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Theoretical Aspect of Relaxation-Based and
Nonlinear Frequency Domain Circuit Simulation

Tammy Tzu-Chen Huang

Ph. D. Department of Electrical Engineering
and Computer Science

Abstract

Circuit simulation is the key to shorten the design and development time of complex

integrated circuits. Several methods have been recently proposed to speed up this task.

For digital circuits, relaxation techniques have been able to achieve up to two orders of mag

nitude speed-up. For analog circuits where distributed components and steady-state behavior are of

importance, harmonic balance methods have been successful. This thesis addresses fundamental

theoretical questions on these algorithms: convergence, accuracy, and stability.

In the first part, the numerical properties of Imphtit-lmplicit-Explicit (HE) method, a relaxa

tion method, are investigated. The HE method has been proven to be consistent, stable and conver

gent. Experimental results showed that TIE gives fairly accurate solutions; however, the time-step

required for the iteration is smaller than desired.

In the second part of the thesis, numerical properties of the harmonic-Newton method, a har

monic balance method for microwave circuits, are analyzed. The harmonic-Newton method is

shown to converge to the solution of the circuit equations when applied to periodic nonautonomous

systems, almost-periodic nonautonomous systems, and periodic autonomous systems.

A complete error analysis on the harmonic-Newton method is also presented. The theoretical

results are used to develop an algorithm to estimate the number of harmonics needed for given



error objectives prior to the application of the harmonic-Newton iteration. Simulation results show

that this method can effectively improve the overall efficiency of the harmonic-Newton method.
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CHAPTER 1

Introduction

Circuit simulators are one of the most important computer-aided design tools for the design

and analysis of large scale integrated circuits. A circuit simulator is normally designed or optim

ized for performing a certain class of circuit analysis such as dc analysis, ac analysis, transient

analysis, steady-state analysis, noise, and distortion analysis. In this thesis, we devote ourselves to

the time-domain transient analysis and the steady-state analysis, with special emphasis on the

theoretical aspects of the algorithms used in these analysis.

hi PART I of mis thesis, we will concentrate on the time-domain transient analysis, one of

the most complicated andexpensive type of analysis.

Despite of their accuracy, conventional circuit simulators such as SPICE [1] and ASTAP [2]

can only be used on relatively small circuits because the run time goes up rapidly with the circuit

size. Because of this limitation, Relaxation-based circuit simulators were proposed. They provide

accurate solutions as in conventional simulators with up to two order of magnitude speed improve

ment for larger digital MOS circuits. In mis thesis, various relaxation-based techniques win be dis

cussed. Among them, one special relaxation methods called timing analysis algorithm has a

characteristic of performing only one relaxation iteration pertime-step while one or more Newton-

Raphson iterations may be usedto solve each nodal equation. One particular timing analysis algo

rithm called Imphtit-Implicit-Explicit method [3] has nice numerical properties for two-node cir

cuits even when tightly-coupled feedback loops are present In PART I of this dissertation, we for

malize the HE method and present its numerical properties. Both the theoretical and computational

aspects of the HE method will be discussed in detail. Implementation of the method and its experi

mental results are also discussed in depth.

Chap. 1. Introduction .1.
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In the analysis of many communication circuits and oscillators, one is frequently interested

only in the steady-state periodic responses. If conventional numerical techniques are employed,

one has no alternative but to integrate the differential equations over a sufficiently long interval of

time until the transient waveform dies out This procedure is acceptable only if the transient

response decays rapidly. For many lightly damped circuits, the transient response will last for a

long time, resulting in expensive and costly simulations. Frequency-domain simulation techniques

on the other hand, assume the absence of transient response and search for steady-state response

directly. This significantly reduces the overall simulation CPU time. In PART n of this thesis, we

will examine one particular method called the harmonic-Newton method[4] which finds the periodic

steady-state solutions in the frequency domain.

When we transform a nonlinear system from time-domain to fiequency domain, it becomes

an infinite-dimensional problem. In order to make the frequency-domain processing practical, we

have to truncate the number of fiequency elements, or harmonics, considered. Since some kind of

truncation is inevitable, it is very important to study the convergence properties of the numerical

method used in order to ensure that the solution obtained is meaningful. The convergence proper

ties and the computation of the error generated by the harmonic-Newton method will be the focus

of PART n of mis thesis. In addition, we will describe how this errorbound can be used to predict

the number of harmonics needed for a given error objective before applying the harmonic-Newton

method.

Organization of PART I and PART n are similar. First, we formulate the problems, review

the basic principle or algorithms used in existing simulation programs, and state the numerical pro

perties and simulation problems associated with these algorithms. Then, we will present the EDE

method and the harmonic-Newton method in PART I and PART II respectively, with their numeri

cal properties examined in detail. Finally, some experiment results for both methods will be

presented.
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PART I : RELAXATION-BASED SIMULATION

CHAPTER 2

Introduction

When performing transient analysis, traditional simulators such as SPICE[1] and ASTAP[2]

use a direct method which consists of an implicit integration method, the Newton-Raphson method,

and a sparse matrix technique to solve the circuit equations in the time domain. These simulators

give accurate time-domain current and voltage waveforms based on device level descriptions of

integrated circuits. However, they can only beused on relatively small circuits because the compu

tational run time increase rapidly with the circuit size.

In the past few years, several techniques have been used to extend the capability of circuit

simulators to larger circuits. One of the techniques is the timing analysis which was first intro

duced in MOTTS[5] for simulations of MOS digital circuits. It applies a particular relaxation

method on the nonlinear algebraic equations derived from the nonlinear differential equations after

the implicit integration method is used. The particular characteristic of these relaxation methods is

that they do not carry the iteration to convergence. In fact, each node equation is solved only once

at each time point. For circuits with no floating capacitors, i.e. capacitors connecting two nodes,

none of which is either ground or a voltage rail, these methods have been shown to be consistent,

stable and as accurate as the backward Euler method. Although these methods offer a substantial

saving in CPU-time and memory usage, when floating capacitors are present in the circuit, all these

methods have serious accuracy problems.

In light of the problem, the Implicit-Implicit-Explicit (HE) method [3] has nice numerical

properties for two-node circuits containing a floating capacitor as shown by experimental results.

However, it was not clear how this method behaves when it is applied to a general circuit in which

more than two nodes are connected by floating capacitors. The purpose of PART I of this disserta-

Chap. 2. Introduction
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tionis to formalize the HE method and present its numerical properties.

The organization of PART I is as follows. In Chapter 3, we start with an introduction to cir

cuit simulation problems, showing how the differential equations are formulated from the circuit

topology. Then, a brief review of some standard simulation approaches and a comprehensive dis

cussion and classification of various relaxation techniques will be given. Finally, several commonly

used timing analysis algorithms and their numerical properties such as consistency, stability, and

convergence are described.

A detailed discussion of the HE method is given in Chapter4. We investigate rigorously its

numerical properties on a test problem to provide some insight on how it behaves in general. The

experimental results using the HE as the initial waveform generator in RELAX[6] will also be

presented.

In PART I of mis thesis, the following conventions are used; Bold face letters represent vec

tors of variables or functions, and italics are used for scalar variables or functions. For variables of

functions, superscript with parentheses is used to denote Newton iteration count while superscript

without parentheses is used for node numbers. Subscript with parentheses represents relaxation

iteration count, and subscript without parentheses is used as time index. Matrices are written in

boldface capital letters, and elements of matrices are given by lower-case letters with subscripts

denoting the matrix indices.



CHAPTER 3

Overview of Circuit Simulation Techniques

In this chapter, we will give an overview of various circuit simulation techniques and discuss

how circuit equations for transient analysis are formulated. Special attention will be given to tim

ing analysis algorithms, their numerical properties, and inherent problems associated with various

techniques.

3.1. The Circuit Simulation Problem

The most general form of equations describing the circuit behavior is

F(i(O,x(r),u(t)) =0 x(0)= Xo (3.1.1)

where x(r) is the vector of the circuit variables, x(r) is the time derivative of x(t), u(f) is the vec

tor of the independent source, t is time, and F is a function winch maps x(t), x(r) and t into a

vector of real numbers.

The first question to askis whether a solution of Eqn.(3.1.1) exists and is unique. It turns out

mat, under rather mild conditions on the continuity and differentiability of F, it can be proven that

there exists a unique solution. However, these conditions can be difficult to verify in practice. If

the circuit is well designed, it is obvious that the circuit should have unique solution for a given

initial condition. In this thesis, we will assume that Eqn.(3.1.1) has a unique solution.

Since it is impossible to find a closed form solution to Eqn.(3.1.1) in general, one mustresort

to some numerical methods to obtain the solution. The numerical methods available are all itera

tive. They produce a sequence of approximate solutions which hopefully converge to exact the

solution x*(r).

Chap. 3. Overview of Circuit Simulation Techniques .5.
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32. Numerical Integration in Standard Simulators

When doing transient analysis, the values of some branch voltages and branch currents for

some time interval, say for 0 £ r £ T, are computed given the initial conditions of die capacitor

voltages and inductor currents. This is done by solving systems of nonlinear first-order ordinary

differential equations of the form given in Eon. (3.1.1). In standard simulators, the numerical pro

cess of finding the solution is broken into three steps and the following three conventional numeri

cal methods are used at each step of simulation:

(1) Given a differential equation describing the circuit, an implicit integration method is used to

approximate the time derivative operator to yield a discrete-time system of nonlinear alge

braic equations.

(2) The Newton-Raphson (NR) method is applied on the system of nonlinear algebraic equations

generated by step 1. This results in a system of linear algebraic equations.

(3) Apply direct sparse-matrix techniques to obtain the solution to

the system of linear algebraic equations generated by step 2.

The implicit integration method used in Step 1 subdivides the interval [0, T] into a finite set

of distinct points:

'o = 0, fc=r, f*+i = f*+A*+i, *=0, 1,2, ...,AT-1.

The quantities hk+\ are called time steps and their values are called step size. By applying an

implicit integration method, Eqn. (3.1.1) is transformed into a discrete time sequence of algebraic

equations with x(tk+1) being replaced by a combination of x at tk+u tk, and possibly proceeding

points. In doing so, we form a set of algebraic difference equations which approximate Eqn.

(3.1.1). Then, we can solve for x(r*+i) for k = 0, 1, 2, • • • , K-l. The fact that we can choose a

implicit integration method in a variety different ways gives rise to a number of integration

methods with different numerical properties. Among all the implicit integration methods available,

we will consider the backward Euler method with constant step size as an example since it has

been widely used and has nice numerical properties.
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In the backward Euler method, xfc+1 is expressed as a function of xk+\ and x*:

Backward Eider: x*+1 = x* + ^x*+i (3.2.1)

Since the value of x* is known at time tk+h i*+1 can be written as a function of x*+i , or

£*+i = it+iOfc+i) for k = 0,1, 2, • • • IT-l. (322)

Substituting Eqn. (322) into Eqn.(3.1.1), we have:

FIAmC**,). x*+1, u(t*+1)) = 0 for k = 0, 1, 2, • • • JT-1. (32.3)

Now, Eqn.(32.3) is a system of discretized nonlinear equations with x*+1 being the unknown vari

able.

If die differential equations are nonlinear, the discretized algebraic equations are also non

linear. These nonlinear equations can be converted into linear equations using the NR method (step

2 of the conventional simulators). Let; be the iteration index of the NR method, then Eqn. (323)

can have the following iteration form:

^-x^-rWi^i)^ (32.4)

for ; = 0,1, 2, • • • and k = 0,1,2, • • • K-l.

3Fwhere J(it+1(xt+1), x*+1, n(t*+i)) =-^•(it+i(xt+1), x*+1, u(t*+1)) is the Jacobian matrix. Notice that

the computation of each Newton iteration involves the evaluation of the function and its Jacobian

matrix.

The linear equations Eqn.(32.4) generated by the NR method can be solved using direct

sparse matrix techniques such as LU decomposition or Gaussian Elimination (step 3 of conven

tional simulators ). The hierarchical organization of standard transient analysis simulators is shown

in Hg. 3.1.

Although these conventional methods have been proven to be extremely reliable, with the

increase in circuit size, these standard simulators demand more computation time and have higher

storage requirements than desired for the analysis of VLSI circuits. For circuits with less than a

thousand devices, because of the efficiency of sparse matrix techniques in solving linear equations,

the computation of the Jacobian matrix and the evaluation of the function dominate the complexity
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loop

Ttaw

Set tn b 0

1
IMPLICIT NUMERICAL INTEGRATION TECHNIQUES

Discretize the derivative element

i
Choose a time step h, set in+1 = tn + h

i
•> Predict values of variable at time <—

1
NEWTON RAPHSON METHOD

Replace nonlinear elements with
conductances and independent souces

i
Assemble linear circuit equation

1
SPARSE-MATRIX TECHNIQUE

Use either Gaussian elimination or LU decomposition
to solve linear circuit equation

T
m DoesNR converge?

i-
Calculate Local Truncation Error and

check if the solution Is acceptable

Choose smaller time step, h

Select new time step, h

Set fn+1=rn+1+A

DONE

Cheek rn+1 <T

Hgure 3.1 Structure of a Transient Analysis Simulator
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of the simulation. The computational cost of performing the matrix solution for circuits with more

than 1000 nodes grows rapidly with the circuit size despite of the use of sparse matrix tech-

niques[7].

33. Relaxation Techniques

Recently, a new class of algorithms have been applied to the electrical integrated circuit

simulation problems. These algorithms use relaxation metiiods at one of the steps in the numerical

process to solve the circuit equations. Relaxation-based simulators such as RELAX[6] and SPLICE

[8] provide the same level of accuracy as the standard simulators and may significantly reduce the

overall simulation run time. Both RELAX and SPLICE have been proven to be very effective for

the analysis of digital MOS integrated circuits.

Relaxation methods can be applied at any stage in the solution of Eqn. (3.1.1), as illustrated

in Fig. 32 [9,10]. The advantages of relaxation methods are that they avoid solving a large system

of equations directly and they permit the simulator to exploit latency efficiently.

Several assumptions are required by the relaxation-based simulators:

(1) Each MOS device and its interconnections can be modeled by lumped (linear or nonlinear)

voltage-controlled capacitors, conductors, and current sources, (Le. branch equations are such

that nodal analysis can be used.)

(2) Every (internal orexternal) node in the circuit has a (linear ornonlinear) capacitor connected

either to ground or dc supply voltage rails.

For LSI MOS circuits, these assumptions are usually satisfied. Under these assumptions, the nodal

equationcan be written in the following form:

C(v(0) v(0 + f(v(f), u(/)) = 0 v(0) = v0 (3.3.1)

where v is the vector of all unknown node voltages, v0 is the vector of the initial values of v, u is

the vector of the independent source waveforms, f is a continuous function whose components

represent the net sum of currents flowing out of the capacitors connected to the node, and C
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F(v,v./) = 0

Implicit numerical

Integration formula

g(v) = 0

XJr

Newton-Raphson

method

Avsb

Sparse Matrix

Technique

Figure 3.2 The use of relaxation technique at various levels of system of equations
using Gauss-Seidel iteration as an example.
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represents the nodal capacitance matrix. Under these assumptions, the capacitor matrix has nonzero

diagonal entries and is often diagonally dominant

If we assume that (1) the inverse of C(v) exists and is uniformly bounded with respect to

v, u; (2) u(r) is piecewise continuous; and (3) f is globally Lipschitz continuous with respea to v

for all a, then Eqn. (3.3.1) has a unique solution on any finite interval [0, T][ll]. Again, these

conditions are difficult to verify in practice; we will also assume that Eqn. (3.3.1) has a unique

solution in this thesis.

The two most commonly used relaxation methods are die Gauss-Jacobi (GJ) method and the

Gauss-Seidel (GS) Method[12,13]. We will use these two methods to illustrate how relaxation

techniques can be appliedat different stagesof the numerical process.

33.1. linear Relaxation Methods

Consider a system of n linear equations of the form:

Av = b (332)

wherev =[v\ •••, vBf, b= [b\ •••, J>"]r, v\ b! e R, and A=fo7), AeRnxn. Note that

the system of equations generated by Step n of standard simulators are written in this form. The

solution vector v exists and is unique if and only if A is nonsingular and this solution vector is

given explicitly by

v = A-'b. (333)

We assume throughout this section that the matrix A is nonsingular. Instead of the direct sparse-

matrix method, one can use a linear relaxation method such as the GJ or GS method to solve Eqn.

(332). To be able to use the GJ or GS method, we also need to also assume that the diagonal

entries of A are all nonzero numbers.

Let A be split into L + D + U, where L is stricdy lower triangular, D is diagonal, and U is

strictly upper triangular, then Eqn. (33.2) will have the following form when the Gauss-Jacobi

method is applied:
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Dv(it+1) = -(L + U)v(/fc) + b, k7>0. (3.3.4)

where £ is the iteration index. The advantage of this mediod is that all n equations can be solved

simultaneously using parallel processing since the order in which the equations are solved is

irrelevant

If the Gauss-Siedel iteration is used, then Eqn. (3.32) becomes:

(D + L)v(*+1) = - Uv(Jt) + b k 2> 0. (33.5)

It uses the lastest estimate v(*+1) of the component v' of the solution vector v in all subsequent

computations. When the linear equation (332) is obtained by the NR method, this combined

method is a special case of the Newton successive overrelaxation (Newton-SOR) method. The

order in which these n equations are placed in the matrix form is critical to the speed of conver

gence. It is obvious that if A is a lower triangular matrix, it will only take one GS iteration to

reach the solution. Hence, it is desirable to arrange the matrix A as close to lower triangular as

possible or to have die matrix U as sparse as possible.

Since relaxation methods are iterative, it is important to ask under what conditions they are

guaranteed to converge to the solution. In the case where A is diagonally dominant, it has been

proven that both the GJ and GS methods converge to the solution. This property is described in

the following theorem [12].

Theorem 3d. Let A be a strictly or irredudbly diagonally dominant nxn complex matrix,

then for the problem Av = b, both the Gauss-Jacobi and the Gauss-Seidel iterations converge

to the solution for any given initial guess vector.

The rate of convergence for both methods is linear. That is, after a sufficiently large number

of iterations, the error at each iteration decreases according to

l|V(*+D - Vjl = e<*+i) (33.6)

where C is a positive constant smaller than one. Since it is guaranteed that the exact solution can

be obtained in one iteration when the sparse-matrix techniques such as Gaussian elimination or LU
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decomposition are used, relaxation methods described here are advantageous only when the number

of iterations neededto reach the convergence is small. Moreover, the convergence property for the

GJ and GS methods is guaranteed only under the condition that A is strictly diagonally dominant.

For this reason, sparse-matrix techniques have been used more widely than relaxation techniques at

linear system level in conventional circuit simulators.

332. Nonlinear Relaxation Methods

Relaxation methods can also be used at the nonlinear equation level. Examples of simulators

using nonlinear relaxation methods are MOTTS[5] and SPLICE. Consider the following system of

ii nonlinear equations:

g(v) = 0 (33.7)

where gJl*->RH has components g1, g2, •••,$', •••,g", and vJJ" has components

v1, v2, " *, v1, • • •, v", with i being the node index. Recall that the Gauss-Jacobi iteration in

the linear algebraic equation level is simply to obtain the solution of the f* equation v(t+1) with

the other n-\ variables held at iteration k, with k being the iteration index. We can extend the

same prescription to the nonlinear algebraic equation leveL Then, the basic step of the nonlinear

Gauss-Jacobi iterationis to solve the following equation:

g'*(v(lf) .... v$, v(*+1), v$, • ••, vfo) =0. (33.8)

fori =1, • • •, n, k £0.

Thus, we can solve all v{k+l) for / = 1, • • •, n from v(t) simultaneously.

In a completely analogous fashion, the Gauss-Seidel iteration can also be extended to the

nonlinear Gauss-Seidel iteration. Written in a component form, the /* equation becomes

g'O'cUi) v[£l)t v(*+1), v$, •• •, vfo) =0. (33.9)

fori = 1, • • •, n, k £ 0.

If the one-dimensional Newton method is used to solve Eqn. (33.8) and Eqn. (33.9), then we

will have a double loop iteration where the inner loop is the Newton iteration and the outer loop is
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the GJ or GS nonlinear iteration. In the case when the Gauss-Jacobi-Newton method is used, the

iteration becomes

V(*+l) - V(*+i) -

^T<v<*>» , v{k), v(t+1), v(4), v(t))
-l

tt'Vij t ... „«-l ,,l^ ,,'+1 ... «« \

for j = 0, 1, • • •, k = 0, 1, • • •, i = 1, • • •, n. (3.3.10)

Similarly, when the Gauss-Seidel-Newton method is used, we have:

v(*+i) ~ v(*+i)

•gj7(v(*+1), , v(ir+1), v(i), v(A))
-l

o'f.A ... „iW .,1+1 ... ,,« \
£ (V(*+D» i v(*+i)» v(*)ii v(*))i

for j = 0, 1, • • •, * = 0,1, • • •, * = 1, ••-,«. (33.11)

We may, of course, replace the NR method with other one-dimensional iteration method as the

innerloop to obtain the solutions of Eqn.(33.8) and Eqn.(33.9).

It is desirable to find the required conditions on g to ensure the convergence of the Gauss-

Jacobi-Newton and Gauss-Seidel-Newton method. This is described in the following theorem.

