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ABSTRACT

The one-dimensional Sine-Gordon equation is an example of an exactly solvable nonlinear

partial differential equation. When discretized on a periodic lattice in space and in time, it

corresponds to a lattice of pendula coupled by linear springs. We show that the discretized

system is unstable to a parametric mode when the frequency of time discretization is suffi

ciently small, and we obtain the instabiHty condition and growth rate. By considering the

effects of two finite amplitude modes, we also obtain the nonlinear saturation of the insta

biHty. We also examine how solutions of the exact Sine-Gordon equation behave under this

map, both in and away from the parametricaUy unstable regime.



1. Introduction

There has been considerable interest in understanding the dynamicalbehaviorof systems

with many degrees of freedom. One question is whether the intrinsic stochasticity which

appears in two degrees of freedom [1] tends to increasingly fill the phase space volume as

the number of degrees of freedom increase. A related question is the effect of discretizing a

nonHnear partial differential equation whose continuous solution is integrable. What happens

to any stochasticity in the discrete system as the discretization becomes finer and finer?

One of the earHest attempts to observe the behavior of a discretized nonHnear partial

differential equation was made by Fermi, Pasta, and Ulam [2] who numerically examined the

discretization of the equation

d2x d2x
1+3/? m = o,

which corresponds to a set ofequimass particles connected by nonHnear springs. The original

result with 64 particles indicated that at low energy equipartition was not obtained among

the osciUators, but rather a beat phenomenon existed with regular approximate recurrences

of initial conditions. This result, contrary to the original expectation of equipartition, stim

ulated a number of investigations [3-5]. It was found that transitions could occur with

increasing energy from apparently regular to apparently irregular motion. These observa

tions are consistent with the understanding of coupled systems of a few dimensions in which

such transitions occur when resonances between degrees of freedom overlap in the action

space [1]. In fact, Izrailev and Chirikov [5], using a normal mode expansion, developed an



analytic criterion which roughly predicted the numerical results. More recent work has at

tempted to characterize the transition to energy equipartition in terms of the energy density

of the system [6-8],

These investigations suffered from the problem that analytic solutions to the original

differential equation were not available, to compare to the discretized results. Since those

studies, a class of partial differential equations have been studied for which solutions are

available [9-11]. A particularly interesting one is the Sine-Gordon equation which, when

discretized in space, corresponds to Hnearly coupled pendula. Additionally, discretizing in

time results in coupled standard maps. The behavior of a single standard map has been

extensively studied, with the transition, with increasing energy, from regular to stochastic

motion weU understood [1,12]. For coupled maps we know that an additional phenomenon

of Arnold diffusion occurs, which allows diffusion of some initial conditions through large

portions of the phase space for any initial system energy. With two coupled maps, at low

energy, the fraction of the phase space that can participate in the diffusion and the rate of

diffusion are both small [1,12]. It is not known, however, how these quantities scale as the

numberof coupled maps (the numberof dimensions) increases.

It is the purpose of this paper to investigate some aspects ofhigh dimensional systems by

discretizing the Sine-Gordon equation in space and time. Of particular interest is the effect

of resonances between the time and space periodicities, which lead to parametric instabiHties

for certain values of the system parameters.



2. Basic Formulation

We begin by considering the one-dimensional unperturbed Sine-Gordon equation

<£« - £r* + sin<£ = 0, (1)

and make the space coordinate discrete through the substitutions

A*,*)—»*,(*) j = l,...,N,

* ,. * . (**«(«) - M*)) + (**-*(*) - +A*))

We also consider a periodic domain of length L, so that </>j+n = <f>j, and the spacing between

osciUators, Ax, is L/N. Note that since the formulation of(1) is dimensionless, these lengths,

as wellas aU other physical quantities, suchasenergy and frequency, aredimensionless. With

the change of notation <j>^ = qjy <j>- —pj9 we can write the discretized Hamiltonian for the

system

H=E \& +E ^ -cos«.) +E Ay«.«i. (2)
«'=i i=i «,i=i

where the coupHng matrix A^ is given by

ij (Ax)2

where 6^ is the Kronicker ^-function.

