

Copyright © 1989, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

ANALYSIS OF PERFORMANCE AND

CONVERGENCE ISSUES FOR CIRCUIT

SIMULATION

by

Thomas Linwood Quarles

Memorandum No. UCB/ERL M89/42

24 April 1989

L

ANALYSIS OF PERFORMANCE AND

CONVERGENCE ISSUES FOR CIRCUIT

SIMULATION

by

Thomas Linwood Quarles

Memorandum No. UCB/ERL M89/42

24 April 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Acknowledgements

Many people have contributed to the development of SPICE over the years. Hie work of

Laurence Nagel, Ellis Cohen, Sally Iiu, Andrei Vladunirescu, and others too numerous to name under

the direction of Professor DonaldPederson provided a very solid base from which to more forward.

The research described in this dissertation would not have been possible without the environ

ment for research provided by the CAD research group at Berkeley under Professors Newton, Peder

son, Sangiovanni-Vincentelli and Brayton. The availability of equipment, the environment of interac

tion among a variety of people working on many related projects with the consequent exchange of

ideas and the flexibility to follow an idea wherever it may lead have all contributed to the current

state of SPICE3.

I would like to express my appreciation to all of the members of the cadgroup, past and present,

who have provided valuable discussions and contributions to SPICE3. Particular thanks are due to Jim

Kleckner, Res Saleh, Jacob White, Kartikeya Mayaram, and Don Webber for their assistance with the

problems of circuit simulation and programming. The contributions of Wayne Christopher and Jeff

Hsu in the development of Nutmeg made it possible to concentrate on the simulation aspects of

SPICE3 without worrying about the user interface.

This work has been supported by a variety of sources and in a variety of ways. Particular

thanks go to Gerry Marino and Raytheon for both financial support and a willingness to try new, rela

tively unproven software, while providing valuable feedback and ideas along with the expertise

needed to make SPICE3 work on IBM PCs. Analog Design Tools, Digital Equipment Corporation,

Hewlett Packard, IBM Corporation, Rockwell, the California state MICRO program, and DARPA under

contract N00039-C-87-0182 all provided valuable financial and equipment support for the develop

ment of SPICE3 and Nutmeg.

in

IV

The sites which provided valuable feedback during development, including bug reports and

fixes, along with many test decks are too numerous to name, but a few stand out for providing consid

erable amounts of useful feedback at important times. Analog Design Tools provided much valuable

feedback as a beta test site during early development of the program, and the IC design group work

ing with Professor Bruce Wooley at Stanford University, especially Bemhard Boser, along with many

U.C. Berkeley students, have provided valuable pre-release torture tests for several releases.

Finally, I'd like to thank my parents for their constant support and continuous encouragement to

do well at whatever I chose and to continue my education, without which, this dissertation would

have been impossible.

Table of Contents

Chapter 1: Introduction 1

1.1 : Design Tradeoffs 2
1.2 : Characterization of the Problem and the Benchmark Set 3

1.3 : Special-Purpose Simulators 4
1.4 : Toolbox Philosophy 5

1.4.1 : Framework for development and testing .' 6

1.5 : Identification and Isolation of Modules 6

1.6 : Integration of Modules into a Whole 8
1.7 : Overview of this Dissertation 8

Chapter 2 : Performance . 11

2.1 : Where the time is spent 11

2.1.1 : Per-iteration times 12

2.1.2 : Matrix solution 16

2.1.3 : Device evaluation 18

2.1.3.1 : MOS bulk capacitor evaluation 19
22 : Predictor-Corrector 23

2.2.1 : Timestep control 24

2.2.2 : Limiting 30

2.3 : Breakpoints 31
2.4 : Algorithm Reorganization 35

2.5 : Bypass 37
2.5.1 : Device bypass 38
2.5.2 : Jacobian bypass 38

2.6 : Faster Models 40

Chapter 3 : Convergence 43

3.1 : Initial Guess: Failure to Converge in dc Analysis 43
3.1.1 : Previous approach 44
3.1.2 : Source propagation 45

3.1.3 : Continuation Methods 45

3.1.3.1 : Gmin stepping 46

3.1.3.2 : Source stepping 48

3.1.3.3 : Pseudo-transient 48

3.2 : Transient Problems 49

3.2.1 : Bypass 49

3.2.2 : Discontinuities and Inconsistencies 51

3.2.2.1 : Diode models 51

VI

3.2.2.2 : Meyer model 56
3.2.2.3 : Other MOSFET gate capacitance models 58

3.3 : General Problems 61

3.3.1 : Floating nodes 62
3.3.2 : Matrix pre-ordering 62

Chapter 4 : Program Architecture 69
4.1 : Major Data Structures 73

4.1.1 : Sparse matrix structures 74
4.1.2 : Analysis structures 75
4.1.3 : Device structures 75

4.1.4 : Interface structures 77

4.1.5 : CKTcircuit structure 79

4.2 : Control Flow 79

4.3 : Major Packages 80
4.3.1 : Sparse Matrix Package 80
4.3.2 : Circuit handling package 80
4.3.3 : Devicepackages 80
4.3.4 : Analysis packages 81
4.3.5 : Numerical package 81

Chapter 5 : Results : :.' 83
5.1 : About the Benchmarks 83

5.2 : Comparison with SPICE2 84
5.2.1 : Circuits which both SPICE2 and SPICE3 run 84

5.2.2 : Circuits which only SPICE3 runs 91
5.2.3 : Circuits which neither SPICE2 nor SPICE3 can run 92

5.3 : Comparison of Compilers 93
5.4 : Comparison with Other Simulators 95

5.4.1 : Comparison with an Industrial Circuit Simulator 95
5.4.2 : Comparison with RELAX 98

5.4.2.1 : RELAX comparison circuits 99

Chapter 6 : Conclusions 107

Appendix A : The Front End to Simulator Interface 109

Appendix B : Data Structures Ill

Appendix C : Packages 113

Appendix D : Adding a Device 115

Appendix E : The Device to Simulator Interface 117

vu

Appendix F : SPICE2 Compatible Input Language 119

Appendix G : Benchmark Circuits 121

CHAPTER 1

Introduction

SPICE Nage75a,Cohe76a js a general-purpose circuit simulation program which accepts a descrip

tion of a circuit and provides several forms of accurate and detailed simulation, including small signal

ac, dc, and time-domain transient solutions. Versions of this program have been in use for almost

twenty years, and today there are over 10,000 copies of the program in use world-wide, making it

without doubt the most successful single program for electronic circuit design ever developed.

Though integrated circuit technology and design techniques have evolved considerably over the

past quarter century, circuit simulation remains a very important component of the design of

integrated circuits. Although it. may be quite expensive to simulate all sections of a large design at

the circuit level, in almost all cases the savings possible if just one incorrect fabrication run is avoided

are sufficient to justify extensive and detailed simulation in most cases. SPICE2 has served the elec

tronics community very well, but has been in use for over fifteen years now and is in need of

significant cleanup.

While SPICE2 is a solid program and is in wide use, the changes which occurred during fifteen

years of incremental maintenance and enhancement of such a large program, without strict change

control and detailed documentation, have lead to some inconsistencies and errors. SPICE3 began as a

rewrite of SPICE2 using the same basic algorithms which have proven so reliable in SPICE2, but with

a new, modular implementation in a different programming languageQuar83a. Every effort has gone

into making this new version as simple as possible to work with, with particular attention being paid

to the types of changes that were made most often or were most desired over the lifetime of SPICE2,

thus providing a valuable research tool for algorithm design and model development.

Since SPICE2 was first written, many changes have occurred in the field of integrated circuits.

Circuits have become much larger and more complex, improved models for the operation of the

semiconductor devices have been developed, and the types of circuits being designed and simulated

have changed from predominately bipolar to MOS, CMOS, and even to GaAs MESFET circuits. These

technologies have also resulted in new modeling and analysis complexities, such as charge sharing.

SPICE2 has been modified extensively, both at U.C. Berkeley and at numerous industrial sites, to

handle many of these changes but no complete analysis of these techniques and the additional features

needed to make them work well together has been undertaken to date. In this dissertation I examine

some of these techniques, their interaction with one another, and their interaction with the basic pro

gram design.

The more specific goals of this research were to evaluate approaches to the improvement of

convergence in direct-methods transient and dc analysis, while not compromising simulation speed,

and to understand the limits in performance of a general-purpose direct-methods circuit simulator run

ning on a general-purpose uniprocessor.

1.1. Design Tradeoffs

There are many tradeoffs that must be made in the development of a program such as SPICE.

Some of these tradeoffs are obvious, such as the tradeoff of space for speed by pre-computing and

saving many intermediate values, while others are much less obvious, such as the tradeoff of perfor

mance for programming simplicity. In each case, there are many possible solutions from which to

choose but SPICE3 must pick a fairly small set of them to present to the user, with every additional

option to the user producing an extra level of complexity in the program. Because SPICE is a

general-purpose circuit simulator and must perform well across a broad range of circuit families, cir

cuit sizes, and analysis options, the choices made must also lead to a robust solution. Picking the

correct set of tradeoffs can be as important to making a system such as SPICE3 useful as the correct

choice of algorithms. This issue is reviewed throughout this dissertation and the possible choices and

the rationale for those choices is presented. In general, the choices have been made conservatively,

with an option to loosen them where some significant benefit can be derived from doing so.

1.2. Characterization of the Problem and the Benchmark Set

One of the problems with analyzing a complex engineering tool like SPICE is the difficulty of

characterizing the exact problem it is solving. There are many different measures of the performance

of a program such as SPICE, not all of them satisfactory. It is impossible to test SPICE against all

possible circuits and, due to the complexity of the program and the circuits it is trying to solve,

attempting to prove that a given set of circuits is sufficient to demonstrate the general robustness and

performance of the program is also very difficult. In addition, differences between hardware plat

forms in terms of relative performance and precision of floating-point, transcendental functions,

memory reference times, and the performance of integer operations can affect the relative perfor

mance of SPICE by over 400% as described in Section 2.1.3.1. During the course of this work, a

large number of test circuits have been collected from a variety of sources, many submitted

specifically because they exhibit particular problems. This set of circuits is detailed in Appendix G.

The testing of SPICE3 has been performed using this large base of circuits, ranging from simple test

circuits designed to test particular devices or features to large industrial circuits. Clearly, results for

all of these circuits can not be presented in every table, since the collection includes over 150 circuits

and still growing, but a representative sample is presented, with emphasis on troublesome circuits and

large circuits as well as a selection of the better-known SPICE2 benchmarks.

Rather than using a long or perhaps an obscure name for each test circuit, a convention has

been developed and a simple name which conveys some relevant circuit details has been assigned to

each test circuit. The details of the naming convention for test circuits is described in Appendix G,

but the convention is summarized here for future reference in the body of this dissertation. Each cir

cuit has a five component name, consisting of:

• A leading single letter indicating the type of circuit (e.g. N for NMOS, C for CMOS, Q for

bipolar).

• The count of the number of active devices (MOSFETs, BJTs, JFETs, GaAsFETs) in the circuit.

• Either D for an all digital, or A for an analog or mixed analog-digital circuit

• One or more letters indicating the type of simulation performed (e.g. A for ac, T for transient)

For example, C258DT is a CMOS digital circuit containing 258 MOSFETs and the results are

stated for transient analysis.

13. Special-Purpose Simulators

SPICE is a general-purpose simulator and as such attempts to produce an acceptable solution to

any of the wide variety of problems given to it It is possible, in some cases, to implement a program

which can outperform SPICE for a class of problems by taking advantage of special knowledge of the

circuit or technology used so as to reduce the simulation time without a significant reduction in simu

lation accuracy. Such special techniques are not used in SPICE3 in general because of the desire for

SPICE3 to handle all circuits and to work well on a broad range of hardware platforms. In fact, as

mentioned earlier, a version of SPICE itself optimized for a particular machine or operating system

can be expected to show significant performance advantage over the general purpose version

developed at U.C. Berkeley.

This is not to say that there isn't a need for special-purpose simulators, or that they are not suit

able for the problems they are designed for, but that they do require more care to ensure that the

proper tool is being used for the job. For example, for the analysis of a static, CMOS digital logic cir

cuit, where signal coupling between independent nets is negligible, a digital logic simulator may be

sufficient to predict circuit behavior and performance. The use of such simulators in conjunction with

SPICE3 is strongly encouraged and SPICE3 has been designed with such use in mind. A multi-level

simulation system designer should find that the programming interface to SPICE3 is designed to make

it easy to use it as a "subciicuit evaluator". It can be used for those subcircuits that require the

attention of a general-purpose, accurate, analog simulator within a larger circuit, where other blocks

could benefit substantially from a special-purpose simulator such as a logic simulator. This interface

for implementing a mixed-mode simulator is outlined in Chapter 4 and details are included in Appen

dices A through C. The performance differences between SPICE3 and other special-purpose

simulators will become small when the tighdy-coupled analog behavior of a circuit (e.g. capacitive or

inductive coupling between signals) is important in correct circuit operation as presented in Chapter 5.

It is in these cases the SPICE3 performs at its best

Finally, many of the programming system design considerations which went into SPICE3 apply

equally to special-purpose simulators and mixed-level simulators. These simulation systems may find

such features as the standardized interface to the front-end package to be useful to them as well since

this allows several simulators to present a uniform interface to the user, making it easier for the user

to select the proper simulator for the job without worrying about new languages, new circuit descrip

tions, or new ways of producing output

1.4. Toolbox Philosophy

SPICE3 is designed using a toolbox approach. Ncwt8la Each package of routines is relatively

independent of every other package, thus allowing those mat maintain and develop the program to

select routines which best fit the task at hand from a wide range of available options. For general

use, a version can easily be assembled giving the user access to most features of the program. In an

environment where space is at a premium, a more restricted version can be assembled by leaving out

those routines which may not be needed, including entire analysis packages and device types. When

adding additional capabilities to SPICE3, this variety of routines minimizes the code which must be

written from scratch by allowing these pre-existing routines to be re-used.

By following this approach from the beginning, SPICE3 includes routines which represent tools

which are no longer needed by the current executable because they have been replaced by other rou

tines with a slightly different function or were written entirely for debugging. These routines remain

a part of the documented SPICE3 library and can be used whenever a SPICE3 programmer needs such

a tool for the development or testing of any part of the program. These routines also provide a guide

line for similar routines which may be needed. Of course, these tools and routines are excluded from

the program during production use so that both memory utilization and run times are minimized.

1.4.1. Framework for development and testing

SPICE3 has been designed for easy configuration. By changing a relatively small number of

routines, different "simulators" can be produced and radical changes can be made to the behavior of

the program. In addition, since by far the most common extension to SPICE2 has been the addition of

new device models, the interface from the simulator to the device modeling routines has been made as

simple as possible to allow new devices and device models to be added to the program in a very short

time and without difficulty. For example, the present GaAsFET model was written based on a set of

equations presented in Stat87a and was added to SPICE3 by S. H. Hwang after only an afternoon of

discussion about the program design. Three days of work on his part resulted in a complete working

ac, dc, and transient model. It is no longer necessary for a person interested in device modeling to

learn about the workings of much of the program, as was the case with SPICE2, but rather to under

standthe requirements the rest of the system imposes on the relatively smallmodule they must write.

1.5. Identification and Isolation of Modules

By decomposing SPICE3 into modules, all of the routines which handle one aspect of the prob

lem can be grouped together but can be isolated from code which must deal with other parts of the

problem. The modules identified in SPICE3 are listed in Figure 1.1.

Command input parsing
Circuit description parsing
User interaction/batch step scheduling
Sparse matrix handling
Simulator coordination/dispatch routines and common numerical algorithms
Analyses (one package for each analysis type)

operating point
ac

dc

transient

transfer function

pole-zero
sensitivity

Devices (one package for each device type)
common support routines
voltage and current sources (independent voltage, and current controlled)
resistors

capacitors
inductors and mutual inductors

transmission lines

uniform distributed R-C lines

diodes

bipolar junction transistors
JFETs

MESFETs

voltage and current controlled switches
level-1 MOSFETs

level-2 MOSFETs

level-3 MOSFETs

BSIM MOSFETs

Graphics
device independent
underlying graphics system interface routines (one per graphics system)

X window system version lO^"863
X window system version nSche88a
Model Frame Buffer package (MFB)Bill83a

Figure 1.1
Major modules in SPICE3

Since each of the modules knows very little of the operations or details of the other modules,

the details of the implementation are unimportant as long as the package as a whole maintains a con

sistent, well documented interface to the rest of the program. One major advantage of this is the abil

ity to divide the program maintenance effort among several people, since the packages can be main-

8

tained independently. In addition, when improved algorithms are developed, only a single package

need be replaced instead of the entire program.

1.6. Integration of Modules into a Whole

Integration of all of the individual modules together into a seamless whole has been accom

plished by carefully tailoring each module to the needs and capabilities of the modules with which it

will interact. The interfaces between the modules have all been carefully documented and made as

regular as possible to minimize confusion and error in use without sacrificing too much efficiency.

Thus, the sparse matrix module does not have the flexibility of a more general package such as Sparse

Kund88a ? out provides all the features that SP1CE3 requires internally in a compact and efficient

manner. Since all of the packages are self contained, it is also possible to replace them with any

other package which provides a superset of the capabilities of the corresponding SPICE3 package as

has happened.several times, for example, with different versions of SPICE3 and the Sparse package

over the past two years.

1.7. Overview of this Dissertation

In Chapter 2 techniques for improving the performance of a direct method circuit simulation

system are presented. The CPU time characteristics of the SPICE program are examined and tech

niques to address various parts of the overall run time are described along with results from their

application. In Chapter 3, some of the problems of convergence of SPICE are explored. Methods are

presented which solve many, although not all, of these convergence problems. An overview of the

system architecture of SPICE3 is presented in Chapter 4. The design goals of the system are

described, followed by an outline of the structure of the system, focusing on the static and dynamic

data structures that form the core of the program. In Chapter 5 the results of the modifications

described in Chapters 2 and 3 are presented with an analysis of their usefulness in the final system

and a description of their effects on each other and on the overall program. Conclusions and sugges

tions for future work are presented in Chapter 6.

Tbe overall structure of SPICE3 is shown if Figure 12 and is described in detail in Chapter 4.
However, the details of each component of the program are included as appendices. First, the inter
face between the simulator and a front end or higher-level system is presented in Appendix A
(represented as "input-data and "output-data in Hgure 1.2). This interface allows asingle front end
to work with several different simulators and asingle simulator to work with several different front

ends by presenting astandard set of subromines and data structures on which both the front end and
simulator can rely, Appendix B contains adescription of the internal data structures used in the

SPICE3 core. These structures are presented in detail and assume a familiarity with the system over

view presented in Chapter 4. Knowledge of this level of detail of the structures should only be

needed by someone modifying the simulator itself.

Component packages used to build SPICE3 are described in detail in Appendix C. All of the

packages produced as apart of the simulator except for the device models are described here, along
.with the SPICE2 style input parser from the front end and shown in Hgure 1.2. The remainder of the

SPICE3

core

•Output data structure! iInput data structure i
• ; ' Is j

I i—»• __ 1 batch-mode
- SPICE2-compatible

input format

SPICE2-style
lineprinter plots ^
and listings

SPICE2- 1_
compatible ;

i parser

Nutmeg core

ISPICE2-
-I compatible
[I/O

Interactive j
graphics
I/O.

Interactive User

at graphics terminal

Hgure 1.2
The overall structure of SPICE3

10

front end is described in the Nutmeg Programmers Guide011"873. Nutmeg is an independent package

which is designed to operate as a simulator-independent user interface and post-processor. Nutmeg

was developed as a separate project and is not documented here. It serves as an example of a typical

user interface to SPICE3.

An overview of the procedure used to add a new device model to SPICE3 is included as Appen

dix D. This appendix does not contain the details but provides an outline of the steps involved and

includes suggestions for converting an existing SPICE2 model to SPICE3 form. Appendix E contains a

detailed description of the interface between SPICE3 and the device models. Examples are provided

which illustrate typical code for each of the different device model routines. Appendix F provides the

users manual for the mostly-SPICE2-compatible input language used to describe circuits and analysis

requests.