Theorem 32. [13J

Let g(v) be continuously dirTerentiable in an open neighborhood S° of a point v° for

which g(v') =0. Assume that •)?•(•') is symmetric and positive definite. Consider again the

decomposition of -r^-(v) into diagonal, strictly lower-triangular, and strictly upper-triangular
ov

parts and suppose that the diagonal matrix is nonsingular. Under the above assumptions, the

Gauss-Jacobi-Newton and Gauss-Seidel-Newton iterations described in Eqn. (33.7) and Eqn.

(33.8) are well defined on an open ball B(v\ 5) belonging to S°, and the iterations converge

to v*.

It is clear that the GJ or the GS nonlinear iteration is the primary iteration and the NR itera

tion is the secondary iteration. We can argue intuitively that it is not necessary to be too critical of

the accuracy of the NR method at least for the first few GJ or GS iterations. In fact, it has been
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shown in [13], that the asymptotic rate of convergence for the case where one NR iteration is taken

for each GJ or GS loop is the same as the case where an infinite number of NR iterations are taken

for each GJ or GS loop. Therefore it does not improve the speed of convergence to take more than

one NR iterations.

333. Waveform Relaxation Methods

When relaxation techniques are applied at the differential equation level, we call this class of

algorithms Waveform Relaxation (WR) method [10]. While relaxation techniques use real vectors

(belonging to R") as the variables in the linear and nonlinearalgebraic equation level, the unknown

variables are waveforms (elements of a function space) in the case of WR method.

As in the case of algebraic equation level, both the GJ and the GS relaxations can be used at

the differential equation leveL As mentioned before, the speed of convergence of the GS method is

heavily sensitive to the order in which the equations are arranged. For most MOS circuits, transis

tors are almost unidirectional from gate to source and from gate to drain. Therefore, the circuit

equations can be properly ordered to give the GS iteration the speed advantage over the GJ itera

tion. If the circuit contains no MOS transmission gate nor any feedback connection, the circuit

equation (33.1) can be reordered such that die system of equations are in the form:

C'VO, ''', v'(r)) y(t) +/,*(v1(0. • • •, V'(0, n(t))=0 for i = 1,2, • •, *33.12)
In this special case, only one GS iteration is needed. This is also the main reason why relaxation

methods have the speed advantage over conventional circuit simulators for the simulation of MOS

circuits. Here we will only discuss the Waveform-Relaxation Gauss-Seidel Algorithm used in

RELAX.

Consider the first-order differential equations as shown in Eqn. (3.3.1):
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C:(v(0) v(r) +/1(v(0, u(r))« 0, vl(0) =vl°

(33.13)

C*(v(t)) v(/) +/"(v(r), u(r)) =0, v"(0)=vn°
The basic idea of this method is to fix die waveforms v2, • • •, v* at some initial guess

waveforms and solve die first equation as a one-dimensional differential equation in v1. The solu

tion obtained for v1 is substituted into the second equation which will then be reduced to anodier

first-order differential equation with one variable, v2. The new v2 is again used in die third equa-

tion. This process continues until all the equations in Eqn. (33.13) are solved. Then the procedure

is repeated until the waveforms converge to the solution waveforms. In mathematical term:

'it,. iC'(v(Ui)(0, •••.vk+l)(f),v$(f), •••.vft)(0)

'(*+!) (0

v(*+i)(0
v$(0

vf*,(0

r//.. 1+/'(V(WO, •" »V(*+1)(0,v$(0, •••,vfo(f)) =0,

for i = 0,1,, • • •, n and k = 0,1, 2 (3.3.14)

The outer iteration loop of WR method is the Gauss-Seidel iteration and the inner iteration

loop can be any numerical integration method which can be used to solve the resulting one-

dimensional differential equation. The convergence of WR mediod is guaranteed under some con

ditions similar to the ones needed in the linear or nonlinear algebraic equation cases. The conver

gence property is stated in the following theorem [14]:

Theorem 3 J.

Assume that C(v)eRnxn is strictly diagonally dominant uniformly over all v(r)tf" and

Lipschitz continuous with respect to v(r) for all u(0» and the initial guess waveforms are

dirTerentiable, then the sequences of waveforms { v(A)(0 } generated by the- Gauss-Seidel or

the Gauss-Jacobi WR algorithm will converge uniformly to the solutions of the above equa

tions for all bounded intervals [0, T].
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Waveform relaxation method has been implemented in RELAX. This simulator has been

proven to be effective for the simulation of integrated circuits. More detailed description of the pro

gram RELAX will be given in a later section.

3.4. Timing Simulation

Timing simulation is a time domain circuit simulation technique which uses a particular non

linear relaxation approach to solve the nonlinear algebraic equations derived from discretizing die

circuit nonlinear differential equations. The basic characteristic of timing simulation is that the

iteration of the relaxation methods is not carried to convergence: only one sweep is taken. Because

of this, die numerical properties such as consistence, stability, and convergence of the integration

methods used to discretize the derivative operator no longer hold. In Section 3.4.2, a complete

analysis of their numerical properties will be discussed.

Since only one sweep of relaxation is taken, the time steps must be kept sufficiendy small to

ensure die accuracy of the solutions of the nonlinear equations. However the computational

expense of taking one iteration is very smalL In addition, the total run time can be reduced even

further due to the fact that timing analysis algorithms allow circuit latency to be exploited by using

bypass or selective-trace techniques. Thus, the total computer time used in timing simulation is

usually much less than that of a standard simulator. However, mere are cases where these methods

can not obtain an accurate solution. Examples are circuits containing tight feedback loops, pass

transistors, or floating elements. We will discuss these problems in more detail in Section 3.43.

3.4.L Timing Analysis Algorithm

To illustrate the basic steps of timing simulation, we again consider the circuits whose node

equations can be written as in Eqn. (33.1):
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C(v(f)) v(t) + f(v(r), u(O) = 0 v(0) = v0 (3.4.1)

To discuss timing analysis methods in this section, we need to assume that no floating capaci

tor (Le. capacitors connected between two non-ground nodes) is present in die circuit Therefore C

is a diagonal matrix. We also assume that C"\v) exits for all v such that Eqn. (3.4.1) can be writ

ten as follows:

v(f) + F(v(O,u(f)) = 0 v(0) = v0. (3.4.2)

where

F(v(r), u(t)) a C(v(t))-lf(v(t). o(O) (3.43)

In timing simulation, the time derivative is replaced by any implicit integration formula such

as die Backward Euler or the Trapezoidal formula. In this section, we only considerthose methods

of which the time derivative is discretized by die Backward Euler formula with constant time step:

v*+i = -(v*+i-v*) (3.4.4)

where v* and v*+1 are the computed values of node voltages at time tk+l and tk, and h = tk+l - tk

is the time step. Thus, the iterative process of the nonlinear equation becomes:

•*+i - v* + AF(v*+1, n(tk+i)) = 0 (3.43)

One sweep of nonlinear relaxation methods described in Section 332 can now be used on Eqn.

(3.43). If we use one sweep of the Gauss-Jacobi relaxation on Eqn.(3.43), we get the following

iterative process:

vLi =vl-h F!(vkl> • • •, vUi, vj+1, • • •, Vj?, u(tk+1)) (3.4.6)

i = 1, • • •, n

where i is the node index. If one sweep of the NR method is used to obtain the solution of Eqn.

(3.4.6), this combined scheme is the one step Gauss-Jacobi-Newton method discussed in Section

33.2. with the exception that the outerloop Gauss-Jacobi iteration is carried out only once. More

specifically, at each time point tk+h the Gauss-Jacobi-Newton method computes new values of all

node voltages using only one iteration and accept the results as die correct solution at tk+l and goes

on to tk+2. With some modification, this method has been used in MOTTS.
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We can also use the Gauss-Seidel relaxation method to obtain the solution of Eqn. (3.4.5) as

in SPIJCE13[7]. The iteration process of the Gauss-Seidel method is:

vi« =W - h Fl(vk\x, • • •, v;;l, vUi, vi+1, • • •, v*fl, u(fc+1)) (3.4.7)

i=l, • • •, n

where i is the node index. The solution of Eqn. (3.4.7) is also approximated by using one step of

the Newton-Raphson algorithm. This resulting timing analysis algorithm is also a combination of

the implicit integration method with one sweep of one step the Gauss-Seidel-Newton method (both

the inner and the outer loop iterations are carried out only once).

Note that neither method carries die iteration to convergence; In fact, only one sweep of

relaxation iteration is taken. Hence the original numerical properties of the backward Euler

integration method no longer hold. In the following section the numerical properties of these timing

analysis methods which combine the discretization formula, relaxation steps and die Newton-

Raphson method will be investigated.

3.4.2. Numerical Properties

The numerical properties of an integration method, such as stability, are studied on test prob-

lems[15,16] which are simple enough to allow a theoretical analysis but still general enough that

one can gain insight into how the integration method behaves in general. For the analysis of the

conventional multistep methods, die test problem consists of a linear, time-invariant, zero-input,

asymptotically stable, differential equation.

Unfortunately, this simple test problem cannot be used to evaluate the timing analysis tech

niques described in the previous section. The test problem chosen should be a circuit that satisfies

the following conditions:

(1) It consists of positive linear time-invariant resistors and capacitors, and linear time-invariant

voltage-controlled current sources.
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(2) Each node has a capacitor to ground or to dc supply voltage rails.

(3) It is an asymptotically stable system.

(4) There is no floating capacitor in the circuit

Mathematically, this particular test problem can be written as:

x = Ax, x(0) = Xo. (3.4.8)

where AeRnxn and the eigenvalues of A are in the open left half complex plane. Let I be the

identity matrix andA = L + D + U, where L D and U are all nxn matrices with L being strictly

lower triangular matrix, D being diagonal, and U being strictly upper triangular matrix. Now apply

those algorithms discussedin the previoussection to tins test problem:

(a) The Gauss-Jacobi integration algorithm:

FJWiD]*^ = [I + h(L + U)]x* (3.4.9)

or x*+1 = Mg,(/»)x* (3.4.10)

where Mq/ =[I-^Drl[I + A(L + U)]

(b) The Gauss-Seidel integration algorithm:

P-A(D + L)]xt+1 = P + AU]x* (3.4.11)

or x^-MoKA)** (3.4.12)

where M^ = \h-h(D+ L)Tl\l +h\J]

Note that the test circuit is linear, hence the inner loop of the NR method is eliminated. The

matrices M&(A) and MGs(h) are called the companion matrices of the methods. If we denote

M(h) as the generic companion matrix of a method, then the method to be investigated using a

fixed step size h will give the following solution:

x*=[M(/t)]*x<> (3.4.13)

We now define the numerical properties of the integration algorithm described by Eqn.

(3.4.13).

Definition 3d (convergence)
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Let x(t) be the exact solution of the test problem. An integration algorithm is conver

gent if the sequence of the computed solution, x*> converges uniformly to x(t) as the step-size

h goes to zero.

One useful measure of the error introduced by the integration technique is the local trunca

tion error whose definition is given as follows:

Definition 32 (local truncation error)

Let x(tk) be the exact solution of the test problem at time tk, xk be the computed solu

tion at time tk assuming x^.j = x(rt_j) due. no error has been made in computing x at previous

time point), and h = tk-tk_u then the local truncation error £ is defined as:

e = ||x(fc)-x*|| (3.4.14)

If e =0(hr+\ then r is said to be the order of the integration method.

Using this definition, we have the following definition for consistency:

Definition 3J (consistency)

The numerical method is said to be consistent if

x(f)-x*=0(/i')

where p £ 2 for all k.

Based on the above definition, we know that a timing algorithm is consistentif its companion

matrix can be expanded as a power series of the step-size A of the following form:

M(h) = l + hA + 0(h2)

Convergence implies that if the step size is chosen sufficiendy small, then the numerical solu

tion can be made arbitrarily close to the exact solution. Consistency only ensures that the local

errors are small, but does not tell us anything about how the errors propagate from one time point

to the next To insure convergence of a numerical integration method, we need to verify that it is

also stable.

Definition 3.4 (stability)
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An integration algorithm is stable if for any 6 > 0, M > 0 and for all xqgR", there exists

a k > 0 such that the difference between two numerical solutions generated from two different

initial values is bounded. Le.

||x* -x'tI|<3/||x0-x'oI| for all k £ *, and forall h between [0,5)

where xk and x'* are the computed sequences given the initial values Xo and x'0 respectively.

Stability implies that a small perturbation in the initial value can only cause a bounded

change in die answer as h approaches zero. Since each step in die timing analysis algorithms is

effectively a newinitial value problem, stability guarantees that the change due to a small perturba

tion at any step in the computation is bounded. The following classical theorem relates con

sistency, stability, and convergence together

Theorem 3.4:[15]

J£ a numerical integration method is consistent and stable, then it is convergent.

The numerical properties of the Gauss-Jacobi and the Gauss-Seidel integration algorithms

have been discussed in [17]. It states that the Gauss-Jacobi and the Gauss-Seidel integration algo

rithms are consistent, stable, hence convergent Moreover, the Gauss-Jacobi and the Gauss-Seidel

integration methods are first-order integration algorithms.

To extend the analysis of stability, let us define A-Stability.

Definition 3J. ( A-Stability )

An integration method is A-stable if for any N >0 and for all Xq eRn, there exists a k

such that

Ox*!! <N for all kZk and all h between [0, «,)

where {x*} is the sequence generated by the method.

Stiff problems arise when the circuits under simulation contain bypass or coupling

capacitors(inductois) which are several orders of magnitude larger than the parasitic elements of the

circuits. This often implies that the solutions contain both the fast components due to the parasitic

elements and the slow components due to the bypass and coupling elements.
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To analyze stiff circuits effectively, one must use variable step sizes, so that after the fast

transient response has died off, the step size can be increased to quickly observe the slow transient

response. To do so, the region of stability of the integration method should be large enough to

allow a large step size for large time constants, without being constrained by the small time con

stants. Clearly, if the method is A-stable, it can be effectively used to handle stiff circuits. It is

reasonable to ask under what conditions die GJ and the GS timing analysis methods are suitable for

solvingstiff circuits. To do so, we need to use die following proposition:

Proposition 3d [18]

The sequence of vectors xk = [M(A)]*xo is bounded for a given h if and only if the spec

trum of M(h) is contained in the unit ball £(0,1), i.e. all eigenvalues of M(h), a(M(/t)), are

contained in B(0,1), and no multiple zeros of the minimal polynomial of M(h) has modulus

equal to 1.

Theorem 3 J

The Gauss-Jacobi method and the Gauss-Seidel method are A-stable when applied to the

test problem described above if A is negative definite and strictly diagonal dominant

To be effective in circuit analysis, an integration method has to use variable time-step. Stan

dard integration methods control the time step by monitoring the local truncation error. Since these

timing algorithms do not carry die nonlinear iteration to convergence, computing the local trunca

tion error of the timing analysis algorithms is very complex. Fortunately, from Our analysis, we

found that any error contributed by taking only one NR iteration is negligible. This property cer

tainly simplifies the computation of local truncation error.

Theorem 3.6:

The Gauss-Jacobi and Gauss-Seidel integration methods are first order algorithms, and

taking only one sweep of the Newton-Raphson method does not produce any first order error.
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3.43. Problems with Timing Analysis Algorithms

A major problem with timing analysis algorithms is its inaccuracy and instability when they

are used to analyze circuits with tightly-coupled feedback loops or bidirectional circuit elements.

One such element is die floating capacitor which is often an important element in the design of

integrated circuits.

To see the effect of floating capacitors on the timing analysis algorithm, let us consider a

linear time-invariant circuit described by

Cv = -Gv v(0) = vo (3.4.15)

where C is the node capacitance matrix and G is the node conductance matrix. If there is no float

ing capacitor, then C is diagonal and can easily be inverted. In this case, the analysis described

previously applies. When floating capacitors exist C is no longer diagonal, inverting C is expen

sive and most of the advantages of the timing simulation algorithms would be lost If we do not

invert C and just apply the timing analysis algorithms directly on Eqn. (3.428), then all the algo

rithms described previously are not even consistent

Another major drawback of the timing analysis algorithms is that these algorithms are A-

stable only under some strict conditions. This forces us to use small step sizes in die numerical

computation even though large step sizes may be acceptable. For a technique to be robust one

will prefer any A-stable numerical integration method over these timing analysis algorithms

because the time step of an A-stable method can be safely chosen as long as it satisfies the local

truncation error criteria. Since these timing analysis methods is not A-stable in all cases, the time

step must also be bounded to ensure stability. This requires some knowledge of die time constant

for die circuit under analysis. However, tt is difficult to estimate die time constant of a circuit thus

these algorithms haveto rely on the userto intelligendy select an appropriate time step.

Although timing analysis algorithms improve the computational speedby taking one sweep of

displacement method, all these problems described above are also due to the fact that the relaxation

iterations are not carried to convergence. This severely limits the application of these techniques to
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some restricted class of circuit topologies.



CHAPTER 4

The Implicit-Implicit-Explicit Method

As mentioned in Chapter 3, one major drawback of the timing analysis algorithms is the

accuracy and stability problems when the circuit under analysis contains elements that form

tightly-coupled feedback loops. One such element is the floating capacitor. For this reason, special

techniques must be used. The Implicit-Implicit-Explicit (HE) method has been proposed to handle

floating capacitors. In this chapter, we formalize the HE method and present its numerical proper

ties using the frame work set up in die previous chapter. In particular, we showthat the method is

consistent, stable and as accurate as the backward Euler mediod even when floating capacitors are

present in the circuit The details of this algorithm are described in Section 4.1. In Section 4.2, we

will investigate its numerical properties, such consistency, stability, and convergence on a test prob

lem. In Section 43, some implementation results are presented. Then, die concluding remarks are

given in Section 4.4.

4.1. Mathematical Formulation

In this section, we will study the HE algorithm by applying it to the following system:

C(v)v+ f(v,u(O) = 0 v(0) = v0

Note that we allow floating capacitors to be present in the system.

(4.1.1)

Before we study this general system, let us first examine a two-node circuit Applying the

backward Euler integration method and nodal analysis to the circuit of Fig. 4.1, we have:

Gi +G% +
Ci+C-:

-G,-

-G3- G2 + G3 +
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h

(C2 + C3)
t+i
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G2

(4.1.2)

where h = tk+\ - tk

The key to the IIE method is to decouple Eqn. (4.1.2) by taking the voluge at node (2) one

step back in time when solving the first equation. Thus, G3v/+, is replaced by G3v*2 and the

current flowing through the floating capacitor is given by — [(vtVi - v*1) - (v2 - v*2_i)]. There-
h

fore, Eqn. (4.1.2) becomes:

Gi +G3 +
Ci + C,

h

-G»- Gi + G* +
(C2 + C3) *+i
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(Cr + C^ r C> ' 0
c3 "

h
-G,-T

V1 h v1
Cz (C2 + C3) V2

+
0

0
v2

h h
*-i
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(4.1.3)

The IIE method has been shown[3] to be unconditionally stable for this particular two node

circuit ( ie. all eigenvalues of the companion matrix are less than 1 for all values of the circuit

parameters and for all h). In addition, this method is free of oscillatory error for this two node cir

cuit if we keep the time step sufficiently smalL

In order to generalize this method, consider the following splitting:

C(v)sC,(v) + Ca(v)

where C„(v) is strictlyupper triangular and C,(v) is lower triangular with nonzero diagonal entries.

Eqn. (4.1.1) can be rewritten as follows:

C,(v)v + C.(v)v + f(v,u(f)) = 0 (4.1.4)

To solve Eqn. (4.1.4), the time derivative operator is discretized to convert the nonlinear

differential equation into a nonlinear algebraic equation. In contrast to other timing algorithms, this

algorithm discretizes the derivative operator in Eqn. (4.1.4) at two different time points, rt+1 and tk,

ie.:

Q(v*+1)v4+1 + C(Wt* +/(•*+!. o(fc+i)) = 0 (4.1.5)

where v*+1 andvk are the time derivatives of the vector v evaluated at tk+i and tk, respectively. If

the backward Euler integration formula is used, then we have:

•t+i - •*
v*+i =

v* - •*-!
•t =

where h a tk+l -tk=tk - fc_lt then Eqn. (4.1.5) becomes:

C/(vA+1)vfc+1 - C,(\k+l)yk + Cu(vk+l)\k - C^vt+Ov*.!

= -hf(vk+ha(tk+l))

Using one sweep of Gauss-Seidel, we have:

(4.1.6)

(4.1.7)
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C/"(v4r,vJt+1)vJfc+1+/i

/i(v*!rt.v*2, • • •, v£ u(tk+i))
/2(v*+i. vt2+1, vA3, • • •, v£, u(tk+l))

fn (v*+i..... vftj, v£+,, u(fc+1))

= [C/*(v*. v*+1) - C,*(v*, v*+l)]v* + Ca*(v*, vft+i)v4.i

where C*(v*» v*+i) and C«(v*, v*+J) are defined as follows:

Q*(v*,v*+1)s

C,n(vk\i,vk2 v# o o
C,2\vk\i. v*2+1, v*3,..... Vit") Cftvik. v*2+1, vk\ •• •, vfl o

(4.1.8)

CP\vk\u ••/.v£rt) •«2/.. 1C/BW+1, ••-,v*\1)

and

0 Cj2^, v*2, •••, v*") f.^, vt2, •••,vt) .
0 0 C.a,(vA.i.vft2+1,v/t ---.vf) .

• IWI/., 1CHv£i vJrt)

•«Wtcyfrfa v, • • •, %•)

cr^v^i, •••.v&Vtf)
0

Eqn. (4.1.8) is the formalized version of the TIE method when applied to general circuits. Since

there is only one unknown in each row of Eqn. 4.1.8, the solution can be readily obtained.