This Hamiltonian has the following interpretation: the first two terms correspond to N

pendula, and the last term represents harmonic coupHng between nearest neighbors. Here

we have also introduced the parameter T, the linearized frequency of the pendula. Taking

T = 1 corresponds to the discretized Sine-Gordon equation.
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Since the Hnear part of this Hamiltonian (the first and third terms of (2)) is exactly

solvable, it is useful to analyze the problem in terms of the normal modes of the harmonic

springs. The eigenvectors of the linear system can be written as

1 / 2irir . 27rzr\
eir = ~"7= cos ~T7 Sin —rr- ,
,r y/N V N N / '

which are orthonormal: 5Z»=i eireis = ^r«* We define new variables, u and u, through

N N

Ur =J2 ^C»>» Vr = ^2 Pi*ir> (3a)
t'=l i=l

such that the <j,- and p{ can be represented as

N N

?» =Ys Ureir> Pi =S Vr^iv (3b)
r=l r=l

In terms of u and v the Hamiltonian becomes

JV

*=E £ +*»£
2 ^ r 2

r=l «•

N

+r'£
i=l

1 — COS
\r=l

= ^0 + ^1. (4)

Thus we have asystem ofN harmonic oscillators, offrequencies u^ ... a>N/2, coupled through

the cosines. Since we have a finite number of osciUators, the spectrum is discrete, and the

(dimensionless) frequencies are given by

2 . 7rr 2N . irr

Ax N L N

Note that the maximum frequency is wN/2 = 2N/L, and the frequencies are pairwise degen

erate: wr = w^_r. In this formulation it is convenient to think of the linear system as the

fundamental system, and the nonHnearity as a perturbation, although wehave not assumed

that Hx < H0.



The equations of motion are given by

(5a)

=-u2aua -T2}2 e^sin ( £t*re,> . (5b)

The discretization has converted the an infinite dimensional system described by a partial

differential equation to a 2N dimensional system described by a set of coupled ordinary

differential equations.

The dynamical system can be conveniently investigated, numericaUy, by discretizing (5)

in time as well as space, to obtain a mapping. This has the effect of adding an external

drive to the system, which adds new physics: for example, energy is no longer conserved.

We modify the Hamiltonian by multiplying H1 in equation (4) by an infinite series of delta

functions to obtain

oh _
ua dv8 ~

8H

va,

«*. —

duM
= ~

ff>=r* (e [l -cos (f>'£.>)]) (E S«/T -™)) • (6)

In the physical model this corresponds to pulsing gravity with period T. The equations of

motion are then

u» = v., (7a)

v. =-u;X - T2 ( J 6{t/T -m))J2 ^sin (Eureir) . (7b)
\m=-oo / l=l Vr=1 /

The delta functions allow us to integrate this immediately through the boundary conditions

at t = mT:

u'a-ua = 0,

A fN \ (8)^-^ =-r2r5je,-,sin [Eureir ,
t=i
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Here the primed [unprimed] variables denote quantities just after [before] a gravity pulse.

PhysicaUy the positions are unchanged by the gravity pulse and the momenta undergo an

instantaneous change. The dynamics then evolve according to the area preserving map

u9 = uacosuaT+i- va-T2Tj2eiasin(f:ureir) sinu,aT,
3 L 1=i ^r=l 'J

T+ va-T2Tj2eiasm(f:ureir) cosw.T,
,=i ^r=1 /.

va = -ujauasmwa

(9a)

(9b)

Note that when s = iV, wN = 0, and the quantity smuNT/uj.N is replaced by T. Iterating

this map gives the completeevolution of the discretized system in the 2N dimensional phase

space.

