

Copyright © 1989, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

MULTILEVEL BEHAVIORAL VERIFICATION

FOR VLSI DESIGN

by

Seung Ho Hwang

Memorandum No. UCB/ERL M89/85

18 July 1989

MULTILEVEL BEHAVIORAL VERIFICATION

FOR VLSI DESIGN

by

Seung Ho Hwang

Memorandum No. UCB/ERL M89/85

18 July 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

MULTILEVEL BEHAVIORAL VERIFICATION

FOR VLSI DESIGN

by

Seung Ho Hwang

Memorandum No. UCB/ERL M89/85

18 July 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Multilevel Behavioral Verification
for

VLSI Design

by

Seung Ho Hwang

Abstract

To narrow the gap between the theory and its application to real problems, this

dissertation addresses the practicality of hardware design verification. This goal is achieved

by dividing the verification problem into two subproblems: correctness checking of finite-

state machines and equivalence checking of multilevel behavioral descriptions.

An efficient algorithm is presented for the correctness checking of finite-state

machines. The algorithm checks to sec if an implementation, given by a net-list of gates

and latches, satisfies a specification given as a state transition table. When the implementa

tion is incorrect, an input sequence that distinguishes the implementation machine from the

specification machine is provided to help the user locate errors. Experimental results show

that the method can be applied to fairly large systems.

For the equivalence checking of behavioral descriptions, a formal technique based on

theorem proving methods is used. Because verification is performed by a formal technique,

complete verification can be achieved without exhaustive simulation. Behavior is specified

in a hardware description language that deals with timing and functionality in one para

digm using functional (denotational) semantics. Type definition mechanisms and macros

are provided, along with recursive definitions. The behavioral verification system automati-

cally handles type definitions and exploits hierarchy. Hierarchy is exploited when checking

functional equivalence by using techniques such as inductive verification of recursive

descriptions. Hierarchical liming verification is also supported by the abstraction of timing

information by constraint propagation. During the abstraction of timing information, the

availability of functional relations between signals eliminates the static-inscnsitizable-path

problem.

Signature , ,- -^ ^l.~^~/i.A. OlsLJ/LSL
A. Richard Newton

Committee Chairman

ACKNOWLEDGEMENTS

I greatly acknowledge my research advisor, Professor Richard Newton, for his gui

dance, encouragement, and support throughout the course of this work. Without his

enthusiasm and the inspiration he provided, this work would not have been possible.

I am also grateful to Professors Robert Brayton, Alberto Sangiovanni-Vincentelli and

Carlo Sequin for their continuing interest in my research projects. Thanks are due to Pro

fessor James Sethian, who served on my qualifying examination from Mathematics Depart

ment.

I thank all CAD group members at the University of California, Berkeley. In particu

lar, I wish to express appreciation to Gregg Whitcomb, Brian O'BCrafka and Bill Lin for

their critical reading of the manuscript of this dissertation. Rick Spickelmier, Tom Quarles,

Peter Moore, Jeffrey Burns and Resve Saleh are some of the Berkeley CAD group

members who were more than happy to help me whenever I needed it. I enjoyed the dis

cussions with Tom Laidig, Srinivas Devadas and Tony Ma on relevant subjects.

I thank all former and current Korean EECS graduate students who I have been

acquainted with for those wonderful time I had. Young Kim, Hyun Shin, Hyunchul Shin.

Hong-June Park, Han Koh, Daebum Lee are a few of them.

My wife, Young Soon, my children, Jae-Won and Jae-Sun, have been the source of

encouragement. I am also greatly indebted to my other family members and relatives for

their continuous support.

in

I express my gratitude for the financial support that made this research possible. I

acknowledge support from the Semiconductor Research Corporation and the Digital Equip

ment Corporation.

IV

TABLE OF CONTENTS

CHAPTER 1 : INTRODUCTION 1

1.1 Motivation *

1.2 Hierarchical Design Methodology 2

1.3 Timing and Functional Verification 2

1.4 Organization of the Dissertation 3

CHAPTER 2 : THE HARDWARE DESIGN VERIFICATION PROBLEM

_ 5

2.1 Introduction 5

2.2 Various Aspects of Design Verification 7

2.3 Simulation and Formal Verification 11

2.4 Hierarchy and Three Classes of Hardware Modules 16

2.5 Verification Problem 18

CHAPTER 3 : FINITE-STATE MACHINE VERIFICATION 20

3.1 Introduction 20

3.2 Definitions and Notation 22

3.3 Problem Formulation of Finite-State Machine Verification 24

3.4 Verification Algorithm 25

3.4.1 Enumeration of Candidate Initial States 28

3.4.2 State Generation and Output Checking 32

3.4.2.1 Example 33

3.4.2.2 Cube Simulation and Cube Splitting 35

3.4.2.3 Cube Splitting Heuristics 36

3.4.2.4 Output Checking 37

3.4.2.5 Detailed Algorithms 38

3.4.2.6 Remarks 40

3.5 Experimental Results 41

3.6 Conclusions 45

CHAPTER 4 : RELATED WORK ON FORMAL TECHNIQUES 46

4.1 Introduction 46

4.2 Semantics for Programming Languages 47

4.2.1 The Operational Approach 47

4.2.2 The Denotational Approach 49

4.2.3 The Axiomatic Approach 50

4.2.4 Comparison of the Three Approaches 51

4.3 Program Specification Methods 53

4.3.1 Algebraic Specifications 55

4.3.2 State-Machine Specifications 56

4.3.3 Abstract Model Specifications 58

4.3.4 Comparison of the ThreeTechniques 59

4.4 Program Verification Methods 60

VI

4.4.1 The Inductive Assertion Method 60

4.4.2 The Axiomatic Method of Hoare 62

4.4.3 Verification Methods Based on Denotational Semantics 63

4.5 Previous Formal Hardware Verification Techniques 64

4.5.1 Symbolic Simulation 64

4.5.2 Predicate Logic 65

4.5.3 First-Order Logic Approaches 66

4.5.4 Higher-Order Logic Approaches 68

4.5.5 Temporal Logic Approaches 69

4.5.5.1 LinearTime Temporal Logic 71

4.5.5.2 Branching Time Temporal Logic 72

4.5.5.3 Interval Time Temporal Logic 73

4.5.6 Other Approaches 73

4.6 Conclusions 74

CHAPTER 5: BEHAVIORAL DESCRIPTION LANGUAGE 77

5.1 Introduction 77

5.2 Behavior and Structure 80

5.2.1 Structure 81

5.2.2 Behavior 82

5.3 Functional Formalism 84

5.4 Overview of the Behavioral Verification System (BEAVER) 86

vu

5.5 Primitive Language Constructs 89

5.5.1 Types 90

5.5.2 Cells 94

5.5.3 Assignments 95

5.5.4 Recursions 95

5.6 Primitive Cells 96

5.7 Macros 98

5.8 Conclusions 99

CHAPTER 6: HIERARCHICAL TIMING VERIFICATION 100

6.1 Introduction 100

6.2 Timing Constraints of Synchronous Digital Systems 102

6.2.1 Clocked Storage Elements 102

6.2.2 Timing Constraints with Edge-Triggered Type Elements 104

6.2.3 Timing Constraints with Transparent Type Elements 107

6.3 False Path Problem HI

6.4 Timing Model 113

6.4.1 Two Language Constructs for Timing Behavior 114

6.4.2 Declaration of Synchronizing Signals 115

6.4.3 A Modeling Example: Clock Skew 115

6.5 Abstraction of Timing Behavior 118

6.5.1 Combinational Cells 118

VUl

6.5.2 Synchronous Cells 123

6.5.2.1 Four Kinds of Timing Information 123

6.5.2.2 Instantiations of Synchronous Cells 126

6.5.3 Compositions of Timing Information 127

6.5.3.1 Compositions of Output Timing Information 128

6.5.3.2 Compositions of Internal Timing Constraints 130

6.5.3.3 Compositions of Delay and Input Timing Information 130

6.6 Examples and Results 131

6.7 Conclusions 135

CHAPTER 7: FORMAL FUNCTIONAL VERIFICATION 136

7.1 Introduction 136

7.2 Equivalence Checking Problem 138

7.3 Theorem Prover 140

7.3.1 Value Domain 143

7.3.2 Derived Cells and Axioms 143

7.3.3 Major Proof Steps 145

7.4 Examples and Results 148

7.5 Conclusions 154

CHAPTER 8: CONCLUSIONS 155

REFERENCES 158

IX

APPENDIX A: DESCRIPTIONS OF EXAMPLE CELLS 176

CHAPTER 1

INTRODUCTION

1.1. Motivation

The ultimate goal of computer-aided design (CAD) of integrated circuits(IC's) is to

build systems which can generate automatically designs of entire circuits from the user-

supplied requirements. However, the achievement of this goal is not foreseeable in the near

future. Current approaches involve human intervention, and design verification continues to

be an important problem.

Traditionally, simulation at various levels of description has been used for the

verification of hardware design. In order to achieve a complete verification using this

approach, exhaustive simulation must be performed. Unfortunately, excluding very simple

designs, exhaustive simulation is nearly impossible. To overcome this limitation, formal

verification techniques have been proposed. However, in order to apply these techniques to

real design problems, more research work is needed.

In this dissertation the practicality of thehardware design verification is addressed in an

effort to narrow the gap between the theory and its application to real problems. To achieve

the goal of obtaining a more practical verification system, the verification problem is divided

into two subproblems: correctness checking of finite-state machines and equivalence check

ing of multilevel behavioral descriptions.

1.2. Hierarchical Design Methodology

To address the complexity of a very-large-scale-integration (VLSI) design, the concept

of hierarchical design has been widely accepted. This idea is similar to the structured pro

gramming technique, which has been used by software engineers for many years. A hierarchi

cal methodology allows the designer to specify a design in a modular, multilevel manner,

starting from the top level and working to the bottom. In VLSI design, this process involves a

decomposition by which a complex entity is partitioned into multiple, less complex subenti-

ties. The decomposition of the design into modules is arbitrary, but typically it is organized

according to the functional structure of the system under design. The top level of the design is

a high-level description of the entire design in terms of modules and the interconnection of

those modules. The modules are abstracted to hide unnecessary details from the designer and

to allow him to think about only necessary information on a given level.

When a design is performed in a hierarchical environment, the verification of a large

system can be split into smaller and simpler problems. This "divide-and-conquer" approach

provides a practical approach to solving the complex verification problem. The increasing

importance of the logical structure in VLSI design [1,2], demands methodologies and tools

to support hierarchical decomposition at high levels.

13. Timing and Functional Verification

In an equivalence checker for multilevel behavior, not only must the functional

behavior be verified but it is also necessary to address timing behavior.

Most timing verifiers deal with flattened-down descriptions of a design at a specific

level,usually in switch-level or gate-level [3,4,5]. However, withhierarchical descriptions it

is more desirable to be able to handle the timing information in a hierarchical manner. The

abstraction of timing behavior, as well as functionality, is important. Also, as the timing

verification is performed with the known functional relations of signals, the static-

insensitizable-path problem, which has been an important problem in timing verification, can

be eliminated.

In this work, the functional verification problem is formulated as an equivalence check

between two descriptions. Thedescription language andits verifier arepresented. Theverifier

exploits hierarchy and structural regularity, both of which are very important to achieve the

goal of practical formal verification.

1.4. Organization of the Dissertation

In Chapter 2, various aspects of design verification are introduced and the relationship

between simulation and formal verification is explained. This is followed by a description of

the concepts and terms needed in later chapters along with a definition of the verification

problem addressed in this work.

Chapter 3 deals with the verification problem of finite-state machines. In this case, the

problem is to check whether the implementation satisfies the given specification. The finite-

state machine verification problem is defined and an efficient algorithm is presented. Experi

mental results are also presented.

Previous and related work is reviewed in Chapter 4. Because the study of formal

approaches began earlier in the software domain than in hardware design, the most common

techniques used in program specification andverification aredescribed first, thenexisting for

mal hardware verification techniques are described. Finally, the problems and issues of these

existing methods are addressed.

The behavioral description language used in this research is introduced in Chapter 5.

The semantics of the language is based on a functional formalism. The primitive constructs

are introduced with their semantics. In the language for data abstraction, three kinds of type

constructing mechanisms are provided and parameterized designs may be defined as recur

sive cells. Also, some macro facilities are provided for the convenience of describing

hardware.

The timing verification part of the behavioral verifier is presented in Chapter 6. After

the timing constraints of synchronous digital systems are reviewed, the static-insensitizable-

path problem is addressed. The timing model and the mechanism used for abstracting timing

information are described. To illustrate the elimination of the static-insensitizable-path prob

lem, some experimental results are provided.

Chapter 7 deals with the functional verification aspect of the behavioral verifier.

Theorem provers utilized in existing hardware verification systems are reviewed and the

theorem prover employed in the verification system implemented as part of this work is

explained. Also, to illustrate the performance of the verification system, several verification

examples are provided.

Conclusions and future research work in the formal verification field are included in

Chapter 8.

CHAPTER 2

THE HARDWARE DESIGN VERIFICATION PROBLEM

2.1. Introduction

When a hardware or software system is designed there is always the problem of deter

mining whether the design behaves as the designer intended. Ina software system design, the

final product is a program ora package ofprograms and the reproduction of the final result is

usually very easy and inexpensive. However, in hardware design, the final product is not as

easy to implement and in general it is very expensive tobuild the first version. Therefore it is

necessary to check the correctness of the design prior to fabrication so as to prevent costly

errors and corrections at a later prototype debugging phase. This activity is called design

verification, design test ordesign correctness checking and should be distinguished from pro

duct test. In a product test, the goal is to see if there has beenany physical failure during the

fabrication process (which should not occur if the fabrication process is perfect). However,

since the manufacturing cycle is not perfect, each of the products should be tested before

being brought to market. The number of manufactured devices is generally very large and

the evaluation cost of each device is critical for the total cost of the product. Hence it is

important to devise a set of test inputs which detect most of the probable errors incurred dur

ing fabrication, yet is small enoughso that manufacturing costs are within a reasonable limit.

On the otherhand, the goal of a design test is to checkthe correcmess of the design so that if

the manufacturing process was perfect, the final product would be fault free; that is, it is also

what the designer intended. The focus of this dissertation is the design test problem.

Early integrated circuit design was performed manually. Since the circuits involved

were relatively small and simple, this approach was quite satisfactory. The first digital

integrated circuits (IC's) were available commercially in the early 1960's; it was anumber of

years before computer-aids were applied to the design and verification of these circuits. In

retrospect, it is surprising how little the computer has been used in the design of IC's. Early

circuits were small enough that mask patterns could bedrawn by hand, and then photographi

cally reduced to generate the IC masks directly. For the verification of the function of the cir

cuit, however, simulators proved very useful. Initial work in the mid-1960's thus focussed on

the development of device analysis [6,7] and circuit analysis [8,9] techniques. The circuit

simulators were originally developed for the analysis of nonlinear and radiation effects in

discrete circuits. It was not until the early 1970's that circuit simulators suitable for IC

analysis became generally available [10,11,12,13,14,15]. As the digital hardware contin

ued to become integrated into monolithic form and with increasing complexity, industry

turned to the computer to store IC layout data and produce the masks required for manufac

ture. Systems for layout digitization and interactive correction found extensive use by the

early 1970's. However, it was not until the mid-1970's that programs for the physical layout

rule checking of the circuit began to find widespread use [16,17]. By 1975 it had become

clear that computer-aids were anecessity inthe design ofcomplex IC's, both for physical and

for functional design and verification. Until then, the layout of an IC and its transistor-level

schematic diagram had been quite separate. In the late 1970's, computer programs became

available for tasks such as connectivity verification [18], extraction of transistor-level

schematics from IC artwork data [19,20,21] and even extraction of gate-level schematics

from the transistor list [22]. These programs are loosely coupled in general and are often

incompatible with one another. It was not until the mid-1980's that much effort was invested

in making the computer-aided design (CAD) systems integrated.

In this chapter, various aspects of design verification are introduced, and the relation

between simulation and formal verification is explained. Finally, the concepts and terms

needed in the sequel of the dissertation are described, along with a definition of the

verification problem.

2.2. Various Aspects of Design Verification

Throughout the process of designing VLSI circuits, a variety of different representa

tions or views of the design areused. These representations may reflect a particular level of

abstraction, such as a functional specification or mask layout, or they may reflect the view

required for a certain application, such as the information required for simulation or formal

verification. Thechoice of appropriate representations for each level of the design process is

a key factor in determining the effectiveness of computer aids since it is through these

representations that both the structure of the design and specific information relating to a par

ticular design level are expressed. The design process involves transformations between

these representations, both for design and verification. In this section, a classification of

representations is presented. This classification is used in the later part of this section to

relate various aspects of design verification.

The major categories of design representations are shown in Figure 2.1 [23]. These

representations fall into one of three major categories: behavioral, schematic, and physical.

At the behavioral or algorithmic level, the functional intent of a design is described indepen

dent of a particular implementation. In some cases, programming languages such as con

currentPascal [24] have been used to represent the design at this level, as well as to provide

simulation capability. Languages specifically designed for this task,calledhardware descrip

tion languages(HDL's), have also been developed [25,26,27,28].

Algorithmic or Behavioral

Behavioral View Data-Flow

Register Transfer

Schematic

Logic Gate

View

Transistor

Physical Symbolic Layout

View Mask Layout

Figure 2.1 Categories of design representation

Once a functional implementation strategy has beendetermined, a schematic view may

be generated. At its most abstract level, this schematic view consists of a chip plan, illustrat

ing the loose physical placement of the major components and busses, or a register n-ansfer

level (RTL) description, defining the functional relationships between the major components

of the design. As the implementation is further refined, logic gate level and finally transistor

level schematics may be generated. With each new level of refinement more information

concerned with the detailed physical andfunctional implementation of the circuit is included

in thedescription. The final transformation consists of the generation of detailed, mask-level

geometries, from a transistor-level schematic view.

The transition between high-level functional schematic descriptions and lower-level

schematic and mask layout may involve the use of additional views. At the higher level, a

data-flow description of the circuit may serve this purpose. At the behavioral level, this

description may be viewed as the parse tree generated by acompiler operating on the algo

rithmic description of the intended function. At the RTL level, nodes in the data-flow graph

represent an initial configuration of circuit building blocks used to implement the function,

while branches indicate data paths between these functions. At the physical level, the sym

bolic layout forms abridge between a schematic view of thecircuit and itsmask-level layout.

A symbolic layout contains both explicit connectivity information and the relative placement

of circuitcomponents, such as transistors, cells, andbuilding blocks.

A typical, top-down design flow of a contemporary design system is illustrated in Fig

ure2.2. First, from the system specification the designer chooses an architecture. The archi

tectural design is then refined to the logic and circuit level. Finally, a layout is generated

from the schematics of logic and transistors. An ideal approach is to develop the design from

the specification by a methodology that ensures that it cannot be incorrect. This approach

serves the ultimate goal of CAD researchers, but requires codification of a great deal of

knowledge about the design domain, from the most abstract levels of system description

down to the most detailed levels of implementation. It potentially faces a astronomically

large search space of design alternatives. In software design, the attempt to achieve

correctness-by-construction is exemplified in the principles of a structured programming

methodology [29] and in research into automatic or semi-automatic programming [30]. In

hardware design, research has focussed on pieces of the problem thatare the most tedious for

a human designer and therefore prone to human error, such as wire routing or programmable

logic array generation. There have been attempts at automatic design of entire integrated cir-

design rule check

system specification < 1

< 1

< 1

><

architectural design

> '

schematic design

(logic and circuit)

> <

layout

> f

fabrication

verification :

function

verification :

function, timing

verification :

net-list comparison,

timing

Figure 2.2 A typicalVLSI design flow

10

cuits, including microprocessors that have met with varying degrees of success [32,33].

However, these attempts are still in their infancy and truly general-purpose design synthesis

systems will take many years to perfect. Until all the design processes are performed by

automatic and error-free procedures, the verification of design work created by humans will

continue to be an important problem. Different aspects of verification are required at dif

ferent levels during the VLSI design process. The functionality is checked at the architec

tural level; functional and timing behavior are checked at the logic and circuit level; and

11

physical design rules and detailed timing behavior are checked at the layout level. Finally, as

a functionality check, a net-list comparison canbe performed.

The problems associated with "verification" can be classified into three categories:

functional verification, timing verification, and physical verification. In functional

verification, the goal is to show that a design correctiy implements the specified function. The

goal of timing verification is to show that a proposed design will not malfunction due to

hazards, races, excessive delays, or other timing problems. Timing verification maynot prove

thefunctional correctness of a design, but it canshow whether thedesign will operate within

the timing specifications imposed on it. The problem in physical level verification is in

showing that a proposed design conforms to a set of rules or restrictions. These rules may

reflect physical limitations of the technology being used, orthey may be intended to improve

product reliability and maintainability.

2.3. Simulation and Formal Verification

Simulation at various levels has been the most common verification method. The vari

ous levels of simulation used for integrated circuit simulation, their use, and examples of

simulators for particular levels [34,35] are listed in Table 2.1. The designer can select a

simulator at the proper level depending on the stage of the design process, or may choose a

mixed-level simulator that combines capabilities at two or more levels.

Circuit simulators, such as SPICE2 [15] and ASTAP [14], have been used successfully

for the design and the performance evaluation of integrated circuits, and provide very accu

rate output waveforms. However, due to long computer run times, it is almost prohibitive to

use these simulators for die analysis of large integrated circuits. An extensive effort has been

made to reduce the required CPU-time for large circuits, while maintaining the same

Level

Behavioral

RTL

Logic

Switch

Circuit

Device

Process

Use

Algorithmic Verification
Logic Verification
Logic Verification

Logic Verification

Performance Evaluation

Logic Verification

Simulator Examples

GASP, SIMULA, ISPS, ADLIB

ISPS, ADLIB, SPLICE2
LOGIS, ILOGS, SPLICE2

MOSSIM, RSIM

SPICE2, ASTAP, SPLICE2

Device Model Development GEMINI, PISCES
Process Development j SUPREM, SAMPLE

12

Table 2.1 Hierarchy of large integratedcircuit simulation

waveform accuracy. Techniques include the use of relaxation methods, such as Iterated Tim

ing Analysis (ITA) [35,36,37] and Waveform Relaxation (WR) [38,39,40]. Relaxation

methods provide significant speed improvement with the same waveform accuracy as

SPICE2 (assuming identical device models) and have guaranteed convergence and stability

properties. However, relaxation-based electrical simulation is still much slower than logic

simulation and the actual CPU-time required depends on the characteristics of the circuit

under analysis.

Logic simulation is an area which has evolved over the last two decades. Since the

logic circuits of interest were already large and computers were less powerful, even the early

work was concernedwith efficiency improvement techniques (e.g. [41,42]). Since then,con

tinuous progress has been made towards the simulation of very large circuits

[43,44,45,46,47]. Both temporal and structural sparsity is exploited in these techniques.

Due to the occurrence of new complex MOS transistor designs, which cannot easily be cast

into standard logic gates, transistor level simulation [48,49] has emerged as an alternative.

Also, a new form of simulation technique has been developed which solves for the amount of

time required for a network variable to make a particular change, rather man solving for the

networkvariables at the given time point (as in conventional circuit simulation) [50].

13

Recendy, to simulate the behavior of a system across several abstraction levels in one

simulator, so-called mixed-level simulation techniques have been developed

[51,52,53,24,54,55,56,57]. In amixed system, models of more than one abstraction level

are used, such as circuit analysis, simplified macromodels, and logic simulation. Numerous

mixed-mode and/or multilevel systems include several simulation analysis levels, combining

many of the techniques developed for each level.

Simulation has been used for hardware design verification for so long that for many

people verification means simulation. It remains true that simulation is still the best known

way of answering the question "is my high-level description actually what I want?" However,

simulation has several limitations for verifying the correcmess of a design process. As a sys

tem increases in size and complexity, simulating the system is very costly in bothspace and

time. The secondlimitation is that selecting a sufficient set of test inputs to "cover" a sequen

tial description is almost impossible. In all but the simplest systems, the space of possible

inputs can be vast. For example, a simple multiplier that multiplies two 16-bit integers can

require over four billion different inputs to be sure it simulates correctiy, and a system that

contains a single 32-bit register can potentially have over four billion different responses to

each input, depending on previous input sequences. Clearly, we cannot hopeto test a system

on every possible input with every possible system state. Rather, a subset of these tests must

be selected, from which we can extrapolate or otherwise conclude the correcmess of the

design. Fortunately, the number of test inputs needed grows linearly with the number of

components in the system. Unfortunately, the task of finding them is known to be NP-

complete [58]. Therefore, simulation alone cannot guarantee that complete verification has

been achieved unless exhaustive simulation has been performed. Here the meaning of the

term "complete verification" is that when a verification result is positive, it is guaranteed that

14

a design operates correcdy with all possible tests in the input domain. Finally, even if

exhaustive simulation were feasible, the interpretation of the simulation output is not easy.

Because of these difficulties, there is a need for new verification techniques to supplement the

traditional simulation-based approach to design verification.

An important new approach that has emerged in the last decade is formal verification

[59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84].

In formal verification, both a design and its specification are described by a language in

which semantics are based on mathematical rigor, and the verification is then performed

using symbolic manipulations. This guarantees complete verification when the verification

result is positive. When a formal description is used during the complete design process,

numerous advantages can be seen. For example the description of the actual behavior of an

existing VLSI circuit or specification of the intended behavior of a circuit to be designed is

generally performed informally, usually by means of natural language sentences or timing

diagrams. By formally specifying the required behavior of a design, it becomes possible to

communicate these requirements unambiguously to the people who will implement the

specification, while providing a precise statement of design requirements. The ability to

describe behavior formally in a design language allows thecorrespondence between specified

behavior and the behavior of the constructed design to be established. As the primary aim in

any design exercise is to produce an implementation that satisfies the behavioral

specification, the importance ofbehavioral description is evident.

The use of behavior in a design language has not been fully explored to date. The

advent of hierarchical designs requires the rigorous description of both the structure and the

behavior of design components at the various intermediate stages in the evolution of a com

plete design. The manipulation of the large amounts of descriptive data requires that some of

15

the well-established techniques found in programming languages be used to aid the design

process. The use ofbehavioral description "languages" (whether they be graphical, textual, a

combination of the two forms, or a data structure) as the medium in which a designer will

work will increase steadily in the future, due to the ever-increasing complexity of VLSI

designs.

Large designs are usually produced in segments, with some parts of the design being

produced by hand and others being produced using design automation tools. An interface

between the components must be specified; this can most naturally be done using a design

language which supports the description of structural, geometrical and behavioral attributes.

Input to design automation systems will require behavioral information if designers are to

work at a higher and more abstract level of design than that of pure structure or geometry.

Most design automation systems, such as automatic placement and routing programs, work in

the structural or geometrical domains. However, abstract behavioral descriptions are being

usedas input by anemerging number of true silicon compilers [85,86,87].

Finally, the most significant reason for including behavioral description capabilities ina

language is for automatic design verification. Verification techniques using simulation do not

generally make use of behavioral description languages, as they restrict themselves to

describing circuits ata single level of representation such as the circuit level of SPICE2 [84],

or the switch level of MOSSIM [48] and RSIM [88]. Simulation then occursmonolithically

over the complete device description after the design is complete, with the inherent problems

of descriptive complexity and redesign effort when flaws are discovered. An integrated

design and verification process allowing increasingly detailed descriptions of an evolving

top-down design to be verified by simulation or verified by mathematical proof techniques,

breaks both the design and verification tasks into manageable sub-tasks. This approach

16

requires a behavioral description language in which behavior is described at different levels

of abstraction, from the interaction among functional blocks down to the behavior of primi

tivecells. This approachis explained in moredetail in the following section.

2.4. Hierarchy and Three Classes of Hardware Modules

Hierarchical techniques are frequently applied in managing complex technical and

organizational problems. It is the purpose of suchhierarchical techniques to master complex

ity bydecomposing a complex system into a hierarchy of sub-modules. Fora proper appreci

ation of the merits of hierarchical techniques, it is essential to have an understanding of the

nature of complexity. Hierarchy applied to VLSI design will not generally lead to a reduc

tion of the number of components in the chip - on the contrary, there are several reasons to

expect the number of components to increase. It can,however, affect the number of interac

tions between components which must be taken into account (by abstracting the interfaces

between components), as well as the number of configurations to be considered during

design. These latter aspects are also a measure of system complexity and are known to be

dominant in the design of large systems [89,90]. Hierarchy is designed to reduce the magni

tude of these contributions to complexity by using appropriate decomposition techniques.

The intuitive notion is straightforward. One decomposes a large problem into a number of

smaller parts and while each of theparts canbe expected to exhibit only limited complexity,

it is the expectation that the integration of the parts will not lead to a significant increase in

overall complexity. Hierarchical decomposition techniques have long been in use for IC

design supported by CAD tools. Many of these were devised for obtaining a reduction of the

amount of design data; they did not intend to provide nor did they achieve a reduction of

designcomplexity as measured by CADprogram run times. Apparently, hierarchical decom-

17

position alone is not sufficient for reducing system complexity. Upon developing an under

standing of the nature of complexity, it follows that abstraction methods form an essential

ingredient.

Inahierarchical approach, ahardware module consists of abehavioral specification part

and a structural implementation part. A behavioral specification describes how a particular

design responds to a given input, and a structural representation describes how components

are interconnected. According to how a hardware module is composed, modules can be

classified as interior modules and leaf modules. The leaf modules can be further classified

into primitive leaf modules and special leaf modules. These modules are illustrated in Figure

2.3. In a primitive leaf module, the structural part does not exist, and therefore does not need

to be verified. The special leafmodule consists of a behavioral part and a structural part, but

its structure does not use any other module and is given as a set of net-lists of elementary

parts. The net-lists are obtained using an extraction program, or are given as the results of

several stages of the synthesis process. In an interior module, the structural part uses some

number of submodules, each of which is either a primitive leaf module or a special leaf

module or another interior module. For example, when a full-adder is given as a top level

module, theBoolean gates maybecome primitive leaf modules. Or when amicroprocessor is

given as a top level module, the control path of the module can be a special leaf module and

the logic blocks for data path can be interior modules. For the verification of a partially

designed system, a designer may declare proper modules as primitive leaf modules. Later,

whenthe design is implemented by refining thespecification of the primitive leafmodule, the

module can be verified as a top level interior module.

From the verification point of view, a special leaf module can be treated as an interior

module whose structural part consists of primitive gates and latches. However, the

18

interior module

behavior

primitive leaf module special leaf module

Figure 2.3 Three classes of hardware modules

verification approachfor interiormodules may be impractical for some leaf modules.

2.5. Verification Problem

In general, design verification problems can be classified into two categories. One

category is correcmess checking [65,91], theother equivalence checking [74,82]. In correct

ness checking, the verifier checks to see if the structural implementation implies the

behavioral specification. Usually there is more than one way to implement a given

behavioral specification and the implemented result may have more detail than the

specification. Hence even if there were no errors involved during the design process, the

19

implementation may not be equivalent to the specification; however, the implementation may

satisfy all the requirements of the specification. Thus acorrecmess checker verifies that the

implementation implies the specification, i.e., the sufficiency is checked. On the other hand,

an equivalence checker verifies that the two descriptions are functionally equivalent. In

equivalence checking, two implementations are usually checked to see if they are equivalent.

However, if the description language allows that specifications and implementations are

described by the same language, the equivalence check between a specification and an imple

mentation can also be performed. (Note that each of the correcmess and equivalence check

ers may verify functionality only or may verify the combined behavior of function and tim

ing).

In this research, the objective is to develop a verification system with two verifiers: one

is a practical correcmess checker for special leaf modules of finite state machines and the

other is an equivalence checker for interior modules. The correcmess checker has been

implemented using an implicit enumeration method while the equivalence checker has been

implemented using formal verification techniques with the combined behavior of function

and timing checked. In functional verification, the target level still uses a discrete Boolean

form for signal values ~ continuous circuit-level variables are not supported. In timing

verification, synchronous digital design is assumed here.

20

CHAPTER 3

FINITE-STATE MACHINE VERIFICATION

3.1. Introduction

In hierarchical design, consistency between representations of a design at different lev

els of abstraction must be maintained throughout the design process if the designer is to be

sure of a correct implementation. In this chapter, the correcmess checking problem of a

finite-state machine is considered. The verification problem of finite-state machines has been

dealt with in a few different contexts [91,92,93,94,95]. In the temporal logic approach

[91,92], the specification is described by temporal logic formulae and the implementation is

represented as a state transition graph. The verification problem is detennining if the state

transition graph is a model of the temporal logic formula. In the symbolic approach [93], the

verification problem involves deciding whether two logic-level sequential circuits with differ

ing numbers of latches are functionally equivalent by using a symbolic comparison. How

ever, due to the intractability of the problem, the formal approaches taken thus far have been

restricted to medium-sized circuits with few memory elements (4 - 6 latches). In [94], a

finite-state circuit model based on coordinating finite-state machines is proposed. In this

approach, the circuit analysis task consists of determining whether or not the circuit model

performs a given task by proving that a smaller derived finite-state system performs a derived

task. Recently, an algorithm for verifying the equivalence of two sequential machines was

presented [95]. In [95], a specification state transition graph is extracted from a register-

transfer level description and an implementation state transition graph is extracted from net-

21

lists of gates and latches. Then a graph multiplication method is used to check the

equivalence. From apractical point ofview the approach in [95] is one of the most promis

ing among the finite-state machine verifiers in terms of speed, and it will be used for com

parison in the experimental section of this chapter. In [95], some practical-sized circuits

could be verified with reasonable cpu-times. However, the verifier of [95] requires every

Mealy machine to be converted to a Moore machine (which will usually have a much larger

number of states and transition edges than the original Mealy machine). The verifier

presented in this chapter outperforms the aforementioned approach by an order of magnitude

in speed for Moore machines, and even better performance improvements are obtained for

Mealy machines.

In the study of machine identification and fault detection experiments [96,97], it is

necessary that amachine described by astate transition table must be strongly connected (i.e.,

for every pair of states, an input sequence must exist which transfers from one state to the

other), must be minimal (i.e., contains no redundant states), and must have a distinguishing

sequence (i.e., for every distinct state pair, an input sequence must exist which produces dif

ferent output) [97]. However, the specification machine generally does not have all those

properties and thus it is notalways possible to devise a test sequence to verify the correcmess

of an implementation machine.

In this chapter, an efficient algorithm for the verification of finite-state machines is

presented based on the concept of machine cover [96,97]. Definitions of terms and notation

are given in Section 3.2, and the verification problem dealt with in this chapter is given in

Section 3.3. In Section 3.4, the algorithms used to check the correctness of finite-state

machines are described along with implementation details. In Section 3.5, the verifier is

evaluated with some examples and the experimental results are discussed, conclusions are

22

given in the last section.

3.2. Definitions and Notation

In this chapter, standard terms and notation are used (e.g. [96,97,98]). However, a

number of definitions are included here for completeness.

Definition 1 (cube and minterm):

In an n-dimensional Boolean space, any set of vertices can be represented in sum-of-

product form. Each product terms is called a cube. Ina cube notation, each variable takes

one of three values: 0,1, or *. The don't-care (DC) value "*" means that a variable can take

either of the values 0 (OFF) or 1 (ON). When a cube represents only one input combination

of 1's and O's, this special cube iscalled a minterm. In general, the number ofminterms ina

cubeis given by 2X, where x is thenumber ofvariables whose value is *.

Definition 2 (ON-set, OFF-set, DC-set, ON-set cover, and OFF-set cover):

The ON-set (OFF-set) of a single-output logic function is defined as a set of minterms

which evaluate the logic function to ON (OFF), and the DC-set is defined as a set of min

terms for which the logic function can take either value of ON or OFF. The ON-set cover

(OFF-set cover) of a logic function is a setofcubes that cover all the minterms of the ON-set

(OFF-set). In general, the number of cube elements used in a ON-set cover (OFF-set cover)

is not unique.

Definition 3 (completely specified and incompletely specified function) :

When the DC-set of a logic function is empty, the logic function is called completely

specified, otherwise, the function is said to be incompletely specified. Note that when the

logic is given by a net-list of primitive gates, as is the case in this chapter, each of the min-

23

terms evaluates to 1 or0. That is, when the logic function is given by an implemented cir

cuit, the logic function is completely specified.

Definition 4 (finite-state machine):

Afinite-state machine is asystem that can becharacterized by aquintuple

M=(I,,S,Z,NSF,OF) (2.1)

where 2 = finite nonempty set of input symbols
S = finite nonempty set of states
Z = finite nonempty set of output symbols
NSF = next-state function, which maps S x Z —> S
OF = output function, which maps 5xI->Z

The above definition of finite-state machine is referred to as a Mealy machine [97]. The other

type of finite-state machine is a Moore machine [97]. In a Moore machine the output func

tion OF depends onlyonthe state space S. Note that a Mealy machine is more general in the

sense that any Moore machine can be converted into a Mealy machine without increasing the

number of states and transition edges.

Definition 5 (incompletely specified machine) :

In equivalence checking, two machines are usually specified by structural descriptions,

such as net-lists of gates and latches. In this case, the next-state function NSF is denned for

all the states in the domain of S of Eqn. (1.1), and NSF is a completely specified function.