The test circuits used to verify the operation of SPICE3 are presented in Appendix G along with

summary statistics describing each of them. The listings of the circuits themselves are not included in

this dissertation, but can be obtained from:

EECS/ERL Industrial Liason Program, Software Office
Department of Electrical Engineering and Computer Science
University of California at Berkeley
Berkeley, Ca. 94720.

along with versions of SPICE3 and Nutmeg for a variety of computers, including DEC VAX systems

running Ultrix or VMS, HP 9000 systems running HP-UX, SUN workstations, and IBM PC/AT and

VM/CMS systems. Please note that the entire benchmark set is not included in the general SPICE3

release and must be requested separately.

CHAPTER 2

Performance

There are many aspects of a circuit simulator that affect its performance and many of these are

interdependent (e.g. speed-memory utilization, circuit technology-convergence criteria). This disserta

tion contains descriptions of the more interesting problems encountered and solutions developed in

SPICE3, both those proposed elsewhere and those developed as part of this project Many additional

changes were made in the interest of performance, but many are as simple as sorting tests to place the

most likely outcome first, and thus are not described here. The effort has been direaed primarily at

transient analysis since that represents the majority of the computer time spent running SPICE.

2.1. Where the time is spent

The unk system Riu^a provides many tools for analyzing the performance of C Kem78a

programsBerk84a»Berk84b»Grah82a. These have been used extensively to profile the operation of SPICE3

and ensure that the effort spent optimizing the program was directed at the correct parts of the pro

gram. The overall solution time can be readily broken down into several significant components and

a large number of very small components. For example, a run-time histogram for the 66 node, 116

MOSFET PLA circuit N116DT is shown in Figure 2.1. Unfortunately, the form of this histogram

changes significandy with changes in circuit size, analysis requests, and circuit technology. There are,

however, a few characteristics of the histogram that are true of most SPICE runs. The time dedicated

to all of the system overhead and one-time operations remains relatively small compared to the time

for the analysis, matrix package, and per-iteration device code, with the difference between the two

groups of times increasing as the analysis interval is increased. The only cases where the time spent

in per-iteration and matrix code is not significandy larger than the setup and overhead cost are those

with very short analyses which require very little total CPU time. As a result of this, the one time

operations can be made relatively simple and easy to understand at the expense of some efficiency

11

12

seconds

©58SS8§gSg§

sparse matrix handling
analyses

per iteration device specific code
one time device specific code

command input parsing
circuit description parsing

user interaction andbatch step scheduling
simulator coordination and common numerical algorithms

graphics and output handling

Hgure 2.1
CPU time distribution for circuit N116DT

without having asignificant impact on overall simulation time.

2.L1. Per-iteration times

Since the analysis time for large circuits and long simulation intervals is doiniiiated by me total

costs ofthe per-iteration operations, it is appropriate to examii* ^

inmore detail. In Figures 2^(a) and 2.2(b), the CPU time per iteration spem evaluating the devices
and loading the matrix (toadtime) is plotted alcmg wim the total time per i^ Total time is the
sum of load time and matrix solution time (solve time) As can be seen from these plots, the matrix
solution time is significantly smaller than the device evaluation time, although the difference

decreases as the circuit size increases.

Note that Circuit Q34OT shown in Hgure 22 is an exceptional case submitted to Berkeley by

an industrial user precisely because of this unusual ratio. Other circuits of comparable size have a

lower ratio of load time to total time.

As shown in Rgure 2.3 (aMd), the growth of the time to evaluate the devices is linearly depen

dent on the number of devices, since at this level of analysis device interdependence is not con

sidered. IT* various device types (BJT, MOS, etc) take dmrent times to evaluate and there are sUght

13

seconds/iteration

total

«5>3t©T

3

1.10 -

1.05 -

1.00 -

0.95 -

0.90 -

0.85 -

0.80 -

0.75 -

0.70 -

0.65 -

0.60 -

0.55 -

0.50 -

0.45 -

0.40 -

0.35

0.30

0.2S

0.20

0.15

0.10

0.05

0.00

-0.05

-1—"r—t-

ScerVtB? -equitiuiti'A 103

0.00 0.50 1.00 1.50 2.00

Hgure 22(a)
Relative Load and Total Times for SPICE3 Versus Number of Equations

(Values for specific circuits are included inAppendix G.)

14

•econds/iteration x 10"3

a

load
105.00

— total
100.00

95.00

90.00
__ .

85.00
1

ir

80.00

l

75.00 r "—

70.00
n

65.00

«?
60.00 1 •

55.00
I 1

— -i —

50.00 i u
:

45.00
n

40.00

f B
i

i
!

1

35.00 1

l
1

ii i
1 i

30.00

Q

•

i" ;

25.00

\ ;l ' 1} 1A '
20.00

u
i—

b 1
H

• -

*j i
15.00

•» '.lit ; 1 '

10.00 —

Ww *5.00 — •zMf9^ i

o.oo —!•••«•—•—

0.00 50.00 100.00 150.00

Hgure 22(b)
Magnification oflower left comer ofHgure 22(a)

equations

200.00

(a)MOSl

•ecoodiAceration x 10*3

450.00

330.00

300.00

250.00

200.00

150.00

loaoo

saoo

aoo f

t5"
D B*

oul

0.00 200J00 400X0 600X10

1.30

1J0

1.10

1.00

aw

aso

a*»

aeo

aso

O40

O30

O20

aio

aoo

(e)MOS3

u —

•

b ;

i

S i

•S3-
total

.«id5

15

(b)MOS2

Noeodi/toniM) x 10*3

16000

150.00

i*aoo

130X0

120.00

110.00

100X0

90.00

•aoo

moo

60.00

saoo

4O00

saoo

20.00

laoo

aoo

a

a

*

•

o

a

a • 8.
. •

c

1 SI
V

"k*
*

r
;

total

0X0

NOosdiAEsnoco

1J0

1.10

1X0

aso

aso

aio

aeo

aso

040

030

020

aio

aoo

20X0 60X0

WBJT

13-

i

: i I
I • 1

r : i .
_ •

i , ,

t ; '
I

1 I i
i

- B

•j I I
B-j »H

.li_L_^ ! L_
aso ixo figure 2.3 (a)-(d) *°° loao° 20ao° 3oao°

SPICE3 Per-iteration Times Versus Number of Active Devices, by Device Type.

16

variations due to the different regions of operation of the semiconductor devices, but it takes approxi

mately 0.625 milliseconds/iteration for Level 1 MOSFETs, 1.75 milliseconds/iteration for Level 2

MOSFETS, 1.16 millisecondsAteration for Level 3 MOSFETs, and 1 millisecondsAteration for bipolar

devices on a VAX 8650 running Ultrix 3.0 and using the standard Ultrix C compiler* and specifying

the -O optimization at compile time.

As can be seen by comparing Hgure 2.3 with Hgure 2.4, the characteristics of the plots have

not changed significantly from SPICE2 to SPICE3, although the magnitude of the run time has been

reduced by approximately one half from SPICE2 compiled with the standard Ultrix FORTRAN com

piler. Compiling SPICE2 with one of the most advanced FORERAN compilers available today, t the

SPICE3 advantage is reduced to approximately 35% on average. In all cases, the load time still

represents most of the CPU time.

2.1.2. Matrix solution

At each iteration, the program must solve a set of sparse, linear algebraic equations. While

most popular approaches to the problem Pres86a,Acto70a require 0(n3) time for a full coefficient matrix

of order n, by taking advantage of the sparsity of the matrix obtained in modified nodal analysisHo75a

a significant saving can be achieved in time as well as in space. It has been shown Newt83a that the

solution of a sparse system of circuit equations requires time proportional to n^ where n is the order

of the matrix and p* ranges from 1.1 to 1.5. Figure 2.5 is a plot of matrix solve time versus the

number of equations (order of the matrix) for both SPICE2 and SPICE3 running on the benchmark set

Fitting a least-squares line through a log-log plot of this data (ignoring those circuits with solve times

less than the timing output tolerance of 0.01) gives solution times of:

TSP,cE2=3.01xl0-5xN1-4Oxe±0'64 (2.1)

where e is the base for natural logarithms and N the number of equations, and:

LSP1CE3=0.93xl0-5xN141xew-54 (2.2)

* Relative performance on different platforms and for different compilers is presented later.

t The DECVAX FORTRAN/Ultrix compiler.

MooodiAtcrtaeo

1.00

0.90

an

0.70

0.60

aso

O30

0.20

aio

1

(a)MOSI

— fcd-
d qt(Mil

0X0 380X0 400X0 600X0

•madt/teraicn x 10°

fioaoo

ssaoo •

500.00

4saoo

400X0

3saoo

300.00

250.00

200.00

uaoo

toaoo

50X0

aoo -i>

(c)MOS3

Mai

17

(b)MOSS

tmoacdtffmiao x W3

•C3-
mal

0 "
110.00 -

•

i«aoo -

140.00 -

uaoo - D
•

toaoo -

saoo -

eaoo -

:>
40.00 -

j
moo -

r
0X0 20X0 40X0 <aoo

(4)BJT

•afloodfA'aiatMD

° •&"
i.ao

i.«

1.40

IM

1X0

aso

aeo

040

020

aoo
e •

ixo looxo 200.00 Figure 2.4 (a>(d) oa>
SPICE2 Per-iteration Times Versus Number ofActive Devices, by Device Type.

100.00 200.00 300.00

18

seconds/iteration

.** A.

fi\ spice2

50.00 h Ar ; spice3

45.00

'. • ':
1
«

!

40.00 • . * 1
t d

35.00

0 '

*

B—
30.00

•l ',
i

25.00
!

- !

20.00 f

j
1

i
,

15.00

a

i i

i
i

10.00

•
an

1 * i !

5.00

.00

D

• jf^a^jSit &» !• -
•

o o^. d

0.00

0
50.00 100.00 150.00

Rgure 2^
' Matrix solve time versus number of equations

for SPICE2 and SPICE3.

equations

200.00

Tims, while the exponential factor has not changed agmficantly, given the standard deviation, me

leading coefficient has changed by afactor ofapprwrimately 3.

While these results do not indicate that the time spent solving the sparse matrices is trivial or

can be ignored, its impact on overall simulation time has been reduced as aresult of the ability to
implement more efficient data structures in Cas «,rnpared to FORTOAN. Every effort should still be
made to make the sparse matrix package as efficient as possible, but sparse matrix solution efficiency
is not aprime concern in the remainder of this work, particularly with the availabiUty of general-

purpose and efficient packages like SPARSE***88*.

2.13. Device evaluation

Trje other major area where per-iteration time is spent, as shown in Rgure 2.1, is the evaluation
of device models. While accurate evaluation of the devices is required to maintain simulation

19

accuracy, there are still tradeoffs that can be made. It may be that there are parts of the device

evaluation that use more time than they should due to the way they are implemented, parts of the

model that require more time than they may be worth in terms of their contribution to simulation

accuracy, or parts mat could be "bypassed" based on the specific parameter values for the device in

question.

The effort in this work has been focussed on MOSFET devices, since this is the technology

being used most widely today. Significant improvement is still possible for bipolar devices as can be

seen from the comparisons with an industrial version of SPICE2, presented later. The MOSFET code

can be broken into a number of different sections. Most of these sections of code are virtually identi

cal for the Level one, two, and three models, since in SPICE2 they actually shared this code. Looking

at these areas carefully is simplest using the Level 1 MOSFET model. A breakdown of the time spent

in various parts of this evaluation for an early version of SPICE3 is given in Table 2.6. Clearly, there

are parts of this evaluation that take far more time than is to be expected.

2.13.1. MOS bulk capacitor evaluation

SPICE includes diodes from source and drain to bulk in the MOSFET models. These diodes

have nonlinear capacitances associated with them and SPICE must compute both the capacitance and

the charge on the capacitance at each iteration. All equations are presented here in terms of the

bulk-to-source quantities, but must be duplicated for bulk-to-drain quantities.

Table 2.6

Breakdown of time spent in MOSFET code for Level 1 Model

Component Percent of MOSFET time time(ms/device-iteration)

Gate capacitance 25.2% 0.181

Diodes 33.8% 0.243

Matrix loading 10.2% 0.074

Overhead 12.8% 0.092

Bypass 9.5% 0.068

Evaluation 4.0% 0.029

Limiting 4.5% 0.032

The general form for the equations used for these diode capacitances is:

Q^X<1-^Aq^ XCl-jp)
and:

vbsrMi,

Cu^X 1- 1-
bs bs

-M.

Ck, X 1- 1—

Qbs=PbX
1-Mj 1-M:

These equations encounter severe mathematical difficulties with terms such as:

Vbs
-M:

20

(2.3)

-M=

1—
'bs

(2.4)

(2.5)

when Vte>Pb and Mj is typically — to —. This produces either — or the root of a negative number.

To avoid this problem, this curve is used up to the point V^sFcXPt, where Fc .is a curve fitting

parameter between zero and one and Pb is the bulk junction potential. For Vbs>FcxPb, the capaci

tance' curve is extended as a straight line with the charge curve being correspondingly extended as

jC-dv.

In SPICE2 and early versions of SPICE3, the following equations were used:

Cb$=f3x

and:

Qbs=flx

c*o CbH
f2 f2

+-

PbX
Cfas,, Cbs«w0

xMj-H-T^xMj.
£2 f2

cbSo cs
f2 f2

+£2x [Vfc-FeXPbji

[VbVFeXPjjx ^*«0
—xMj+—-xMj

f2

-bs.

f2

C*o CbH
f2 f2

(2.6)

(2.7)

Where fl,f2, and G are coefficients computed during setup. All calculations shown above are

performed in this form every iteration. By moving to the setup phase all those subexpressions that

have constant value, these can be reduced to:

if Vbs < FCPB

Vl= 1—

V2= 1-

'bs

Pb

Vb,

-M:

-Mi

Cbs=Cbs0xVl+CbSfwxV2

, „

Qbs=Klx 1-Vlx +K2x 1-V2X

ifVbs>FCPB

bs

Qbs=K5+K3x [vbs-FcxPb]+ [v&-Fc2Pb2]lK6

for suitable constants K1,K2,K3,K4,K5, and K6.

21

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

This reduces the evaluation time, but the cost of evaluating VI and V2 is still high. Examining

profiling output from early SPICE3 as summarized in Table 2.7, it can be seen that the time spent

evaluating VI and V2 is high relative to the total cost of evaluating the MOSFET due to the use of the

exponential and logarithm functions for both bottom and side junctions of both bulk-source and bulk-

drain capacitors. Noting that Mj and Mj wmay be the same and that the default value for both is 0.5,

it is possible to use the square root function in many cases and to eliminate duplicate computations

when the grading coefficients are equal. Considering the timing comparison for the square root,

exponential, and logarithm shown in Table 2.7, these special cases may be expected to be worthwhile

even if used relatively infrequently, depending on the machine used. The implementation of the more

complicated math functions varies greatly from machine to machine and a very good exponential and

log implementation or a bad square root implementation may reduce the gain significandy, since the

exponential plus the log may be only about twice as time consuming as the square root; for most

22

machines, the gain is much more dramatic.

Table 2.7

Costs of evaluating functions ([is)
VAX

8650

Microvax

IIGPX

VAX

8800

DECstation

3100

SUN

4

HP Vectra

386/20 w/387

sqrt
log
exp

17.5

52.4

52.6

1.00

2.99

3.01

83.5

325.7

371.0

1.00

3.90
4.44

17.3

42.0

40.8

1.00

2.43

2.36

8.7

7.8

7.2

1.00

0.90

0.83

26.7

22.0

22.5

1.00

0.82

0.84

41.8

63.3

103.6

1.00

1.51

2.48

These changes may have a significant impact on overall analysis time as shown in Table 2.8.

Additionally, many users when performing early approximate simulations of their circuits or those

using external device capacitances will set Q- and Cte w to zero, making all of these calculations

unnecessary. Adding a further check for this case gives the final column of Table 2.8. Note that this

change has the greatest percentage effect on the Level 1 model typically used for such approximate

simulation.

•Table 2.8

Comparison of time spent in capacitor
evaluation before and after changes

With improved
formulation

With

sqrt

With

bypass

Total Simulation time 2647.42

Total MOS time 1729.60

Capacitor evaluation time 488.58
Time spent in sqrt 0.00
Time spent in exp and log 406.00
Cap. time as % of MOS time 28
Cap. time as % of total time 18

2165.34

1285.28

116.45

35.47

0.00

9

5

2062.83

1188.13

20.54

0.00

0.00

2

1

Measurements made on a VAX 8650 running Ultrix 3.0

Finally, note that this analysis was performed using the original equations from SPICE2, not the

corrected form presented in Chapter 3. This analysis remains essentially unchanged when those

corrections are taken into consideration, since they simply modify the constants and not the form of

the expressions. The data in Table 2.8, however, was computed using the corrected equations

presented in Chapter 3. The column with the results from the original equation formulation has been

omitted since, due to the simultaneous correction of the equations as detailed in Chapter 3 and the re-

23

arrangement of their evaluation as just described, it actually solves a significandy different set of

equations and thus it would be inappropriate to compare it directly. The performance for the original

equation formulation is essentially the same as for the corrected formulation since the time is dom

inated by the exponential and log evaluation time whichwas not affected.

2.2. Predictor-Corrector

Predictor-corrector algorithms are a common means of performing numerical integration which

use a predictor, generally a polynomial of low degree, to extrapolate a predicted value from previous

points and then successive iterations of a corrector step to refine the solution. There are many

benefits to using a predictor-correctorActo70a based algorithm in SPICE3. SPICE2 uses a corrector itera

tion scheme but lacks a good predictor. A brief analysis of predictors appears in Nagel's

dissertation1^?6758, where the prediction scheme currently implemented in SPICE2 is compared with

simply using the solution at the previous timepoint as the starting value for the current timepoint.

Unfortunately, the predictor actually used in SPICE2 is not as good as it might be because it is not

consistent across the entire circuit as described below.

In SPICE2, the first iteration at each timepoint, is considered a special step, and so is not con

sidered as a possible final solution; at least one more iteration is always taken. In essence, this entire

iteration becomes the predictor step but with somewhat unpredictable results. This unpredictability

results from the initial conditions of the predictor iteration. SPICE2 assumes that all node voltages in

the circuit remain unchanged from the solution at the previous timepoint and most devices are solved

under that assumption. Semiconductor devices are assumed to be operating in isolation from the rest

of the circuit, since their junction voltages did change, following a linear extrapolation from their

values at previous timepoints. This strange combination of strategies produces a reasonable predictor

that proves adequate for SPICE2's Newton-Raphson iteration algorithm to find a solution, despite

being based on an often-inconsistent set of assumptions.

By supplying an improved predictor, several benefits are obtained. It has been shown in previ

ous tests Quar84a that simply by starting with a better predictor it is possible to reduce significantly the

24

number of iterations the circuit simulator uses without any impact on accuracy. While more accurate

predictors are more expensive to compute, the cost of such aprediaor is less than the cost of asingle

iteration and is therefore worthwhile.

SPICE3 has been fitted with a predictor which performs node voltage prediction and device

current prediction using previous solutions and using apredictor of the same order and type as the

corresponding corrector. Using this predictor, the performance of the program is as shown in Rgure

2.9.

2.2.1. Timestep control

A number of techniques can be used tor the control of the simulation timestep. SPICE2 imple

ments two different techniques, called iteration count and truncation error, to control the timestep

secondsx103

2.60

2.40

2.20

100

1.80

1.60

1.40

1.20

1.00

0.80

0.60

0.40

0.20

0.00

0.00

old predictor

new predictor
—i1

1

• 1

1 i

iB

-

, D T

! 1
4

b
i \m

b i

4

• •

1

-*-*{— + I T I a SB

1
,H.\

ha

50.00 100.00 150.00 2O0J0O

Rgure 2.9
Performance gain from the use of a better predictor

25

between timepoints in the transient analysis. Use of the predictor-corrector algorithm allows a third

technique.