It is well known that the unperturbed Sine-Gordon equation (1) can be solved by a

Backlund transformation [10]. An example for an infinite spatial domain is the so-caUed

Sine-Gordon breather:

^(x.O^tan-' «°y7('-«o-/?*)
v cosh cti(x —xQ —pi)

where v is the frequency of thebreather, which has velocity /?, 7 = l/^/l - /32 and a2 +v2 =

1. This solution satisfies theboundary condition <j>(x = ±00)= 0. If the x domain is periodic,

with length £, the boundary conditions are

4>(x = L/2,t) = <j>(x = -L/2,t),

<t>x(x = L/2,t) = <f>x(x = -L/2,t).

In this case the analogous solution is [11]

<j)(x, t) = 4tan (A cn((ix, fcx)cn(i/t, kt)),

(10a)

(10b)

(11)



where the en are cosine-amplitude Jacobi elHptic functions. This satisfies the boundary

condition (10a) identicaUy, and (10b) sets the spatial periodicity of the breather through

fj, = ImK/L, m integer, where K is the quarter period of the elHptic functions:

"/2 d9
K

2 2
1/ — \T =

~ Jo a/Ty/l-k2sm29'

The other parameters in equation (11) are given by

1-A2

1+A2'

The parameter kt determines the frequency of oscillation of the breather (which weshaU caU

ufB) in the same way that kx determines the spatial periodicity.

While equation (11) is an exact solution of (1), it willnot be an exact solution of the set

of maps (9). By investigating the conditions under which these solutions are stable, wehope

to understand the effects of discreteness on the system. Thus we look at the decay of these

solutions when put on a lattice and pulsed by gravity with period T. We consider a lattice

with 256 osciUators, and compare the behavior of two initial conditions of the form (11)

under the set of maps (9). The spatial domain is of length L = 32, giving a maximum Hnear

frequency of uN/2 = 16sin(7r/2) = 16.0 and a minimum of ux = 16sin(7r/7V) ~ 0.196 (recall

that the pendula have a linear frequency T = 1), and weuse a timestep T = 0.1. The initial

configurations of two such solutions are shown in Figure 1, which are determined by the

parameter values kx = x/oT9 and kx = y/l - 10"6, corresponding to breather-type solutions

with uB = 0.999713 and u>B = 0.278990 (which we will caU the "Hnear" and "nonlinear"

breathers, respectively).

8



Rather than viewing the phase space in the (#, p) variables, it is more useful to examine

the (u, v) space; Figure 2 shows the (ult vx) plane, which is a two dimensional projection

of the 512 dimensional phase space. Figure 2a shows the phase space for t < 5000 (50,000

iterations of (9)), for which both solutions are relatively stable. For t > 5000 the "nonHnear"

breather becomes unstable, as seen in Figure 2b. Looking at the magnitude of these phase

spacevariables, p1 = y/(w\ + T2)iiJ + vj, gives a senseof the time development of the system.

Figure 3 shows the time evolution of mode 1 (the lowest frequency Hnear mode) over the

period of time shown in Figure 2. The lower curve is the "Hnear" breather, which is stable

over long times (~ 3000 breather periods), while the upper curve (the "nonHnear" breather)

is stable overmuch shorter time periods (~ 200 breather periods). In both cases the total

energy of the system is approximately constant, as seen in Figure 4, so the decay of the

"nonHnear" breather in Figure 3 is the result of energy being transferred between modes,

not of energy being added to the system. (Nonconstancy of the total energy results from

discretizing in time). Snapshots of the time development of the entirespectrum are shown in

Figure 5 for the "linear" breather and in Figure 6 for the "nonHnear" breather. In both cases

the system has reached an apparent steadystate by t = 20000. The final energy distribution

is very different for the two cases, however: in the nearly Hnear case, the energy remains

in a small number of modes, while in the nonHnear (and higher energy) case, the energy is

exchanged between many modes.



