high

protects cell data during READing while taking it low allows acontention-free WRITE. Therefore, the

C.cell behaves like astatic RAM cell for READing and like adynamic RAM cell for WRITing. Since

the bit lines are shared by the C.cell and the T.cell to save area, there isagrave danger of asneak path

between nodes (1) and (2). The sneak path is blocked by ensuring that the word lines of the T.cell are

low throughout the READ operation. In conclusion, the pseudo-static technique permits the implemen-

40

tation of the RAT as a 3-port memory with 3 single bit lines rather than with 3 bit line pairs with sub

stantial savingsin area while avoiding the price ofusingboosted wordlines.

The second reason for using the pseudo-static cellhas to do withthe REPAIR operation. If astatic

C.cell is used, there would be alot of contention during aREPAIR operation from theT.cell or from the

S.cell. Firstly, this contention means that the T.cell, the S.cell and the REPAIR pass transistors (Ml and

M2) have tobe large for the REPAIR operation to be successful. Secondly, the contention leads to high

power dissipation and high peak currents with the attendant inductive noise problems. The need to carry

out the REPAIR operation on all the cells of the core (992 cells) at once, compounds the above 2

contention-related problems. In the RATvalue cell, the REPAIR operation iscarried out bykeeping the

REFRESH signal lowwhile T2C orS2C is raised high. In this way, the contention between the current

and backup parts of the cell is avoided.

Only one of the backup cells (the T.cell) interacts with the external world. Dynamic cells are used

in the backup section for area and simplicity reasons. (A pseudo-static version had to be used in the

current part to avoid the complexity of providing REFRESH.) The use of dynamic cells for the backup

section also prevents contention during the SAVE operations. The dynamic S.cell does not need

REFRESH since it is guaranteed by the CPU design that its value is used within 1ms. The REFRESH for

the Txell is initiatedby software.

4.4.1.2. Tag Double-CAM-Cell

Theschematic for the tag cell is shown in Figure 7.The layout has an area of 135um x 88um. The

tag cell has 2 data storageelements:

(1) 1pseudo-static cellwith3 tag comparators for the C.cell,

and

(2) 1 dynamic cell with 3 comparators for the Txell

(forbranch-prediction support).

41

The READ/WRITE operationsare:

(1) a 1-port (oneof the 3 available ports) conventional WRITE

to the C.cell, and

(3) a 3-port conventional READ from the C.cell.

The associative operations are:

(1) a 3-port tag comparison with the C.cell

and the T.cell.

The SAVE/REPAIR operations are:

(1) a current-to-transit SAVE, and

(2) a transit-to-current REPAIR.

The pseudo-static cell was used to implement the tag Ccell for the same reasons that justified its

use for the value C.cell. The tag cell has to be implemented with bit line pairs to allow acomplete logic

comparison with an external tag. Fortunately, the total area cost isbearable since only 5 CAM tags are

needed. The tag CAM cell needs 6 tag comparators so thatboth the C.cell and the T.cell canbe com

pared with 3 external interrogative tagsatonce.

This need for 6 comparators requires acareful choice of the tag comparator tominimize the size of

the tag cell and the capacitance of the bit lines. The 3 CAM cell comparators in Figure 8 were con

sidered. The most serious flaw ofthe Mundy [5] CAM cell comparator is the extra capacitive loading on

the BL due to the internal node (1). The extra capacitive loading is non-deterministic, being dependent

on the stored data. BL "sees" node (1) only when Ml is ON while BL.bar isloaded bynode (1) if M2 is

ON. The worst case for BLis when all the Mi's in all the comparators in the tag column are ON. This

pattern-dependent extra capacitive loading on the BL, which is worse when there isabackup CAM cell,

slows down all the operations. Another flaw with the Mundy comparator is the area consumed by the

42

diode in each comparator.

The Kadota [6] comparator in Figure 8b does not have the area and capacitance problems of the

Mundy comparator. In addition, itsuse of the gate (rather than the drain of the Mundy comparator) for

broadcasting theexternal tag to the cellgives the bit line in Figure 8b less capacitance than theone in

Figure 8a. However, the charge-sharing between the match line and the internal nodes (2) and (3) in

Figure 8b during a tag match, is the reason for rejecting the Kadota comparator. The CAM cell com

parator in Figure 8c is the one used for implementing the tag CAM cell. It does not have the problems

of the Mundyand the Kadotacomparators

4.4.2. Peripheral Circuits

Figure 9 shows the peripheral circuits.

4.4.2.1. Decoders and MUX's

The MUX's sample the ADDRESS busses and drive the decoder inputs with the address and its

complement The decoders for the READ/WRITE and CAM functions use 2 3-input NAND gates that

feed a2-input NOR gate. Compactness (due to the NAND) is the main reason for choosing this decoder

since 186-word (2 X 3 X 31) decoders are needed. The fact that only one control signal is needed is

another advantage. This signal also leads to the discharge of the word line whenever the decoder is

being precharged. The READ/WRITE decoder isclocked with the signal (SEL.MUX.bar) that isused to

sample the ADDRESS bus in the MUX's. Because ofthe complexity ofthe CAM timing, the signal

(EVAL.CAM.DEQ for evaluating the CAM decoder is different from that (SEL.DIST) for sampling the

CAM ADDRESS bus.

The decoder is slower than other more complex versions because of the 4 NMOS transistors in

series foUowed by a pull-up that uses 2 PMOS transistors in series. However, in the case of the

43

READ/WRITE decoder, the decoder only drives the tag word line and not the entire word line. In the

case of the CAM decoder, the decoder output isnot highly capacitive since all it does isto precharge the

match lines. Consequently, the speed penalty of using this decoder is not severe while the decoder is

compactenoughto fit 186decoders to the RAT pitch.

By avery careful layout, the internal node capacitances are made small enough compared to the

precharge node capacitance sothat the charge-sharing problem isnotserious [7].

4.4.2.2. READ-ENABLE Circuitry

The READ-ENABLE circuitry lies between the upper and lower halves of the decoder array.

There is one for each port. It is used to qualify the READ signal (READ.signal in the figure). The

qualified READ signal is sent to the I/O buffers to conditionally inhibit certain ports during the READ

operations. This inhibition maybe necessary if an HPSm instruction, for instance, needs to usea literal

rather an RAT register entry as an operand (see Chapter 2). The HPSm Instruction Unit uses theVALID

bit ofthe register address to inform the RAT that the READ operation should not take place. AVALID

bit of "0" sent into the READ-ENABLE logic ensures that the port does not drive the external bus,

while the "0" VALID bit sent into the READ/WRITE decoder ensures that the word line does notrise

for the inhibited port

4.4.2.3. I/O Buffers

Since high bandwidth communication in the HPSm means a lot of busses, it is desirable to make

the busses as short as possible to minimize the bus areas and delays. Having each smart memory interact

with the busses from only one side isone way to keep the busses short. Therefore, the RATI/O buffers

are designed to interact with the busses in abidirectional manner while minimizing the pitch-matching

problems of fitting 120 (3 X 40) buffers to the RATpitch. In Figure 9, the VALUE FIELD I/O drives

only the upper bit line while the TAG FIELD I/O drives both the tag bit line and its compliment The

44

SA (Sense Amplifier Evaluation) signal isused to dis-enable the output buffer during bitline equaliza

tionto preventpenetration current from flowing.

4.4.2.4. Sense Amplifier

The need to support multiport access, branch prediction and exception handling, makes the bit

lines very long and therefore highly capacitive (at least 2.62pF/bit line), since they have to traverse the

backup cells and 6 word lines/register. A sense amplifier is therefore essential for fast access. The sense

amplifier must be compact since 120 ports have to be supported. The conventional split-bit line, half-

VDD cross-coupled latch sense amplifier in Figure 9satisfies the sensing requirements. A charge-sharing

sense amplifier was considered but rejected. (It is a sense amplifier that has been successfully used in

EPROMs and PLAs. This is possible because EPROMs and PLAs only READ and never WRITE.) It

was rejected for the RATbecause of the inefficiency ofdoing reset after writing a"1".

The proposed sense amplifier hasthe following features:

i) acomplimentary sense amplifier consisting ofNMOS and PMOS cross-coupled devices,

ii) it is placed in the middle ofthe RAT and divides the memory array into 2halves: an upper half that

is ofthe same polarity as that ofthat data from the busses and alower half that has the opposite polarity,

and

iii) ashorting transistor to equalize the precharge potential of the bitlines.