While simply using the predictor to reduce the total number of iterations required to solve a cir

cuit is clearly a significant improvement over earlier approaches, further advantage can be taken of

the technique. As described by Hachtel and BraytonBray72a , an upper bound on the timestep can be

found from the predictor and from the subsequent corrected value after the Newton-Raphson iteration

has converged.

2.2.1.1. Iteration count

As described by NagelNase75a, SPICE2 provides an iteration-count system of timestep control.

In this system, the number of iterations required to obtain convergence in the damped Newton-

Raphson process is used to control the timestep. If convergence is not obtained within a maximum

number of iterations, the solution is abandoned, the timestep cut by a factor of eight, and the new

smaller step is attempted. If convergence is obtained in fewer than a minimum number of iterations,

the timepoint is accepted and the timestep may be doubled before attempting the next step. If conver

gence is obtained with an iteration count between these limits, the point is accepted and the same

timestep used for the next step. This technique relies very heavily on a good choice of the starting

timestep by the user and on detecting troublesome areas rapidly. Of course, iteration count does not

work at all for linear circuits or almost-linear circuits since only a single Newton-Raphson iteration is

required at each timepoint anyway. Unfortunately, the iteration count method does not always detect

problem areas and, as observed by NagelNase75a, iteration count does not always produce

numerically-acceptable results. For some circuits, particularly for highly-nonlinear digital circuits,

NewtonNewt77a shows that iteration count generally provides acceptable results. While still available

in SPICE2, this technique is infrequently used and has not been implemented in SPICE3.

26

2.2.1.2. Truncation error

Truncation error timestep control was also available in SPICE2Nase75a, and has been provided in

SPICE3. In truncation error timestep control, the local truncation error (LTE) associated with the

numerical integration of the energy storage elements in the circuit is computed and, based on a limit

of acceptable error, used to control the timestep. To compute the LTE, first consider the* trapezoidal

method and examine the equations for the Taylor series expansion:

Xn+1=Xn+hXn'+^Xn"+^Xnw+^Xn"" ••• (2.14)

X^X^+hX '̂+^X/'+^X,/''' ••• (2.15)
Solving 2.15 for X„" gives:

X^X^'-iX/-|XT--J V" **' (2-16)
Substituting 2.16 into 2.14 gives:

X^1=Xn+|(Xn'+Xn+1')--^Xn'''-^-V'//--- (2.17)
The first three terms of the right hand side of this give the trapezoidal rule, with the remaining terms

representing the local truncation error of the method. The h3 term will dominate the other terms, so

the LTE can be approximated as:

• Error=-^-h3Xn"/ (2.18)
This is the LTE for this step. Since the allowable error should be divided over all of the steps, the

allowable error for the step is:

E^-^SSL (2.19)
h

Thus:

Eaep—rrX" (2.20)

Solving this for h gives:

1--J1S
V XrT

27

(2.21)

Using this equation and an approximation to X,,'" obtained from divided differences Orxcl0& pro

vides a limit for the acceptable timestep. If the timestep just taken exceeds this value, its LTE is too

large and a smaller step must be taken, with the new value of h providing a good estimate for that

stepsize.

An iteration count is still used to detect extreme cases where the nonlinear iteration is not con

verging and a reduced timestep is needed for convergence reasons, but as long as the iteration con

verges within an upper limit, the truncation error calculation is the only means used to control the

timestep of the simulation. This has several disadvantages: the truncation error must be computed

separately for each capacitance or inductance and the code to perform the necessary calculations is

relatively expensive, requiring approximately 13% of the total analysis time for circuit N698DT as

shown in Table 2.10.

2.2.13. Predictor-corrector Timestep Control

In the predictor-corrector method8™?728, the starting guess at each timepoint is obtained by

making a prediction of the node voltage and source current result based on previous timepoints and by

using a predictor that is compatible with the following corrector iteration. This predicted value is

then used as a first approximate solution and the corrector iteration continues from that point Once

the corrector iteration has converged, the predicted solution and the final corrected solution are com

pared. The difference between these two solutions gives a good approximation to the local truncation

Table 2.10

Overall simulation time breakdown for circuit N698DT

Component Percent of total time time(seconds)

Truncation error 13.3% 341.51

Integration 9.7% 249.15

MOSFETevaluation/loading 57.9% 1480.45

Other evaluation/loading 1.5% 38.64

Matrix operations 5.6% 144.25

Overhead 11.9% 303.13

28

error E^ of a kth order step as:

Ek=- —t—x(Vn+1-Vnp+1) (2.22)

where Vn+1 is the final corrected value of node voltage at the point in question and V*+1 is the

predicted value of the voltage, h is the timestep taken from time tn to tn+i and k is the integration

order. A version of SPICE3 has been adapted with this algorithm for the Gear integration scheme.

The algorithm has many features to recommend it over the local truncation error computation

traditionally performed in SPICE:

• It applies to node voltages and source currents instead of capacitances, thus reducing the

number of computations in complex circuits with many MOSFETs, each containing several inter

nal capacitances.

• It employs a consistent predictor, already shown to reduce analysis time.

• It simplifies the device models since they no longer need to include truncation error calcula

tions.

• It is compatible with a node based capacitance and charge computation scheme.

Unfortunately, the predictor-corrector scheme is not quite as helpful as it seems. While suitable

predictors and correctors are available for the Gear integration method, no suitable predictor is avail

able for the trapezoidal algorithm most commonly used in SPICE. Using Gear integration, perfor

mance is as observed in Table 2.11.

In this table the result of running several circuits from the benchmark set through SPICE3 with

both the standard local truncation error timestep control scheme and the predictor-corrector based

timestep control scheme are presented. These circuits were run for a variety of relative tolerances to

show the effect of the tolerance on the two timestep control schemes. All of the missing entries in

the table, except for the one with the standard version with a RELTOL of 0.0001 which was not per

formed, correspond to runs which failed due to timestep too small errors.

29

Table 2..11

Performance gain from use of Gear predictor-corrector timestep control

Q11ATAD Q50AT
Version RELTOL Iters Time- CPU Iters Time- CPU

points time points time

Standard 0.0001 1576 462 24.56 - - -

Standard 0.001 587 174 9.74 3154 1001 238.1

Pred-Corr. 0.001 1515 544 25.75 - - -

Pred-Corr. 0.002 1294 440 20.91 - - -

Pred-Corr. 0.004 1038 349 16.91 - - -

Pred-Corr. 0.01 804 265 13.47 - - -

Pred-Corr. 0.02 596 184 9.93 2432 680 176.26

Pred-Corr. 0.1 218 61 3.60 1493 280 100.38

Q5DTD Q22ATAD
Version RELTOL Iters Time- CPU Iters Time- CPU

points time points time

Standard 0.001 469 121 4.86 183 59 6.86

Pred-Corr. 0.001 - - - 436 166 15.35

Pred-Corr. 0.002 - - - 595 193 20.30

Pred-Corr. 0.004 - - - 4423 1425 146.23

Pred-Corr. 0.01 609 192 7.69 351 116 11.91

Pred-Corr. 0.02 487 135 5.30 . 239 73 8.13

Pred-Corr. 0.1 . 383 98 4.15 205 • 61 '7.12

N27AT

Version RELTOL Iters Time-

points
CPU

time

Standard 0.001 306 139 13.18

Pred-Corr. 0.001 880 424 33.37

Pred-Corr. 0.002 518 246 19.89

Pred-Corr. 0.004 431 204 15.97

Pred-Corr. 0.01 320 143 12.20

Pred-Corr. 0.02 292 131 10.92

Pred-Corr. 0.1 266 118 10.14

Note that while the predictor-corrector timestep controlled' version takes significandy longer to

solve for a given set of tolerances, it actually generates a much more accurate result, with the result

for a relative tolerance, RELTOL, of 0.002 producing a better waveform than the standard timestep

control algorithm does for a RELTOL of 0.0001 for circuit Q11ATAD. With this consideration, the

values obtained for the standard method in Figure 2.11 should be compared with those obtained for

the predictor-corrector method with a larger tolerance, resulting in better overall performance for the

predictor-corrector method in many cases. Unfortunately, convergence problems with this method,

30

caused by the higher accuracy for looser tolerances, must still be solved before it can be provided for

general use.

2.2.2. Limiting

Devices containing exponential curves require some degree of limiting Nage75a to prevent numer

ical overflow when proceeding along the exponential. During the sequence of Newton-Raphson itera

tions required to find a solution, it is possible for a relatively small change in a controlling variable to

cause a sufficiently large shift in another exponentially-controlled variable to make a large change in

the solution in the next iteration. This change may include a large change in the voltage across a

junction. The resulting exponential current increase could easily cause numerical overflow. The solu

tion of the circuit, if it can be computed, will not include such a point, so the value can be artificially

limited to a value which prevents the overflow as long as at least one additional iteration is carried

out to ensure that the small inconsistency in the circuit caused by the limiting does not remain in the

solution, thus generating a "damped" Newton-Raphson iteration. SPICE Na8*75a has traditionally

achieved this by limiting the change in each junction voltage individually. However, when a junction

voltage change is limited, the voltages seen by that junction are inconsistent with those seen by the

rest of the circuit, so a limiting operation for each junction in the circuit is required. It has been

suggestedWhit85a'SaIe87a that the voltage change limiting should be performed on a per-node basis.

This can reduce the time spent in the limiting code, but limiting the node voltage change enough to

prevent problems from exponentials reduces the rate at which all of the circuit nodes can change

between iterations to an unacceptably low level. This greatly increasing the total number of iterations

needed, particularly for dc solutions when nodes controlled by sources may have to rise to 5V in steps

of size nVt for some small value of n. A similar problem occurs when input voltage sources ramp up

or down rapidly. Further, the node-based schemes can not take advantage of knowledge of the

regions of operation of the devices attached to the node in question, something which the junction-

based scheme can handle since the junction-based approach basically limits each junction indepen

dently while the node-based scheme has no knowledge of the junction voltages at each node, only the

31

absolute value of me node voltage itself. Experimentation with the node-based algorithms of RELAX
and SPUCE showed agreatly increased iteration count and aconespotrfrng inaease mCPU time over
the junction limiting technique, thus the node-based schemes were dtopr^ from firrn^ c««deratioa

The predictor-corrector technique appears to offer areasonable approach to limiting since it can
bound the range of solutions that will be acceptably-close to the predtow so as to satisfy the trunca
tion error limit requirement. While this is anode-based limit, it is based on actual circuit activity
instead of being asimple fed limit. Unfortunately, mis technique does not help in the dc solution
where most overflow problems occur, thus the original rechmque used in snCE2 was restored.

23. Breakpoints

SPICE has traditionally used abreakpoint table to flag timepoints during the transient analysis
which require special attention due to arapid change taking ptad"** wben ^ program
encounters apoint in awaveform such as the point labeled'V^
tinuity exists. While the timestep control algorithm used-m SPIC^ aiKl SPIC^ wffl work at tins
point, experimental evidence has shown that the program will eventually hit atimepoint almost
exactly coinciding with points such as this one through asuccession of rejected timepoints. Mentify-

Hgure 2.12
An example breakpoint

32

ing these points in advance and not trying to avoid them can save the time used to generate these

potential rejected points. To implement this, SPICE2 maintains a sorted table of breakpoints, gen

erated during the setup phase, and whenever a timestep would carry it past such a point, the timestep

is cut to fall exactly on the point This works well for all statically determined breakpoints, such as

those produced by piecewise-linear voltage sources, but does nothing for points like this that are not

predicted during the setup phase. The only possible source for such sharp transitions as this other

than the input sources is the ideal transmission line model A transmission line can take a breakpoint

from a source and delay it, releasing it into the circuit with just as sharp an edge at a later time. To

handle these points, SPICE2 takes the precaution of assuming that every breakpoint in the circuit will

propagate through every transmission line, generating a breakpoint when it emerges. This breakpoint

would then traverse every transmission line again, including the one that just created it, until all possi

ble combinations that might occur before the simulation time limit is reached have been generated.

The computation of all such points is performed during setup to ensure that all possible breakpoints

are in the table, thus a single sorted table is generated before simulation begins.

The breakpoint table as implemented in SPICE2 can be quite expensive in the case of transmis

sion lines and potentially forces the program to solve the circuit at many new timepoints. In an

attempt to minimize these costs, several approaches were considered for reducing the breakpoint cost

in SPICE3.

23.1. V/I smoothing

Most breakpoints are readily identified as the points at which the slopes of voltage or current

source waveforms change abruptly. Since the change in timestep to bit the breakpoint exactly, the

complexity of cutting the timestep and integration order, and the additional complexity involved in

maintaining the breakpoint table are not trivial, an attempt was made to remove the breakpoints by

smoothing out the curves.

In experiments conducted by Shankar NarayanaswamyNara87a, the breakpoints were replaced by

a quadratic curve fitted to match the piecewise linear segments in position and slope at a point 20%

33

of the way down the shorter of the two segments meeting at the corner in question and at apoint an

equal distance down the other segment This produces the curved segment shown in Hgure 2.13.
This approach appears to solve the problem, but the change in the derivative of the signal is still too
rapid, and one or more points are still required in arelatively narrow range about the breakpoint
Further, the additional cost of the curve fitting increases the total analysis time for most circuits, thus

leading to areturn to the simple breakpoint table scheme used in SPICE2, although modified slightly

as described in the next two sections.

23.2. Transmission line problems

For most circuits, the SPICE2 breakpoint scheme is adequate, but if transmission lines are

involved, serious problems may result This approach, while quite conservative numerically, produces

serious problems in practice, since typical circuits have several transmission lines and several indepen

dent sources of breakpoints, thus producing a very large number of total breakpoints through their

assumed interaction in all possible combinations. An additional problem with this approach is it

requires that the end ofsimulated time be known in advance.

J.

Hgure 2.13
Quadratic curve fitted around a breakpoint

34

Table 2.14

Comparison of static and dynamic breakpoint table
sizes and resulting analysis times

Circuit SPICE2 breakpoint SPICE3 breakpoint SPICE2 total SPICE3 total

Name table size table size CPU time CPU time

T2AT 288 24 151 0.47

066AT 1408 24 30.57 10.32

T1ATAD 80 24 1.50 0.78

T2A1T 640 56 2.70 1.47

T1A1T 176 32 0.92 0.54

T1A2T 176 24 0.90 0.32

T3AT 144 16 1.93 1.51

T3A2T 144 16 1.83 1.52

Q4A4TA/Q4A5TAf 286792 16 4096.12$ 49.27

T2A2T 96 16 0.77 0.61

t The same circuit with two different input formats.
Xaborted due to iteration count Completed 2.04 ns of a 20 ns simulation.
81.15 seconds of transient analysis, 4012.57 seconds setting up
the circuit for simulation, most spent setting up the breakpoint table.

233. Dynamic table

In SPICE3, the breakpoint table has been made dynamic; it is constructed as the simulation

proceeds and includes only data needed in the immediate future. After each breakpoint is used, it is

discarded and, as each source passes a breakpoint, its next breakpoint is put on the list This handles

all the ordinary sources, but the sources added due to transmission lines passing source breakpoints

must still be handled. The major problem with the scheme used in SPICE2 is the excessive numberof

false breakpoints added due to the incorrect assumption that all breakpoints would propagate through

all transmission lines. SPICE3 makes the assumption that relatively few of the breakpoints actually

propagate through many of the transmission lines. At each tentatively-accepted time point, each

transmission line is checked to see if, by a divided-difference calculation, the approximate second

derivative at the previous time point is large and, if so, assumes it is a breakpoint to be propagated

through that line. Using both relative and absolute criteria, the sensitivity of this can be adjusted from

generating a breakpoint for every timepoint to never generating a breakpoint. The cost of this scheme

is slighdy greater than that for the SPICE2 scheme, since it requires a computation at each timepoint

for each transmission line and a computation at each breakpoint for each breakpoint-generating

source, as well as requiring an insertion sort on the breakpoint table. The significandy reduced size of

35

the breakpoint table leads to shorter sorting times, and the problem of raise breakpoints from
transmission lines is reduced. As seen in Table 2.14, the time saving can be quite dramatic.

2.4. Algorithm Reorganization

The organization of the algorithms in SPICE2 is not necessarily optimal even where the choice

of algorithm has been made very carefully. In some cases, the algorithms appear to have been organ

ized in such amanner as to niinimize the number of subroutines rather than to minimize cOTputation.

2.4.1. Convergence check

As an example of this problem, consider the outer loop of SPICE's Newton-Raphson iteration. In

SPICE2, the loop appears as in Hgure 2.15. In this loop, the Load and check device convergence

block represents a single call to the LOAD subroutine. In this subroutine, each device in the entire

Lead and check

device convergent

Update state machine

_^L

Solve!

v

Node convergence testj

_^

Hgure 2.15
SPICE2 Newton-Raphson loop

36

circuit must be evaluated and as aside effect of the evaluation its convergence criteria is checked.

When SPICE2 reaches the update state machine step, if convergence was obtained in both the device

convergence and node convergence tests, then the sparse inatrix loading that was performed during
the evaluation is ignored and the loop exits. If the convergence test failed at any point during the

node or device convergence test, the rest of the convergence test results are iinnecessary and ignored.

Modifying this algorithm to reduce these reauwlant computations results in the flow shown in Hgure
2.16, which is the algorithm used in SPICE3. In this algorithm, every time the devices are evaluated
the circuit is immediately solved usmg the resultmg matrix. The convergence tests are performed as

separate steps and as aresult, as soon as either the node or device convergence test fails, the
remainder of the tests can be skipped sm^ Hnally, since
the last evaluation of the devices for which no subsequent solution was performed is eliniinated, one

less evaluation of the devices per timepoint should be required. White this could conceivably reduce

_*£.

1&&&.

Solv

. XL

|Xode convergence test

•«-^^f iDevice convergence tesi

Update state machine

i

V

Hgure 2.16
SPICE3 Newton-Raphson loop

37

the number of device evaluations by approximately 25%, since approximately 3to 4evaluations are

typically required at each timepoint, the actual saving is much less due to avariety of factors. Cir
cuits frequently pass the node convergence test before the device convergence test, thus reqtiiring the
of device evaluations and convergence tests be, and in some cases asignificant number of iterations

are the result of points at which convergence is never obtained. Thus, the savings is significantly less

than might be expected, but it is still asignificant saving for some circuits and leaves the matrix

decomposed for additional operations which may be desired, such as sensitivity analysis.

2.5. Bypass

In asystem such as SPICE which requires evaluation of complex models, any algorithm which

offers to reduce the number of such evaluations is of great interest Bypass

10.00

9.00

8.00

7.00

6.00

5.00

4.00

3.00

2.00

1.00

^-i
A8-^

^ • B
« l! Hlfl

S '«
flf« • I !• •

ST; h *I

0.00 20.00 40.00 60.00

-a—

80.00

Hgure 2.17
Comparison of herations/timepoint

for algorithms of Figures 2.15 and 2.16

100.00

algorithm2.16

algorithm2.15

38

schemesNa8e75a'Webb86a'Sa,e86a'Newt77a offer such a reduction by allowing a previously calculated

result to substitute for one which otherwise would have to be computed. This technique can be

applied at several different levels in circuit simulation as described in the following sections.

2.5.1. Device bypass

A technique which has been employed bySPICE2 since it was first implementedNasc75a is device

bypass. In this technique, a device whose inputs have not changed significandy from the previous

iteration is not re-evaluated, but instead the computation is bypassed and the saved Jacobian and right

hand side entries from the previous evaluation of the device are re-used. As described by

NewtonNcwt77a, this technique works quite well for digital circuits since many parts of such a circuit

are quiescent much of the time, thus allowing a significant savings in the device evaluation time. The

additional cost of evaluating the bypass condition my actually increase simulation time in some cases,

primarily very small circuits where every device may be actively changing at every timepoint. How

ever, as shown in Hgure 2,18 this bypass technique can significantly reduce the computation time for

many circuits. In this plot the average CPU time per-iteration, both with and without bypass, is

shown for each circuit in the benchmark set plotted.