However, in a hierarchical verification paradigm, the specification is given by a behavioral

description - in case of finite-state machine, the description is usually an equivalent form of

a state transition table. And if a designer does not specify a next-state or output entry when it

normally would be specified, it is usually because the machine is not expected to enter that

next-state condition. Since the designer does not care what the next-state or output is, it could

be specified as any valid next-state or output. In fact, it could be specified differently under

24

different machine conditions. Thus, it is reasonable to let an unspecified state transition table

entry assume as many different values as desired. Such a machine is called an incompletely

specified machine.

Definition 6 (applicable input sequence) :

Whenever a state transition is unspecified, the behavior of the machine may become

unpredictable. In order to avoid such a situation it is assumed that the input sequences applied

to the machine, when in any of its possible states, are such that no unspecified next state is

encountered. Suchan input sequence is saidto beapplicable to the states of a machine.

Definition 7 (state cover and machine cover) :

A state q of a machine Mq is said tocover a state s ofanother machine Ms if, and only

if, every input sequence applicable to s is also applicable to q, and its application to bothMq

and M$ when they are initially in q and s, respectively, results in identical output sequences

whenever theoutputs of Ms arespecified. Thecovering concept can beextended to machines

as follows : a machine Mq is said tocover a machine Ms if, and only if, for every state s in

Ms, there is a corresponding state q in Mq such that q covers s. Thus when a machine Mq

covers a machine Ms, for any state in Ms, there is a state in Mq which can not be dis

tinguished by input-output behavior.

33. Problem Formulation of Finite-State Machine Verification

The meaning of verification in this chapter is as follows: Given a specification and its

implementation, the verifier checks the correcmess of the design with respect to the

specification. If the implementation satisfies the specification, the design is correct. Other

wise, the design is incorrect.

25

Inthis chapter, it is assumed that the specification is described bya state transition table

and the implementation is given as a net-list ofgates and latches. The specification machine

will be denoted by Af5, and the implementation machine by Mq. Also, a state of a

specification machine will be denoted by s and a state of an implementation machine by q.

Thedesign verification problem is defined as a checking if implemented machine Mq covers

the specification machine Ms.

3.4. Verification Algorithm

The numberof states of a finite-state machine grows exponentially with the number of

latches in the implementation machine. However, for large machines the number of states

actually visited, given the input sequences, is typically a small fraction of the total number of

possible states. This is especially true if a state assignment program such as KISS [99] has

been used in the synthesis process, where a minimum amount of combinational logic is the

target and this may or may not produce a minimum bit encoding of the states. Since the

encoding information is generally not available forverification purposes, to deal with general

problems it mustbe assumed that thestate encoding information is not available.

Aspreviously mentioned, the number oflatches isnotminimal andthe number of states

that the implementation machine can take is much greater than that of the specification

machine. There are 2l possible states in a machine with / latches. From these states, a set of

candidate states is selected. The procedure involved in selecting these candidates will be

explained shortly. From the set of candidates, a state q0 is arbitrarily chosen. A check is per

formed to see if the chosen state covers the initial state of the specification machine. This

process is repeated until the correct initial state is found. If all thecandidates fail to coverthe

initial state of the specification machine, it is concluded that the implementation is not

26

correct. This checking procedure is referred to in this chapter as state generation and output

checking and it is described later in this section. The high-level pseudo-code of the main pro

cedure is shown below. Of course, in the worst-case, this process has complexity of

O(2l x 2m), where / is the number of latches and m is the maximum among the numbers of

don't-care variables in the primary input segments of state transition edges of Ms. However,

the selection and search procedures described later in this chapter result in much better per

formance. This is illustrated by the results obtained for real examples, as shown in Section

3.5.

main()

{
/* read in specification machineMs */
read_spec_machine();

/* read in implementation machine Mq */
read_impl_ckt();

/* levelize the circuit ofMQ and find transitive fan-ins
for each output variable */

levelize_ckt();
conify_ckt();

I* find all the candidate initial states ofMQ */
Qo = enumerate_qO();

/* main loop */
foreach (q0 in the set Qq) {

/* initialize */

add s o to the set to be covered by qo\

if (generate(.so,<7o) ^ls) (
design is incorrect;

/* prepare for the next candidate qo*/
re-initialize;

}
else

design is correct, exit the main loop;

27

In procedure read_spec_machine(), the verifier builds up the state transition graph. The input

format is shown inFigure 3.1. In the input format, the first field is an input segment of a tran

sition edge, the second is a present state name, the third is the next state name, and the fourth

is the output segment associated with the given inputs for the transition edge. The procedure

read_impl_ckt() reads in the net-list of logic elements. The current implementation can deal

with the primitive gates listed in Table 3.1. After reading in the implementation circuit, the

verifier levelizes the circuit in topological order for the fast event-driven simulation used in

name traffic

Highway andFarm roadTraffic Light Controller
(ref. Introduction to VLSI Systems, Mead andConway, p.87)

#input p-state n-state output

o** HG HG 00010

o HG HG 00010

11* HG HY 10010
**o HY HY 00110
**1 HY FG 10110

10* FG FG 01000
o** FG FY 11000
1 FG FY 11000

**o FY FY 01001
**1 FY HG 11001

#end

Figure 3.1 Input format of a specification machine

gate name description

AND logical and

NAND negation of and

OR logical or

NOR negation of or

INVERTER logical not

XOR logical exclusive or

XNOR (EQV) logical equivalence (negation of xor)

Table 3.1 Primitive gates

28

later stages of the verification. Also, for each of the output variables, a set of input variables

is found which affects the value of the output variable. The input variables thus obtained are

called the transitive fan-ins of each of the output variables. The procedures of

enumerate_qO() and generate() are explained in the following subsections.

3.4.1. Enumeration of Candidate Initial States

The goal of the enumeration process is to determine all the candidate initial states in the

state space of the implementation machine. The procedure of the enumeration of candidate

initial states begins with finding a set of output variables which have the same values for all

the transitions from the starting state so of the specification machine Ms. In the next step, for

each of these output variables, enumerate from the input space the ON-set cover when the

logic value of the output variable is 1 and OFF-set cover when the logic value is 0. The cov

ering set is denoted as cube -setj, j =1,...,/:, where k is the number of output variables

which produce the same known output values. In the final step, take the intersection of the

latch part of the cube-sets as follows:

29

cube-set\f\cube-set2 ••• (-ycube-setk

Then the initial state of the implementation machine should be a member of this set. Note

that if none of these candidate initial states covers the initial state of the specification

machine, it isconcluded that the implementation is incorrect. The algorithm for enumeration

of candidate initial states is as follows:

enumerate_qO(so)
{

/* initialize the result */

set_of_candidates = UNIVERSE;

/*find output variables which produce the same value for all the
transitionsfrom the starting state ofthe specification machine Ms *l

O - find_output_vars(so)'»

/* enumerate the ON-set or OFF-setfrom the implementation
machine Mq and take their intersection */

foreach (output_variable in O) {

if (output_value = 0) {
/* find OFF-set cover */
S = podem(output_variable, 0);
set_of_candidates = set_of_candidates pi (latchpart of S);

else {
/* find ON-set cover */
S = podem(output_variable, 1);
set_of_candidates = set_of_candidates p> (latch partof S);

}

/* when there is no candidate state in the implementation
machine, don't waste time */

if (set_of_candidate = <J>) {
the implementation is inconsistent;
exit();

I
else

return(set_of_candidates);

30

The worst case complexity of the above algorithm is O (Npo x COMPLEXITYpodem\

where NP0 is the number of primary outputs and COMPLEXITYpodem is the complexity of

PODEM (path-oriented decision making) method [100]. The PODEM method is used to

enumerate the set of cubes in the input space. In PODEM, given an objective, a signal and

the desired value on the signal, a procedure called back trace traces a path from the signal

backwards to a primary input to obtain a primary input assignment. The primary input assign

ment is then propagated to see if the desired value at the objective signal has been set up. If

the objective signal has beenproperly setup, the procedure terminates. If an opposite value is

set up, the procedure backtracks; that is, the previous primary input assignment is ripped up

and the opposite value is assigned to that primary input. If the signal remains unspecified, the

whole process is repeated. The above procedure continues until either a successful primary

input assignment is found or all the primary input assignments havebeenexhausted. The-pro-

cess is an implicit enumeration algorithm in that all possible primary input patterns are impli-

citiy, but exhaustively, examined.

To show the enumeration process, a simple example is given as follows:

Example : Consider the sequential circuit shown in Figure 3.2(a). It consists of four primary

inputs, five primary outputs, and two latches. The partial state transition diagram is also

shown in Figure 3.2(b). There are two outgoing edges from the initial state so- In the

diagram only the output parts are shown for each transition edge. The output variables outl,

out2, and out5 are consistent in their values for the two edges. Assume that the ON-set cover

of outl, the OFF-set cover of out2, and the ON-set cover of out5 are given as follows :

cube-set i = (11*0 1*)

cube-set2 = (1100 1*)

cube-set5 = (* 100 10)

in1

in2

in3

in4

^.

combinational

logic

outl

out2

out3

out4

out5

7

f r

f r

ps1 nsl'

ps2 ns2

>

latches
•s

*.

•
T

(a)

/10*01

/10011

(b)

Figure 3.2 (a) a sequential circuit example
(b) state transition diagram

31

The intersection of the latch part is (1 0), and there is only one possible candidate initial state

in this particular case. Generally, however, each of the cube-sets may consist of many cubes

and the intersection of the latch part would consist of many cubes. For example, if

(* 100 1*) was obtained instead of (* 100 1 0) in cube -set5, then the intersection

would be (1 *), and there would be two candidate initial states, (1 0) and (1 1).

Note that if any don't-care values are among the variables of the latch part, all the pos

sible minterms should be included in the set of candidate initial states. As will be demon

strated in the experimental results section, when an incorrect initial state is tried the verifier

32

notices the errorso early in its checking process thatthe total cpu-time spent for wrong initial

states is only a small fraction of total run time for most examples.

3.4.2. State Generation and Output Checking

In this subsection the algorithm of checking if a given state q of the implementation

machine covers a state s of the specificationmachine is described.

Since the implementation machine is given bya logic circuit, it is completely specified

thus every input sequence is applicable to a state q. Thus to check if a state q in the imple

mentation machine covers a state s of the specification machine, it is sufficient to check if

every input sequence applicable to s when applied to both machines results in identical out

put sequences whenever the outputs of the specification machine are specified. The basic

strategy employed in this work isas follows : for each applicable input at the given state s of

Ms, obtain the next state and the outputby simulation on the machineMq . Check if the out

put of Mq implies the corresponding output ofMs. When the value of the output variable of

the specification machine is don't-care, the value of the output of Mq can have any value.

This checking is referred to as output checking. If the output checking fails, the input

becomes a component of the sequence of a counter-example. It is then concluded that the

given state q does not cover the specification state s. If theoutput checking succeeds, see if

the next state qn has already been generated. If it is a newly-generated state, call the same

procedure with the state pair (s„,q„) recursively, where s„ is the next state of s in Ms. If qn

was generated earlier, then check if q„ covers s„ by referring to the covering set of the state

q„. If sn is in thecovering set ofq„, there is nomore work to do. If s„ is not in the list, repeat

the above procedure with the state pair (s„,q„).

33

3.4.2.1. Example

Before the explanation of the detailed algorithm, a simple example is used to illustrate

the state generation process.

In Figure 3.3, the specification machine is given as an unoptimized machine and the

implementation machine as an optimized one. The specification machine consists of three

states with five edges. Assume that the implementation has two latches and among the four

possible states, two states qo and qz are enumerated ascandidate initial states as illustrated in

Figure 3.3(b). The state qo is chosen arbitrarily, and a check is performed to see if state qo

covers the state so. Figure 3.3(c) shows the recursive execution tree with each of the argu

ments, and Figure 3.3(d) shows the evolution of the covering list. First, the state so is added

to the covering list of qo (the stage of the evolution of the covering list is at (1) in Figure

3.3(d)). The outgoing edge with input 11 is simulated on the implementation machine. The

next state of implementation is qo, which has already been generated. The next state of the

specification machine, s i, is not in the covering list and is therefore added to the covering list

of qo (at (2) in Figure 3.3(d)). Now a check is performed to see if state s \ is covered by state

qo. When the edge with input i 1 is tried, the next state pair (so, qo) is obtained. Since the

state so is in the covering list of the state qo, the check finishes with success (the dotted line

means that the check is performed by referring to the covering list). The next edge with input

12 is tried. A new state q\ is generated and the state s2 is added to the covering list of the

state q \ (at (3) in Figure 3.3(d)). The only remaining edge from so with input 13 leads to state

pair (so, qo) which is checked by examining the covering list. Finally, the only remaining

edge from so with input i'2 is checked. Note that the total number of simulations used for

diis check is five, which is the same as the number of edges in the specification machine.

i1/o1

(a)

(1) S0<

i1

i3/o3

qO

i2

q2 ©
i3/o3

>?; ql

i1/o1

(b)

(2)

SO < -

S1<j-rqO S2<—- q1

- qO S2 < q1 (3)
|i3

SO <-—• qO

at(1)

at (2)

at (3)

qO:SO

qO : SO, S1

qO : SO, S1

q1 :S2

(c) (d)

Figure 3.3 Unoptimized specification vs. optimized implementation example

(a) specification machine
(b) implementation machine

(c) execution tree
(d) evolution of covering list

34

35

3.4.2.2. Cube Simulation and Cube Splitting

Since the input can take on one ofthe three values (0, 1, and *), the term simulation

here means three-valued logic simulation [101]. A simulation pass refers to simulation with

one input vector. Asimulation pass is said to be complete if the outputs ofthe simulated cir

cuit (after simulation), are known (i.e. 0 or 1). Otherwise, it is incomplete. When the input

vector is a minterm, the simulation pass is called minterm simulation, otherwise, it is called

cube simulation. Minterm simulation is always complete because all the inputs are specified

as l's or O's. Cube simulation may be eidier complete or incomplete; in the latter case, to

make the simulation complete, unknowns in the input vector shall be assigned known values,

0 and1 at different times. This assignment canbe performed for one unknown at a time until

the simulation becomes complete. Finding out if the simulation has become complete also

requires a simulation pass and many passes may berequired before the simulation eventually

becomes complete. Because the input vector is a cube, the assignment process can be con

sidered cube splitting ~ every time an unknown is assigned certain values, the cube is split

into two smaller cubes. So, instead of value assignment, cube splitting is considered to make

the simulation complete. The cube splitting process can be depicted by a tree structure as

shown in Figure 3.4. At the first level, the first unknown variable is split and this procedure

is repeated similarly. Which unknown to select at each level is important because a good

split order may prevent the tree from growing into its full magnitude (0(2m) complexity,

where m is the number of unknowns). At each node, the next unknown to be split is selected

using the heuristics explained in the next section. The deeper the eventual cube-split, the

more simulation passes that are needed.

36

r *... •>

(1

(0 0 ... 0) (0 0...1)

Figure 3.4 Tree structureof cube splitting

3.4.23. Cube Splitting Heuristics

Rather than choosing the unknown variables from the inputs in an arbitrary order (left-

to-right in the example of Figure 3.4), input variables which have a high probability of

resolving the unknown outputs are selected. Figure 3.5 illustrates the heuristics. First, for

each of the unknown simulation output variables, find the set of primary input variables

which may affect the output, then obtain the intersection and union of these sets. As men

tioned in the algorithm of the main procedure, the implementation circuit is segmented as a

cone circuit for each output variable [101]. The unknown input variables are then chosen

from die intersection first, and from the union second, to split the cube. This process is

intersection

union

1 - —>

* __ t
r

* ^m \

0

1 ?

* —>

Inputs Logic Gates Outputs

Figure 3.5 Ordering heuristics of split variables

37

repeated until all the output variables become known. This heuristic may avoid some useless

cube splitting. For example, the last input variable in Figure 3.5 does not need to be con

sidered in this case.

3.4.2.4. Output Checking

When the implementation circuit is simulated with a primary input vector and the

present state vector, the present state vector contains no unknowns while the primary input

38

vector may have many unknowns. As explained in Section 4.2.2, both the next state outputs

and primary outputs may have unknown values. In the case of next state variables, all the

unknowns must be resolved by input space cube-splitting. However, in the case of primary

output variables, the unknowns need only be resolved when the corresponding specification

output variables are known. For example, with the specification output (1 0 * * 0 1), and

simulated output (1 0 1 * * 1), only the fifth output variable must be resolved.

3.4.2.5. Detailed Algorithms

The procedure generate() andprocedure check_state() return success if the given state

of the implementation machine covers the state of the specification machine, otherwise they

return fail. The only difference between the procedure generate() and check_state() is that

when stateq has been generated already, to check thecovering, the procedure check_state()

refers to the covering list first then checks eachof the outgoing edges. If the state s is in the

list, the state s is assumed to be covered by the state q. The actual covering check will be

performed when all the previous calls of generate() and check_state() procedures return to

the point where the state q was first generated. The procedure simulate() returns the infor

mation about completeness of cube simulations. The procedure performs the three-valued

logic simulation using an event-driven technique [42] with topological-ordered [102] level

information. If there are any unknown values in the next-state variables, procedure

split_simulate() is called, this splits thecube byassigning values to unknown input variables

using the heuristics explained above. The procedure split_simulate() calls itself recursively

until all the next-state variables are resolved. The detailed algorithm of the state generation

process is as follows:

generate^ ,q)

{
foreach (applicable input at s) {

/* get the next-state q„ ofq andprimary output bysimulation */
if (simulate() is not complete)

Q„ = split_simulate();
else

Qn={<ln };
foreach (q„ in the set Qn) {

if (check_output() fails)
return(fail);

if (q„ is newly generated) {
add s„ (the next-state of s) to the set

to be covered by qn;
if (generate^,, ,qn) fails)

return(/a*7);
} else if (check_state(s„ ,q„) fails)

return(fail);

}

check_state(j ,q)

{
if(s is an element of the set to be covered by q)

retum(success);

else

add s to the set to be covered by q;

foreach (applicable input at s) [
/* get the next-state qn ofq and primary output bysimulation */
if (simulate() is not complete)

Qn = split_simulate();
else

Qn = I qn 1;
foreach (qn in the set Q„) {

if (check_output() fails)
return (fail)',

if (q„ is newly generated) {
add s„ (the next-state of s) to the set

to be covered by q„;
if (generated ,q„) fails)

return(fail);
} else if (check_state(s„ ,q») fails)

return(fail)\

39

40

3.4.2.6. Remarks

When the generate() procedure succeeds with a (so,qo) V**** *e algorithm guarantees

that for each reachable state s from s0 in Ms, there exists a state q in Mq which covers s.

For every meaningful machine Ms, every state of Ms should be reachable from the initial

state ofMs. When thespecification state transition graph of the machine Ms is strongly con

nected, any statecan be usedas an initial statefor verification purpose.

The total number of simulations is a measure of the algorithm's complexity. However,

since the total number of simulations depends strongly on input parameters, a tight bound on

the total number of simulations is very hard to obtain. First of all, the number of candidate

initial states is unpredictable. As mentioned earlier, its worst case bound is simply O(2l),

where / is the numberof latches. For a given candidate initial state, the boundof the number

of simulations is roughly given by O(Me x 2m), where Me is the maximum among the

numbers of transition edges from each of the states in Ms andm is the maximum among the

numbers of don't-care variables in the primary input segments of state transition edges of

Ms. The above bound is rough because sometimes the output checking requires some addi

tional cube splittings.

The complexity of the verification problem ofcombinational logic is NP-complete and

that of sequential logic is even worse. The algorithm presented in this chapter is basically a

special case of branch-and-bound method. The branch-and-bound technique has scored

several notable successes in practical computations. However, it is rarely possible to establish

good bounds on its expected complexity. The basic premise of this work is that even for

problems of worst-case exponential complexity, by exploiting special properties of the real

problems that must be solved, the exponential case will never occur. Further, by exploiting

these properties the expected-time complexity can be reduced substantially for real designs.

41

Even though the worst case bound is exponential, because the verifier developed in this work

exploits the don't-care information available inthe description ofa specification machine, the

expected total number ofsimulations required is almost linear with respect to the number of

transition edges of thespecification machine, as illustrated in the next section.

3.5. Experimental Results

The performance of the verifier was evaluated with three groups of examples. The six

examples of the first set are obtained from finite-state machines developed for real chips. The

second set of five examples is a series of resettable binary up/down counters obtained from

running the program KISS [99]. The last set ofexamples is also a set of counters, obtained

using the program MUSTANG [103], with an option that makes the program encode states

randomly. The description of the examples are given in Table 3.2. The first and second

columns show the number of states and state transition edges in the specification machines,

respectively. The third column shows the number of primary inputs and primary outputs.

The last two columns show the numberof gates and latches of the implementation machines.

Thelastexample of the first group, the cc machine, was obtained from the SPUR [104] cache

controller unit, designed at the University of California, Berkeley and is the largest single

finite-state machine used in the SPUR system. In this example, the number of state transition

edges is very large when compared to the number of states. This is due to the fact that in the

state transition table, all the transition edges are expanded in the primary output space into

minterms that can be grouped into cube notation. This fact leads to long cpu-time for the

verification of this example and it should be thought of as a "worst case" situation. Each of

the counters has two primary inputs: one for "reset" and the other for selecting up or down

counting. The number of primary outputs of each example corresponds to the number of

state bits. Note the very large numbers of gates in the third group of examples, due to the

random state encoding.

Table 3.2. Description of three groups of examples

Example

Finite-State Machine Logic Circuit

no. of

states

no. of

transition

edges

no. of

inputs/outputs

no. of

gates

no. of

latches I

sse 16 56 7/7 130 j 6
cse 16 91 7/7 192 4

planet 48 115 7/19 606 6

sand 32 184 11/9 555 6

scf 1 121 165 27/54 959 1 8

cc | 143 20,736 13/17 731 | 10

4bit_cnt | 16 64 2/4 54 | 4

6bit_cnt 64 256 2/6 94 | 6

8bit_cnt 256 1,024 2/8 142 j 8
10bit_cnt 1,024 4,096 2/10 198 10

12bit_cnt ! 4,096 16,384 2/12 262 12

14bit_cnt 16,384 65,536 2/14 334 | 14

random_4 16 64 2/4 414] 4
random_6 64 256 2/6 2,196 6

random_8 256 1,024 2/8 10,778 8

random_10 1,024 4,096 2/10 51,232 10

42

Table 3.3 summarizes the results of the enumeration and state generation process during

verification. The first column shows the total number of enumerated candidate initial states

and the second column shows the number of tried candidates before the implementation

machine proved correct. In the scf example with eight latches, all the possible states are

enumerated as candidates. In each example of counter, the state variables are the primary

outputs, and only one state (reset state) is enumerated as a candidate initial state. This is also

true for the examples of the third group, even though the initial states are quite differently

encoded from those of the examples of the second group. The third column shows the

number of states generated by the procedures generate() and check_state(). The verifier

Table 3.3. Results of enumeration and state generation process

Example

enumeration of candidates state generation

no. of

candidate

initial states

no. of

tried

candidates

no. of

generated

states

no. of

unreachable

states 1

sse II 64 | 21 13 j 3 j
cse II 15 5 16

0
planet | 5 2 48

0
sand 1 6 5 32 o 1
scf 256 58 115 6

cc 1 360 1 65 143 0 1
4bit_cnt || 1 I 1 16 0

6bit_cnt 64 0

8bit_cnt j 1 1 256 | 0
10bit_cnt 1 1 1 1,024 0

12bit_cnt 1 1 1 4,096 0

14bit cnt
i —

16,384 0

43

reports any states which cannot be reached from the initial state of the specification machine,

the number of such states is shown in the last column. The sum of the third and fourth

column should be greater than or equal to the number of states in a specification machine.

When the sum of the two numbers is equal to the number of states in a specification machine,

as is thecase with all theexamples, it is concluded that the implementation machine does not

have any redundant states thatcanbe collapsed into a single state.

Table 3.4 shows the number of calls of the procedure simulate(), memory size needed,

and cpu-time used for the verification of each example. All the examples were run on a

VAX1 8650 under theUltrix1 2.0 operating system. The procedure simulate() is called not

only while the states are generated but also while the outputs are checked. When the simula

tion results contain any unknown values in the primary output variables which does not have

VAX andUltrix are trademarksof DigitalEquipment Corporation.

44

Table 3.4. Cpu-time comparison

Example

no. of

calls of

simulate()

total

memory

(kbyte)

cpu-time (sec) Graph Mult. Appr.

finding

Qo

for wrong

<7o's
total

i

total j
(sec)

sse | 75 85 0.2 | 0.1 0.4 | -

cse | 95 99 0.2 0.1 0.3 !

planet 128 197 8.6 0.1 10.4 97 j

sand | 266 193 2.9 0.1 5.0 -

scf | 431 645 20.2 3.2 27.3 587 |

cc | 197,373 13,330 1.5 283 T357 i

4bit_cnt | 64 67 0.1 0 0.2 -

6bit_cnt 256 103 0.1 0 0.6
!

8bit_cnt | 1,024 233 0.1 0 3.1
i

10bit_cnt | 4,096 725 0.1 0 19.8
~

12bit_cnt | 16,384 2,659 0.1 0 101 i

14bit_cnt | 65,536 10,357 0.1 0 571 i

random_4 | 64 139 2.0 0 2.8 -

random_6 | 256 535 66.0 0 77.1

| random_8 | 1024 2,501 27.1min 0 30.4min
_

j random_10 4,096 11,533 624min 0 681min

a corresponding specification output don't-care, they are resolved by cube splitting which

requires simulation. If there were no don't-care values in the primary input segments of all

the state transitions of a specification machine, all the simulations wouldbe complete and the

number of calls to simulate() would equal the number of state transition edges in the

specification machine. The second column shows the memory size used. Most of the exam

ples took less than one megabyte (except a few very large examples). The third column

shows the cpu-time spent finding the set of candidate initial states. The cpu-time spent on

wrong initial states is only about ten percent of the total run-time for all examples except cc.

Note that in the third group of examples, since the states are encoded quite differently from

the corresponding primary output, the output logic gate part is very complex and thus the

45

portion of the cpu-time spent for finding the initial state Q0 for each of the examples dom

inates the total run-time. Thecpu-time for finding the initial state of the "random_10" exam

pleis quite significant. Theexample, however, has more than 50,000 gates.

Since there are no standard benchmarks for verification, it is hard to compare the

efficiency of our approach with other techniques. However, note that the verifier in [93]

which is written in Franz Lisp and can deal with somewhat more general problems, took 31

minutes ona Pyramid 90x (approximately three times slower than the VAX 8650) to verify a

4-bit pre-settable binary up-down counter. The last column shows the cpu-time on a VAX

8650 spent by the verifier of [95] which used a graph multiplication approach. This other

approach took more than ten times longer than the approach described here for some exam

ples.

3.6. Conclusions

An efficient algorithm for the verification of the design correcmess of finite-state

machines has been presented. The concept of machine cover enables the verifier to check the

sufficiency efficiendy. Theverifier checks to see if the implementation is correct with respect

to its specification, which is given as a form offinite-state machine. This approach is suitable

to hierarchical verification systems. The experimental results show that the verifier is fast

enough to be used in real system designs.

46

CHAPTER 4

RELATED WORK ON FORMAL TECHNIQUES

4.1. Introduction

Formal techniques for specification and verification have been investigated earlier and

more intensively in software design than in the hardware design. Due to the similarities

between program design and VLSI system design, especially at the behavioral level

[105,106,107], most formal hardware verification techniques have stemmed from program

verification techniques.

The formal methods that will be described seek to do for programming what mathemat

ics has done for engineering. That is, they provide symbolic methods by which the attributes

of an objectcan be described and predicted. The objects in whichthis chapter is interested are

computer programs or hardware descriptions, which are themselves strings of symbols. It

should be possible to define transformations upon strings of symbols that constitute a pro

gram or a description, the result of which will enable us to predict how a given computer or

design entity will behave. If this prediction is independent of specific values of input data of

the program or the description, then it becomes a general statement about that program or

description. If the general statement is formed so that it provides an argument that the pro

gram achieves its purpose, then it becomes thedesired replacement for exhaustive testing and

wecall it aformal proofof correctness. When this approach is to be employed, the notion of

die purpose of a program or a description must be made rigorous. This formalization

becomes the specification, which serves to state precisely the requirements and objectives the

47

program or the hardware is to satisfy.

In this chapter, previous work onformal semantics is reviewed. Program specification

and verification methods, and existing formal hardware verification techniques are also

reviewed. Finally, theproblems of previous formal hardware verification approaches aredis

cussed.

4.2. Semantics for Programming Languages

In order to reason aboutany subject, a representation of its various elements is required.

If thereasoning is to be carried out with mathematical rigor, the representation must be a for

mal model of the subject. Such a model must satisfy threerequirements [108]:

1) It mustbe complete, representing all theessential aspects of the subject beingmodeled.

2) It must be predictive with conclusions drawn from the model corresponding to the

results obtained by observing the subject itself.

3) It must be well formed. The model should not permit fallacious or ill-formed reasoning.

Three major methods have been developed for the definition of the semantics of pro

gramming language constructs [108,109]: operational, denotational, and axiomatic

approaches. In this section, each approach is reviewed and a comparison of the three is

presented.

4.2.1. The Operational Approach

With the operational approach [110], the semantics of programming constructsof a pro

gramming language are defined in terms of a more primitive (lower-level) abstract machine,

on the assumption that the state space andoperational transformations defining the primitive

abstract machine are so simple that their meaningor effect cannot possibly be misunderstood.

48

Specifically, the semantics of the abstract programming language constructs are denned in

terms of the state space and operational transformations of the primitive abstract machine.

Usually this is done for each programming construct by providing a "program" that translates

the construct into a series of primitive transformations, so that for each programming con

struct of the abstract programming language there exists a"defining" program in the primitive

abstract programming language. To determine the semantics of a programming construct, one

must trace through its associated (defining) primitive program. Consequently, to determine

the semantics of a program written in abstract programming language, onemust trace through

the "translated" program step-by-step to establish its precise meaning. For example,

definitions of programming language consmicts that use this approach are provided for PL/1

(by the Vienna definition method) [111] andAlgol 68 [112].

To verify programs denned by the operational approach requires the execution of a

trace through of the program written in the primitive programming language. The effect of

program execution may then be determined by the individual transformations. Obviously,

this method is applicable only to specific input values. Hence, a program is verified by

observing the results of program executions and demonstrating that those results are in accord

with the specification of expected results. The concept underlying this verification method,

which maps one input state into one output state, is the common oneof program testing. The

specification of the particular set of input states and the corresponding set of output states

constitutes the definition of the test cases —that is, of the test data selection.

The operational approach characterizes the actual effect of program execution by relat

ing it to executions of a separate, lower (more primitive) level. The approach does not solve

the original problem of rigorously defining the semantics of programs and programming con

structs, but merely pushes the problem to the lower level. More importantly, however, the

49

operational approach tends to define the semantics ofa program only for specific computa

tions of that program, rather than for the class ofall computations that it can perform. In par

ticular, its use to define semantics of a programming language forces us to consider all pro

grams that could possibly be written in the language. Thus, instead of giving "functions"

from which the semantics of any program written in the language can be derived, the opera

tional approach tends to suggest implementations of the language.

4.2.2. The Denotational Approach

With the denotational approach, the semantics ofprogramming constructs of anabstract

programming language are defined by so-called semantic valuation functions [109]. Seman

tic valuation functions map programming constructs to values (numbers, truth values, func

tions, and so on) that they denote. These valuation functions are usually defined recursively:

the value denoted bya construct is given in terms of die values of itsconstituent parts, andan

emphasis onthe values denoted by the constiment parts gives the approach its name.

Therefore two things are necessary in the denotational approach to semantics. First, a

state space must be given and with the denotational approach this state space may include

functions in addition to "normal" data objects. Second, a technique for defining semantic

valuation functions must be given. The lambda-calculus [109,113] may, for example, be

used to model the concepts of function and functional abstraction, and conversion rules exist

for syntactic transformations on lambda-expressions. Hence, if the class of functions

representable by lambda-expressions are used to represent valuation functions, the lambda-

calculus transformation may be usedto manipulate these valuation functions.

The denotational approach to semantic definitions allows us to talk about construct and

program equality in the sense that two constructs or programs are equal if they both denote

50

the same value in the selected value (state) space.

Verification based on this approach proceeds byconstructing the valuation functions for

the program constructs and then combining them and the valuation function representing the

input conditions by (algebraic) transformation rules toarrive at valuation function for the pro

gram. Via further transformation-rule applications the valuation function for the program is

mapped to thevaluation function that represents the program final or output condition.

The denotational approach, in contrast to the operational approach, is independent of

specific input values andso supports the definition of the semantics of theclass of all compu

tations that can be performed by a program written in the denotationally-defined abstract pro

gramming language.

4.2.3. The Axiomatic Approach

The idea of the axiomatic approach is to associate the semantics of programming

language constructs with logical assertions of two kinds. The first, an input assertion, is

assumed truepriorto execution ofa programming language construct and, from that assertion

and the nature of the language construct (program), a second assertion, theoutput assertion, is

derived that is true after execution of the construct. The pair of assertions thus characterize all

legitimate input and outputstates of theconstruct andhence theeffect (semantics) of thecon

struct. Assertions are derived from the construct state-space and from the construct itself.

This being the case, program verification based on this approach is independent of particular

execution flow - that is, of particular input-output pairs - and proceeds in a given program

by deriving output assertions from previously obtained input assertions for each construct,

with the derivation guided by both the input assertion and die construct The output assertion

for one programming construct may be used as the input assertion to a subsequent program-

51

ming construct, so that program verification proceeds in an inductive manner. The process

begins with an assertion about program input and concludes when an assertion about the pro

gram as a whole has been reached (derived).

4.2.4. Comparison of the Three Approaches

The relation of the three approaches is illustrated in Figure 4.1 [109,108], where P

denotes a program written in a programming language and S denotes the state space of the

program.

In the operational approach, a program text P is translated into a parse tree T{P), which

indicates the syntactic structure of the program. This process is denoted as (1) in the figure.

Process (2) represents a translation of the parse tree into a program MC{P) in the machine

(2) v (3)
T(P) > MC(P) —> MST

Figure 4.1 Comparison of the threeapproaches

52

code of some standard machine, process (3) represents the execution of the machine code

program to produce the machine state transformation MST. Process (2) is defined by giving

the translation rules for generating code from the tree, and (3) by specifying the operations of

the machine. Different languages can also be described by giving their translation into the

same machine code. So the combination of (1), (2) and (3) gives a standard implementation

of the programming language. The processes (1) and (2) are usually performed by a "com

piler" and hence the semantics are basically denned by a particular compiler. This may

involve the details of an actual compiler. In hardware verification, the role of a compiler is

played by a "simulator" and the semantics of a hardware description language is usually

determined by its simulator. However, this approach is not suitable for formal verification.

In the denotational approach, an appropriate value space V must be defined onto which

the state space S can bemapped. The program P is then transformed into a program V(/> >in a

programming language that allows an association between programming constructs and

values in V to be established. Finally, semantic valuation functions are defined which associ

ate the programming constructs in V{P), and V(p) itself, with the appropriate subspaces of the

value space V (in case of X-calculus, the subspaces of V correspond to members of theclass

of functions representable by ^-expressions). Hence, the semantics of the program V{P) are

explicitly defined. The semantics of program P are indirectly defined by virtue of the

conversion of program P to program V^y The conversion mustguarantee that different con

structs are mapped into different value in the value domain V; this allows one to talk about

equality in P: two expressions are equal if they both denote the same value in V. Note that

in the operational semantics, the value of a program is defined in terms of what an abstract

machine does with the complete program. Hence the local sub-components of the program

may have global effects. Conversely, in denotational semantics, the value of a program is

53

defined in termsof the values of its sub-components, and it is easy to treat any particularpart

of the program.

In theaxiomatic approach, a rule is associated with each statement of the programming

language. These rules allow one to say what will be true after the statement has been exe

cuted and to relate it to what was true beforehand. The process is illustrated as (6) in Figure

4.1. From each of the blocks of the program P, a logical formulaF{P) is obtained using the

predefined rules. And the logical formula is the semantics of the program. This approach

grew out ofFloyd's work [114] on attaching assertions to the links of flowcharts. Its applica

tion to high level languages, mainly the work ofHoare [115], has made an important contri

bution to the art of proving the correcmess of programs.

43. Program Specification Methods

A specification is the embodiment of the requirements a system is to satisfy [108] - a

precise, formal statement that expresses desired behavior ina manner intelligible toanimple-

mentor. The formal specification techniques discussed in this section maintain a semantic

distinction between description, which is referred to here as the specification, and the

described program, which is referred to here as the implementation. Loosely speaking, a

specification describes behavior in terms of results, whereas an implementation defines

behavior in terms of the procedure used to get the results. This distinction gives rise to the

informal notion of describing "what" (specification) as opposed to "how" (implementation),

and hence to the notion that specification languagesare "nonprocedural" in nature.

There are three users of a specification [108], each distinct from the author of the

specification: the validator, the implementor, and die verifier. The validator is the person

who acts as the representative of the sponsor of the system. His or her concern is that it prop-

54

erly embodies the requirements. The implementor is concerned with producing a procedural,

and ultimately executable, definition of the behavior described in the specification. The

verifier is concerned with the correcmess of the implementation, where correcmess is defined

with respect to the specification. The verifier's task is, therefore, to show the consistency

between two representations of the same behavior, one substantially more detailed than the

other.