3. Parametric Instability

In the previous examples themapping period was chosen so that themapping dynamics

approximated the behavior of the differential equations (5). In general, however, the dis

cretization in time introduces the possibiHty of a parametric instabiHty in the system. If the

mapping period for the previous example is doubled to T = 0.2, then the solutions become

unstable as seen in Figure 7. Not only is the solution now unstable on a relatively short

time scale, but energy is pumped into the system through the instability. To understand the

dynamics in this regime, we linearize Hx in (6) for small u:

ffi =r* (E I1 -cos (J>'e'>)]) E*(*/r -m)
=rM.E !ureir«.e,..j £ S(t/T-m)

\itr,a=sl / m=—oo

=r2Ef E *(*/T-m).
r=l m=—oo

The delta functions can be rewritten as

£ S(t/T-m)= £ cos
m=—oo m=—oo

so that the Hnearized Hamiltonian is

2irrnt

H

r=l N 7 r=l m=-o

2nmt
COS

Transforming to action-angle variables, ur - J2Jr/wrsm0r, and vr = yj2urJrcosOr, we

obtain

^v

* =E
r=l L

wrJr + ^sin20r Y" 2Trmt
cos

a;.
(12)
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Thus, there can be a resonance in the last term between one (or more) of the Hnear modes, of

frequency $r = ur and the driving frequency Q, = 2tt/T. The resonance will occur whenever

ujrT = mir, or 2u;r/fi = m. This is the resonance found in the Mathieu equation [13]. Note

that since u;,^ = wNj2 = 2JV/Z,, there exists a maximum driving frequency for resonance,

fynax = 4N/L, or a minimum resonant period Traitl = tL/2N. That is, there are two

regimes: if the pulsing period is larger than T^, then it is possible that one (or more) of

the Hnear modes is resonant with the pulsing period, and if T < Tmin, there is no linear

resonance. For the above example, Ttain = 0.1963.

In the case of resonance, the fixed point at q = 0 (when aU the pendula are pointing

straight down) is unstable, and the resonant mode wiU grow exponentiaUy. This growth rate

can be calculated from the Hnearized system. In the linear regime, the dynamics of each

mode is given by the mapping

u'a\ fcosuaT-T2TsmuaT/u>a smu>aT/ua\ /ua\ (u\

vaJ \-ijasinwaT -r2TcosuaT cosuaT J \va J \va J
The mode wiU be unstable when |TrM| > 2, with a growth rate given by the eigenvalues

A± = TrM/2 ± ^/(TrM/2)2 - 1. For the m = 1 resonance near uaT ~ ?r, the instability

condition becomes

8 r2 + w2 K }

Since the Hnear frequencies are doubly degenerate (ws = uN_a), two modes wiU be

unstable when (14) is satisfied. For the case above, with T = 0.2, modes 112 and 144

(= 256 - 112), with frequency w112 = cj144 = 16sin(1127r/256) = 15.69 are unstable, and

grow exponentiaUy for 0 < t < 1000, as shown in Figure 8. In this case, TrM = -2.0000298,

yielding to eigenvalues of A+ = -0.99456 and A_ = -1.00547, the latter ofwhich corresponds

11



to the exponential growth seen in Figure 8. Snapshots of the time evolution of the entire

spectrum are shown in Figure 9.

This instabiHty results from the interaction of the spatial and temporal discreteness. As

the spatial lattice is made finer, the number of modes increases, and the maximum linear

frequency, uN^2 = 2JV/Z, approaches infinity. To examine the behavior of the instability as

N —»• oo, we calculate the maximum growth rate as uja —»• oo. That is, we calculate

a= lim —ln|A_|,
u>,-+oo 1

subject to the constraint that TrM is maximized. We find that a ~ Y2 /2u0 -> 0 as w.

approaches infinity; that is, that the maximum growth rate of an unstable mode is inversely

proportional to the frequency of that mode. Thus, the instability disappears as N —> oo and

T —• 0 independent of the order in which the limits are taken.