2.5.2. Jacobian bypass

By applying bypass at a different level, it may be possible in some cases to avoid all device

evaluations and to re-use the factored Jacobian from the previous iterationAnto68a. The exact Jacobian

is not needed at every step, simply a good approximation to it This approach has proven effective in

other pTOgramsWhit85a, and it has been suggested that it would work well in SPICE3. Unfortunately,

there is a problem with implementing this directly in SPICE3. SPICE has traditionally taken the

approach of computing the solution vector directiy while some other simulators, such as RELAX, have

taken the approach of computing the change in the solution vector at each iteration. Given this deci

sion, an analysis of the structure of the equations reveals that the SPICE equation formulation makes

the bypass of the entire Jacobian evaluation impractical.

secondsx

1.60 -

1.40 -

1.20 •

1.00

0.80

0.60

0.40

0.20

0.00

103

20.000.00

I.

ft

a*
» ni

i»anVi •

40.00 60.00 80.00 100.00 120.00 140.00

Hgure 2.18
Device load time with and without bypass.

39

nobypass

bypass

The solution being solved in general for the modified nodal analysis is:

f(V)=G(V)V-I(V)=0 <2-23>
where V is the desired solution (voltage) vector, I(V) is the vector ofindependent source currents,

and G(V) is the nodal adniittance matrix. The equation used by RELAX is:

JDELTAV=-f(V) G-24)

where J is the Jacobian of the function f(V) defined above.

DELTAVs-r1 tXV) C2-25)

This can reasonably be approximated by.

DELTAVs-JT1 f(V) G-26)
producing reasonable results using the approximate Jacobian J. When the formulation used by SHCE

40

is put into the above form, the result is:

J-Vncw = J-Vold-f(Vold) (2.27)

Vncw =r1 jJ-VoId -f(Vold) I (2.28)
Since G(V) is constructed to be identical to J, this becomes:

Vncw =J"1 jJ' VoW -J•Vold +I(Vold) I • (2.29)
SPICEsimplifies this as:

Vncw = r1I(Vold). (2.30)

Equation 2.28 can be simplified to:

vnew=r1 j-vold - rlzvM) (2.3i)

Attempting to eliminate the matrix inversion step and bypass the Jacobian evaluation results in:

Vncw = J-lJ-VoId-r1f(Vold) (2.32)

Unfortunately, this only produces a proper Newton iteration if J"1 J=l, which is generally not true.

Thus, Jacobian bypass is not suitable for use in a simulator such as SPICE while it computes V instead

of AV. While it may be possible to convert SPICE to such a formulation, the benefits of such a major

reformulation are not apparent The programming cost is quite significant requiring major changes

throughout the program as well as a complete rework of all of the device models.

2.6. Faster Models

There have been many attempts to reduce the time required by SPICE to evaluate the various

semiconductor devices. Some of these efforts have produced quite good results, but many of them

approach the problem by reducing the accuracy or completeness of the model, thus requiring addi

tional devices to fully implement real devices, or making the simulation much less realistic. As an

example of this, examine the SPICE level one MOSFET model. This model has a relatively simple

device equation giving Lj as a function of Vg8 and V^. This part of the model requires about 45 lines

of code and can be evaluated quickly. Unfortunately, this simple model isn't enough, so it must be

embedded in a larger model that considers other effects. The additional effects which must be

41

considered even for the simple level one model are:

Source Resistance

Drain Resistance

Bulk-Source diode (with nonlinear capacitance)
Bulk-Drain diode (with nonlinear capacitance)
Nonlinear Gate-Source capacitance
Nonlinear Gate-Drain capacitance
Nonlinear Gate-Bulk capacitance

Looking at these components as well as the general overhead of the model during a long run,

the time spent evaluating the total model can be summarized as:

Table 2.19

Level one MOSFET model evaluation time breakdown

Component Percent of MOSFET time time(ms/device-iteration)

Gate capacitance
Diodes

26% 0.13
19% 0.09

Matrix loading
Overhead

16% 0.08

12% 0.06

Bypass
Evaluation

9% 0.05
8% 0.04

Limiting 5% 0.03

As can be seen, some of this cost must be incurred regardless of the drain current model actu

ally implemented: approximately 12% of the total model evaluation time being spent in various opera

tions such as finding the starting terminal voltages and saving values for future iterations, and 16%

spent adding the computed conductances and currents into the matrix. The 9% spend in bypass can

be eliminated but at a cost of more time spent in each of the other categories, since on average each

trip through the bypass code is much cheaper than the corresponding trip through the limiting, evalua

tion, diode, and gate capacitance code. Finally, the time spent in limiting can be reduced or moved,

but a limiting scheme is still needed somewhere to damp out the wild swings sometimes encountered

during Newton-Raphson startup or when moving rapidly along the exponential curve. When using the

more sophisticated device models, all of the costs remain approximately unchanged except for the

equation evaluation which rises to a worst case value of approximately 0.91 ms for the level two

model. With the 0.45 ms overhead for all of the models, this permits a possible performance increase

of approximately a factor of three for the worst case model before impacting the accuracy of the

42

supporting code and the associated models for effects other than drain current. Even if the model

somehow includes the diodes and gate capacitance effects in its internal structure, the overhead will

still be approximately 0.2 ms. This would allow a maximum possible performance increase of a fac

tor of 7.5 for model evaluation and an overall simulation speedup of less than half that, significandy

less than the 10 to 100 claimed by some from model speedup. Further speedups are certainly possible

if the model is simplified. Simplifying the model by removing effects such as non-linear capacitances

as in earlier versions of SPICE2, or removing the bulk terminal can have a larger effect Such

simplifications would change the cost of the overhead operations such as matrix loading and device

limiting, as well as the cost of evaluating the drain current. These greatly simplified models, while

possibly suitable for a logic or timing simulator, are not suitable for a circuit simulator such as SPICE.

CHAPTER 3

Convergence

SPICE uses a damped, iterative Newton-Raphson algorithmActo70a'Na8e75a to determine the solu

tion to the circuit it is analyzing at any time. This algorithm is guaranteed to converge to the correct

answer if it is started sufficiently dose to that correct answer and is followed accurately. While SPICE

attempts to ensure that it always starts "close enough" to the answer, it is not always possible to do

so and the iteration may fail to converge. Various techniques to minimize this problem have been

used in past versions of SPICE, and new techniques and improvements in these old techniques have

been added to SPICE3.

A large part of the problem of convergence is properly choosing the tradeoff between conver

gence speed and robustness of the program. Convergence is fastest with simple linear models, but

more accurate models for transistors introduce substantial non-linearities which must be modeled

accurately for the result of the simulation to represent the circuit accurately. In addition, these non-

linearities typically take longer to evaluate than simple linear models, so the choice of different

models for different regions must be made carefully and the fitting of the regions together must also

be performed carefully to ensure smooth transitions between regions without causing difficulties for

the Newton-Raphson iteration.

3.1. Initial Guess: Failure to Converge in dc Analysis

The largest category of non-convergence problems that occurs in SPICE is that of failure to con

verge in the initial dc analysis. This analysis is the most error prone of the uses of the Newton-

Raphson iteration method because there is, in general, no approximate solution available at low cost

The rate of convergence of the Newton-Raphson iteration is quadratic once the method gets "close

enough" to the solution. Before reaching this point the method generally converges at a slower rate,

possibly even diverging. In the transient and dc transfer curve analyses, the solution at the previous

43

44

time or voltage point provides an approximation to the solution at the new point, but during the initial

dc solution, no such information is readily available. The approximate solutions provided by the tran

sient or transfer curve analysis is almost always "close enough" to lead to a rapid convergence.

In the case of the dc solution, the problem is the trade-off between the cost of generating a

"close enough" guess and the cost of simply allowing the Newton-Raphson iteration process to

proceed from a less accurate guess. Experience with SPICE2 has shown that in most cases, the solu

tion is found reasonably quickly and inexpensively by simple letting the iteration proceed from a less

accurate guess. The general strategy adopted for SPICE3 is to use this simple, efficient procedure ini

tially and when it begins to break down (by failing to converge to a solution in a reasonable number

of iterations), to use a more complex and potentially more time consuming algorithm to recover and

ensure that a solution is found.

3.1.1. Previous approach

SPICE2 uses a very simple set of assumptions about the initial dc solution which frequently

work, but fail often enough to be a serious concern. The initial assumption in SPICE2 is that all node

voltages and source currents are zero, but that all device junctions are at their "critical" voltage (V^

Vt
for MOSFETs, Vtln

V2xl,

route from this guess to the correct operating point is frequently complex, with large amplification and

feedback stages resulting in numerical overflow and/or oscillation problems. Further, this guess is not

consistent since a MOSFET will be assumed to have all terminals at 0 but for example, 0.6v from

gate to source and -1 volt from bulk to source. SPICE2 provides a variety of ways through the

".NODESET" and "JC" statements for the user to point the program toward the correct initial solu

tion, but these require considerable knowledge about the operation of the circuit to be provided by the

user and make the situation even worse when used incorrectly.

for BJTs and diodes, -1 for JFETs and MESFETs). Unfortunately, the

45

3.1.2. Source propagation

Source propagation is a form of logic simulation that has been proposed as a technique for get

ting an approximate dc solutionDcva85a. This technique, as implemented in CSIM, is most directiy

applicable to digital MOS circuits. The technique uses a switch-level steady-state logic simulation of

the circuit to obtain starting estimates for node voltages. In this technique, the network is traversed

from the input voltage sources. A technique similar to an event driven logic simulation is used to

assign logic levels to nodes direcdy driven by the sources. The logic levels are propagated

throughout the circuit if possible. Where the logic levels cannot be obtained by this process, reason

able off, on, and intermediate conductances based on W/L ratios are used for the MOSFETs with vol

tage sources representing appropriate values for each logic level driving the known nodes. This gen

erates a network of voltage sources and resistors which is then solved, generating values for each

node. These node voltages are then used as the initial guess for the dc solution of the circuit Work

conducted by Srinivas Devadas D^*858 on this subject show good results, not only making the operat

ing point solution less likely to fail, but reducing the number of iterations required to reach that

operating point by a factor of up to 10 as shown in Table 3.1. Unfortunately, while it may be possi

ble to extend this technique to non-digital and non-MOS circuits, the size and complexity of the code

required to implement source propagation makes it a poor choice for a general-purpose simulator such

as SPICE3. Techniques such as this are appropriate for a more sophisticated user interface and front

end to SPICE3 such as NECTARKele88a, which may be able to recognize this particular situation or

determine that it is the case through its interaction with the user.

3.1.3. Continuation Methods

Continuation methods0**5703 are one means of dealing with a major limitation of Newton-

Raphson methods, namely that convergence to the solution is only guaranteed if the iteration is started

from a point "close enough" to the solution. Continuation methods provide a means of obtaining a

point "close enough" to the solution to allow the Newton-Raphson iteration to succeed. Continuation

methods accomplish this by converting the task from the solution of a single problem to the solution

Circuit Operation SPICE2 CSIM Ratio

Description CPU timefs) CPU time(s)

500 inverter chain Readin 135.1 3.4 39.7

Matrix size 504 Setup 12.6 2.1 6.0

N devices 500 dc CPU/Iter 8.50 1.06 8.0

P devices 500 tran CPU/Iter 14.28 1.83 7.8

Total devices 1000 dc CPU/Iter-Device 0.00850 0.00106 8.0

tran CPU/Iter-Device 0.0148 0.00183 8.5

Total dc Iters 51 6 8.5

Total dc CPU 433.5 6.4 67.7

Soar ALU Readin 225.1 9.6 23.4

Matrix size 1183 Setup 78.8 4.1 19.2

N devices 1289 dc CPU/Iter 28.0 2.75 10.18

P devices 403 tran CPU/Iter 36.0 3.68 9.8

Total devices 1692 dc CPU/Iter-Device 0.01654 0.001625 10.18

tran CPU/Iter-Device 0.02127 0.002174 9.8

Total dc Iters 44 9 4.88

Total dc CPU 1232.0 24.75. 49.7

Table 3.1

Iteration reduction using CSIM
From CSIM User's Manual and Report

46

of a continuous set of problems. One member of the set of problems is easily computable, and the

other members proceed continuously as a function of a single variable to the original problem. By

varying this control variable slowly enough, the successive points taken are each close enough to the

previous one for the Newton-Raphson iteration to converge. This gives us a way to approach the

solution more gradually, thus making convergence much more likely, although with increased cost

Although the techniques presented here are all continuation methods, they approach the problem

from three distinct directions and have their own advantages and disadvantages.

3.13.1. Gmin stepping

Gmin stepping is a combined algorithm which comes from a variety of sources. The original

term "Gmin" comes from Nagel's^s6753 SPICE2 work where it referred originally to a small conduc

tance from each node to ground. It was later used for a minimal junction conductance which was

inserted to keep the matrix well conditioned. In BIASL.25Newt76a this conductance was stepped from

47

a large value to a much smaller one to aid convergence. In SPLICE3SaIe86a and RELAX2Webb86a this

conductance has been separated from the minimal junction conductances in the devices, which are not

used; the node to ground conductances are stepped down as a dc convergence aid. SPICE3 uses both

Nagel's technique of a constant minimal junction conductance to keep the matrix well conditioned

and a separate variable conductance to ground at each node as a dc convergence aid. These variable

conductances make the solution converge faster, they are then reduced and the solution re-computed.

Eventually, the solution is found with a sufficiently small conductance. Finally the conductance is

removed entirely to obtain a final solution, implementing a form of continuation methodP1*10*.

Implementing Gmin stepping in SPICE3 is not too complicated if one additional step is taken and

Gmin is actually added to the diagonal of the reordered matrix, not the matrix corresponding to the ori

ginal circuit This has the advantages of not creating any new non-zero entries in the matrix as well as

being simple to implement in the lowest level of the matrix package. This technique has produced

very good results. Most of the circuits G^ stepping has been tested on have converged quite quickly,

and SPICE3 now uses this technique by default when convergence problems occur.

There are many algorithms for picking the initial value of Gmin, for reducing it and for deter

mining the last value to use before removing it from the circuit entirely. As an initial test a simple

Gmin = Initial value;
while Gmin != 0 {

itercount = 0;
converged = false;
while (not converged) {

if (itercount > iterlimit) fail; /* don't loop forever */
load matrix;
solve circuit;

converged = convergeTestO;
itercount = itercount + 1;

}
reduce Gmin;

}
Figure 3.2

Gmin stepping algorithm.

48

logarithmic step is used by taking powers of 10 from 1010 times the minimal conductance (default

10"14) down to that minimal conductance value from which point it is dropped to zero. This simple

algorithm allowed all well-formed test circuits that did not generate numerical errors, except one*, to

converge to an operating point This degree of success using such a simple algorithm (and generally

using less than the 100 iterations needed to trigger it) led to its being retained in this form. More ela

borate stepping schemes are possible, but do not seem to be justified by the results obtained by the

simple scheme.

3.1.3.2. Source stepping

Source stepping is another continuation method which begins by reducing the values of all the

sources in the circuit to a small fraction of their value and obtaining a dc solution. Since the solution

to the circuit with all sources at zero is known to be zero, when the source values are very close to

zero, the solution should be very close to zero. By gradually increasing the sources, the answer

should remain within the necessary range of the previous solution, thus guaranteeing convergence.

Unfortunately, this technique doesn't work for all cases; in particular, when the input voltage reaches

the level necessary to turn on transistors in digital circuits, the solution can change sufficiently rapidly

to cause convergence failure. Since the code required to implement this technique is almost

insignificant, it has been left in as a back-up to the more successful Gmin stepping method described

above.

3.1.3.3. Pseudo-transient

The pseudo-transient method of finding a dc solution is a variation on the source stepping

method. In this method all sources are set to zero as in source stepping. Wcek73a The circuit is solved

and the simulator then allows the sources to slowly ramp up to their nominal values as time

progresses, gradually charging the capacitances of the circuit as it would if the circuit were actually

powered up. Eventually, the sources reach their steady state value and the circuit voltages and

* The one circuitwhich did not converge is a fifteen stage CMOS ring oscillator, an extremelydifficult circuitto solve.

srcfact = 0;
while (srcfact != 1) {

converged = 0;
itercount = 0;
while (not converged) {

load matrix; /* voltage sources scaled by srcfact */
increment itercount;
solve circuit;
converged = convergeTest();

}
increase srcfact;

} /* srcfact MUST be 1 by here */
Figure 3.3

Source stepping algorithm.

49

currents stop changing, indicating that the dc solution has been reached. This allows the capacitances

and inductances of the circuit to damp out the oscillation frequendy encountered during the early

iterations of the dc analysis. This technique may prove useful at some time in the future, but has not

been implemented at this time due to the tremendous success of the Gmin stepping algorithm described

above in handling all of the problems the pseudo-transient method addresses.

3.2. Transient Problems

The problem of convergence in transient simulation is a superset of the problem of convergence

at dc. A transient analysis will generally be much more time consuming than a dc analysis, and thus

every possible attempt must be made to reduce simulation time. Due to the nature of the problem,

errors accumulate from timepoint to timepoint, thus making accuracy even more important Further

more, since time is now a variable, the effects of capadtance and inductance must be considered in

addition to all of the normal dc effects.

3.2.1. Bypass

One of the features of SPICE2 which has received mixed reviews for many years is the inactive

device bypass code. As described in Section 2.5, this code allows a device, the terminal conditions of

50

which have not changed significandy since its last evaluation, to have the results of the previous

evaluation re-used instead of repeating the evaluation. Since the cost of device evaluation can be

quite high, particularly for the more complex devices, and since many devices do not change for long

periods of time, particularly in digital circuits, this technique can save a large amount of computa

tional time.

Unfortunately, many users have had difficulties with the inactive device bypass in SPICE2 and

have concluded that the problem lies with the technique. A careful analysis of the implementation of

SPICE2 during the writing of SPICE3 and during subsequent debugging revealed that much of the

bypass code used in recent versions of SPICE2 was incomplete. This created the potential to cause

serious problems in large and complex circuits, although it is quite well behaved for small, single dev

ice circuits of the type typically used to test such code.

Consider, for example, the BJT. In SPICE2, the bypass code reloads a list of variables which

does not include CAPCS, the collector to substrate capadtance, then branches .directly to statement

number 800, near the end of the BJT subroutine, where it passes the value of the uncomputed variable

CAPCS to the subroutine INTGR8 to compute the equivalent.conductance for the capacitor. Under cer

tain conditions, CAPCS may have been saved, but since it isn't restored, an incorrect value will be

used in its place. In FORTRAN, this actually works much of the time because FORTRAN local vari

ables are static, thus CAPCS will have whatever value was last assigned to CAPCS in the previous

iteration within BJT even if in a previous call to BJT. Thus, for a one transistor circuit, it will still

have the correct value of CAPCS, regardless of what other subroutines have been called between the

solutions. In the case of a more complicated circuit it will have the value of CAPCS for the last bipo

lar transistor that was actually evaluated, regardless of the parameters of that device. Since many

users group similar transistors together, and most devices in a circuit will have similar characteristics,

this masks the problem further. In SPICE3, this problem is immediately apparent In C, variables are

dynamically allocated on the stack each time a subroutine is entered. Hence the use of the uninitial

ized variable CAPCS results in a random number from the stack being used. Thus the variable could

51

have a value from almost any other routine, including integers or bit fields, producing unpredictable

results. These results frequendy include floating point errors since the magnitude of the random

numbers is unlikely to be correct for junction capacitances, and experience indicates that VAX

reserved operands are not uncommon.

Fixing these problems in the various device models has improved the reliability of the bypass

technique. In conjunction with other changes made in this project this has fixed numerous "timestep

too small" errors. For those users who still do not wish to employ this technique, SPICE3 also allows

inactive device bypass to be disabled at either compile time or run time.