In general, the validator seeks a specification language (technique) that enables argu

ments to be made about the properties of the described implementation, such that it will be

secure or will exhibit other behavior consistent with the sponsor's goals. The implementor

seeks a specification language that describes desired behavior in the least constraining way,

so that the implementor has maximum freedom in producing that behavior from a program

that must fit the constraints of a real computer. The verifier seeks a specification language

that describes behavior in a manner easilymapped into one of the techniques used for formal

verification. Not surprisingly, these three uses occasionally conflict, and no consensus on the

desirable features of a specification language has yet emerged.

There presently exist three basic families of specification approaches: the algebraic, the

state-machine, and the abstract model (also called the predicate transform method). These

approaches define behavior in units called "functions," and in a result-oriented or "non

procedural" way that suppresses most details of implementation, including the step-by-step

procedures that achieve the result. In the remainder of this section the three approaches are

explained.

55

43.1. Algebraic Specifications

The initial theoretical work on algebraic specifications was done by Guttag [116].

From this work two specification languages emerged ~ the AFFIRM language [117] and the

OBJ language [118]. The underlying abstraction for algebraic specifications is the set of

integers. Algebraic specification languages also assume "built-in" functions, typically if-

then-else andthe Boolean operators, which canbe defined trivially using the technique.

Functions are defined in the algebraic technique by stating their relation to each other.

They are functions in the mathematical sense because they may not have side effects and may

only map avalue in their domain to avalue in their range. The technique is called "algebraic"

because the values andfunctions of a specification canbe viewed as forming an abstract alge

bra.

Therewrite-rules arean important aspect of abstract algebras. Rewrite rules are usedto

reduce expressions systematically in the given algebra. Each rewrite rule defines a transfor

mation or "rewrite" that may be applied to an expression in the algebra. The rules are of the

form

left —¥ right,

which defines a rewrite of any expression containing left: the replacement of the subexpres

sion left by the subexpression right. In rewrite processes, two basic questions can be asked of

any set of rewrite rules:

1) Will the reduction terminate? If yes, the so-calledfinite termination property holds.

2) Will the resultbe independent of theorderin which the rules are applied?

Rewrite rules thatproduce results independent of their order of application exhibit unique ter

mination or the Church-Rosser property [119]. A set of rules that is both finitely and

56

uniquely terminating is said to be convergent. The problem ofdetermining whether an arbi

trary set of rewrite rules is convergent is algorithmically undecidable.

The strong advantage of algebraic specification is its elegant mathematical simplicity;

thus validation ofa specification can becarried out mathematically. However, this technique

presents disadvantages. Although algebraic specification is largely free from any representa

tional or operational contents and consequently can avoid undue bias on the subsequent

implementation, auxiliary or hidden functions are still necessary in specifying the behavior.

As the number of auxiliary functions increase, more information about artifacts of the

specification that are not directly related todescription of the behavior are included. Another

major disadvantage is that from the implementor's or validator's viewpoint, this technique

shows difficulties in reading and understanding because functions are defined indirectly in

terms of each other.

43.2. State-Machine Specifications

The idea of specification based on a state-machine was first developed by Parnas [120]

and evolved significantly as reflected by the work of [121,122]. The underlying abstractions

of state-machine specifications are integers and Boolean objects. The existing languages also

use real numbers and character strings. In addition, they make available to the specifier ele

mentary extension mechanism suchas vectors, sequences, and structures.

In this approach, an abstract data type is viewed as a state-machine; first, the abstract

states are identified and then the behavior is denned by a set of functions to observe and

change these states. Two classes of functions are used: V-function and O-function. A V-

function is used to observe die state. It cannot define any aspect of state-transition. In con

trast, an O-function defines state transitions by means of effect. The relationship between O-

57

functions andV-functions is very similar to that between variables and operations in a pro

gramming language. Informally, aV-function is analogous to an unbounded array with sym

bolic indices, one index corresponding to each argument position. Another way to think of

V-functions is as mappings between names and values. The V-function name designates a

multi-set of values, and the arguments' values for a specific invocation select a value from

the multi-set.

The state-machine technique evolved from more pragmatic roots than did the algebraic

approach, and perhaps for this reason the state-machine technique has not received as much

attention in the literature. It has, however, been the technique most used in actual practice.

This is due to the fact that state-machine specifications are more readable in practice and

therefore reviewable for purposes of validation and for guiding implementors. Specification

languages based on this technique include SPECIAL [121], and INA JO [123]. These

languages have arich syntax that permits the expression of very similar semantics inarange

of alternative forms. This richness in turn means that the specifier's style is very lightly con

strained by the language. Therefore the quality of a given specification is greatly dependent

upon the skill of the specifier, to amuch greater degree than the quality ofa program depends

upon the skill of the programmer (especially with languages like Ada, where the language

syntax explicidy forbids stylistic pathologies). While such pathologies are very obvious in

simple cases, they can be subde in more complex specifications. In general, clean

specifications can be written for functions whose behavior is easily expressed in terms of

"set-oriented" name/value relationships. However, this method is less satisfactory for more

complex and arbitrary structures and for expressing effects that involve the evaluation of

algebraic formulas. Another inadequacy of state-machine specifications is that this technique

basically lacks therequirement of abstract specification and violates the functional ornonpro-

58

cedural spiritof formal specifications, andmay bias the subsequent implementation.

43.3. Abstract Model Specifications

The abstract model techniques, which is also sometimes called the predicate transform

method, wasdeveloped by Hoare [115] as partof a unified technique for the specification and

verification of abstract data types. In this technique, each functioncomprising an abstract data

type is defined in the form of pre-conditions and post-conditions based on the underlying

abstraction selected by the designer. Before specification, this underlying abstraction has to

be defined formally so that the resulting specification can be reasoned formally. An abstract

model specification, therefore, has no intrinsic meaning derived from a specific abstract

model specification language; instead, its meaning depends upon the underlying abstraction

selected. For example, when the sequence is selected as the underlying abstraction for the

specification of a stack, the behavior of the stack is reasoned in terms of the sequence. Hence

the usefulness of a given abstract model specification depends greatly upon the appropriate

ness of the selected underlying abstraction to the functions being specified. A clean and pre

cise specification is possible when each function is easily defined in the form of pre- and

post-conditions in terms of the underlying abstraction.

When the underlying abstraction consists of concrete programming objects, such as pro

gram variables, the specification closely directs its implementation. This idea was incor

porated with the verification-oriented programming languages, Alaphard [124] and Euclid

[125].

The state-machine technique and the abstract model technique share a number of simi

larities. In fact, in [122] it is observed that the state-machine technique is a variant of the

abstract model technique, and in [108] it is shown that there is a straightforward transforma-

59

tion between these two specifications.

43.4. Comparison of the Three Techniques

Among the three approaches, the algebraic technique is the neatest and most abstract,

expressing only the essential aspects ofthe item being specified and thereby coming closer to

the mathematical concept of abstraction under which seemingly disparate entities may be

described ina way that demonstrates their true similarity. However, when the ease ofreading

and writing a specification are considered, the abstract model and state-machine techniques

are favored over the algebraic technique because of their close relationship with the correct

ness of the underlying abstraction.

In the behavioral specification, the state-machine and abstract model techniques retain

the flavor of the operational semantics approach by defining semantics offunctions constitut

ing an abstract data type separately. In contrast, semantics offunctions are denned through

relationships among the functions in algebraic specification. Thus the algebraic technique

deliberately avoids the operational flavor.

From the aspect of expressive power of a specification technique, which is a measure

for clean and precise specification, each technique has advantages over the others in some

respects while showing weaknesses in others. In conclusion, any one specification technique

is not sufficiendy versatile to satisfy all requirements. It is desirable to develop a unified

approach incorporating different techniques into a single specification language without los

ing the advantages ofeach approach. In fact, work to study the relationships between these

techniques has been carried out in [126] and a formal verification approach has been pro

posed [127] in which the algebraic and the operational approach are combined for a

specification language.

60

4.4. Program Verification Methods

Program verification is the demonstration of the correcmess of a computer program

with respect to its specification. A common approach to the problem of program correcmess

is program testing ~ the program is made to run on a sample of 'critical' input data. This

method may increase confidence in the correcmess ofa program but it is far from a guarantee

that the program is free from semantic errors. The notion of critical input data is simply

much too vague. Another approach is program verification, which is the subject of this sec

tion. This approach avoids the deficiencies ofprogram testing byproving mathematically that

the meaning of the program satisfies its specifications. These specifications must, of course,

be defined with mathematical precision (asdescribed in the previous section). In this section,

the basic conceptsof three majorverification methods are introduced.

4.4.1. The Inductive Assertion Method

This method, originated by Floyd [114], is one of the earliest verification techniques.

The basic idea of inductive assertions is as follows. Assertions about the relationships among

program variables are placed in the text of a program. These assertions in fact constitute the

specification of a program. The assertions are generally expressed in the predicate logic.

They consist of input, output, and intermediate assertions. Input and output assertions are

located at the entry and the exit of a program. Intermediate assertions are located between

statements of a program such that every loop is cut by at least one assertion. Each assertion

claims that a stated relationship holds each time the program control reaches that assertion,

i.e., assertion is an invariant.

In verifying a program, a formula called a verification condition is generated and

proved to be a theorem for each simple path connecting two adjacent assertions on the pro-

61

gram. The validity of all the verification conditions for a program is sufficient todemonstrate

the partial correctness of a program; for all inputs satisfying the input assertion, the output

assertion is satisfied if the program terminates. The techniques to prove termination of a pro

gram for total correctness were developed by introducing the induction assertions that bound

the number of loop executions. Since verification conditions are predicate calculus formulas,

it follows that the deductive system used in an inductive assertion proof, consists of the

axioms and inference rules of the predicate calculus. The validity of such a proof relies upon

the predicate transformer, which links program semantics to apredicate calculus formula. A

predicate transformer is a function mapping an assertion and asyntactic unit toanother asser

tion. In the work of Floyd [114], the predicate transformer is a "strongest verifiable conse

quent" transformer. A strongest verifiable consequent,

s\>c(Sj, Q;) = Rt,

is a function that, given a precondition Qt for syntactic unit Sj and Sj itself, yields the

"strongest" postcondition Rk for all outgoing paths from Sj. Here the meaning of "strongest"

is that any postcondition obtainable from the precondition Q{ and the syntactic unit Sj is

deducible from the condition Rk.

A difficulty inherent in the inductive assertion method is the relative independence of

syntactic and semantic definitions. Programs are developed, initially, without formal regard

to their ultimate verification. Formal semantic definitions are then tagged on during program

interpretation. Failure to prove the subsequent verification conditions may be due either to a

fault in the program or to the occurrence of an intermediate assertion that is not implied by

the corresponding strongest verifiable consequent.

62

4.4.2. The Axiomatic Method of Hoare

Examining the work of Floyd [114], Hoare [115] introduced an alternative to his work

which he presented in the form of the so-called Hoare calculus. Essentially this approach is

identical to the inductive assertions method introduced in the previous subsection; however,

it restricts the programming language to that without interleaved loops. Hence the inductive

assertions method can be simplified. This simplified form leads naturally to the Hoare cal

culus. The Hoare calculus is a calculus for Hoare logic, in whichone can formulate proposi

tions about the partial correcmess of "while-programs". Here the while-program means that

there are no interleavedloops, and every loop can be expressedby structuredwhile-programs.

In this method, the semantic properties of syntactic units (blocks of a program) are viewed as

theorems in a deductive system. A so-calledHoareformula is defined as follows:

{?} s (q)

where p and q are formulas of the underlying predicate logic (typically the first-order logic)

and S is a blockof a program. The formula, then, is to be proven by the usual techniques of

applying inference rules to axioms and previously proven theorems to produce the desired

conclusion.

The theorems that can be derived from Hoare's extended deductive system describe

how the execution of a particular type of semantic of a syntactic unit modifies a given pro

gram state. However, it is required to associate different semantic properties with a single

syntactic unit, as the meaning given to syntactic units is ultimately defined by the abstract

machine upon which the syntactic units execute.

The axiomatic method does not provide a way to get stronger conclusions than the

inductive assertions method. Its advantage lies in the more direct means it provides for

expressing semantics. It will be applied only to the local properties of iterative constructs,

63

rather than (as with the inductive assertions method) to the program as a whole. Conse

quently, the axiomatic method is more suitable to modern control constructs than the induc

tive assertions method.

4.4.3. Verification Methods Based on Denotational Semantics

With the denotational approach to semantic definition, the semantics of syntactic units

are defined by a semantic valuation function. Anexample of a denotational approach to the

definition of the execution function of a small computer can be found in [128]; other

approaches to denotational definitions of the execution function and verification using the

lambda-calculus are discussed in [109]. Here the execution function E (P, do) is denned by a

binary relation, R <-D x £>, which defines the input-output behavior of the program P

where D is the program state space. The relation R is defined bya semantic valuation func

tion / formulated in an algebra of binary relations:

R=f{R\, ...,Rm),

where R, is an input-output relation of syntactic unit s, which is a subcomponent ofP. The

semantic valuation function / is found by an algebraic method that consists of writing and

solving a set of fixed-point equations.

To prove the correctness of a program, the desired semantics may be specified in terms

of a function of symbolic values. The correctness of a program may then be shown by prov

ing the equivalence between the symbolic values obtained from the program and the sym

bolic values denoted by specification.

64

4.5. Previous Formal Hardware Verification Techniques

Due to the similarity between program and hardware descriptions at the behavioral

level, most formal hardware verification techniques have been based on the program

verification techniques described in the previous sections. In this section several formal

hardware verification techniques are reviewed.

4.5.1. Symbolic Simulation

To avoid the limitations of the simulation approach to verification, an enhanced simula

tion approach called symbolic simulation [60,59,66,80] canbe used. This is an offspring of

conventional simulation, in the sense that it uses a model for hardware and a simulation

engine, but it differs from the conventional simulation because it considers symbols rather

then actual values for the circuit under consideration. In this way it is possible to simulate

the response to entire classes of values with a notable improvement overthe traditional tech

nique. Symbolic simulation can be extended to verification of correctness because

specifications and implementations may be runconcurrently and the results manipulated and

compared to establish a proof.

Darringer [60] addressed the application of the symbolic simulation technique to

hardware verification by verifying a logic level description consisting of gates and flip-flops

withrespect to a specification in an RTL language such as ISP [129] and DDL [130].

In [59], the authors developed a language for symbolic simulation LSS, which was

used to construct an abstract state machine.

Cory [66] describes designs at a certain level of abstraction as dual structural and

behavioral descriptions in SDL [1] and Adlib [131].

65

Bryant [80,132] developed a program that symbolically simulates the behavior of a

MOS circuit represented as a switch-level network. During simulation the user can set an

input to either 0, 1,or a Boolean variable. The simulator then computes the behavior of the

circuit as a function of the past and present input variables. By using heuristic algorithms,

the verification of a circuit by symbolic simulation can proceed much more quickly than by

exhaustive logic simulation.

4.5.2. Predicate Logic

Since the difference between formal and non-formal verification lies in the presence of

a mathematical proof, it is essential to have a well-founded formalism in order to represent

hardware systems. Formal verification of hardware correctness often makes use of

mathematical logic, thus it is worthwhile to consider it in more detail. In this subsection the

basic concepts and terminology are introduced.

A formal deductive system [133,134] is defined by the following items:

• The vocabulary of logical symbols and syntactic objects which is finite or may be

enumerated.

• A set of formulae that can be generated according to specific rules. These formulae are

called well-formed formulae.

• A finite set of axiom schemes, which are decidable subsets of the vocabulary; the ele

ments of an axiom scheme are called axioms

• A finite set of inference rules whichtransform a well-formed formula into another one.

An interpretation of a well-formed formula in a formal system is an assignment of truth

values to each of its atomic components. If the system includes both functions and predi-

66

cates, then the interpretation requires the assignment of functions and predicates to the func

tion and predicate symbols. An evaluation ofa well-formed formula isa function associating

a truth value to it starting from its possible interpretations. A formula is valid if, and only if,

its evaluation yields true for all its interpretations. A valid formula is often called a tautol

ogy. A formula is satisfiable if, and only if, there exists at least one interpretation for which it

yields value true. A deduction in a formal system is a sequence of well-formed formulae

fi,-,fn where each /,- is either an axiom or a formula obtained by applying an inference

rule on another formula. A theorem t is a well-formed formula for which a deduction exists

with t as the last well-formed formula in the deduction sequence.

In a formal deductive system, the problem of deciding whethera formula is a theorem

or not is called the decision problem. If it is possible to find an algorithm performing such

proofs, theformal system is decidable and the algorithm is called a decision procedure.

A formal deductive system is complete if and only if all valid formulae are theorems;

that is, when all valid formulae can be derived. A formal deductive system is sound if and

onlyif onlyvalidformulae are theorems; that is when all derivable formulae are valid.

4.5.3. First-Order Logic Approaches

Wagner presented in [61] the first attempt toapply predicate calculus to the verification

of hardware design using an available theorem prover for a number of simple proofs of unit-

delay descriptions at the register transfer level. He developed a transition algebra and used a

non-procedural RTL language modified from CDL [135]. The specification and the circuit

are bothrepresented in his language. Thecorrectness is verified by proving or disproving the

goal from the circuit description using axioms and definitions established from the language

and transition algebra.

67

Hanes [64] developed a program that accepted functional and structural design descrip

tions in a higher-level language, translated them into predicate calculus clauses, and used a

general-purpose theorem prover to establish design correctness. Hanes recognized the impor

tance of hierarchical structure in designs as a means of reasoning about them, but did not

fully exploit it.

Wojcik [65] demonstrated an approach similar to Wagner's for verifying logic level

designs. In his method, both the specification and the behavior of the circuit are encoded into

a set of axioms. The verification is then performed by checking the consistency of the

axioms using a theorem prover [136].

The inductive assertion method developed for program verification was applied to the

area of hardware verification. Pitchumani and Stabler [63] extended Floyd's inductive asser

tion method to formal verification of RTL hardware descriptions. They established axiomatic

semantics of a simplified RTL language for synchronous design and demonstrated the

verification condition generation from the hardware description with assertions. However,no

mechanization of this approach has been yet reported.

Suzuki [137] explores a methodology which is halfway between simulation and formal

verification. The tie to formal verification is represented by the specifications under the form

of input/output assertions in first-order predicate logic. Instead of showing that output asser

tions are satisfied by the implementation for all inputs satisfying input assertions, he shows

that this holds for selected inputs only. Such inputs are called "test data". In this method,

bothbehavior andrequirement specifications of hardware are described in Prolog [138,139].

In the DDL Verifier [140], a verification system is applied to synchronous systems at

the functional level. A translator reduces the circuit under consideration to cause/effect

tables, i.e., to tables which show necessary and sufficient conditions for circuit operations.

68

The proof method uses backwardreasoning and reduction to absurdity. In a later paper [91],

the authors abandoned first-order predicates as a means of expressing specifications and

resorted to temporal logic. (Verification approaches with temporal logic will be described

shortly).

Hunt uses the Boyer-Moore approach [141] to describe and verify the FM8501

microprocessor [82]. The formalism is a quantifier-free first-order logic. Recursive functions

are the primary means of description for hardware devices. Sequential devices operate

through time, which is modeled as a stream of values.

4.5.4. Higher-Order Logic Approaches

Higher-order logic is an extension to first-order logic that allows variables to range over

functions and predicates. Unrestricted higher-order logic suffers from a number of para

doxes, the most famous being Russel's paradox [142]. These can be avoided by resorting to

type theory and a type hierarchy. Only propositional functions belonging to certainclasses in

the hierarchy are allowed. Higher-order logic generally encompasses the axioms of infinity

and choice. The former states that the domain of individuals is infinite, the latter is used to

introduce new primitive formulae.

Higher-order logic was originally developedas a foundation for mathematics [143]. Its

use for hardware specification and verification was first advocated by Hanna in the VERI

TAS system [78]. The VERITAS system is supported by various software tools in charge of

establishing and handling the theory database by a functional programming language, ad hoc

parsers, user-defined inference rules, and goal-directed theorem provers. This approach was

successfully applied to a simple example, demonstrating the correctness of a NOR gate.

69

The higher-order logic approach has been investigated intensively by Gordon

[76,84,144]. In this approach the specification and the implementation are expressed

directly in the logic, and hence no predicate transformer is needed for each syntactic unit.

The approach to mechanizing logic in HOL system [84] is due to R. Milner [145] who

developed the approach for a system called LCF designed for reasoning about higher-order

recursively defined functions. The HOL system is implemented on top of LCF [145] which

is implemented in Lisp environment The language of LCF is called ML (the LCF Meta-

Language). ML is an interactive programming language like Lisp. At top level, one can

evaluate expressions and perform declarations. In HOL logic, there are five axioms and eight

primitive inference rules. A proof in the HOL system isconstructed by repeatedly applying

inference rules to axioms or to previously proved theorems.

The higher-order logic is a very powerful formalism. However, due to the complexity

of the language, an automatic proof is not easily obtained. The current implementation ofthe

HOL system lacks automatic proof capability. Also, it is difficult to learn how to use the sys

tem.

4.5.5. Temporal Logic Approaches

Predicate logic is very powerful when reasoning about theproperties of static situations,

but it fails when dealing with dynamic phenomena. In the domain ofhardware representation,

it is necessary to cope with particular aspects of reality: timing and temporal evolutions. To

satisfy the requirements of hardware, two choices seem possible: an explicit introduction of

the time variable t into predicate logic, and a generalization of predicate logic to encompass

the temporal domain.

70

Following the former approach, some authors introduce time functions, treating time

just as one of many variables, with the usual rules for terms, formulas, and inference

[146,144]. Other authors augment standard logic to cover temporal evolutions, leading to

modal logic [147,148]. Predicates in first-order and higher-order logic stand for eternal veri

ties. On the other hand, modal logic introduces the concepts of "possibility" and "necessity"

in the future.

Modal logic, although more expressive than traditional predicate logic, still lacks the

ability to cope with changes, an essential feature in hardware descriptions. To handle

changes it is necessary to have a formal system that can reason from past events to what can

ormust be true at present and in the future. Such formal systems are generally grouped under

the category of temporal logic [148].

In general, temporal logic assumes all usual connectives while adding some typical

operators. Although there are many variants, the basic operators are: henceforth, eventually,

next, and until. Temporal logic systems may be classified according to the way they consider

time. With time generally modeled discretely, there are different ways of viewing the future.

Past is always linear, while future maybeeither aunique world ora set of possible worlds. In

the first case, time is linear in the future, too, and such logic is called linear temporal logic.

In the latter case, time is branching in the future and such a system is called branching time

temporal logic. In the former case, a system is supposed to have a unique evolution along

time, whereas in the latter, a set of possible evolutions is considered.

In addition to linear and branching time, instant-based versus interval-based logic is

another important distinction in temporal logic. A temporal logic is instant-based when pro

positions are asserted on single states only. A temporal logic is interval-based when proposi

tions are asserted on sequences of states, i.e., on intervals in discrete time. Interval temporal

71

logic may be either global or local (global when truth of propositions is determined over an

entire interval, i.e., on all its states, and local when truth is determined on the first state of an

interval and holds unchanged on the rest).

Temporal logic was originally applied to the specification of the properties of con

current programs [149,150]. The properties of safety and liveness were the major interest.

However, recently many researchers investigated applying the temporal logic to hardware

verification. Research work in each direction of temporal logic for hardware verification is

reviewed in the following.

4.5.5.1. Linear Time Temporal Logic

One of the first attempts to use temporal logic as a formalism to describe and reason

about hardware is Bochman's work [67]. The temporal operators used in this work are as fol

lows: "henceforth", "eventually", "next", and "while". The operators, "henceforth" and

"eventually", include the present time in the assertions. The operator, "next", introduces the

concept of discrete time and the conceptof a transition that occurs betweensubsequent time

instants. The "next" operator is used for the definition of the "while" operator. The author

uses temporal logic to describe and verify properties of an arbiter, a device for regulating

access to shared resources. The presentation reveals some tricky aspects in reasoning about

such components. This approach was not mechanized and the verification was performed

manually.

Bennet [151] presents an approachfor provingcorrectness of asynchronouscircuits in a

deductive system for propositional temporal logic (PTL). In this approach, axioms describing

the behavior of atomic elements (gates and modules) are formulated in PTL. A logic formula

is composed from the conventional logical operators ("and" and "not") and a set of temporal

72

operators ("henceforth", "eventually", "next", and "until") excluding quantifiers. Desiredpro

perties of the circuit are formulated as specifications in PTL. As gates or modules are com

posed to form larger modules, their corresponding PTL formulas are combined using PTL

theorems. Verified examples range from latches to a self-timed asynchronous pipeline.

Malachi and Owicki [152] applied the temporal logic to specifying a self-timed logic

[153].

4.5.5.2. Branching Time Temporal Logic

In [69], an approach andthe supporting tool for formal verification of synchronous and

asynchronous control parts of digital hardware are presented. Implementations are described

resorting to an ad hoc language called "state machine language" and specifications are

expressed in the temporal domain using "computational tree logic" (CTL) which is a branch

ing time propositional temporal logic. The tool supporting this approach iscalled the "model

checker". In a later version, the tool is updated to deal with a more expressive branching

time temporal logic with the "extended model checker" system [70]. This system takes a cir

cuit described in terms of Boolean gates and Muller elements, and derives a state graph that

summarizes all possible circuit executions resulting from any set of finite delays on the out

puts of the components. The correct behavior of the circuit is expressed in CTL, a temporal

logic. Thisspecification is then checked against thestate graph using a verification program.

In branching time temporal logic, asynchronous behavior can be described but as there

is no global time grid, no quantitative delay value can be handled.

73

4.5.53. Interval Time Temporal Logic

In interval time temporal logic, an interval of time is defined as a nonempty, finite

sequence ofstates and the temporal operator "next" is based on a globally fixed time interval.

Based on this operator, any discrete-time signal waveforms canbe described. Using the typi

cal temporal operators "always", "sometimes", and "next", a number of temporal operators

are defined based on the time interval, such as temporal equality, stable, rising, falling, unit

delay, transport delays, and temporal assignment. Moszkowski presents in various papers

[154,71] the interval temporal logic. The author presents as a logical consequence of his

work Tempura, a logic programming language with imperativeconstructs for assignment. A

multiplier and the Am2901 bit slice circuit are given as examples of its use in the hardware

description domain [68].

In [155], the authors presentTokio, a concurrent logic programming language. Tokio is

based on Prolog, but extends it by incorporating local interval temporal logic concepts.

4.5.6. Other Approaches

Many authors in the domain of hardware verification have created their own formal sys

tems which may be reduced to first-order or higher-order logic. However, some of them can

not be completely categorized into one of the previously reviewed techniques.

Milne [75] presents CIRCAL, a calculus to describe and analyze circuit behavior. Its use

is not restricted to a specific domain ~ it is both a very special HDL and a framework for

device analysis by formal verification and constructive simulation. CIRCAL is supported by

a Lisp environment, and is still under development; currently it supports expression manipu

lation and CIRCAL simulation, but not correctness proofs.

74

Before migrating to higher-order logic, Gordon produced the LCF-LSM [73] system.

LCF is a verification oriented programming environment, which canbeextended to themani

pulation of specifications. LSM is a specification language for synchronous systems used at

register transfer and gate levels. The author reports an application of the methodology to a

simple computer [72].

Barrow [74] presented Verify, a verification system written in Prolog. He used a state-

machine specification approach. Each hardware module is specified by output equations and

next-state equations. From the structural information ofa given module, the behavior of the

implementation is composed, and a check is performed to see if the two behaviors are

equivalent. When the system fails to perform an automatic proof, human intervention is

required. In this work, there is no type defining mechanism and no inductive proof is pro

vided. The system has been applied toverify the same simple computer presented byGordon

in [72].

Weise [81] presented a methodology and a tool, called Silica Pithecus, to prove func

tional correctness for designs at switch level.

Musser et al. [83] presented a method for specifying bidirectional hardware devices.

The author points out that the predicate model can handle simple cases ofbidirectionality, but

breaks down inothers, particularly when gate capacitance and/or charge-sharing are involved.

He suggested a more elaborate model of hardware devices for formal verification that can

handle gate capacitances and charge-sharing.

4.6. Conclusions

Study of previous work on formal hardware verification illustrates that the choice of a

formalism involves a compromise between expressive power and the ease of automatic

75

synthesis/verification. In a simple and restricted formalism, it is hard to specify complex

devices simply and concisely. Nonetheless, in a powerful formalism, it is difficult to auto

mate the synthesis and verification.

The formalism of higher-order logic is very powerful and provides enough expressive

power in some sense. However, due to the complexity of the higher-order language, the

proof procedure needs human guidance. Currently, the higher-order logic may be viewed as

an environment of constructing proofs rather than an automatic theorem prover.

The temporal logic is useful for specifying asynchronous behavior such as the liveness

and safeness properties of communicating processes. It can also be applied to hardware

design to specify the relations of signals. Even though there exist a few theorem provers for

temporal logic [151,79], the theorem provers for temporal logic are still in their infancy, and

the lack of powerful automatic proof procedures prevents this approach from wide applica

tion to real design problems.

Most systems aim to provide a model or tool tailored to a specific level of abstraction.

There is no panacea for all levels of abstraction involved in the design and implementation of

a piece of hardware. Therefore the best formalism to use depends on the nature of the prob

lem under investigation. As design work from the gate level to the physical mask level

becomes more and more automated, computer-aided tools at the higher level becomes more

and more important. In this research work, for the behavioral description language, a func

tional formalism is chosen. The appropriateness of this decision is explained in Section 5.3

of the next chapter.

For a hardware verifier to be used in real design problems, the efficiency of a verifier is

one of the most important concerns. In VLSI design, the complexity of managing all the

information is already beyond human capability. Hence the design usually proceeds in a

76

hierarchical manner. Also many parts of the VLSI hardware are designed in a regular struc

ture and some of the hardware modules are repeatedly used. Thus a mechanism that can

exploit the structural hierarchy andregularity is needed.

The importance of hierarchical structure in designs as a way to reason about them was

recognized by Hanes [64], but in the work the hierarchy was not exploited heavily. The

exploitation of hierarchy is well illustrated in the work of Barrow [74].

The exploitation of design regularity was illustrated in the work of German and Wang

[77] by parameterization. The advantage of this approach is that a single proof can demon

strate the functional correctness of all instances of a design.

In the verifier developed in this work, the hierarchy and regularity is automatically

exploited, as explained in the following chapters.

77

CHAPTER 5

BEHAVIORAL DESCRIPTION LANGUAGE

5.1. Introduction

In hardware design, the "real world" consists of transistors, integrated circuits, boards,

etc.; anything expressed onpaper to describe hardware is actually a model of the "real world".

A great variety of models have been, andcontinue to be usedfor a variety of purposes. For

the analysis and synthesis of any design, a model of eachcomponent is needed. Finally, it is

through the use of models that the communications between designers, between machines

and designers andbetween machines is performed. Some models, suchas circuit schematics,

mechanical drawings, printed circuit art work, layout mask art work, etc., are very explicit

and offer all the detail necessary to fabricate hardware. They may reveal what the hardware

looks like, but the organization, operation, and function of the hardware is difficult to deter

mine from such models because of their volume and because they do not attempt to reveal

such things clearly.

Shannon [156] first showed the advantages of the logic diagram and/or Boolean equa

tion models for hardware description, which replace detailed fabrication and electrical infor

mation withabstractlogic equations (a model) and hencemake it easier to ascertainoperation

and function. However, they do not make it easy to do so for sizable digital systems, because

these models also tend to be voluminous. They serve well at certain stages in the engineering

and maintenance of digital systems by de-emphasizing fabrication detail while emphasizing

information that is more important at those stages. These models are said to be more abstract

78

in that they are symbolic and mathematical.

Before the logic details of a digital system can be determined, designers require even

more abstract models that present functional detail exphcitiy while not implying logic and

fabrication detail. Block diagrams, flow charts, timing diagrams, English text, etc. have all

been used as parts of suitable models. However, "register transfer" or "computer description"

languages have been developed and accepted more widely as useful ways torepresent models

of suitable abstraction for simulation and design.

If the organization and operation of a sizable digital system is to be ascertained easily,

then only the most relevant information must be presented and in aconcise fashion. If fabri

cation is intended, then a description must be complete and precise enough so that logic

detail can be determined directly by man or machine, a process known as synthesis. If

machine synthesis or verification is desired, then adescription should be suitable for machine

manipulation.

Hardware description languages are designed to meet various goals. They can be used

for documentation purpose at each stage of design, or can be used as design aids ~ the mani

pulation of the large amounts of description data requires that the well-established techniques

found in programming languages be used to aidthedesign process.

As explained inChapter 2,adigital system can bedescribed at several different abstrac

tion levels. While many languages can be used at several levels, each language is especially

convenient for a certain level. For example PMS (Processor, Memory, Switch) [157] and ISP

(Instruction Set Processor) [129] are good for the system level and the instruction level,

respectively. CDL (Computer Description Language) [135] is especially good for the

microprogramming level. And DDL (Digital System Design Language) [130] is suitable for

the register transfer level. The classical HDL's and their references are surveyed quite

79

extensively in [25].

Most of those HDL's, however, do not address and explore the use of behavioral

aspects in a description language. The advent of hierarchical design requires the rigorous

description of both the structure and the behavior of design components at the various inter

mediate stages in the evolution of acomplete design. The manipulation of the large amounts

of descriptive data require that the well-established techniques found in programming

languages, as the medium in which a designer will work will increase steadily in the future

due to the ever-increasing complexity of VLSI designs. Some of the modernlanguages, such

as STRICT [158], muFP [159], ELLA [27], Helix [160], HSL-FX [161], and VHDL [28]

have been developed with that purpose in mind. A useful design environment should facili

tate both maintenance and future upgrading, which among other things means that the docu

mentation must be accurate and easy to access and understand. Another related point is reu

sability of design efforts. It is important that efforts made during one design can also be of

use in otherdesigns. Modularization and regularization are features that improve design reu

sability [89,90].

Hardware description languages can be classified into three groups. The first group is

characterized by its structural and single-level description. Most of the circuit-level, switch-

level, and gate-level representation and some of the classical hardware description languages

belong to this category. The description languages of this group are used mainly for design-

data interchange and simulation purposes. Every simulation techniques requires some kind of

behavioral information and in case of the languages of this group this is usually embedded in

the simulation program code rather than in a separate description language. The second group

is characterized by its efficiency for simulation. Since simulation has been the prevailing

approach to design verification, every description language assumes its particular simulator

80

and most of them employ an event-driven simulator for efficiency. Most modem description

languages, other than those provided for use with formal methods, belong to this group.

However, for theformal approach to be utilized in verification process instead of simulation,

a description language must have mathematical rigor in its semantic definition. The

languages of the third group have emerged to fulfill such a requirement, as described below.

5.2. Behavior and Structure

The design of a large digital system is a complex task. Most designers have their own

personal preferences about how the design work should be accomplished. Designers should

be free to use whatever method or technique they prefer. The freedom offered by a design

environment should include choice of abstraction level and implementation strategy. The

environment should also support co-existence of specifications at different levels and also

specifications made with different implementation strategies inmind [162].

The process ofdesign is usually described as bottom-up, top-down or acombination of

both. The term "meet-in-the-middle" design has been used recently to describe an evolving

approach [163] - some designers design at the bottom and design basic building-blocks,

while others begin at the top and decompose the problem until itcan be described in terms of

the building blocks; the "middle". In the bottom-up design, the specification of a new struc

ture is created by combining the specifications of pre-existing structures. In the top-down

design a specification which contains a mixture of behavior and structure is progressively

transformed to one which contains more structure - almost invariably any pre-existing struc

ture is unchanged. However, if some structure is found to be inappropriate, the design is

iterated back to an earlier behavior and a new route to structure is explored. Thus the process

of hardware design is essentially one of transforming a behavior into a structure [163]. In

81

practice, the behavior transformation process is guided, either by ahuman designer or by an

algorithm in a synthesis program, towards structures which are thought to be a good imple

mentation in some sense.

5.2.1. Structure

Modules of a hardware system can often be viewed as an interconnection of other

modules. There is thus a need for two kinds of structuring capabilities [162], or as it is

pointed out in [26]: machines are designed (ideally) from logically disjoint functional units

and both hierarchical relationships and relationships of symmetry (e.g. arrays), that is, inter

connections, are needed in order to describe interactions between units. Another aspect of

hardware modules is that a large number of their submodules are of the same type. That is,

they typically have a high regularity factor. This is particularly true of the lower-levels of

design (e.g. the gate or transistor level). However, as systems become more complete, there is

increasing re-use at ever-higher levels of abstraction. Type declarations which can be instan

tiated in a large number of places are thus a valuable aid. Typing mechanisms are con

venient, since different instantiations of a module often have some small differences depend

ing on their surrounding. It should also be possible to easily specify regular structures of

modules and give special treatment to modules at their boundaries.

The relationship between a module and the submodules from which it is composed is a

hierarchical relationship. Any of the modules composing a module can, in its turn, be com

posed of other modules. This hierarchy of modules defines the hierarchical structure as seen

in Figure 5.1 The hierarchical structure thus conveys information about composition (and

decomposition) of modules in terms of other modules.