The operation ofthe sense amplifier is as follows. Atthe end ofthe previous cycle, one bit-line half is at

VDD and the other half is at GND. The bit line precharge before sensing is initiated by taking the equal

izing signal, EQ, high to turn ON the equalizing transistor which shorts the 2bit line halves together.

The charge sharing between the 2 bit line halves results in a precharge that is nearly half VDD. (The

extra capacitance on the upper bit line half due to the I/O buffer prevents the precharge potential from

45

being exactly equal to halfVDD. More registers are placed under the sense amplifiers than above as a

first order minimizationof this capacitance difference.)

The sensing starts by establishing a difference in voltage between the2 bit line halves. In thecase

ofa READ, this difference isestablished by raising one ofthe word lines connected to either the upper

half orthe lower half. The cell connected to the bitline and the raised word line pulls the bit tine low or

high depending on the stored data. In the case ofa WRITE, the difference isestablished by the WRITE

buffer thatdrives theupper halfbit lineeither low orhigh. (The WRITE buffer of theTAG FIELD also

drives the complimentary bit line.) After establishing enough difference to account for any noise and

voltage offset, thesense amplifier is activated bystrobing theSAand SA.bar clocks.

The folded bit line version of this sensing scheme has the advantage oflocally canceling the cou

pled noises due to bit line and word line swings. This version could not be used to implement the RAT

sense amplifier because ofthe backup word lines. SPICE simulations predict and experimental measure

ments confirm that the noise problem ofthe open bitline sense amplifier is notsevere.

4.4.2.5. SKEW Logic

The SKEW logic in Figure 9 is used to prevent any skew-related hazards by qualifying the

EQUALIZATION signal for the TAG and VALUE fields. The signals that clear the TAG and VALUE

word lines are inputs to the logic so that no word line is high while the equalization is taking place. The

skew-related hazards are discussed in detail in a subsectionbelow.

4.43. Clock Generation

The increased functionality of the RAT implies that many signals are needed for its control. At

the same time, these signals must be generated reliably, and with minimum skew. Fortunately, most of

the signals are non-state dependent signals since most ofthe events in any cycle are predictable. Hence,

46

most of the signals have a well-defined pattern each cycle. A 12-stage version of the PLL-based clock

generator used by D.K. Jeong [8] is used to generate all the signals for the RAT Test chip. The clock

generator block diagram is in Figure 10a. The timing chart showing all the RAT signals are in Figure

10b.

4.4.4. Detailed Operations

Forthesake of clarity, a 1-port version of the main circuits are shown in Figure 11. Please refer to

the memory architecture inFigure 3, the peripheral circuits inFigure 9, the timing chart inFig. 10b, and

thecircuits in Figure 11for the following discussion.

4.4.4.1. READ Operation

The conventional READ operation is as follows. In <J>i for example, the word lines are discharged

while the REFRESH (REF. in the figure) signal is kept high, and the bit lines are equalized. After $1

goes low, the READ/WRITE decoder conditionally keeps the tag_C.WLl (tag current word line 1) low

or raises it high. The rowdriver transfers the state of tag_C.WLl to val.CWLl. The information in the

cells are read out to the bit lines, if the word lines are high. The sense amplifiers amplify the bit line sig

nals and the I/O circuitry drives the busses.

4.4.4.2. WRITE Operation

Conventional WRITE is done inthe fourth phase. The feedback paths in the C.cells are broken by

taking REF. low for the WRITE. After the WRITE, the feedback path isclosed again and regeneration

through the first and clocked inverters keeps the internal and output nodes consistent.

47

4.4.4.3. CAM Operation

The CAM decoder in Figure 9 is used to avoid severe power and inductance problems by permit

ting the precharging of a maximum of 6 instead of 186 match lines. In <j>3, the tag bit lines (BLl and

BLl.bar) and current word lines (tag_C.WLl) are discharged while the CAM decoders selectively

precharge thecurrent and backup match lines (C.ML1 and B.ML1) of the tag field. After (j>3 goes low,

the interrogative tag is broadcast to the RAT by writing it on the bit lines. The match lines are condi

tionally pulled low or lefthigh depending on whether the stored tag mismatches or matches the distri

buted tag. After enough time has elapsed for the match line to be completely discharged if there is a

mismatch, the TAOML.to.VAL.WL and TAG.BML.to.VAL.BWL.bar signals (Figure 10b) are raised

totransfer the result of the CAM operation tothe value field word lines (val_C.WLl and val_B.WLl).

4.4.4.4. SAVE/REPAIR Operations

Communication between the Cecils and the T.cells of the tag double-CAM-cell and the value

triple-cell isdone by raising the C2T signal (forSAVE) while the REF. signal is kept high orby rais

ing the T2C signal (for REPAIR) after the REF. signal has been lowered. In the value triple-cell, the

T.celldata is saved into the S.cell with theT2Ssignal and the S.cell data is restored into the C.cell with

the S2C signal. Bycompletely overlapping the normal operations, the SAVE/REPAIR functions do not

cause any loss of cycles.

4.4.5. SKEW-related Hazards

The RAT needs many signals to control its many functions. Using many signals increases the

potential of having skew-related hazards. Only the hazards that cannot be avoided by stretching the

clock will be discussed. In Table 1, 5 hazards caused by skews are listed. The first and third hazards

where the EQ (equalization) signal arriving too early causes data corruption, are the most severe.

48

One solution to the skew problem is to use the Mead and Conway [9] approach ofputting non-

overlapping time between any two signals whose skew can cause a hazard. This approach is the safest

but the costiiest in terms ofspeed. In the case ofthe RAT, itwill make the cycle longer by at least 16ns

(16% increase). An alternative way is to use the SKEW logic discussed above. The logic does not per

mit the equalization to take place until all the word lines are low, and the sense amplifier and I/O buffers

are turned OFF. Using this approach, the skew problem was adequately solved without an appreciable

increase in the cycle time.

4.5. Experimental Results

4.5.1. RAT Test Chip

The microphotograph ofthe RAT Test Chip is inFigure 12. The RAT memory isinthe left while

the clock generator is in the right. The chip size is 7.45mm x 7.61mm with 42,068 transistors. It dissi

pates 1.5W ninning at 10MHz compared to the estimated power dissipation ofat least 0.97W for the

chip plus 0.5W for the pads. The detailed RAT microphotograph is inFigure 13. Ithas asize of5.37mm

x 3.97mm with 38,468 transistors. Its estimated power is 0.51W. The clock generator has a size of

4.78mm x 1.89mm with 1,463 transistors. Its estimated power is 0.46W. The estimated power of the

RAT and the clock generator are within the measured power dissipation of the entire chip. The process

summary is shown in Table 2.

The chip ismounted ina 108-pin PGA package and has the following pads:

(1) pads for all the RAT addresses,

(2)padsfor all the tag ports,

(3)pads for the 3 portsof the READY BIT,

(4)pads for the last bit of the VALUE FIELD, and

49

(5) pads for the REGISTER30 Tag.CurrentWL,

Tag.CurrentML, Value.Current.WL,

and ValueBackup.WL,

The Clock Generator pads are:

(1) pads for the clock generator PLL and filter,

(2) pads for all the generated clocks, and

(3)padsfor the SAVE/REPAIR control signals.

The internal probe pads are:

(1) probe pads forviewing thebit lines of thelastVALUE FIELD bit,

(2) probe pads for viewing the internal nodes of all the

clock signals.

4.5.2. Clock Signals

The clock signals generated by the clock generator as seen at the external pads are shown in Fig

ure 14. The waveforms inFigure 14 correspond to those in the timing chart ofFigure 11. The observed

signals agree with the SPICE simulations and satisfy all the timing requirements for the required 100ns

clock cycle.

4.5.3. Basic Operations

Figure 15a depicts the basic operations discussed in section 4.3 for a single port. It shows the

experimental results for a 1-port READ-lst-operand (1), READ-2nd-operand (1), Associative-WRITE

(1), and WRITE (1) operations as seen at the external pads. The corresponding basic sense amplifier

operations with the sense amplifier signals are shown inFigure 15b.

50

4.5.4. Access Time

The delay from the address input to the last bit byaccessing the last register is shown inFigs. 16.