3.2.2. Discontinuities and Inconsistendes

Another major problem in finding the solution, one which affects both the initial dc and the

transient solutions, is the consistency of the models used. Newton-Raphson can only converge if it is

used correcdy; by incorrectiy evaluating the device models or the derivatives needed for the Jacobian

matrix, the algorithm can be led astray, leading to non-convergence. Unfortunately, SPICE has tradi

tionally had problems with this particular situation because of the difficulty of errors made in comput

ing companion model values for complex models, or because changes have been made in one part of

the code for a model without updating all other, related parts of the model code.

In this section, a number of such problems in SPICE are discussed, with applicability to both

SPICE2 and SPICE3.

3.2.2.1. Diode modds

SPICE models the source to bulk and drain to bulk junctions of MOSFETs with simple junction

diodes, with the corresponding non-linear capadtance. These capadtances make up only a small part

of the overall model, but are vital to the proper operation of many circuits. As described in Section

2.1.3.1, SPICE uses four different equations for capacitance and charge in a junction for the regions:

Vj<FcPb (3.1)

and

52

Vj>FcPb (3.2)

where Vj is the junction voltage, Fc is a curve fitting parameter between zero and one, and Pb is the

bulk junction potential. For convergence, SPICE must also use the proper variable capadtance:

dQi

lvt=c' (33)
dQ2^=C (3.4)

where the subscripts 1 and 2 indicate the two regions denned by Equations (3.1) and (3.2) respec

tively, with C and Q being the capacitance and charge on the junction capadtance. At the intersec

tion of these regions Vj=FcPb continuity requires that:

Q1=Q2 (3.5)

C,=C2 (3.6)

and

dCi dCz

"dv7"dv7

The actual equations used in SPICE2 for MOSFETs are:

Cl=^

(3.7)

Vj Ml (3.8)

CpPb(l-(l-^)''M^)
Qi=—

(3.9)

1-Mj

C2=Cj0(l-Fc) M' !(-iJ.-Fe<M,+l)+l) (3.10)

Q2=Cj0(l -Fc)"MJ"1Mj(Vj2-Fc2Pb2)
+Cj0(l-Fc)'Mi'1(l-Fc(Mj+l))(Vj-FcPb) (3n)

Cjod-d-F^-y,
+ 1-Mj

Where Cp is the zero biasjunction capadtance and Mj is the junction grading coefficient.

53

Checking these equations against the requirements of Equations (3.3) through (3.7),

<*Qi _ cJQpb Q m 1 1
dVj 1-Mj1 ***' Vj)M. Pb (3.12)

Pb

dQi Cjo
dV: Vj M. (3.13)J n iyi x

Pb

-^=2Cj0(l-Fc)"Mi",MjVj+Cjo(l-FcrMJ"1(l-Fc(Mj+l)) (3.14)
j

-^•=Cjo(l-Fc)'MJ"1(2MjVj-FcMj-Fc+l) (3.15)
j

dQ2
-ZT*Ol (3-16)dV,

at Vj=FcPb this gives:

Thus:

And

Thus:

Finally:

V1 1-Mj

GnPai
Q2=

CjpPbd-d-Fe)1"^) (31g)
1-Mj

Qi=Q2 (3.19)

ci=—TIT (3-20)
d-Fc) J

—M —t

C2=Cjo(l-Fc) j (l-Fc-MjFc+MjFc) (3.21)

°2= m" (3-22)
d-Fc)Mj

Ci=C, (3.23)

Giving:

dCl W"i£>.jar"*-

dVj

dcyqod-Fer^Mj
dV: Pk

dCi dCa

dVj " dVj

These all appear to be correa, except Q2*JC dv, so that equation must be re-derived.

vi
Q2=JCdV

0

P«Pb Vj

Q2= f CdV+ j CdV
* F«pb

Cjod-d-FJ1"^
' 02= 1-Mj

vi
-M,-l VMj+ J (Cjo(l-Fc)"^"1(l-Fc(l+Mj)+—^))dV

FR

02 =
Cjpd-d-Fe)1"^

1-Mj

Cj0(l-Fc) J (^ FC(M: +1)V+
2P,

V)
F„Pk

Q2=qo(1-\1:g1"Vb+cj0(i-FcrMi-(Vj.FcPb)
-Cjo(l-Fc)'MJ'lFc(Mj+l)(Vj-FcPb)

Cjod-FJ^^MjO/f-F^Pb2)
+ 2Ph

54

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

atVj=FcPb,

Thus:

Q2= +
Cjpd-d-F^'Vb

1-M5

-M:-l+Cj0(l-Fc) "» (l-Fc(Mj+ l))(Vj-FcPb)

qp(l-F«)"^"1l^(Vj2-P?Pg)
+ 2Pb

02 =
Q0(l-(l-Fc)1"Vb

1-Mj

Q2=Qi

dQ2_Cj0(l-Fc)~M'"1MjVj
dV, P.

+Cj0(l-Fc)"Mr1(l-Fc(Mj+l))

dQz
=C

55

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

Equations 3.8 through 3.10 and Equation 3.32 provide the corrected junction capadtor model

used in SPICE3. This set of equations is used for each of the four junctions used in the MOSFETs, and

only models the capadtive effect of that junction. Fmally, note that these equations are then modified

as described in Section 2.1.3.1 for more efficient implementation, giving:

V= i3
Pb

C,=CjoxV1

VM:

CjoPb* 1-Vlx •-£
Ql=-

1-Mj

C2=Kl+K2xVj

Q2=K3+VjX Kl+VjX^

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

56

For constants:

Kl^joXd-FeXd+MjMl-Fc)"1"^ (3.42)

K2=-S^lix(l-FC)"1"MJ (3.43)
Pb

K3=-^x(l-(l-FJ1-V^xFc2xPb2-klxFcxPb (3.44)
While removing this discontinuity does not seem to solve any particular convergence or run

time problems in SPICE, it does point out the general complexity of the models. In this case, some

where along the way a divisor was dropped from one term in an equation, making two equations that

must be consistent with one another inconsistent. This particular error occurred in a part of the curve

where the device should never be operating, but can not be overlooked as a possible cause of trouble

during the initial Newton-Raphson iterations. It also illustrates that not all errors in the code will

show up as obvious errors in the simulation, and that no part of the code can be left unexamined in

the search for errors of this type. In the next section a similar error with much more serious conse

quences is explored.

3.2.2.2. Meyer model

The Meyer model used in SPICE2 and early versions of SPICE3 is not the original Meyer

modelMcye71a, but a modification made at some point in the past Unfortunately, this modification,

which was intended to include bulk voltage effects, causes the gate-drain and gate-source capacitances

to be discontinuous when V^ crosses zero.

The original capadtor model proposed by Meyer provided a single equation for the gate charge

QS=J cox
(Vgd-Vt)3 (Vgs-Vt)3

L(Vgd-Vt)2-(Vg8-Vt)2 (Vgd-Vt)2-(Vgs-Vt)2

This equation can be differentiated with respect to the gate-source and gate-drain voltages giv

ing equations for the gate-source and gate-drain capacitances respectively.

(3.45)

57

(3.46)

(3.47)

Unfortunately, when these were modified to include a bulk voltage dependence, the capadtance

terms were changed to:

c — — r* 1-

and

C =—C 1—

(v<j.«-(vs*-vgb))2
(2V, -2(Vgs-Vgb)-Vdb)2

(vdttt-(vgs-vgb)-vdb)2
(2Vdtti-2(Vgs-Vgb)-Vdb)2

A problem occurs when the behavior of these terms is observed as V^ is allowed to approach

zero while keeping the device turned on and the bulk voltage far below the source and drain. At

VfesO, these equations must be equal since, by the symmetry of the MOSFET, at that point the drain

and source can be interchanged without affecting anything. Looking at these two equations at this

point, and attempting to equate them, they are equal if and only if

Vw^V* (3.50)

Clearly this is not required of the MOSFET, so at the point where V^ changes sign and SPICE

reverses the source and drain to keep V^ non-negative internally, a discontinuity is introduced into

the capadtance. Graphically, this produces the capacitance curve shown in Figure 3.4.

This sudden change in capadtance will require an equally sudden change in either the charge

on the capadtor or the voltage of the capacitor. If the voltage changes rapidly the truncation error

tolerance will not be met The sudden change in charge will call for a large current, which will also

cause a truncation error problem, or a large voltage change elsewhere in the circuit. The result is a

rejected timepoint, and a new much smaller timestep. This time, the same change in capacitance is

present, and even less time to change the voltage or charge, so the currents involved will be even

(3.48)

(3.49)

58

Pico-Farads

1] in •—'

Cgs

120 "

2.00

1.80

!

1.60

1.40
i

1

1.20

"^^v^i
1.00

^^^^

0.80 ?*•—
.

0.60 V

-4.00 •2.00 0.00 100

Hgure 3.4
Gate-Source and Gate-Drain capadtance

vs Yds before correction

4.00

higher, eventually leading to atimestep too small error. Replacing this equation with the original
Meyer equation produces the smoother curve ofHgure 3.5.

This change in SPICE3 solves many of me "Timestep too small" problems previously encoun

tered with both SPICE2 and SPICE3.

Tl* tevdopment of an ar^m^

lem for future work in model devdopment.

3^23. Other MOSFET gate capadtance models

In addition to the convergence problems in the gate capadtance model used in SPICE, there
have been numerous criticisms of the model used for its non-charge-conserving properties. Tbe

Pico-Farads

120

100

1.80

1.60

1.40

1.20

1.00

0.80

^^——— —^—————————-^^^——— —•—"^—~—•—•"~^-"^ •••*""

^^^^

^sT ~P?
i ^_ ;

• ^ j

^—I ^V
1 X

»•* ' i \..** ' i X-'— \

-4.00 •100 0.00 100

Hgure 3.5
Gate-Source and Gate-Drain capadtance

vs Vds after correction

4.00

59

Cgs

Cgd

problem, as detailed by Sakallah, Yen, and Greenbe^gSak*87^ is that the Meyer model isexpressed as

a single gate charge and all of the other charges are computed by numerically integrating the partial

derivatives of that charge rather than by expressing those charges in dosed form. Several solutions to

this problem have been proposed.

Ward and DuttonWard78* proposed a more complicated model which includes an explidt charge

calculation for each terminal, thus producing a charge conserving model. This model was imple

mented in SPICE2 by Vladimirescu and Liu^*180* with some success. This implementation was res

tricted to the new levd two MOSFET model, and added quite significantly to the complexity of that

code.

60

Another model was proposed by Yang, and Chatterjee, Yans82a and EplerYans83a which is also

charge conserving. This model is also expressed as a set of charge equations for the terminals, with

the need to compute all of the appropriate partial derivatives to obtain capadtances. Unfortunately,

this model provides a full set of equations for various regions, but does not guarantee that these equa

tions are consistent across the boundaries of these regions. As with the modified Meyer model in

SPICE2, the Yang-Chatterjee model has discontinuities in the capadtance. Specifically, at V^O and

Vgs=Vt, is the boundary between the linear and saturation regions. In these regions, the relevant

equations are:

=COTlw

*

OxVi

12
OxVds

V +V -™ —vt^ vgs 2

+Vgs-VFB- 2

and

Differentiating these to obtain C^, yields:

Vg»-Vt
20^

+Vgs-VFB-<|>

1 —
ctxVi3Qg

C =——-=C lw

12 -vt+vg$-
"xVds

ao.
C - —s-=C lw 1-

2a*

ds

evaluating these two derivatives at V^O and as V^ approaches Vt produces

CKsUnc«r~C°3tlW

and

1-
1

2a,

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)

Since equations 3.54 and 3.55 are different for any non-degenerate case, there is a mismatch in the

capadtance similar to the one observed to cause so many troubles in the Meyer model, and at the

same point.

61

While SPICE2 has used the Ward-Dutton model and other simulators such as RELAX and

SPLICE2 have used the Yang-Chatterjee model, at this time the standard Meyer model has been

preserved in SPICE3 because of its simplicity and ease of evaluation. As the MOS models are

evaluated further with the new flexibility of modifying the structures of the program, the model

should probably be replaced by one of these two charge conserving models or the Sakallah, Yen,

Greenberg charge conserving model. The choice of which one is implemented should be based on the

complexity of the drain current model being used.

3.3. General Problems

There are several problems which apply equally to the dc and transient solutions of the circuit

Some of these problems can be addressed by the simulator relatively easily, such as problems in the

matrix solution due to the circuit structure, others can not be solved that simply.

A major problem is that of circuits which have no unique solution. It is not uncommon to find

circuits, particularly those generated by circuit extractors, which have floating nodes with no dc path

to ground. These circuits do not have a unique solution. It is also common to find circuits that are

not well-formed, particularly those which are incorrectly connected (e.g. the bulk of a MOSFET tied to

the wrong rail). SPICE2 attempted to catch these and other, similar problems by a topological check

performed before the simulation. No suitable topological check has been implemented in SPICE3, but

something like this to perform preliminary checks is clearly needed. A program such as

NECTAR1^888 provides many of these facilities, allowing more complete checking than the topologi

cal check of SPICE2 could perform. Nectar achieves this through the addition of user interaction and

the use of additional heuristics to look for common cases that, while not always an error or technolog

ically incorrect, are usually an indication of a problem. Thus, including a sophisticated knowledge-

based system like NECTAR in SPICE3 in the future, or the use of such a front end to examine SPICE3

inputs and pre-condition them before actually simulating them is advisable.

62

3.3.1. Floating nodes

One characteristic that has been blamed for many SPICE convergence problems in the past is

"floating nodes" . These are circuit nodes which have no conductance from the node to any other

part of the circuit This produces a row and column of zeros in the modified nodal analysis matrix,

making it impossible to invert the matrix. In a very high quality memory circuit, this is the ideal for

a memory cell but cannot be realized in practice. Most of the problems caused by "floating nodes"

in a circuit have, in fact been either input errors or discontinuities in capacitance at nodes with very

small conductances connected to them. This leads to numerical errors. Attempts to isolate circuits

with real floating nodes have always led to another problem in SPICE being found that, when fixed,

corrected the problem. This particular problem is very common in CMOS circuits, where nodes are

frequently cut off. In this case the capacitance discontinuity in the Meyer model described in Section

3.2.2.2 exhibits itself quite frequently, since both source and drain are frequently at a potential

different from bulk. Since no non-contrived examples of floating node circuits were left to work

from, this "problem" remains unsolved.

3.3.2. Matrix pre-ordering

There are special situations which must be handled in the matrix package of a program which

performs modified nodal analysis(MNA)Nase75a'̂ he76a'Yan680a*Ho75a. While these situations do not

keep the program from computing correct answers, they do make it more difficult The difficulty is

caused by elements such as voltage sources which produce structural zeros on the diagonal of the

matrix (Rgures 3.6 and 3.7).

Figure 3.6
Voltage source causing MNA problems

<}—G—*

-<} G 1

- 1

V2

Iv

Figure 3.7
MNA matrix corresponding to Figure 3.6

63

Where these elements occur in isolation, the reordering algorithm handles them quite easily by notic

ing that the current equation with the zero on the diagonal can be either ignored, allowing it to be
filled in by the reordering, or swapped with one of the node equations amesponding to the nodes the

source is connected to, producing asuitable diagonal entry for both equations (Figure 3.8).

Rgure 3.8
MNA matrix corresponding to Rgure 3.6 after row swapping.

64

In the case of the independent voltage source, this results in ones on the diagonal in both rows,

clearly adesirable result inmost MNA matrices.

As previously shown by cmers^8^*™*8*', the problem becomes apparent when two or more

of these sources occur interconnected as in Rgure 3.9.

Rgure 3.9
Circuit with multiple sources

In this case, the structural zeros marked t in Rg»« MO must be cleared by swappmg with omer

rows.

-<r

: :

-6— 1

G -1 v2

t 1 -1 v3 =

-1 1 t Ii VI

-1 t \
V2

Rgure 3.10
Matrix with poor numbering choice

65

This can lead to a simple solution if the sources are processed in the correct order, but an unlucky

choice ofnumbering and thus ordering ofthe row swaps, can cause the situation shown in Rgure 3.11

where the equation with the zero marked t must be swapped with aparticular row which has already

participated in aswap, and thus is ineligible to be swapped again as it wiU just put another zero on

the diagonal.

-G

"ttJ - -

-G 1

G -1 v2

1 -1 v3 =

-1 1 Ii VI

-1 t h
V2

Rgure 3.11
Matrix with poor numbering choice

In SPICE2Na8e75a and YSWCEYan880a, this problem is solved by having special case code which

iterates through the voltage sources and inductors to perform the proper row swapping. This is not

acceptable in SPICE3 because it requires knowledge of the devices in the matrix handling code. To

66

solve this, a new algorithm has been developed which performs the appropriate row swaps without

reference to the circuit simply by analyzing the matrix. This algorithm handles arbitrary interconnec

tion of sources and connections to ground provided the MNA restriction of no loops of sources is

adhered to.

The algorithm, as shown in Rgure 3.12, begins by finding those structures that look like sources

or inductors which are already constrained by having one end attached to a non-swappable row.

Equation numbers corresponding to these structures are all pushed onto a queue. As the queue is pro

cessed, each equation is examined to check that it still has one free node equation to swap with, and

that swap is performed. If no free node equation is available, there is a loop of source structures. If

the equation swap is successful, the swapped equations are marked to prevent their participation in

any future swaps, and are then examined to see if they are attached to any source structures. If any

source structures are attached to the swapped equation, they are now constrained and must be added

to the queue. When the queue is empty, any single equation corresponding to a zero on the diagonal

may be pushed into the queue.

This algorithm will find and perform a comparable set of row swaps to the algorithms in SPICE2

and that given by Ping YangYans80a, but operates without explicit knowledge of the sources in the cir

cuit by exploiting the structure of the MNA matrix.

j=0;
toswap=0;
for (i in 1 .. numeqn) {

if (matrixy does not exist) {
increment toswap;
status[i] = NEEDSWAP;
count[i] = number of non-zero entries in row i;
if (count[i] == 1 {

statusp] = INQUEUE
push i into work queue;

}
} else {

statusfi] = OK;

}
}
while (toswap > 0) {

while (work queue is not empty) {
j = pop(work queue);
k = 0;

find:

find first non-zero element matrix^ after current matrix^;
if (statusfk] == LOCKED) goto find;
swap row j and row k;
statusfj] = LOCKED;
Statusfk] = LOCKED;
decrement toswap;
for (i in rowj and matrixji != 0) {

decrement count[i];
if (count[i] == 1 and status[i] == NEEDSWAP) {

push i into work queue;
status[i] == INQUEUE;

}
}

}
pick any i such that status[i] == NEEDSWAP;
push i into work queue;
statusfi] == INQUEUE;

Rgure 3.12
Matrix pre-ordering algorithm

67

CHAPTER 4

Program Architecture

A common problem in attempting to understand and modify a program such as SPICE is the

sheer size of the program and the complexity of the program organization. Many people have found

a need to modify SPICE2 for their own purposes by adding capabilities to it or modifying existing

capabilities. This is very difficult to do in SPICE2 because of the organization of the program. For

example, to add a new model to SPICE2, changes must be made in 25 different subroutines in addition

to the writing of the model code itself. Many of the required changes are quite subtle and easy to

overlook or perform incorrectly. In SPICE3, these various actions have been separated from the rest

of the code. Up to 22 functions, most of them less than a page, may be required, but the require

ments for each of these functions is fully specified and many can be omitted for simpler devices.

Finally, a complete description of the device is built in a single file, including the names of whichever

of the 22 possible functions have been implemented for the device. From this information, SPICE3

integrates the device into its operation as required.

To understand the structure of a large program such as SPICE3, it is necessary to break it into

modules, then study them individually, and finally observe how they interact with each other to pro

duce the overall result In the case of SPICE3, the structure must be examined from three perspectives

and at several different levels.