A

B C D

Figure 5.1 A hierarchical structure

82

5.2.2. Behavior

In any design approach, bottom-up, top-down, or a combined approach, a designer

should beable to specify the behavior ofany hardware module. In the case of top-down stra

tegy, a behavior becomes a specification of the module and inthe case ofbottom-up strategy,

a behavior becomes an abstraction describing the interface specification of the module to

form a new module of an interconnected structure. The new specification of the intercon

nected module is usually an abstraction of its behavior, i.e., of the behavior of the module as

seen from the outside. This can be said to be the external behavior and it should not be inter

preted as specifying the mechanisms implementing the behavior, i.e., the internal behavior.

The specification of internal behavior describes the inner workings ofa module that gives the

desired external behavior. Note that there can be many different specifications of internal

behavior which give the same external behavior.

83

In a hierarchical design environment, it is natural to provide a mechanism to compose

behavior from sub-behaviors and similarly for stmcture (modules made from sub-modules).

When a designer approaches with abottom-up strategy, it is clearly necessary that stmcture

should be composable from behavior. This is a typical simation at the primitive level of

design hierarchy, i.e., an AND-gate of an adder is generally described by its behavior. All

modem HDL's provide users with these facilities. Less obviously, it is useful for behavior to

be able to contain stmcture. This facility is needed in the combined strategy of top-down and

bottom-up to incorporate pre-existing structure into behavior. If this is not allowed, either a

behavior description has to be totally converted into stmcture (i.e. more top-down design) or,

instead of incorporating the structure of the pre-existing component, a behavioral representa

tion of the pre-existing component must be substituted. This means that when composing

bottom-up, an equivalent pure behavior representation has to be grown in parallel with the

structural description, which certainly means extra work to generate two representations.

Furthermore, in practice, it is nearly impossible to match behavior and structure models of

any complexity. Because of thedifferent ways of configuring behavior and structure descrip

tions, some modem HDL's, such as VHDL, suffer from this inability to describe arbitrary

compositions and decompositions of behavior and stmcture, while the ELLA language and

the language developed in this dissertation work avoid the problem by defining a

specification interface which is used both for stmcture and behavior. That is, use a form of

description that does not distinguish syntactically between structure and behavior. Rather,

the intent (stmcture or behavior) is simply inferred from the use of the description.

84

53. Functional Formalism

The question of whichformalism to employ as a behavioral description language is fun

damentally dependent upon the underlying abstract model of hardware behavior. If the

underlying model is simulation, the behavioral description is likely to be oriented toward

efficient simulation of the digital system being described, generally on a VonNeumann com

puter. Imperative or procedural languages such as ISPS [26] and VHDL [28] are appropriate

for this purpose. However, it is most likely the case that a description based ona simulation

model will not prove suitable for automatic synthesis and formal verification of design. An

analogous situation exists with models of computation for programming languages. Gen

erally, the preferred programming language for a particular machine architecture is one in

which the underlying computational model matches that of the architecture. Such matchings

simplify both analysis and compilation and usually result inbetter performance. For example,

on a multiprocessing machine where communication time between processors dominates

local memory-reference time, a message-passing language is often used [164]. If effective

communication time is reduced by the use of cache or efficient hardware implementation, a

shared-memory model is more often selected [165,166]. For these reasons, imperative pro

gramming languages are preferred when programming von Neumann architectures. This style

of programming has become so pervasive that it is common toemploy procedural languages

even in digital hardware descriptions.

However, the behavior of digital hardware exhibits inherent parallelism and the pro

cedural languages become clumsy when attempts are made to specify what the hardware is

supposed to do without making any assumptions about how the behavior is to be obtained.

Contrary to imperative languages, declarative languages allow clean behavioral description

without any implication about the implementation. In a declarative domain, two major for-

85

malisms have been investigated by many researchers, especially in the field of formalizing

programming languages. The strong connection between the formaUzation of mathematical

logic and the formalization of computer programming languages was clearly recognized by

Alan Turing as early as 1947, when he reported his expectation in a talk to the London

Mathematical Society [167],

"that digital computing machines will eventually stimulate aconsiderable interest in

symbolic logic and mathematical philosophy. The language in which one communi

cates with these machines, i.e. the language of instruction tables, forms a sort of

symbolic logic."

In software engineering, the formulation of valid specifications, the construction of efficient

programs, together with a proof that the programs meet their specifications are the central

problems facing the computer scientist [149,167]. There have been a continuous stream of

studies for establishing a formalism which is appropriate for the formal specification of pro

grams and whose execution is practical and efficient. Currently, there are two major formal

isms in the declarative domain: the formal language of predicate logic [115,167,167,133]

and the functional language [169,159,146]. In the formal language of predicate logic the

behavioral specifications can be viewed as a set of constraints which the final design should

satisfy. The order of the constraints does not affect the result of the total specification and

each of the constraints narrows the domain of satisfaction. If the domain becomes null, that

means the specification is over-constraining and no entity can satisfy all the constraints.

Whether there exists an over-constraint or not can be checked by consistency checking

among the constraints.

Since the whole of mathematics is too general to formalize with practical efficiency, it

is unavoidable to employ some notational framework less powerful and less general. The

86

restricted notation is so designed that its use will be rewarded by more efficient execution on

a computer. Even in the best known logic programming language, Prolog [138,139], the

meaning of "not" is not the same as the NOT of mathematics, logic, or even normal technical

discourse, and its meaningcannot be fully understood except in terms of the way that Prolog

programs areexecuted. In fact, in Prolog, the "and" and the"or" alsohave peculiar meanings,

consequently they are not evensymmetric. Themotive here was to achieve greater efficiency

of execution, particularly on traditional sequential computers [167].

In spite of considerable ingenuity of implementation, predicate logic approaches are

inherently inefficient, particularly if the specification takes proper advantage of the power of

the available combination of conjunction and disjunction. An existential quantifier multiplies

the number of cases by a larger factor, and if recursion is involved, the number of cases to be

explored increases exponentially. The alternative functional (or applicative) language

approach is a compromise, suitable both for specification and for executable programs: in

expressive power it is nearly as good as logic; and in execution efficiency it approaches a

conventional procedural language. Where necessary, algebraic laws canbe used to optimize a

specification before execution. Functional formalism deals with structured data, is hierarchi

cally constructed, and does not require the complex machinery of procedure declarations to

become generally applicable. Function composition can use high level descriptions to build

still higher level ones in a style not possible in conventional languages.

5.4. Overview of the Behavioral Verification System (BEAVER)

The behavioral verification system described in this section is the focus of the later part

of this dissertation. A prototype framework which can verify automatically not only the

functional correctness but also the presence of any timing violation has been developed.

87

The overall strategy employed for the behavioral verification is as follows. First, primi

tive language constructs are defined. The semantics of the primitive language constructs are

based on functional formalism and are simpleenough to be formally manipulated by machine

while expressive enough to describe the behavior of hardware descriptions at any level above

the circuit level, i.e. where signals arerepresented by discrete values.

Based on the primitive constructs, libraries are built up. Since the semantics of a cell

instantiation is the same as that of a function call in a functional programming environment

(by definition and by common use), composing functions is quite natural and easy. The user

can alsodefine his or her own cells on top of the built-in cells. Each of the cells can be used

either in a behavioral description or in a structural description. In this case, there is no dis

tinction between behavior and structure in cell descriptions ~ such terms simply represent a

particular interpretation of the description. Hence, equivalence checking can be performed

without any distinction between a "behavior" and a "stmcture", between two behavioral

descriptions, or between two structural descriptions.

From the structural information available in the description of a cell, the timing

behavior is abstracted when a cell is defined. While timing information is abstracted, checks

can be performed to determine whether there are any timing violations within the cell

definition. If so, the cell definition is inconsistent and should not be accepted. If the user still

wants to define the cell without any consideration of timing behavior, only the function of

such a cell can be described, even in a cell where the next higher level cell deals with timing

behavior, as will be seen later.

To handle thecomplexity of VLSI design, amechanism which canexploit the hierarchy

and the design regularity is required. The hierarchy is automatically exploited as follows.

When the specification and the implementation share the same hierarchy, as illustrated in Fig-

Specification
Corresponding

Implementation

Figure 5.2 Specification and implementation sharing the same hierarchy

ure 5.2, it is easy to exploit the hierarchy during verification. In a verification system which

assumes the same hierarchy between the specification and the implementation, the

specification and the implementation of a module are usually described in one unit. How

ever, in general, the specification and the implementation might not share the same hierarchy.

Hence, in this dissertation, the research focuses on a verification method that can exploit

hierarchy even when the hierarchy trees have different structures. Consider the case illus

trated in Figure 5.3. Inverifying theequivalence of Cell A and Cell B, if some of the pairs of

(A], B0 and (A2, 52) are proved equivalent, these facts are utilized. Otherwise, the cells are

flattened down one level lower and an attempt is made to utilize the already-proven facts

89

Figure 5.3 Exploitation of hierarchy

again. This procedure is repeated until thecells are flattened-down to primitive cells.

5.5. Primitive Language Constructs

As mentioned earlier, the description language in the verification system BEAVER is

based on functional formalism. One of the most important concepts in a functional formal

ism is theconcept of value transformation denoted by a description. The behavioral descrip

tion of a hardware component can be viewed as a transformation applied to objects, which

performs certain operations. The semantics of those descriptions or transformations can be

90

captured through observing how the objects are mapped to new values. As described in

[163], in digital hardware, the objects are usually signals, busses, ordevices, these are viewed

differentiy according to thecontext and conceptual level in which theyare considered. At the

lowest level, signals are considered to represent voltages and currents; at the next, logic lev

els with various strength; at the higher levels, bits,numbers, addresses, oreven computational

objects. This abstraction of objects is very important in ahardware description language.

In this section, the primitive language constructs of the verification system are intro

duced. The predefined types and the type-defining mechanism are described as well as how a

cell is defined and the meaning of a cell.

5.5.1. Types

The concept of abstraction of data objects was introduced in the structured program

ming technique, many years ago [116]. The abstract data type, based on the concept of data

abstraction, has evolved as a major structuring mechanism in program development, and is

supported by most of the modem programming languages, under such different names as

class [170,171], package [172], form [124], and module [173]. In general, data abstraction

comprises a group of related functions oroperations that act upon a particular class of objects

[117]. The behavior of a hardware device or system can be thought of as performing certain

operations upon objects and can berepresented by transformations applied to data objects.

Most modem hardware description languages agree that a richvariety of data types and

data structuring facilities are required, usually with strong type checking included in thecom

piler. Analogous to syntax and type checking in program compilation, a certain amount of

static checking can be performed in a hardware verification process. Static checking, such as

checking to ensure that no signal wire is driven by two outputs simultaneously, that every

91

line has an output and an input, and that every output and state variable is accounted for by a

value assignment, is useful in detecting many elementary errors. Also the signal types can be

checked for compatibility.

The behavioral description language of BEAVER is strongly typed and the type check

ing is performed statically. In the language, every named object should have a type associ

ated with it. Four types are predefined and three mechanisms of type definition are provided

for data abstraction.

The predefined types are: bool, nat, sync, and time. The type bool is for Boolean values

of true and false. The type nat is for natural numbers including zero. These two types

comprise the elements of the basic value-domain of the system. The remaining two types are

used for the description oftiming behavior. The type sync differentiates the type ofsynchron

izing variables from other variables. The type time is used for the measure of temporal dis

tance. The value of the time variable might denote real-time in nanosecond or in another

unit; however, it might have no connection with "real-time". The connection of meanings

between the type time and real-time is completely up to the user.

The three type-definition mechanisms of BEAVER are: enum, array, and struct. The

LISP style syntaxof typedefinition is shown as follows.

(deftype type-name [enum_type_def Iarray_type-def Istruct_type-defj)

Each type is defined with a unique name. When names are allowed in type definitions, two

notions of equivalence of type expressions arise, depending on the treatment of names —

name equivalence and structural equivalence. Name equivalence views each type name as a

distinct type, so two type expressions are name-equivalent if and only if they are identical.

Under structural equivalence, names are replaced by the type expressions they define, so two

type expressions are structurally equivalent if they represent two structurally equivalent type

92

expressions when all names have been substituted. In the verification system for the

efficiency of type checking, name equivalence is employed.

The keyword enum is usedfor enumeration type definition. In digital hardware design,

especially in the architectural level, when the detailed encoding schemes for specific types

(e.g. the opcode of a microcomputer) are not yet determined, it is convenient for the user to

introduce a symbolic encoding. Then the enumerated names can be replaced by the final

binary encodings later. This constmct canalso beusedfor the definition of a basic typewhich

is not provided in the primitive set of the language. For example, when the user wants to

define a typecalledbit instead of using the built-in type bool, the following definition can be

put in the head of the description:

(deftype bit (enum 0 1 X))

Then the defined type of bit can be used anywhere after its definition. Note that the "encod

ing" of a binaryvalue can be thought of as equivalent to phaseassignment [98].

The keyword array is used for the definition of indefinite array type. The indefinite

array is quite different from the commonly accepted array type. In the usual array type, the

size of the array is fixed or predefined, while in the indefinite array the size is not fixed. The

type of the element can be any type which has previously been denned but the type of each

element should be common in an array. For example, in the following type definition, each

element of the array is of type bit, but the size of the array is undefined.

(deftype bit-vector (array bit))

The actual size of the array is determined when an object with type bit-vector is parameter

ized within a recursive cell definition.

93

The keyword struct is used for the definition of a stmcture (or record) type. While an

array is an aggregate of elements of the same type, a stmcture is an aggregate of nearly-

arbitrary types. For example:

(deftype bus (struct (flag bit)
(data bitv)))

defines a new type called bus, consisting of two items, flag and data, whose types are bit and

bitv, respectively.

SomeHDL's, suchas VHDL, allow subtypes. A subtype of a type is a subset of values

of the type. A subtype of a type usually consists of a contiguous subset, for example: a

natural number as a subtype of integer. As far as a language itself is concerned, subtypes are

elegant and useful. However, there is a price to pay for their inclusion. In the verification

system, it was decided to have no overloading of types (i.e. subtying) as it was judged that

the consequent improved performance of the verifier and the clearer diagnostics of type

checking outweighes the advantages of introducing subtypes.

In some HDL's there are a large number of types built into the language [158,28], and

in others, such as ELLA, all types are user defined. In BEAVER, four primitive types are

built-in andan arbitrary number of types can beconstructed. To thehardware designer, as an

end user, it should not matter much whether types are built-in or are part of a library. In

FT I,A, unions are provided so that different sorts of objects on the same devices might share

the same memory space. However, in a formal approach, every type conversion should be

expressed explicitly. In the verification system presented here, a type conversion is achieved

through a function application which reconfigures the stmcture by type-casting the member

slots of the type.

94

5.5.2. Cells

The basic description unit ofan object is called a cell. Each cell has its declarations of

input, output, state, and local variables. For the verification to be performed within reason

able cpu-time, the state mapping information is provided. Also a directive for cell expansion

at definition time is provided. This constmct is useful for the verification of timing con

straints and will be explained in the next chapter in more detail. The syntax of a cell

definition is shown as follows:

(defcell cell-name
[(input arg-list)]
[(output arg-list)]
[(state arg-list)]
[(local arg-list)]
[(mapping map-list)]
[(directive expand)]
body)

The arg-list is a list of pairs of a variable and its typeas follows:

(varl typel) (var2type2) •••

The map-list is a list of pairs of two variable as follows:

(varl another_varl) (var2 another_var2) • • •

In the verification of special leafcells presented in Chapter 3, it is assumed that no state

mapping information isavailable. However, inbehavioral descriptions the mapping informa

tion is assumed to be retained during the design process. In a hierarchical design, a

behavioral specification and its structural implementation are generally on different abstrac

tion levels. For the purpose of formal verification, the implementor of a specification has to

describe how the specification is mapped into the environment of an implemented structure.

The correspondence between two levels is called mapping. From the specification point of

view, this mapping is in fact the designer's decision, made while achieving a particular

95

implementation from a given specification. By the mapping, a specification can be inter

preted in the environment ofthe structural implementation, furthermore the interpretation can

be automated. In BEAVER, onlyminimal statemapping information is assumed.

5.5.3. Assignments

The body of a cell consists of assignments. The syntax of an assignment is shown as

follows:

(let var-name expression)

To avoid aggregating every multiple object when values are returned from a cell, a multiple-

valued assignment is allowed as follows:

(let var-list multiple-valued-expression)

Here the meaning of an assignment is closer to that of an equality in mathematics rather

than to that of an assignment of usual imperative languages. In procedural languages vari

ables are oftenused as a temporary scratch-pad; they are assigned a value and then reassigned

another value within the same section (scope)of a program. On the other hand, in functional

languages, a variable may be assigned an expression only once within a scope, while allow

ing the variable to be read as many times as desired. This is called the single assignment rule

and is found in data-flow languages such as VAL [174], and ID [175]. In functional

languages, variablesare not storagelocations, but are like macro names for expressions.

5.5.4. Recursions

A cell can be defined by a recursive function. The principle is based on the notion of

well-founded relations. In particular, (cell x\ • • • xn) may be defined to be some term

involving recursive calls of the form (cell y \ • • • y„), provided there are a measure and a

96

well-founded relation such that in every recursive call the measure of the v, is smaller,

according to the well-founded relation, than the measure of the a:,- [141].

It is assumed that a particular cell '<' is well founded and when an indefinite array is

defined, two axioms are added to the knowledge-set of the verification system, which are

required for the inductive proof involving the cell. This is explained in Chapter 7.

5.6. Primitive Cells

With the primitive language constructs, some cells are provided and these cannot be

derived from other cells. In this sense, they are calledprimitive cells. The primitive cells are

as follows: if, equal, 1+, 1-, values, nth, type-of, delay, and prev. In the following, each

primitive cell is described in more detail.

Since the system is based on the functional paradigm, there is no predicate of the usual

meaning. Hence insteadof formulas, thereare only terms. The functions whichreturn a value

of typeboolcan be viewed as predicates. Thecell if is usedto compose terms involving con

ditional expressions. The syntax of if cell is as follows:

(if bool-term terml term2)

The first argument bool-term should have bool type and the types of the two argument, terml

and term2 should have the same type. When thebool-term is true terml is returned otherwise

the term2 is returned.

The cell equal returns a value of bool type.

(equal lhs rhs)

When lhs term and rhs term denote the same value, the result is true, otherwise the result is

false. Since the language is strongly typed and the type checking is performed while a

97

description is read in, it isguaranteed that the types ofthe terms lhs and rhs are equal.

The two cells of

(1+ nat-term)

(1- nat-term)

are the successor and the predecessor functions of natural numbers. When the argument of

the cell 1- is zero, the result is zero.

Thecellvalues is used to aggregate multiple values as one return value and the cell nth

is used for the accessing of a value from the aggregation.

(values val\ vali " ')

(nth nat-term multiple-valued-term)

In the cell "values", each of the type of valt can be an arbitrary valid type. In the cell "nth"

the first value of the aggregation is indexed with one rather than zero, as in some program

ming languages.

The cell type-of returns the type of a term. The syntax of cell definition is shown as

follows:

(type-of term)

This ceil is mainly used for the polymorphic [176] celldefinition. Anordinary cell allows the

body to be expanded with arguments of fixed types; each time a polymorphic cell is called,

the body of thecell canbe instantiated witharguments of different types.

In general, the term "polymorphic" can also be applied to any language constructs, so

both polymorphic cells and polymorphic operators can be used. Built-in operators for index

ing arrays, applying functions, and manipulating pointers are usually polymorphic because

they are not restricted to a particular kind of array, function, or pointer. Polymorphic

98

functions are attractive because they facilitate the description of algorithms that manipulate

data structures, regardless of the types of elements in the data stmcture.

In BEAVER, polymorphic cell definition helps the user describe a cell, which is then

representative of allcells,without which cell definitions wouldhaveto be written many times

separately. The typical usage is illustrated as follows:

(defcell cell-name
(input (x) (y (type-of x)) • • •) • • •)

5.7. Macros

A macro definition mechanism [177] is provided to provide syntactic clarity of descrip

tions. The usage is as follows:

(defmacro name form)

The form can be either a simple symbolic constant or a general term. The macro is valid,

after its definition, in every cell definition.

As an example of the use of the macro command, a description which deals with

enumeration types, the conditional assignments usually have many branches. Sometimes the

description might get lengthy and difficult to read if only the primitive cell "if can be used.

To ease the description of multi-branching conditionals, the macro cell case is provided.

Semantically it is nothing but a short hand for a list of "if cells, although it may sometimes

providegreat convenience and improved readability. The syntax is as follows:

(case (enum-vari ••• enum-var„)
((enum-value \ ••• enum -valuen) term \)

[(otherwise term^)])

Here the enum-var's are variables with some enumeration type and each of the enum-values

99

are one of theenumerated constants of each type. Thelastoptional term of "otherwise" is the

default case. The type of termt should be compatible to each other, and the return type of a

case cell is determined by the type of term,. Note that each conditional branch should be

mutually exclusive and when there is no otherwise term, the cases of all branches should be

exhaustive to avoid any undefined values. The current implementation checks the type com

patibility between enum-var; and enum -value,• and between termx 's.

5.8. Conclusions

In this chapter, a behavioral description language has been presented, which is used in

the following two chapters for the description of timing and functional behavior. The seman

tics of the primitive language constmcts is based on functional formalism and is simple

enough to be formally manipulated by machine. For the description of timing behavior, two

language constmcts are included. For data abstraction, three type defining mechanisms are

provided. Also,recursive definitions are supported.

100

CHAPTER 6

HIERARCHICAL TIMING VERIFICATION

6.1. Introduction

The design of a VLSI system involves many decisions relating to several levels of tim

ing detail. The typical design decisions include choices of timing disciplines, such as srn-

chronous [153,178,179,180] versus asynchronous [153,180] disciplines; circuit design para

digms, such as static versus dynamic circuits in CMOS; the number of clock phases; and the

temporal behavior demanded of specific input signals, such as intervals of time over which

they must be stable. Usually the abstraction levels of timing behavior are not well-

categorized and are less generally accepted than those of functional behavior. This is due to

the fact that no well-defined framework exists for dealing with the various aspects of system

timing.

The two very different disciplines of design, synchronous systems and asynchronous

systems originate from the two different viewpoints about the connection between sequence

and time. One major approach to asynchronous VLSI system design is self-timed [181]

methodology. In self-timed systems, all signals are "held up" as necessary until the slowest

one arrives. Sequence and time areconnected in the interior of system components called ele

ments and all system events are assured to occur in proper sequence rather than at particular

times. In synchronous systems, which are a prevailing discipline for current digital VLSI

system designs, system-wide synchronizing signals are generated by a clock generator. These

clock signals are used for synchronization by holding up signals periodically to equalize the

101

delays. Hence in synchronous system, sequence and time are connected through clock sig

nals.

Whatever system timing discipline has been chosen, the timing of each of the signals in

the system must be properly managed for the successful operation of the system. Otherwise,

the system will have timing problems or will fail to meet its performance objectives. When

tiie system size was small, it was possible to design the system so that all the signals arrived

at intended places in the intended sequence. However, as the system size grew larger and the

design involved more complex work, the prediction of propagation delays of signals through

the system became more difficult and managing all signals became extremely complex. To

check the correctness of timing, the logic or circuit designer could utilize computer-aided

design tools such as simulators. However, simulation is not guaranteed to locate the correct

longest delay of a system unless the system is simulated with all possible input vectors. On

the other hand, timing verifiers carry out only one or a few analyses using an approximate

delay model and report much of the information necessary to improve or correct the design.

Therefore, timing verification is preferred for the proof of absence of any timing violation in

a digital VLSI system.

Since the work of Kirkpatrick and Clark [182], much research and development work

on timing verification (eg. [183,184,185,186,3,187,4,5,188]) has been performed. How

ever, most of these techniques assume that the design description is flattened down on a par

ticular level (typically gate-level or switch-level) and is inappropriate for the use in hierarchi

cal design environments.

In this chapter, timing constraints of synchronous digital systems are described. Then

the hierarchical timing verification method with the timing model employed in this disserta

tion is explained. Since the functional relationships of input-output pairs are available while

102

timing verification is performed, the static-false-path (or static-insensitizable-path) problem

which is one of the importantproblems of timing verification is eliminated. Recently, a study

[189] has been performed which illustrates that static timing analyzers generally cannot

guarantee an upper bound of the worstcase delay for somepathological circuits. Also, due to

the nature of the abstraction mechanism of timing information for sequential cells, the timing

verifier can be used as a "timing consultant" to determine the clock separation time needed

for each phase. Finally, experimental results of the timing verification are illustrated.

6.2. Timing Constraints of Synchronous Digital Systems

In the discipline of synchronous design, the clock signal serves two purposes [153].The

clock is a sequence reference and also a time reference. As a sequence reference, its transi

tions serve the logical purpose of defining successive instants at which system state changes

may occur. As a time reference, the period or interval between clock transitions serves the

physical purpose of accounting for elementand wiring delays in paths from the output to the

input of clocked elements. The timing constraints of synchronous system are usually derived

from the clock period and propagation delays of combinational logic block between two

clocking elements.

6.2.1. Clocked Storage Elements

The simple logical model that synchronous systems resemble is the finite-state machine

(FSM) [153]. As illustrated in Figure 6.1, any such system must satisfy a topological require

ment that every closed signal path pass through a clocked storage element. The clocked

storage elements are used in a synchronous system to hold up the movement of signals to the

next stage of the combinational logic until a predefined amount of time has passed. Closed

Inputs -f- £• •f- ^ Outputs

Present

state

1—>

y

CSE (f
^

? Clock signal(s)

Next

state

CL: Combinational Logic
CSE: Clocked Storage Element

Figure 6.1 Simple clocking scheme of synchronous system

103

paths that donot pass through clocked storage elements are excluded as they maycreate non-

deterministic behavior, either through oscillation or through asynchronous latching. With

this constraint on the logic design the designer is relieved of any requirement that the combi

national logic be free of transients (static or dynamic hazards) on its outputs. The only

dynamic characteristic of acombinational net that matters is its propagation delay time.

As will be explained shortly, thetiming constraints for the system depend upon the type

of clocked storage elements used in addition to the clocking strategy. One type of clocked

storage element is the edge-triggered type. The edge-triggered, clocked storage element

samples and latches its input data value during ashort period (sampling interval) around aris

ing or falling clock edge, and changes its output state on the clock edge. If a rising clock edge

104

causes the element to change the output state, the element is called positive edge-triggered

type. Otherwise, theelement is called negative edge-triggered type. Another type of clocked

storage elements is the transparent type element. These are more popular than the edge-

triggered type in MOS VLSI designs. There are pulse-width sensitive elements such as the JK

master-slave flip-flop, but due to the glitch-catching problem [190], they are rarely used. In a

transparent clocked storage element, the clock node works as an enable signal node, which

makes the element transparent (i.e. the output follows the input) when the enable signal is

active. The element may be active while theenable signal is high or may be active while the

enable signal is low. The transparent type is also an example of the level sensitive type,

because the element becomes transparent when the enable signal is active. Note that, unlike

the edge-triggered element, the output of the transparent type element follows the input data

as soon as it becomes available during the enable period.

6.2.2. Timing Constraints with Edge-Triggered Type Elements

In a system using edge-triggered elements, it is important to keep the input data

unchanged during the sampling interval at an activating clock edge to guarantee that the

correct input values are latched. A setup time [178,180] (Tsetup) is therequired time an earlier

input data value must be held stable prior to theactivating clock edge. It is important to note

that a "0" setup time does not imply there is no setup time. A Tsetup of "0" means that the

input signal value cannot stabilize later than the occurrence of the clock edge. A hold time

[178,180] (Thoid) is the required time an input data value must be stable following the

activating clock edge. If the hold time is negative, the inputdatavaluemaychangebeforethe

activating clock edge. A negative hold time is often called a release time [178,180]. Gen

erally, if the slowest arriving signals settle at the input nodes of clocked storage elements by

105

the setup time before an activating clock edge, they will usually remain stable until the end of

the hold time, unless the combinational logic blocks are extremely fast. Since the hold time

is usually negligibly smaller than propagation delays through logic paths, or sometimes even

negative, many timing verifiers check only whether or not the input data of clocked storage

elements become stable before the setup time.

Consider a single-stage clocked path, illustrated in Figure 6.2. Suppose that CS£, and

CSEj are edge-triggered type. Then the propagation delay ofthe combinational block, Dql ,

must satisfy the following constraints to ensure that input data to CSEj settles before the

>- b

Figure 6.2 Single-stage clocked path

a —>• CSE McliV-^ CSE MCL2) > CSE •> B

Figure 6.3 Multistage clocked path

106

setup time:

Dcl £ [t (ty, ACTIVATE) - Tsetup (CSEj)] -1 (<j>,-, ACTIVATE) (6.1)

where t is a function mapping the clock phase into real time on a timing chart. The second

argument determines the edge in which the user is interested. Note that t (<{>;, ACTIVATE), a

timepoint at which the activating clock edge of ty of CSEj occurs, is the next closest one to

(J),- on the timing chart. If the clock signals shown in Figure 6.4 are used for synchronization

andthe two clocked storage elements are positive edge-triggered type, Equation (6.1) canbe

rewritten as follows:

DCL ^ t3-tl-Tsetup(CSEj)

The timing constraints of a multistage clocked path, illustrated in Figure 6.3, are

derived in the same way as in the case of a single-stage clocked path. Any multistage

Tp

t1 t2 t3 14 t5 t6

Figure 6.4 A clock signal example

107

clocked path using edge-triggered clocked storage elements, including the one which con

strains a clock period by forming a loop, satisfies timing constraints automatically if each of

its constituent single-stage clocked paths satisfies timing constraints. Thus, when verifying a

system which employs edge-triggered clocked storage elements, timing verification can be

performed by obtaining the maximum propagation delay through each single-stage combina

tional logic block and applying the Equation (6.1).

6.2.3. Timing Constraints with Transparent Type Elements

Unlike in a system using edge-triggered type elements, in a system using transparent

type elements, input signals are sampled during a short time interval just before the inactivat

ing clock edge ~ this is the setup time of transparent type elements. In order for correct

values to be latched, input signals must remain stable during this setup time.

Consider a single-stage clocked path, illustrated in Figure 6.2. Suppose the clocked

storage elements CSEj and CSEj are of the transparent type. To ensure the correctinputdata

to be latched, the propagation delay Dql must satisfy following constraint:

Dcl ^ [r (ty, INACTIVATE) - Tsetup (CSEj)] - t (<fc, ACTIVATE) (6.2)

In the above inequality, r((|>y,INACTIVATE) is the next closest one to t(ty,ACTIVATE) on

the timing chart. If the clocked storage elements CSEj and CSEj are the same one, i.e. the

clocked path forms a loop, the first term of Equation (6.2) should be replaced by

t (<J>,-, ACTIVATE). If a particular single-stage clocked path forms a loop, the path is employ

ing a single-phase clocking strategy. In this case, the delay of the combinational block con

strains a clock period. Otherwise, the delay constrains a clock separation, which is a separa

tion between clock edges of different phases. Note that a single-stage clocked path using

transparent elements may use both the time interval between the activating and inactivating

108

edges (or vice versa) of preceding clock phase and that of succeeding clock phase for logic

evaluation, unless it forms a loop. In Figure 6.2, if CSE, and CSEj are positive-active tran

sparent type and clock signals illustrated in Figure 6.4are used for synchronization, Equation

(6.2) yields the following constraint:

DCL ^ t4-tl-Tselup(CSEj)

In a system using transparent type elements, the timing constraints of a multistage

clocked path are not as simple as in a system using edge-triggered type elements. This is

much better understood with a specific example rather than with an explanation of a general

case. Consider an example illustrated in Figure 6.5 where all the clocked storage elements

are of a positive-active transparent type. The logic evaluation times of block CLl, CL2, and

CL3 are from 11 to 13,12 to 15, and r4 to 16, respectively. However, even when each of the

three single-stage clocked paths satisfy their corresponding single-stage timing constraints,

the resulting multistage clocked path may not satisfy timing constraints which are required

for correct operation. For example, even if the delay through the blockCLl, Dql h and me

delay throughthe block CL2, Dcli, satisfy the following constraints, respectively,

Dcli £ t3-tl-Tsetup(CSE2)
Dcli ^ t5-t2-Tsetup(CSE3)

it is not guaranteed to satisfy this constraint:

Dcl\+DCl2 £ t5-tl-Tsetup(CSE3)

Therefore, when a multistage clocked path is examined, all of its nested clocked paths must

be examined. If a multistage clockedpath hasN constituent single-stage clockedpaths, it has

N . ,
y / nested clocked paths. Since the path of Figure 6.5 has three constituent single-stage

paths, the following six nestedclocked paths must satisfy their timing constraints in this par

ticular example:

«1

A.
CSE1 WCL1) >•

« 1

* 2

*3

$ 4

* 3

A.
CSE2

t2 t3

109

• 2

I
MCL2J >- CSE3 HCL3) >• CSE4 —>

(a)

t4 t5

(b)

Figure 6.5 An example of three-stage clocked path in a four-phase clocking system

(1) Single-stage nested clocked paths:

Dcli ^ t3-tl-Tsetup(CSE2)
Dcli ^ t5-t2-Tsetup(CSE3)
DCL3 £ t6-t4-Tselup(CSE4)

(2) 2-stage nested clocked paths:

110

Dcl\+DCl2 ^ t5-tl-Tsetup(CSE3)
DcL2 + DCL3 £ t6-t2-Tsetup(CSE4)

(3) 3-stage nested clocked path:

Dcli+Dcl2+Dcl3 ^ t6-tl-Tsetup(CSE4)

More extensive study of the timing constraints for a systemusing transparent elements and a

system using mixed elements of edge-triggered and transparent clocked elements has been

performed elsewhere and the results can be found in [180,191].

Note that the reason the timing constraints of amultistage clocked path with transparent

type elements are more complex is because each single-stage path with transparent type may

take more delay time than in the case of edge-triggered type by the interval from the activat

ing edge to the inactivating edge (i.e. bythe duration of aclock pulse). For example, if clock

signals shown in Figure 6.4 are used for the synchronization of the single-stage clocked path

shown in Figure 6.2, the time interval from 13 to 14 is the difference. However, as previously

explained, not all single-stage paths with transparent type elements are allowed to exploit the

difference for its logic evaluation. Once the interval has been taken for the evaluation of the

previous stage, then the delay time for the next stage should be shorter than the delay time it

can otherwise take. Note that whenever each of the single-stage paths satisfies the timing con

straints of a system using edge-triggered type elements (Eq. 6.1), it is guaranteed that the tim

ing constraints of a system using transparent type elements are satisfied. In practice, most

circuit designers avoid the complex timing constraints and employ aconservative approach to

the allocation of the evaluation time for their combinational logic blocks. They usually use

the timing constraints of a system with edge-triggered type elements even though they are

using transparent type elements for theirclocked storage elements.

Ill

In this chapter, the timing constraints of a system with edge-triggered type elements are

considered.

6.3. False Path Problem

There are two possible approaches in propagating signals in a system for timing

verification: value-dependent and value-independent propagations. In the value-dependent

approach, when a signal at an input node ofa logic block changes, its effect is propagated to

the output node of the logic block only when the other input conditions support it. Conven

tional circuit and logic level simulators belong to this approach. On the other hand, in the

value-independent approach, the input change is always propagated to the output node of the

logic block without attempting to check whether the signal conditions at other input nodes

functionally support that propagation. Most timing verifiers [182,183,184,3,4,5,188] use a

value-independent approach. Consider an example illustrated in Figure 6.6 which compares

the two approaches. For the simplicity of comparison, it is assumed that all logic gates

(AND, OR, NOT) in Figure 6.6 havea unit delay. Also, it is assumed that the longest delay

from input nodes A and B to an output node £ is evaluated, when both inputs are applied to

at time f=0. The results of signal propagation are shown in Table 6.1. The two cases in

Table 6.1 correspond to values 0 and 1 for the primary input B. Input A has value a. When

B is 0, the output E reaches its steady state (value 0) after 2 unit delay. The corresponding

worst case delay path is Path B-(AND gate)-D-(OR gate)-E. When C is 1, the output £

reaches its final value 1 in just 1 unit delay, even though the value of node D is settled down

after 2 unit delay. In this case, the worst delay path is Path B-(OR gate)-E. On the other

hand, when the value-independent approach is used, both the rising and the falling worst

delays are 3 unit delays through Path A-(NOT gate)-C-(AND gate)-D-(OR gate)-E. Because

A —>- NOT

AND
D

OR

Figure 6.6 An example illustrating false path problem

case time

node signals
critical-path

A B 1C D E

I

0 a 0 - - -

B-D-E1 a 0 a 0 -

2 a 0 a 0 0

II

0 a 1 - - -

B-E1 a 1 a - 1

2 a 1 a a 1

Table 6.1 Propagation of signals in the circuit shown in Figure 6.6

112

these delays are the worst among all possible cases, they are called the worst-case delays.

Value-independent worst delays are usually pessimistic, compared to value-dependent worst

delays computed by simulation. In this example, the worst delay path is the one which can

not be activated under real operating conditions. In Figure 6.6, in order for the signal change

113

at Node C to propagate to Node D through the AND gate, Node B must be at logic "1". On

the other hand, in order for the signal change at Node D to propagate to Node £ through the

OR gate, Node B must be at logic "0". Because the two conditions conflict with each other,

this value-independent worst delay path, A-(Buffer)-C-(AND gate)-D-(OR gate)-E, can not

be activated. The paths that are detected by value-independent approach but cannot be

activated under real operating conditions are called false paths. When the value-independent

approach is employed, the user needs to perform a case analysis [184], which analyzes a

number ofdifferent cases within a given circuit, one after another, toexclude false paths from

consideration. Inspite of the false path problem, the value-independent approach has mostly

been employed due to its advantages of significantly reduced work in finding the critical

paths in a system and test completeness. Recently, some studies [192,193] have been per

formed to identify false paths by checking the consistency of the signal conditions that are

necessary for paths to be activated.