The experimental andsimulated results agree.

4.5.5. CAM Operation for Current Ceils

The detailed CAM operation for the current part of the RAT from the CAM address input to the

VALUE CURRENT_WORD_LINE (val_C.WL) of the last register are depicted in Figs. 17. These

measurements were made at the external pads. The experimental results agree with the simulated

results.

Figure 17a shows the general impact of the SELECT_CAM_ADDRESS (SEL.DIST.MUX) and

the DISCHARGE_MATCH_LINE (DISCH.ML) signals on the TAG CURRENT_MATCH_LINE

(C.ML). Figure 17b is Figure 17a in detail and shows the delay from the CAM decoder input through

the CAM decoder to the C.ML.

Figure 17c shows the general impact ofthe EVALUATE_CAM_DECODER (EVAL.CAM.DEQ

and the DISCH.ML signals on the C.ML. Figure 17d is Figure 17c in detail and depicts the delay from

the EVAL.CAM.DEC signal to the CML.

Figure 17e shows the delay from the DISCH.ML signal to the C.ML.

Figure 17f shows the general impact of the

TAG^OJRREm-.MATOI.LINE.to^VALUE.CURRENT.WORD.LINE (TAG.ML.to.VAL.WL)

signal on the val_C.WL for atag MATCH scenario. Figure 17g shows Figure 17f in detail. It depicts the

delay from theTAG.ML.to.VAL.WL signal to the val_C.WL.

Figure 17h and Figure 17i portray the impact of the interrogative tag for MATCH and

MISMATCH scenarios respectively. The stored tag contains a "1". In both cases, the match line is

51

precharged but discharged only in the case of Figure 17i when the tag bitline goes to "0" - amismatch

since "1" is the stored tag. (The observed dip in the tag bit line waveform is due to the equalization

operation as seen at the external pad.) Finally, the detail ofFigure 17i isshown inFigure 17j.

4.5.6. CAM Operation for Backup Cells

The detailed CAM operation for the backup part of the RAT from the CAM DECODER output

(PRECH.ML) to the VALUE_BACKUP_WORD_LINE (val.B.WL) ofthe last register are depicted in

Figs. 18. Since the CAM operations of the current and backup sections of the RATare similar, the simi

larities are not duplicated in Figs. 18. All measurements were made at the external pads. The experi

mental results agreeclosely with the simulated results.

Figure 18a shows the general impact of the

TAG_BACKUP_MATCH_LINE_to_VALUE_BACKUP_WORD_LINE.bar

(TAG.BML.to.VAL.BWL.bar) signal on the val_B.WL. It is clear from the figure that the val.B.WL

goes high only during phase 3 when the CAM operation takes place, as it should. The val.B.WL must

bekept low at all other times to prevent any corruption of the data in the T.cells of the VALUE FIELD

through the sneak path in Figure 5mentioned in subsection 4.4.1.1. above. Figure 18b and Figure 18c

show the rise and fall delays ofthe val.B.WL relative to the TAG.BML.to.VAL.BWL.bar signal.

45.7. SAVE/REPAIR Interaction withCAMOperation

The SAVE/REPAIR operations for the VALUE FIELD are difficult to demonstrate on an oscillo

scope screen. The TEKTRONIX DAS equipment was used to verify these operations. The

SAVE/REPAIR operations for the TAG FIELD are depicted by showing an interesting interaction of

these operations withthe associative operation.

52

4.5.7.1. SAVE: C2T

Figs. 19 show the impact ofthe currentjojransit (C2T) SAVE on the backup MATCH opera

tion. The tag BL is toggled cycle by cycle so that the data written into the current tag cell in one cycle is

MATCHed by the distributed tag during that cycle. Therefore, the experiment is such that the current

tag always MATCHes the interrogative tag as shown in Figure 19a and Figure 19b.

hiFigure 19a, the backup tag always MATCHes the external tag because the C2T signal goes high

in every cycle to transfer the updated state ofthe current tag into the backup cell. On the other hand,

Figure 19b shows the case where the backup tag MATCHes the external tag in one cycle but

misMATCHes it in the next cycle. The MATCH only takes place when the C2T signal goes high in that

cycle.

In thecontext of theHPSm microarchitecture (see Chapter 2), this scenario arises when a different

tag is written in phase 4 just after a branch prediction (that leads to the C2T SAVE) has been made.

Then, in the next cycle a CAM operation is performed where the distributed tag MATCHes the current

tag but misMATCHes the backup tag because no C2T SAVE is done in the cycle. The tag alteration in

phase 4has the effect ofmaking the state ofthe machine before the BRANCH point different from that

after the BRANCH point This interaction between the SAVE and CAM functions illustrates a very

interesting feature ofthe RAT: itmaintains 2 independent states ofthe machine inthe TAG FIELD and

distribution ofresults can be made to update the 2states ofthe machine in parallel.

4.5.7.2. REPAIR: T2C

Figs. 20 show the opposite of the above subsection. The narrower pulse of the

CURRENT_MATCH_LINE (CML) show a tag misMATCH (since the CML is high for just a while

before being discharged by the CAM operation). The CWL never rises ifthere is atag misMATCH. The

data in the backup cell is left undisturbed throughout the experiment and italways MATCHes the exter-

53

nal tag. The tag BL is toggled every cycle so that the data written into the current tag cell in a given

cycle does not MATCH the distributed tag during the next cycle unless the transitjo_current (T2Q

signalgoes high before the CAMoperation.

Figure 20a shows the case where the T2C REPAIR takes place in every cycle; both the current

and backup tags always MATCH the distributed tag. The backup tag MATCHes the external tag

because they both contain "0", while the current tag MATCHes because aREPAIR isdone every cycle.

InFigure 20b, the current tag only MATCHes after aREPAIR operation has taken place.

hi the context of the HPSm microarchitecture (see Chapter 2), this scenario arises when the distri

buted tagMATCHes the backup tagbecause it belongs to thestate of themachine before theBRANCH

point The current tag would not MATCH the interrogative tag because it belongs to a different state;

therefore, it would only MATCH after the REPAIR operation (that restores the former state of the

machine) is performed.

4.5.8. GROUND Bounce

The RAT design requires 6signals (REFRESH and REFRESH.bar, C2T, T2C, T2S, and S2Qthat

go toevery data cell. These signals are therefore highly capacitive because their capacitance increases in

proportion to AT2 where N is the dimension of the memory as compared to the usual peripheral signals

whose capacitances follow a linear law. The capacitances of these signals and their associated peak

currents are shown in Table 3.

The fact that the capacitances follow a square law is one of the unusual features of the RAT and

illustrates one ofthe costs of smart memories. Because driving these signals would need high peak

currents, it is important to know the impact ofthe high capacitances on the stability ofthe chip ground.

A3.5Q resistor was connected between the chip ground and the oscilloscope ground for the exper

iment in Figure 21a. Figure 21a shows thatthe chip ground potential varies over a 1.18V range. It also

54

shows that the greatest swing occurs when 4 of these high-capacitance signals (S2C, T2C, REFRESH,

and REFRESH.bar) are switching at the same time. (However, any skew between the signals will

reduce the peak current problems since the total peak current won't be the sum ofall the peak currents

caused bydriving the various signals.) It must bepointed out that Figure 21a is the worst case scenario

since the HPSm microarchitecture does not allow 2 REPAIRS (T2C and S2C) atonce. Yet, it is shock

ing to observe that the GROUND bounces over about a 1.2V range compared to about 0.5V that will be

considered desirable. The peak current of232mA in Figure 21 agrees closely with the calculated values

in Table 3.

4.5.9. Skew-Related Hazards

Figs. 22a and 22b illustrate one ofthe hazards discussed in an earlier section. They show that the

unqualified EQ signal partially overlaps the VALUE FIELD and the TAG FIELD WORD LINEs

(VAL.WL and TAG.WL). This skew would have caused ahazard (the equalized bit line corrupting the

stored data while the WLs are high) without the correction mentioned above. To show that the correc

tion is successful, consider the case in Figure 22c. Here, the qualified EQ signal rises only after the

VAL.WL has gone low because the unqualified EQ signal that is used to CLEAR the VAL.WL is also

fed into the logic that produces the qualified EQ signal.