Becausethe preceding analysis is Hnear, it neglects both the saturation of the instability,

seen in Figure 8 for t > 1000, and the energy transfer between the linear modes, as seen in

Figure 9. To look at these in greater detail, we examine the case where two modes with the

same harmonic frequency (tjr and ww_r) are much larger than any of the others. That is,

we write

N N

X) ure,> =ubeib +uN_beitN_b +]Tur,eir„
r=l r'=l

where the prime denotes summation over aU modes except modes b and N —b. This will

be the case when there is an instability in the system which dominates the dynamics. We

assume that ur, < ubi and expand Hx in (6):

N r

H1 =
r / n \'

=T2 Y^ *(*/T ~m)^2 1- cos fubeib +uN_beiiN_b +£ ur,eir, )
m=-oo t'=l L ^ r'=1 /•
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Note that

so that we may write Hx as

Jf1 =r2 £ S(t/T-m)
l=—Oi

N

E

'*=7i?(:
2irib . 2irib\cos__sm__^

1 / 2irib . 5

'•'•N-b =7w {cos—+sm^r)
2wib\

m=—00

N

X '
1=1

00

1"cos \~^/T~cos ~n 7n~ sm — +S ""^r'=l

=T2 £ «(t/T-m)
m=—00

El* fub + uN_b 2-Kib ub-uN_b . 2mb\ ' / * \
Ix"cos (~73pcos —"-^7^sm —Jcos IS""6-Ji=l

+sinv—
Wjv_6 2nib ub —uN_b . 2wib\ .

cos sin it; sin

y/N ~~ N y/N

The dominant terms (w6 and uN_b), have been separated from the remaining terms. To

examine the dynamics of these modes, weexpand (15) in terms of Bessel functions, keeping

only the zeroth order terms in ur,:

H=±^+^{u2 +u2N_b)
+nt2 ± ^/r-ro)[i-j0(!i^)j0(2*^

+ 2 j.
"6 + uN-b

y/N J"2\ y/N

Again using the boundary conditions (8), weobtain a four dimensional map in terms of the

sum and difference variables

Xm =

V2 '

ub — uN_b

y±

13

vb ± "N-b
V2

IE«H«.vJ ' (15)



cos ubT sinubTfwb \ / x±

y'±J \-ubsmubT cosubT J \y±

/sinubT/ub\
- V2NT2T (j±(J* +Jf) - J3±J*) . (16)

\ cos ojbT )

Here Jj = Jn(<J2/Nx±). In the Hnear regime near the fixed point, these maps uncouple

into two sets of two dimensional maps of the form (13).

The system (16) reproduces the dynamics of the full system very weU when one or two

modes dominate the dynamics. AdditionaUy, saturation of the instabiHty is described by

this map. By looking at the trace of (16), we can modify the instability condition (14):

ITU2

*>W>T >(i _(U2 +„!,J/4AT)r» +„i• (17)

If the initial configuration is sufficiently energetic (that is, if ub or uN_b is large enough), the

linear parametric resonance wiU be suppressed by the nonHnearity, and the fixed point at

(0,0) wiU again be elHptic. This has been observed in numerical results from both the entire

system (9) and the reduced system (16).

By choosing an initial condition with aU the energy in a single mode, we can compare

the behavior of (16) to (9) by looking at the two dimensional phase space of that mode. For

example, for the above parameters, with the pulsing period increased to T = 0.25, mode

73 wiU be unstable. We start with aU the energy in that mode, and let the entire system

(9) evolve. Figure 10 shows the (u73iv73) space given such an set of initial conditions. This

should be compared with Figure 11a, which shows the evolution of (16) for the same set

of initial conditions. These show quite clearly the hyperboHc fixed point with reflection at

the origin, (w,v) = (0,0), that exists in the unstable regime (when ubT < tt). As T is

14



varied to move the system out of the resonant region (equation (14)), the system undergoes

a bifurcation and the origin becomes an eUiptic fixed point, as shown in Figure lib.

For initial conditions near the hyperboHc point, the situation is slightly more com

plicated. Since the subsequent trajectory is sensitively dependent on how close the orbit

approaches the fixed point, the other modes act to perturb the trajectory, as seen in Figure

12a. This can be reproduced in (16) by adding a small amount of noise to the map, as

seen in Figure 12b. Hence, (16) is seen to weU describe the fuU dynamics of (9) when two

modes dominate the dynamics, including the effects of parametric instabiHtyand nonHnear

saturation.