In this chapter, it is demonstrated how the verifier uses the functional relationships it

has available to eliminate static false paths. The approach of theverifier is value-independent

in the sense that theuserdoes not need to provide anyvalues as inputs. Meanwhile, since the

functional relations between signals are known in symbolic forms, the insensitizable paths

can be detected and eliminated.

6.4. Timing Model

Formal approaches to thespecification and verification of timing behavior hasnot been

well investigated and no well-defined framework exists for dealing with the various aspects

of timing behavior. The temporal logic approach has been suggested as a specification for

timing and has been attempted in order to apply to synchronous digital systems as well as to

114

asynchronous systems. The use of temporal logic may help for asynchronous systems; how

ever, there is no strong motivation to employ temporal logic in synchronous systems.

In this section, the timing model employed in this dissertation work is introduced. The

timing model is aimed at solving the problem for specifying and verifying synchronous digi

tal designs which results in the timing constraints explained in Section 6.2.

6.4.1. Two Language Constructs for Timing Behavior

Two language constructs are provided for the description of timing behavior: delay and

prev. These two constructs are the names of primitive cells. The usage of the two cells are

as follows:

(delay delay-value term)

(prev sync-name term)

The delay cell assigns a transportation delay [178,180] to a term. The type of the delay-

value is time which was explained in Chapter 5. The detailed meaning of the value is deter

mined by the user. It may denote the quantity measured by the so-called "minimum resolv

able time" [37] unit or the value in real time in some unit such as nanosecond or picosecond.

The semantics of prev cell is determined by the returning value. The cell returns the value of

the term, at the closestprevious instant of the synchronizing signal of "sync-name". Note that

unlike most hardware description languages in which the temporal viewpoint is from the

present to the future, in this work, the temporal viewpoint is from the present to the past

[146]. This is more natural and more appropriate for functional formalism. The type of the

sync variable is sync which was explained in the previous chapter.

115

6.4.2. Declaration of Global Synchronizing Signals

Global synchronizing signals are defined using defsync construct. The usage of def-

sync form is as follows:

(defsync period (sync-namel time-pointl) (sync-name2 time-point2) • •)

The period can be an arbitrary cycle period. It may represent a machine cycle or just one

clock cycle or even multiples of several machine cycles. For a given period, as many syn

chronizing signals as necessary may be introduced. Each of the synchronizing signals may

represent the rising or falling edge of a certain clock phase or other special timepoints in

which the user is interested. As an example, consider Figure 6.7. The timing chart illustrated

in the lower part ofFigure 6.7 can be thought ofas an unrolled version of the circular timing

diagram. The origin of timepoints may be fixed arbitrarily by the user. Once the origin is

fixed, the order of the timepoints of synchronizing signals is determined. In the example, all

the rising andfalling edges are declared as synchronizing timepoints.

6.4.3. A Modeling Example: Clock Skew

In this subsection, a simple modeling example is presented to illustrate how the two

language constructs for timing are used.

In a synchronous system, clock signals are distributed to various points via conducting

wires. Even though clock signals are usually distributed by metal wires to reduce the delay

owing to the parasitics in a VLSI system, there is a variation in the arrival time of clock sig

nals to different clocked storage elements due to different propagation delays. This arrival

time variance is called clock skew. Clock skew changes both the effective clock period and

the clock separations and, as a result, generally impacts system performance adversely or

even causes timing errors. An extreme clock skew may turn nonoverlapping clocks into

sync4

phil

synd

phi2

A

synd

sync2

sync3

sync2
-> t

sync3 sync4
-> t

Figure 6.7 An example of a global synchronizing signal declaration

116

overlapping clocks and may introduce a two-sided timing constraints. Note that clock skew

is relative to signal delay to a particular logic gate and is not a function of the absolute delay

of signals in the circuit. Since it is difficult to predict clock skew and clock timing exactly,

the control of clock skew is a problem in large systems, including VLSI systems. Although

the clock delay can be reduced by placing re-shaping circuits at intervals along a long line,

the overall delay is still fairly long compared to the propagation delay through a single gate.

117

A popular method of looking at the influence of clock skew is to use a simple delay

transformation. In a logic block, if a delay (which can be positive or negative) is added to

every input and the same delay subtracted from every output, the cell's timing remains

unchanged [180]. This delay transformation provides a simple way to look at the influences

of clock skew on the timing constraints. Suppose a clocked storage element, CSE, has a

clock skew of Dske»,. The clock skew on the clock signal path to CSE can be eliminated by

adding a delay Dskew to the logic path following CSE, while the same delay is subtracted

from the other logic path which precedes CSE. This transformation is shown in Figure 6.8.

QDskew

X CL1 >- CSE >TcL2 \

V

skew

"H CL1 >- CSE

+D
skew

CL2) >-

Figure 6.8 Clock skew modeling example

The clocked storage element cell, CSE, can be described in BEAVER as follows:

(defcell CSE ; cell name
(input (phi sync)(inbit)) ; inputdeclaration
(output (out bit)) ; output declaration
(let out (delay +Dskew (prev phi (delay -Dskew in)))) ; body

118

6.5. Abstraction of Timing Behavior

In general, it is a self-consistency property that is checked in timing verification while

in functional verification it is a cross-consistency between two descriptions. In other words,

timing verification can be performed within a cell definition, while functional verification

requires at least two definitions for comparison. In BEAVER, when a cell is read and

checked, the timing behavior is abstracted and if there are any timing constraints to be

satisfied, they are checked during this phase. When the verifier detects any timing violation,

it reports the cell name in which the violation occurred and the cell definition is stored

without any of its timing information.

Every cell falls into one of two classes from the timing viewpoint: combinational and

synchronous. A combinational cell is composed of onlycombinational subcells. In a combi

national cell, the only timing cell allowed is delay. A synchronous cell can have eithercom

binational cells or synchronous cells as its subcells and it should have at least one synchro

nous cell which uses the construct prev. In a synchronous cell, the two timing cells can be

used arbitrarily in a description. This section explains how cells are abstracted.

6.5.1. Combinational Cells

Combinational cells are abstracted using worst-case delay values. When a cell is

single-input and single-output as illustrated in Figure6.9 (a), the meaning of worst-case delay

119

value is clear. In graph-theoretical terms, it represents the sum of the weights of the longest

path from the source node, input, to the sink node, output. Most methods of static delay com

putation choose the worst-case delay among the delays between the pairs of input and output

nodes as a delay for a multi-input multi-output logic block. For example, in Figure 6.9 (b),

input output

(a) Single-input single-output case

inputl Q

outputl

input2

output2

input3

(b) Multi-input multi-output case

Figure 6.9 Abstractionof combinational cells

120

the worst-case delay value is the single largest value among the six delay values of the paths

from inputi to outputj, where / = 1,2,3 and ; =1,2. This simple method is faster than the

method which will be described in the following. However, this simple method tends to

overestimate path delays too much. In this dissertation, the following more accurate

approach, is employed. For a multi-input multi-output cell, the abstraction becomes the set

of worst-case delay values for each output from each of the inputs. Each value is then associ

ated with the input-output pair so that when the cell is instantiated within another cell, the

delay value is correctly interpreted to avoid overestimation.

Asmentioned earlier, since the input-output functional relationships areavailable, static

false paths canbe eliminated without any further significant amount of work. When a cell is

read, all terms that contain //-forms are normalized to make later functional verification pro

cess more efficient. The normalization is essentially based on the following equality.

(if (if til tl2 tl3) t2 13) o (if til (if tl2 t2 t3) (if tl3 t2 t3))

This rewrite rule is applied to a term recursively so that no if-form appears as its first argu

ment in any term or sub-term. During this normalization, at each node of an if-form when

ever a true or false case branch is traversed, the test condition is appropriately assumed as

false or true, and the information prevents insensitizable paths from contributing to the long

est path.

For example, the normalization process for the circuit shown in Figure 6.10 [3] is as

follows:

t = (if y (delay 5 x) (delay 100 x))

z = (if (not y) (delay 5 t) (delay 100 t))
= (if y (delay 100 t) (delay 5 t))
= (if y (delay 100 (if y (delay 5 x) (delay 100 x)))

(delay 5 (if y (delay 5 x) (delay 100 x))))
= (if y (if y (delay 105 x) (delay 200 x))

delay

delay 100

m

u

x

t r— delay

•— delay 100

{>>

Figure 6.10 An example to illustrate the normalization process

m

u

x

121

(if y (delay 10 x) (delay 105 x)))
= (if y (delay 105 x) (delay 105 x))
= (delay 105 x)

First, the output z is expressed as a function of an input variable y and an intermediate vari

able t and the true-case and the false-case term are exchanged with complementing the test-

case. The intermediate variable t is replaced by its value. The delay is propagated to its

arguments. Now when the true-case of the first-level if-form is normalized, since y is

assumed true, the true-case term of the second-level if-form is returned. Likewise, when the

false-case of the first-level if-form is normalized, the false-case term of the second-level if-

form is returned. Finally, since the true-term and false-term are equal, the result is given as

any oneof the two. If the functional relations are notconsidered, the worst-case delay would

be the maximum value among the terms, which is 200 instead of 105.

Now consider Figure 6.11 where two hierarchical levels are used to describe the same

circuit as shown in Figure 6.6. As in the case of Figure 6.6, each gate delay is assumed as

LEVELO

NOT

LEVEL1

LEVEL2

r

LEVEL1

r
OR

c o (delay 1 (if a false true))

d o (and2 (invl a) b)

e a (or2 (level 1 a b) b)

Figure 6.11 Hierarchyand directive for expansion

122

one. Since the timing verifier does not flatten subcells when it abstracts a cell, the worst

delay of thecircuit described in level 2 is evaluated as three. However, if the same circuit had

been flattened completely, the worst delay would be two. To provide the user with the con

trol of flattening cells selectively, a special language construct calleddirective is provided in

BEAVER. This construct tells BEAVER to expand the current cell one level down. Thus, to

evaluate the delay of thecircuit correctly, thecells should be described as follows:

(defcell level-1
(directive expand)
(input (a bool) (b bool))
(output (d bool))

123

(let d (and2 (invl a) b)))

(defcell level-2
(directive expand)
(input (a bool) (b bool))
(output (e bool))
(let e (or2 (level-1 ab)b)))

Here thecells, invl, and2, and or2 are defined using the primitive constructs delay and if.

6.5.2. Synchronous Cells

A synchronous cell contains one or more clocked storage elements or has at least one

synchronous subcell. Each definition ofthe clocked storage elements require a synchronizing

signal. Two mechanisms are provided in the verification system to introduce synchronizing

signals: local declaration and global declaration. In a local declaration, synchronizing sig

nals are defined in the formal parameter list. When a cell is defined with synchronizing sig

nals as formal parameters, its timing constraints are not yet fully specified. The cell is to be

used in different contexts of the synchronizing environment when thecell is instantiated later.

The global declaration is explained in Section 6.4.2. In the case of a global declaration, the

temporal distance between timepoints of the synchronizing signals are specified, and the tim

ing constraints can be checked at this point.

6.5.2.1. Four Kinds of Timing Information

Thetiming information of a synchronous cell is abstracted as four kinds of information:

input timing information, output timing information, internal timing constraints, and delay

information.

Input timing information is a set of delay values from each input to each clocked

storage element, where each clocked storage element is the first-leveled one when the net-

124

work is traversed in breadth-first manner from inputs. Figure 6.12 is an example to illusu-ate

the meaning of each timing information. In this case, there isonly one input which is fed into

the first clocked storage element L1. Thus the input constraint is simply the delay value of

the combinational logic block CL1.

input

Internal

output

CL's: combinational logic blocks
L's: clocked storage elements

delay

Figure 6.12 Abstraction of timing behavior of a synchronous cell

125

Output timing information is similarly defined. It is a set of delay values to each output

from each of the last clocked storage elements when traversed in breadth-first manner. In

Figure 6.12, there is only one output and one last (Level 2 in this case) clocked storage ele

ment, L2, through the combinational logic block CL3. Hence the output timing information

is just the delay value of CL 3.

Internal timing constraints are derived from the delay values of the combinational logic

blocks which are present in between each of the two consecutive clocked storage elements.

Since the synchronizing signals are defined in two different ways, the internal timing con

straints are classified into two cases. When the synchronizing signals are declared as formal

parameters, the temporal distance between the two synchronizing signals is yet unknown and

the delay values of the combinational logic blocks constrain the separation of the synchroniz

ing signals. These constraints are saved with the cell definition and are checked if they are

satisfied when the cell is instantiated later within a cell which uses a globally declared syn

chronizing signals. Conversely, when the synchronizing signals are globally declared, the

separations of synchronizing signals are given and they are used to check for delays of the

combinational blocks that are greater than the allowed periods. If there is no timing violation,

the cell is defined without any internal timing constraints. Otherwise, the timing error is

reported. In Figure 6.12, when the synchronizing signals are formal, the following two con

straints are saved associated with the cell definition:

(delay-of CL2) < temporal distance from sync1 to sync2

(delay-of CLl) < temporal distance from sync2 to sync 1

When the synchronizing signals are global, the above two constraints are checked based on

the declarations of sync1 and sync2.

126

Delay information is mainly for combinational cells; however, even in a synchronous

cell there may bedirect paths from inputs tooutputs without any clocked storage elements in

the paths. As explained earlier, delay information is the set of worst delay values from each

input to each output.

6.5.2.2. Instantiations of Synchronous Cells

When a synchronous cell instantiates other synchronous cells as oneor more of its sub-

cells, four possible cases can arise according to the four combinations of the mixed usage of

synchronizing signal declarations. The four cases are illustrated in Figure 6.13. Figure 6.13

(a) illustrates thecasewhen theupper level cell and the lower level cell areboth defined with

formal synchronizing signals. In this case, all the internal timing constraints of the subcell are

abstracted untouched except the change of variable names. In Case (b) where the subcell is

defined with formal synchronizing signals and the upper level cell uses global signals, the

internal timing constraints of the subcell are checked and the output timing information is

used when the timing constraints associated with the last synchronizing signal are checked.

Note that when the subcell uses globally-defined synchronizing signals as illustrated in Case

(c) of the figure, there areno internal timing constraints to bechecked. Only the output tim

ing information is used when the timing constraints associated with the last synchronizing

signal are checked. When a cell is defined with formal synchronizing signals, thecell is to be

used in different timing contexts and it is reasonable to assume that no synchronous subcells

of a cell can use global synchronizing signals. Hence the last one illustrated as Case (d) in

the figure is excluded from the possibilities.

(a)

formal

^ \

formal
\

"" r

\
f

(c)

global

>
global

>

•>

(b)

(d)

>

>

>

global

t

formal
^
r

formal

>
global

>

Figure 6.13 Four possible cases ofa synchronous cell instantiation

127

6.5.3. Compositions of Timing Information

The abstraction process of timing information is based on a depth-first traversal of the

network. From an output, until a primary input or a clocked storage element is encountered,

the timing information ofeach net is propagated backward from the outputs to the inputs of

each subcell. The timing information ofeach net is comprised of two different kinds of delay

information: one is the delay from the current net to the primary output of the cell being

abstracted, and the other is the delay from the current net to the closest clocked storage ele

ment which has already been traversed. Whenever a delay cell is encountered, the delay

128

values of the timing information of the current net are incremented by the amount of the

delay value of the delay cell. When a subcell is met during the abstraction process of a cell,

all the timing information of the subcell must be considered. For notational convenience, let

the timing information of the current net be current-timing-info. In the following, each pro

cess involved in the abstraction of the four kinds of timing information is explained.

6.5.3.1. Compositions of Output Timing Information

First, the process involved in the output timing information associated with the subcell

is explained. If current-timing-info is empty, which is illustrated as Case-1 in Figure 6.14, the

output timing information of the subcell is used to update the output timing information of

the current cell. Since there is no output timing information of the current cell yet, the output

timing information of the subcell is copied to the slot of the current cell's timing information.

On the other hand, if there is output timing information in the current cell, check first to see if

it originates from the same synchronizing signal as in the subcell. If that is the case, choose

the larger one as the current cell's output timing information. If they are originated from dif

ferent synchronizing signals, append the subcell's output timing information to that of the

current cell.

If current-timing-info is not empty, two different cases can occur. When current-

timing-info is the delay information from the current net to the primary output of the current

cell like the case of Case-2 in Figure 6.14, the output timing information of the current cell is

updated with consideration to the delay value of the output timing information of the subcell.

When current-timing-info is the delay information from the current net to the closest

clocked storage element as Case-3 in Figure 6.14, the output timing information of the sub-

cell invokes an internal timing constraint of the current cell. When both synchronizing sig-

129

now current-timing-info

current cell

input-timing-info

internal-constraints

output-timing-info

delay-info

current-timing-info

V V

Figure 6.14 An example illustrating the tuning information composition process

nals are global, a timing check is performed, and when both synchronizing signals are local,

internal timing constraints are saved for later check. Because no coexistence of global and

local synchronizing signals are allowed inacell definition, when the subcell is formal and the

current cell is global (Case (b) of Figure 6.13), the synchronizing signals of the subcell must

have been instantiated into global signals. At this point whether the subcell uses a global

130

synchronizing signals and the current cell uses local synchronizing signals (which is forbid

den) is also checked.

6.5.3.2. Compositions of Internal Timing Constraints

Resolving the internal timing constraints of a subcell is straight forward. When the sub-

cell and the current cell use formal synchronizing signals, the internal timing constraints are

just copied to those of the current cell. When the current cell uses global signals, the con

straints can be checked, and hence either they are simply resolved or result in errors,depend

ing on the delay and the separations of synchronizing signals.

6.5.33. Compositions of Delay and Input Timing Information

The output timing information and the internal timing constraints of the subcell are

used for updating the output constraints and internal timing information of the current cell.

Contrarily, the delay and input timing information of the subcell are used for updating the

data associated with the new current-timing-info at the input net of the subcell. This process

proceeds as follows.

For each input of the subcell, if there is a direct path from the input to the current net

(which is the output net of the subcell), each delay value in current-timing-info is incre

mented by the delay of the direct path, then, the current-timing-info and input timing infor

mation of the subcell is merged. Conversely, when there is no direct path, which means

every path from an input toan output contains at least one clocked storage element, the input

timing information of the subcell becomes a new current-timing-info of the input net.

131

6.6. Examples and Results

In this section, the timing verification part of BEAVER is evaluated with several exam

ples. The results of delay evaluation arecompared to those obtained from a timing analyzer

which does not consider the functional relations between signals. The library gates used in

all the examplesof this sectionare summarized in Table 6.2.

A simple example is shown in Figure 6.15. This example is included to illustrate how

insensitizable paths influence the worst delay evaluation in a typical timing verifier. Theout

put, D, is a function of both inputs; however, the dependence of the output, D, on the input,

A, comes through the last AND gate rather than through Path-1 in the figure. Also note that

Path-2 from the input, B, to the output is not sensitizable either. Without any functional

information at each node, these false paths can not be detected. Hence the typical timing

analyzer might report that the critical path is Path-1 from A to D with delay 5.8, where the

actualcritical path is Path-3 from B to D withdelay3.2.

To evaluate the performance of BEAVER, several examples have been selected. The

experimental results are summarized in Table 6.3. In the table, the first column is the cell

name described in the language of BEAVER. The BEAVER descriptions of these cells are

included in Appendix A. The second column is the result of delay evaluation for an input-

output pair of each circuit. When the value is represented by a single entity, it means the

worst delay, and when the value isrepresented by a list, it illustrates the worst and the second

worst. The last column is the cpu-time in seconds ona VAX 8800 machine. The cpu-times

are obtained by a compiled code of VAX Common Lisp.

The first example, brand2, illustrated inFigure 6.15 is obtained from [192].

The examples r-c4d and l-a4d are four bit adders implemented by ripple-carry and

carry-look-ahead, respectively. Thecritical paths in both cases were thepath from thecarry-

cell name description delay

invl inverter 1.0

and2 2-input and gate I 1.6
nand2 2-input nand gate | 1.6
or2 2-input or gate 1.6

nor2 2-input nor gate I 1.6
xor2 ! 2-input xorgate i 1.6
and3 3-input and gate 2.0

nand3 1 3-input nand gate 2.0

or3 3-input or gate 2.0

nor3 | 3-input nor gate 2.0

and4 4-input and gate 2.8

nand4 4-input nand gate 2.8

or4 4-input or gate 2.8

nor4 4-input nor gate 2.8

and5 5-input and gate 4.0

nand5 5-input nand gate 4.0

or5 5-input or gate 4.0

nor5 5-input nor gate 4.0

Table 6.2 Library gates

C = B

path-3

D = A and B

Figure 6.15 An example obtained from [192]

132

133

cell name
worst delay cpu-time (sec) j

BEAVER 1 without functionality BEAVER without functionality

brand2 (3.2 1.6) I (4.8 5.8) 0.02 0.01 I

r-c4d 12.8 I 25.6 5.79 0.36

l-a4d 8.4 i 9.6 4.16 0.20 i

fet-nop (12.2 6.0) i (12.212.2) 4.9 0.33

fet-opt ! (12.8 7.2) I (12.8 9.4) 11.8 0.32

opcode-nop 15 | 21.8 72.3 7.2 i

opcode-opt 13.6 I 24.8 76.7 8.4 !

Table 6.3 Results of comparison for delay estimates

in to the carry-out of each circuit. In r-c4d, the analyzer without functional information

evaluates the worstdelay as twice of the delayevaluated by BEAVER.

The examples fet-nop and fet-opt are obtained from the instruction-fetch controller of

SPUR [104] CPU. They are implemented by running the BDS [194] description of the con

trol logic using a logic optimizer MIS-II [87], which also performs the technology mapping.

The same Hbrary cells of Table 6.2 are used for MIS-II. The postfix, '-opt', means that the

circuit is implemented with optimization, and the postfix, '-nop', means that nooptimization

but only a technology mapping was performed in the MIS-II session. Inboth cases, the worst

delays are the same, but the second worst delays are different from each other.

The final example pair of Table 6.3 was obtained from the instruction decode logic of

SPUR CPU. The number of gates of opcode-opt circuit is 132and that of opcode-nop circuit

is 151. Interestingly enough, in this case the worst delay is quite different. Hence, without

consideration of functional relationships, the delayevaluation would be too pessimistic.

fetfsm

fet phi4

±

phll

Pf

P1

phll

—>
P2

P3

pffsm

random
phl4 phll

Figure 6.16 On-chip instruction cache controller in SPUR

Segment name Clock separation

phil - phi2 0.0ns

phi2 - phi3 10.0ns

phi3 - phi4 8.2ns

j)hi4 - phil 3.0ns

Total period 21.2ns

Table 6.4 Critical path delay estimates of the circuit in Figure 6.16

134

p4

135

Finally, the usage of BEAVER as a timing consultant which determines the clock

period and the separations of a multiphase clocking system is illustrated by an example

shown in Figure 6.16. The circuit is an on-chip instruction cache controller in SPUR CPU

which has been implemented by multilevel logic with 153 gates and 25 latches. The circuit

contains two finite state machines and five combinational logic blocks with latches. In this

example, all the clocks are declared as formal synchronizing signals and the abstracted

internal-constraints are used to determine the clock separations and period. The cpu-time

spent in this process was 89 seconds on a VAX 8800 machine with compiled codes ofVAX

Common Lisp. The results of the timing analysis are summarized inTable 6.4. The meaning

of zero clock separation in the first row of the table is that there is no timing constraint

between the two clock phases derived from the given circuit. The results of the other three

cases and the sum of the four clock separation periods are illustrated.

6.7. Conclusions

In this chapter, a hierarchical timing verification subsystem has been presented. The

abstraction mechanism based on a constraint propagation methodhas been developed. For the

combinational subcells, the utilization of functionality provides a critical-path evaluation pro

cedure which can eliminate the insensitizable paths. The experimental results illustrate that

the symbolic approach for timing verification is efficient enough for the application to real

designs.

136

CHAPTER 7

FORMAL FUNCTIONAL VERIFICATION

7.1. Introduction

In a formal verification system the decision about which proof mechanism to employ is

affected by several considerations. First, the proof mechanism should beconsistent with the

formalism of the description language. For example, if the language is based on functional

formalism, the proof mechanism appropriate for constraint-based language would not be a

suitable choice. Second, the proof mechanism should be able to make the verification pro

cess as automatic as possible. This issue is closely related to the capability of the theorem

prover of the system. Finally, the proof mechanism should be reasonably efficient in both

space and time.

It would be ideal to employ a theorem prover based on the same formalism as the

hardware description language while the theorem prover is powerful enough to handle any

practical hardware verification problem automatically within reasonable memory space and

cpu time. However, such a theorem prover is generally not obtainable. Finding a general

proof procedure to verify the validity (or inconsistency) of a formula was considered long

ago. It was first tried by Leibniz (1646 - 1716) and further revived by Peano around the turn

of the century and by Hilbert's school in the 1920s [134]. It was not until Church (1936)

[195] and Turing (1936) [196] that this was proved impossible. Church and Turing indepen

dently showed that there is no general decision procedure to check the validity of formulas of

the first-order logic. However, there are proofprocedures which can verify that a formula is

137

valid, if it is indeed valid. For invalid formulas, these procedures generally will never ter

minate [134].

The foundation of mechanical theorem proving was developed by Herbrand in 1930. It

was impractical to apply until the invention of the digital computer. It was not until J. A.

Robinson's landmark paper, [197] in 1965, together with the development of the resolution

principle, that major steps were taken to achieve realistic computer-implemented theorem

provers. Since 1965, many refinements of the resolution principle have been made

[198,199,200,201,202,203,204,205,206,207,208,209,210]. These theorem proving tech

niques are utilized inmany tools for specification and verification of programming languages.

Recently, as formal verification has gained a lot of attention for an application to hardware

verification as a viable alternative to simulation, several notable achievements have been

reported [74,82,211]. However, for the formal approach to be practically utilized in the

hardware verification field, more research work is needed.

In this chapter, the equivalence check BEAVER attempts to solve is described. The

theorem prover employed in the verification system for the equivalence check of functional

ity is explained along with a description of other theorem provers. The formal verifier

developed in this chapter deals with all the language constructs explained in Chapter 5.

Definitions of enumeration types, structure types, and array types are formally manipulated

without any human intervention. Whenever possible, the hierarchy is exploited. Inductive

proof is provided for the verification of designs involving recursive cells. Since no distinc

tion is made between behavior and structure, any combination of behavioral and structural

descriptions can beverified. Finally, several verification examples are illustrated.

138

7.2. Equivalence Checking Problem

As mentioned in Chapter 2, the problem of functional verification in BEAVER is

checking the equivalence of two descriptions. Since the term "equivalence" means several

different things in different contexts of verification, here the meaning of equivalence needs

clarification.

Generally, the correspondence between two machines may be a homomorphism, rather

than exact equivalence (isomorphism). When two machines always produce the same out

puts for applied inputs, they cannot be distinguished to an observer who can see only the

inputs and outputs of the machines. In fact, these two machines exhibit the same external

behavior. Whenone machinerepresents a specification and the other is an implementation, if

the two machines are indistinguishable to the observer, the implementation is said to be

equivalent to the specification.

The definition of equivalence in this chapteris furtherformalized as follows. A descrip

tion is viewed as how input data are transformed to produce its output. Hence, if two descrip

tions given with the same input produce equivalent outputs, they are said to be equivalent.

Two objects are said to be equivalent if they denote the same value in the selected value

domain. Each object can be either a primitive constant or a cell denoting a value through

several levels of functional applications. The value domain consists of primitive constants

such as Boolean values of 'true' and 'false' and natural numbers including zero (0 12 • • •).

But as will be explained shortly, the value domain grows dynamically as types are defined.

When two descriptions denote different typed objects, the user needs to provide cells

for type transformation. For example, consider the equivalence check of two cells, cell! and

cell! as shown in Figure 7.1. If the types of input and output of celll are different from those

of cell2, cells fl and fl are provided to make the environments of the two descriptions

139

homogeneous. Now, the equivalence check between Y and T is performed for the original

problem.

As mentioned in Chapter 5, when a cell contains a loop, there should be at least one

clocked storage element in the loop. However, since the description has the flavor of data

flow language, two cells to be proved equivalent do not have to be isomorphic. Only one

state mapping information is required per loop. For example, in Figure 7.2, even if the two

cells have a different number of stages of clocked paths in the direct forward path and in the

looped path, anequivalence check can be performed withonly one corresponding state infor

mation per loop. For example, the mapping represented as a dotted line in Figure 7.2 will

suffice for this case.

X \. celM V

> f

p

p

f1 f2

cell2

> <

p

Figure7.1 Equivalent descriptions

140

ooll2

Figure 7.2 Non-isomorphic but equivalentcells

13. Theorem Prover

There have been many theorem provers (in the broad sense) available for the applica

tion to the formal hardware verification: the LCF proof checker [145], the HOL [84], the

AURA [136], the Boyer-Moore theorem prover [141], the Veritas system [78], the REVE

system [212], a temporal logic prover [151], and the Circal [75].

LCF (Logic for Computable Functions) is essentially a typed X-calculus together with

fixed-point induction. All objects have a partial ordering and a bottom element and inference

rules are encoded into tactics, thus supporting goal-directed (backward-chaining) proofs. The

partial function principle creates the disadvantage of having to prove the totality of functions

before they can be used. Additionally, proofs tend to become cluttered with extra cases due

141

to the bottom element. In general, since proof construction is a highly interactive activity, the

user must be able to guide the proof. This offers a high degree of confidence in the correct

ness of the proof, but requires a lot of userexpertise.

HOL is an extended version of LCF for higher-order logic. It thus shares many features

with LCF, someof which are good and some of which are bad. In this system every behavior

is defined as predicates and consequently non-executable. In order to simulate such

behaviors, it is necessary to translate them into functions. From the point of proofcomplex

ity, the power of the logic means that proofs are more complex. The proofs are constructed in

a deduction-like system, but need human guidance. Also, there is no generalized inductive

proofmechanism. The LCF and the HOL systems may be more closely viewed, and more

accurately, as environments for constructing proofs than automatic theorem provers.

The AURA (Argonne Automated Reasoning Assistant) system wasemployed in [65] to

build a verification system. It is a resolution-based theorem prover that incorporates equality

and a collection of inference rules. In the system, the rewrite principle is an inference rule

called demodulation. Demodulation has two basic uses: canonicalization and simplification.

AURA contains procedures which "weight" the arguments of the predicate EQUAL, and

which weight all clauses used in a proof. An automatic selection process then allows such a

simplification to be performed. The weighting process canbe tailored to the specific applica

tion. Canonicalization makes use of a built-in lexical ordering mechanism that allows the

userto manipulate expressions, transforming them into their most desirable form.

REVE contains an implementation of the Knuth-Bendix completion procedure [119],

modulo associative-commutative operators and procedure supporting inductionless induction

[213] or proofby consistency. Thus proving a theorem involves compiling a set of equations

into a confluent set of rewrite rules and then using standardequational reasoning for theorems

142

involving ground (no variables) terms only, or invoking the inductionless induction process

for theorems which contain variables. REVE is an automatic theorem prover in that once the

proving process has been initiated, the user has very little influence over the course of the

proof.

The Boyer-Moore theorem prover is an automatic theorem prover in the sense that once

the proof of a theorem has been invoked, the user can no longer interfere. The Boyer-Moore

logic is a quantifier-free first order logic with equality and the input language is a variant of

pure Lisp. The inference rules consist of propositional calculus and associated inference

rules, the principle of Noetherian induction and instantiation. The proof process consists of

creating an environment containing the relevant definitions and invoking proof of various

necessary lemmas until the target theorem can be proved. Discovering which lemmas are

necessary is not trivial for most proofs. Most of all, the complicated but intelligent heuristics

for inductive proof is the outstanding contribution of this theorem prover.

In BEAVER, for the verification of functionality many techniques and heuristics of the

Boyer-Moore theorem prover have been utilized. The notable extensions and differences are

as follows. First of all, the static type checking is employed compared to the dynamic type

checking in the Boyer-Moore theorem prover. In the Boyer-Mooretheorem prover,a type set

is associated with every term and the type set is dynamically narrowed when more informa

tion becomes available about the term. This is due to the fact that the prover was aimed at

program verification of pure Lisp style language where no static type information is avail

able. However, in BEAVER, the language is strongly typed and the efficiency of the prover

hasbeen improved. Secondly, in BEAVER, multiple-valued return is allowed. In a hardware

description, a cell often returns multiplevalues rather than a singlevalue. Multiple valuescan

be aggregated into a single list in Lisp style language. However, in describing hardware it is

143

awkward to provide a list structure for every such cell. Third, a proof mechanism for

enumeration type and structure type have been added. Finally, for the description and

verification of sequential machines, state variables are allowed in a description which may

contain loops.

In the following, the approach of the theorem prover employed in BEAVER is

described in more detail.

73.1. Value Domain

As previously mentioned, the value domain of BEAVER grows dynamically by type

definitions. When an enumeration type is defined, each element of the enumerated list is

added to the value domain. For example, when a type 'bit' is defined as follows,

(deftype bit (enum 0 1 *))

three constants are defined: bit-0, bit-1, and bit-*. Since the names of constant values are

visible from anywhere, to avoid name collision the type name is prefixed to each constant

name as illustrated above. Also when an array type is defined, the bottom object of the array

is defined as a constant. For example, with the following definition of type 'bitv',

(deftype bitv (array bit))

a bottom object, 'bitv-btm', is added as a constant to the value domain.

73.2. Derived Cells and Axioms

Whenever a type is defined, appropriate cells and axioms are defined and added to the

knowledge set of the verifier.

144

When an enumeration type is defined, no cell is defined but an axiom is added to the

knowledge set. The axiom states that if an object is known to be the given type, then the

value of the object must be one of the generated constants associated with the enumeration

type definition. For example, when atype 'bit' is defined, as illustrated above, the following

axiom is used for simplification during proof process.

(or (equal var bit-0)
(equal var bit-1)
(equal var bit-*))

When an array type is defined, three cells are defined and six axioms are added to the

knowledge set. The first cell isused for constructing an array object from the two inputs: one

for the element type and the other for the array type. When an array object is generated from

nothing, the second object must be the bottom object of the type. The second and the third

cells are for accessing the first element and accessing the rest of the array, respectively. The

six axioms are used as lemmas during proof procedure. In the case of the definition of 'bitv'

illustrated earlier, the following cells and axioms are automatically defined and added to the

knowledge set, respectively.

cells: bitv-cons, bitv-first, and bitv-rest

axioms: (bitv-cons (bitv-first x) (bitv-rest x)) => x

(bitv-first (bit-cons xl x2)) => xl

(bitv-rest (bit-cons xl x2)) => x2

(equal (bitv-cons xl x2) (bitv-cons yl y2))
=> (and (equal xl yl) (equal x2 y2))

(not (equal (bitv-cons xl x2) bitv-btm))

(< (size (bitv-rest x)) (size x))

The first threeaxioms are used for simplification. The fourth axiom tells the equivalence con-

145

dition ofconstructed objects, i.e., two constructed objects are the equivalent ofwhen all com

ponents are equivalent. The fifth axiom tells that every bottom object is different from any

constructed object. The last axiom is used in induction or in a recursive cell definition. This

gives a hint to the prover about the well-founded ordering relations.

When a structure type with n slots is defined, (n+l) cells are defined and (n +2) axioms

are added to the knowledge set. The first cell is used for constructing the structure object with

n inputs, one for each slot The other n cells are for accessing the corresponding slot. For

example, whena structure typeis defined by

(deftype bool3 (struct (<2> bool) (<1> bool) (<0> bool)))

the following cells and axioms are generated:

cells: bool3-cons, bool3-<2>, bool3-<l>, and bool3-<0>

axioms: (bool3-cons (bool3-<2> x) (boo!3-<l> x) (bool3-<0> x)) => x

(bool3-<2>. (bool3-cons xl x2 x3)) => xl

(bool3-<l> (bool3-cons xl x2 x3)) => x2

(bool3-<0> (bool3-cons xl x2 x3)) => x3

(equal (bool3-cons xl x2 x3) (bool3-cons yl y2 y3))
=> (and (equal xl yl) (equal x2 y2) (equal x3 y3))

The first four axioms are used for simplification. The last axiom tells the equivalence condi

tion of constructed objects, i.e., two constructed objects are equivalent when all components

are equivalent.

733. Major Proof Steps

It is one thing to describe a loosely connected set of heuristics that a human might use

to discover proofs and quite a different thing to formulate them so that a machine can use

146

them to discover proofs. The order of applying the heuristics is very important. For some

problems, one order of a sequence of heuristics might work very well, but for another set of

problems, it might not.

The major steps involved in proving an equivalence are as follows. First, the

equivalence conjecture is simplified by applying axioms, rewrite lemmas, and celldefinitions

and by converting the conjecture to a conjunction of if-free clauses. In most equivalence

checkings involving non-recursive cells, the simplification process will be enough to prove

the conjecture. When it does not, at least the complexity of the conjecture will be reduced.