Because of the ever-changing field of circuit design and with new technology constantly requir

ing changes in simulation technology, it is most important that the simulator be as flexible as possible,

consistent with high performance. This requires the ability to add new devices, new types of simula

tion, new analysis algorithms, and new ways of inputting and outputting data. To this end, SPICE3

has been made modular, making it possible to do these things with as little additional work as possi

ble. This necessitates a number of descriptive data structures which describe capabilities at one level

69

70

of the code to other levels and other structures which store data for one level to hide it from other

levels. Tliese structures are frequently only distantly related and thus are described mdependently.

Finally, it is necessary to understand the subroutine calling hierarchy and the way the modules call

each other.

The basic calling structure ofthe program isas shown in Rgure 4.1.

Devices

User interface

Simulation/
numerical

algorithms

iMatrix package

Rgure 4.1
Basic calling structure

In this figure, the block labeled "Devices" represents all of the per-device-type packages which

are incorporated into the program. These packages use and are used by the mimerical algorithms of
SPICE3. Both the device code and the numerical routines manipulate the sparse matrix through the

matrix package. The simulation and numerical algorithms have been intermingled, since they are so

closely related and have such agreat effect on each other. The user interface only knows of the entry

points provided by the simulation control routines, thus it only calls them and they control almost all

of the non-error output

71

The basic descriptive data structure is shown in Figure 4.2.

front end subroutines

A

2L

simulator

subroutines parameter descriptors

-analysis descriptors subroutines

device descriptors j
parameter descriptors

' subroutines

Rgure 4.2
Descriptive data structure design

In the descriptive data structure, each of the minor packages exports astructure which contains a

description of the capabilities of that packagem astamlard form so that te

packages, either all of the device models or the analyses, can be collected into asingle array at the
next level up. At this minor package level, the description consists of one or more arrays of parame
ter descriptors and aset of pointers to functions which implement parts of the package's capabilities.
At the next level, information on all of the packages in the simulator which wffl be needed by the

fronted are coHectedmto as^ Similarly, the front end couectsall of the

function pointers that wffl be needed by the simulator into asingle data structure which it exports to

the simulator during initialization. At run time, the front end and simulator each use the descriptor

provided by the other to determine the capabilities available, the parameters used for various calls,

and the types of the arguments called for by parameters.

Rnally, the data hiding structure is as shown inRgure 43.

-> Matrix

-> Devices

"Circuit" _ Per-iteraticn
I data

IPer-timepoint.
Idata

Analyses

Nodes

Rgure 4.3
Local data hiding structure

72

In this structure, the "Circuit" structure is used to encapsulate all of the data related to, from the

point of view of SPICE3, asingle circuit Tins may actually be asubcircuit of some larger simulator
that uses SWCE3 as a subcircuit evaluator, but SHCE3 treats it internally as an independent circuit.

This structure contains aconsiderable amount ofglobal data, as well as pointers to more specialized

structures for individual packages. Tbe other structures are used to hold data that, is either private to a

single package, or must be indirectly referenced through apointer. The matrix structure is completely

private to the sparse matrix package, although other packages wffl obtain pointers to specific locations

in the sparse matrix. The devices have amore complicated data structure described in detail below.

The data that is renamed each iteration, the right band side and solution vectors, is kept in apair of

dynamically allocated arrays which are referenced by much of the program. Tbe data describing each

analysis is maintained in alinked list of aiialysis-type-dependent structures for the private use of the

code implementing each type of analysis. Finally, the descriptions of the nodes in the circuit is kept

in anode table and maintained by asmall number ofroutines within the circuit package itself.

73

The overall system architecture of SPICE3 is relatively simple. The program is broken into a

group of independent blocks or packages, each of which only knows of the interface presented by the

other packages and the operations they perform, not the details of their operations or data structures.

This allows the packages to be maintained, enhanced, or replaced independently. The key to under

standing the operation and structure of SPICE3 as a whole is an overview of these packages and their

corresponding data structures as well as their interaction. The details of these interfaces are readily

found in the documentation and are frequently apparent from the code using the package. The most

important thing is to understand enough to know which package to look at when a given functionality

is needed, or an error is found which appears to be associated with a particular type of operation.

4.1. Major Data Structures

The first step is to understand the basic data structures and their scope. In many ways, the pro

gram structure follows the data structure, and it is most easily understood by following the data struc

tures.

The data area of the program is broken into three categories:

• Static data that is used to describe modules of the simulator to other modules of the simulator,

the simulator to the front end, and certain physical constants. This area is pre-allocated and ini

tialized in various parts of the simulator and stored as global static variables. All truly global

data is constant.

• Other data that might normally be.global data in a simulator. There is no variable global data

in SPICE3. Widely used data has been packaged into a data structure, a pointer to which is

passed to almost every routine to allow multiple instances of it to exist independently. This

facilitates the use of the program on multiple circuits or as a subcircuit analyzer within a larger

system. This data structure is the CKTcircuit structure, and most routines within the simulator

which know any details of circuit simulation have a knowledge of this structure to use common

"global" values.

74

• Finally, each package or group of routines may have its own private structure which it can

define without affecting any other code.

Some packages, such as the numerical operations package, simply keep their data in the CKTcir-

cuit structure; others have their own private structure which they allocate one or more instances of.

Additionally, some packages are just instances of a class of similar packages and have structures

which must comply with rules for that class of packages. The following sections provide an overview

of the structures used throughout SPICE3. Further details of the structures needed to make

modifications is provided in an appendix on data structure details.

4.1.1. Sparse matrix structures

The sparse matrix system uses two structures to represent matrices. The first structure,

SMPmatrix, is used to provide an overall description of a matrix and is the primary structure. A sin

gle instance of this structure is used to represent an entire sparse matrix. This structure contains the

basic framework of the matrix, but not the actual values of the elements or the details of the internal

zero/non-zero structure. Pointers to the first non-zero entry in each row and column, as well as map

ping data to convert between the row and column numbers used internally and those used by the cal

ling program are contained in this structure to provide reasonably fast access to any part of the

matrix.

The second structure, SMPelement, is used to represent the non-zero terms in the matrix. Each

row and column pair which has ever had a non-zero value will have an instance of this structure allo

cated to describe it and contain its value. All SMPelement structures representing entries in the same

row are linked together in ascending column number order, and all SMPelement structures represent

ing entries in the same column are linked together in ascending row number order. The actual value

of the matrix entry is stored in this structure rather than in an external array as in SPICE2.

75

4.1.2. Analysis structures

Analyses form a class of operations which can be treated identically by the other levels of the

system. There are two data structures associated with each type of analysis supported by SPICE3.

These structures are members of a class of similar structures common to all analysis types.

4.1.2.1. SPICEanalysis structure

The SPICEanalysis structure is the static descriptive structure which describes the analysis itself

to the next level of the simulator which manages the overall simulation task without knowledge of

any particular type of simulation. The IFanalysis public structure required by the front end interface

specification is also included as a prefix of the SPICEanalysis structure. This structure is the only

information about the analysis available to the other levels of the simulator except for the main simu

lator setup and analysis call made in CKTdoJob. This knowledge in CKTdoJob should be moved at a

future time, but at this point is most conveniently kept embedded in one subroutine.

4.1.2.2. JOB structure

Each analysis to be performed by SPICE3 is represented by a structure in a linked list of "jobs"

to perform. The header on each job in the linked list is identical and identifies the analysis type,

name, and next analysis in the list. The remainder of the structure is analysis specific and stores the

analysis specific variable data.

4.1.3. Device structures

Devices in SPICE3 form another class of objects which have a standardized interface. Each

device type is represented by three structures describing its needs and capabilities. The entire class of

structures has a set of properties in common which allow some operations to be performed on devices

without knowing the type of device. Additional details of the structure are left to the device imple

mentation and thus vary widely between devices. For each device type, there is a "two dimensionar'

data structure as illustrated in Figure 4.4 which contains all the information on all the models and

instances. This structure consists of a linked list of models of the device type, each of which contains

mcGei

instance

instance

•» model ••! model

instance instance

instance

instance

instance

instance

Rgure 4.4
Model-instance data structure

a linked list of instances of mat specific model

76

model

• 1
instance

> t

j instance

^ '. 1

instance

4.L3.L DEVmodd structure

Ibis structure contains all of tbe per-model variable data. An instance of this structure is allo

cated for each model of each device type in tbe circuit Most of tbe structure is specified by tbe dev

ice implemented according to the guidelines in the chapter on adding devices to SPICE3, but a stan

dard prefix is required on each structure that allows generic code to traverse the linked lists of models

77

to locate specific models and instances as needed. This prefix contains the linked list pointers, the

model name, and the model type.

4.13.2. DEVinstance structure

This structure contains all of the per-instance variable data. Each instance of a model in the

circuit will be represented by an. instance structure. This structure contains the basic linkage informa

tion required to link it into the standard data structure as well as the instance name, a back pointer to

the model, and any additional instance specific data needed for the particular type of device as deter

mined by the implementor of that device.

4.1.33. SPICEdev structure

This is a static structure used to describe the device. One instance of this structure is allocated

for each device type defined by SPICE3. This structure contains pointers to all of the functions used

to implement the device and, as a prefix, contains the IFdevice structure required for the front end

interface. This structure is the only data about the device available to the rest of the program.

4.1.4. Interface structures

These structures are used by the simulator to communicate with the front end and back end.

These structures are not necessarily the optimum structures for SPICE3, but are designed to be general

and allow for future extensions to SPICE3 as well as to support other simulators. Details of these

structures can be found in the front end to simulator interface specification.

4.1.4.1. IFparm structure

The IFparm structure is used by the simulator to describe parameters of one of its objects to the

front end. These structures generally appear as arrays with an accompanying count indicating the

array length, with each IFparm structure describing a single parameter.

78

4.1.4.2. IFuid

IFuid is a pointer type used to described unique names to SPICE3. SPICE3 is not interested in

the actual names of the various objects which are manipulated, but rather in the correct comparison of

them. The IFuid type is a simple pointer type which SPICE3 can compare with EFuid's of other

objects of the same type instead of having to compare the actual character strings or other encoding

of the name of the object.

4.1.43. IFparseTree structure

The front end breaks an expression down into an IFparseTree structure as it is parsed. The

structure contains a list of the variables the expression depends on as well as the information the front

end will later need to evaluate the expression and its derivatives.

4.1.4.4. EFvalue structure

This is a simple union of many different data types used to pass any value between the front

end and the simulator, including arrays of simple types.

4.1.4.5. IFnode structure

This is a structure used to pass node information back and forth between the front end and

SPICE3. SPICE3 casts this to a CKTnode structure internally. Fpr the purposes of the interface, IFnode

is used so that both front end and simulator can refer to it.

4.1.4.6. IFcomplex structure

The IFcomplex structure is used by the front end to hold a complex number in x+yi format.

4.1.4.7. IFdevice structure

This is a structure used to describe a device and its parameters to the front end. The major

feature of this structure is two arrays of IFparm structures describing the model and instance parame

ters of the device. It also contains much additional information about the device such as the number

79

of terminals the device has, the names of the terminals, the name of the device, etc.

4.1.4.8. IFanalysis structure

The IFanalysis structure provides information about the parameters available for a given type of

analysis in much the same way as the IFdevice structure provides information about a device.

4.1.4.9. IFfrontEnd structure

The IFfrontEnd structure contains the pointers to all of the front end functions the simulator

may need to call for output, error handling, and timing.

4.1.4.10. IFsimulator structure

This is a large structure used to describe SPICE3 to the front end. The IFsimulator structure

contains pointers to arrays of several of the structures described above to convey complete descrip

tions of the capabilities of the program to the front end, as well as pointers to the functions in the

front end that the simulator deeds to call This structure includes arrays of IFanalysis and IFdevice

structures to describe the analysis and device capabilities to the front end.

4.1.5. CKTcircuit structure

This is the primary data structure of SPICE3. All variable data related to the description and

operation of the circuit can be found within this structure, its substructures, or through pointers from

this structure.

4.2. Control Flow

The control flow of the simulator is quite similar to the variable data structure. The front end

performs parsing and user interface functions. Using the front end to simulator interface specification,

the front end passes the description of the circuit and the desired analyses to the circuit package. In

many cases the information is specific to a particular device or analysis, so after finding the proper

data structures using the common prefixes, the device-specific or analysis-specific routine is called to

80

perform the actual operation. When the actual analysis is called for, the circuit package calls the dev

ice specific packages to perform all the necessary set-up operations as well as to initialize the sparse

matrix for the simulation. The device specific packages then use the sparse matrix package to collect

pointers to specific matrix locations they will be referencing regularly. Rnally, the numerical iteration

package takes is called, and it steps through the Newton-Raphson iteration at each solution point,

using the device specific and matrix routines to perform the lower level operations.

4.3. Major Packages

The major packages used in SPICE3 can be split into two major categories, those which are

specific and have only one instance, and those which are generic and have many instances, all of

which follow the same basic framework.

4.3.1. Sparse Matrix Package

This package handles sparse matrices of the type encountered in circuit simulation situations.

This is not a general package, but is tailored and tuned for the specific application. The package allo

cates matrices, creates elements in them, performs heuristic reordering based on knowledge of the

structure of circuit simulation matrices, performs L-U factorization with and without reordering, and

performs the forward-back substitution required to complete the solution of the circuit equations.

4.3.2. Circuit handling package

This set of routines handles the control of the simulation system as a whole. It guides the

sequencing of analyses and the loops through the various devices, and provides an interface to the

front end to allow it to access the data structures of the simulator.

433. Device packages

Each device is represented by a package which can perform all necessary actions for the simula

tor on instances and models of that type. This package provides a standard interface to the simulator,

thus allowing it to deal with all devices in a uniform way. The types of actions available to the dev-

81

ice must be a superset of those needed by any device to be implemented in SPICE3, thus the package

will have unused entry points for almost all device types.

4.3.4. Analysis packages

For each type of analysis to be performed by SPICE3, there will be a package which sequences

through the basic algorithm of the analysis, calling on device functions, numerical package operations,

matrix operations, and output operations as needed to perform the required analysis.

4.3.5. Numerical package

This is a package containing the basic numerical iteration and integration routines used by

SPICE3. These compute integration coefficients for both predictors and correctors, as well as perform

ing the actual prediction and driving the corrector iteration loop.

CHAPTER 5

Results

Ultimately, the most important measure of the quality of a program such as SPICE3 is its perfor

mance in terms of time, accuracy, and convergence on real circuits and in comparison with other

simulators. Extensive tests on benchmark circuits have been run to evaluate the various improve

ments and techniques described in this report

As a general-purpose simulator, SPICE3 must do well in direct comparison with similar simula

tors such as versions of SPICE2 from Berkeley and as improved through industrial use. Comparisons

with special-purpose simulators such as RELAX^^1853 and SPLICE SaIe87a are also important, but such

comparisons must take into account the different capabilities, device models, and design objectives of

the respective simulators.

5.1. About tbe Benchmarks

The benchmark circuits presented in detail in Appendix G have been used to compare SPICE3

with SPICE2 and, with some modifications and with translation to the appropriate input format, with

RELAX running as a direct-method simulator*. Not all of these circuits are examples which can be

run by SPICE2, or even by SPICE3. All circuits used for comparison and testing purposes have been

added to this set of benchmarks, not just those which show particularly good results, thus there are

still some circuits which do not converge when run with SPICE3. The set of circuits can be divided

into several categories: those which SPICE2 and SPICE3 both solve, those which only SPICE3 can

solve, and those which neither can solve. Of those which SPICE3 can solve and SPICE2 cannot, they

can be further divided into those which SPICE2 cannot solve because the circuits require devices

which SPICE2 does not implement and those which SPICE2 simply fails to solve. Finally, there are

* Similar comparisons could also be made with SPLICE running in direct mode, but under such conditions the basic algo
rithms embodied in SPLICE and RELAX are almost identical.

83

84

two versions of some circuits for which SPICE3 requires a modified input format for a device or has

added parameters which improve performance, but they are listed as only a single circuit in the com

parisons.

In the following sections, basic performance results are presented for each of the circuits in

these categories. Unless noted otherwise, all of the results presented are from runs performed on a

Digital Equipment Corporation VAX 8650 computer running the Ultrix 3.0 operating system. All of

the raw data for these comparisons is tabulated in Appendix G, along with other statistics for these

circuits. Plots are presented with the "circuit number" , which represents an arbitrary ordering of the

circuits equivalent to the ordering of the tables, on the X axis.

5.2. Comparison with SPICE2

A comparison between the performance of SPICE3, Version 3C.1, and SPICE2, Version 2G.6,

running on the same machine is described in this section. SPICE3 was compiled with the standard C

compiler for Ultrix 3.0, while SPICE2 was compiled with the standard 4.2BSD "f77" FORTRAN com

piler, both with optimization enabled. Comparisons with SPICE2 compiled using the advanced, DEC

fort compiler are also included and a comparison with an industrial version of SPICE2 is included in

Section 5.4.1.

SPICE3 was able to solve all circuits SPICE2 could solve, as well as a significant number of

additional circuits. While the CPU time used by SPICE3 is not always strictly less than the time used

by SPICE2, it is generally significantly less, and in the cases where it is greater, it is generally due to

a change made to increase the number of circuits which can be solved or to increase the accuracy of

the simulation.

5.2.1. Circuits which both SPICE2 and SPICE3 run

These circuits have all been run on both SPICE2 and SPICE3. To make the data more readable,

first consider just the total CPU time used for the entire simulation, as shown in Figures 5.1(a) and (b).

secondsx 103

0.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00

Rgure 5.1(a)
Total CPU time for benchmark

circuits for SPICE2/f77 and SPICE3.

85

160.00

86

seconds x 10'$

a

«pice2

6.00

5.50 i

5.00 ; : i

4.50
i •

4.00 : 1 ;

3.50
•

! |

3.00
i °

: i

2^0 1 ; • i i: |
2.00 ' 1

! !
! o

: ; • ! 1

1.50

i 1
i i
• i i—»-f :

1.00 | ; • I : >

0.50

n •
* * 8 U

l •

0.00 20.00 40.00 60.00 80.00 100.00 120.00

Rgure 5.1(b)
Total CPU time for benchmark

circuits for SPICE2/fort and SPICE3.

140.00 160.00

SPICE3 averages asignificandy lower CPU time for these circuits with very few examples where

it takes longer, although its advantage is reduced when SPICE2 is compiled with tbe advanced FOR

TRAN compiler. There are four circuits with significantly higher CPU time for SPICE3 than for
SPICE2: N9AT, C68DT, N27A30, and N27A40. In exaniining tbe results of runs of tbese circuits, it

can be seen that SPICE2 bad difficulty with the currents in ciicuit N9AT, resulting in severe ringing.

SPICE3 does not exhibit this difficulty, producing smooth curves through tbe region, but at the

expense of significantly more timepoints, bofc ta this region and at later p^

Circuits N27A30 and N27A40 are both variations on the same MOS amplifier. This particular

MOS amplifier converges rapidly in SPICE2 due to an asymmetry in the limiting routine. This asym

metry can cause problems since it makes the convergence properties of acircuit depend on which

87

node the user designated the source and which the drain in an inherently symmetric device. SPICE3

has removed this asymmetry and as a result must use Gmin stepping to locate the operating point in

this exception case which results in over eight times as many iterations.

Circuit C68DT is a circuit that was exhibiting problems which were critically dependent on the

size of its load capacitances. While the reason it takes significantly more timepoints, and thus more

time, is not immediately obvious, it is probably related to the changes made in the capacitance model

as described in Chapter 3. The SPICE3 analysis accepts approximately twice as many timepoints and

rejects approximately four times as many as the SPICE2 analysis, but the resulting waveforms are

almost indistinguishable.

Note that the results in Appendix G indicate that SPICE3 uses more time per-iteration than

SPICE2 for the corresponding circuits, but that 285,000, or over 70% of the total iterations SPICE2

took for the entire set of simulations, are for a single circuit, Q2A1T, which, as a small circuit, has a

•very small per-iteration time of 4.93 seconds, thus skewing the per-iteration statistics. SPICE3 com

putes the solution to this same circuit in 4600 iterations with a somewhat smaller per-iteration time.