In general, when a circuit description is read by a timing simulator and translated into data

structures in memory, the elements may be read in any order. Unless some form of connection

graph is used to establish a precedence order for signal flow, the new node voltage will be com

puted in an arbitrary order. Since the Gauss-Seidel relaxation is used in the IIE method, the order

of processing elements can substantially affect the simulator preformance. To improve the prefor-

mance of the IIE method, one must include a scheduling routine to properly order the system of

equations.

In addition, large digital circuits are often relatively inactive. There have been a number of

schemes used to avoid the unnecessary computation involving the reevaluation of voltages at nodes

which are inactive or latent. The selective trace technique used in SPLICE saves a significant

amount of computer time. For the IIE method, bypass schemes such as selective trace technique
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may be used to exploit latency.

Since only one sweep of the Gauss-Seidel iteration is taken, the stability and accuracy pro

perties of the backward Euler integration method used to discretize die derivative operator no

longer hold. In the following section, the numerical properties of this formalized IIE method will

be investigated.

Before leaving this section, we would like to mention that in order to compute v*+1 in Eqn.

(4.1.6), one needs to know vk and yk^. To compute vt given Vq, one can use any timing analysis

method that computes vt+1 based only on vk. Once v0 and vt are obtained, the algorithm described

in this section can be used.

42. Numerical Properties of the IIE Method

The testproblem chosen for the IIE method is a circuit similar to the testproblem described

in Section 332 with the exception that floating capacitors are present The test circuit must

satisfies the following conditions:

(1) It consists of positive, linear, time-invariant resistors andcapacitors, andlinear, time-invariant

voltage-controlled current sources.

(2) Each node hasa capacitor connected to ground or to dc supply voltage rails.

(3) It is asymptotically stable.

For thisparticular class of test problems, Eqn. (4.1.1) can be written as:

Cv = -Gv v(0) = vo (4.2.1)

By conditions (1) and (2), C is stricdy diagonally dominant and G is the nodal conductance matrix

of the circuit with controlled sources. Now let us apply the IIE algorithm described in Section 4.1

to Eqn. (4.2.1)to get the following equation:

Q[-^ ]+Cu[ \ l] =- G,v*+1 - Guvk (422)
where C/, G/ are lower triangular matrices (including diagonal elements), and Cu and G„ are
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strictly upper triangular matrices.

Theorem 4d [19]

The HE algorithm is consistent

Proof:

Rewrite Eqn. (4.2.2) in a different form:

Qfa+1-Vtl + C.fa -*k-i]=-hG,vk+l-hGuvk (423)

Let •(;*) be the exact solution of C v =- Gv, and v* be the computed solution using the IIE

method. For consistency analysis, we wish to showthat the local truncation error is 0(h2)f le.

v*+i=v&+1) +0(*2) (42.4)

The key tool for proving consistency is to use the Taylor series expansion of the exact solution at

tk while assuming that the previously computed values are equal to die exact solution:

*(tM) = v(tk) + hv(tk)+ 0(h2) (425)

v(fc-i) =v(r*) - hv(tk) + 0(h2) (42.6)

•*-i = v(f».1) (42.7)

v*=v(fc) (42.8)

From Eqn. (423) and Eqn. (42.6), we have:

v(fe) - v(tk_i) = v(fc+1) - v(tk)+ 0(h2) (42.9)

Substituting Eqn. (4.2.7) and (42.8) into Eqn. (42.3), we get the following equation:

C/[vt+l - vfo)] + C.W*) - v(fc_,)] = -AG/V*+1 - hGuv(tt) (4.2.10)

Using Eqn. (42.9), we have:

Q[v*+1 - v(fc)] + C„[v(rt+1) - v(fc)] =- hG,vk+l - hGuv(tk) + 0(h2) (42.11)

Consider the original equation:

Cv = - Gv v(0) = v0

If we evaluate this equation at time tk, we have:

C[ir(tk)] = -Gv(tk) (4.2.12)

Since
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v(**+1) = v(tk) + hv(tk) +0(h2) (4.2.13)

Eqn. (4.2.12) becomes:

C[v(A+1) - y(tk) +0(h2)] = -hGv(tk) (42.14)

or

[Q + C]W44i) - v(fc) +0(/i2)] =-yt[G7 +GJv(/*) (42.15)
Rewrite Eqn. (42.15):

C, MtM) - y(tk)] + CB Mtk+l) - v(tk)]

=-AGj^HG,^) +0(h2) (42.16)

Subtract Eqn. (42.16) from Eqa (42.11), we have:

Cr [•*«« - v(f*+1)] =- /»G,[vA+1 - v(r*)] + 0(h2) (42.17)

Rearranging Eqn. (4.2.17), we can get

[v*+i - v(fc+1)] =-hCrlG,[yM -y(tk)] + 0(h2) (42.18)

Since v(tk) = v(r*+1) + 0(A), Eqn. (42.18) becomes:

[I+ AC^G/Jfa.rt - v(fe+i)] =0(A2) (42.19)
Now, using the series expansion [I + hC/^G/]"! = I + O(h), we have:

[v*+i - v(fe+i)3 = P + 0(/i)] Otf2) = 0(h2) (42.20)

Hence, we conclude that the IIE method is consistent

Q.EJD.

Corollary 4d

The IIE algorithm is a first order integration algorithm.

Proof:

The proof follows directly from Theorem 4.1.

Q.EJD.

It is difficult to study the stabihty of this method by analyzing Eqn. (4.22) since it involves

the evaluation of v at three different time points. Let us make the following definition:
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x* s

Then, Eqn. (42.2) can be rewritten as :

**+! =

or

where

M(A)

0 I

(Q +hG,)'lCu (C, + hGiT\C, - CH - hGu)

x*+1 = M(A)x*

0 I

(Q + AG/^C. (Q +hGi)"\C, - C„ - AGa)

•33-

(4221)

(42.22)

M(/t) is called the companion matrix of the method. If we assume that a fixed step size h is used,

then we have:

Xfi = [M(A)]*+1Xo (42.23)

Note that the exact solution of Eqn. (4.2.1) at fe+1 assuming yk being computed exactly is

given by:

v*+i = *~" wv* (42.24)

Expanding the right hand side of Eqn. (42.24) as a power series a of the step size h, we have:

v*+i = [I - hC"1G+0 (A2) ] yk (4225)

or

^t+i =
0 I

0 I-h<TlG + 0(h2) (42.26)

Since we have proven that the IIE method is consistent the companion matrix of the IIE method

should have the same form as the matrix given in the right handside of Eqn. (4.2.26) with this new

variable definition. This property is restated in the following lemma:

Lemma 4 d

The DE method is consistent and its companion matrix can be expanded as a power

series of the step-size h as:
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M(h) -[Si] + h

Proof:

0 0

o -cr'G
+ 0(h2)

We first rewrite Eqn. (422) in a different form:

(C, + AG,)vt+1= (C, - CB - hGu)yk + Cv*.,

If we subtract (Ct + hG{)yk from both side of Eqn. (42.28), we will get:

(C, + AG/Xv*+i - •*) = ( - C. - AG„ - AG,)v* + (CJv*^

Since the IIE mediod is consistent, we have:

*k+\=Vk+hyk +0(h2)

or v*+1-v* =hyk+0(h2)

and

•*=v*-i+Av*+0(/r2)

or vk-vk-i=hyk+0(h1)

With a first-order approximation, we can ignore 0(h2). Thus,

v*+i -•*=•*- vt-i

Substituting Eqn. (4.232) into Eqn. (4.2.29), we have:

(C, + hG,)(yk - yk.{) = ( - C„ - hG„ - hG,)yk + (CJv*.!

Thus, we can solve v^ as a function of yk:

(C + hG + hG,)yk = (C + hG,)yk.i

or vt.1 = (C + /»G/)"1(C + /iG +/iG/)vt

Substituting Eqn. (4.235) into Eqn. (4.128), we have the following equation:

(C, + hG,)yk+l = (C, - C, - hGu)yk

+ (C„XC + hG,T\C + hG + hG,)yk

Eqn. (42.36) can be simplified into the equation given below:

Vfc+i = (Q +hG,Tl[Ct - hGu +Ctt(C +hG,)"lhG]yk

Define

-34-

(42.27)

(42.28)

(42.29)

(42.30)

(4.2.31)

(4.2.32)

(42.33)

(4.2.34)

(42.35)

(4.2.36)

(4.2.37)
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M'(h) = 0 I

0 (C, +hGlTl[C, -hGu + C„(C + hG^hG]

-35-

(4.2.38)

Since M* (h) was derived based on the expansions of vk+\ and yk as given in Eqn. (4.230) and

Eqn. (4231), M*(h) is equal to M(h) up to the first order of h.

Therefore, M(h) =M*(0) +h-^-M*(0) +0(h2).
an

We need to show:

O. M-(0)=[g{]

«).^M-(0)= 0 0
o -<rlG

L Clearly, by setting h = 0 , we have:

it

M'(0) =[0J] (42.39)

j-M-(A)=[<> J] (4.2.40)
where B =- (Q +hG,TlGi(C, + hGtrl[C, - hGu + C„(C +hG,)'lhG

+ (C, +hG,Tl[ - G„ + C„( - (C +AG/)-lG,(C+ hGi)'lhG + (C + hGtTlG)]

Setting h = 0, we have:

iM*(0)=
or

0 0

o - cr%crlc, + cr\ - gb + cc'o

>,(0)=
0 0

o cr\-i + cucrl)G

Substitute I by CC~\ Eqn. (42.42) becomes:

J-M-(0) = 0 0

o cr\ - ccr1 + c.ct^g

o o

o - cr\c - cu)ctxg

(42.41)

(4.2.42)
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Hence

0 0

o -cr!C/C-lG
0 0

o -crlG

M(h) =M*(0) +h4~M'(0) +0(h2)
an

=[?:] + h

or

0 0
0 -C-lG

M(*) =

+ 0(h2) (42.43)

Q.EJ5.

We will now discuss the stabihty characteristic of the IIE method. Note that stability means

that the sequence {yk} be bounded for small step size. In this chapter, we restrict the analysis to

constant step-size. Using proposition 3.1, we can prove the following theorem:

Theorem 42.

The HE algorithm is stable.

Proof:

It follows from Lemma 4.1 that:

0 I
0I-fcC^G

+ 0(h2)

*i

*2 *+l

0 I
0 I-ZiC^G

*i

*2
+ 0(h2)

(42.44)

(42.45)

Since xu+l=xw

xi*+i = a-hcrlG)xljc
we have:

M(*) = I-hC~lG 0
0 I-hC~lG

+ 0(h2)

-ill] + h
-C^G 0

0 -C^G
+ 0(h2)

Clearly,

(42.46)
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By die spectral mapping theorem [18]

-CT'G 0
0 -C-'G

= d -C-JG

o(M(A)) =j fc15, =1+hh +0(A2)|;

where Xis an element of o( -C^G); i = 1, 2,..., o (4.2.47)

From Eqa (42.47), we have:

l&l = ll+AA,+0(A2)l, f = l,2, ...,o (42.48)

Ifc I2 = [1 + h Reft,)]2 + [h Im(M]2 + O(A2) (42.49)
Since M*(0) = I, its eigenvalues are all 1, and 1isa simple zero ofthe minimal polynomial ofthe

identity matrix.

I& I2 = 1 + 2 h Reifa) + h2 (Re2^) + Im2^)) + 0(h2) (42.50)

Since we assume that Re(X,) < 0, there exists a positive number 5 such that for all A in (0, 5)

l& I2 £ 1 for all A in [0, 5) (42.51)
or

o(M(A))in B(0, 1) (42.52)

Therefore, this algorithm is stable.

Corollary 42

The HE algorithm is convergent

Proof: The proof follows directiy from Theorem 4.1,42, and 3.4.

As mentioned in Section 3.4, none of the one-sweep relaxation timing analysis algorithms

described previously are consistent when applied to circuits containing floating capacitors. This is

the major drawback for these one-sweep relaxation timing algorithms. From the theorems

presented in this section, we can conclude that the HE method has nicer numerical properties. It

eliminates the major obstacle for using one-sweep relaxation timing analysis algorithm.

The importance of stabihty for a one-sweep relaxation method has been discussed in Section

3.4. Here, we are not only interested in whether the HE method is stable or not but also its region
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of absolute stabihty. Let us examine the companion matrix given in Eqn. (4.222):

M(A)s

Consider die new splitting:

(1) G = GL + Go + Gtf, where GL is strictly lower triangular, GD is a diagonal matrix and Gv

is stricdy upper triangular.

(2) C = CL + Q> + C#, where Q, is stricdy lower triangular, CD is a diagonal matrix and Cv

is strictly upper triangular.

We can rewrite the companion matrix as:

M(A) =

0 I

(C, + AG,r'C (Q + AG,)"l(Ct - C„ - AG„)

-38-

(42.53)

0 I

[Q> + CL + AGL + hGDTlCu [CD + CL + AGL + AGD]"l[Q> + CL - Cv - AGy]

Define:

or

or

y = M(A)x

? = M(A) x1

X2

(42.54)

(4.2.55)

(4.2.56)

y1 = x2 (4.2.57)

[ CL + AGL ] y2 = - [ CL + AGL] y2 + Cw x1 + [ CL + CD - Cv - hGv ] x2 (4.2.58)

Here, we would like to assume that ||y|L = max \y' I e y2. This is because that the test circuit is

asymptotically stable, and as long as we stay in the region of stabihty, Hy2)! > lly'H since y1 is

further ahead in time. Therefore, we can concentrate on Eqn. (52.58) and rewrite it as:

y2 = -[Ct+AGLr1 [Q+AGJy2
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+ [CL+hGL r1 Cv x1 + [ CL +AGL r1 [ CL +CD -Cu -hGv ] x2 (42.59)

Let 2Jc be the index such that ||y|U = ly2-* I. Then from the Jfc* equation of Eqn. (4.2.59), we

have:

llyll- * sk\\y\U + rk[\x\\~ + MMU (42.60)

where

i-ilr.. +/»G- '

ySlCtf +AG* I

y«i+il Qf + AGj7

• I C- ' "I £.•• + AG- Ir. = y| III |+ y I^j+Kjtj |

! <-l. • - ,n

Therefore,

||M(A)IU=max^l {A26l)

rk +tk

l-sk

rt + ti

£

<, max
is /s « 1 - St

• ' C* I / I c» I » I r.. + *<?.. It I—^—i+Ti—ra—i+ y likifSLi
= max ^ *-—, f (42.62)

l_y|c"+/tCy" |
jSl Q+AG,v |

The region of stabihty for the HE method is the set of A that satisfies I|M(A)JU < 1. Thus, a

sufficient condition is to have A such that the right hand side of Eqn. (4.2.62) be less than one. It

may be hard to evaluate this equation in practice; however, looking at Eqn. (42.62), we can see

that we need a stronger condition than having both C and G being strictly diagonally dominant to

ensure that the HE method be A-stable. In tact, the off-diagonal terms have to be small enough for

the IIE method to stay in the region of stabihty.
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43. Implementation of IIE as an Initial Condition Generator

The consistency and Stabihty properties of the formalized IIE algorithm have been established

for a class of test circuits. To show the usefulness of this method in die analysis of VLSI MOS

circuits, it is important to test these properties on actual MOS circuits used in digital design. Since

RELAX uses constant valued waveforms as its initial guess waveforms, we decided to implement

an initial guess voltage generator for RELAX using the IIE method to see if any speed improve

ment could be obtained. In this section, we will describe die implementation of the EDE method in

RELAX. The implementation results will also be presented. We start with a brief review of the

structure of the RELAX program. Then, a detailed description of how the IIE method is imple

mented as an initial waveform generator is given. Finally, some implementation results are

presented.

43.1. Implementation

The first step in RELAX is to read in a circuit description file containing circuit topology,

device model parameters, analysis specification, and plotting requests. Before applying the

waveform relaxation algorithm described in the previous chapter, RELAX decomposes the circuit

into a collection of subcircuits. This is done by partitioning the circuit into clusters of tightly cou

pled nodes. Since RELAX uses the Gauss-Seidel relaxation iteration, there is a scheduling routine

in RELAX wincharranges the subcircuits in the natural directionality of the circuit as much as pos

sible.

After the large circuit has been divided into ordered subcircuits, RELAX begins its waveform

relaxation process. Instead of performing the relaxation iteration by computing the transient

behavior of each subcircuit for the entire user defined simulation interval, RELAX divides the

whole simulation interval to many smaller simulation time-slots referred to as a windows. RELAX

performs waveform relaxation on one window until convergence, then move on to the next win

dow. This method has been proven to increase the efficiency of the waveform relaxation method
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especially when applied to digital circuits with logical feedback. In fact, this windowing scheme

can improve most of the integration method because it limits how far the local truncation error can

propagate in time. An initial guess waveform is chosen for each of the node voltage waveforms (in

this case a constant waveform for each node). Within each window, the numerical solution for

each of die subcircuit is computed in the order determined by the scheduling routine. The compu

tation is performed using trapezoidal integration algorithm, with the time step controlled by moni

toring local truncation error. In the subcircuit, those nodes that are connected to the nodes in other

subsircuits are treated as external time-varying voltage sources. In each G-S iteration, the newly

computed waveform replaces the waveform generated from the previous iteration. This iteration

process is carried all the way to convergence. Then, we move on to the next scheduled subcircuit.

This continues until all subcircuits are analyzed for tins window.

Let us focus on the circuit equation used in RELAX. To ensure charge conservation, die

decomposed differential equations generated by the waveform relaxation algorithm use charge as

the state variable. That is, the multistep integration algorithm is applied to

q(v(0) = t(q(0,ti(0) (4.3.1)

RELAX uses trapezoidal method and only need to save one copy of the variable vector. However,

the TIE method uses voltage as variable, and needs to save two set of vectors at two different time

points. In order to minimize the additional storage and implementation effort needed to implement

the HE method in RELAX, we define a new set of charge definition to overcome this problem.

Since the IIE method uses backward Euler method to discretize the time derivative, Eqn. (4.3.1)

becomes:

^--^=f(q*+i.ii*+,) (432)

Define: ^+l e C,(v)v*+1 + C.(v)v* (43.3)

4t B C/(v)v* + Cu(v)v*_, (4.3.4)

Substituting this definition of charge into Eqn. (4.3.2), we have:
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Q(v)v*+i +C,,(v)vt C,{y)vk +Cw(v)vt-!

h " h
Then applying one sweep of the Gauss-Seidel method to this equation, we can obtain the same

equation as Eqn. (4.1.8) in the IIE method. For example, consider the circuit given in Fig. 4.2.

The first step is to write the KCL equation using charge as the variable:

Then, we apply backward Euler by using the new charge variables defined in this section and apply

one sweep of Gauss-Seidel:

Substituting Eqn. (4.33) and Eqn. (4.3.4), we have:

G1

= f(q*+i(v*+i, vjt), ut+1)

*+l

G2

Hgure 4.2 Circuit Example

(4.3.5)
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or

*«•!
C\vh+l ~ C\v\k +C3Vi4+] - C3v2i +C3vlt - C3vVl =-AG,v,

C2v2jk+1 - C2V24 +C3V24+1 - C3v2i+i +C3v2jt - C3vh =-AG2v2j

C1 + C3 + AG1 0
^C3 C2 + C3 + AG2

vi

V2 Jt+1

V2

C1 + C3 C3
—C3 Ci + c3

0 -Ci
0 0

vi

V2

*+l

J*-l

-43-

(43.6)

If we apply die TIE method direcdy to die original problem using node voltages as the variables,

we will get the same equation as Eqa (43.6).

Other than the modification stated above, a time-step control scheme similar to the one used

in RELAX is adopted for the IIE method. In addition, the technique that exploits the latency in

RELAX is also used.

432. Implementation Results

The circuit in Hg. 4.3(a) is a three stage inverter chain. Hg. 43(b) shows the difference

between the generated initial waveform and the final solution. Note that the error between the two

waveforms is very smalL The circuit in Hg. 4.4(a) is an enhancement-load NMOS bootstrapped

inverter. A floating capacitor, bootstrap , forces the load transistor to turn hard on when the input

voltage is rising; thus, improving the speed of the circuit Again, Hg. 4.4(b) shows that the

difference between the initial guess waveform and the exact solution is almost negligible. Similar

results are obtained for the circuits given in Hg. 43(a), a shift register, and Hg. 4.6(a), an inverter

with delay, with their simulated waveforms given in Hg. 43(b) and Hg. 4.6(b) respectively.

In the above test circuits, we have focused on tightly coupled circuits, especially those cir

cuits with floating capacitors. The results confirm that die HE method itself is fairly accurate as

predicted in the previous section. In fact, except for the inverter with delay, it is quite difficult to

distinguish between the initial guess waveform and the final solution. The shift register is con

sidered to be the most tightly coupled circuits among these test circuits. It forces the IIE method to
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Vdd

a Q a

Vln

n 4= C =r Vout

Inverter Chain

Hgure 43a Three Stage Inverter Chain.
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Hgure 43b Initial Guess Waveform and the Hnal Solution for the Three Stage Inverter Chain.



Chap. 4. The Implicit-Implicit-Explicit Method

_r\

+

Vin

Bootstrapped Inverter

Hgure 4.4a Enhancement-Load NMOS Bootstrapped Inverter.
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Vout
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Hgure 4.4b Initial Guess Waveform and the Hnal Solution for the Bootstrapped Invener.
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Hgure 4.5a Shift Register.