Following that, the simplified conjecture is reformulated by eliminating undesirable concepts

using equality relations. Some terms that have played their role are generalized by introduc

ing variables. Finally, irrelevant terms areeliminated from theconjecture to see if the conjec

ture can be further simplified. Since it is difficult to invent the right induction argument for

anything but the simplest, strongest, conjecture available, and induction increases the size

andcomplexity of the conjecture, induction is applied after all the simplification andrewrites

are performed. In the remainder of this section, how a term is rewritten is explained. Then a

brief introduction to the induction mechanism is presented. The detailed heuristics for the

preparation of induction and the induction process itselfare described in [141].

The rewrite process is the key in the simplification. Rewrite rules for a term can be

classified into three groups. One is the built-in mechanism for primitive language constructs

such as if, equal, values, and nth. The second group consists of the axioms from type

definitions and lemmas of already provenfacts. Finally, cell definitions are used for rewrit

ing. A non-recursive cell definition is always expanded. Since the available lemmas have

already been tried to prove the current clause, the substitution of the cell definition does not

prevent the verifier from exploiting the hierarchy. When the cell is recursive and the expan-

147

sion contains more explicit values as arguments than the original, the expansion is substi

tuted. Also, if the heuristic measure of symbolic complexity of some subset of the arguments

of the expanded one is smaller than the complexity of that subset in the original instantiation,

the expanded term is substituted.

After a rewrite, the rewritten term might have 'and', 'or', and 'if forms. Each term is

then transformed into a clausal form. A clauseis a disjunction of literals, where a literal is an

atomic form or its negation. It is clear how a form with logical 'and' or 'or' is transformed

into aclausal form. Only a form with 'if needs explanation. In the following example, first a

cell-name is propagated into the if-form, then the if-form is transformed into its equivalent

clausal form.

(cell-name • • • (if p q r) • • •)
=> (if p (cell-name • • • q • • •) (cell-name • • r • •))
=> {(notp), (f ••• q •••)) and {p, (f ••• r •••))

Then each of the literals is rewritten with its corresponding environment of the assumptions.

If any of the literals in a clause turns into 'true' by rewrite, the clause is removed from the

clause-set And if the clause-set becomes empty, the goal is true. If a literal turns into 'false',

the literal is removed from the clause and if a clause becomes empty, the goal becomes false.

After the entire simplification process, if there is still any clause to be proved, induction is

tried. Using induction heuristics, invent a candidate induction scheme, and generate a con

junction of new clauses to prove (the base case and the induction steps). Then each of the

new clauses is tried by starting from the simplification process again. Descendants of these

clauses may also eventually be conjoined into the original clause-set If the proof is success

ful, then eventually no clause will be in the clause-set

The generation of inductive formulas relies on the similarity of recursion and induction.

Let's consider a simple recursive definition of a cell 'plus'.

148

(defcell plus
(input (xl nat) (x2 nat))
(output (y nat))
(let y (if (equal xl 0) x2 (1+ (plus (1- xl) x2)))))

During the internalization process of a recursivecell, the conditions of the path which lead to

the recursive call to the original cell are extracted. For the above cell, the extracted informa

tion for induction is as follows:

tests: (not (equal xl 0))
recursive calls: (plus (1- xl) x2)

Using the above information, the following twoformulas are createdby the process of induc

tive formula generation.

ipred (plus xl x2)) =>

base step: (equal xl 0) implies ipred (plus xl x2))
induction step: (not (equal xl 0)) and ipred (plus (1- xl) x2))

implies ipred (plus xl x2))

Here,pred is a predicatewhichrefers to thecell, 'plus'. In general, theremay be manypossi

ble pairs that can be used as base step and induction step formulae. After expandingeach pos

sible induction scheme, the "best" one is picked up according to various heuristics. For the

detailed heuristics, refer to [141].

7.4. Examples and Results

In this section, the functional verification part of BEAVER is applied to several groups

of examples. All the examples are run on a VAX 8800 machine with compiled VAX Com

mon Lisp codes.

The examples of the first group are the gate level descriptions of adders. Their descrip

tions are included in Appendix A. Table 7.1 summarizes the verification results. The first

149

column is the names of the pair of cells under equivalence check and the second column tells

if the verification result was positive or negative. The last column is the cpu-time spent for

proving the equivalence or non-equivalence. In the table, cells whose names start with 'r-c'

are implemented by ripple-carry and those with '1-a' are implemented by carry-look-ahead.

The last example is the verification of two four-bit adders, one of which is intentionally

described incorrectly. For this group of examples, all the equivalence checks have been per

formed by flattening the descriptions down to Boolean level. Note that the cpu-time

increases almost by a factor of four for each additional one bit. Basically, the equivalence

check of this group is a Boolean equivalence check; a theorem proving approach would be

less efficient compared to otherlogic verification approaches [101,132].

However, in general, behavioral descriptions must not be restricted to Boolean level in

order to allow the abstraction of data object. For the formal proof of design correctness

involving the abstraction, the theorem proving approach is required. The next example

addresses this point. Consider an implementation anda specification of an ALU circuit. The

logic is decomposed into two parts: data manipulation and operation decode part. The opera

tion is encoded as two bit and four possible operations are defined: ADD, AND,

equivalence check proof result CDu-time (sec)

r-c2d = l-a2d positive 1.67

r-c3d = l-a3d positive 9.46

r-c4d = l-a4d positive 43.69

r-c4d = wrong4d negative 29.61

Table 7.1 Verification results of adder examples

150

COMPLEMENTARY, and PASS (no operation). The data inputs are a<0>, b<0>, and

carry-in and the outputs are sum and carry-out Figure 7.3 (a) illustrates the data and decode

logic of one bit-slice. Both the data manipulation and decode logic are implemented from a

BDS description into anetlist of the library gates listed inTable 6.2. The BEAVER descrip

tion is given inAppendix A as cells named, 'alubit' and 'op-decode'. The implementation of

a two bit ALUis shown inFigure 7.3 (b). The BEAVER description of the specification is as

-^ sum

•dd-op

op-daood*

OfxO>

oh »<0> b<0> *unxO> *c1> b<1> aunx1>

' > t
, t j \ > >.k

" " ,

afabt «kibtt

TS > k' > < > k H < i > >. » i

y

op-daood*

—> —>
•*,

v

^
OfxO>

(b)

Figure 7.3 ALU bit-slice and2-bit ALU

151

follows:

(deftype bool2 (struct (<1> bool) (<0> bool)))

(defcell nat-to-bool2
(input (n nat))
(output (y bool2))
(local (tmp nat))
(let tmp (if (< n 4) n (- n 4)))
(let y (case tmp

(0 (bool2-cons false false))
(1 (bool2-cons false true))
(2 (bool2-cons true false))
(3 (bool2-cons true true)))))

(defcell bool2-to-nat
(input (x bool2))
(output (y nat))
(local (bl bool) (bO bool))
(letbl(bool2-<l>x))
(let bO (bool2-<0> x))
(let y (case (bl bO)

((false false) 0)
((false true) 1)
((true false) 2)
((true true) 3))))

(defcell alu2bit.spec
(input (a<l> bool) (a<0> bool))
(input (b<l> bool) (b<0> bool))
(input (c<0> bool) (op<l> bool) (op<0> bool))
(output (s<l> bool) (s<0> bool) (c<2> bool))
(local (tmpl nat) (tmp2 bool2))
(let tmpl (+ (bool2-to-nat (bool2-cons a<l> a<0>))

(bool2-to-nat (bool2-cons b<l> b<0>))
(ifc<0>10)))

(let c<2> (if (< tmpl 4) false true))
(let tmp2 (nat-to-bool2 tmpl))
(let (s<l> s<0>)

(case (op<l> op<0>)
((false false) (values a<l> a<0>))
((false true) (values (not a<l>) (not a<0>)))
((true false) (values (and a<l> b<l>) (and a<0> b<0>)))
((true true) (values (bool2-<l> tmp2)

(bool2-<0> tmp2))))))

As explained earlier in this chapter, when the type bool2 is defined as above, three cells are

152

automatically defined: bool2-cons, boo!2-<l>, and bool2-<0>. Thesecells with the two auxi

liary cells, nat-to-bool2 and bool2-to-nat, are used in the specification cell, alu2bitspec. The

specification is given in terms of '+' which is not directly related with Boolean values. The

'+' operation is a higher abstraction than the Boolean operation. The equivalence check

between the specification and the implementation given as a pure netiist of the library gates

could be performed in 172 seconds.

The next example is a sequential circuit which is extracted from the instruction pre

fetch control unit in SPUR CPU. The circuit diagram is shownin Figure 7.4. The BEAVER

description of the implementation and the specification are given in Appendix A. In the

equivalence check of sequential cells, current states are considered as inputs. The next-state

equations are derived from the descriptions, and the equivalence checks of these equations

are also performed. The cpu-time spent for the example was 13.3 seconds.

combinational

logic

'fet*

phi4 phil

1 I

0
X
-/

Figure 7.4 A sequential circuit example

153

The last example illustrates the inductive proof involving recursive cells. Consider the

following three equivalent definitions of'+' operation.

(defcell plusl
(input (xl nat) (x2 nat))
(output (yl nat))
(letyl (if (equal xl 0)

x2

(1+(plusl (l-xl)x2)))))

(defcell plus2
(input (inl nat) (in2 nat))
(output (outl nat))
(let outl (if (not (equal inl 0))

(l+(plus2(l-inl)in2))
in2)))

(defcell plus3
(input (inl nat) (in2 nat))
(output (outl nat))
(let outl (if (not (equal in2 0))

(1+ (plus3 inl (1- in2)))
inl)))

Cell 'plus2' is just a switched version of 'plusl' between true- and false-term in the if-form.

Cell 'plus3' uses the second argument as recursive variable where 'plusl' and 'plus2' use the

first argument The cpu-time spent for the three equivalence checks are presented in Table

7.2.

equivalence check 1 cpu-time (sec)

plusl =plus2 0.66
plus2 = plus3 2.4

plus3 s plusl 0.73

Table 7.2 Inductive proof examples

154

7.5. Conclusions

In this chapter, the functional verification part of the verification system has been

presented. The verification problem is defined as an equivalence checking between two

descriptions of BEAVER cells. The verification is based on theorem proving techniques.

Hence, when the result of a verification is positive, the two descriptions are guaranteed to be

equivalent for all the possible inputs. Theorem provers that have been applied to hardware

verification were also reviewed, the major proof steps involved in theorem proving were

explained, and several verification examples were presented to demonstrate the aspects of

behavioral verification of BEAVER.

155

CHAPTER 8

CONCLUSIONS

Until all the design processes are completely automated, verification of designs contin

ues to be an important problem. In this dissertation, the verification problem of digital VLSI

designs has been addressed. The verification problem is classified into two categories,

correctness checking of a particular finite-state machine and the other is equivalence check

ing of two machines. Then for each problem, an efficient verification system has been

developed.

For the correctness checking of finite-state machines, the specification is given as a

state-transition table and the implementation is given as a net-list of gates and latches. The

verifier checks to see if the implementation satisfies the specification. When the implementa

tion is incorrect, an input sequence that distinguishes the implementation machine from the

specification machine is provided to help the user locate errors. The experimental results

show that the method can be applied to fairly large systems.

For the equivalence checking of behavioral descriptions, a formal technique which uses

a theorem-proving method has been employed. When verification is performed using a for

mal technique, a complete verification can be achieved. Since formal techniques have been

investigated earlier and more intensively in software verification than in hardware

verification, most formal hardware verification techniques have stemmed from program

verification techniques. The previous work on formal program verification and hardware

verification have been reviewed. The study of previous work on formal hardware verification

156

illustrates that the choice of a formalism involves a compromise between expressive power

and ease of automatic synthesis/verification. In a simple and restricted formalism, it is hard to

specify complex devices simply and concisely. On the other hand, in a powerful formalism,

it is difficult to automate the verification process. In this dissertation, a functional formalism

has been chosen.

A hardware description language was presented which can deal with both timing and

functionality in a single paradigm. The semantics of the language is based on functional

(denotational) semantics. Type definition mechanisms and macros are provided and recursive

definitions are supported.

The behavioral verification system, BEAVER, handles both timing and functionality.

The static timing verification task is performed when a cell definition is processed. For a

hierarchical timing verification, an abstraction mechanism for timing information based on a

constraint propagation has been developed. For combinational cells, the availability of func

tional relations between signals allows for elimination of the static-insensitizable-path prob

lem. The experimental results also illustrate that the symbolic approach to timing verification

is efficient enough to apply to real designs.

Finally, the equivalence checking problem implemented by BEAVER has been defined

and functional verification based on theorem proving techniques has been presented. The

verifier canhandle automatically the definition of abstract types. Whenever possible, hierar

chy is exploited and the inductive proof approach provides a way of verifying designs involv

ing recursion.

The examples described in this dissertation are listed in Appendix A. In addition, both

the BEAVER programs and the examples may be obtained in machine-readable form from

Industrial Liaison Program, Department of Electrical Engineering and Computer Science,

157

University of California, Berkeley,CA 94720.

Future work remains to be carried out in the following areas. First, the two verification

systems for correctness checking and equivalence checking can be unified into a single sys

tem. Then the behavioral specification of a finite-state machine and its implementation in

random logic canbe more efficiently verified.

Second, for sequential circuits, it is desirable to verify two descriptions which may use

a different number of iterations on a looped structure. For example, consider two different

implementations of three-input adders which yields the sum of the three inputs: one is imple

mented with two two-input adders and no register, the other is implemented with one two-

input adder and aregister to hold the temporary result of the sum of the first two operands. In

general, two sequential circuits might have a different number of clock cycles to produce

equivalent results. This verification problem involves amore sophisticated treatment of time

and remains unsolved to date.

Finally, one direct extension of BEAVER is to provide it with the capability to handle

"don't-care" conditions. The functional verifier checks equivalence, however sometimes

implication is actually the problem. Here, the meaning of "implication" should be dis

tinguished from logical implication; in logical implication, false implies everything, which

sometimes cause problems. In a functionality check, when the specification represents a

don't-care condition, the implementation may result in any value as its output. This aspect

can be handled by differentiating a specification from its implementation, and by providing

an implication relation of values (e.g. a don't-care value implies any specific values) instead

of the equivalence relation of values as in thecurrent implementation.

158

REFERENCES

1. W. M. VanCleemput, "A hierarchical language for the structured description of digital

systems," Proc. 14th Design Automation Conference, June 1977.

2. R. H. Katz, "A database approach for managing VLSI design data," Proc. 19th Design

Automation Conference, 1982.

3. R. Hitchcock, "Timing verification and the timing analysis program," Proc. of the 19th

Design Automation Conference, pp. 594-604, June 1982.

4. J. Ousterhout, "Crystal: A timing analyzer for NMOS VLSI circuits," Proc. of the

ThirdCaltech VLSI Conference, pp. 57-59, 1983.

5. N. Jouppi, "Timing analysis and performance improvement of MOS VLSI designs,"

IEEE Trans, on CAD oflCAS, vol. CAD-6, no. 4, pp. 650-665, July 1987.

6. H. K. Gummel, "A self-consistent iterative scheme for one-dimensional steady-state

transistor calculations," IEEE Trans. Electron Devices, voL ED-11, pp. 455-465, Oct.

1964.

7. C. N. Gwyn , D. L. Sharfetter, and J. L. Wirth, "The analysis of radiation effects in

semiconductor junction devices," IEEE Trans. Nuclear Sci., voL NS-14, pp. 153-169,

Dec. 1967.

8. Branin, "D-C and transient analysis of networks using a digital computer," Proc.

Design Automation Conference, 1964.

9. F. F. Kuo, "Network analysis by digital computer," Proc. IEEE, vol. 54, pp. 821-835,

June 1966.

10. W. J. McCalla and W. G. Howard, "BIAS-3 - A program for the nonlinear dc analysis

of bipolar transistor circuits," Digest Tech. Papers, IEEE Int. Solid State Circuits

Conf., pp. 82-83, (Philadelphia, PA), Feb. 1970.

11. L. Nagel and R. A. Rohrer, "Computer analysis of nonlinear circuits, excluding radia

tion (CANCER)," IEEEJ. Solid State Circuits, vol. SC-6, pp. 166-182, Aug. 1971.

159

12. T. E. Idleman , F. S. Jenkins, W. J. McCalla, and D. O. Pederson, "SLIC - A simulator

for linear integrated circuits," IEEE J. Solid State Circuits, vol. SC-6 , pp. 192-204,

Aug. 1971.

13. F. S. Jenkins and S. P. Fan, "TIME - A nonlinear dc and time-domain circuit simula

tion program," IEEE J. Solid State Circuits, vol. SC-6 , pp. 188-192, Aug. 1971.

14. W. T. Weeks, A. J. Jimenez, G. W. Mahoney, D. Mehta, H. Quassemzadeh, and T. R.

Scott, "Algorithms for ASTAP - A network analysis program ," IEEE Trans. Circuit

Theory, vol. CT-20, pp. 628-634, Nov. 1973.

15. L. W. Nagel, "SPICE2: A computer program to simulate semiconductor circuits,"

UCB/ERL M75/520, University of California, Berkeley, May 1975.

16. L. Rosenberg and C. Benbassat, "Critic: An integrated circuit design rule checking

program," Proc. 11th Design Automation Workshop, pp. 14-18, (Denver, CO) , June

1974.

17. H. S. Baird, "A survey of computer aids for IC mask artwork verification," Proc.

IEEE Int. Symp. on Circuit and Systems, (Phoenix, AZ), Apr. 1977.

18. R. M. Allgair and D. S. Evans, "A comprehensive approach to a connectivity audit, or

a fruitful comparison of apples and oranges," Proc. 14th Design Automation Conf, pp.

312-321, (New Orieanchs, LA), June 1977.

19. J. Le Charpentier, "Computer aided synthesis of an IC electrical diagram from mask

data," Digest Tech. Papers, IEEE Int. Solid State Circuits Conf, pp. 84-85, (Philadel

phia, PA), Feb. 1975.

20. B. T. Pieas , B. W. Lindsay, and C. W. Gwyn, "Automatic circuit analysis based on

mask information," Proc. 13th Design Automation Conf, pp. 309-317, (San Francisco,

CA), June 1976.

21. I. Dobes and R. Byrd, "The automatic recognition of silicon gate transistor geometries:

An LSI design aid program," Proc. 13th Design Automation Conf, pp. 414-420, (San

Francisco, CA), June 1976.

160

22. L. Scheffer and R. Apti, "LSI design verification using topology extraction," Proc.

12th Asilomar Conf Circuits, Systems, and Computers, pp. 149-153, (Asilomar, CA),

Nov. 1978.

23. A. R. Newton, "Computer-aided design of VLSI circuit," Proc. IEEE, vol. 69, Oct.

1981.

24. D. D. Hill and W. M. Van Cleemput, "SABLE: a tool for generating structural, multi

level simulation," Proc. 16th Design Automation Conf, pp. 403-405, San Diego, CA,

June 1979.

25. S. Y. H. Su, "A survey of computer hardware description languages in the U.S.A.,"

IEEE Computer, vol. 7, no. 12, pp. 45-51, Dec. 1974.

26. M. R. Barbacci, "Instruction Set Processor Specification (ISPS): The notation and its

applications," IEEE Trans. Computers, vol. C-30, pp. 24-40, Jan. 1981.

27. J. D. Morison, N. E. Peeling, and T. L. Thorp, "ELLA: Hardware description or

specification?," IEEE Int. Conf on Computer-Aided Design, pp. 54-56, Nov. 1984.

28. VHDL Language Reference Manual, May 1987.

29. O.-J. Dahl, E. W. Dijkstra, and A R. Hoare, Structured Programming, Academic Press,

London and New York , 1972.

30. Z. Manna and R. Waldinger, "A deductive approach to program synthesis," ACM

Trans, on Programming Language and Systems, vol. 2, pp. 90-121, 1980.

32. J. Southard, "MacPitts: An approach to silicon compilation," IEEE Computer, 1983.

33. R. L. Blackburn and D. E. Thomas, "Linking the behavioral and structural domains of

representation in a synthesis system," Proc. of 22nd Design Automation Conference,

pp. 374-380, 1985.

34. A. R. Newton, "Timing, logic, and mixed-mode simulation for large MOS integrated

circuits," in Computer Design Aids for VLSI Circuits, P. Antognetti, D. Pederson and

H. De Man, eds., Nato Advanced Study Series, Sijthoff & Noordhoff, Rockville, Mary

land, 1981.

161

35. J. E. Kleckner, "Advanced mixed-mode simulation techniques," UCB/ERL M84/48,

University of California, Berkeley, June 1984.

36. R. A. Saleh, J. E. Kleckner, and A. Richard Newton, "Iterated timing analysis in

SPLICEl," Digest 1983 Int. Conf. on CAD, IEEE, Santa Clara, CA, Sept 1983.

37. R. A. Saleh, "Iterated timing analysis and SPLICEl," UCB/ERL M84/2, University of

California, Berkeley, Jan 1984.

38. J. White and A. Sangiovanni-Vincentelli, "RELAX2: A new waveform relaxation

approach for the analysis of LSI MOS circuits," Proc. 1983 Int. Symp on Circ. and

Sys., Newport Beach, May 1983.

39. J. White, "RELAX2 : A modified waveform relaxation approach to the simulation of

MOS digital circuits," UCB/ERL M84/21, University of California, Berkeley, 22 Feb

1984.

40. J. White, F. Odeh, A. Sangiovanni-Vincentelli, and A. Ruehli, Waveform Relaxation:

Theory and practice.

41. M. A. Breuer , "Techniques for the simulation of computer logic," Commun. Ass.

Comput. Mach., pp. 443-446, July 1964.

42. E. Ulrich, "Time sequenced logical simulation based on circuit delay and selective-

tracing of active network path," Proc. ACM Nat. Conf, pp. 437-448, 1965.

43. E Ulrich, "Exclusive simulation of activity in digital networks," Commun. Ass. Com

put. Mach., pp. 102-110, Feb. 1969.

44. S. A. Szygenda, "TEGAS-Anatomy of a general purpose test generation and simulation

at the gate and functional level," Proc. 9th Design Automation Conf, pp. 116-127,

June 1972.

45. E. G. Ulrich and T. Baker, "The concurrent simulation of nearly identical digital net

works," Proc. 10th Design Automation Conf, pp. 145-150, June 1973.

46. S. A. Szygenda and E. W. Thompson, "Digital logic simulation in a time-based table-

driven environment: part 1, design verification," IEEE Computer, pp. 24-36, Mar.

1975.

162

47. H. E. Krohn, "Design verification of large scientific computers," Proc. 14th Design

Automation Conf, pp. 354-361, June 1977.

48. R. E. Bryant , "MOSSIM: A switch-level simulator for MOS LSI," Proc. 18th Design

Automation Conf, pp. 786-790, Jul. 1977.

49. R. E. Bryant, "An algorithm for MOS logic simulation," Lambda Magazine, pp. 46-53,

1980.

50. Y. Kim, S. Hwang, and A. R. Newton, "Electrical-Logic simulation and its applica

tion," IEEE Trans, on CAD oflCAS, Jan. 1989.

51. H. De Man , "Mixed mode simulation for MOS VLSI: Why, where and how?," Proc.

IEEE Int. Symp. Circuits System, pp. 699-701, Rome, Italy, May 1982.

52. W. M. G. Van Bokhoven, "Mixed-level and mixed-mode simulation by a piecewise-

linear approach," Proc. IEEE Int. Symp. Circuits System, pp. 1256-1258, Rome, Italy,

May 1982.

53. A. R. Newton, "Techniques for the simulation of large-scale integrated circuits," IEEE

Trans. Circuits and Systems , vol. CAS-26, pp. 741-749, Sep. 1979.

54. V. D. Agrawal, A. K. Bose, P. Kozak, H. N. Nham, and E. Pascal-Skewes, "A mixed-

mode simulator," Proc. 17th Design Automation Conf, pp. 618-625, Minneapolis, MN,

June 1980.

55. T. Sasaki, A. Yamada, S. Kato, T. Nakazawa, K. Tomita, and N. Nomizu, "MDCS: a

mixed level simulator for large digital system logic verification," Proc. 17th Design

Automation Conf, pp. 626-633, Minneapolis, MN, June 1980.

56. H. N. Nham and A. K. Bose, "A multiple delay simulator for MOS LSI circuits,"

Proc. DesignAutomation Conf, pp. 610-611, Minneapolis, MN, June 1980.

57. P. H. Reynaert , H. De Man , G. Amout, and J. Comelissen, "DIANA: a mixed-mode

simulator with a hardware description language for hierarchical design of VLSI," Proc.

IEEE Int. Conf Circuits and Computers, pp. 356-360, Port Chester, NY, Oct. 1980.

58. O. H. Ibarra and S. Sahni, "Polynomially complete fault detection problems," IEEE

Trans. Computers, vol. C-24, pp. 242-250, Mar. 1976.

163

59. W. C. Carter, W. H. Joyner, Jr., and D. Brand, "Symbolic simulation for correct

machine design," Proc. 16th Design Automation Conference, pp. 280-286, 1979.

60. J. A. Darringer, "The application of program verification techniques to hardware

verification," Proc. 16th Design Automation Conference, pp. 375-381, 1979.

61. T. J. Wagner, "Verification of hardware designs through symbolic manipulation,"

Proc. Symposium on Design Automation and Microprocessors, pp. 50-53, IEEE and

ACM, Palo Alto, CA, Feb. 1977.

62. M. C. McFarland, "On proving the correctness of optimizing transformations in a digi

tal design automation system," Proc. 18th Design Automation Conference, pp. 90-97,

1981.

63. V. Pitchumani and E. P. Stabler, "A formal method for computer design verification,"

Proc. 19th Design Automation Conference, pp. 809-814, 1982.

64. L. H. Hanes, "Logic design verification using static analysis," PhD. Dissertation,

Dept. ofElectrical Engineering, Univ. ofIllinois at Urbana-Champaign, JL, 1983.

65. A. S. Wojcik, "Formal design verification of digital systems," Proc. 20th Design Auto

mation Conference, pp. 228-234, 1983.

66. W. E. Cory, "Verification of hardware design correctness: symbolic execution tech

niques and criteria for consistency," Ph.D. Dissertation , Electrical Engineering Depart

ment, Stanford Univ., 1985.

67. C. V. Bochman, "Hardware specification with temporal logic: an example," IEEE

Trans, on Computer, vol. C-31, no. 3, pp. 223-231, Mar. 1982.

68. B. Moszkowski, "Reasoning about digital circuits," Ph.D Dissertation, Dept. of Com

puter Science, Stanford University, 1983.

69. E. M. Clarke, E. A. Emerson, and A. P. Sistia, "Automatic verification of finite-state

concurrent systems using temporal logic specifications: a practical approach," 10th

ACM Symposium on Principles of Programming Languages, Austin, TX, 1983.

70. D. L. Dill and E. M. Clarke, "Automatic verification of asynchronous circuits using

temporal logic," Proc. Cliapel Hill Conference on VLSI, Computer Science Press,

164

1985.

71. B. Moszkowski, "A temporal logic for multilevel reasoning about hardware," IEEE

Computer, pp. 10-19, Feb. 1985.

72. M. J. C. Gordon, "Proving a computer correct," Technical Report No. 42 , Computer

Laboratory, University of Cambridge, 1983.

73. M. J. C. Gordon, "LCF-LSM: a system for specifying and verifying hardware," Techn

ical Report No. 41, Computer Laboratory, University of Cambridge, 1983.

74. H. G. Barrow, "VERIFY: a program for proving correctness of digital hardware

designs," Artificial Intelligence, vol. 24, pp. 437-491, 1984.

75. G. Milne, "CIRCAL and the representation of communication, concurrency and time,"

ACM Trans. Programming Languages and Systems, vol. 7, no. 2, pp. 270-298, Apr.

1985.

76. M. J. C. Gordon, "Why higher-order logic is a good formalism for specifying and veri

fying hardware," Technical Report No. 77, University of Cambridge, Computer

Laboratory, Sep. 1985.

77. S. M. German and Y. Wang, "Formal verification of parameterized hardware designs,"

IEEE Conference on Computer Design, pp. 549-552, 1985.

78. F. K. Hanna and N. Daeche, "Specification and verification using higher-order logic,"

in Formal aspects of VLSI design, ed. G. Milne and P. A. Subrahmanyam, North-

Holland, 1986.

79. S. Bapat and G. Venkatesh, "Reasoning about digital systems using temporal logic,"

Proc. 23rd Design Automation Conference, pp. 215-219, 1986.

80. R. E. Bryant, "Symbolic verification of MOS circuits," VLSI Conference, CImpel Hill,

pp. 419-438, 1985.

81. D. Weise, "Functional verification of MOS circuits," Proc. 24th Design Automation

Conference, pp. 265-270, 1987.

82. W. A. Hunt, "Mechanical verification of a microprocessor design," in From HDL

descriptions to guaranteed correct circuit designs, ed. D. Borrione, pp. 89-129, 1987.

165

83. D. R. Musser, P. Narendran, and W. J. Premeriani, "BIDS: a method for specifying

and verifying bidirectional hardware devices," in VLSI specification, verification and

synthesis, ed. G. Birtwistle and P. A. Subrahmanyam, Kluwer Academic Publishers,

1988.

84. M. J. C. Gordon, "HOL: A proof generating system for higher-order logic," in VLSI

specification, verification and synthesis, ed. G. Birtwistle and P. A. Subrahmanyam, pp.

73-128, 1988.

85. R. K. Brayton, R. Camposano, G. DeMicheli, R. H. J. M. Otten, and J. vanEijndhoven,

"The Yorktown silicon compiler," in Silicon compilation, ed. D. D. Gajski, Addison-

Wesley, 1988.

86. J. Rabaey, H. DeMan, J. Vanhoof, G. Goossens, and F. Catthoor, "CATHEDRAL II: A

synthesis system for multiprocessor DSP," in Silicon compilation, ed. D. D. Gajski,

Addison-Wesley, 1988.

87. R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. R. Wang, "MIS: A

multiple-level logic optimization system," IEEE Trans, on CAD of integrated circuits

and systems, pp. 1062-1081, 1987.

88. C. Terman, "RSIM - A logic-level timing simulator," Proc. of the IEEE International

Conference on Computer Design, pp. 437-440, 1983.

89. C. Niessen, "Hierarchical design methodologies and tools for VLSI chips," IEEE Proc.

, vol. 71, no. 1, pp. 66-75, Jan. 1983.

90. C. H. Sequin, "Managing VLSI complexity: An outlook," IEEE Proc. , vol. 71, no. 1,

pp. 149-166, Jan. 1983.

91. F. Maruyama and M. Fujita, "Hardware verification," IEEE Computer, pp. 22-32, Feb.

1985.

92. M Browne, E. Clarke, D. Hill, and B. Mishra, "Automatic verification of sequential

circuits using temporal logic," Technical Report CMU-CS-85-100, Dept. of Computer

Science, Carnegie-Mellon University, 1985.

166

93. K. Supowit and S. J. Friedman, "A new method for verifying sequential circuits,"

Proc. of 23rd Design Automation Conference, pp. 200-207, June 1986.

94. I. Gertner and R P. Kurshan, "Logical analysis of digital circuits," Proc. of 8th Int'l

Conf. on Computer Hardware Description Languages and their Applications, pp. 47-

67, April 1987.

95. S. Devadas, H. K Ma, and A. R. Newton, "On the verification of sequential machines

at differing levels of abstraction," IEEE Trans. Computer-Aided Design, vol. 7 , June

1988.

96. Z. Kohavi, Switching and finite automata theory , McGraw-Hill, 1970.

97. S. C. Lee, Modern switching theory and digital design, Prentice-Hall, Inc., Englewood

CUffs, New Jersey, 1978.

98. R. K. Brayton, G. D. Hachtel, C. McMullen, and A. Sangiovanni-Vincentelli, Logic

minimization algorithms for VLSI synthesis, p. Kluwer Academic Publishers, Boston,

1984.

99. G. DeMicheli, R. K. Brayton, and A. Sangiovanni-Vincentelli, "Optimal state assign

ment of finite state machines," IEEE Trans. Computer-Aided Design, vol. CAD-4, pp.

269-285, July 1985.

100. P. Goel, "An implicit enumeration algorithm to generate tests for combinational logic

circuits," IEEE Trans. Computers, vol. C-30, Mar. 1981.

101. R. S. Wei and A. Sangiovanni-Vincentelli, "PROTEUS: A logic verification system for

combinational logic circuits," Proc. of Int'l Testing Conference, pp. 350-359, 1986.

102. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, in The design and analysis of computer

algorithms, Addison-Wesley, 1974.

103. S. Devadas, H. K. Ma, A. R. Newton, and A. Sangiovanni-Vincentelli, "MUSTANG:

State assignment of finite state machines for optimal Multi-Level Logic Implementa

tions," Proc. of Int'l Conf on Computer-Aided Design, pp. 16-19, Nov. 1987.

104. M. Hill, et al., "Design decisions in SPUR," IEEE Computer, vol. 19 , no. 10, pp. 8-

24, Nov. 1986.

167

105. H. H. Ball, "VLSI/Software engineering design methodology," Workshop Report: VLSI

and Software Engineering Workshop, pp. 3-5, IEEE Computer Society, Port Chester,

NY , Oct 1982.

106. Z. Kishimoto et al., "The intersection of VLSI and software engineering for testing and

verification," Workshop Report: VLSI and Software Engineering Workshop, pp. 10-49,

IEEE Computer Society, Port Chester, NY , Oct. 1982.

107. G. M. Baudet et al., "The relationship between HDLs and programming language,"

Workshop Report: VLSI and Software Engineering Workshop, pp. 64-74, IEEE Com

puter Society, Port Chester, NY , Oct. 1982.

108. H. K. Berg, W. E. Boebert, W. R. Franta, and T. G. Moher, Formal methods of pro

gram verification and specification, Prentice-Hall, Englewood Cliffs, NJ, 1982.

109. J. E. Stoy, Denotational semantics: the Scott-Strachey approach to programming

language theory, The MIT Press, Cambridge, Mass., 1977.

110. P. Lucas and K. Walk, "On the formal description of PL/I," in Annual Review in

Automatic Programming, ed. M. I. Halpera and C. J. Shaw, vol. 6, pp. 105-182, Per-

gamon Press, Oxford, 1971.

111. P. Wegener, "The Vienna definition language," Computing Surveys, vol. 4, no. 1,

1972.

112. A Van Wijngaarden et al., "Revised report on the algorithmic language ALGOL 68,"

Acta Informatica, vol. 5, 1975.

113. A. Church, "The calculi of lambda-conversion," Annals of Mathematical Studies, vol.

6, Princeton University Press, Princeton, NJ, 1951.

114. R. W. Floyd, "Assigning meanings to programs," Proc. Symposium in Applied

Mathematics, vol. 19, pp. 19-32, American Mathematical Society, 1967.

115. C. A. R Hoare, "An axiomatic approach to computer programming ," Comm. ACM,

voL 12, no. 10, 1969.

116. J. V. Guttag, E. Horowitz, and D. R. Musser, "Abstract data types and software valida

tion," Comm. ACM, no. 21, pp. 1048-1064, 1978.

168

117. D. R. Musser, "Abstract data type specifications in the AFFIRM system," Proc.

Specification of Reliable Software Conf, Cambridge, Mass., 1979.

118. J. A. Goguen and J. J. Tardo, "An introduction to OBJ: a language for writing and

testing formal algebraic specification," Proc. Specification of Reliable Software Conf,

Cambridge, Mass., 1979.

119. D. E. Knuth and P. E. Bendix, "Simple word problems in universal algebras," in Com

putational Problems in Abstract Algebra, ed. J. Leech, Pergamon Press, Elmsford, NY,

1969.

120. D. L. Pamas, "A technique for software module specification with examples," Comm.

ACM, vol. 15, no. 5, 1972.

121. O. Roubine and L. Robinson, "SPECIAL (SPECIfication and Assertion Language):

reference manual," TR-CSG-45, SRI International, Menlo Park, CA, 1977.

122. R. N. Principato, "A formalization of the state machine specification technique,"

MIT/hcs/TR-2-2, MIT Laboratory for Computer Science Report, 1978.

123. J. Scheid, INA JO, Presentation at Air Force summer study on system security, Cam

bridge, Mass., 1979.

124. W. A. Wulf, R. L. London, and M. Shaw, "An introduction to the construction and

verification of Alphard programs," IEEE Trans. Software Engineering, vol. SE-2, no. 4,

pp. 253-265, Dec. 1976.

125. G. J. Popek, J. J. Horning, B. W. Lampson, J. G. Mitchell, and R. L. London, "Notes

on the design of Euclid," Proc. ACM Conf on Language Design for Reliable Software,

vol. 12, no. 3, 1977.

126. L. Flon and J. Misra, "A unified approach to the specification and verification of

abstract data types," Proc. Specification for Reliable Software Conf, Cambridge,

Mass., 1979.

127. Y. Huh, "Formal specification and verification of hierarchical VLSI design," Ph.D.

Dissertation, Electronics Lab., Stanford University, Dec. 1985.

169

128. A Blikle and A. Mazurkiewicz, "An algebraic approach to the theory of programs,

algorithms, languages and recursiveness," in Mathematical Foundations of Computer

Science, Warsaw, Poland, 1972.

129. D. Siewiorek, "Introducing ISP," IEEE Computer, vol. 7, no. 12, pp. 39-41, Dec.

1974.

130. D. L. Dietmeyer, "Introducing DDL," IEEE Computer, vol. 7, no. 12, pp. 34-38, Dec.

1974.