If this single circuit is excluded from Figure A.13, the per-iteration CPU time for SPICE2 is increased

to 138.66 ms under the f77 compiler and 101.55 ms under the fort compiler versus the 84.75 ms for

SPICE3 compiled with the standard cc compiler.

Looking at the transient analysis results in more detail, consider the breakdown of simulation

time into device evaluation and matrix solution as shown in Figures 52 and 5.3.

In all but a few cases, SPICE3 uses the same or less CPU time than SPICE2 for the same circuit.

The only cases where the SPICE2 evaluation time is measurably less are bipolar circuits, where the

device evaluation optimization techniques described for MOSFETs in Chapter 2 have not been applied

and the evaluation code remains a straightforward translation of the corresponding SPICE2 FORTRAN

code.

88

secondsx 10*3

—_—•—

. spice2

700.00

' \ <

• sprees

600.00

• ! I
' i •

500.00 — I •

! 1 '<•
: •

i

400.00

! t* '. i

300.00

j ! 1 1
200.00

•
•

' 1:

i ii r-1
100.00

B t
i

A
• • • j

! ! i

' s * •
2 -

• •—

0.00 .mt&am
1 ! ! i

20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00
0.00

Rgure 5.2(a)
Device evaluation time per iteration for SPICE2/f77 and SPICE3

89

seconds x 10*3

«pice2

450.00

•

spice3

400.00

350.00
b : !

300.00 i

250.00

*
. ?

1 .
200.00 1 : i

: i

150.00

7

" "J

i i
— —^—•

100.00
?

e
i i* 2

a

50.00 •-•

20.00

Q^„ H*^BB j^ft
1

40.00 60.00

i 2
.« B - -

0.00

0

-*-•*«•

.00
80.00 100.00 120.00 140.00 160.00

Rgure 52(b)
Device evaluation time per iteration for SPICE2/fort and SPICE3

£HDHSprom/zSDWS*oinopreiajtjadaumuonnrosYnrep^
(B)c;gamS-y

00*09100*OW00'OZI00*00100*0800*09OOWOO'OZ

£3010*3

g03tdl_

06

-25—

00*0

000

ozo

OTO

—090

—08*0

—001

—ori

—ori

—091

—08*1

00X

SDU099S

seconds

1.40

1.20

1.00

0.80

0.60

0.40

0.20

0.00

I

0.00

JMtaJa

91

spicez

"7 spice3

20.00 40.00 60.00 80.00 100JOO • 120.00 140.00 160.00

Rgure 53(b)
Matrix solution time per iteration for SPICE2/fort and SPICE3

5JL2. Circuits which only SPICE3 runs

A total of 27 circuits from the benchmark set converge in SPICE3 but not in SPICE2. Fourteen

of these fail in SPICE2 because they use features that are not present in SPICE2. Tlie features used

include the controlled switches, GaAs MESFETs, MOSFETs using the BSIM model, named instead of

numbered nodes, pole-zero analysis, and the ability to specify initial conditions for nodes intemal to a

subcircuit

Ofthe remaining thirteen circuits, three of them, C38DA, C38D2A, and C6D1T, were all CMOS

circuits for which SPICE2 could not find an operating point The corrections to the Meyer model

described in Chapter 3 allow SPICE3 to solve them. One circuit 03A1T, failed in SPICE2 when the

topology checker determined that the circuit was not properly formed, having only asingle connection

92

to a node, but SPICE3 is able to solve the circuit, since the single connection to that node is a voltage

source.

Four circuits, C18AT, C52AA, C31DT, and C1060MT all suffer from floating point errors dur

ing the dc solution. These four circuits all have problems in SPICE2 due to the asymmetric limiting

used for MOSFETs. The asymmetric limiting does not properly limit all devices limiting is dependent

upon the labeling of the drain and source nodes.

Two additional circuits, N3AT and C14D1T, caused SPICE2 to generate thousands of iterations

during transient analysis and eventually stop because of iteration limits while SPICE3 found the tran

sient solution with only a few hundred iterations. Both of these circuits have the characteristics

necessary to generate difficulties with the Meyer model problem described in Chapter 3.

Trie last three circuits generate "timestep too small" errors in SPICE2, and again all have the

characteristics which trigger the Meyer model errors described in Chapter 3.

5.23. Circuits which neither SPICE2 nor SPICE3 can run

Seven circuits still fail to converge in both SPICE2 and SPICE3 for a variety of reasons. Circuit

C14DT is a BSIM circuit, thus SPICE2 can't run it and it generates a floating point exception during a

BSIM evaluation in SPICE3.

Circuit N804DT is a poorly formed circuit having one node which is only connected to the gate

of a MOSFET (a floating gate). SPICE2 detects this problem and aborts during the topological check

ing phase. SPICE3 performs the operating point analysis without difficulty since the dangling node

has an initial condition specified for it, but then fails during the transient analysis when the conduc

tance of that gate capacitor is insufficient to provide sufficient connectivity to ensure reasonable

coefficients in the Jacobian, and the matrix package declares it nearly singular.

Circuit C82DT generates floating point overflows in SPICE2 while searching for the operating

point. While SPICE3 does not encounter the same degree of difficulty, it is unable to find the operat

ing point Since this particular circuit contains a loop of fifteen inverters and no initial conditions or

93

"off" specifications are given, the operating point is extremely difficult to find under any conditions.

The circuit N1190MT encounters a floating point overflow problem in SPICE2 while looking for

the operating point SPICE3 properly finds the operating point, but runs into "timestep too small"

errors during the transient analysis.

Circuit C119AT fails in SPICE2 due to a topology problem detected by the TOPCHK subroutine:

a floating subcircuit exists which has no DC path to ground. SPICE3 is similarly unable to find a solu

tion, although it reports a singular matrix and notifies the user of just one of the nodes involved.

Circuit C77MT causes both SPICE2 and SPICE3 to suffer a timestep too small error.

Rnally, circuit H44AA is a pole-zero analysis which SPICE2 can not perform and for which

SPICE3 eventually generates a convergence failure during one of the pole-zero searching iterations.

5.3. Comparison of Compilers

It is very difficult to isolate all of the factors that affect the performance of a program such as

SPICE. One variable which can have a significant effect on the program's performance is the com

piler which is used to generate the executable of the program. The machines primarily used for

SPICE3 development were Digital Equipment Corporation VAX machines running a succession of

releases of the UNIX operating system, both 4BSD and Ultrix.

SPICE2 was coded entirely in FORTRAN-66 and there were two real choices for the compiler,

the BSD "177" compiler and the DEC VAX FORTRAN/Ultrix "fort" compiler. The 177 compiler was

a research tool from U.C. Be±eley, and the fort compiler is a highly-tuned commercial FORTRAN

compiler with much-improved performance. The f77 compiler has improved in recent years but still

provides significantly lower performance than fort Thus some of the performance improvement in

SPICE3 is due to the change from a poorly optimizing FORTRAN compiler to a somewhat better

optimizing C compiler.

In the case of SPICE3, three different C compilers have been used, the standard BSD system C

compiler (cc), the VAX C/Ultrix compiler (vcc), and the GNUSta,88a C compiler (gcc). These compilers

94

all provide somewhat different levels of optimization and performance as shown in the tables in

Appendix G.

Unless clearly indicated otherwise, all of the comparisons in this dissertation have been based

on the standard 177 and cc compilers since they are the most widely available and used on VAX/Unix

systems.

Each compiler and language has different strengths and weaknesses. Fortran compilers have

traditionally been highly optimizing and the language was designed with restrictions that make it rela

tively simple to make a number of optimizations. Unfortunately, these same restrictions make it

difficult to write clean and readable versions of the complex code used by a program such as SPICE.

C compilers, due to the flexibility of the language and, in particular, the use of pointers, have a much

smaller set of optimizations that they can perform. Unfortunately, the language must assume that

objects referenced through pointers may overlap, thus preventing many common subexpression optimi

zations and cacheing of values in registers. Thus, while C provides more efficiency by providing

pointers for such operations as referencing elements of the sparse matrix, the reduced ability to per

form common subexpression optimization reduces the performance advantage somewhat

Using SPICE2 compiled with the 177 compiler as a reference, the fort compiler provides an

average performance improvement of approximately 25 percent; SPICE3 compiled with the standard C

compiler provides an average performance improvement of approximately 45 percent (measured on

those circuits which both simulators can complete). Switching to more optimizing C compilers pro

duces a further five to seven percent improvement. Finally, note that in addition to producing

different performance results, the executable produced by different compilers produces different levels

of success, with the executable compiled by fort unable to solve four circuits which the same source

compiled with f77 solves, and the executable produced by vcc failing on three circuits for which cc

and gcc-generated executables had no trouble.

96

industrial version of SPICE2 are reported in Figure 5.4(a). Many of the circuits run by SPICE3 could

not be simulated by the imhistrial simulator, aal so these circuits are not M

Rve circuits show aagirificantly better rim time in the mdustrial simulator than in SPICE3.

Two of these circuits are bipolar circuits where relatively Htde optimization has been formed to

date in SPICE3. One is the C68DT circuit described in Section 5.2.1, which exhibits load-

capadtance^tependent problems. One is the N9AT circuit also described in Section 5.2.1, which has
an oscillation problem in SPICE2 which is not present in SPICE3. Ibis circuit exhibits the same oscil
lation problem in the imhistrial simulator as it does in SPICE2. The industrial simulator appears to
gain an edge over both SPICE2 and SPICE3 when the number of iterations required in the analysis
becomes very large. Part of this advantage comes from the use of generated machine code for matrix

0.00 50.00 100.00

15PICE2
Indu^'dSirndttar

^PICE3"

150.00

Rgure 5.4(a)
Total CPU time comparison with industrial simulator

95

5.4. Comparison with Other Simulators

In order to get a better idea of how SPICE3 performs in comparison with other similar programs,

it has been compared with two other simulators. The choice was made to test against both another

general-purpose simulator and against a special-purpose simulator. The general-purpose simulator

chosen is an industrial derivative of SPICE2 which has been revised for many years in a production

environment and is highly tuned. Trie special-purpose simulator chosen is RELAX, Version 2.3b, a

MOS simulator from U.C. Berkeley designed to simulate large digital circuits. Comparisons with

SPLICE would also be possible, but in direct (non-relaxation) mode, SPLICE and RELAX use similar

algorithms and data structures.

5.4.1. Comparison with an Industrial Circuit Simulator

Comparing an industrial circuit simulator with SPICE3 presents a number of problems. The -

simulator chosen has a slightly different input format than SPICE3 or SPICE2, so circuits must be

translated from one format to another. In addition, the simulator results were only available for a

VAX 8800, while the SPICE3 results were all from a VAX 8650. Hence, there is a slight difference in

performance between the two simply because of the difference between the machines. To compensate

for this difference, the benchmark set was run on a VAX 8800 under the VAX FORTRAN/ULTRIX

compiler and compared with the results from running the same set on the VAX 8650 with the same

compiler. This comparison, averaged over more than 100 runs for 10,000 seconds of CPU time,

yielded a performance ratio between these two machines of approximately 1.005; thus a run of SPICE

on the VAX 8650 could be expected to take approximately 1.005 times as long as it does on the VAX

8800.

After a fairly simple initial circuit translation, 90 circuits from the SPICE3 benchmark set could

be run without input errors. Unfortunately, because of differences in the accounting information

available from the simulators, 39 of these circuits do not produce output statistics which can be com

pared with those produced by SPICE3. After correcting the VAX 8800 simulation time by the proper

factor to produce estimated VAX 8650 times, the total CPU times for SPICE2, SPICE3, and the

97

solution0*676* in the industrial program. This technique from SPICE2 has not been implemented in
SPICE3, thought it could be, and it provides asignificant reduction in matrix decomposition time for

long transient runs.

When the region at the bottom of Rgure 5.4(a) is magnified as in Rgure 5.4(b), it is evident

that SPICE3 has acomparable or smaller run time for all the examples mthis region. Also note that

the six largest run time examples for SPICE2 and SHC33 cc^ not be ™ with te

tor, most of them failing with "timestep too small" or "no convergence in dc analysis" errors; thus

results for these examples are not shown in this figure. On the 51 circuits that both programs can

solve, the industrial simulator shows an average of a50% run-time improvement over SPICE3 due to

the 5 large drcuits, but if these are excluded, the SPICE3 showed an average of 35% run-time

seconds

30.00

25.00

20.00

15.00

10.00

5.00

0.00

r

0.00

f4
«:*.

O O

^
!5 * |

50.00 100.00

6 9

!o D

*bpiCE2
todustriid Simulator

^PICE3

150XX)

Rgure 5.4(b)
Total CPU time comparison with industrial simulator

98

improvement over this industrial version of SPICE2.

5.4.2. Comparison with RELAX

RELAX is a simulator written at U. C. Berkeley which uses both direct methods and a modified

waveform relaxation algorithmWhit85a'Ncwt83a. RELAX was designed primarily as a testbed for the

development of waveform relaxation algorithms for the fast transient simulation of MOS integrated

circuits but also incorporates direct methods for dc solutions and for its subcircuit evaluation. For this

comparison, RELAX has been used in the mode where it uses direct methods for the entire circuit

While RELAX is a useful simulator for many circuits, it does have limitations that SPICE3 does not

Specifically, RELAX does not have models for many of the devices in SPICE3, including bipolar junc

tion transistors, non-grounded voltage sources, and transmission lines. RELAX is also designed only

for transient solution with operating point if required, not for any of the other types of analysis per

formed by SPICE3, such as ac, pole-zero, or dc transfer curve. It addition, RELAX requires that each

node of a circuit include a capacitor.to ground and inserts one if it is absent While these limits still

permit it to be used to analyze a large number of circuits, it is a significandy smaller set than SPICE3

was designed to solve.

An additional difference between RELAX and SPICE3 is the choice of the default parameters

which control the simulation. SPICE3 is configured to work well on most circuits at the expense of a

longer solution on simple circuits, while RELAX is configured with default parameters which are more

suitable for digital circuits using, for example, a 1% relative error limit in the truncation error calcula

tions instead of the more conservative 0.1% used in SPICE3. However, the trtol parameter in SPICE3

makes its 0.1% comparable to a 0.7% value for RELAX. Note fuither that RELAX uses quite different

criteria for its convergence tests and instead of performing the test

DELTAV<reltolxMAX(Vold,Vncw)+abstol

for each node voltage individually, it instead performs the test:

DELTAV<reltolxMAX(allV's)+abstol

This means that in a circuit with 5 volt power supplies and a relative tolerance of 0.001 (the default

99

in RELAX) voltages are considered to converge if they change by less than 0.005 volts regardless of

the signal levels present on that node, allowing RELAX to reach this looser convergence criteria in

fewer iterations. This also makes the abstol parameter nearly useless, since it will normally be much

smaller than reltol times one of the voltage rails. Similarly, the truncation error calculation is per

formed only once, using the maximum voltage computed above rather than once for each individual

capacitor with the tolerances computed for that capacitor based on the charge and current through it.

These differences will affect both the number of iterations used to obtain convergence and the size of

the timestep used.

Due to the more general-purpose design of SPICE3 which accommodates all of these additional

features, its performance cannot be expected to match RELAX on circuits for which RELAX was

designed to operate most effectively, although the differences should not be too significant when the

programs are forced to work with comparable limits.

If the limits on SPICE3 are relaxed, SPICE3 can also produce results in significantly less time.

As an example, consider the results of varying the convergence criteria and local truncation error lim

its while running the N698DT circuit as shown in Rgure 5.5.

Examining the outputs from these runs, significant deviations from the results with the tightest

tolerances do not occur until reltol is increased into the 10% to 50% range, thus SPICE3 can obtain

the desired results for this circuit using a reltol 50 times that used by default with a resulting 30%

decrease in iteration count. Again, while reltol could be relaxed for a class of circuits, gaining

significant performance advantages, it would result in a less robust program over its full range of uses.

5.4.2.1. RELAX comparison circuits

A small set of circuits was chosen to convert to RELAX format and run in both SPICE3 and

RELAX for comparison. The most recent released version of RELAX, RELAX 2.3b, running on the

same VAX 8650 with Ultrix 3.0 was used for all comparisons. These circuits were selected to provide

a range of circuit sizes, from large to small while remaining within the RELAX circuit constraints.

The circuits chosen were N698DT, a large digital filter, C205AT, a phase lock loop, C640DT, a serial

100

xlO3

3.20 1 •
CPU seconds

3.00 —j —:
^^^^

2.80

1

.^""^"l
•

160

\ : **^*"^ j
140 \ •^^ ! !

120

2.00 : i

1.80
1 i

1.60
'

! !
1.40

1.20 ': ;
' % change

0.00 10.00 20.00 30.00 40.00 50.00 60.00

Figure 5.5
Results of varying tolerances on Circuit N698DT

(Run onaVAX 8800 rurining Ultrix 3.0)

70.00

register, C1060MT, alarge CMOS memory circuit and N12AT, asmall NMOS memory celL Conver
sion of these circuits requires anumber of decisions as to how to map parameters. RELAX has a

number of different parameters for determining convergence and acceptable error levels, while SPICE3

has asmaller set of parameters for the same purposes. RHAX uses iirvato as the ateolute

on the voltage difference allowable between iterations at anode without forcing an additional itera

tion, w-catoisttecorresi-oi^^ There are also separate

relative limits nrvrel and nrcrel for the voltage and current changes. Finally, there are absolute and

relative node voltage errors acceptable to the local truncation error control algorithm mat controls step

size: Iteabs and herel. In SPICE3, there is asingle parameter, reltol which determines all of the rela

tive error tolerances and a single absolute tolerance for each unit, vntol for voltages, abstol for

101

current, and chgtol for charge. These tolerances are used for both convergence testing and as max

imum acceptable error estimates for the local truncation error control.

In converting the input decks from SPICE3 to RELAX, choices must be made as to what to

change these parameters to, since both simulators have defaults and in many of the circuits tested

these defaults were changed explicitly as well.

The overall results are presented in Table 5.6, but some explanation of these numbers is in

order. Each of the circuits was run twice for each simulator, once using that simulator's default toler

ances and once using the tolerances specified by the circuit designer. In each case, the only toler

ances adjusted in RELAX were the Newton-Raphson convergence tolerances and not the truncation

error stepsize control parameters, since RELAX strongly recommends that these parameters not be tied

directly to one another due to the algorithms used for truncation error calculation. The RELAX

Circuit

N698DT

N698DT

Table 5.6

Comparison of SPICE3 and RELAXperformance on the selected set of circuits.
Simulator

RELAX

RELAX

Tolerances

default

specified

Total iterations

4901

4917

Total CPU

485.20

470.62

Time per iteration
0.099

0.096

N698DT

N698DT

SPICE3

SPICE3

default

specified
5627

3118

2846.05

1491.62

0.506

0.478

C205AT

C205AT

RELAX

SPICE3

default!

default

no convergence!

6940

no convergence

993.12 0.143

C640DT

C640DT

RELAX

RELAX

default

specified
1258

1311

1031.59

1060.84

0.820

0.809

C640DT

C640DT

SPICE3

SPICE3

default

specified
1184

1611

1250.50

1839.28

1.056

1.142

C1060MT

C1060MT

RELAX

RELAX

default

specified
1510

no convergence

996.89

no convergence

0.660

C1060MT

C1060MT

SPICE3

SPICE3

default

specified
1859

788

2051.94

735.25

1.104

0.933

N12AT

N12AT

RELAX

RELAX

default

specified
457

514

1.22

1.77

0.002

0.003

N12AT

N12AT

SPICE3

SPICE3

default

specified
258

240

2.87

2.66

0.011

0.011

f No tolerances specified
Xconverges in a newer, unreleased version of RELAXWebb89a.