Chap. 4. The Implicit-Implicit-Explicit Method -49-

volt
vm

Initial Guess Wavefonn

5.00

4.50

4.00

3.50
Last Iteration

3.00

2.50

2.00

1.50

1.00

0.50
__J _J

0.00

-9
Time at 10

0.00 20.00 40.00 60.00

Hgure 4.5b Initial Guess Waveform and the Hnal Solution for the Shift Register.
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Hgure 4.6a Invener with Delay.
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Figure 4.6b Initial Guess Waveform and the Hnal Solution for the Invener with Delay.
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use a very small time step hence increases the total CPU time. Although floating capacitors no

longer pose a problem to the simulation if the time step is chosen to be small enough, it tends to

decrease the overall efficiency of the program. The simulation run-time requirements of these cir

cuits are shown in Table 4.1.

Circuit with HE method without IIE method

3 stages inverter chain 2.94s 2.84s

bootstrapped inverter 035s 0.33s

shift register 3.76s 0.77s

inverter with delay 125s 1.27s

Table 4.1 Comparison of RELAX with and without IIE initial guess wavefonn generator

The run-time comparisons of some bigger digital circuits are given in Table 4.2. It indicates

that RELAX with the initial guess wavefonn generator usually requires about the same or more

CPU time for most digital circuits compared with the original RELAX program. One obvious rea

son is diat there is more overhead cost in generating the initial guess waveform. However, the

major reason is that die time step required for die IIE method is smaller than one used by the tra

pezoidal method used in RELAX

Circuit Devices Nodes with IIE method without HE method

cmos inverter chain 767 259 1832s 18.07s

cmos inverter chain 3071 1027 7431s 72.81s

input decoder 2607 282 8132s 75.09s

input decoder 253 49 724s 7.32s

domino cmos circuits 8 12 1.62s 1.63s

nmos depletion-load integrator 64 13 1.05s 1.17s

Table 42 Comparison of RELAX with and without IIE initial guess waveform generator

As mentioned before, we are approximating the derivatives of the voltage at current time

point by the voltage values of previous and current time points. Since RET .AX computes all node

voltages of a subcircuit at the same time and carries the iteration to convergence at each time point,

it approximates the derivatives using the voltage value at previous time point tk, and the newly cal-
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culated voltage value at current time point tk+]. The HE method on the other hand, uses one Gauss

Seidel iteration, approximates the derivatives using the voltage values at either tk.} and /*. or tk

and the newly calculated voltage value at current time point tk+] depending on whether the voltage

at ;*+] has been computed or not. Intuitively, in order for the approximations of the derivatives

computed using voltage values at r*_] and tk to have the same accuracy as the ones computed using

voltage values at tk and rt+1, the time step of the former (HE) method will most likely need to be

twice smaller than that of the latter method (RELAX). Hg. 4.7 shows a clearer picture why the HE

method probably needs to use twice as small a time step to achieve the same accuracy.

We can also look at this problem from a different view point Consider the following linear

time-invariant circuit:

Cv = -Gv

At any time tk+h this circuit satisfies the KCL equation:

f*-| '* '*♦! Ttont

Hgure 4.7
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Cv(tk+l) = - Gv(tk+1) (4.3.8)

Let v be the computed solution of trapezoidal method used in RELAX At time tk+l this method

satisfies following equation:

CwM = -GvM (43.9)

For the IIE method however, the capacitor matrix is split into two triangular matrices and the

derivative operator is discretized at two different time points to yield the following equation:

Ci(vk+l)yk+l + (^OtaA = - G,v*+1 - G.yk (43.10)

where yk is the computed solution for the TIE method. Qeariy, if the time step is too large, the

solution of Eqn. (43.10) can be very far away from satisfying the KCL equations without consider

ing the error produced by the implicit integration method. Thus, we can conclude that comparing

with the trapezoidal rule, a smaller time step is needed for die TIE mediod to achieve die same

safisfication of KCL equations.

Anodier consideration is that we are unable to proofthat the TIE method is A-stable. In fact,

from our experience, the local truncation error may propagate rapidly in some cases and cause ins

tability if the time-step is chosen to be too big.

This seems to be an inherent problem associated with the HE method and other timing

analysis algorithms. If we choose a stricter time step control scheme, we will spend a lot of time

just to generate the initial guess voltage waveform, and hence increase the total CPU time. If we

do not, it will take RELAX additional iterations just to correct the error caused by die inaccuracy

of the initial guess waveform. Therefore, adding the HE method as the initial guess waveform gen

erator has failed to improve the overall performance of RELAX

4.4. Conclusions

In Part I of this thesis, we have discussed various different numerical integration methods for

circuit simulation with special attention given to timing analysis algorithms. As pointed out earlier,

the major problem with timing analysis algorithms is that they may fail when floating capacitors
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are present in the circuits.

We have also formalized the IIE algorithm and investigated its numerical properties. Based

on the dieoretical finding, the IIE method was proven to be consistent, stable, and convergent for

circuits containing floating capacitors. However, to be effective in circuit simulation, it is desirable

for an integration method to be A-stable and able to control the time step simply by monitoring the

local truncation error. The timing analysis algorithms we introduced in this thesis are shown to be

A-stable only on small classes of test circuits. This is one of the major drawbacks of timing

analysis algorithms.

Finally, we have described die implementation of the IIE mediod as an initial guess

waveform generator for RELAX Although it does not improve the overall performance of

RELAX, it confirms that die IIE method itself can give stable and accurate solutions for circuits

with tightly coupled feedback.
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PART H : CIRCUIT SIMULATION IN THE FREQUENCY-DOMAIN

CHAPTER 5

Introduction

The second part of this thesis focus on the simulation techniques which can be used to find

periodic steady-state responses for various circuits of interest Periodic waveforms play an impor

tant role in the analysis of many classes of circuits. Examples include the analysis of microwave

circuits and circuits in power transmission systems. Periodic steady-state analysis of oscillators or

periodically forced nonlinear systems is also an important example.

Many computational methods related to this class of problems have been explored

[1,20,21,22] . One classical approach to finding die periodic steady-state response is to integrate

the system of equations from some initial conditions until the transient response becomes negligi

ble. Another time domain analysis technique uses the Newton method [20,21]. Ibis technique is

very popular because it can be applied to both autonomous (unforced) and nonautonomous (forced)

circuits. Let us assume that, for the system under study, there exists a periodic solution x(r) of

period 7*. The Newton algorithm searches for the steady-state solution by formulating the system

as a two-point boundary value problem, using the fact that x(0) =x(T) in the steady state. The

basic approach is to find the right initial (or boundary) periodic state x(0) such that when we

integrate this system from 0 to 7, x(T)= x(0).

Time-domain simulation techniques may be very inefficient for a certain class of circuits

when the periodic steady-state solutions are of the primary interest Two examples are bigh-Q cir

cuits and circuits containing many distributed elements. The quality factor, Q, measures the rela

tive damping in adamped oscillation. The less damping the oscillation has, the larger the factor Q

is. For example, alossless resonant circuit has zero damping or infinite Q. For lightly damped (or

high Q) systems, it takes a long time before the systems reach the steady state. Since traditional

Chap. 5. Introduction
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time-domain simulators integrate the system equations until the transient response dies off, the

integration could extend over many periods, making the computation very costly and inefficient.

Circuits containing distributed elements are difficult and often impractical to simulate in the time

domain because the distributed elements are described by partial differential equations. Although

distributed components can also be approximated by collections of lumped components, it usually

requires a large number of these components to achieve sufficient accuracy.

Simulation in the frequency domain can avoid those problems mentioned above. First of all,

it finds periodic steady-state solutions direcdy without having to wait until the transient responses

die oft This greatly improves simulation efficiency for high-Q circuits. As for distributed ele

ments, systems containing those elements can be modeled as algebraic equations in die frequency

domain, making it much easier to obtain the solutions.

La Chapter 6, we will start with problem formulation and discuss the Newton method used in

time-domain simulators. Then, we will review the method of harmonic-balance as a general

approach to converting a set of differential equations into a system of nonlinearalgebraic equations.

These nonlinear algebraic equations can then be solved to obtain die periodic steady-state solutions.

In Chapter 7, we will show how we can combine the harmonic-balance mediod with the Newton-

Raphson method to form the harmonic-Newton method which has been implemented in Spectre

[4,23]. So far, Spectre is limited to die simulation of nonautonomous systems. In Section 7.3, we

will discuss how we can extend the harmonic-Newton method to handle autonomous systems.

The convergence properties of the harmonic-Newton method will be discussed rigorously in

Chapter 8. In Chapter 9, we will focus on die computation of the error generated by the

harmonic-Newton method and show how this error boundcan be used to predictthe number of har

monics needed for a given error objective before applying the harmonic-Newton method, thus

improving the efficiency of Spectre significandy.

In PART II of this thesis, we adopt the following notation; lower-case letters are used to

denote time-domain variables and functions, and upper-case letters are used for frequency-domain
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variables and functions. Subscripts H represents the number of harmonics contained in the vari

ables or function, superscripts are used for node number, and superscripts in parentheses represent

the Newton iteration count Vectors of variables or functions are in boldface. The superscripts C

on upper-case letter variables or functions means the Fourier coefficient of these variables and func

tions are in complex form. The bar over variables or functions implies that discrete Fourier

transform is used.



CHAPTER 6

Overview

In this chapter, we discuss how the circuit equations for steady-state analysis are formulated.

The Newton method whichhas been widely used in the time domain to obtain solutions of periodic

systems is then introduced. Then we focus on the harmonic-balance method and discuss how we

can use the method to convert a system of differential equations into a system of algebraic equa

tions. In this chapter, we will delay the discussion of the application of those simulation algorithms

on some special classes of circuits such as mixers, that have a steady-state response containing

almost-periodic signals until later sections.

6.1. Background

In order to understand the problem better, we first start with some background on periodic

and almost-periodic functions. To distinguish between periodic and almost-periodic functions, we

first give the defimtion of a translation number. The real number x(e) is called a translation

number for/(x) corresponding to e if

l/(x+x(e))-/(jc) l£e for—«»<x <oo. (6.1.1)

Note that a translation number x(e) of /(x) is also a translation number corresponding to any

e'>e.

To understand this, let us consider the function s(t) = eJC>^ + eJ<** where j is the imaginary

number V^T. If there exist two integers n\ and n2 distinct from zero such that n^— = n2—,

then s (t) is a periodic function with period nx—. If there is no integer multiple of — which is

lit
equal to a integer multiple of —, then, for any arbitrarily small number 5 > 0, there exists a pair

©2

of arbitrarily large integers nx and n2 such that Wi n2— l< 6. Let x be any number
I «h «2 |

Chap. 6. Overview -59-
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between n,— and n2-=—, and £ be some real number such that I sit-x) - sit) I £ e, then x(e) is
G&l G&2

a translation number of sit) and x is almost a period for sit) since the difference between sit + x)

and «y(f) can be arbitrary small. We will now give the formal definition of almost-periodic func

tions.

Definition:

A continuous function f(x\-oo<x<°°is called almost-periodic if for any £ > 0, there

exists a positive real number 1(e) such that within each interval of length L(e) on x there is

at least one translation number x(e).

Obviously, a continuous periodic function of period T„ is a special case of an almost-periodic

function. The period kT0 for k = ±1, ±2, • • • are translation numbers x(£) for all £ ^ 0. The

Fourier series of a given periodic function/ is defined as an infinite series

with coefficients satisfying

/(')= 2 Fc[k<»0] eJ*** (6.1.2)

^cCfccow]»^- f/(r)e"^" (6.13)
where ro > 0 is the period of the function / and co0 = 2tc/T0 is the fundamental frequency of die

function.

If / is not periodic it has been shown in [24] that the class of almost-periodic functions is

identical to die closure of die class of all finite sums of trigonometric functions. This means that

every almost-periodic function can be approximated uniformly for -•* < t < °° by a sum of a

countable number of trigonometric functions:

/(0= tF€^k\e^' (6.1.4)

where the coefficients Fc[co*] is any complex number and co* can be any real quantities. Here, we

limit ourselves to the discussion of series having at most denumerably many elements, i.e. functions

whose spectrum is not continuous but consists of discrete lines. Functions having continuous



Chap. 6. Overview -61-

spectrum are no longer periodic in the time domain and therefore are not in the scope of the thesis.

Moreover, since we are only concerned with real functions, the following conditions are satisfied:

(1) The imaginary part of FC[Q] is equal to zero, and (2) Fc[-*<*>] =(Fc[*©])*.

We use AP(A) to denote the set of all almost-periodic waveforms over the set of frequencies

A=<0, g>i, ©2, ' ** k Then, all almost-periodic waveforms can be written as

jakt

If there is a set of d independent frequencies { Xlt X^, • • •, \d } such that

*>-Z *[%]•"* (6.1.5)

Aoj©I©=kfa +*2*2 +••*+ICd\t :*i, *2» *•• .*d €Z> (6.1.6)
then A is said to be a module of dimension d and the frequencies { A.lt Xj, • • • , \d } are

referred to as die fundamental frequencies andthey form a basis for A

To solve an equation in die frequency domain, it is necessary to truncate the number of har

monics, H, considered. Let f(t) be a continuous periodic vector function of period 2n/©0, then the

trigonometric polynomial

fr<0 » 2 **[*©„] e**' (6.1.7)
kul-ti

is a truncated trigonometric polynomial of the given periodic function fit). Let us denote such a

truncation operator as PH. Then, the truncated polynomial fH{t) of a periodic function f(r) is

given as follows:

*Hit) = PHfit). (6.1.8)

Some further description is needed in order to extend the definition of truncation to almost-

periodic functions. Let f(f) be a continuous almost-periodic vector function with fundamental fre

quencies { X), • • •, Xd }. Following are two different ways of truncating the set of frequencies

in almost-periodic circuits:

(1) Those frequencies with indices kj whose absolute values are greater than H are truncated.

Thus, the truncated frequency space AH is:
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A#(Xj, X* •••, Xd) =i ©I© =s Jt,Xj +k27» + ••• +^Xd:

kjeZ;\kj\ £H for 1£/ £d; kx £0 [

(2) The absolute sum of all the indices kj is confined to be less than orequal to H. The result

ing truncated frequency space AH is:

A*(Xlt X* •••, Xrf) =j ©I© =kfa +k2\ti + +kd7^:

kjeZ-^kj I£H for 1£; £d; *, Z0I
7-i J

Then die truncated trigonometric polynomial is in the form:

jakt

(6.1.9)ftr<0- Z **[«*]/*'

where F^^JeC" is a vector of Fourier coefficient corresponding to each

©teA* =«{(),©!, ".©A and 2T =-J-((2AT+1)</+ 1) for the first definition and J5T = H»®rk
2NX rf!

if the second definition is used. Let us denote the operator which truncates an almost-period func

tion fit) to order H as P'H. Thus, the truncated polynomial fH{t) of an almost-period function fit)

is given by:

frGWaftO (6.1.10)

6.2. Problem Formulation

For the analysis of die second half of the diesis, we assume that the circuit under study

satisfies the following two conditions:

(1) The circuit is asymptotically stable and, if the system is nonautonomous, it must have a

steady-state solution for the given excitation.

(2) All nonlinear devices must be lumped and their constitutive relationship must be algebraic,

and continuously differentiable with respect to the voltage.
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The condition that the constitutive relationship of the nonlinear devices must be described by

algebraic equations assures us that the response waveform is periodic when a periodic input is

placed on the circuit When applying the harmonic-balance method, we need to transform the

stimulus of each nonlinear device into a time-domain waveform, calculate the resulting response

waveform, and then transform die response back into the frequency-domain. If the nonlinear dev

ices can not be described by algebraic equations (i.e. the devices have memory), then die response

waveform will not be periodic and can not be accurately transformed back and forth between the

time domain and the frequency domain.

In the time domain, a nonautonomous circuit can be modeled as a system of n nonlinear

differential equations, here writtenin a compact form as:

g(v, 0 = -u,(0

t

or Kv, 0 =g(v, 0 +u,(0 =i(v(f)) +q(v(0)+ hit^zyrWz +u,(f) =0 (6.2.1)

where i, q : R" -» R" are difrerentiable functions representing respectively the sum of the currents

exiting the nodes due to the nonlinear conductors and the sum of the charge exiting the nodes due

to the capacitors, y is the matrix-valued impulse response of die circuit with capacitors and non

linear devices removed, v :R-» R" is the vector of unknown node voltage waveforms, u, :R-> R"

is the vector of source current waveforms, and f is the function that maps the node voltage

waveforms into the sum of the currents exiting each node. Using the impulse response to represent

die linear portion of the circuit, we can include linear distributed devices in die circuit

A system is said to be nonautonomous if the time variable t is present explicitly in the func

tion f(v, t). For periodic nonautonomous systems, we assume throughout this thesis that all inputs

are periodic with periodT0. Since nonlinear devices are assumedto be algebraic, the circuit equa

tions are also periodic with period T0:

fiYtt) = fivtt+T0) (6.2.2)

For almost periodic nonautonomous systems such as mixers, which have two or more inputs with

arbitrary frequencies and amplitudes, the signal waveforms are made up of several periodic
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waveforms which are not harmonically related.

A circuit is said to be autonomous if the function / is independent of t. This implies that all

elements have to be time invariant and all independent sources are constant valued. An oscillator

is an autonomous system because it can oscillate by itself without any external input The system

of equations of a nonlinear oscillator assume the form:

Kv,O = g(v,f) = 0 (6.2.3)

However, for the methods to be discussed in this chapter, different forms are used to describe

autonomous and nonautonomous systems. Specifically, an it-node periodic nonautonomous system

is described the following state equation:

i = s(x, 0 (6.2.4)

where x is the vector of the state variable, both x and s are periodic n-tuple vectors with period

7*0, and s has a continuous first partial derivative with respect to x for all x and all t. Since the

system (including all inputs) are periodic with periodT0, we have:

s(x, 0 = s(x, t+T0) (6.23)

Similarly, for autonomous systems, the state equation of a nonlinear oscillator assumes the form:

x = s(x) (62.6)

63, The Newton Method in the Time Domain

In this section, we first discuss how the Newton method can be applied to periodic nonauto

nomous systems in the time domain. Then we show how this method can be extended to periodic

autonomous systems.

6.3.L Periodic Nonautonomous Systems

Consider the system of equations described in Eqn. (6.2.4)

x = s(x, f) (6.3.1)

We will assume that this equation has a steady-state periodic solution x(t) of periodT0 with initial
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state x(0). Integrating both side of Eqn.(6.3.1) from time 0 to r, we obtain

r

x(0 = fs(x(x), x)dx + x(0) • x(f, x(0)) i632)

Since the system has a steady-state solution with period T0, in steady state, we have

x(0) = x(7;) (63.3)

Therefore, we can treat the problem described by Eqn.(6.3.1) as a two-point boundary value prob

lem. From Eqn. (63.2) and (6.33), we have

j(J0 ) = fs(x(x), x)dx +x(0). (63.4)

Our goal is to find x(0) such that at t = Tot x(T„, x(0)) = x(0). This relationship is seldom satisfied

for an arbitrary choice of x(0). Let us define a new function

J*
To

E(x«»)e fs(x(t),T)<*T +x(0), (633)

then, what we want to have is:

x(0) = E(x(0)). (63.6)

Observe that Eqn.(63.6) is identical to the standard form for a fixed-point iteratioa Hence, if the

function E(x(0)) is a contraction mapping, the solution x(0) can be found by applying the fixed-

point iteration algorithm or the more efficient Newton-Raphson algorithm described in the follow

ing:

x0>i)(o) = xy>(0) - [I - E'fr^O))]"1 E(xu)(0)) (63.7)

where

Note that it is necessary to determine the Jacobian matrix E^x^^O)) before we can evaluate

Eqn. (6.3.7), and there exist some efficient numerical techniques for computing the Jacobian matrix.

One method is the numerical differentiation technique. Another more efficient method is to evalu

ate the Jacobian matrix by transient analysis of sensitivity networks [21].
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The Newton method converges quadraticaUy to the desired initial state x*(0), if the initial

guess x(0)(0) is close to x* (0) and [I - E'(x(0))] is nonsingular in the neighborhood of x* (0). If the

initial guess of the initial state is too far away from x*(0), this mediod may diverge and another

initial guess has to be chosen to start the iteration again. If die network has more than one periodic

solutions of the same period Tot it may converge to any one of these multiple solutions, depending

on the choice of the initial guess.

63.2. Periodic Autonomous Systems

As discussed in the previous section, periodic autonomous systems can be described by the

following state equation:

i = s(x)t (63.9)

Let us assume that Eqn. (63.9) has a periodic solution of period T which is generally unknown.

This additional unknown T causes the algorithm presented in the previous section to fail since the

number of unknowns n+1 is greater than die number of constraints n. Under this condition, the

system does not have an isolated solution. This is expected since autonomous systems have arbi

trary time orgins. For example, if some solution x = a cos©f satisfies the state equations, then

a cos(©r + 9) also satisfies die equations. If fact even if die oscillation period T is given, the

algorithm described in the previous section is still not applicable because the matrix [/ - E*] may

become singularat the oscillating frequency.