131. D. D. Hill, "Adlib: a modular strongly-typed computer design language," IEEE IFIP

4th Int. Conference on Computer Hardware Description Languages and their applica

tions, pp. 75-81, Palo Alto, CA, 1979.

132. R. E. Bryant, "Symbolic manipulation of Boolean functions using a graphical

representation," Proc. 22nd Design Automation Conference, pp. 688-694, 1985.

133. J. Loeckx and K. Sieber, The foundations ofprogram verification, John Wiley & Sons,

New York, NY, 1984.

134. C.-L. Chang and R. C.-T. Lee, in Symbolic logic and mechanical theorem proving,

Academic Press, New York, NY., 1973.

135. Y. Chu, "Introducing CDL," IEEE Computer, vol. 7, no. 12, pp. 31-33, Dec. 1974.

136. J. D. McCharen, R. A. Oveibeek, and L. Wos, "Problems and experiments for and

with automated theorem-proving problems," IEEE Trans, on Computers, vol. C-25, no.

8, pp. 773-782, 1976.

137. N. Suzuki, "Experience with specification and verification of hardware using PRO

LOG," Lecture Note in Computer Science, vol. 163, pp. 161-173, Springer-Verlag,

1984.

138. W. F. Clocksin and C. S. Mellish, Programming in Prolog, Springer-Verlag, 1981.

139. I. Bratko, Prolog programming for artificial intelligence, Addison-Wesley, 1986.

140. T. Uehara, T. Saito, F. Maruyama, and N. Kawato, "DDL verifier," IEEE IFIP 5th Int.

Conf. on Computer Hardware Description Languages and their applications, pp. 51-64,

Sep. 1981.

170

141. R. S. Boyer and J. S. Moore, "A computational logic," in ACM Monograph Series,

Academic Press, 1979.

142. J. Whitehead and B. Russel, Principia mathematica, 1, Cambridge, UK, 1935.

143. A. Church, "A formulation of the simple theory of types," Journal of Symbolic Logic,

1940.

144. A. Camilleri, M. J. C. Gordon, and T. Melham, "Hardware verification using higher-

order logic," in From HDL descriptions to guaranteed correct circuit designs, ed. D.

Bonione, pp. 43-67, 1987.

145. M. Gordon, R. Milner, and C. P. Wadsworth, "Edinburgh LCF: A mechanized logic of

computation," in Lecture Notes in Computer Science, vol. 78, Springer Verlag, 1979.

146. J.-L. Paillet, "A functional model for descriptions and specifications of digital dev

ices," in From HDL descriptions to guaranteed correct circuit designs, ed. D. Bor-

rione, pp. 21-42, 1987.

147. G. E. Hughes and M. J. Cresswell, An introduction to modal logic, Methuen and Co.,

Ltd., London, UK, 1968.

148. N. Rescher and A. Urquhart, Temporal logic, Springer-Verlag, New York, NY, 1971.

149. Z. Manna, Mathematical theory of computation, McGraw-Hill, New York, NY, 1974.

150. Z. Manna and A. Pnueli, "Verification of concurrent programs: the temporal frame

work," in The correctness problem in computer science, ed. R. S. Boyer and J. S.

Moore, pp. 215-273, Academic Press, New York, NY, 1981.

151. M. J. Bennet, "Proving correctness of asynchronous circuits using temporal logic,"

Ph.D Dissertation, Dept of Computer Science, Univ. of California, Los Angeles, 1986.

152. Y. Malachi and S. S. Owicki, "Temporal specifications of self-timed systems," in VLSI

Systems and Computations, ed. H. T. Kung et al., pp. 203-212, Computer Science

Press, Rockville, MD, 1981.

153. C. A Mead and L Conway, Introduction to VLSI systems, Addison-Wesley, 1980.

154. J. Halpem, Z. Manna, and B. Moszkowski, "A hardware semantics based on temporal

intervals," Proc. 10th Int. Colloq. Automata, Languages and Programming, pp. 278-

171

291, Springer-Verlag, Barcelona, Spain, 1983.

155. S. Kono, M. Fujita, and H. Tanaka, "Implementation of temporal logic programming

language Tokio," Logic Programming Conference '85, pp. 138-147, 1985.

156. C. E. Shannon, "A symbolic analysis of relay and switching circuits," Trans. AIEE,

vol. 57, pp. 713-723, 1938.

157. D. Siewiorek, "Introducing PMS," IEEE Computer, vol. 7, no. 12, pp. 42-44, Dec.

1974.

158. R. H Campbell, A. M. Koelmans, and M. R. McLauchlan, "STRICT: a design

language for strongly typed recursive integrated circuits," IEE Proceedings, vol. 132,

no. 2, pp. 108-115, Mar. 1985.

159. M. Sheeran, "muFP, a language for VLSI design," ACM Symposium on USP and

Functional Programming, pp. 104-112, Austin, Texas, 1984.

160. D. R. Coelho and W. M. VanCleemput, "Helix: A tool for multilevel simulation of

VLSI systems," The third International Conference on Semi-Custom IC's, London,

England, Nov. 1983.

161. HSL-FX User's Manual, NTT LSI Laboratories, 1988.

162. M. Daniels, "Design criterias and formal description techniques," in Computer

hardware description languages and their applications, ed. C. J. Koomen, pp. 195-212,

North-Holland, 1987.

163. T. L. Thorp and N. E. Peeling, "The role of HDLs in the digital design process," VLSI

Conference , Vancouver, Canada, 1987.

164. "iPSC/2 brochures and application software reference material," order number

280110-001, Intel Scientific Computers, Beaverton, Ore..

165. DYNIX Programmer's Manual Series, Sequent Computer Systems, Inc., 1987.

166. Butterfly User's Manual, BBN Advanced Computers Inc., 1986.

167. C. A. R. Hoare and J. C. Shepherdson, and C. A. R. Hoare, "An overview of some for

mal methods for program design," IEEE Computer, vol. 20, no. 9, pp. 85-91, Prentice-

Hall, Englewood Cliffs, N.J., Sep. 1987.

172

169. J. Backus, "Can programming be liberated from the von Neuman style? A functional

style and its algebra of programs," Communication of the ACM, vol. 21, no. 8, pp.

613-641, Aug. 1978.

170. O. -J. Dahl and K. Nyqaard, "Simular - an ALGOL based simulation language,"

Comm. ACM, pp. 671-678, Sep. 1966.

171. B. Stroustrup, in The C++ programming language, Addison-Wesley, 1986.

172. R. H. Wallace, in Practitioner's guide toAda, McGraw-Hill, New York, N.Y., 1986.

173. N. Wirth, in Programming in MODULA-2, Springer-Verlag, New York, N.Y., 1985.

174. W. B. Ackerman and J. B. Dennis, VAL - A value oriented algorithmic language: prel

iminary reference manual, MJT Laboratory for Computer Science, Tech. Rep., Cam

bridge, MA, June 1979.

175. Arvind, K. P. Gostelow, and W. Plouffe, An asynchronous programming language and

computing machine, Dept. Information and Computer Science Technical Report 114a

University of California, Irvine, Dec. 1978.

176. A V. Aho, R. Sethi, and J. D. Ullman, Compilers: principles, techniques, and tools.

Addison-Wesley , 1986.

177. R. Wilensky, in USPcraft, Norton & Company, 1984.

178. G. Langdon, Computer design, Computeach Press Inc. , 1982.

179. N. Weste and K. Eshraghian, Principals of CMOS VLSI design. A systems perspective,

Addison Wesley, 1985.

180. L. Glasser and D. Dobberpuhl, The design and analysis of VLSI circuits, Addison Wes

ley, 1985.

181. C. Seitz, "Self timed system," Proc. ofCaltech Conference on VLSI, 1980.

182. T. Kirkpatrick and N. Clark, "PERT as an aid to logic design," IBM Jour, of Research

and Development, pp. 135-141, Mar. 1966.

183. M. Wold, "Design verification and performance analysis," Proc. of the 15th Design

Automation Conference, pp. 264-270, 1978.

173

184. T. McWilliams, "Verification of timing constraints on large digital systems," Proc. of

the 17th Design Automation Conference, pp. 139-147, 1980.

185. T. Sasaki, A. Yamada, T. Aoyama, K. Hasegawa, S. Kato, and S. Sato, "Hierarchical

design verification for large digital systems," Proc. of the 18th Design Automation

Conference, pp. 105-112, June 1981.

186. R. Kamikawai, M. Yamada, and T. Chiba, "A critical path delay check system," Proc.

of the 18th Design Automation Conference, pp. 118-123, June 1981.

187. E. Tamura, K. Okawa, and T. Nakano, "Path delay analysis for hierarchical building

block layout system," Proc. of the 20th Design Automation Conference, pp. 403-410,

June 1983.

188. N. Weiner, Hummingbird: A timing analyzer for the Berkeley synthesis system. Dept. of

EECS, Univ. of California, Berkeley, Dec. 1987.

189. R. McGeer, "On the interaction of functional and timing behavior of combinational

logic circuits," Ph.D Dissertation, University of California, Berkeley , CA, 1989.

190. D. Hodges and H. Jackson, Analysis and design of digital integrated circuits,

McGraw-Hill, 1983.

191. Y. Kim, "Accurate timing verification for digital VLSI designs," Ph.D Dissertation,

University of California, Berkeley , CA, Dec. 1988.

192. D. Brand and V. Iyengar, "Timing analysis using functional relationships," ICCAD-86,

pp. 126-129, Santa Clara, CA, Nov. 1986.

193. J. Benkoski, E. Meersch, and H. De Man, "Efficient algorithms for solving the false

path problem in timing verification," ICCAD-87, pp. 44-47, Santa Clara, CA, Nov.

1987.

194. R. B. Segal , in BDSYN User's Manual, University of California, Berkeley, 1987.

195. A. Church, "An unsolvable problem of number theory," American Journal of

Mathematics, vol. 58, pp. 345-363, 1936.

196. A. M. Turing, "On computable numbers, with an application to the entschiedungs

problem," Proc. London Math. Soc, vol. 2, no. 42, pp. 230-265, 1936.

174

197. J. A. Robinson, "A machine oriented logic based on the resolution principle," Journal

of Assoc. Comput. Mach., vol. 12, pp. 23-41, 1965.

198. J. R. Slagle, "Automatic theorem proving with renamable and semantic resolution,"

Journal ofAssoc. Comput. Mach., vol. 14, pp. 687-697, 1967.

199. B. Meltzer, "Theorem-proving for computers: Some results on resolution and renam

ing," Computer Journal, vol. 8, pp. 341-343, 1966.

200. R. Kowalski and P. Hayes, "Semantic trees in automatic theorem proving," in

Machine Intelligence, ed. B. Meltzer and D. Michie, vol. 4 , pp. 87-101, American

Elsevier, New York, 1969.

201. R. S. Boyer, "Locking: A restriction of resolution," Ph. D. Dissertation, University of

Texas, at Austin, Texas, 1971.

202. D. W. Loveland, "A linear format for resolution," Proc. IRIA Symp. Automatic

Demonstration, Versailles, France, pp. 147-162, Springer Verlag, New York, 1970.

203. D. Luckham, "Refinements in resolution theory," Proc. IRIA Symp. Automatic

Demonstration, Versailles, France, pp. 163-190, Springer Verlag, New York, 1970.

204. R. Anderson and W. W. Bledsoe, "A linear format for resolution with merging and a

new technique for establishing completeness," Journal of Assoc. Comput. Mach., vol.

17 , pp. 525-534, 1970.

205. R. Yates, B. Raphael, and T. Hart, "Resolution graphs," Artificial Intelligence, vol. 1,

pp. 257-290, 1970.

206. R. Reiter, "Two results on ordering for resolution with merging and linear format,"

Journal of Assoc. Comput. Mach., vol. 18 , pp. 630-646, 1971.

207. R. Kowalski and D. Keuhner, "Linear resolution with selection function," in

Metamathematics Unit, Edinburgh University, Scotland, 1970.

208. L. Wos, D. Carson, and G. A Robinson, "The unit preference strategy in theorem

proving," Proc. AFIPS 1964FallJoint Computer Conf., vol. 26, pp. 616-621, 1964.

209. C. L. Chang, "The unit proof and the input proof in theorem proving," Journal of

Assoc. Comput. Mach., vol. 17, pp. 698-707, 1970.

175

210. L. Wos, G. A. Robinson, and D. F. Carson, "Efficiency and completeness of the set of

support strategy in theorem proving," Journal of Assoc. Comput. Mach., vol. 12, pp.

536-541, 1965.

211. A. J. Conn, "A proof of correctness of the Viper microprocessor: The first level,"

Proc. of the Calgary Hardware Verification Workshop, Calgary, Canada, Jan. 1987.

212. P. Lescanne, "Computer experiments with the REVE term rewriting system genera

tor," Proc. the Tenth ACM Symposium on the Principles of Programming Languages,

Austin, Texas, Jan. 1983.

213. G. Huet and J. M. Hullot, "Proof by induction in equational theories with construc

tors," JCCS, vol. 25, no. 2, 1982.

APPENDIX A

DESCRIPTIONS OF EXAMPLE CELLS

A.l Exclusive-OR

(defcell xor

(directive expand)
(input (p bool) (q bool))
(output (r bool))
(let r (or (and (not p) q) (and p (not q)))))

A.2 Library Gates

;;;; library gates :
;;;; invi
;;;; and2 and3 and4
;;;; or2 or3 or4

;;;; xor2
;;;; nand2 nand3 nand4
;;;; nor2 nor3 nor4

(defcell invl
(directive expand)
(input (x bool))
(output (y bool))
(let y (delay 1 (not x))))

(defcell and2
(directive expand)
(input (xl bool) (x2 bool))
(output (y bool))
(let y (delay 1.6 (and xl x2))))

(defcell and3
(directive expand)
(input (xl bool) (x2 bool) (x3 bool))

176

(output (y bool))
(let y (delay 2.0 (and xl x2 x3))))

(defcell and4
(directive expand)
(input (xl bool) (x2 bool) (x3 bool) (x4 bool))
(output (y bool))
(let y (delay 2.8 (and xl x2 x3 x4))))

(defcell and5
(directive expand)
(input (xl bool) (x2 bool) (x3 bool) (x4 bool) (x5 bool))
(output (y bool))
(let y (delay 4.0 (and xl x2 x3 x4 x5))))

(defcell or2
(directive expand)
(input (xl bool) (x2 bool))
(output (y bool))
(let y (delay 1.6(orxl x2))))

(defcell or3
(directive expand)
(input (xl bool) (x2 bool) (x3 bool))
(output (y bool))
(let y (delay 2.0 (or xl x2 x3))))

(defcell or4
(directive expand)
(input (xl bool) (x2 bool) (x3 bool) (x4 bool))
(output (y bool))
(let y (delay 2.8 (or xl x2 x3 x4))))

(defcell or5
(directive expand)
(input (xl bool) (x2 bool) (x3 bool) (x4 bool) (x5 bool))
(output (y bool))
(let y (delay 4.0 (or xl x2 x3 x4 x5))))

(defcell xor2
(directive expand)
(input (p bool) (q bool))
(output (r bool))
(let r (delay 1.6 (or (and (not p) q) (and p (not q))))))

(defcell nand2
(directive expand)

177

(input (xl bool) (x2 bool))
(output (y bool))
(let y (delay 1.6 (not (and xl x2)))))

(defcell nand3
(directive expand)
(input (xl bool) (x2 bool) (x3 bool))
(output (y bool))
(let y (delay 2.0 (not (and xl x2 x3)))))

(defcell nand4
(directive expand)
(input (xl bool) (x2 bool) (x3 bool) (x4 bool))
(output (y bool))
(let y (delay 2.8 (not (and xl x2 x3 x4)))))

(defcell nor2
(directive expand)
(input (xl bool) (x2 bool))
(output (y bool))
(let y (delay 1.6 (not (or xl x2)))))

(defcell nor3
(directive expand)
(input (xl bool) (x2 bool) (x3 bool))
(output (y bool))
(let y (delay 2.0 (not (or xl x2 x3)))))

(defcell nor4
(directive expand)
(input (xl bool) (x2 bool) (x3 bool) (x4 bool))
(output (y bool))
(let y (delay 2.8 (not (or xl x2 x3 x4)))))

A.3 Examples Used in Timing Verification

»»»»

;;;; Hitchcock's example

(defcell hitchcock
(input (x bool) (y bool))
(output (z bool))
(local (tmp bool))
(let tmp (if (not y) (delay 5 x) (delay 100 x)))

178

(let z (if y (delay 5 tmp) (delay 100 tmp))))

;;;; Brand's examples

(defcell brandl
(input (a bool) (b bool))
(output (d bool))
(let d (or2 (and2 (invl a) b) b)))

(defcell brand2
(input (a bool) (b bool))
(output (d bool))
(let d (and2 a (or2 (and2 (invl a) b) b))))

;;;; Examples obtained from the instruction-fetch controller of SPUR

;;;; Without optimization in the MIS-II session

(defcell fet.nop
(input (memBusy_CV4<0> bool)(resetffi_CV3<0> bool)(flush_CV2<0> bool))
(input (dataValid_C3<0> bool)(LatchWrKpsw_C2<0> bool))
(input (LatchNotSpd_CKO> bool)(ibMiss_C2<0> bool))
(input (Fet_State_Cl<2> bool))
(input (Fet_State_Cl<l> bool))
(input (Fet_State_Cl<0> bool))
(output (FET_STATE_LOGIC<2> bool))
(output (FET_STATE_LOGIC<l> bool))
(output (FET_STATE_LOGIC<0> bool))
(local ([448] bool)([451] bool)([481] bool)([455] bool)([316] bool))
(local ([450] bool)([346] bool)([347] bool)([314] bool)([344] bool))
(local ([345] bool)([313] bool)([453] bool)([341] bool)([321] bool))
(local ([447] bool)([339] bool)([319] bool)([402] bool)([338] bool))
(local ([318] bool)([335] bool)([336] bool)([317] bool)([464] bool))
(local ([326] bool)([333] bool)([334] bool)([324] bool)([366] bool))
(local ([332] bool)([323] bool)([329] bool)([330] bool)([322] bool))
(local ([327] bool)([249] bool))
(let [448] (invl Fet_State_Cl<2>))
(let [451] (invl Fet_State_CK0>))
(let [344] (nor4 dataValid_C3<0> [448] Fet_State_CKl> [451]))
(let [481] (invl LatchWrKpsw_C2<0>))
(let [455] (nand3 [448] [481] LatchNotSpd_CKO>))
(let [316] (nor2 flush_CV2<0> ibMiss_C2<0>))
(let [450] (invl Fet State C1<1>))

179

(let [346] (nor3 [455] [316] [450]))
(let [347] (nor2 Fet_State_CKl> [448]))
(let [314] (nor2 [346] [347]))
(let [345] (nor2 Fet_State_CK0> [314]))
(let [313] (nor2 [344] [345]))
(let FET_STATE_LOGIC<2> (nor2 resetffi_CV3<0> [313]))
(let [453] (invl LatchNotSpd_Cl<0>))
(let [341] (nor4 flush_CV2<0> LatchWrKpsw_C2<0> ibMiss_C2<0> [453]))
(let [321] (nor3 [453] [341] LatchWrKpsw_C2<0>))
(let [335] (nor4 Fet_State_CK2> [450] Fet_State_CK0> [321]))
(let [402] (nor2 Fet_State_Cl<2> [450]))
(let [447] (invl dataValid_C3<0>))
(let [339] (nor2 [447] [448]))
(let [319] (nor2 [339] [448]))
(let [338] (nor2 Fet_State_CKl> [319]))
(let [318] (nor2 [402] [338]))
(let [336] (nor2 [318] [451]))
(let [317] (nor2 [335] [336]))
(let FET_STATE_LOGIC<l> (nor2 resetIB_CV3<0> [317]))
(let [464] (nand3 [448] [481] LatchNotSpd_CKO>))
(let [326] (nor2 flush_CV2<0> ibMiss_C2<0>))
(let [333] (nor3 [464] [326] [450]))
(let [334] (nor2 Fet_State_CKl> [448]))
(let [324] (nor2 [333] [334]))
(let [329] (nor3 [324] memBusy_CV4<0> Fet_State_CK0>))
(let [366] (nor2 Fet_State_CKl> [448]))
(let [332] (nor3 [450] LatchNotSpd_Cl<0> Fet_State_Cl<2>))
(let [323] (nor2 [366] [332]))
(let [330] (nor2 [323] [451]))
(let [322] (nor2 [329] [330]))
(let [327] (nor2 resetIB_CV3<0> [322]))
(let [249] (nor2 [327] resetIB_CV3<0>))
(let FET_STATE_LOGIC<0> (invl [249])))

;;;; With optimization in the MIS-II session

(defcell fet.opt
(input (memBusy_CV4<0> bool)(resetffi_CV3<0> bool)(flush_CV2<0> bool))
(input (dataValid_C3<0> bool)(LatchWrKpsw_C2<0> bool))
(input (LatchNotSpd_Cl<0> bool)(ibMiss_C2<0> bool))
(input (Fet_State_Cl<2> bool))
(input (Fet_State_Cl<l> bool))
(input (Fet_State_Cl<0> bool))
(output (FET_STATE_LOGIC<2> bool))
(output (FET_STATE_LOGIC<l> bool))
(output (FET_STATE_LOGIC<0> bool))
(local ([141] bool)([140] bool)([215] bool)([217] bool)([90] bool))

180

(local ([143] bool)([77] bool)([86] bool)([223] bool)([201] bool))
(local ([219] bool)([221] bool)([154] bool)([199] bool)([197] bool))
(local ([147] bool)([149] bool)([82] bool)([83] bool)([78] bool))
(local ([145] bool)([79] bool)([80] bool)([2] bool))
(let [141] (invl Fet_State_CKl>))
(let [215] (nand2 [141] Fet_State_CK2>))
(let [140] (invl Fet_State_Cl<2>))
(let [217] (nand2 [140] Fet_State_CKl>))
(let [197] (nand2 [215] [217]))
(let [154] (invl resetIB_CV3<0>))
(let [90] (nor2 flush_CV2<0> ibMiss_C2<0>))
(let [143] (invl LatchNotSpd_CKO>))
(let [77] (nor3 LatchWrKpsw_C2<0> [90] [143]))
(let [86] (nor3 [77] Fet_State_Cl<2> [141]))
(let [219] (invl [86]))
(let [223] (nand2 [141] dataValid_C3<0>))
(let [201] (nand2 [223] Fet_State_Cl<2>))
(let [221] (nand2 [201] Fet_State_CKO>))
(let [199] (nand2 [219] [221]))
(let [147] (nand2 [154] [199]))
(let [149] (nand3 [197] [154] [147]))
(let FET_STATE_LOGIC<2> (invl [149]))
(let FET_STATE_LOGIC<l> (invl [147]))
(let [82] (nor3 [147] LatchNotSpd_CKO> [141]))
(let [83] (nor2 Fet_State_CKl> [140]))
(let [78] (nor2 [82] [83]))
(let [145] (invl Fet_State_Cl<0>))
(let [79] (nor2 [78] [145]))
(let [80] (nor2 memBusy_CV4<0> [149]))
(let [2] (nor3 resetIB_CV3<0> [79] [80]))
(let FET STATE_LOGIC<0> (invl [2])))

Examples obtained from the instruction decode logic of SPUR CPU

;;;; Without optimization in the MIS-II session: gate count 151

(defcell opcodcnop
(input (opcode_C3<25> bool)(opcode_C3<27> bool)(opcode_C3<28> bool))
(input (opcode_C3<29> bool)(opcode_C3<30> bool)(opcode_C3<31> bool))
(input (opcode_C3<26> bool)(fpuEn_C3<0> bool))
(output (trapCall_Vl<0> bool)(rdPC_Vl<0> bool)(load_VK0> bool))
(output (cpuLd32_Vl<0> bool)(cpuLoad_Vl<0> bool)(cxr_Vl<0> bool))
(output (ldStExt_Vl<0> bool)(subMode_Vl<0> bool)(addSub_Vl<0> bool))
(output (addNt_VK0> bool)(and_Vl<0> bool)(or_Vl<0> bool))

181

(output (xor_Vl<0> bool)(extract_Vl<0> bool)(insert_Vl<0> bool))
(output (readTag_Vl<0> bool)(writeTag_Vl<0> bool)(shLeft_Vl<0> bool))
(output (shRightA_VKO> bool)(shRightL_VKO> bool))
(output (fixnumOp_Vl<0> bool)(regReg_Vl<0> bool)(rdSpec_VKO> bool))
(output (rdIns_Vl<0> bool)(rdKpsw_Vl<0> bool)(wrSpec_Vl<0> bool))
(output (wrIns_Vl<0> bool)(wrKpsw_VKO> bool)(zeroRd_Vl<0> bool))
(output (lowToUp_Vl<0> bool)(callJump_Vl<0> bool))
(output (userCall_Vl<0> bool)(retTrapJVl<0> bool)(allRet_Vl<0> bool))
(output (miss_Vl<0> bool)(sync_Vl<0> bool)(invIB_Vl<0> bool))
(output (fpuLdSt_Vl<0> bool)(fpuOper_VK0> bool)(illegalOp_VK0> bool))
(local ([835] bool)([836] bool)([842] bool)([838] bool)([1692] bool))
(local ([1616] bool)([1686] bool)([1688] bool)([1690] bool))
(local ([839] bool)([843] bool)([845] bool)([1612] bool)([1680] bool))
(local ([1682] bool)([1622] bool)([1684] bool)([1624] bool))
(local ([1676] bool)([1678] bool)([1620] bool)([2072] bool))
(local ([1674] bool)([752] bool)([1618] bool)([1542] bool))
(local ([1552] bool)([175] bool)([863] bool)([102] bool)([868] bool))
(local ([872] bool)([1670] bool)([1610] bool)([877] bool)([880] bool))
(local ([884] bool)([889] bool)([894] bool)([899] bool)([904] bool))
(local ([909] bool)([914] bool)([919] bool)([924] bool)([929] bool))
(local ([934] bool)([1666] bool)([1668] bool)([1632] bool))
(local ([1564] bool)([504] bool)([1568] bool)([492] bool))
(local ([1572] bool)([480] bool)([1576] bool)([961] bool)([456] bool))
(local ([1585] bool)([971] bool)([1839] bool)([975] bool)([979] bool))
(local ([1664] bool)([1638] bool)([1825] bool)([1662] bool))
(local ([396] bool)([1636] bool)([1588] bool)([1816] bool))
(local ([986] bool)([991] bool)([352] bool)([1594] bool)([340] bool))
(local ([1597] bool)([1660] bool)([306] bool)([1626] bool))
(local ([1555] bool)([1656] bool)([1658] bool)([1642] bool))
(local ([1654] bool)([280] bool)([1640] bool)([1603] bool))
(local ([156] bool)([157] bool)([130] bool)([154] bool)([155] bool))
(local ([1017] bool)([129] bool)([152] bool)([1557] bool)([219] bool))
(local ([246] bool)([1558] bool)([2158] bool)([1024] bool))
(local ([1031] bool)([1035] bool)([1043] bool)([2118] bool))
(local ([2123] bool)([2128] bool)([2133] bool)([2148] bool))
(let [835] (invl opcode_C3<25>))
(let [842] (invl opcode_C3<29>))
(let [838] (invl opcode_C3<27>))
(let [843] (invl opcode_C3<30>))
(let [839] (invl opcode_C3<28>))
Get [845] (invl opcode_C3<31>))
(let [836] (invl opcode_C3<26>))
(let [1686] (nand4 [835] opcode_C3<27> [836] opcode_C3<29>))
(let [1688] (nand3 [836] [842] opcode_C3<27>))
(let [1692] (nand2 [838] opcode_C3<29>))
(let [1616] (nand2 [1692] opcode_C3<29>))
(let [1690] (nand2 [1616] opcode_C3<26>))

182

183

(let [1612] (nand3 [1686] [1688] [1690]))
(let [1542] (nand4 [839] [843] [845] [1612]))
(let [752] (nor3 opcode_C3<31> opcode_C3<30> [839]))
(let [2072] (nand2 [838] opcode_C3<26>))
(let [1680] (nand2 [838] opcode_C3<25>))
(let [1682] (nand2 [835] opcode_C3<27>))
(let [1622] (nand2 [1680] [1682]))
(let [1676] (nand2 [1622] opcode_C3<29>))
(let [1684] (nand2 [835] opcode_C3<27>))
(let [1624] (nand2 [1684] opcode_C3<27>))
(let [1678] (nand2 [842] [1624]))
(let [1620] (nand2 [1676] [1678]))
(let [1674] (nand2 [836] [1620]))
(let [1618] (nand2 [2072] [1674]))
(let [1552] (nand3 [752] [1618] fpuEn_C3<0>))
(let load_VK0> (nand2 [1542] [1552]))
(let [863] (nand3 [843] [839] opcode_C3<27>))
(let [175] (nor3 opcode_C3<26> opcode_C3<25> [842]))
(let [102] (nor2 [175] [842]))
(let cpuLd32_VK0> (nor3 [863] opcode_C3<31> [102]))
(let cpuLoad_VK0> (invl [1542]))
(let [868] (nand4 [838] opcode_C3<25> [839] [843]))
(let cxr_VK0> (nor3 [868] opcode_C3<31> [836]))
(let [872] (nand4 opcode_C3<25> opcode_C3<27> [839] [842]))
(let ldStExt_Vl<0> (nor3 [872] opcode_C3<31> [836]))
(let [1670] (nand2 [842] opcode_C3<25>))
(let [1610] (nand2 [842] [1670]))
(let [877] (nand3 [1610] [836] opcode_C3<31>))
(let subMode_VK0> (nor4 [877] opcode_C3<30> opcode_C3<27> opcode_C3<28>))
(let [880] (nand4 [838] [839] [842] [843]))
(let addSub_Vl<0> (nor3 [880] opcode_C3<26> [845]))
(let [884] (nand4 [835] [836] [838] opcode_C3<28>))
Get addNt_VK0> (nor4 [884] [845] opcode_C3<29> opcode_C3<30>))
(let [889] (nand4 [835] opcode_C3<26> [838] [839]))
(let and_VK0> (nor4 [889] [845] opcode_C3<29> opcode_C3<30>))
(let [894] (nand4 opcode_C3<25> opcode_C3<26> [838] [839]))
(let or_Vl<0> (nor4 [894] [845] opcode_C3<29> opcode_C3<30>))
(let [899] (nand4 [835] [836] [839] opcode_C3<27>))
(let xor_Vl<0> (nor4 [899] [845] opcode_C3<29> opcode_C3<30>))
(let [904] (nand4 [836] opcode_C3<25> opcode_C3<27> opcode_C3<28>))
(let extract_Vl<0> (nor4 [904] [845] opcode_C3<29> opcode_C3<30>))
(let [909] (nand4 opcode_C3<25> opcode_C3<26> opcode_C3<27> opcode_C3<28>))
(let insert_VK0> (nor4 [909] [845] opcode_C3<29> opcode_C3<30>))
(let [914] (nand4 [835] [836] opcode_C3<27> opcode_C3<28>))
(let readTag_Vl<0> (nor4 [914] [845] opcode_C3<29> opcode_C3<30>))
(let [919] (nand4 [835] opcode_C3<26> opcode_C3<27> opcode_C3<28>))
(let writeTag_Vl<0> (nor4 [919] [845] opcode_C3<29> opcode_C3<30>))

184

(let [924] (nand4 [836] opcode_C3<25> [839] opcode_C3<27>))
(let shLeft_VKO> (nor4 [924] [845] opcode_C3<29> opcode_C3<30>))
(let [929] (nand4 [835] opcode_C3<26> [839] opcode_C3<27>))
(let shRightA_Vl<0> (nor4 [929] [845] opcode_C3<29> opcode_C3<30>))
(let [934] (nand4 opcode_C3<25> opcode_C3<26> [839] opcode_C3<27>))
(let shRightL_Vl<0> (nor4 [934] [845] opcode_C3<29> opcode_C3<30>))
(let fixnumOp_Vl<0> (nor4 opcode_C3<28> opcode_C3<29> opcode_C3<30> [845]))
(let [1666] (nand4 [835] [838] [836] opcode_C3<28>))
(let [1668] (nand2 opcode_C3<27> opcode_C3<28>))
(let [1632] (nand3 [1666] [1668] opcode_C3<28>))
(let [1564] (nand4 [842] [843] [1632] opcode_C3<31>))
(let regReg_Vl<0> (invl [1564]))
(let [504] (nor4 opcode_C3<26> [835] opcode_C3<28> [838]))
(let [1568] (nand4 [504] opcode_C3<31> [843] opcode_C3<29>))
(let rdSpec_VK0> (invl [1568]))
(let [492] (nor4 [835] [836] opcode_C3<28> [838]))
(let [1572] (nand4 [492] opcode_C3<31> [843] opcode_C3<29>))
(let rdIns_Vl<0> (invl [1572]))
(let [480] (nor4 opcode_C3<25> [836] opcode_C3<28> [838]))
(let [1576] (nand4 [480] opcode_C3<31> [843] opcode_C3<29>))
(let rdKpsw_VK0> (invl [1576]))
(let [961] (nand4 [836] opcode_C3<25> opcode_C3<27> opcode_C3<28>))
(let wrSpec_Vl<0> (nor4 [961] [845] opcode_C3<30> [842]))
(let [456] (nor4 [835] [836] opcode_C3<27> opcode_C3<28>))
(let [1585] (nand4 [456] opcode_C3<31> [843] opcode_C3<29>))
(let wrIns_VK0> (invl [1585]))
(let [971] (nand4 [835] opcode_C3<26> opcode_C3<27> opcode_C3<28>))
(let wrKpsw_Vl<0> (nor4 [971] [845] opcode_C3<30> [842]))
(let [975] (nand3 [1572] [1564] [1568]))
(let [1839] (nand4 [839] opcode_C3<29> opcode_C3<30> opcode_C3<31>))
(let [979] (nand3 [1839] [1576] [1542]))
(let zeroRd_VK0> (nor2 [975] [979]))
(let [396] (nor3 opcode_C3<30> [839] [842]))
(let [1825] (nand2 [836] opcode_C3<25>))
(let [1664] (nand2 opcode_C3<26> opcode_C3<27>))
(let [1638] (nand2 [1664] opcode_C3<27>))
(let [1662] (nand2 [835] [1638]))
(let [1636] (nand2 [1825] [1662]))
(let [1588] (nand3 [396] [1636] opcode_C3<31>))
(let lowToUp_Vl<0> (invl [1588]))
(let [1816] (nand3 opcode_C3<31> opcode_C3<29> opcode_C3<30>))
(let calUump_Vl<0> (invl [1816]))
(let userCall_Vl<0> (invl [1839]))
(let [986] (nand4 [836] opcode_C3<25> [838] opcode_C3<28>))
(let retTrap_VK0> (nor4 [986] [845] opcode_C3<30> [842]))
(let [991] (nand4 [838] opcode_C3<28> [843] opcode_C3<29>))
(let allRet_VK0> (nor3 [991] opcode_C3<26> [845]))

(let [352] (nor4 opcode_C3<25> opcode_C3<26> opcode_C3<27> [839]))
(let [1594] (nand4 [352] opcode_C3<31> [842] opcode_C3<30>))
(let miss_Vl<0> (invl [1594]))
(let [340] (nor4 [835] [836] [838] [839]))
(let [1597] (nand4 [340] [845] opcode_C3<29> opcode_C3<30>))
(let sync_VK0> (invl [1597]))
(let [306] (nor3 [843] opcode_C3<29> [839]))
(let [1660] (nand3 [836] [835] opcode_C3<27>))
(let [1626] (nand2 [1660] opcode_C3<27>))
(let [1555] (nand4 [306] [1626] [845] fpuEn_C3<0>))
(let fpuLdSt_VK0> (nand2 [1552] [1555]))
(let [280] (nor3 opcode_C3<31> [842] [843]))
(let [1656] (nand2 [838] [836]))
(let [1658] (nand2 opcode_C3<26> opcode_C3<27>))
(let [1642] (nand2 [1656] [1658]))
(let [1654] (nand2 [1642] opcode_C3<28>))
(let [1640] (nand2 [1654] opcode_C3<28>))
(let [1603] (nand3 [280] [1640] fpuEn_C3<0>))
(let fpuOper_Vl<0> (invl [1603]))
(let [1017] (nand3 opcode_C3<30> [839] [842]))
(let [154] (nor3 opcode_C3<26> opcode_C3<25> [838]))
(let [156] (nor2 opcode_C3<25> opcode_C3<27>))
(let [157] (nor2 [835] [838]))
(let [130] (nor2 [156] [157]))
(let [155] (nor2 [130] [836]))
(let [129] (nor2 [154] [155]))
(let [152] (nor3 [1017] opcode_C3<31> [129]))
(let [1557] (invl [1555]))
(let [219] (nor3 load_VK0> [152] [1557]))
(let [1024] (nand4 [1603] [219] [1564] [1588]))
Get [246] (nor4 opcode_C3<27> opcode_C3<28> opcode_C3<30> [842]))
(let [1558] (nand3 [246] [836] opcode_C3<31>))
(let [1031] (nand4 [1816] [1558] [1568] [1572]))
(let [1035] (nand4 [1576] [1585] [1594] [1597]))
(let [1043] (invl [2158]))
(let illegalOp_VK0> (nor4 [1024] [1031] [1035] [1043]))
(let [2118] (nand4 [836] opcode_C3<25> [838] [839]))
(let [2123] (nand4 [836] opcode_C3<25> [838] opcode_C3<28>))
(let [2128] (nand4 opcode_C3<25> opcode_C3<26> [838] opcode_C3<28>))
(let [2133] (nand4 [835] [836] [839] opcode_C3<27>))
(let trapCall_VK0> (nor4 [2118] [845] opcode_C3<29> [843]))
(let invIB_Vl<0> (nor4 [2123] [845] opcode_C3<29> [843]))
(let [2148] (nor4 [2128] [845] opcode_C3<29> opcode_C3<30>))
(let rdPC_Vl<0> (nor4 [2133] [845] opcode_C3<30> [842]))
(let [2158] (nor4 invIB_Vl<0> rdPC_Vl<0> trapCall_VK0> [2148])))