102

documentation recommends that the truncation error parameters be at least an order of magnitude

larger than the convergence criteria. Also note that RELAX uses Jacobian evaluation bypass, comput

ing and inverting the Jacobian only every third iteration, while SPICE3 uses inactive device bypass to

skip the repeated evaluation of inactive devices.

Looking at these results, it is immediately apparent that there are significant performance

differences between SPICE3 and RELAX. A detailed investigation of the differences between the two

was conducted and showed a number of interesting differences. An overall profile of the two simula

tors while running circuits N698DT and C640DT shows that approximately 100 seconds of additional

time is spent in the matrix package for reordering the matrix. Clearly the more sophisticated sparse

matrix package *<sparseKund88a" used in RELAX is able to save about 20% of the time spent by the

SMPmatrix package in SPICE3.

Other areas where RELAX outperforms SPICE3 in this comparison are the SPICE3 inactive dev

ice bypass and limiting routines, which consume approximately 13% and 6% respectively of SPICE3's

simulation time. The Jacobian bypass in RELAX requires no significant computation time and the

node-based limiting in RELAX only takes about 10 seconds, although they may both increase the itera

tion count The integration scheme used in SPICE3 requires the integration of five capacitors for each

of the 698 MOSFETs, plus the 385 constant capacitors, while RELAX only needs to integrate the node

capacitance, another saving of approximately 200 seconds.

An additional part of the difference between SPICE3 and RELAX in these circuits can also be

attributed to the bypass of components within a device. RELAX detects when the oxide capacitance is

zero and completely skips all of the oxide capacitance related code. SPICE3 does not yet check for

this special case, but instead performs all of the appropriate calculations and multiplies the result by

zero. Table 5.7 shows the results of considering just this one effect on circuit N698DT.

Table 5.7

Effect of Oxide Capacitance Bypass on circuit N698DT

103

Program Tox bypass? Tolerances Tran. Iterations Tran CPU CPUAter(ms)

RELAX Yes Given 4698 580.12 123.5

RELAX No Given 4698 813.22 173.1

RELAX Yes Spice defaults 4698 574.91 122.2

RELAX No Spice defaults 4698 822.04 175.0

SPICE3 Yes Given 3417 1365.16 399.5
SPICE3 No Given 3417 1986.78 581.1
SPICE3 . Yes Spice defaults 5592 2180.77 390.0
SPICE3 No Spice defaults 5592 3251.67 581.5

This figure was generated using specially modified test versions of RELAX and SPICE3 to expli

citly skip or perform the bypass operation. It is clear from these numbers that for circuits with no

oxide capacitance, both SPICE and RELAX can save approximately 30% of their per-iteration device

evaluation time by making this optimization, but only RELAX currently takes advantage of it. Qeariy

this is an optimization that must be integrated into SPICE3 in the near future.

The additional code required by SPICE3 every iteration for the computation of parameters which

are not pre-computed and stored, such as the per-device temperature-dependent Vt needed by the tem

perature variation code in SPICE3, adds about 7% to the SPICE3 time. Approximately 30% of the

difference appears to be coming from a difference in coding style between SPICE3 and RELAX.

RELAX was written as a test for relaxation simulation, while SPICE3 was written as a general testbed

for circuit simulation, and more emphasis was placed on code readability and clarity of all algorithms,

including the device models. As a result, the corresponding code in the two programs is frequently

simpler to understand in SPICE3, but executes more efficiently in RELAX. For comparison, consider

the following code fragments from RELAX and SPICE.

if(vbs <= 0) {
here->MOSlgbs = SourceSatCur / vt;
here->MOSlcbs = here->MOSlgbs * vbs ;
here->MOSlgbs += cl*t->CKTgmin;

} else {
evbs = exp(MIN(MAX_EXP_ARG , vbs/vt));
here->MOSlgbs = SourceSatCur * evbs / vt + ckt->C"KTgmin ;
here->MOSlcbs = SourceSatCur * (evbs - 1);

Rgure 5.8
SPICE3 code fragment

if(fptr->isas = 0.0) { gbs = 0.0; ibs = 0.0; }
else {

if(vbs >= fptr->svmax) {
gbs = dptr->maxcond;
ibs = dptr->imax - fptr->isas + gbs * (vbs - fptr->svmax);

}
else if(vbs > 0.0) {

gbs = fptr->isas * exp(vbs * dptr->ovt);
ibs = gbs - fptr->isas;
gbs *= dptr->ovt;

}
else { gbs = fptr->isas * dptr->ovt; ibs = gbs * vbs; }
};

. Figure 5.9
RELAX code fragment

104

In the most common case, SPICE3 will perform one exponential, three divisions (two with a

very good compiler), two multiplications, one addition and two subtractions. RELAX for the same

case will perform one exponential, three multiplications, and one subtraction, thus replacing one of the

divisions with a multiplication, saving two multiplications, one addition, and one subtraction. These

savings are achieved by additional pre-computation of device parameters and such optimizations as

computing and saving -r-— and multiplying by that instead of dividing by V, during the analysis.

These same types of optimizations are possible in SPICE3, but make the algorithms somewhat less

105

clear, and until the SPICE models are fully documented and carefully re-implemented rather than sim

ply translated from one language to another with bug fixes applied, this level of optimization is not

appropriate.

Note that in the comparison circuits, circuit C1060MT came from an industrial source with an

absolute voltage tolerance of lOuv and a relative tolerance of 0.004, or 0.4%. Using these parame

ters, along with the absolute current tolerance of 50picoamps, RELAX is unable to find a DC solution.

Tightening these tolerances to the defaults for RELAX, the circuit can be solved, although at the cost

of a higher simulation time. Similarly, circuit C205AT came with no tolerances specified by the user

and could not be solved by RELAX.

CHAPTER 6

Conclusions

In this dissertation, a number of algorithms and techniques have been presented which can be

used to improve significantly the convergence properties and run time performance of a direct-method

circuit simulator, such as SPICE. These algorithms have been implemented and tested in a new circuit

simulation framework which has been designed as a flexible testbed for both circuit simulation algo

rithm and model development. A summary of the major results and possible directions for additional

work are presented below.

Initially, the SPICE3 framework was profiled and a detailed analysis of the areas where the pro

gram spent significant time was performed. Based on this profiling information, effort was concen

trated on areas of the simulation where performance improvements could have the greatest effect on

the overall simulation time. Changes to the device modeling routines and to some of the overall

simulation algorithms resulted in significant speed improvements and much improved convergence

properties.

While the speedups obtained to date have been significant, additional improvements can be

expected if additional effort is applied to the optimization of the device models. In this project, little

work was performed on the optimization of the bipolar models, so work in that direction should pro

vide enhancements fairly quickly. Additional performance improvements in such areas as the MOS

models are certainly possible if all special cases are considered, such as a bypass of the gate capaci

tance calculations for circuits like the N698DT example, where the gate capacitance is provided as an

external capacitance instead of the nonlinear gate capacitance provided as part of the MOS model. As

was observed in the comparison with RELAX, this could result in a reduction in the MOS evaluation

time by as much as 10% for Level 1 MOSFETs with no gate capacitance.

107

108

A set of difficult examples was used to illustrate a variety of convergence problems and the

cause of those problems was analyzed. As a result of this analysis, additional algorithms were added

to SPICE3, along with corrections to a number of device models so as to allow most of these difficult

circuits to converge. Some circuits still fail to converge, indicating further work is still needed if all

of the causes of convergence failures or "timestep too small" errors are to be found.

All of the above research and resulting changes performed in this project required a flexible

software framework and an overview of the SPICE3 program architecture, designed to facilitate this

experimentation with algorithms, device models, and interfaces, was described. This architecture

allows SPICE3 to be used as a subroutine library within a larger system and also allows the user inter

face from SPICE3 to be used for other simulators, thus increasing the compatibility between simulators

and reducing the need to "re-invent" the necessary user interfaces every time. Details of this archi

tecture and the steps needed to add to the program are included as appendices.

A study was carried out to compare the performance of SPICE3 with both a comparable

general-purpose circuit simulator, SPICE2, and against a special-purpose simulator, RELAX. RELAX is

a MOS only simulator that can use both direct methods and waveform relaxation techniques.

Although RELAX can simulate many MOS digital circuits in somewhat less time, SPICE3 demonstrated

greater reliability over a wider range of circuits, with a significant performance improvement over

SPICE2.

The result of this work is both a faster, more reliable, and more flexible circuit simulator that

can also serve as a framework for die design and implementation of new analyses and new device

models, as well as an understanding of what factors lead to run-time and convergence issues for

direct-method circuit simulation.

APPENDIX A

The Front End to Simulator Interface

To reduce this memo to a manageable size, this appendix has been placed in a separate memo.

This memo, The FrontEnd to Simulator Interface, is available as UCB/ERL Memorandum M89/43.

109

APPENDIX B

Data Structures

To reduce this memo to a manageable size, this appendix and Appendix C have been placed in

a separate memo. This memo, The SPICE3 Implementation Guide, is available as UCB/ERL Memoran

dum M89/44.

Ill

APPENDIX C

Packages

To reduce this memo to a manageable size, this appendix and Appendix B have been placed in

a separate memo. This memo, The SPICE3 Implementation Guide, is available as UCB/ERL Memoran

dum M89/44.

113

APPENDIX D

Adding a Device

To reduce this memo to a manageable size, this appendix and Appendix E have been placed in

a separate memo. This memo, Adding Devices to SPICE3, is available as UCB/ERL Memorandum

M89/45.

115

APPENDIX E

The Device to Simulator Interface

To reduce this memo to a 'manageable size, this appendix and Appendix D have been placed in

a separate memo. This memo, Adding Devices to SPICE3, is available as UCB/ERL Memorandum

M89/45.

117

APPENDIX F

SPICE2 Compatible Input Language

To reduce this memo to a manageable size, this appendix has been placed in a separate memo.

This memo, SPICE3 Version 3C1 Users Guide, is available as UCB/ERL Memorandum M89/46.

119

APPENDIX G

Benchmark Circuits

To reduce this memo to a manageable size, this appendix has been placed in a separate memo.

This memo, Benchmark CircuitsResultsfor SPICE3, is available as UCB/ERL Memorandum M89/47.

121

References

Acto70a.

Acton, Forman S., Numerical Methods that Work, Harper and Row, New York (1970).

Anto68a.

Antosiewicz, H. A., "Newton's Method and Boundary Value Problems," Journal of Computer

Systems Science 2(2) pp. 177-202 (1968).

Berk84a.

Berkeley, Computer Science Division, Department of Electrical Engineering and Computer Sci

ence, U.C., "prof - display profile data," in Unix User'sManual, U.C. Berkeley, Berkeley, Ca.

(March, 1984).

Berk84b.

Berkeley, Computer Science Division, Department of Electrical Engineering and Computer Sci

ence, U.C, "gprof - display call graph profile data," in Unix User's Manual, U.C. Berkeley,

Berkeley, Ca. (March, 1984).

Bill83a.

Billingsley, Giles, "KIC," MS Report, Department of Electrical Engineering and Computer

Sciences of Universoty of California at Berkeley (Fall, 1983).

Bray72a.

Brayton, Robert K., Gustavson, Fred G., and Hachtel, Gary D., "A New Efiacient Algorithm for

Solving Differential-Algebraic Systems Using Implicit Backward Differentiation Formulas,"

Proceeding of the IEEE 60 pp. 98-108 (1972).

Chri87a.

Christopher, Wayne A., Nutmeg Programmer's Guide, U.C. Berkeley, Berkeley, Ca. (April,

1987).

122

123

Chua75a.

Chua, Leon O. and Lin, Pen-Min, Computer-aided Analysis of Electronic Circuits: Algorithms

& Computational Techniques, Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1975).

Cohe76a.

Cohen, E., "Program Reference for SPICE2," Electronics Res. Lab., University of California,

Berkeley, (June 1976).

Deva85a.

Devadas, Srinivas, CSIM User's Manual and Report, University of California, Berkeley (June,

1985).

Gear68a.

Gear, C. W., The Control of Parameters in the Automatic Integration of Ordinary Differential

Equations, Department of Computer Science, University of Illinois (1968).

Gear69a. '

Gear, C. W., "The Automatic Integration of Stiff Ordinary Differential Equations," Information

Processing, pp. 187-193 (1969).

Gett86a.

Gettys, Jim, Newman, Ron, and Fera, Tony Delia, Xlib - C Language X Interface, Protocol Ver

sion 10, Massachusetts Institure of Technology, Cambridge, Massachusetts (November 16,

1986).

Grah82a.

Graham, A. L., Kessler, P. B., and McKusick, M. K., "gprof: A Call Graph Execution

Profiler," Proceeding of the SIGPLAN 1982 Symposium on Compiler Construction, SIGPLAN

Notices 17(6) pp. 120-126 (June, 1982).

Ho75a.

Ho, C. W., Ruehli, A. E., and Brennan, P. A., "The Modified Nodal Approach to Network

Analysis," IEEE Transactions on Circuits and Systems CAS-22 pp. 504-509 (June, 1975).

124

Kele88a.

Kelessoglou, Theologos M. and Pederson, Donald O., "A Knowledge-Based SPICE Environ

ment for Improved Convergence and User Friendliness," Proceedings IEEE Custom Integrated

CircuitsConference, pp. 3.1.1-3.1.4 (May, 1988).

Kern78a.

Kemighan, Brian W. and Ritchie, Dennis M., The C Programming Language, Prentice-Hall,

Inc., Englewood Cliffs, New Jersey (1978).

Kund85a.

Kundert, Kenneth S., "Sparse Matrix Techniques and their Application to Circuit Simulation,"

in Circuit Analysis, Simulation and Design, ed. Albert E. Ruebk,North-Holland Publishing Co.

(1985).

Kund88a.

Kundert, Kenneth S. and Sangiovanni-Vincentelli, Alberto, SparselJ : A Sparse Linear Equa

tion Solverl9ZS.

McCa88a.

McCalla, William J., Fundamentals of Computer-Aided Circuit Simulation, Kluwer Academic

Publishers, Boston (1988).

Meye71a.

Meyer, J. E., "MOS Models and Circuit Simulation," RCA Review Volume 32(March, 1971).

Nage75a.

Nagel, L., "SPICE2: A Computer Program to Simulate Semiconductor Circuits," ERL Memo

UCB/ERL M75/520University of California, Berkeley, (May 1975).

Nage73a.

Nagel, L. W. and Pederson, D. O., "Simulation Program with Integrated Circuit Emphasis

(SPICE)," Proceedings 16th Midwest Symposium on Circuit Theory, (April 12, 1973).

125

Nara87a.

Narayanaswamy, Shankar, "SPICE3 Pulse-Voltage-Source modeling," EECS 199 Project

Report, U.C. Berkeley, Berkeley, Ca. (January 1987).

Newt83a.

Newton, A. Richard and Sangiovanni-Vincentelli, Alberto, "Relaxation-Based Electrical Simula

tion," IEEE Transactions on Electron Devices ED-30(9) pp. 1184-1206 (September, 1983).

Newt77a.

Newton, A. R. and Pederson, D. O., "Analysis Time, Accuracy and Memory Requirement

Tradeoffs in SPICE2," Proceedings of the Eleventh Annual Asilomar Conference on Circuits,

Systems and Computers, (November, 1977).

Newt76a.

Newton, A. R. and Taylor, G. L., "BIASL.25 - An MOS Circuit Simulation Program for a Pro

grammable Calculator," Proceedings 10th Annual Conference on Circuits, Systems, and Com

puters, pp. 280-283 (November, 1976).

Newt81a.

Newton, A. R., Pederson, D. O., Sangiovanni-Vincentelli, A. L., and Sequin, C. H., "Design

Aids for VLSI: The Berkeley Perspective," IEEE Transactions on Circuits and Systems CAS-

28(7) pp. 666-680 (July, 1981).

Orte70a.

Ortega, James M. and Rheinboldt, Werner C, Iterative solution of nonlinear equations in

several variables, Academic Press, New York (1970).

Pres86a.

Press, William H., Flannery, Brian P., Teukolsky, Saul A., and Vetterling, William T., Numeri

cal Recipes: The Art of Scientific Computing, Cambridge University Press, New York (1986).

Quar84a.

Quarles, Thomas and Gyurcsik, Ronald, "Predictor-Corrector Based LTE Calculations in

126

SPICE," EECS 221 Project Report, U.C. Berkeley, Berkeley, Ca. (February 1984).

Quar83a.

Quarles, T., "The SPICE 3 Circuit Simulator," Masters report, University of California, Berke

ley, ERL Memo ERL-M592 (December 1983).

Ritc74a.

Ritchie, D. M. and Thompson, K., "The UNIX Time-Sharing System," Communications of the

ACM 17(7) pp. 365-375 (July, 1974).

Saka87a.

Sakallah, Karem A., Yen, Yao-tsung, and Greenberg, Steve S., "The Meyer Model Revisited:

Explaining and Correcting the Charge Non-Conservation Problem," Proceedings IEEE Interna

tional Conference on Computer-Aided Design, pp. 204-207 (November, 1987).

Sale87a.

Saleh, Resve, "Nonlinear Relaxation Algorithms for Circuit Simulation," Electronics Res. Lab.,

University of California, Berkeley, (April 1987).

Sale86a.

Saleh, Resve, Private communicationl9%6.

Sche88a.

Scheifier, Robert W., Gettys, Jim, and Newman, Ron, X Window System C Library and Protocol

Reference, Digital Press (1988).

Sheu84a.

Sheu, Bing J., Scharfetter, Don L., Hu, Chenming, and Pederson, Donald O., A CompactIGFET

Charge Model, Electronics Research Laboratory, U.C. Berkeley, Berkeley, Ca. (February, 1984).

Stal88a.

Stallman, Richard M., Using and Porting GNU CC, Free Software Foundation, Inc. (December,

1988).

127

Stat87a.

Statz, Hermann, Newman, Paul, Smith, Irl W., Pucel, Robert A., and Haus, Hermann A., "GaAs

FET Device and Circuit Simulation in SPICE," IEEE Transactions on Electron Devices ED-34*

Number 2 pp. 160-169 (February, 1987).

Vlad80a.

Vladimirescu, A. and Liu, S., "The Simulation of MOS Integrated Circuits Using SPICE2,"

ERL Memo. No. UCB/ERL M80/7, (Feb. 1980).

Ward78a.

Ward, D. E. and Dutton, R. W., "A Charge-Oriented Model for MOS Transistor Capacitances,"

IEEEJournal of Solid-State CircuitsSC-13(No. 5)(October, 1978).

Webb86a.

Webber, Don, Private communicationl9Z6.

Webb89a.

Webber, Don, Private communicatioriFeb. 11, 1989.

Week73a.

Weeks, W. T., Jimenez, A J., Mahoney, G. W., Mehta, D., Qassemzadeh, EL, and Scott, T. R.,

"Algorithms for ASTAP -- A Network Analysis Program," IEEE Transactions on Circuit

Theory CT-20 pp. 628-634 (November, 1973).

Whit85a.

White, Jacob, "The Multirate Integration Properties of Waveform Relaxation, with apphcations

to Circuit Simulation and Parallel Computation," Electronics Res. Lab., University of Califor

nia, Berkeley, (November 1985).

Yang82a.

Yang, Ping and Chatterjee, Pallab K., "Spice Modeling for Small Geometry MOSFET Cir

cuits," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

CAD-l(No. 4) pp. 169-182 (October, 1982).

128

Yang83a.

Yang, Ping, Epler, Berton D., and Chatterjee, Pallab K„ "An Investigation of the Charge Con

servation Problem for MOSFET Circuit Simulation," IEEE Journal of Solid-State Circuits Vol

SC-18(No. 1) pp. 128-138 (February, 1983).

Yang80a.

Yang, Ping, An Investigation of Ordering, Tearing, and Latency Algorithms for the Time-

Domain Simulation of Large Circuits, Department of Electrical Engineering, University of Illi

nois at Urbana-Champaign (August 1980).

	Copyright notice1989
	ERL-89-42 (1 of 2)
	ERL-89-42(2of 2