To salvage this algorithm, let us redefine the two-point boundaryvalue problem as:

T

x(0) =x(T) =jsixit))dt +x(0) . (63.10)

Again, our goal is to find x(0) such that at t = 7\ x(7\ x(0)) = x(0). Similar to the nonautonomous

case, we can rewrite Eqn. (63.10) into:

T

x(0) =E(7\ x(0)) s fs(x(0)* +x(0) , (6.3.11)

Observe that the period T is now added to the argument of the function E(7\ x(0)) so that it can be
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determined along with the unknown initial states x(r). However, the number of unknowns is still

greater than the number of equations. In this case, one can either assume an appropriate value for

one of these n+1 unknowns, or find another independent equation relating these variables such that

this system has a unique solution. Recall that autonomous systems have arbitrary time orgins, any

arbitrary time shift of one periodic solution can be used as the initial state. Hence, we are free to

set a value for one of the n initial state variables, x*(0), and remove it from the unknown initial

state vector and add the period T as a new variable to the vector. Define the new initial state vari

able vector as:

y(0) = [^1(0), ••,*,-1(0),r,jtl+1(0), ••-,x"(0)f

Rewrite Eqn.(63.11) using this newly defined vector

(63.12)

y(0) = E(y(0)) (63.13)

where E(y(0)) is equal to E(7\ x(0)) with jc'(0) being fixed. Then the unknown y(0) can be calcu

latedby the Newton iteration technique.

y</+1>(0) = y</>(0)-

where

m

3y
(y^O))

H»y(0)-E(y(0))

dHand the Jacobian matrix -^—(s^\0)) is given by
dy

-i

H(yO>)

fV><0)) - [*lU\ •••. V'lU\ -sCx^)), *«*« •••, 0-y) ]
ay

with <& being the Ith column of

periodic nonautonomous systems for / = 1,

3E(y(0))

*(0)
, or the /* column of I-

.f-1. i+1, n. Note that

3E(x(0))
dx(0)

(63.14)

(63.15)

(6.3.16)

of the

i* coUnn of *0«H»)=M» fr =»» ^ =̂ ^ (6.3.17)
Under the assumption that there exists a unique periodic solution for the periodic autonomous

system, the Newton method in the time domain will converge as long as the initial guess is

sufficiendy close to the correct solution. The final solution consists of not only a desired initial
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state x(0), but also the period T of oscillation.

6.4. The Harmonic-Balance Method

The harmonic-balance method is a general method for finding solutions of periodic systems.

This mediod transforms die difficult problem of finding periodic solutions of nonlinear differential

equations to an easier problem of solving systems of nonlinear algebraic equations. The idea is to

represent the system variables by Fourier series and try to find a set of Fourier coefficients which

satisfy the system of equations in the frequency domain. For simplicity, we will only focus on

periodic nonautonomous systems in this section and briefly discuss its application to the auto

nomous case.

Consider the same periodic nonautonomous system of equation, as given in Eqn. (6.2.4):

i = s(x,0 (6.4.1)
lit

where x and s are n-tuple vectors which are periodic in t with period T0 = —, and s has a con-

tinuous first partial derivative with respect to x for all x and all t.

Under these mild conditions, the solution x(f) can be represented using the Fourier series

expansion:

*<0 = £ Xc[*<ft,]«i*v (6.42)

Let X = [ • • •,X°[-*©0], -.X^O], •••,Xc[*o\J, ••• ]r be the vector of Fourier

coefficients. Since s(x, t) is also a periodic function with die same period, it can be written as

s(x, t) =£ S^*©,] e***' (6.4.3)

where S = [ •••, Sc [-*©<,], •••,SC[0], •••.Sc[*m„], • • ]r is the vector of Fourier

coefficients of s(r).

Using the orthogonal property of the function e •', we have the following equation for the

Fourier coefficients:



Chap. 6. Overview -69-

; k ©^t*©,] = SC[*©0](X) (6.4.4)

for all integers k.

Now we have replaced Eqa (6.4.1) by infinitely many nonlinear algebraic equations as stated

in Eqa( 6.4.4). It is seldom possible to solve infinite dimensional problems such as the one

describedby Eqa(6.4.4). Hence we need to find a finite dimensional system to approximate it

Define

PH%it) e xHit) = 2 X?[ke>0) e***' (6.43)
km\~H

as die truncated Fourier expansion of x{t). Applying die same truncation to Eqa (6.4.1), we get a

reduced system:

dxH
£ =s#r(xtf, r)

or

j k©0 J X^*©,] «**' = J1 &[kv0] e**'* (6.4.6)
kml-H kml-H

This is equivalent to solving Eqa (6.4.4) for k = 1-//, • • •, H-\. It is to be expected that for H

sufficiently large, die solution of Eqa (6.4.6), x#(r) is a reasonable approximation to the exact

solution x(r) of Eqa (6.4.1). If a periodic nonautonomous system can be described by the state

equation of the form: x(f) = s(x, t), and if an isolated solution exists, then, die harmonic-balance

method produces an arbitrarily accurate solution for H sufficiently large[25].

For periodic autonomous systems, it is easier to use the feedback system representation as

shown in Fig. 6.1. Assume that the feedback system can be described by the following equation:

gh(e(O) + e(O = 0 (6.4.7)

where h'Jtn -» Rm is a nonlinear function with h(e(f)) having the same period as e, and

g-J?m -» R" is a linear function. We assume that the solution can be written in the form:

<*0= £ Ec[*©]e*or (6.4.8)
No

where © is the unknown angular frequency. Since h(e(f)) is periodic with the same period as e(t),
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it can be written as:
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•^ e h
^1? r

g \

Figure 6.1 Feedback System Representation

h«X/))= E Hc[Jt©]e^tw (6.4.9)
k o-»

Let GO* co) be the Fourier transfonn of g. Using the harmonic-balance method, we can transfonn

Eqn. (6.4.7), the time-domain feedback system description, into a frequency domain description:

GO* co) H[*©] + E[*©] = 0 for all k. (6.4.10)

Because autonomous systems do not have isolated solutions, we need to either assume an appropri

ate value for one of the node voltage or find another independent equation relating these unknown

variables, as was done in the time-domain Newton method described in Section 6.3.2.

Again, a sensible approximation to the infinite-dimensional problem is to take some

sufficientiy large integer //, and set Ec(*©] = 0 for all \kI>H. Then, we are left with a finite set

of equations with a finite number of unknowns.
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Under some mild conditioa it has been shown that the solution obtained by the harmonic-

balance method is the approximate periodic solution of the Eqn (6.4.7)[26]. Under the same condi

tion, the existence of a harmonic balance solution implies that the autonomous system has a solu

tion.



CHAPTER 7

The Harmonic-Newton Method

In the time domain, a circuit can be modeled by a system of n nonlinear differential equa

tions as described by Eqa (6.2.1) which is again given below:

t

«v, f) =i(v(/)) +q(v(0)+ hit-<Kix)dx +ntit) =0 (7.1)

In this chapter, we will discuss how we can solve the equation above in the frequency

domain using the harmonic-Newton method. This method had been introduced and implemented in

Spectre[4], a simulation package designed to analyze quickly large nonautonomous circuits with

nonlinear devices. The harmonic-Newton mediod first converts die system of differential equations

into a system of nonlinear algebraic equations using the technique of harmonic balance described in

die previous chapter and then solves the system of equations using the Newton-Raphson method.

In Section 7.1, we will focus on die periodic nonautonomous systems. Extension of this method to

almost-periodic circuits, a special case of nonautonomous system is exploited in Section 7.2.

So far, the frequency-domain simulator, Spectre is limited to the simulation of nonauto

nomous systems. In Section 73, we will describe how the harmonic-Newton mediod can be

modified to extend its application to periodic autonomous (oscillator) systems in which the period

of osculation is, in general, unknown.

7.1. Periodic Nonautonomous Systems

Under the conditions stated in Chapter 6, the solution v(r) can be expressed in Fourier series

as:

Chap. 7. The Harmonic-Newton Method -72-
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v(r)= £ Vc[ka>0]eJk"ot (7.1.1)
kxs-oo

where ©0 is the angular frequency of the circuit Let

V = [ •••.Vc[-*qU •••,VC[0], •••,VC[*©<,], -.. f

be the vector of Fourier coefficients with V°[£©<,] e C" for all it. Since the nonlinear function

f(v, f) is periodic with the same period 2rc/©0, it can be written as

«(v,0= £ F^*©,]**"*' (7.L2)

where F = [ • •, F*[-*©«,], • • •, F^tf)], • •*, F^[*©„], • • • ]r is the vector of Fourier

coefficients of f(0, and F^tfcfflJ e C" for all integer it.

Applying the harmonic balance method described in the previous chapter to this system, we

have:

Fc[kcao](y) = 0 for all k (7.13)

To solve die system in the frequency domaia it is necessary to truncate the number of harmonics,

H, considered. Define

•jr(0"^^)« £ Vc[*©<,]e*<v
km\-H

=V*[0] +£\ V*[*©„] cos(*©„0-V[*©,] an(*©o0 [ (7.1.4)
and

fi/(v,f)si»tff(v,r)B £ F^f*©,] e**0'

=F*[0] +J JFR[Ac^]ooi(Acai90-Fr[*ab]sinOboa|90 f (7.1.5)
as Fourier expansions of v(r) and f(v, f) of order H. V*[0] and F*[0] are the real part of V^O]

and F^fO] respectively. However, for the purpose of convenience, we define V*[fc©„] and

F*[£©0] as twice of the real part of Vc[fc©„] and Fc[ifc©),] respectively. Similarly, V7[£©<,] and

F,[^©0] are twice of the imaginary part of Vc[*©0] and F^fit©,,] respectively. Since f(v, /) and

v(f) are real vectors of the same dimension n, V*[0], V*[©„], V7[©„] are also n-tuple vectors.
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We further define:

'H

V*[0]
V*[©J
V7[©e]

V*[(//-l)©0]
V7[(tf-l)©J

'#

F*[0]
F*[0)J

F^tf-l)©,]
F'Ktf-D©,]
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(7.1.6)

where \H e rW-1» and F* : j?**-1* _> £<hm)« Similar definitions are used for iHit), yHit),

and quit).

Since y is the linear matrix-valued impulse response of the circuit with voltage and current

defined as the input and output variables respectively, the zero-state current waveform can be

obtained by convoluting the impulse response with the node voltage. The zero-state current

waveform in die frequency domain is then the product of die Fourier transform of the impulse

response and the Fouriertransform of the voltage, Le.:

J y(f^cMx) dx i • YV

Note thatY is the node admittance matrix and is blockdiagonal

With these new definitions, we can describe the reduced systemof order H as:

F*(V*) = ig(yH) + n QH<yH) + yhvh + vH = o

where Q. is a matrix containing blockelements Q[kt I] given below:

where *, / is the frequency index, m, n is the node index of the circuit, and the matrix Q""1 [it, it]

is a diagonal matrix with diagonal element equal to k<n0 for all it.

It is to be expected that, if H is chosen sufficiently large, the voltage v#(r) determined by

Eqa (7.1.8) may be a reasonable approximation to the exact solution v(r) of Eqa (7.1), To solve

the reduced system, we apply the Newton-Raphson method to Eqa (7.1.8) to get the following

sequence of iterations:

0 QT[k, k]
-GT[ktk] 0

0
* = /
k*l

(7.1.7)

(7.1.8)

(7.1.9)
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V#+1) =V#> - JZl<yy>) F*(V#>) (7.1.10)

where JH(VH) e jj^-^xCM-Dh ^ referred as the Spectral Jacobian[4] and is given by:

The spectral Jacobian is a block matrix whose [*,/]'$ block J#[it, /] is given by:

J«[*. 0 =
3F[it©0]

3V[/©0]

ai^Cit©,] aF*[*©J

av*[/©.]
dF7!*©,]

av7[/©0]
aF't*©,]

av*[/©„] av7[/©0]

ai*[*©,] ai*[*©0] ao*[*©j ao*[*©0]
av*[/©j
ai7[*©,]

av7[/©e]
ai7[*©„] + G

av*[/©„]
ao^ojj

av7[/©0]
ao7^,]

av*[/©0] av7[/©e] av*[/©,] av7[/©„]

y*[*,/] -y^*,/]
Y'f*,/] Y*[*,/]

(7.1.11)

(7.1.14)

(7.1.15)

Note that each component of the matrices in Eqa (7.1.15) is also a block matrix of dimension

nxn. Since the function is nonlinear, the derivatives in Eqa (7.1.15) should be calculated in the

time domain and then converted back to the frequency domaia

Let us now summarize the harmonic-Newton mediod as follows:

STEP-I:

Choose the number of harmonics H and truncate all higher harmonic terms. Set j = 0.

Choose aninitial guess voltage vector VjjP.

STEP-II:

Evaluate FH(Vjft and the spectral Jacobian J#(Vj^) of the network.

STEP-m:

Generate new node voltage spectra using update Eqa (7.1.10)

V^>»Vif>-J5l(Vj/))Fir(V^>)
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STEP-IV:

Check if the circuit is harmonic balanced by checking if \\FU ||< e, where £ is the threshold

for the circuit to be considered harmonic balanced. If no, set j = j + 1 and go to STEP-II.

STEP-V:

Done.

12. Almost-Periodic Nonautonomous Systems

The harmonic-Newton mediod described above can also be applied to almost-periodic cir

cuits. The only difference is in the way that the sets of frequencies are truncated.

Let us refer back to Eqa (7.1). Since v(r) is almost periodic, both i(f). and q(0 are almost

periodic. When applying the harmonic-Newton method described above to almost periodic sys

tems, all terms of Eqa (7.1) can be transformed into the frequency domain using the almost

periodic Fourier transfonn (APFT)[23]. While v(r), i(f). q(0 are vectors of waveforms, V, I, Q ,

die APFT of v(0, KOt q(Ot are vectors of spectra. Define the truncated vectors V#, lH, Q# as

follows:

V* = [V*[0], V*[©,], V7[©J, • • • , V*[©sLV7!©*] ]

or

Vff^afXOe 2 V*cos(©*0+V7sin(©*0
«*«*»

Note that V* [0] is the real part of V°[0]; but V* [©*] and V^©*] are defined as twice of the real

part and imaginary part ofV^©*] respectively. Similarly, the vectors I# and Q# are:

Ii# = [ Is[0], I*[©,], *[»,], • • • , 1*[a*], ^[COif] f

Qir=[QR[0],Qft[©,],Q7[©,], ••• ,Q*[<%],Q/[<D*]f

All components in the vectors VHt lH, Q# are themselves vectors of R".

As described in the previous section, the Fourier transform of the convolution integral

r

J yit-x)vix)dx is equal to the product ofY and V. With these new definitions, we can describe
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the reduced system of order H as:

Fff(V*) = IH(VH) + fl QH(VH) + YtfV* + VH = 0

Thus, the sequence of die harmonic-Newton iteration for almost periodic circuits is the same as that

of periodic circuits:

vr"=v#>-jj;W)Ftf<v#>)

The spectral Jacobian matrix is given as follows:

J*[*,/]

a*[o>*] ai*[<o*3
av*[©,] av7[©,]
tffrk] ai7[©t]
av*[©/] av7[©,]

+ n
av*[©/] av7[©/]
atffo] atfc©*]
av*[©,] av7[©,]

Y*[*,/] -Y't*,/]
Y^f*,/] Y*[*,/]

where A is a block matrix consisting of { Q[Jt, /] }:

G[*. /] =

Q.m,[k, k] in the above equation is a diagonal matrix with diagonal element equal to ©* for all it.

0 fl""^*,*]
-G^t*,*] 0

0
if*=/
if**/

(7.1.16)

7.3. Periodic Autonomous Systems

A periodic autonomous system can be described in the time domain by the following

differential equation:

i(v(0) + q(v(0) + fy(f^t)v(T)dT = 0 (7.3.1)

Note that no external source is present and the frequency of the circuit © is generaUy unknowa

Applying the harmonic-Newton method with H harmonics, we cap transform Eqn. (7.3.1)

into a frequency domain description:
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k(Vir) + Q(ffl) Q//(V*) + YHVH o 0 (7.3.2)

This equation is identical to Eqn. (7.1.8) of the periodic nonautonomous systems except that no

external source VH is present in this case.

Unfortunately, Eqa (73.2) doesn't have isolated solutions because there are (IH-l)n + 1

real unknowns ( V*[0], V*[©], V7[©], • • • V*[(#-l)©], V7[(/f-l)©] and ©), but only (2ff-l)/i

real equations. Moreover, the harmonic-Newton mediod will fail easily in this case because the

Jacobian matrix may become singular at oscillating frequency which results in nonconvergence of

the Newton iteratioa This is in fact as it should be because the time origin is arbitrary for an auto

nomous system. More specifically, if some vector [V^Kl-tf)©], • • •, V^Ctf-l)©] ]r satisfies

the equations, then the vector [V^Kl-tf)©] exp/6,, • • •, ^[(/f-l)©] expi'6 f win also satisfy

the same set of equations for any arbitrary real 8.

One way to reduce the number of solutions to one is to add artificially a condition that a

nonzero element Vc°[k0(£>] for some i0, k„ * 0 be real and positive, i.e. org Vc°[ko0i\= 0. How

ever, org is a continuous function only in subsets of the complex plane that do not contain or

encircle the origin. If one adds the condition stated above, it is necessary to impose another condi

tion later to prevent the function from being discontinuous on certain sets.

An easier way to solve this problem and at die same time avoid discontinuity is to add a con

dition that a nonzero element Vc°[k0<B>] for some i0, k0 * 0 be real, i.e. V1 °[k0G>] =0. This win

reduce die number of solutions satisfying Eqa(7.3.2) to two isolated ones. Note that it is important

to choose i0 and a nonzero K such that the real part of Vc°[k0<o] is not equal to zero. If the real

COpart of Vc [it,,©] turns out to be zero, we have not successfully fixed the time orgia Therefore,

another i0 and k0 have to be chosea We can also verify this condition throughout the Newton

iteration to make sure that the real part of Vc°[it0©] remains nonzero. If iteration result shows

that the real part of Vc [k0<m] is too small, we can then choose another i0 and k0. We would like

to point out that changing i0 and kB affects the Newton iteration process only mildly. Two actions

have to be taken: (1) die location of "1" in the last row of the Jacobian matrix should be changed
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accordingly, and (2) the updated solution vector Vc(/) needs to be multiplied by exp(- id) where

V!\Koi\

h(*H> t) b

6 = arctan

VR9[kM

The Newton iteration can still continue and if it converges, it will converge to the correct solutioa

Incorporating this condition into Eqa (7.3.1) and keeping only the first H harmonics, we have:

laixa, 0aijrfvjrCO) +fa (•*(')) +jyHit-x)vHix)dx
tr •

= 0 (73.3)

where the new variable vector xH is given by [v#, ©]r. A frequency domain equivalent of Eqa

(733) is

*jr(E*)a
&*(V*, o>) • IhWh) +G (o>) Qh(Yh) +Y^Vh

V7<<,[^©]
where thevector XH is given by [V^, ©]r.

The harmonic-Newtoniterationof Eqa (7.3.4) is given by:

•* +D

©',0+« ©o) - JjKVJP, ©^-^(vP, ©<>>)

where J#(Ytf, ©) has the following form:

J//(V#,©) =
JifCVj,)

0 • 010 . 0

with J#(V//) being the same Jacobian matrix as that of the periodic nonautonomous system, and

3F///a© being the derivative of the original function with respect to ©. The " 1 " in the last row

of the Jacobian matrix corresponds to the location of this particular V7 "[£<,©] in the vector XH.

Thus, die characteristics and the structure of the Jacobian matrix is preserved.

dF#/d©

= 0 (73.4)

(73.5)

(7.3.6)
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As mentioned before, the extra constraint given in Eqa (7.3.4) reduces the number of solu

tions to two isolated ones, thus there is still no unique solution for Eqa (7.3.4). For nonlinear sys

tems, the fact that solutions are isolated but not unique does not result in Jacobian matrix being

singular at osculating frequency. If the system is linear, Jh(Vh* <*>) is still singular at oscillating

frequency. This makes sense intuitively since for a linear oscillator not only the phase of the solu

tion is arbitrary, but also the amplitude V# can be arbitrary. For this reasoa we not only have to

fix the phase of the voltage vectorbut also the amplitude of the oscillation to prevent the Jacobian

matrix from becoming singular at oscillating frequency. Fortunately, most of the autonomous cir

cuits are oscillators which require nonlinear elements to provide sufficient negative resistance to

start the oscillation while the negative feedback decreases as the amplitude grows, causing the

oscillation to be sustained only at some fixed amplitude. Thus, die amplitude of oscillation for an

autonomous system is usuaUy not arbitrary. Since die Jacobian matrix of a nonlinear system is in

general nonsingular at osculating frequency as long as die solutions are isolated, die modified

method described in this sectioncan be applied successfully to most autonomous systems. Depend

ing on die choice of die initial condition, the harmonic-Newton mediod win converge to one of the

isolated solutions.



CHAPTER 8

Convergence of the Harmonic-Newton Method

In Chapter 7, we discussed how we can use the harmonic-Newton mediod to find periodic or

almost-periodic steady-state solutions of autonomous or nonautonomous systems in the frequency

domaia We also pointed out that in order to use the harmonic-Newton method, it is necessary to

truncate the number of harmonics, H, to some finite number so that the infinite-dimensional system

can be approximated by a finite-dimensional one. Since truncation is necessary, we need to study

the convergence properties of the harmonic-Newton mediod in order to ensure that the solutions

obtained are meaningful after truncation has taken place. The harmonic-Newton mediod is said to

be convergent if for any H considered, the sequence of iterations defined by tins algorithm con

verges to a fixed point, such that these fixed points themselves form a sequence of solutions whose

limit is die exact solution of the given circuit system as H -» °o. In this chapter, we win study in

detail the convergence properties of the harmonic-Newtonmediod and show that under some condi

tions, the harmonic-Newton method is a convergent mediod for periodic autonomous and nonauto

nomous systems.