4.6. Conclusions

RAT, asmart data memory that is intended for aiding the HPSm data flow CPU in controlling its

out-of-order execution was described in the foregoing paragraphs. The circuit design problems that

result from its "smartness" were clearly identified and solutions were developed. Experimental results

from atest chip confirm that the employed circuit design techniques were adequate.

55

References

[1] Gregory A. Uvieghara, Y. Nakagome, D. K. Jeong, D. A. Hodges, "An On-Chip Smart Memory for

A Data How CPU," in 1989 Symposium ofVLSI Circuits Digest ofSymposium Papers, May 1989.

[2] R.W. Sherburne et. al., "A 32 bit NMOS microprocessor with a large register file," IEEE J. Solid-

State Circuits, vol. SC-19, no. 5, pp. 682-689.

[3] R.G. Stewart and A.G.F. DingwaU, "16K CMOS/SOS asynchronous static RAM," in ISSCC Dig.

Tech. Papers, Feb 1985, pp. 44-45.

[4] K.J. O'Connor, "The Twin-Port Memory Cell," IEEE J. Solid-State Circuits, vol. SC-22, no. 5,pp.

712-720, October 1987.

[5] J.L Mundy et. al., "Low-Cost Associative Memory", IEEE J. Solid State Circuits, vol. SC-7, no.5,

pp. 364-369, October 1972.

[6] H. Kadota et. aL, "An 8-kbit Content-Addressable and Reentrant Memory", IEEE J. Solid State Cir

cuits,vol. SC-20, no.5, pp. 951-956, October 1985.

[7] N.H. Weste and K. Eshragrian, PRINCIPLES OF CMOS VLSI DESIGN - ASystems Perspective,

Addison Wesley, 1985.

[8] D.K. Jeong et al., "Design of PLL-Based QockGeneration Circuits," IEEE J. Solid State Circuits,

vol. SC-22, no. 2, pp. 255-261,April 1987.

[9] Mead, C. and Conway, L., Introduction to VLSI Systems, Reading, MArAddison-Wesley, 1980.

Data-Path Current Design

Instruction Unit

Ttt

lfl"f

alu rrr

t_t

Figure 1

chip boundary

ALU/CC NNT

^7-^VLU/CON/

32
3
O

V
CO

RAT

NJ1

\nr

ALU/MEM NT c

JZ

v:

2

RJ'R

o
distrib reg #1

Z3T

ILL

srd reg # JD
JUL

D
JLL

src2 reg # |r | dest reg # D

tag bus

register number bus

H
t_

Q)
T)

•o 8
<D

8
<D

•D

C
Tag

Ready Value
<D o

3
to
CO

3

to

T3

t
A

i
+ •! •• • •! •• •

value bus

x

j:

pipeline latch

bus

e-save

b-save

e-repair

b-repair

IU
r*

IU

short literal .0 fetch PC jfl

c
assigned tag 0 fldistrib tag J flsrd tag J src2 tag

node tables

£
distrib value.flr^srd value fl crr>0 t/olno Jsrc2 value j-

unit function units node tables

2
ready bus

function units node tables

c
destin clear .

fl 4^J
distrib readvM

fl srd ready

IU FU's node tables

Fig. 2 : RAT with Global Busses and Signals

U src2 ready _fl
node tables

node tables

VALID, A5-A1

f a
6 MUX'S

R

E
A
D

/
W

R

I
T
E

Iread"

C

A

M

ENABLE CKT.

D

E

C
O

D

E
R

S

D

E

C
O

D

E
R

S

21,..

SZ
7x3

I/O

TAG

7x3

SAmps

FIELD

(CAM)

R

O

W

D

R

I

V

E

R

S

i

ik.
96^

33 x 3 I/O

VALUE

33 x 3 SENSE AMPLIFIERS

FIELD

Fig. 3: RAT Memory Architecture

W

C
L

K
1

C
L

K
2

C
L

K
3

C
L

K
4

rr
a

n
si

t

to

S
e
tt

le
d

R
E

A
D

1
S

T

O
P

E
R

A
N

D
S

C
u

rr
e
n

t

to

T
ra

n
s
it

R
E

A
D

2
N

D

O
P

E
R

A
N

D
S

C
A

M
W

R
IT

E

R
E

S
U

L
T

S

W
R
I
T
E

O
R

T
ra

n
si

t

to

C
u

rr
e
n

t

S
e
tt

le
d

to

C
u

rr
e
n

t

'<
P
H
A
S
E
1

H
P
H
A
S
E
2

K
P
H
A
S
E
3

H
P
H
A
S
E
4

\

n
,

/
A

/
O

n
s

2
5

n
s

5
0

n
s

7
5

n
s

F
ig

.
4:

R
A

T
T

im
in

g
S

eq
u

en
ce

j|
~~

\

1
0

0
n

s

BL3 KL2 1L1

r

Fig. 5: Value "Triple-Cell" Schematic

B
L

2

B
L

l 4—
J—

LW
L

1

W
L

2

T
_r

~
i

W
L

3 5h H

H H
E

B
L

3
lw

B
L

2
b

a
r

B
L

l
b

a
r

r
n

_
4

F
ig

.
6a

:
A

C
o

n
ve

n
ti

o
n

a
l

T
ri

pl
e-

po
rt

D
if

fe
re

nt
ia

ll
y

A
c
c
e
ss

e
d

C
el

l

W
L

?

W
L

2

W
L

1

8
U

B
L

2

B
L

l J—
I—

L

5h
H

?

IH
H

5

F
ig

.6
b:

A
T

ri
pl

e-
po

rt
S

in
g

le
-e

n
d

ed
A

cc
es

s
C

el
l

BU tU M.1 1 IU BU

^ r"^

^

Fig. 7: Tag "Double-CAM" Cell Schematic

•L
DATA BLDar

Ml M2

MATCH LINE

(•)

B

DATAbar

I
DATA

3

BL.b•r

us
2

1

MATCH LINE

0>)

BL.bar

DATAbar DATA

MATCH LINE

(e)

Fig. 8: CAM Cell Comparators:

(a) MUNDY CAM Cell Comparator.

(b) KADOTA CAM Cell Comparator.

(c) PROPOSED CAM Cell Comparator.

Fig. 9. Peripheral Circuits

R
E

F
d

o
c
k *
H

>
H

>
-

g
-O

H
>

-
P

N
I

R
E

F
d

o
c
k

p
h

il

P
ri

se
o

F
re

qu
en

cy

D
e
te

c
to

r

U
P

D
O

W
N

C
ha

rg
e

P
u

m
p

ft

L
o

o
p

F
il

te
r

V
o

lt
a

g
e

C
o

n
tr

o
ll

e
d

O
sc

M
a

lo
r

u

D
e
c
o

d
e
r

ft
B

u
ff

e
r

I
f

t
t

C
lo

c
k
s

r
r

F
ig

.1
0a

:
P

L
L

-B
as

ed
C

lo
ck

G
en

er
at

or
B

lo
ck

D
ia

gr
am

phh

ph!2

phl3

phi4

WRITE

READ

ADDRESS

SELMUX

PRE.DEC

EQ

REFRESH

SA

DISCH.ML

EVALCAM
DEC

TAG.WLto
VALWL

TAG.MLto
VALWL

TAG.BMLto
VALBWLbar

C2T

T2C

T2S

S2C

SELDIST.
MUX

r\

\
i

id

n

n

n
i i

i i

i i

i i

i i

i i

i 'i

X

-i r

i i

i i

i i

i i

i i

i i

i i

i i

n
i i

i i

/

i i

i i

• i

fx
i i

i i

/
\

M
-FV-
TT.

1
n

i i

i i

• i

i i

i i

i i

T r

i i

i i

i i

I l

i i

i i

i i

i i

i t

i i

I i

\

n

I

r

I

\

x

j

i

r\

x

n

F

X

8 16 24 32 40 48 56 64 72 80 88 96 104

Fig. 10b: RAT Timing Chart

Fig. 11 : Core Circuits

Table 1: Skew-Related Hazards

Skew Scenario Hazard

1 SEL.MUX.bar falls too late.

EQ rises too early.
Not enough time for driving

the word lines low.

Data is corrupted.

2 REFRESH rises too early.
SEL.MUX.bar falls too late.

EQ rises too early.

BL and BL.bar equalized
away from half-VDD.

Read noise margin reduced.

3 EQ rises too early.
DISCH.ML rises too laic.

TAG.BML.to.VAL.BWL.bar

rises too late.