4. Conclusion

In this paper we have primarily been concerned with the parametric instabiHties that

arise when the Sine-Gordon equation is discretized in space and time. This resonance oc

curs when the frequency of time discretization is sufficiently smaU. We have determined the

instabiHty condition and calculated the growth rates of the unstable modes. We have also

shown that the maximum growth rate decreases inversely with the frequency, so that the

instabiHty disappears when the discreteness is made infinitely fine. Additionally, by exam

ining the effects of two finite amplitude modes, we have described the nonlinear saturation

of the instabiHty.

StiU unanswered is the larger question of how the discretized system approaches the

behavior of the continuous system for finer and finer discretizations in the regime where
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the parametric instabiHty is absent. Of particular interest is how the soHton solutions of

the continuous system behave for different amounts of discretization. Such solutions are

clearly unstable if the discretization of the system is too coarse, and the energy is spread

among the oscillators. How (and whether) these solutions become stable as N —• oo and

T —> 0 is not understood, however. Figures 5 and 6 indicate that there may be some critical

parameter (such as the energy density, as proposed in [8] for the Fermi-Pasta-Ulam problem)

that determines, for a particular discretization, when a soHton solution wiU be stable and

when there will be equipartition among the osciUators. These questions are currently under

investigation.
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Figure Captions

Figure 1. The initial breather configuration. The "nonHnear" breather with u>B =

0.278990; - - - the "Hnear" breather with uB = 0.999713.

Figure 2. The (u1? vx) space: N = 256, L = 32, T = 0.1. The outer curve is the "nonHnear"

breather, the inner curve is the "Hnear" breather, a) t < 5000. b) 5000 < t < 20000.

Note that the "nonHnear" breather decays at t ~ 5000.

Figure 3. The time evolution of px = \/(u>2 + T2)u\ + v\ for the same parameters as Figure

2. The upper curve is the "nonHnear" breather, which decays to a chaotic state at

t ~ 5000, whUe the lower curve is the "Hnear" breather, which is stable.

Figure 4. The total energy in the system. The minor variation is due to the temporal

discreteness. The lower curve corresponds to the "Hnear" breather, the upper to the

"nonHnear" breather.

Figure 5. The time evolution of the spectrum of the "Hnear" breather. Plotted on the

vertical axis is p= yj(u2 + T2)u2 + v2. a) t=0, b) t=5000, c) t=10000, d) t=20000.

Figure 6. The timeevolution ofthespectrum ofthe "nonlinear" breather, a) t=0, b) t=5000,

c) t=10000, d) t=20000.
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Figure 7. The total energy in the system with the "Hnear" breather as the initial condition

as in Figure 4. Here T = 0.2, which leads to a parametric instabiHty. Note the difference

in both the horizontal and vertical scales as compared to Figure 4.

Figure 8. The timeevolution ofmode 112 showing its exponential growth when the mapping

period is doubled to T = 0.2.

Figure 9. The time development of the spectrum of "linear" breatherin the unstable regime.

a) t=500, b) t=1000, c) t=1500, d) t=2000.

Figure 10. A two dimensional projection of the 2N dimensional phase space showing the

dominant mode in the unstable regime. N = 256, L = 32, T = 0.2.

Figure 11. A twodimensional projectionof the four dimensional phase spaceof the dominant

modes, a) The same parameters as Figure 10, so the instabiHty condition of equation

(14) is met, resulting ina hyperbolic fixed point with reflection, b) Themapping period

is lowered to T = 0.1, so the fixed point is eUiptic.

Figure 12. The trajectory near the unstable fixed point, a) A projection of the 2N dimen

sional phase space, showing the effect of the remaining modes on the dominant mode.

b) The four dimensional mapping with noise added to simulate the effect of the other

trajectories.
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