8.1. Background

In this section, we introduce some classic theorems which wiU be used later in the conver

gence proofs.

Theorem A: [13]

Assume that the function f: RB-» Rm is Gateaux-differentiable on a convex set D. Then

for any x, y eD, the following inequality holds:

Chap. 8. Convergence of the Harmonic-Newton Method -81-
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||f(y) - f(x)||£ max ||f(x + f(y - x))|N|x - y||
0£r £1

where f is the first Gateaux-derivative of f.

Theorem B: [13]

Assume that the function f: Rn-» Rm is twice Gateaux-difTerentiable on a convex set D.

Then for any x, y e D, the following inequality holds:

||f(y) - f(x)||<; max [J f'(x +1(y - x)) ||-||x - y||
OSr £1

where f and f' are the first and second Gateaux-derivatives of f respectively.

Theorem C: [27]

Let x be a periodic function with an mterval of periodicity [0, T0]. If the function itself

together with its derivatives up to order k-1, k^ 1 are continuous, and its K-th derivative is

piecewise continuous in the interval, then there exists a constant A> 0 such that the Fourier

coefficients of the function satisfy the inequality IX[Jt©0] I£ * .

ParsevaVs Equation: [24]

Periodic Functions

2r
Let /(x) be an arbitrary continuous function of period T0 - —. Then, the ParsevaTs

CO J °
equality £ 'Fik<ao1,2 = ~=r f \fix)\2dx holds for all fix), where the Fourier coefficients

F[k<0o] of fix) is given by

F[ka>0] =j- ^fix)e'Jk°'xdx
Almost-Periodic Functions

For every almost-periodic function, /(*)= 2 F[(ak] eJ<*k*, there exists a mean value

M(fix)) defined as:
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M(fix))3 lim -=-\fix)dx

1Ti.e., the expression —\f(x)dx approaches a definite finite limit as 7*-> «>. The Parseval's equa

tion holds for almost-periodic function and can be written in exactly the same form as in the

case of periodic systems:

2 \F[e>k]\2 =M0fix)\2).
»teA

Newton-Kantorovich Theorem: [13]

Assume that f: Rn-» Rm is differentiable on a convex set D0 which is inside of D, and

that for any x, y €D„, the foUowing inequality holds

r(y)-f(x)||srll*-yll

where f is the first derivatives of f.

Also assume that there exists an x(0) € D0 such that [|f(x(CV||£ pand ae $yi\ £ -i-, where

ti^I^Vk^ii.

Set

t* = (PY)_1[1 - (1 - 2a)2], fM = (pyrtl + (1 - 2a)2]
and assume that B(x®\ t*) lies inside of D„. Then the Newton iteration

xO+D = xO) _ f(xO))f(xO)), / = 0, 1, •••

is wen-defined, with x°'+1) remaining in B^, f*) and converging to the solution x* of F(x) =0

which is unique in BbF>t t**) p> D„.

Moreover, the foUowing inequality which bounds the difference between the /-th iteration and

the exact solution holds;

||x* - xtf>|| <£ ( p y 2JTl (2 a)2', ; = 0, 1,

In the foUowing three sections, we prove the convergence of the harmonic-Newton method

for periodic nonautonomous, periodic autonomous, and almost-periodic circuits, as the number of
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harmonics considered goes to infinity. These proofs appear to be complicated and lengthy; how

ever, they are all based on the same concept

To begin, we must first assume that there exists an isolated solutioa v(r), to the original

differential equatioa Let vjj(f) be the computed solution obtained by the harmonic-Newton method

with H harmonics. To show that the harmonic-Newton method does converge to a solution v#(f)

and this solution can be arbitrarily close to the exact solution v(r) as H -» «>, let us examine the

norm of die difference between vjj(r) and v(r):

K(0 - v(f )H «S ||vi(r) - v*(0|| + \\yHit) - v(r)U (8.1)

The strategy in all the proofs is to handle those two terms in the right hand side of the inequaUty

separately. Ihe second term ||vtf(f) - v(r)||, represents the error due to the truncation of higher

order terms; and this term can be easily shown to approach zero as the number of harmonics, H,

approaches infinity. The detail of these proofs for periodic nonautonomous systems, almost-

periodic circuits, and periodic autonomous systems can be found in Lemma 8.1, 8.4, and 8.7.

To prove that the first term in the right hand side of Eqa(8.1) vanishes as H -» «>, we will

use the truncated exact solutioa ?#(')* as the initial guess voltage for the harmonic-Newton

method. We can show that this particular choice of initial guess voltage satisfies aU the assump

tions stated in the Newton-Kantorovich theorem. Therefore we can use the Newton-Kantorovich

theorem to show that the solution of the harmonic-Newton method converge to a solutioa v#(f),

and the errorbetween die computed solution and the initial guess is bounded. Once the errorbound

is found, we can prove that this error, || vw(r) - v#(f) [|, approaches zero as H -» <». Thus, we

can prove that the solution obtained by the harmonic-Newton method win converge to the exact

solution as H goes to infinity.

8.2. Periodic Nonautonomous Systems
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In this section, we show the convergence of the harmonic-Newton method for periodic

nonautonomous systems. We will assume throughout this section that the foUowing assumptions

are satisfied:

(1) The system f(v, t) and its partial derivatives with respect to v are continuously differentiable

with respect to v and t in the region DxL, where D is a convex bounded region in the v

space and L is the real line.

(2) f(v, t) = 0 is a periodic nonautonomous system.

(3) If v(r) is the exact solution of the equation f(v, t) = 0 and it is in the interior of D, then v(/)

is an isolated periodic solution of the equation ( Le. there exists a smaU number 5 such that

3f
for aU veB = (vl ||v- v|| £ 5), -r-(v, t) is nonsingular.)

ov

These assumptions win be referred as Assumption 1,2, and 3.

Lemma 8 J:

Assume that Assumptions 1, 2, and 3 are satisfied, then the truncated exact solution

*Hi*) =PH v(0 =V*[0] +^[v^Ctt,] cosik0io f)- V^Jtoj,] smOtco, r)J
is an approximate solution of the truncated system fH(\Ht t) = PHf(vHy t) = 0 (Le.

ftf(Vtf, r) -> 0 as H -• *>).

Proof:

Since f(v, t) = 0,

tXvi,, O = tXv*, 0 - f(v, f) (Lem8.1.1)

^iXv/,,0 = /,//[iXvtf,0-f(v,0] (Lem8.1.2)

or

tW(vH,0 = i,//[iXvtf,r)-f(v,r)]

LetClEmax||^-(v,r)||
DxL OV

By Theorem A:
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II f(v/,, /) - f(v, t) || <: maxll |£-(v, t) || •|| vH - v||
DxL OV

SC^v^-v

Define

v(0 - MO =f) [?*[*©„] cos(*©e t) - V7[*<»,] suitf©, o]

a 2 ** cos(Jt©<, t) - b* sin(£G0o t)

and

v(0= £ [-Ar©,^*©,] cos^co,, t)-*©„¥*[*©,] sinOt©. f)l

mZ [2* cos(*©0 O-fe* sintf©,, 01
b* a*.Note that a* =-=-, b*=--^-.

koto k<o0

v(0-vtf(r)=2
bk -a*.

cos0t©o 0 - --=- sutfit©,, 0
***r it© *©,

ll*<0 - WOII2 *-^ -75- £ fl&H2 +|lb,U2l
By Bessel's inequaUty:

1 1

©2 tf2

Using Theorem C, we can show that I|v||< «. Define C b ||v||, we have:

IIKvtf.O-fCv^JII^-J-i-CC
©0 #

for aU H £ //^ such that v#(OeD. Since the basis is orthogonal,

IMv*, Oil = \]PH{ Kv*. r) - «v, r) ]||

©o //

Therefore,

f//(vi/. 0 -» 0 <w //-»«,.

-86-

(Lem8.1.3)

(Lem8.1.4)

(Lem8.1.S)

(Lem8.1.6)

(Lem8.1.7)

(Lem8.1.8)

(Lem8.1.9)

(Lem8.1.10)

(Lem8.1.11)

(Lem8.1.12)

(Lem8.1.13)
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By ParsevaTs equation:

IMOII2 s -j-1 Ofe(OH2 dt =Wnf (Lem8.1.14)
Thus,

Therefore

Wh<$h)\\ =llf//(v/f, Oil * -7-5-C, C (Lem8.1.15)
©a «

*W(v/f»t)-*Qas H -><*>

Q.RD.

Lemma 82:

Assume that Assumptions 1, 2, and 3 are satisfied, then there is a positive integer H0

such that for any H ZH09det J//(VW) * 0 provided that H0 is sufficiently large.

Proof:

J#(Yff) is the Jacobian matrix of FH(VH). To find the basic property of this Jacobian

matrix, let us consider die foUowing linear system:

1h<$h)*h=Zh (Lem8.2.1)

where

Y* = [ Y*[0], Y*[©„], Y7[©„], • • •, Y*[(i/-1)©0], Y^/f-l)©.] f

and Z* = [ ZR[0], Z*[©J, Z7[©J, • • •, ZR[(ff-1)©,], Z7 [(#-!)©„] f

are any vectors with the same dimension as VH and Y*[0], Y*[Jt©J, Y7[Jt©„], Z*[0], Z*[*©„],

Zr[ka0]eRn forAr = l, ••• ,/f-l. Define

y#(O =Y*[0] +£ (VtJtwJcosOt©, 0- Y7[*©0] sin0t©o o]

H-l r -n

2#(0 a Z*[0] + £ Z*[*©0] costf©, 0 - Z7[*©„] sin(fc©„ 0

To show that detI/j(Vw) * 0 is equivalent to showing that the mapping J# (V#) is one-to-one or

the nuU space of 3h(Vh) is { 0 }.
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Hrst, we need to prove that Eqa (Lem8.2.1) is equivalent to the foUowing equation:

a J^(W)y*(0 = z*(0

The DC term of Eqa (Lem8.2.2) is

^r-jff-fo.O Y*[0] +J [**[*«!,] coi(*u3b 0-*[*<*] «in(*afc o]

= Z*[0]

This can be written as

(Lem8.2.2)

dt

(Lem8.2.3)

1 ?df
r

i-I^^ £j£<v*.Ocos<©.0* •
T0

tIi*®*- ° s^1*-1***')dt

Y*[0]
Y*[©0]

Y^tf-l)©,]
Y^tf-l)©,,]

^T«= Z*[0]

This is equivalent to the foUowing:

dF*[0] 3F*[0]
3V*[0] av*[©0]

or [ f/ie first row of J#(Vtf) ]

Y*[0]
Y*[©„]

3F*[0] **[©„]

av7^-!)©,,] J
^[(i/'-l)©,]
Y^tf-l)©,]

Y*[0]
Y*[©„]
Y7[©0]

•
= Z*[0]

Y*[iH-lX»0]
Y7[(/f-l)©„]

(Lem8.2.4)

= Z*[0]

df
Let's define f s —(v, r). The cos(fc©„ O term of Eqa (Lem8.2.2) for k = 1, • • •, H-l is:
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H-\

ir Y*[0] + 2 Y*[*©e] cos(it©0 t) - Y*[kGi0] smik<*0 t)
kal

cos(&©0 t) dt

= Z*[Ar<D„]

Again, we can write the left hand side as:

(Lem82.5)

1 1 l '•zrjf cos(*©„0 dt —\f cos(©„0 cos(*©„0 dt ••• - ^-f f sinKtf-l)©^) cos(Jt©00 dt
lo o lo 5 •*o 0

Y*[0]
Y*[©,]
**[©„]

Y^tf-l)©,,]
Y^tf-l)©,]

This is equivalent to:

= T*= Z*[*©„]

3F*[Jt©0] dF*[*©0]

av*[0] dv*[©„]
dF»[*©0]

dVliH-l)®,]

or [the (Zk-l)th row of JH(9a)]

Y*[0]
Y*[©„]
Y7^]

Y*[(J/-l)©e]
**[(*-!)©,]

Y*[0]
Y*[©„]
Y^©,]

Y*[(#-l)©„]
**[(#-!)©„]

^i*= Z*[*©,]

(Lem8.2.6)

= Z*[*©0]

Similar results can be obtained for any sin{k(H0 t) term for k = 1, ..,/f-l. Hence, Eqa

(Lem8.2.1) is equivalent to Eqa(Lem8.2.2).

Now, we define the foUowing operators:

W1 yw(0= |^(v#, Oy«(0

W2yH(r^/»H J^-(v*, Oy*(0
The norm of the operator j|W! - W2!! is given by:

(Lem8.2.7)

(Lem8.2.8)
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IIW1 - W2|| = max
Ofel

IIW^-W^H

WjhW

3fllWVtf - W^||=II ^(v*. t)jHit) - PH J^v*. Oy*(0
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(Lem8.2.9)

(Lem8.2.10)

£|| Jt(v„, 0-Ph^QhS) II faCOH
Theorem C and Assumption 1 imply || -r-(v#, t)-PHzr-ivH,t) || decreases faster than —=- as

dv dv /f-4

H -*<*>. Therefore, ||W* - W2!] and IdetW1 - detW2l can be arbitrarily smaU for sufficient large

H.

3f
By Assumption 3, there exists a smaU number 8 such that for all veB=[vl ||v-v||£ 5], -r—(v)

dv

is nonsingular. Also from Lemma 8.1, we know that for any 5, there exists an H* such that

||v(0 - vjr(Ofl< 5. Hence W1 =-=£•(*#, 0 is nonsingular for H^H*. There exists an H" such

that IdetW1 - detW2l < IdetW1! for H £ /T. LetH0 =max(H',/r,/fert), then W2is nonsingu-

dflar for aU H ZH0. This means that PH
dv

(v», 0 y*(O = z//(r) is a one-to-one function for

H £ H0. ( Le. z#(r) = 0 impfies y#(0 = 0 )

Since Eqa (Lem8.2.1) is equivalent to Eqa (Lsm%22\ the foUowing statements hold:

z# (O = 0« equivalent to ZH = 0

y# (O = 0u equivalent to YH = 0

Hence, Z# = 0 implies Y# = 0. Therefore Jh(Yh) has a nuU space of { 0 }, or Jh(\h) is non-

singular for H £ H0. Thus, there exists an p>0 such that ||J*(V*)"1^ P for H £ H0.

Q.ED.

Lemma 8 J:

and

Let Assumptions 1, 2, and 3 be satisfied. Let

vjKO =V'*[0] +2; (Va*[Jt©0J cos(*©, O-Va'[*©J sinOt©, 0)
k=l
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•5(0 =V**[0] + £ V**[;t©«,] cosGt©, t) - V*'[Jt©0] sinOt©, 0

be any two voltage vectors in D, then

10*<Yh) - J*(V£)|| £ C2||V£ - V&|

where C2 is a positive constant such that C2 £ max||-?4(v, r)||.
DxL dV*

By Theorem B:

IU*(V£)-J*(VjJ)[|

dJ*g«||^-(v^ +x<ys - v^))||.||Vjj - v£n
Choose EH s (V£ +*(V£ - VjJ)) such that

Hence

PhW) -Jn(v|)ii *ii^L^jn-ov^ -v^n
We define the foUowing functions aw(0, bH(t), and cH(t) as:

MO s A*[0] + 2 A*[*©,] costf©, 0 - A7[Jt©„] an(*©0 0
*>i ^ J

H-l r -\

MO a B*[0] + 2 B*[*©„] cos(Jt©<, 0 - B7[Jt©e] sin(Jt©0 0

H-\ r -j
MO a C*[0] + 2 C*[*©J cos(Jt©0 0 - C7^©,,] sin<A:oo0 t)

where A*[0], A*[*©0], A7[Jt©„], B*[0], B* [*©„], B7[*©0], C*[0], C* [*©,], <?[*©„] e Rn for

* = 1, • • •, H-l.

Consider die foUowing system:
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(Lem83.1)

(Lem8.3.2)

(Lem83.3)

< 'd^—OE#)A#, Bw >=C# (Lem8.3.4)

We want to prove that the system described by the equation above is equivalent to the foUowing

system:
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d^f< -r^ieH)SLHit),bHit) >
H-\

= MO (Lem8.3.5)

where eHit) mE*[0] + J) Ff[k(0o] cos(*©„ 0 - Ff[k(0o] sm(Jt©0 t) .
kml *• J

d^fDefine f e -r-j(e#, 0, then the DCterm of Eqa (Lem83.5) can be written as:

y-j< r A*[0] +J [a^*©,]^*©, r)-A7[^©Jsin(it©<) o]

or

H-\ r >

B*[0] + £ B*[*©,] costf©, O - B7[*©,] suXJtfflo 0
*-i L J

><ft=C*[0] (Lem83.6)

1 ' -^-frsiiK^-i)©,,/)*

— ff"cos(©„f)df - -J-Jf'sin((/f-l)©<,r)cos(©<,r>*

1
- —frsntfo.O* •p ff'sm((tf-l)©,f Jsutf©^ )A

j-lr'cQS«H-l)G>0t)dt " 1T°- -± IrsmiiH-lfatfasiiH-lteotW

.

-^ff'sm((ff-l)©.Otf ^ff'sin((//-l)©,f)sm((i/-l)©,f)A
To o

A*[0]
A*[©e]

lr B*[0]
B*[©,]

A7[©„]
•

B7[©„]
=C*[0]

A*[iH-mo] B*[(/f-D©J
A r[(//-D©e] B7[(/f-l)©„]

This is equivalent to:
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32F*[0]
3V*[0]dV*[0]

dV[0]

32F*[0]
3V*[(#-l)©o]3V*[0]

32F*[0]
av* [ojav* [©„ ] d\R [(//-i)©„ )dvR [©<, ]

a2F*[0] a^co]
dvR [oiav71©0 ] *;;;;;; av* k//-i)©0 ]av7 [©„ ]

a2F*[p] II a2F*[0]
3V* [0]3V* [(//-1)©0] 3V* [iH-l)a0 ]dVR [(//-l)a0 ]

a2F*[p] a2F*[0]
3V*[0]3V7 [(//-!)©<,]

A*[0]
A*[©0]
A7[©„]

A*[(H-1)©„]
A7[(//-l)©0]

B*[0]
B*[©„]
B7[©„]

B*[(#-1)©J
B7[(tf-l)©J

av* [(//-d©0 ]av7 HH -!)©„]

= C*[0]

aj*
or < [ the first row block of -=— ] A//, BH> = C*[0]

avH
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(Lem8.3.7)

Similar results can be obtained for aU other terms associated with Eqa(Lem8.3.5). Hence, we can

conclude that Eqn. (Lem8.3.4) is equivalent to Eqa (Lem8.3.5).

Using Parseval's equation as in Lemma 8.1, we can claim that HMOII = l|C#||. Therefore,

av„
(E^A^B* > = PH

a f< T^-(e«,Oa//(0,bi/(0 >

This implies that

3*f
- < TT(«fl.OaJir(0,bl,{0 >

or-

ii ai„ ii ii & ii
II ^-(E„) H<ll -^-(e^.O ll<C2
ii &*h u it av2 ii

Applying this result to Eqn. (Lem8.3.3), we have the foUowing inequality:

IIJ/z(V5) - J//(V£)[| £ C2||V£ - v£ll

Q.E.D.

Theorem 8.1.
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Assume that Assumptions 1, 2, and 3 are satisfied. Let YH be the solution of FH(yH) = 0

obtained by the harmonic-Newton method, then v#(0 converges to v(0 as M -» °°.

Proof:

Let v#(0, the truncated exact solutioa be the initial guess vector for the harmonic-Newton

method. From Lemma 8.1, we know that the foUowing inequaUty holds for aU M> M^ such that

v/,(0€D,

Wh$h~)\\ *-f- 77 C, C (8.2.1)
<&o M

where C^ bmax||^-(v, 0|| and Cs ||v||.
DxL dV

From Lemma 8.2,

lUtf (V*)-1!! < p (8.2.2)

forHZ H0. Eqa (8.2.1) and Eqa (8.2.2) imply that

\MH(SHTlFH(yH)\\ <; ±±- c, Cps n (8.2.3)
©o •"

Also from Lemma 8.3, we know that for anyv#(0 and v£(0 eD, we have

llfcCV*) - J//(V#)|| £ 7||V5 - V£||, (8.2.4)
a^where ysC2Smax||-—j(v, Oil-

Let aspyrj, then there exists an HZH0 such that ot<— for aU H>H. Set

**=(Py)"1 L1- (1 - 2a)2 J. There exists an //* £# such that ^(v^, **) kes inside of D. By the

Newton-Kantorovich Theorem, we know that the Newton iteration is weU-defined, and the sequence

of solutions remains in 5(vw, /*) and converges to the solution of Fh(Vh) =0 which is unique in

B(v#, t**) for aU H> H*, where *** s ( py)_1 [1+( 1- 2a)2 J . Moreover, the error bound

II V# - YH || satisfies the foUowing inequaUty:

IIVjJ - Vw|| =||vi(r) - v„<0|| <(py)"1(2a)
Thus, we have
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IhtoCO - v(OII ^ K(0 - vw(0|| + ||V//(0 - v(r)||

<S(pYr,(2a)+^--!-C
©„ «

Therefore, \Hit) -» v(0 as //-»«>.