Not enough time for driving
the backup word lines low.

VALUE FIELD backup data corrupted.

4 WRITC falls too late.

EQ rises too early.
BL and BL.bar equalized

away from half-VDD.
Read noise margin reduced.

5 EQ rises too early.
SA falls too late.

SA.bar rises too early.

BL and BL.bar equalized
away from half-VDD.

Read noise margin reduced.

Fig. 12 : RAT Test Chip Microphotograph

Chip Size = 7.45mm x 7.61mm
RAT Size = 5.37mm x 3.97mm

Clock Generator Size = 4.78mm x 1.89mm

.

Fig. 13 : RAT Microphotograph

Die Size = 5.37mm x 3.97mm

' 1 ! *

Table 2 : Process Summary

Parameter CMOS NMOS PMOS

Technology Scalable CMOS, N-Well,
DoubleMetal, SinglePolysilicon

Lambda 0.8um

Gate Length(Drawn) 1.6um 1.6um 1.6um
Gate LengthQSffective) 1.154um 1.513um
Gate Oxide Thickness 24. lnm 24.1 nm

VT 0.774V -0.873V

Fig. 14 : Generated Clock Signals

REFERENCE_CLOCK

WRITE

READ

SEL.MUX

EQ

REFRESH

SA

DISCH.ML

Fig. 14 : Generated Clock Signals

EVAL.CAM.DEC

TAG.ML.to.VAL.WL

TAG.BML.to.VAL.BWL j
C2T

T2C

T2S

S2C

SEL.DIST.MUX

SA

WRITE

READ

BL(external pad)

WRITE

READ

EQ

SA

BL (internal pad)
BL.bar (internal pad)

Fig. 15a: Basic Operations

Fig. 15b: Basic Sense Amplifier Operations

SEL.MUX

LAST.WL(external pad)

LAST.BL.bar(external pad)

(lV/Vert. Div.)
(2ns/Hor. Div.)

Path SEL.MUX to LAST.WL LAST.WL to LAST.BL.bar SEL.MUX to LAST.BL.bar

Simulated 4ns 5ns 9ns

Measured 4.5ns 4.0ns 8.5ns

Fig. 16a: ADDRESSjoJLAST.BL Delay (READ "1")

LAST.BL.bar(external pad)

SEL.MUX

LAST.WL(external pad)

(lV/Vert. Div.)
(2ns/Hor. Div.)

Path SEL.MUX to LAST.WL LAST.WL to LAST.BL.bar SEL.MUX to LAST.BL.bar

Simulated 4ns 5ns 9ns

Measured 4.2ns 4.7ns 8.9ns

Fig. 16b: ADDRESSjoJLAST.BL Delay (READ "0")

SEL.DIST.MUX

PRECH.ML(external pad)
(CAM Decoder Output)

C.ML(external pad)

DISCH.ML

Fig. 17a: CAM ADDRESSjoCURRENT MATCH LINE Delay (MATCH)
(Basic Operation @ 10.4Mhz)

SEL.DIST.MUX

C.ML(external pad)
PRECH.ML(external pad)

(lV/Vert. Div.)
(2ns/Hor. Div.)

Path SEL.DIST.MUX to C.ML

Simulated 5.5ns

Measured 6.15ns

Fig. 17b: CAM ADDRESSjo CURRENT MATCH LINE Delay (MATCH)
(Detailed Operation @ 10.4Mhz)

EVAL.CAM.DEC
j

j

PRECH.ML(external pad)'
(CAM Decoder Output)

C.ML(external pad)

DISCH.ML

Fig. 17c: EVALUATE CAM DECODER_to_CURRENT MATCH LINE
Delay (MATCH)

(Basic Operation)

EVAL.CAM.DEC
C.ML(externaI pad)
PRECH.ML(external pad)

(lV/Vert. Div.)
(2ns/Hor. Div.)

Path EVAL.CAM.DEC to C.ML

Simulated 5.2ns

Measured 6.6ns

Fig. 17d: EVALUATE CAM DECODER_to_CURRENT MATCH LINE
Delay (MATCH)

(Detailed Operation)

C.ML(external pad)

DISCH.ML

(lV/Vert. Div.)
(2ns/Hor. Div.)

Path DISC.ML to C.ML

Simulated 0.5ns

Measured 0.3ns

Fig. 17e: DISCHARGE MATCH LINE_to_CURRENT MATCH LINE
Delay (MATCH)

(Detailed Operation)

C.ML(external pad)

TAG.ML.to.VAL.WL

val_C.WL

(5V/Vert. Div.)
(20ns/Hor. Div.)

Fig. 17f: CURRENT MATCH LINE_to_VAL.CURRENT WORD LINE
Delay (MATCH)

(Basic Operation)

C.ML(external pad)
TAG.ML.to.VAL.WL
val_C.WL(externaI pad)

(lV/Vert. Div.)
(2ns/Hor. Div.)

Path TAG.ML.to.VAL.WL to val C.WL

Simulated 2.25ns

Measured 2.6ns

Fig. 17g: CURRENT MATCH LINEtoVAL.CURRENT WORD LINE
Delay (MATCH)

(Detailed Operation)

EVAL.CAM.DEC!

i

PRECH.ML

C.ML

tagJBL

(5V/Vert. Div.)
(20ns/Hor. Div.)

Fig. 17h: TAG BIT LINEto CURRENT MATCH LINE Delay (MATCH)
(Basic Operation)

EVAL.CAM.DEC

PRECH.ML(external pad)

C.ML(external pad)

tag_BL(external pad)

(5V/Vert. Div.)
(20ns/Hor. Div.)

Fig. 17i: TAG BIT LINE_to_CURRENT MATCH LINE Delay
(MISMATCH)

(Basic Operation)

tag_BL(external pad)

C.ML(external pad)

(lV/Vert. Div.)
(2ns/Hor. Div.)

Path tag_BL to C.ML

Simulated 6ns

Measured 6.6ns

Fig. 17j: TAG BIT LINEtoCURRENT MATCH LINE Delav
(MISMATCH)

(Detailed Operation)

PRECH.ML(external pad)
(CAM Decoder Output)

TAG.BML.to.VAL.BWL.bar

val_B.WL(external pad)

val C.WL

Fig. 18a: BACKUP MATCH LINE_to_BACKUP WORD LINE Delay
(MATCH)

(Basic Operation)

TAG.BML.to.VAL.BWL.bar

val_B.WL(external pad)

(lV/Vert. Div.)
(2ns/Hor. Div.)

Fig. 18b: TAG.BML.to.VAL.BWL.bartoJBACKUP WORD LINE Delay
(MATCH)

(Detailed Operation)

TAG.BML.to.VAL.BWL.bar

val_B.WL(external pad)

(lV/Vert. Div.)
(2ns/Hor. Div.)

Fig. 18c: TAG.BML.to.VAL.BWL.bartoJBACKUP WORD LINE Delay
(WL DISCHARGE)

(Detailed Operation)

C.ML(external pad)

val_C.WL(external pad)

C2T

val_BWL(external pad)

(5V/Vert. Div.)
(20ns/Hor. Div.)

CYCLE 1st Cycle Next Cycle

Observation Cunrent and Backup MATCH
Because of SAVE

Currrent and Backup MATCH
Because of SAVE

Fig. 19a: SAVE (C2T) INTERACTION WITH CAM OPNs,
(SAVE EVERY CYCLE)

(Basic Operation)

C.ML(external pad)

val_C.WL(external pad)|

C2T
i

!

val_BWL(external pad)

i

(5V/Vert. Div.)
(20ns/Hor. Div.)

CYCLE 1st Cycle Next Cycle

Observation Cunrent and Backup MATCH
Because of SAVE

Only Currrent MATCHes
Because NO SAVE

Fig. 19b:SAVE (C2T) INTERACTION WITH CAM OPNs.
(SAVE EVERY OTHER CYCLE)

(Basic Operation)

C.ML(external pad)
i
i

val_C.WL(external pad)

T2C j

val_BWL(external pad)

(5V/Vert. Div.)
(20ns/Hor. Div.)

CYCLE 1st Cycle Next Cycle

Observation Currrent and Backup MATCH
Because of REPAIR

Currrent and Backup MATCH
Because of REPAIR

Fig. 20a: REPAIR (T2C) INTERACTION WITH CAM OPNs.
(REPAIR EVERY CYCLE)

(Basic Operation)

C.ML(external pad)

val_C.WL(external pad)

T2C

val_BWL(external pad)

(5V/Vert. Div.)
(20ns/Hor. Div.)