Q.E.D.

83. Almost-Periodic Nonautonomous Systems

Let f(v, t) = 0 be a given real nonlinear system where v(0 and f(v, t) are real vectors of the

same dimension n. Let v(0 = £ V7?[©Jt]cos(©itO-'vT/[coA]sin(©Af) be the isolated periodic
©46A

solution off(v, O = 0, where V7^©*], V7[©fc] is a n-tuple vector for ail ©* e A.

We assume:

(1) f(v, t) and its partial derivatives with respect to v are continuously differentiable with respect

to v and t in the region DxL, where D is a convex bounded region of v space and L is the

real line.

(2) f(v, t) = 0 is an almost-periodic nonautonomous system.

(3) If v(f) is an exact solution of f(v, t) = 0 and Ues in the interior of D , then v(r) is an isolated

periodic solution. ( i.e. there exists a small number S such that for all

-\»

v e B = (vl ||v - v|| < 8 ), -r-(v, t) is nonsingular.)
dv

(4) Define sH s £ V* [©* ]cos(©* t) - V7 [©* ]sin(©*t), where

A'H =\ ©I© =Jt,X, +Jt2Xo + ••• +kdXd\ kjZZ; \k} I=H for 1<; <d\ kx >0I

or
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d

A'H s4 ©l© = fc,X,+it2X2+ •• • + kdXd; kjtZ for 1 <j <d; £ lit,-1 =#; *, >0 >

depending on which truncation method is used, then the series { \sH I } must decrease faster than

the series { —=- } as H -> «>.

These assumptions will be referred as Assumption 1 - 4 in this section.

Lemma 8.4:

Let Assumptions 1, 2, 3, and 4 be satisfied, then

MO= £ V*[©Jcos(©,r)-V7[©Jt]sin(©^)
vkeAH

is an approximate solution of f//(v#, t) = P'HfivH, t) = 0 (i.e., f#(v//, 0 -> 0 <w # -»«*»).

3f
Let C\ a maxll^r—(v, Oil* then by Theorem A:

DxL dv

UKvir, 0-f(v, Oil <max||̂ -(v, Oll'llv* - v||
DxL dV

£Cil|v*-v|| (Lem8.4.1)

For any given e> 0 , there exists a number H^, large enough such that \H Ues inside of D and

11*0-WO 0=11 S V*[©Jcos(©*0-V7[©*]sin(©*OII<e (Lem8.4.2)

for all H> Hcri,. Since the basis is orthogonal,

II *W(v*, O II * II f(v*, 0 - f(v, O II < C, e for all H> Hen, (Lem8.4.3)

Therefore,

f//(V//, 0 -» 0 a5 H -» oo . (Lem8.4.4)

By Parseval's equation:

HF//(V«)II = Hf//(v//, Oil -> 0 as H -> - . (Lem8.4.5)

Q.E.D.

Lemma 85 :
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Let the conditions stated in Assumptions 1, 2, 3, and 4 be satisfied, then there exists a

positive integer H0 such that det JW(VW) ;* 0 (or there exist some p>0 such that

lUtfCV*)ll ^ P) for any // > //„ provided that H0 is sufficiently large.

Proof:

Let us consider the foUowing linear system:

J* (VhWh = ZH (Lem8.5.1)

where yHit) s £ Y*[©*]cos(©*t) - Y7[©*]sin(©*r)

MOs £ Z/i[©Jt]cos(©t/)-Z7[©t]sin(©tr)

and Y7^©*], Y7[©*], Z*[©J, and Z7[©t] e Rn.

Using similar method as in Lemma 8.2, we can conclude that the system described by Eqa

(Lem8.5.1) is equivalent to the foUowing system:

In addition, P'H
af

dv

P\ J^-(Vtf, Oy*(0 = *h 0) (Lem8.5.2)

(vw, t)yHit) = zHit) is a one-to-one function for H ZH0. (i.e. z#(0 = 0

imphesy#(O = 0 )

Since Eqn. (Lem8.5.1) is equivalent to Eqn. (Lem8.5.2), J#(V#) has a null space of { 0 } or

J#Cv#) is nonsingular for H ZH0. Therefore, there exists a number p> 0 such that ||Jh(V^)_1||< p

for if >H0.

QED.

Lemma 8.6:

Let the conditions given in Assumptions 1, 2, 3, and 4 be satisfied. Let

vfiit) = E Va*[©*] cosiakt) - Va'[©*] sin(©*0

and
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v&C) a S V*" [©*] cor (©* 0 - V*'[co*]sin(©, t)
fflt6Aff

be any two voltage vectors lying inside of D, then

lifeCW - fe(v£)ll < C2I|V^ - vio
a^

where C2 is a positive constant such that C-. > max||—r(v, Oil*
DxL dV

Proof:

Choose E# b (V£ + x(V% - V£)) suchthat

||-^-(E*)|| =max||̂ -(V5 +x(V£ - v£))|| (Lem8.6.1)
dv# ostsi dv#

Hence,

HfeW) - Jh(Vh)\\ *ll^r-(E*)||-||V£ -V|B (Lem8.6.2)
L*' a*(0 = 2 A*[©*]c^(©itO-A7[©Jt]sin(©itr) A*[©*], A7[©*] € Rn

to^eAfj

b*(0 a S B*[®*] cfli(flfeO - B7[©*]sin(©*0 B*[©*], B7[©*] e Rn
<okeAH

C//(0 s £ C*[<&*1 «w(ov) - C7[©i]sin(©itr) C*[©*], C7^] € /?"
(o^eAfi

Using the same argument as in Lemma 8.3, we can conclude that the foUowing two systems are

equivalent.

dfe
iEH)AH, BH > = CH (Lem8.6.3)

P'i

avw

&fH
dv2

Using the Parseval's equation for almost-periodic function, we can claim that ||c#(0|| = ||C#||,

Therefore,

ii aj„ ii ii ?lf ii
!! K av"0E«)A«r3» > j]S j < {jieH,t)*Hit),bHit) > II
II dV// II II 3v^ II

ii ajw « ii 32* ii
This implies that II ^(E*.) II < II frCe*. 0 !^C2

II oVw || || dv- ||

Applying this result into Eqn. (Lem8.6.3), we can conclude:

(e//,Oa//(r),b//(0 > = cw(/) (Lem8.6.4)
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llfeW)-Jw(v^)||<c2||v^-v^||

Q.E.D.

Theorem 82:

Let the conditions stated in Assumptions 1, 2, 3, and 4 be satisfied. Let v# be the solu

tion of f//(v#, O = 0 obtained by the harmonic-Newton method, then v#(0 converges to v(0 as

H ->oo.

Proof:

FoUowing the same argument as used in Theorem 8.1 and by Lemma 8.4, 8.5, and 8.6, we

can show that there exist a H* such that the Newton iteration is weU-defined and converges to a

solution of Fff(V#) = 0 for aU H> H*.

Moreover, for any e , there is an H such that

l|v^(0-v(r)||S £2pc,£ + £

Therefore, v#(0 -» v(f), as #-» °° .

Q.E.D.

8.4. Periodic Autonomous System

As described in Chapter 7, in order to solve the autonomous system, we need to add an addi

tional constraint Thus, the system of equations become:

f(x,OH

g(x, 0 =i(v(0) +q(v(0) +Jy( t-x )v(x) dx

—jv'°it)siaik0Git)dt

where x e [v, ©]r.

The frequency domain equivalent system is:

r =o (8.4.1)
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F(X)e<
G(V,©) b I(V) + ;Q(©)Q(V) + YV

Vl'0[k0(0]
-

where X s [V, ©]r.

We make the foUowing assumptions before continuing the discussion: We assume:

(1) f(x, t) and its paitial derivatives with respect to x are continuously differentiable with respect

to x and t in the region DxL, where D is a convex bounded region of x-space and L is the

real line.

(2) f(x, t) = 0 is a periodic autonomous system.

(3) There exist an isolated periodic solution, x(r). ( Le. there exists a small number 5 such that

dffor all x € B = (xl ||x - x|| < 5), -^-(x, O is nonsingular)
dx

These assumptions will be referred as Assumption 1, 2, and 3, in this section.

Lemma 8.7:

Let the conditions stated in Assumptions 1, 2, and 3 be satisfied, then

h-\ r

YR [0] + 2 [V* [*©] cos(£© 0 - V7[fc©] sin(fc© 0

is an approximate solution of f//(x#, t) = PH [ f(xH, t) ] = 0. ( Le. iW(xw, t) -> 0 as //->«>).

f*(v//, ©, O = ^[ f(vff, ©, O - f(v, ©, O 1 (Lem8.7.1)

Note that

|| f(vw, ©, O - f(v, ©, O II = llg(v//, ©, O - l(v, ©, t]

a&
Let Cj s max||Tr-(x, Oil. then by Theorem A:

DxL dx

I =0

llg(xw,0-g(x,r)||^C1||vw-v||

Using the arguments similar to those used in Lemma 8.1, we can conclude that:

•100-

(8.4.2)
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MO-v^OIN-^-tt l|v||2
©z H2

From Theorem C, C e ||v|| < «>. Since the basis are orthogonal,

W„ixH, Oil < \mH> 0 - f(x, Oil <~C,C
© «

Therefore,

~fHixH,t)-> Qas H ->o«
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(Lem8.7.2)

(Lem8.7.3)

Let

f^XxH.r)^

By Parseval's equation

h-\ r

^(x//, 0 = G*[0] + 2 G*[*©] cos(fc©0 - G7[£©] sin(*©0

0

llgH^OII2^ =\\Gh<Xh)\\2
Therefore,

l|F*(V* )|| =|fc(X^)|| =||g*(fe, Oil = fc(x/,, Oil ^~CXC
© #

Therefore, we conclude that FHivH, t) -> 0 as H -* <*> .

Q.EJD.

Lemma 8.8

(Lem8.7.4)

(Lem8.7.5)

Let the conditions stated in Assumptions 1, 2, and 3 be satisfied, then there exists a posi-

3F
rive integer H0 such that det JH(kH) =det -^-(kH) * 0( Le. \\5h(X-h)\\ <Pwhere f >0) for

any H >H0 provided that Hc is sufficiently large.

Proof:

Let us consider this linear system:

fe (X„)Y„ = ZH (Lem8.8.1)

vWiere Y„ = [Y*[0], Y*[©], Y7[©], • • , Y*[(Z/-1)©], Y7[(i/-1)©], © ]r

Z„ = [Z*[0], Z*[©], Z7[©], • • • , ZR[iH-mi Z7[(//-l)©], 0 f
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Let y#(0 =

In addition,

*=1

Y*[0] + 2 ¥*[*©] cos(£© 0 - Y7[il-©] sin(*<3> t) i

©

H-l f

ZR[0] + 2 I ZR [*©] cos(Jfc© O- Z7[fc©] sin(it© t)
MO- *=1 0

where Y*[0], Y*[fc©], Y7[*©], Z*[0], Z*[*©], Z7[fc©] € Rn.

Using similar argument as in Lemma 8.2, we can conclude that the system described by Eqa

(Lem8.8.1) is equivalent to the foUowing system:

1 tv. '»^•f-^- sin(*0©0 dt •yHit)
dx

(fe,Oy*(0

5f•^•(xw, Oy#(0

= Z//(0

= Z/f(0

102-

(Lem8.8.2)

is a one-to-one function for H ZH0 Since Eqa (Lem8.8.1) is equivalent to Eqa (Lem8.8.2),

fe&*) has a nuU space of {0}, orfe (X#) is nonsingular for H >H0.

Therefore, there exists an p> 0 such that llfeA*)"1!^ ft for H >H0.

Q.ED.

Lemma 8S>:

and

Let the conditions given in Assumptions 1,2, and 3 be satisfied. Let

h-\ r

x£(0 =

x£(0 =

xa [0]+ 2 Xa [kof] cos(*©a 0 -Xa [kaf] sin(fc©a 0

©a

X**[0] +2 [x**[it©*] cos(*©* 0 -X*'[*©*] sin(*©* t)
©"

€D

€D

then Hfe(X^)-^(X^^I^CJIX^-X^ll where C2 be a positive constant such that

C2>max|||-j(x,/)||.
DxL dxr
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Proof: Choose EH = (X# + x(X& - X#)) such that

\\^-iEH)\\ =maxll J^-(X# +x(XjJ - X£))||

Hence, ||fe(XS) - fe(X#)|| <II J^(E*)II« - X#||

Define eff(03

Let

H-\

E*[0] + 2 E*[*©<] cos(Jt©' 0 - E7^©'] sin(it©' t)

a//(0 =

b^(r)S

*tf(0 e

with

©'

//-i

A*[0] + 2
*=i v

A*[Ar©<] cos(&©' 0 - A7[*©'] sintf©' t)

©'

B*[0] +£ [B*[*©'] cos(*©' 0- B7[*©<] sin(*©< t) J
*=i

©'

H-\

C*[0] + 2 C*[*©'] cos(A:©« 0 - C7[*©«] sin(£©< t)
*=i

0
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(Lem8.9.1)

(Lem8.9.2)

A* s [ A*[0], A*[©'], • • • , A7[(//-l)©<], ©< ]r

B/, a [ B*[0], B*[©e], • • • , B7[(tf-1)©'], ©' f

Q, b [ C*[0], C*[©<], • • • , C^/Z-l)©'], 0 ]r

Using similar arguments as in Lemma 8.3 and Lemma 8.8, we can conclude that the foUowing two

systems are equivalent:

afe . . .
6XH

a2?
< 7T{eff,Oaw(/),bw(0 > = c„(0

Using the technique similar to the one used in Lemma 8.1, we can claim:

aj " " a2?
< •^•{tH)AH»H > !!<l| < -r4-(ei,f/)MO,b#(0 >axw ax2

il 3j ii ii 321 ii
This implies 'j -^~iEH) \<\ -r4-&H>t) Hc2

dXH dx2

(Lem8.9.3)

(Lem8.9.4)
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Therefore, we conclude that:

Hfe(XjJ) - fe(Xj&)|| < C2\\X§ - X£||

Q.E.D.

Theorem 8 J:

Let the conditions stated in Assumptions 1, 2, and 3 be satisfied. Let V# and ©* be the

solution of Ftf(V#,©*) = 0 obtained by the harmonic-Newton method, then v#(0 and ©* con

verge to v(0 and © respectively as H -» <*>.

Proof:

FoUowing the same argument as in Theorem 8.1 and by Lemma 8.7, 8.8, and 8.9, we can

show that for some //*, the Newton iteration is weU-defined and converge to a solution of

F#(Xi) = 0for# >H\

Moreover,

lixi -XH || <~ccx ft + ~c
© « © rl

Therefore, X# -> X, or vH{t) -> v(r) and ©* -» © as #-» <*>.

Q.ED.



CHAPTER 9

Error Estimation and Choosing Number of Harmonics

In the previous chapter, we discussed the convergence of the harmonic-Newton method when

higher order harmonics are truncated In order to implement the harmonic-Newton method

effectively in Spectre, the discrete Fourier transform (DFT) is used for circuits that have a periodic

response. For almost-periodic signals, Spectre uses the almost-periodic Fourier transform

(APFT)[23]. In Section 9.1, we wiU discuss how the error bound changes when DFT and APFT

are used. In Section 9.2, we will discuss a practical procedure to estimate this error bound and

show how we can use this estimation to predict the number of harmonics needed prior to the appli

cation of the harmonic-Newton method. Finally, the experience results on error prediction will be

presented.

9.1. Theoretical Bound

When transforming a function using DFT, the number of harmomcs generated is determined

by the number of time-domain samples taken within a given time interval. If the number of sam

ples is not large enough, the set of frequencies generated by DFT will not be able to cover all high

order harmomcs. This error, although similar to the truncation error, has some different impact.

Not only those high harmonic terms are lost, but also the lower order harmonics are affected In

fact, all those high order harmomcs which do not show up in the DFT outputs are "aliased" back to

affect the low order harmonics. We now briefly discuss the aliasing distortion of a function.

Let Fc and Fc be the Fourier series coefficient and discrete Fourier transfonn coefficient of

the periodic function fit). These coefficients are given by the foUowing expressions:

Chap. 9. Error Estimation and Choosing Number of Harmonics -105-



Chap. 9. Error Estimation and Choosing Number of Harmonics -106-

Fc[k0Do] =-J- Jf(0 e~}k<s>0'dt for it =-oo, ••• ,o«,
•*o 0

_ 1 M~l
Fc[*©„] = -7 J^fimh) e-i2vkm,M for k = 1-//, •• •, tf-1,

M «=o

where # is the total number of harmomcs generated, M = 2H - 1 is the number of time-domain

To
samples taken within time interval T0, and h = —• is the sample interval. The inverse discrete

M

Fourier transform(IDFT) of F# is given by

h-\ _

fimh) = 2 Fc[k(a0} eJ2nkm,M for m = 0, •• •, 2H-1.
kn\-H

We define the DFT coefficient vector of H harmonics as

F^ = [F[(1-//)©J, ••• .F^fO], ••• ,F[(//-l)©J]r

It can be shown that the relationship between the Fourier series and DFT when H is the

number of harmomcs generated is expressed by the foUowing equation:

l^lktoo] = £ Fc[(^ +vA/)©e] for \-H <k<H-\

where v is an integer indicating the repetition of the signal spectrum at integer multiples of the

sampling frequency M(0o. From the equation above, we can see that all harmomcs in Fc which

are higher than or equal to H are being added back to low harmonic terms of Fc, affecting the

accuracy of the lower harmonics.

In this section, we assume that all the computations are made with infinite precision, and the

error contributed by computing the DFT and its inverse is negligible. Then the error between the

computed solution obtained by the harmonic-Newton method and the exact solution is only due to

the accumulated aliasing distortion. To study the error produced by the harmonic-Newton method,

we first look at the periodic nonautonomous nonlinear system. The results will later be extended to

autonomous and almost-periodic systems.

Consider the same nonlinear differential equations for periodic nonautonomous systems as in

Chapter 7:
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oo

f[v, /)=i(v(0) +q(v(0) + Jy( t - x)v(x) dx +u,(r) (9.1.1)

We denote F#, V#, and IjJ, and Q# as the discrete Fourier transform of f(v, 0, v(0. i(0. and q(0

respectively, and J#(V#) as the Jacobian matrix of F#(V#) , then the harmonic-Newton iteration

using DFT is given as:

where

f£(v£) =I£(v£) +ynQ£(v£) +y£v£ + v£ =o (9.1.3)

In order to prove the convergence of the harmonic-Newton method when DFT is used, we

need to set some conditions on the circuits under analysis.

Assumption 9.1:

C lC

In addition to die same assumptions stated in Theorem 8.1, we also assume that for any V# , V£

with v£(0 and v*(0 e D , there exists a positive constant ysuch that:

llK(V£c) - K(v£c)|| <Yyv£c - v£cH
Lemma 9 J:

Assume that the conditions stated in Assumption 9.1 are satisfied. Let v(0 be the iso-

-*c
lated periodic solution of f(v, 0 = 0, then the vector \H is an approximate solution of

F£(V£) = 0. Le.

F«(V//) -» 0 as H -» oo

Proof:

The evaluation of all nonlinear devices of the system is done in the time domain then con

verted into the frequency domain. This implies that

F[*©J(VC)=F[*©J(VC)
and

QC[i-©0](VC) =Qc[^©<>KVc)
Hence, each DFT component can be expressed as:
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FC[*©01(VC) =F[*©J(VC) +; k<ti0Qc[kos0]iYC) +YCVC[*©0] +V[k(a0]c

= £ F[(*+vM)©J(Vc) +; £ *©0Qc[(*+vM)©0](Vc)
V=-oo Vs-eo

+ £ycVc[(*+vM)©„] + £uc[(*+W)©J
V=—oo va-«o

= £ F K*+v^ )©* 3(VC) +; £ (* +vM) ©„ Qc [(*+vjif )©0 ](VC)
V=-eo vo-oa

-;'£(* +vM> ©,QC[(*+vM)©0](Vc) +y£ *©0Qc[(*+vM)©0](Vc)
Vo-eo Vss-eo

+ £ycVc[(*+vM)©0] + £uc[(*+vM)©J
V=-co v=—oo

= £ Fc[ik+vM)(a0](yc) +;£(*-(* +vA/» 0)oQc[(*+W)©J(Vc)
V=—oo Vo-oo

Since F0^) = F(VC) + ;Q Q0^) + Yc\c + \f = 0, or

Fc[*©„ KV0") = 0 for k = 0, 1, 2, • • • (Lem9.1.1)

Hence,

F^oioKV7) =y£ (w) (OoCfiik+vM)©0](VC) (Lem9.1.2)
V=—oo

I|f£(V*)|| < 2 I^^^KV^I

i/-l oo

^ I II ;(vM) ©0Qc[(*+vM)©J(Vc) I

<Xlfloori**1*-1) (0o I( lQc[*av]C^) I+IQC[-*©J(VC) I)
k=H M

<£ 2I/foor^**"1) ©0 I. IQC[*©J(VC) IB£s[*©J (Lem9.1.3)
00

By Theorem C of Chapter 8, we know that ES[£©„] is bounded.

£s[*©„] =£s[*©„] - £s[*©„]
Jtaff *=0 *=0

//-l oo oo

Since £S[/:©0] -> £S[fc©0] asH -> «>, therefore, X^®*] -» 0 as // -» °°.
*=0 *=0 k=H

Thus we have, ||F£(VW)|| -> 0 as // -» oo.
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Q.E.D.

Lemma 92 :

-c -k-C
Assume that the conditions stated in Assumption 9.1 are satisfied, then det J//(VW) * 0, or

II1§~* (v£) ii <; p.

Proof:

—r *C . —r "*"C
J#(V#) is the Jacobian matrix of F/jCV"/,). To find the basic property of this Jacobian

matrix, let us consider this linear system:

!§&«) Y* = Zh (Lem9.2.1)

where y£ = [^[(l-//)©,], • • •, Y^O], • • •, ^[(/f-l)©,] f

Zg = [Zc[(l-tf )©„}, • • •, Zc[0], • • •, ^[(//-l)©,] f

w-i _

and yimh) m X Y^*©,,] eJ2akm,M for m = 0, • •• , 2ff-l.

ff-i _

zimh)m X Zc[*©0]e'2nA",/Af form=0, ••• , 2ff-l.
k=\-H

—r irC —c -xrC
To show that det J#(V#) * 0 is equivalent to showing that the mapping J#(V#) is one-to-one, or

—c "*cthe nutt space of J#(V#) is { 0 }. First, we need to show that the system described by Eqn.

(Lem9.2.1) is equivalent to the foUowing system when evaluated at t -mh for

m = 0, • • , 2//-1:

j£-(v, 0y(0 =z(0 (Lem9.2.2)
If we take DFT on both sides of Eqn. (Lem 9.2.2) and expand y(0 using its IDFT coefficients, then

the &©0 term in Eqn. (Lem9.2.2) is given by:

or

l^L^rnh) X Yc[k(0o]eJlttkm,M
k=\-H

e-j2akm/M

M-\

=4jt zimh) e^2jlkm>M (Lem9.2.3)
M m=0
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M

w_i -v- J2n(\-H-k)m

J,f-i*,mh)e M
m=0 ^V

bt-\ df
•• X T-(v,w/0 •

M_, .f jl«W-\-k)m
• XT-(v,m/Oe M

^[(l-H)©.]"

Y^fOl
= ZC[*©0 ] (Lem9.2.4)

? C[(H-1)©J

This is equivalent to:

or

3F£[fc©03

3v£[(l-tf)©0]

i5CaF£[*©„]
\xtC\
dvm

tCthe row of J#(V#) corresponding k(&c

sEC9F^[/:©03

av£[(//-l)©0]

Y°[(!-/*)©„]

Y^O]

Y^/Z-l)©,]

Hence, Eqn. (Lem9.2.1) is equivalent to Eqn.(Lem9.2.2) for all t = m/i where m = 0,

Since 3— is nonsingular for all r, therefore z(r) = 0 impUes y(0 = 0. Moreover,

Hit) = 0 for t = mh where m = 0, • • • , 2/J-l

y(0 = 0 for f = mh where m = 0, • • , 2//-1

Y^d-tf) ©J

Yc[0]

Y°[(#-!)©„]

= ZC[*©„ ]

z£ =o

y£ =o

= ZC[*©„]

,2ff-l.

—n -x-C
Therefore, Z% = 0 impUes Yjf = 0. Hence, JhWh) bas a nuU space of { 0 }, or Jh(Vh) is non

singular. Therefore, lU&V^)"1!! <, p.

Q.EX>.

Theorem 92.
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— c*Assume that the conditions stated in Assumption 9.1 are satisfied. Let V# satisfies

Fh(Sh') =0, then v£* converges to Vc as H -> oo.

Proof:

FoUowing the same argument as in Theorem 8.1 and by Lamma 9.1, 92 and Assumption 9.1,

we can show that for some H*, the Newton iteration is weU-defined and converge to a solution of

Fff (V^C) =0 for aU H ZH\

Moreover,

IIVtf-VllSIIVtf-Vtfll + IIVH-VII

<£ Ifloorik+hf ~1) (o01 I2QC[*©0](VC) Ip +£ 2IVc[*©„] I (9.1.8)
k=H . M k=H

Therefore, V# -» V as H-> «».

Q.ED.

Recall that the bound of the difference between the exact solution and the truncated solution

(presented in Section 8.2) is given by:

where Cm||i?||, C, omax|| |f-(v, t) \\, and pa|| J„(*„r' ||.
DxL OV

Notice that there are two terms in the right hand side of both Eqn. (9.1.8) and (9.1.9). The

00 11
term X 2 ' V[*©0] I in Eqn. (9.1.8) can be related to C in Eqn. (9.1.9) since they aU

represent the error between the initial guess solution and the exact solutioa Since

IV[fc©0]l = -—IV[fc©0]l, the term *£ 2 \\[k(0o] \ is approximately twice the quantity
k(0o ksH

— C. The quantity — C is the error due to the truncation of higher order terms alone
(0o H ^ J (o0 H ^

oo

while the term X 2 IV[£©0] I is the error due to the truncation of higher order terms plus the
k=H

error contributed by the aliasing of higher order terms to the lower harmonics. As we expected, for
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periodic circuits, the error due to truncating higher order terms is equal to the error contributed by

the aliasing.

The term £ Ifloorik *^~"l) (0oI IQc[£©0]l 3can also be related to — ^- CCx P
kali M (00 H

since both terms stem from the quantity WJjfWii) F//(Vj})||, where Vjj} is the imtial guess voltage

vector for the harmonic-Newton method. Unlike the truncation of the Fourier series coefficients

where the error of F/,(V#) is contributed by aU terms in the equation, we found that for DFT, the

error of Fh(Yh) is contributed by the terms with derivative operator only (i.e. the term associated

with charge). It is difficult to formulate expUcitly the response of a nonlinear device from a

stimulus represented in the frequency domain. Therefore, during each evaluation, we have to

transform the stimulus of each nonlinear device into a time-domain waveform, calculate the result

ing response waveform, and transform the response back into the frequency domain. When Fourier

series expansion is used and truncation of higher order harmonics takes place, signals are distorted.

Moreover, these error is accumulated each time we transform the signal back and forth between the

time-domain and the frequency-domain. Hence, the error in evaluating FH will be contributed by

all terms in the system equation. When DFT and IDFT are used, there is no error produced at the

sampled time point when transforming the signal back and forth between the time-domain and

frequency-domain, except for the terms associated with the derivative operator. This is due to the

jk(0o factor produced by the derivative operator.

Similar results can be derived for autonomous systems. The difference between the com

puted solution, X# , and the exact solution, Xc is also bounded. This is given by the foUowing

inequaUty:

IJXjf-X^ll*

2
k=H

floorik+^ 1)<b\ I2Qc[k(00](Vc) IP +2 IVc[k(0o] I
M

(9.1.11)

% —C -x-C , t-C —C
where p > WJniXu) \l with (Xw) being the initial guess of the solution, and JH being the Jacobian

matrix of FH.
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For almost-periodic circuits, Spectre uses a special Fourier transform algorithm caUed

Almost-Periodic Fourier Transform ( APFT ), a variation of the Gram-Schmidt orthogonalization

procedure[23,16]. In APFT, the sampling time points are randomly selected. This makes the exact

computation of the atiasing error impossible. However, we expect the aliasing error to be at most

as large as the error contributed by truncation of higher harmonics; hence, the total error is

estimated to be at most twice the error contributed solely by truncation. RecaU that for almost

periodic circuits, the difference between the computed solution, v#(0, and the exact solution, v(0

when truncation error is the sole contributor of error is bounded and is given by:

IhtoCO - v(0|| £ 2p C, H^(0 - v(OH + HMO - v(f )|| (9.1.12)

where p is the norm of the Jacobian matrix, and C, = max ||——(v, t)\\. It is still difficult to esti-
DxL av

mate this error bound or express it in a closed form. However, we can control the total error by

monitoring the additional error contributed by reducing the set of frequency from AH to AH_h If

we define errorH s ||V# - V|| to be the error between the computed solution using APFT and the

exact solution, then

errors - errorH =2*(2 pC, +1) X/ ' V[©,] I ^^
e>teAff

where Ah can be i ©I© =fc^ +k27^ + ••• +kdXd :kj e Z; \kj I=Hfor 1£jf £d; kx Z0[•

or J ©I© =k{Ki +k2k2 + ••• +kdXd : k} 6 Z; %\kj\ =Hfor I<j <d; k} >0I depending

on which truncation is used.

92. Practical Estimate

Currently, Spectre relies on the user to choose intelligently the number of harmomcs H and

is unable to give any feedback to the user regarding the accuracy of this particular choice of har

monics. We would like to make use of the error bounds derived in the previous section to predict

the number of harmomcs required for a given error objective before we start the harmonic-Newton
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iteration. In this section, we wiU discuss periodic circuits first. Then the results wiU be extended

into almost-periodic circuits.

Eqn. (9.1.8) and (9.1.11) give the upper bound of the difference between the computed solu

tion and the exact solution for periodic nonautonomous systems and periodic autonomous systems.

Note that it is difficult to determine the values of P (norm of the Jacobian matrix) and IV[fc©„]l

(absolute values of the Fourier coeficients of the solution) since these values are unknown prior to

applying the harmonic-Newton method. Hence, we propose a algorithm to estimate these values

for any given circuit

In order to estimate the norm of V[k(00], we use Theorem C of Chapter 8, which is repeated

here:

Let x be a periodic function with an interval of periodicity [0, Tc]. If the function itself together

with its derivatives up to order k-1, k^ 1 are continuous, and its K-th derivative is piecewise con

tinuous in the interval, then there exists a constant A > 0 such that the Fourier coefficients

X°[k(Oo] satisfy the inequaUty IXc[£©<,] I£ .
lit lK+i

Note that this theorem impUes that the series XR[k(o0] and X7[£©0] approach zero no slower than

1

Since we are only interested in finding the error bound, we can approximate IV[fc©0]l by its

Abound —^- as stated in the theorem above. The remaining task is to find a practical and low cost

way to estimate k and A. The quantity k measures the smoothness of the function or the non-

linearity of the circuit For linear circuits, k is infinite; in fact, it only has one harmonic com

ponent which is the same as that of the input. For weakly nonlinear circuits, k should be fairly

large since the amplitude of the Fourier coefficients is expected to vanish very rapidly as k gets

large. For nonlinear circuits which produce large harmonic terms, a smaUer k is expected. We

further assume that the voltage and the current spectra have similar shapes as iUustrated in Fig. 9.1.

Thus, the k extracted from the current spectra can be used for the voltage spectra and vice versa.
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In order to obtain A and k, We take advantage of the initial guess voltage waveform gen

erated by Spectre. Spectre's initial guess , V°, is obtained by running an AC analysis on each input

frequency. This initial guess usually consists of only the first harmonic term. The value A' can be

estimated to be max IV' [Jt©0]l if more than one harmonic terms are generated. Since FTV0)
k

represents the current flowing into node / when the initial voltage, V°, is placed on the circuit, we

can approximate k by calculating F'(V°) up to some maximum number of harmomcs, H^, and

A'
choose the corresponding k* which minimizes the difference between

I* I**1
and the magnitude of

the corresponding F'[*©]. One illustration ofthe magnitude ofF'(V°) is shown in Fig. 9.1. Since

V° is just an initial guess, we wiU be wasting a lot of computational effort to choose a fancy rou-

A'
tine to minimize the error between curve

using the equation F [&<,©<>] =
I*,!**-1

lJtlK, + 1

domly one coefficient *<,©„ of F with k0 sufificientiy close to //„„, and find the corresponding k

A!

and F[k(0o]. Therefore, we only choose ran-

The global k of the circuit can be computed by some

to -»*
1 2 3 4 5 6

Figure 9.1 niustration ofmagnitude ofF (V°).
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weighted sum of k1 . In our case, we choose the average of the two quantities (X «"' )ln and

min(K').

The flow chart of the technique described above in predicting the number of harmomcs for

periodic circuits is shown in Fig. 9.2. Two variables need to be set by the user before applying this

algorithm. They are //„»», the maximum number of harmonics desired, and errormax, the max

imum error aUowed.

• We also propose a similar technique to predict the number of harmomcs for almost-periodic

systems. At this point Spectre limits the set of the fundamental frequencies to have two elements

{ X1,X2 }; hence, we wiU only focus on the case where the circuit has two input signals whose fre

quencies are not harmonically related. Similar to periodic systems, the major task here is to esti

mate IV[©*]I for aU (ok e AH . Since we are unable to find a theorem analogous to Theorem C

of Chapter 8 for almost periodic systems to bound the coefficients IV[cot]l, we need to resort to

some heuristic method. Based on our experiments with many almost-periodic systems, we propose

the foUowing scheme: Hrst, we need to determine two importantparameters Klf k2, each measuring

the shape of the voltage spectrum when the other input is not presented (Le. when (ok = kfa or

©* = k2Xi ). The quantities K\ and k2 can be obtained by the same method as the one used in

periodic systems to obtain k. For the intermodulation terms where (Ok = kfa + k2\^ with kx and

k2 being two nonzero integers, we use some weighted function of k, and k2 to estimate the voltage

magnitude. In fact the weighted function is

I*, I l*2l

l*,l + l*2fiq+ l*,l + l*2lK2-
The flow chart is shown in Fig. 9.3.

93. Simulation Results

The algorithm described in the previous section has been implemented into Spectre to evalu

ate its accuracy and also to verify the theories derived in Chapter 7 and Chapter 9. Since Spectre
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// =2*//

LetV° betheinitial guess vector

Choose//„,,

>f

Calculate F(V°) to find k .
tfae panmeter indicates haai npnltnftr thf circuits is

>f

Set A<*max V°(*a>)
*

for * • U. • -, //„,

>'

Approximate JJ= norm of Jacobian matrix inverse

Rom ACanalysis, estimate IQ* I
for* = U. •••,«„,

Set// =2

Set * = //, error » 0, A# = 2// - 1

•<-«P/toor( ™ frlQt I+2IV* I

i«* +1

No

Yes

Hgure 9.2 Flow Chart to estimate number of harmonic in perioidic circuits.
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LetV° betheinitial guess vector

Choose //tnx

v

FindKi andXj, the parameters indicate

how nonlinear the circuit is.

y

SetAs max V°(tt*

foreach0>t =&1X1 +

Set IV((04)l at leastc
feraU(OieAM_

kjX2.

qUlltt, I41 +4,l«*w»

^ r

Approximate B= normof Jacobian matrix inverse

i r

Set//=2

i '

error =0

for(nI]<DieA|f)

enor-fc:2(2BAri + l)IV((i)t)lH=H + \

No ^x^enor <ontOTsa'*VS

r//i//B

Yes

DONE

H is the desired solution

Figure 9.3 Flow Chart to estimate number of harmonic in almost-periodic circuits.
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is limited to simulations of nonautonomous systems, we can only test the algorithm for periodic

nonautonomous and almost-periodic nonautonomous circuits.

For periodic nonautonomous circuits, we used three different traveling-wave distributed

amplifiers as test circuits. The first test circuit is a GaAs traveling-wave distributed amplifier

(denoted as GaAs amplifier in Table 9.1). Simulation results of the first test circuit with two

different input voltage magnitudes and different maximum allowed errors are given in Fig. 9.4, Fig.

9.5, Fig. 9.6, and Fig. 9.7. GaAs amplifier (I) has input voltage magnitude of -lOdB, GaAs

amplifier (II) has input voltage magnitude of -OdB, and the input voltage magnitude of GaAs

amplifier (1H) is -5dB.

The second test circuit is also a GaAs traveling-wave distributed amplifier (denoted as J.Orr

amplifier in Table 9.1) which has a different design from the first test circuit. Simulation results of

two different input frequencies are given in Fig. 9.8 and Fig. 9.9. J.Orr amplifier (I) has input fre

quency of 1GHz while J.Orr amplifier (II) has input frequency of 2GHz. The last amplifier is an

npn bipolar traveling- wave distributed amplifier. The simulation result is given in Fig.9.10. The

results for periodic nonautonomous circuits are summarized in Table 9.1.

test Err. (V) Est Err. (V) Err. (V) % error

circuit Allowed H Estimated Observed

GaAs amplifier (I) 8e-3 4 1.2e-5 l.le-4 0.02

GaAs amplifier (11) 1.5e-2 8 3.4e-2 1.0e-l 5.7

GaAs amplifier (II) 5e-3 16 3.e-3 1.2e-2 0.7

GaAs amplifier (HI) 8e-3 4 5.3e-4 1.8e-3 0.16

J.Orr amplifier (I) 2e-2 8 1.7e-3 1.3e-4 0.09

J.Orr amplifier (II) 2e-2 8 3.9e-3 l.le-4 0.22

amplifier 6e-3 4 1.5e-4 5.1e-3 0.8

Table 9.1 Comparison of Error Estimated and Observed for Periodic Nonautonomous Circuits

For almost-periodic circuits, we used a GaAs double balanced mixer as our test circuit Since the

input frequencies and the frequencies of the intermodulation terms differ in several orders of mag

nitude, it is almost impossible to observe these intermodulation terms and the input frequencies at
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the same time. Thus, the simulation plots for the almost-periodic case are not included in this

thesis. The simulation results for this almost-periodic circuit are summarized in Table 9.2. As we

can see from Table 9.1 and 9.2, the pridiction errors are all reasonably small for both the periodic

and almost periodic cases regardless of the course and inaccurate imtial guess voltage used

test Err. (V) Est Err. (V) Err. (V) % error

circuit Allowed H Estimated Observed

mixer 5e-4 2 3.4e-4 1.5e-4 0.86

mixer 5e-6 4 3.5e-6 4.6e-6 0.005

Table 9.2 Comparison of Error Estimated and Observed for Almost-Periodic Nonautonomous Circuits

As mentioned before, the two important elements which gready impact the accuracy of this

algorithm are A and k. Since both quantities are determined using the imtial guess voltage gen

erated by Spectre, the accuracy of this algorithm relies heavily on the accuracy of this initial guess

voltage. If the imtial guess voltage is close to the exact solution, the estimated error will be close

to the exact error observed. Since the imtial guess voltage usually consists of only the fundamental

harmonic, this imtial guess voltage can be far from the exact solutioa If we can find a way to

generate a better imtial guess solution, we will not only be able to improve gready the accuracy of

this scheme but also improve the speed of convergence of the harmonic-Newton iteration at the

same time.

9.4. Conclusion

In PART II of this thesis, we introduced the harmonic-Newton method for finding the steady-state

solutions of nonlinear circuits. In particular, we have discussed the convergence of this method for

periodic nonautonomous systems, almost periodic systems, and periodic automous systems when

Fourier series expansion is used. We also showed that the harmonic-Newton method is convergent

when DFT is used.
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A complete error analysis has also been presented. We utilized the theoretical analysis by propos

ing an efficient scheme to estimate the number of harmomcs needed prior to applying the

harmonic-Newton method for a given error objective. This significandy improves the efficiency of

Spectre, a program built on the harmonic-Newton method. Simulation results prove the robustness

of this mediod and therefore confirm the usefulness of the theory derived



CHAPTER 10

Conclusions

In this thesis, we looked at the circuit simulation problem from both the time domain and the

frequency domain point of view. We first discussed the limitations of conventional simulation

methods when time-domain transient analysis is of primary interest and presented the motivation

for using relaxation-based techniques. We then studied various relaxation-based techniques: linear

relaxation, nonlinear relaxation, waveform relaxation, and timing analysis techniques, with their

numerical properties summarized and problems presented.

In light of their problems, we described and formalized the Implicit-Implicit Explicit (IIE)

method and studied rigorously its numerical properties. We showed that the Implicit-Implicit Expli

cit method is consistent, stable, and convergent even when floating capacitors are present in the cir

cuits.

Based on the IIE method, we implemented an imtial waveform generator for RELAX. The

implementation results proved that the IIE method is indeed accurate and convergent In fact, in

most of our test circuits, the waveforms generated by the initial waveform generator are indistin

guishable from the final solutions. However, we also found that the time step required for the IIE

method is smaller than the one used by the trapezoidal method used in RELAX. This reduces the

efficiency of the simulator and results in increase in CPU time.

Since transient analysis is very time consuming, it will be desirable to bypass the analysis of

transient responses if steady-state solutions are of the only concern. This is especially true when

the circuit under analysis has a low damping factor. This leads naturally to frequency-domain

simulation since frequency-domain analysis only evaluates the steady-state waveforms. Frequency

domain techniques have an additional advantage that distributed elements such as resistors, induc

tors, and capacitors in transmission lines are much easier to model. Thus, in the second part of this

Chap. 10. Conclusions -142-
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thesis, we examined an important frequency-domain simulation technique, the harmonic-Newton

method.

We first extended the harmonic-Newton method to autonomous systems and showed how we

can form the new Jacobian matrix for these systems. Then, we looked at the implementation

aspect of the harmonic-Newton method In order to perform circuit analysis in the frequency

domain, it is necessary to truncate the number of harmonics considered to reduce the infinite-

dimensional problem into finite dimension. We proved the convergence of the harmonic-Newton

method. This is important since it guarantee that the solutions obtained after truncation takes place

are meaningful.

When DFT is used, not only the truncation error, but also the aliasing distortion is intro

duced. This distortion coupled with the additional error arose when signals are being transformed

between the time domain and the frequency domain, makes the total error hard to predict. In the

diesis, we also proved the convergence of the harmonic-Newton method when DFT is used and

presented the corresponding theoretical bounds. Based on the theoretical findings, we implemented

an error estimation scheme which can be used to choose the number of harmonics needed for a

given error objective. This scheme is proved to be rebust and useful and can significandy improve

the efficiency of Spectre.
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