CYCLE 1st Cycle Next Cycle

Observation Currrent and Backup MATCH
Because of REPAIR

Only Backup MATCHes
Because of NO REPAIR

Fig. 20b: REPAIR (T2C) INTERACTION WITH CAM OPNs.
(REPAIR EVERY OTHER CYCLE)

(Basic Operation)

CHIP GROUND
(3.5ohm Resistor
in Series with Chip)

S2C

T2C

REFRESH

Fig. 21a: GROUND BOUNCE
(Basic Operation)

Table 3 : Peak Currents of Highly Capacitive Signals

Signal Calculated Capacitance
(PF)

Calculated Peak Current

(mA)

REFRESH 112.92 245.1

REFRESRbar 110.73 223.6

C2T 100.74 216.3

T2C 100.74 216.3

T2S 87.45 186.6

S2C 79.20 181.7

tag_C.WL(external pad)
TAG WL CLEAR (SEL.MUX)
EQ

Path SEL.MUX to tag_C.WL
Simulated 2.0ns

Measured 3.75ns

Fig. 22a: HAZARD 1 - Early EQ Corrupts TAG Data
(Detailed Operation)

i <

vaI_C.WL(external pad)
VAL WL CLEAR (EQ)

Path EQ to val_C.WL

Simulated 1.0ns

Measured 2.8ns

Fig. 22b: HAZARD 1 - Early EQ Corrupts VAL Data
(Detailed Operation)

val_C.WL(internal pad)

Qualified EQ(VAL.EQ)
(internal pad)

(lV/Vert. Div.)
(2ns/Hor. Div.)

Path val_C.WL to VAL.EQ

Simulated 3.5ns

Measured 4.1ns

Fig. 22c: HAZARD 1 CORRECTION
(Early EQ Does Not Corrupt VAL Data)

(Detailed Operation)

CHAPTER 5

Smart Memory Design Issues

5.1. Introduction

Two smart memories (one for instructions, and one for data) were described in the previous two

chapters. Hopefully, theirtreatment has shed some light on themain characteristics of smart memories

for data flow CPU's. This chapter discusses smart memories in a more abstract way than the last two

chapters. First, broad issues and solutions will be dealt with one by one in the following paragraphs.

Next, a cost/functionality study will be made on the RAT to show the cost of the RAT's extra func

tionality.

5.2. Issues and Proposed Solutions

5.2.1. Issue: High Bandwidth

In order to fully exploit the benefits of out-of-order execution, several function units that run in

parallel have to be used. This implies that multiple busses and multiport memories must be used to

achieve high bandwidth accesses of operands and distribution of results. Each function unit should be

able to fetch 2 input operands and distribute 1 output result every cycle. This translates to 3/i data

accesses per cycle for n function units.

56

57

5.2.1.1. Sub-issue : Multiple Busses

To make the busses as short as possible to minimize the bus areas and delays, each smart memory

interacts with the busses from only one side. This one-sided approach is employed in the RAT and the

NT. In the case of the NT, the FU.BUS (the output of the function units) is made to pass through the

NT core to accomplish this.

5.2.1.2. Sub-issue : Multi-Port Memories

Direct control of the feedback path ineach data cell is the technique used to achieve single-ended

access without excessive area penalty in the case where multi-port memories are needed. Forinstance,

for the RAT, a REFRESH signal is used to control the feedback path. The RAT value cell is shown in

Fig. 1. The feedback path isbroken for the WRITE operation by taking the REFRESH signal low. The

REFRESH signal is kept high for the READ operation to prevent a destructive READ. The chosen

single-ended technique also gives a clean way for allowing communication between the current and

backup sections of the cell for memories that have backup copies to support branch prediction and

exception handling. By breaking the feedback path, save or repair can take place unhindered by any

contention.

This approach has certain shortcomings. Firstly, it has to be controlled very carefully since it is

what determines ifa WRITE oraREAD is taking place. Secondly, itshifts complexity to the clock gen

erator which generates the feedback control signal (called REFRESH). REFRESH is ahighly capacitive

(113pF!) signal since it goes toall the cells inthe memory!

522. Issue: Longer Cycle

A longer cycle is a consequence of the high bandwidth communication mentioned above. The

word lines are longer and therefore more capacitive with more bit lines. When branch prediction and

58

exception handling are supported, the bit lines are made longer still since the bit lines have to traverse

the backup copies in addition to the current ones. Again, the cycle is made longer still by the many

operations that have to be performed per cycle. For example, the RAT has provision ineach cycle for 4

SAVE/REPAIR, 2 READand 2 WRITE phases.

For memories that must do SAVE/REPAIR operations, the impact on the cycle is minimized by

overlapping these operations with the normal READ/WRITE operations. The use ofsense amplifiers is

a solution suggested for shortening the cycle for the big memories like the RAT. The single-sidedness

and stringent pitch requirements imposed by the need for high bandwidth communication, automatically

limits the possible number ofsense amplifier techniques that can be considered. The first sense amp that

was considered is the charge-sharing sense amp. This type ofsense amp has been successfully used in

EPROMs and PLAs. This is possible because EPROMs and PLAs only READ and never WRITE. The

need to WRITE a "1" inthe HPSm memories makes the use ofsuch asense amp inefficient.

The proposed sense amplifier is the split-bit line, half-VDD sense amplifier used for the RAT. The

main advantage ofthis sense amplifier is: it is one ofthe fastest way to sense a signal in a small area

because ituses positive feedback. In the case ofthe RAT, the need to have 120 sense amplifiers for 120

portsmakesthis advantage very important.

523. Issue: Multiport Associative Operations

The distribution ofresults into the memories is done only when the interrogative tags accompany

ing the results match the stored tags. For memories like the RAT which have backup copies, the tag

comparison mustbemade with thebackup tags aswell. The 2 choices considered are:

i) Fetch tags and compare in the periphery before distributing. This option was rejected since one extra

phase is needed for fetching the tags.

59

ii) Use a multiport CAM cell in the tag field. This CAM cell has to contain a backup copy if the

memory supports branch prediction. Hence, the worst case task is to design a multiport CAM cell that

has 2 back-to-back parts which is more efficient than coupling several single CAM cells. Amore com

pact cell is achieved bysharing bit lines and data storage nodes and using a compact tag comparator as

shown in Fig. 2 forthe RAT tag cell. Only the upper part ofFig. 2 is needed in the memories that don't

need to support branch prediction like the NT tag cell shown in Fig. 3. Because the number of com

parators is proportional to the number of ports (2 are needed perport in the dual-cell case), most of the

efficiency ofthe cell depends on the efficiency ofthe comparator used. Amodified Kadota [1] tag com

parator is the proposed comparator. It neither has the capacitive-loading and area problems of the

Mundy tag comparator [2] nor the charge-sharing problem ofthe Kadota tag comparator.

5.2.4. Issue: Dynamic Power Consumption andHigh Peak Currents.

The multiport nature of the memories implies a multiplicity of bit lines, match lines, word lines

and busses. To prevent excessive dynamic power dissipation and high peak currents (with associated

inductance effects), precharging themany match lines, bit lines and busses is avoided. In thecasewhere

match lines have tobeprecharged, a hashing scheme isemployed by using some information about the

memory (e.g. the REGISTER #orthe READY BIT) to select just afew match lines for precharging. In

the case of the RAT, the REGISTER # is used to select only 6 out of a total of 186 match lines for

precharging. In the case of the NT, the READY BIT is used to selectively precharge the match lines.

By avoiding precharging, the electromigration problem, IR drop, voltage bouncing noise due to wiring

inductance and ac power for charging and discharging are considerably reduced. The chip reliability is

also increased.

The half-Vbo sensing scheme mentioned above has the following advantages as regards the

present issue:

60

i) Due to the half-Vz>D swing, it cuts down byalmost a factor of2 thepeak currents both during sensing

and bit line precharge.

ii) It reduces thedlldt by a factor of 2 during bit line precharge and discharge if the time is fixed, which

decreases the inductance-induced voltage noise. If the voltage bumping noise is not the limit, the

precharge and dischargetimes can be reduced by abouta factorof 2.

5.2.5. Issue: Low Bit Density

The smart memories suffer from low bitdensity because of the extra functionality. Forinstance, to

support exception handling and branch prediction, 2 backup copies are required forevery programmer-

visible cell. To minimize the area cost, single bit lines rather than bit line pairs are used as described

above. The CAM field that needs complimentary bit lines to achieve complete logic comparison, is the

only field that uses bit line pairs. But since the CAM field columns are few, the area penalty ofusing bit

line pairs for the CAM field is minimal.

Dynamic and static latches are judiciously combined to give compact but robust data cells.

Dynamic latches rather than static latches are used when compact cells are needed and the REFRESH

problem can beadequately handled. These cells are used inthe backup sections ofthe RAT asshown in

Fig. 1. Static latches are used in the NT since only single-port access is needed in the NT. Adynamic-

static "hybrid" latch (pseudo-static) is used to exploit the advantages ofboth dynamic and static cells in

one celL Pseudo-static latches are used to avoid providing REFRESH. They are also used to allow

contention-free communication between backup and current cells like in the case of the RAT. To

represent 3 states in the HPSm RAT, a pseudo-static cell is used as the current (programmer-visible)

cell while dynamic latches are used in the transit and settled cells as shown inFig. 1.

61

Because the density is inversely proportional to the "smartness" of the cell, the issue of low bit

density is related to the issue of how much "smartness" orlogic toembed in the data cells. Pushing the

logic to the periphery is the altemative to embedding the logic in the cell. The decision of where to put

the logic (the periphery or the memory core) was made depending onthe cost of the implementation in

terms of the area, speed, power and noise. In the case ofthe RAT, the decision was made to implement

the associative operation byusing "smart" CAM cells. The alternative of implementing the same opera

tion by fetching and comparing the tags inthe periphery was rejected because ofthe impact on the cycle

time as mentioned above. At the same time, the cost ofusing the CAM was bearable since the tag field

is only 5 bits wide. On the other hand, in the case ofthe NT, the SHIFT-REGISTER priority encoding

scheme that embeds the scheduling logic in the data cells was rejected in favor of the POINTER-

MECHANISM because of the increased memory core area and the higher dynamic power and peak

currents.

5.2.6. Issue: Branch Prediction and Exception Handling Support

5.2.6.1. Sub-issue: Branch PredictionSupport

To achieve much higher performance, an out-of-order execution machine may take the out-of-

order execution model one step further byperforming branch predictions. That is, instead ofjustexecut

ing out-of-order the instructions within a block, two blocks can be executed out-of-order. HPSm per

forms branch predictions on the instruction stream. Therefore the capability ofrecovering cleanly from

an incorrect prediction is very essential.

To support branch prediction, a subset of the machine state has to be saved when a conditional

branch instruction is encountered in the instruction stream. Only a subset of the entire machine state is

saved since it will be too costly to save the entire state. Also, it will be too costly to support the branch

62

prediction in a context switch manner of writing and reading all the smart memory contents to main

memory. Therefore, some ofthe on-chip smart memories must have the capability ofstoring the subset

of the machine state that must be saved.

The smart memories that must store the essential subset must contain atleast 2 back-to-back parts

: current entry and branch prediction backup entry. The contents in the backup must be restored back to

the current entry when it is later on discovered that the branch prediction was incorrect The backup

entry must be accessible by thedistribution bus since operations areexecuted out-of-order and therefore

one cannot be sure that all instructions before the branch have been executed. It is therefore necessary

to be able to write both into the current and backup entries. In addition, the save into and repair from the

backup cell must be efficient and doable in 1cycle since branch instructions occur quite frequently (1

branch instruction per5 instructions is typical). The memories that are not in the essential subset that

save contents, must have a means to invalidate the necessary entries. Finally, to avoid undue perfor

mance degradation, the save/repair and invalidation operations must be overlapped with the normal

operations. In the case of HPSm, the RAT is in the essential subset while the three NT'sare not. Both

kinds ofmemories have the desirable features, listed above, for supporting branch prediction.

5.2.6.2. Sub-issue: Exception Handling Support

The out-of-order nature of execution makes exception handling for out-of-order execution

machines very difficult. Some form of hardware support for exception handling is needed. An excep

tion repair (E-repair) involves cleanly suspending the process to apoint preceding the violating instruc

tion, switching context, handling the exception, and resuming execution from that point. HPSm uses the

concept of checkpoints [3] to handle exceptions. At every checkpoint, the current contents are saved

into "transit" cells so that repair can be made using these saved contents. After a given number of

instructions, the "transit" information is saved into "settled" cells. Three cells are used for correctness

reasons (see Chapter 4 of Reference [3].

63

5.2.6.3. Sub-issue: Proposed Solution

The triple-cell shown inFig. 1. is used to efficiently support branch prediction and exception han

dling. Ituses 1pseudo-static latch for the "current" cell, and 2 dynamic latches for the "transit" and "set

tled" cells. Using dynamic latches in the backup section gives a compact cell and makes it possible to

do save and repair without any contention. (The contention reflects a disturbing feature of smart

memories - the cells not only behave like logic elements but sometimes have to behave like peripheral

circuits. The REPAIR operation isessentially a WRITE operation. But a WRITE operation iseasier to

do with a large peripheral WRITE buffer that is shared bythe cells in each column rather than with cell

circuitry if thecellarea must notbeexcessively large.)

Four SAVE/REPAIR signals are used for communication between the states. The timing of the

SAVE/REPAIR signals ensures that the save/repair operations are overlapped with the normal opera

tions.

5.2.7. Issue: REFRESH

If dynamic cells have to be used to minimize the area, the issue ofREFRESH hasto be addressed.

The information stored on the dynamic nodes must have leaked away after about 2ms. Hence,

REFRESH isnecessary to ensure the integrity ofthe stored information. REFRESH cannot be provided

in a CPU the way it is done for conventional DRAMs : the constraints are much more stringent in the

former case. Since, REFRESH is needed only once every 2ms, speed will be degraded ifaphase is allo

cated inevery cycle just for REFRESH. On the other hand, amore complex control will be needed to do

REFRESH ifREFRESH isdone intime slots allocated 2ms apart. The challenge, therefore, is to find a

way to overlap theREFRESH operation with the normal CPU operations with minimum control com

plexity.

64

The proposed solutions are:

i) Ignore REFRESH if the cell does not need toretain the information for upto2ms.

ii) If (i) cannot be done, avoid REFRESH by using static or pseudo-static cells if possible. This

approach is used for the current cellof theRAT triple-cell in Fig. 1and for the NT cells.

iii) If (i) and (ii) cannot be done, push the complexity to the software level by having software-

generated REFRESH. This approach is used for the backup cells in Fig. 1. The REFRESH is initiated

by software with no hardware cost. Normally, after an average ofevery 5instructions, abranch predic

tion is made and the transit cell is written into from the current cell. Ifabranch prediction has not taken

place in a reasonable time (2ms, say), the compiler inserts an artificial branch in the code to force a

current-to-transit save. Because, as was discussed in a section above, the save/repair operations are

overlapped with the normal operations, the software-generated REFRESH does not need aspecial tim

ing provision.

5.3. Cost/Functionality Study

In this section, a comparison is made between the register files of a conventional von Neumann

CPU and that of an out-of-order execution CPU that have been implemented in silicon. The HPSm and

SPUR (UC Berkeley's Symbolic Processing Using RISCs) [4] register files are compared. Since both

the HPSm and the SPUR register files were implemented with the same technology, this comparison

factors out the impact of technology. Strictly speaking, comparing with the SPUR register file (SPUR-

RF) is not ideal since the latter isnot aconventional register file. The SPUR register file also has some

additional functionality like handling register windows, and aiding the pipeline implementation.

Nevertheless, it is safe to say that the SPUR register file belongs to an earlier generation ofCPU register

65

files for the following reason : it is meant for a sequential von Neumann machine. The most important

consideration is that a comparison can be made to highlight the impact of the "smartness" of the HPSm

RAT on its area and complexity.

Fig. 4a and Fig. 4b show a comparison of the HPSm RAT and SPUR-RF functions while Fig. 5a

and Fig. 5b show acomparison of their costs. While their speeds are comparable, the RAT performs ter

ribly as regards area and power. The low bit density of the RAT can clearly be seen by looking at the

following ratios : number of transistors per micron2 and number of stored bits per micron2. The power

penalty would have been worse if the haLf-VpD sense amp discussed above was not employed. The

speed performance of the RAT is due mainly to the shorter word line the decoder has to drive (just the

tag word line), and the sense amplifiers. The SPUR-RF will certainly be faster than the RAT if it is

designed for 31 registers and with sense amps. The first shocking revelation is that the RAT (which has

31 programmer-visible registers) is bigger than the SPUR register file (which has 138 programmer-

visible registers)! Now, if one argues that the RAT's effective number of registers is really 93 and not

31 (due to the 3 states represented in the RAT), one observes that with 33% less registers, the RAT is

76% bigger! This imbalance can only be explained by the extra functionality the RAT has over the

SPUR-RF as revealedin Figs. 4.

5.4. Conclusions

In this chapter, the smart memories were discussed from the viewpoint of the pertinent design

issues. Hopefully, looking at the smart memories from the concrete standpoint of individual designs (in

Chapters 3 &4) and from the abstract perspective of the issues have highlighted the circuit challenges

one must face in designing smart memories.

66

References

[1] H. Kadota et. al., "An 8-kbit Content-Addressable and Reentrant Memory", IEEE J. Solid State Cir

cuits, vol. SC-20, no.5, pp. 951-956, October 1985.

[2] J.L Mundy et. al., "Low-Cost Associative Memory", IEEE J. Solid State Circuits, vol. SC-7, no.5,

pp. 364-369, October 1972.

[3] Wen-mei Hwu, "HPSm: Exploiting Concurrency to Achieve High Performance in a Single-chip

Microarchitecture Ph.D. Dissertation, Computer Science Division, EECS Dept., University of Califor

nia, Berkeley, CA. 94720,1987.

[4] M.D. Hill etal, "Design Decisions inSPUR", IEEE Computer, vol. 19, no. 10, pp. 8-24, Nov. 1986.

h i

>•

awi.1

Fig. 1: RAT Value Cell

1 ftlt BL3

Fig. 2: RAT Tag "Double-CAM" Cell

BL3 BL2 BL1 INSERT.WL ID ID 5T3

Fig. 3: NT Tag "Single-CAM" Cell

FUNCTIONALITY MEASURE HPSm RAT SPUR-RF

ASSOCIATIVE WRITES/CYCLE 6 0

ACCESSES/CYCLE 15 3

FUNCTIONAL UNITS SUPPORTED/CYCLE 3 1

WRITES/CYCLE 3 1

STATES REPRESENTED 3 1

READS/CYCLE 6 2

PROGRAMMER-VISIBLE REGISTERS 31 138

TOTAL REGISTERS 3x31==93 138

Fig.4a: HPSm RAT vs SPUR REGISTER FILE (SPUR-RF)
Functionality Comparison

Fig. 4b: HPSm RAT vs SPUR-RF Functionality Comparison

6.0

5.0 —

4.0-

3.0 —

2.0-

1.0 —

o.o-

™immm
•:-m;M\ •:••:••:••. ••:•:•
••.•.•.•.•.•:•.•.:•:•:•:•:•:•:•:•:•:

M^

^mmmmmw:
'''''''''WmWM""

lllllll
..mmmmm

TPI
'••'• ::::::'::::x::;:':'.-.':v'':-

mKMmmm

CamWRs/Cy # Access./Cy # FUs Support./Cy # WRs/Cy

VERTICAL AXIS SHOWS THE RATIO OF

THE HPSm RAT FUNCTIONALITYMEASURETO

THE SPUR-RF FUNCTIONALITY MEASURE.

•••••••••••••••••••.•.-•V.-.-.Y. _ aaaaaaaaaaaaaaai :::::.:::;;;•;;•;•:•;•:•;;•:•;•:-;•; _

States # RDs/Cy # Prog-visibile Regs

COST MEASURE HPSm RAT SPUR-RF

CLOCKS 34 8

WORD LINES/REGISTER 6 2

POWER 0.51W 0.15W

BIT LINES 120 80

AREA 5.37mmx3.97mm 3.27mmx3.70mm

SPEED lOMhz lOMhz

TRANSISTORS 38,468 39,800
TRANSISTORS/micron*2 1.8xl(T-3 3.29xl(T-3

STORED BITS 3224 5520

BITS/micron*2 0.15xl(T-3 0.46xlOA-3

Fig. 5a: HPSm RAT vs SPUR REGISTER FILE (SPUR-RF)
COST COMPARISON

Fig. 5b: HPSm RAT vs SPUR-RF Cost Comparison

5.00

4.00-

3.00-

2.00—

1.00-

0.00
Clocks # WLs/Reg. Power # BLs

VERTICAL AXIS SHOWS THE RATIO OF

THE HPSm RAT COST MEASURE TO

THE SPUR-RF COST MEASURE.

Area Speed #Tran. Tran/um"2

6.

6.1. Future Work

CHAPTER 6

Conclusions

Reliability is an unresolved research issue. The use ofdynamic latches was proposed to minimize

the real estate requirement. But, this automatically raises efficiency and reliability questions. Having

VDD - VT atthe gate ofany dynamic latch may lead to static power dissipation due to the uncorrelation

of the VT's of the PMOS and NMOS devices. Soft errors due to alpha particle events are a reliability

issue that plagues dynamic memories. The need for backup word lines prevents one from using afolded

bit line sense amplifier scheme. The open bit line scheme that is employed does not enjoy the noise

immunity that folded bit line schemes have due to local cancellation. Future research has to grapple

with these issues.

The impact of technological trends on the design implications of smart memories is another

research issue. In particular, the effect ofemploying BICMOS technology and scaling the device sizes

and the power supply needs to be studied.

62. Final Conclusions

This dissertation has discussed the circuit challenges one must address in designing Smart

Memories for Out-of-Order Execution VLSI Architectures. Certain alternatives were compared for

each design issue. The proposed solutions were used to implement a design of a smart instruction

memory (the NT) on paper and a design ofa smart data memory on silicon (the RAT). The NT and the

67

68

HPSm CPU design could not be advanced to the silicon stage because of lack of time. The proposed

solutions for the RAT were demonstrated to be adequate by the successful testing of theRAT test chip.

However, it must be pointed out that the test chip is an artificial environment since the RAT was

not meant to be a stand-alone smart memory. Therefore, it will never be known if the RAT satisfies the

requirements for a smart data memory for an out-of-order execution machine until it is fabricated along

with the other smart memories (the NT's) in a single-chip CPU. It is also interesting to know how the

ideas presented in this thesis can be extended to other smart memories especially smart memories for

other data flow CPUs, HPS Prolog GPU, and HPSm's FPU (Hoating Point Unit), MMU (Memory

Management Unit) and CC (Cache Controller).

It is clear from the discussion in this dissertation that the smart memory circuits designer needs a

solid background in logic design since the memory-logic boundary is blurred in smart memories as dis

cussed in Chapter 1. The discussion in Chapter 3 bears this out where the recognition that the priority

encoding scheme can be implemented as a finite state machine outside the NT core trivialized the gar

bage collection function and allowed the use of simpler data cells. It is also clear that, for him to design

efficient memories, the designer needs a fair understanding of the system into which his memories will

fit since the designs are application-specific. Above all, since these memories are costly, alot of interac

tion between the circuit design and computer architecture research efforts is imperative to reduce the

costs, hi the case of the HPSm microarchitecture design, the feedback to the architecture research from

the circuit design research ledto a reduction of the types of needed smart memories from 5 to 2 and the

number from 7 to 4.

It is obvious from the comparison of the HPSm and SPUR register files in Chapter 5, that the

increased functionality ofsmart memories carries aheavy price tag. It is also obvious that by expending

more design effort, employing the appropriate circuit techniques and byshifting some complexity to the

software level (e.g. software-generated REFRESH), this price tag can be made less threatening.

69

Nevertheless, the main feedback to the computer architects is that these memories are very costly.

Therefore, they must be employed with few entries and only if the advantages outweigh the disadvan

tages. Itdoes notmake more sense, for instance, tohave an 8-entry NT instead of a4-entry NT since the

former reflects amachine where there are alot of data dependencies and one may be better off imple

menting the architecture as a sequentialexecution machine at a lower cost.

	Copyright notice1989
	ERL-89-41 (1 of 2)
	ERL-89-41 (2 of 2)