185

;;;; With optimization in the MIS-II session: gate count 132

(defcell opcode.opt
(input (opcode_C3<25> bool)(opcode_C3<27> bool)(opcode_C3<28> bool))
(input (opcode_C3<29> bool)(opcode_C3<30> bool)(opcode_C3<31> bool))
(input (opcode_C3<26> bool)(fpuEn_C3<0> bool))
(output (trapCall_VKO> bool)(rdPC_Vl<0> bool)(load_VK0> bool))
(output (cpuLd32_Vl<0> bool)(cpuLoad_Vl<0> bool)(cxr_Vl<0> bool))
(output (ldStExt_VKO> bool)(subMode_VKO> bool)(addSub_VKO> bool))
(output (addNt_Vl<0> bool)(and_VK0> bool)(or_VK0> bool))
(output (xor_Vl<0> bool)(extract_Vl<0> bool)(insert_VKO> bool))
(output (readTag_Vl<0> bool)(writeTag_Vl<0> bool)(shLeft_Vl<0> bool))
(output (shRightA_Vl<0> bool)(shRightL_Vl<0> bool))
(output (fixnumOp_VK0> bool)(regReg_Vl<0> bool)(rdSpec_Vl<0> bool))
(output (rdIns_VK0> bool)(rdKpsw_Vl<0> bool)(wrSpec_Vl<0> bool))
(output (wrIns_Vl<0> bool)(wrKpsw_Vl<0> bool)(zeroRd_Vl<0> bool))
(output (lowToUp_Vl<0> bool)(callJump_Vl<0> bool))
(output (userCall_VKO> bool)(retTrap_VKO> bool)(allRet_VKO> bool))
(output (miss_Vl<0> bool)(sync_Vl<0> bool)(invIB_Vl<0> bool))
(output (fpuLdSt_Vl<0> bool)(fpuOper_Vl<0> bool))
(output (illegalOp_Vl<0> bool))
(local ([1216] bool)([502] bool)([495] bool)([505] bool)([492] bool))
(local ([52] bool)([494] bool)([499] bool)([815] bool)([1212] bool))
(local ([491] bool)([509] bool)([64] bool)([507] bool)([498] bool))
(local ([1010] bool)([454] bool)([1068] bool)([584] bool)([782] bool))
(local ([517] bool)([1064] bool)([1066] bool)([1022] bool))
(local ([1220] bool)([1062] bool)([497] bool)([1020] bool))
(local ([792] bool)([519] bool)([415] bool)([589] bool)([522] bool))
(local ([592] bool)([525] bool)([527] bool)([501] bool)([529] bool))
(local ([531] bool)([533] bool)([166] bool)([167] bool))
(local (regReg_State<0>0.1 bool)([806] bool)([809] bool)([812] bool))
(local ([540] bool)([548] bool)([546] bool)([550] bool)([552] bool))
(local ([163] bool)([1258] bool)([511] bool)([62] bool)([848] bool))
(local ([1243] bool)([795] bool)([1052] bool)([500] bool))
(local ([1028] bool)([836] bool)([1048] bool)([1050] bool))
(local ([1026] bool)([851] bool)([844] bool)([1044] bool))
(local ([1046] bool)([1018] bool)([568] bool)([244] bool)([236] bool))
(local ([223] bool)([840] bool)([1040] bool)([1042] bool))
(local ([1016] bool)([1036] bool)([1038] bool)([1014] bool))
(local ([1034] bool)([1030] bool)([1032] bool)([1012] bool))
(local ([583] bool)([327] bool)([1221] bool)([1251] bool))
(local ([1228] bool)([294] bool)([1257] bool))
(let [498] (invl opcode_C3<27>))
(let [499] (invl opcode_C3<26>))
(let [501] (invl [1216]))
(let [502] (nand3 [1216] opcode_C3<25> opcode_C3<30>))
(let trapCall_Vl<0> (nor3 [502] opcode_C3<28> opcode_C3<29>))

186

(let [495] (invl opcode_C3<30>))
(let [505] (nand3 opcode_C3<31> [495] opcode_C3<27>))
(let [492] (invl opcode_C3<29>))
(let [52] (nor3 [505] opcode_C3<28> [492]))
(let [494] (invl opcode_C3<25>))
(let [815] (nand3 [52] [494] [499]))
(let rdPC_VK0> (invl [815]))
(let [497] (invl opcode_C3<31>))
(let [507] (invl [1212]))
(let [491] (invl opcode_C3<28>))
(let [509] (nand2 [491] [495]))
(let [64] (nor3 [509] opcode_C3<27> opcode_C3<31>))
(let [1068]. (nand2 opcode_C3<26> [64]))
(let [1010] (nand2 [507] opcode_C3<29>))
(let [454] (nor3 [509] opcode_C3<31> [498]))
(let [584] (nand2 [1010] [454]))
(let cpuLoad_VK0> (nand2 [1068] [584]))
(let [517] (nand2 [492] opcode_C3<28>))
(let [782] (invl cpuLoad_VK0>))
(let [1064] (nand2 [782] opcode_C3<26>))
(let [1066] (nand2 opcode_C3<28> opcode_C3<25>))
(let [1022] (nand3 [517] [1064] [1066]))
(let [1062] (nand2 [498] [1022]))
(let [1020] (nand2 [1220] [1062]))
(let [792] (nand4 [495] [497] [1020] fpuEn_C3<0>))
(let load_VK0> (nand2 [792] [782]))
(let cpuLd32_VK0> (invl [584]))
(let [519] (nand2 opcode_C3<25> opcode_C3<26>))
(let cxr_VK0> (nor4 [519] [509] opcode_C3<27> opcode_C3<31>))
(let [415] (nor3 [519] opcode_C3<31> [498]))
(let [589] (nand3 [415] [491] [492]))
(let ldStExt_VK0> (invl [589]))
(let [522] (nand2 [494] [492]))
(let [592] (nand4 [491] [495] [522] [1216]))
(let subMode_VK0> (invl [592]))
(let [525] (invl fixnumOp_VK0>))
(let addSub_VK0> (nor3 [525] opcode_C3<27> opcode_C3<26>))
(let [527] (nand3 opcode_C3<28> [494] [492]))
(let addNt_VK0> (nor3 [527] opcode_C3<30> [501]))
(let [529] (nand2 [494] opcode_C3<26>))
(let and_VK0> (nor3 [529] opcode_C3<27> [525]))
(let or_Vl<0> (nor3 [519] opcode_C3<27> [525]))
(let [531] (nand2 opcode_C3<27> nxnumOp_Vl<0>))
(let xor_VK0> (nor2 [507] [531]))
(let [533] (nand2 [499] opcode_C3<25>))
(let extract_VK0> (nor3 [533] [505] [517]))
(let insert V1<0> (nor3 [517] [505] [519]))

187

(let readTag_VKO> (nor3 [527] opcode_C3<26> [505]))
(let writeTag_VK0> (nor3 [527] [499] [505]))
(let shLeft_VK0> (nor2 [531] [533]))
(let shRightA_Vl<0> (nor2 [529] [531]))
(let shRightL_VK0> (nor2 [519] [531]))
(let [166] (nor4 opcode_C3<30> [497] opcode_C3<26> [522]))
(let [167] (nor2 opcode_C3<29> [505]))
(let regReg_State<0>0.1 (nor3 fixnumOp_Vl<0> [166] [167]))
(let regReg_Vl<0> (invl regReg_State<0>0.1))
(let [806] (nand3 [52] [499] opcode_C3<25>))
(let rdSpec_Vl<0> (invl [806]))
(let [809] (nand3 [52] opcode_C3<25> opcode_C3<26>))
(let rdIns_VK0> (invl [809]))
(let [812] (nand3 [52] [494] opcode_C3<26>))
(let rdKpsw_Vl<0> (invl [812]))
(let [540] (nand2 opcode_C3<28> opcode_C3<29>))
(let wrSpec_VK0> (nor3 [533] [505] [540]))
(let [327] (nor2 [509] [519]))
(let wrKpsw_VK0> (nor3 [540] [505] [529]))
(let [546] (nand2 regReg_State<0>0.1 [782]))
(let [548] (invl catiJump_VK0>))
(let userCall_Vl<0> (nor2 opcode_C3<28> [548]))
(let [550] (nand3 [812] [806] [809]))
(let zeroRd_Vl<0> (nor3 [546] userCall_VK0> [550]))
(let [552] (nand2 [548] opcode_C3<31>))
(let [163] (nor3 [552] [529] [540]))
(let [294] (nor2 [163] wrSpec_VK0>))
(let lowToUp_VK0> (invl [1258]))
(let retTrap_VK0> (nor4 opcode_C3<30> [494] [501] [540]))
(let [840] (invl miss_Vl<0>))
(let [511] (nand2 [497] opcode_C3<27>))
(let sync_VK0> (nor4 [495] [519] [511] [540]))
(let [844] (invl sync V1<0>))
(let [62] (nor3 [501] "[494] [495]))
(let [848] (nand3 [62] [492] opcode_C3<28>))
(let invIB_Vl<0> (invl [848]))
(let [795] (invl [1243]))
(let fpuLdSt_VK0> (nand2 [792] [795]))
(let [1052] (nand2 opcode_C3<27> opcode_C3<26>))
(let [500] (nand2 [498] [499]))
(let [1028] (nand2 [1052] [500]))
(let [1048] (nand2 [548] [1028]))
(let [836] (nand4 [491] opcode_C3<31> opcode_C3<29> opcode_C3<30>))
(let [1050] (nand2 [491] [836]))
(let [1026] (nand2 [1048] [1050]))
(let [851] (nand4 opcode_C3<29> opcode_C3<30> [1026] fpuEn_C3<0>))
(let fpuOper_VK0> (invl [851]))

188

189

(let [1044] (nand3 [844] [589J opcode_C3<25>))
(let [1046] (nand3 opcode_C3<27> [494] opcode_C3<26>))
(let [1018] (nand4 [1044] [1046] [500] opcode_C3<30>))
(let [1034] (nand2 [497] [1018]))
(let [568] (nand2 [499] regReg_State<0>0.1))
(let [244] (nor3 [568] opcode_C3<29> [497]))
(let [236] (nor2 trapCall_VK0> miss_VK0>))
(let [1030] (nand3 [244] [848] [236]))
(let [1036] (nand3 opcode_C3<26> opcode_C3<30> opcode_C3<31>))
(let [223] (nor3 [550] wrIns_VK0> sync_VK0>))
(let [1040] (nand4 [223] [815] [592] opcode_C3<29>))
(let [1042] (nand4 [494] opcode_C3<28> [840] regReg_State<0>0.1))
(let [1016] (nand2 [1040] [1042])) .
(let [1038] (nand2 [1016] [1258]))
(let [1014] (nand2 [1036] [1038]))
(let [1032] (nand2 [548] [1014]))
(let [1012] (nand3 [1034] [1030] [1032]))
(let [583] (nand2 [851] [1012]))
(let illegalOp_VK0> (nor3 [583] [1243] load_VK0>))
(let [1212] (nor2 opcode_C3<25> opcode_C3<26>))
(let [1216] (nor3 [497] opcode_C3<27> opcode_C3<26>))
(let [1220] (nand3 [1212] [782] opcode_C3<27>))
(let [1221] (invl [327]))
(let wrIns_VK0> (nor4 [1221] [497] opcode_C3<27> [492]))
(let [1228] (nor2 [1212] [498]))
(let fixnumOp_VK0> (nor4 opcode_C3<28> opcode_C3<30> opcode_C3<29> [497]))
(let allRet_VK0> (nor4 [491] [492] calUump_VK0> [501]))
(let [1243] (nor4 [1251] [1228] opcode_C3<29> [491]))
(let calUump_VK0> (npr3 [497] [492] [495]))
(let [1251] (nand3 fpuEn_C3<0> [497] opcode_C3<30>))
(let miss_Vl<0> (nor3 [527] [495] [501]))
(let [1257] (invl [294]))
(let [1258] (nor2 allRet_VK0> [1257])))

A.4 Examples Used in Functional Verification

;;;; 1-bit binary full-adder

(defcell adder-Id
(input (a bool) (b bool) (cin bool))
(output (sum bool) (cout bool))

(let sum (xor2 cin (xor2 a b)))
(let cout (or2 (and2 a b) (and2 cin (xor2 a b)))))

(defcell r-cld
(input (al bool) (bl bool) (cin bool))
(output (si bool) (cout bool))
(let (si cout) (adder-Id al bl cin)))

;;;; 2-bit adder: ripple-carry implementation

(defcell r-c2d
(input (xl bool) (x2 bool) (yl bool) (y2 bool) (cin bool))
(output (si bool) (s2 bool) (cout bool))
(local (cl bool))
(let (si cl) (adder-Id xl yl cin))
(let (s2 cout) (adder-Id x2 y2 cl)))

;;;; 2-bit adder: carry-look-ahead implementation

(defcell l-a2d
(input (xl bool) (x2 bool) (yl bool) (y2 bool) (cin bool))
(output (si bool) (s2 bool) (cout bool))
Gocal (gl bool) (g2 bool) (pi bool) (p2 bool) (cl bool))
(let gl (and2 xl yl))
(let g2 (and2 x2 y2))
(let pi (or2 xl yl))
(let p2 (or2 x2 y2))
(let cl (or2 gl (and2 pi cin)))
(let cout (or3 g2 (and2 p2 gl) (and3 p2 pi cin)))
(let si (xor2 cin (xor2 xl yl)))
(let s2 (xor2 cl (xor2 x2 y2))))

;;;; 3-bit adder: ripple-carry implementation

(defcell r-c3d
(input (xl bool) (x2 bool) (x3 bool)

(yl bool) (y2 bool) (y3 bool) (cin bool))
(output (si bool) (s2 bool) (s3 bool) (cout bool))
Gocal (cl bool) (c2 bool))
(let (si cl) (adder-Id xl yl cin))
(let (s2 c2) (adder-Id x2 y2 cl))
(let (s3 cout) (adder-Id x3 y3 c2)))

;;;; 3-bit adder: carry-look-ahead implementation

(defcell l-a3d
(input (xl bool) (x2 bool) (x3 bool)

(yl bool) (y2 bool) (y3 bool) (cin bool))
(output (si bool) (s2 bool) (s3 bool) (cout bool))
(local (gl bool) (g2 bool) (g3 bool)

190

(pi bool) (p2 bool) (p3 bool) (cl bool) (c2 bool))
(let gl (and2 xl yl))
(let g2 (and2 x2 y2))
(let g3 (and2 x3 y3))
(let pi (or2 xl yl))
(let p2 (or2 x2 y2))
(let p3 (or2 x3 y3))
(let cl (or2 gl (and2 pi cin)))
(let c2 (or3 g2 (and2 p2 gl) (and3 p2 pi cin)))
(let cout (or4 g3 (and2 p3 g2) (and3 p3 p2 gl) (and4 p3 p2 pi cin)))
(let si (xor2 cin (xor2 xl yl)))
(let s2 (xor2 cl (xor2 x2 y2)))
(let s3 (xor2 c2 (xor2 x3 y3))))

;;;; 4-bit adder: ripple-carry implementation

(defcell r-c4d
(input (al bool) (a2 bool) (a3 bool) (a4 bool)

(bl bool) (b2 bool) 0>3 bool) (M bool) (cin bool))
(output (si bool) (s2 bool) (s3 bool) (s4 bool) (cout bool))
(local (cl bool) (c2 bool) (c3 bool))
(let (si cl) (adder-Id al bl cin))
(let (s2 c2) (adder-Id a2 b2 cl))
(let (s3 c3) (adder-Id a3 b3 c2))
(let (s4 cout) (adder-Id a4 b4 c3)))

;;;; 4-bit adder: carry-look-ahead implementation

(defcell l-a4d
(input (al bool) (a2 bool) (a3 bool) (a4 bool)

(bl bool) (b2 bool) (b3 bool) QA bool) (cin bool))
(output (si bool) (s2 bool) (s3 bool) (s4 bool) (cout bool))
(local (gl bool) (g2 bool) (g3 bool) (g4 bool)

(pi bool) (p2 bool) (p3 bool) (p4 bool)
(cl bool) (c2 bool) (c3 bool))

(let gl (and2 al bl))
(let g2 (and2 a2 b2))
(let g3 (and2 a3 b3))
(let g4 (and2 a4 b4))
(let pi (or2 al bl))
(let p2 (or2 a2 b2))
(let p3 (or2 a3 b3))
(let p4 (or2 a4 b4))
(let cl (or2 gl (and2 pi cin)))
(let c2 (or3 g2 (and2 p2 gl) (and3 p2 pi cin)))
(let c3 (or4 g3 (and2 p3 g2) (and3 p3 p2 gl) (and4 p3 p2 pi cin)))
(let cout (or5 g4 (and2 p4 g3) (and3 p4 p3 g2) (and4 p4 p3 p2 gl)

191

(and5 p4 p3 p2 pi cin)))
(let si (xor2 cin (xor2 al bl)))
(let s2 (xor2 cl (xor2 a2 b2)))
(let s3 (xor2 c2 (xor2 a3 b3)))
(let s4 (xor2 c3 (xor2 a4 b4))))

;;;; 4-bit adder: incorrect implementation

(defcell wrong4d
(input (al bool) (a2 bool) (a3 bool) (a4 bool)

(bl bool) (b2 bool) (b3 bool) (b4 bool) (cin bool))
(output (si bool) (s2 bool) (s3 bool) (s4 bool) (cout bool))
(local (gl bool) (g2 bool) (g3 bool) (g4 bool)

(pi bool) (p2 bool) (p3 bool) (p4 bool)
(cl bool) (c2 bool) (c3 bool))

(let gl (and2 al bl))
(let g2 (and2 a2 b2))
(let g3 (and2 a3 b3))
(let g4 (and2 a4 b4))
(let pi (or2 al bl))
(let p2 (or2 a2 b2))
(let p3 (or2 a3 b3))
(let p4 (or2 a4 M))
(let cl (or2 gl (and2 pi cin)))
(let c2 (or3 g2 (and2 p2 gl) (and3 p2 pi cin)))
(let c3 (or4 g3 (and2 p3 g2) (and3 p3 p2 gl) (and4 p3 p2 pi cin)))
(let cout (and5 g4 (and2 p4 g3) (and3 p4 p3 g2) (and4 p4 p3 p2 gl)

(and5 p4 p3 p2 pi cin)))
(let si (xor2 cin (xor2 al bl)))
(let s2 (xor2 cl (xor2 a2 b2)))
(let s3 (xor2 c2 (xor2 a3 b3)))
(let s4 (xor2 c3 (xor2 a4 b4))))

;;;; implementation of 2-bit alu

;;;; 1-bit alu: implemented using MIS-II

(defcell alubit
(input (a<0> bool) (b<0> bool) (cin<0> bool) (and_op<0> bool))
(input (add_op<0> bool) (comp_op<0> bool) (pass_op<0> bool))
(output (sum<0> bool) (cout<0> bool))
(local ([120] bool)([121] bool)([162] bool)([174] bool)([176] bool))
Gocal ([73] bool)([118] bool)([119] bool)([80] bool)([72] bool))
(local ([78] bool)([71] bool)([75] bool)([76] bool)([168] bool))
(local ([89] bool))

192

(let [120] (invl a<0>))
(let [168] (nand2 [120] comp_op<0>))
(let [73] (nor3 cin<0> a<0> b<0>))
(let [121] (invl b<0>))
(let [162] (nand2 [120] [121]))
(let [174] (nand2 [162] cin<0>))
(let [176] (nand2 a<0> b<0>))
(let cout<0> (nand2 [174] [176]))
(let [118] (invl add_op<0>))
(let [75] (nor3 [73] cout<0> [118]))
(let [119] (invl cin<0>))
(let[80](nor2[118] [119]))
(let [72] (nor2 [80] and_op<0>))
(let [78] (nor2 [72] [121]))
(let [71] (nor2 [78] pass_op<0>))
(let [76] (nor2 [71] [120]))
(let [89] (nor2 [75] [76]))
Get sum<0> (nand2 [168] [89])))

;;;; decode logic for alu: implemented using MIS-II

(defcell op_decode
(input (op<l> bool)(op<0> bool))
(output (and_op<0> bool)(add_op<0> bool))
(output (comp_op<0> bool)(pass_op<0> bool))
Gocal ([268] bool)([269] bool))
(let [268] (invl op<l>))
(let and_op<0> (nor2 op<0> [268]))
Get [269] (invl op<0>))
(let add_op<0> (nor2 [268] [269]))
(let cornp_op<0> (nor2 op<l> [269]))
(let pass_op<0> (nor2 op<l> op<0>)))

;;;; 2-bit alu: implemented using MIS-II

(defcell alu2bit
(input (a<l> bool) (a<0> bool))
(input G><1> bool) (b<0> bool))
(input (c<0> bool) (op<l> bool) (op<0> bool))
(output (s<l> bool) (s<0> bool) (c<2> bool))
(local (c<l> bool))
(local (and_op bool) (add_op bool) (comp_op bool) (pass_op bool))

(let (and_op addop compop pass_op) (op_decode op<l> op<0>))
(let (s<0> c<l>)

(alubit a<0> b<0> c<0> andop add_op comp_op pass_op))
(let (s<l> c<2>)

193

(alubit a<l> b<l> c<l> and_op add_op comp_op pass_op)))

;;;; 1-bit alu: obtained from BDS description

(defcell alubit.bds
(input (a bool) (b bool) (cin bool))
(input (andop bool) (add_op bool) (comp_op bool) (pass_op bool))
(output (sum bool) (cout bool))
(local (p bool) (g bool))

(let g (and a b))
(let p (xor a b))

(let cout (or g (and p cin)))

(let sum (or (and pass_op a) (and comp_op (not a))
(and and_op g) (and add_op (xor p cin)))))

;;;; decode logic for alu: obtained from BDS description

(defcell op_decode.bds
(input (op<l> bool)(op<0> bool))
(output (and_op bool)(add_op bool)(comp_op bool)(pass_op bool))

(let pass_op (and (not op<l>) (not op<0>)))
(let comp_op (and (not op<l>) op<0>))
(let and_op (and op<l> (not op<0>)))
(let add_op (and op<l> op<0>)))

;;;; type definition of 2-bit vector

(deftype bool2 (struct (<1> bool) (<0> bool)))

;;;; type conversion function: nat to bool2

(defcell nat-to-bool2
(input (n nat))
(output (y bool2))
(local (tmp nat))
(let tmp (if (< n 4) n (- n 4)))
(let y (case tmp

(0 (bool2-cons false false))
(1 (bool2-cons false true))
(2 (bool2-cons true false))
(3 (boo!2-cons true true)))))

;;;; type conversion function: boo!2 to nat

194

(defcell bool2-to-nat
(input (x bool2))
(output (y nat))
(local G>1 bool) (bO bool))
(let bl (bool2-<l> x))
(let bO (bool2-<0> x))
(let y (case (bl bO)

((false false) 0)
((false true) 1)
((true false) 2)
((true true) 3))))

;;;; 2-bit alu: obtained from BDS description

(defcell alu2bit.bds
(input (a<l> bool) (a<0> bool))
(input (b<l> bool) (b<0> bool))
(input (c<0> bool) (op<l> bool) (op<0> bool))
(output (s<l> bool) (s<0> bool) (c<2> bool))
(local (tmp nat) (tmp-bool2 bool2))
(let tmp (+ (bool2-to-nat (bool2-cons a<l> a<0>))

(bool2-to-nat (bool2-cons b<l> b<0>))
(if c<0> 1 0)))

(let c<2> (if (< tmp 4) false true))
(let tmp-bool2 (nat-to-bool2 tmp))
(let (s<l> s<0>)

(case (op<l> op<0>)
((false false) (values a<l> a<0>))
((false true) (values (not a<l>) (not a<0>)))
((true false) (values (and a<l> b<l>) (and a<0> b<0>)))
((true true) (values (bool2-<l> tmp-bool2)

(bool2-<0> tmp-bool2))))))

»»»»

;;;; sequential circuit examples

;;;; top-level cell

(defcell iufsm
(input

(phil sync)
(phi2 sync)
(phi3 sync)
(phi4 sync)
(random sync)
(pi bool)
(p2 bool)

195

(p3 bool)
(p4 bool)
(iuPre_C4 bool)
(iuEn_C4 bool)

(reset_L_Cl bool)
(notSpd_C4 bool)
(dataValid_C3 bool)
(cacheBusy_C3 bool)
(invIB_Cl bool)
(trapReq_C2 bool)
(load_Ex bool)
(store_Ex bool)
(lowToUp_Ex bool)
(invIB_Ex bool)

(wrKpsw_Ex bool)
G>lockMiss_C2 bool)
(ibMiss_C2 bool))

(state
(FET_STATE_LOGIC<2> bool)
(FET_STATE_LOGIC<l> bool)
(FET STATE LOGIC<0> bool))

(state

(PF_STATE_LOGIC<2> bool)
(PF_STATE_L0GIC<1> bool)
(PF_STATE_LOGIC<0> bool))

(state
(FET_State_C4<2> bool)
(FET_State_C4<l> bool)
(FET_State_C4<0> bool)
(PF_State_C4<2> bool)
(PF_State_C4<l> bool)
(PF_State_C4<0> bool)
(resetIB_CV3 bool)
(memBusy_CV4 bool)
(busSBusy_C2 bool))

(output
(random_clk bool)
(randomclkJL bool)
(ldlBfetPCl bool)
(readIB_2 bool)
(invalidate_2 bool)

(bypass_2 bool)
(ibToBusI_3 bool)
(missToBusI_3 bool)
(trapToBusI_3 bool)
(readToBusI_3 bool)
(ibTagWr_4 bool)

196

197

(ibWrite_4 bool)
(readML_4 bool)
(fetPCToBusS_4 bool)

(ldIBrefPC_4 bool)
(ibINCToBusS_4 bool)
(notFetPending_Cl bool)

(fetch_C3 bool)
(preFetch_C3 bool)

(invalidBlock_Cl bool))
(local

(flush_CV2 bool)
(LatchWrKpsw_C2 bool)
(LatchNotSpd_Cl bool)
(FET_State_Cl<2> bool)
(FET_State_CKl> bool)
(FET_State_CKO> bool)
(PF_State_Cl<2> bool)
(PF_State_CKl> bool)
(PF_State_CKO> bool)
(startingPF_CV3 bool)
(LatchIuEn_Cl bool)
(LatchIuPre_Cl bool)
(LatchReset_C2 bool)
(tl bool)
(t2 bool)
(t3 bool)
(t4 bool)

(t5 bool)
(t6 bool)
(t7 bool)
(t8 bool)
(t9 bool)

)
;; fetfsm
(let (FET_STATE_LOGIC<2> FET_STATE_L0GIC<1> FET_STATE_LOGIC<0>

FET_State_C4<2> FET_State_C4<l> FET_State_C4<0>
FET_State_Cl<2> FET_State_Cl<l> FET_State_Cl<0>)

(fetfsm FET_STATE_LOGIC<2> FET_STATE_LOGIC<l> FET_STATE_LOGIC<0>
phil phi4 memBusy_CV4 resetIB_CV3 flush_CV2
dataValid_C3 LatchWrKpsw_C2 LatchNotSpd_Cl ibMiss_C2))

;; pi and its boundary latches
(let (tl t2 WIBfetPCl)

(picell pi FET_State_C4<2> FET_State_C4<l> FET_State_C4<0>
notSpd_C4 blockMiss_C2 LatchWrKpsw_C2 flush_CV2))

(let notFetPendingCl (prev phil tl))
(let invalidBlockCl (prev phil t2))

198

;; p2 and its boundary latches
(let (t3 t4 invalidate_2 bypass_2 readIB_2)

(p2cell p2 FET_State_C4<2> FET_State_C4<l> FET_State_C4<0>
load_Ex store_Ex lowToUpEx invEB_Ex invIB_Cl
LatchNotSpd_Cl))

(let flush_CV2 (prev phi2 t3))
(let busSBusy_C2 (prev phi2 t4))

;; p3 and its boundary latches
(let (t5 t6 t7 t8 trapToBusI_3 readToBusI_3 missToBusI_3 ibToBusI_3)

(p3cell p3 FET_State_C4<2> FET_State_C4<l> FET_State_C4<0>
PF_State_C4<2> PF_State_C4<l> PF_State_C4<0>
LatchNotSpd_Cl ibMiss_C2 flush_CV2 reset_L_Cl trapReq_C2
LatchWrKpsw_C2 busSBusy_c2))

(let startingPF_CV3 (prev phi3 t5))
(let resetIB_CV3 (prev phi3 t6))
(let fetch_C3 (prev phi3 t7))
(let preFetch_C3 (prev phi3 t8))

r» p4
(let (ibWrite_4 ibTagWr_4 fetPCToBusS_4 readML_4 ldIBrefPC_4 ibINCToBusS_4)

(p4cell p4 PF_State_Cl<2> PF_State_CKl> PF_State_CKO>
FET_State_Cl<2> FET_State_CKl> FET_State_Cl<0>
flush_CV2 dataValid_C3 cacheBusy_C3 busSBusy_C2
resetIB_CV3 LatchWrKpsw_C2 LatchNotSpd_Cl blockMiss_C2
ibMiss_C2 startingPF_CV3))

;; pffsm
(let 0>F_STATE_LOGIC<2> PF_STATE_LOGIC<l> PF_STATE_LOGIC<0>

PF_State_C4<2> PF_State_C4<l> PF_State_C4<0>
PF_State_Cl<2> PF_State_CKl> PF_State_CKO>)

(pffsm PF_STATE_LOGIC<2> PF_STATE_LOGIC<l> PF_STATE_LOGIC<0>
phil phi4 memBusy_CV4 resetIB_CV3 flush_CV2 LatchIuEn_Cl
LatchIuPre_Cl LatchWrKpsw_C2 startingPF_CV3))

;; random logic and its boundary latches
(let (t9 random_clk random_clk_L)

(racell pi cacheBusy_C3 dataValid_C3 busSBusy_C2 LatchWrKpsw_C2
LatchReset_C2))

(let memBusy_CV4 (prev phi4 t9))

;; isolated latches
(let LatchluPreCl (prev random iuPre_C4))
(let LatchIuEn_Cl (prev random iuEn_C4))
(let LatchNotSpd_Cl (prev phil notSpd_C4))
(let LatchWrKpsw_C2 (prev phi2 WrKpsw_Ex)))

199

(defcell fetfsm
(input

(phil sync)
(phi4 sync)
(memBusy_CV4<0> bool)
(resetIB_CV3<0> bool)
(flush_CV2<0> bool)
(dataValid_C3<0> bool)
(LatchWrKpsw_C2<0> bool)
(LatchNotSpd_Cl<0> bool)
(ibMiss_C2<0> bool))

(state
(FET_STATE_LOGIC<2> bool)
(FET_STATE_L0GIC<1> bool)
(FET_STATE_LOGIC<0> bool))

(output
(FET_State_C4<2> bool)
(FET_State_C4<l> bool)
(FET_State_C4<0> bool)
(FET_State_Cl<2> bool)
(FET_State_Cl<l> bool)
(FET_State_CKO> bool))

(local
([89] bool)([142] bool)([140] bool)([221] bool)([199] bool)
([139] bool)([81] bool)([82] bool)([77] bool)([144] bool)
([147] bool)([78] bool)([79] bool)([2] bool)([267] bool)
([264] bool)([76] bool)([254] bool)([257] bool)([219] bool)
([261] bool)([266] bool))

(let [140] (invl FET_State_CKl>))
(let [139] (invl FET_State_CK2>))
(let [89] (nor2 flush_CV2<0> ibMiss_C2<0>))
(let [142] (invl LatchNotSpd_CKO>))
(let [76] (nor3 LatchWrKpsw_C2<0> [89] [142]))
(let [221] (nand2 [140] dataValid_C3<0>))
(let [199] (nand2 [221] FET_State_Cl<2>))
(let [219] (nand2 [199] FET_State_CK0>))
(let [147] (invl FET_STATE_LOGIC<2>))
(let [81] (nor3 [140] LatchNotSpd_Cl<0> FET_State_Cl<2>))
(let [82] (nor2 FET_State_CKl> [139]))
(let [77] (nor2 [81] [82]))
(let [144] (invl FET_State_Cl<0>))
(let [78] (nor2 [77] [144]))
(let [79] (nor2 memBusy_CV4<0> [147]))
(let [2] (nor3 resetIB_CV3<0> [78] [79]))
(let FET_STATE_LOGIC<0> (invl [2]))
(let FET_STATE_LOGIC<l> (nor2 resetIB_CV3<0> [267]))
(let FET STATE LOGIC<2> (nor3 [264] resetffi_CV3<0> FET_STATE_LOGIC<l>))

200

(let [254] (nor2 FET_State_CKl> [139]))
(let [257] (nor2 FET_State_Cl<2> [140]))
(let [261] (nor3 [76] FET_State_Cl<2> [140]))
(let [264] (nor2 [254] [257]))
(let [266] (invl [219]))
(let [267] (nor2 [261] [266]))
(let FET_State_C4<2> (prev phi4 FET_STATE_LOGIC<2>))
(let FET_State_C4<l> (prev phi4 FET~STATE_LOGIC<l>))
(let FET_State_C4<0> (prev phi4 FET_STATE_LOGIC<0>))
(let FET_State_Cl<2> (prev phil FET_State_C4<2>))
(let FET_State_CKl> (prev phil FET_State_C4<l>))
(let FET_State_CK0> (prev phil FET_State_C4<0>)))

(defcell plcell
(input

(phil<0> bool)
(FET_State_C4<2> bool)
(FET_State_C4<l> bool)
(FET_State_C4<0> bool)
(notSpd_C4<0> bool)
(blockMiss_C2<0> bool)
(LatchWrKpsw_C2<0> bool)
(flush_CV2<0> bool))

(output
(notFetPending_Vl<0> bool)
(invalidBlock V1<0> bool)
(ldIBfetPC_l<0> bool))

(local

([358] bool)
([335] bool)
([360] bool)
([357] bool)
([365] bool))

(let [358] (invl FET_State_C4<l>))
(let notFetPending_VK0> (nand3 FET_State_C4<2> [358] FET_State_C4<0>))
(let [335] (nor2 blockMiss_C2<0> flush_CV2<0>))
(let [360] (invl FET_State_C4<2>))
(let invalidBlock_VK0> (nor3 [335] FET_State_C4<l> [360]))
(let [357] (invl FET_State_C4<0>))
(let [365] (nand3 [357] phil<0> notSpd_C4<0>))
(let ldIBfetPC_l<0> (nor4 [365] LatchWrKpsw_C2<0> FET_State_C4<2> [358])))

(defcell p2cell
(input

(phi2<0> bool)
(FET_State_C4<2> bool)
(FET State C4<1> bool)

(FET_State_C4<0> bool)
(load_Ex<0> bool)
(store_Ex<0> bool)
(lowToUp_Ex<0> bool)
(invIB_Ex<0> bool)
(invIB_Cl<0> bool)
G^atchNotSpd_Cl<0> bool))

(output
(flush_V2<0> bool)
(busSBusy_V2<0> bool)
(invalidate_2<0> bool)
(bypass_2<0> bool)
(readIB_2<0> bool))

(local
(state_flush_CV2<0>1.1 bool)
([419] bool)
([540] bool)
([542] bool)
([520] bool)
([546] bool)
([543] bool))

(let state_flush_CV2<0>l.l (nor2 invIB_Ex<0> invffi_CK0>))
(let flush_V2<0> (invl state_flush_CV2<0>l.l))
(let [419] (nor3 lowToUp_Ex<0> load_Ex<0> store_Ex<0>))
(let busSBusy_V2<0> (invl [419]))
(let [540] (nand3 flush_V2<0> phi2<0> LatchNotSpd_CKO>))
(let [542] (invl [540]))
(let invalidate_2<0> [542])
(let bypass_2<0> [542])
(let [520] (invl FET_State_C4<2>))
Get [546] (nand3 FET_State_C4<0> [520] FET_State_C4<l>))
(let [543] (nand3 [546] phi2<0> LatchNotSpd_CK0>))
(let readIB_2<0> (invl [543])))

(defcell p3cell
(input

(phi3<0> bool)
(FET_State_C4<2> bool)
(FET_State_C4<l> bool)
(FET_State_C4<0> bool)
(PF_State_C4<2> bool)
(PF_State_C4<l> bool)
(PF_State_C4<0> bool)
(LatchNotSpd_Cl<0> bool)
(ibMiss_C2<0> bool)
(flush_CV2<0> bool)
(reset L C1<0> bool)

201

(trapReq_C2<0> bool)
(LatchWrKpsw_C2<0> bool)
(busSBusy_C2<0> bool))

(output
(startingPF_V3<0> bool)
(resetIB_V3<0> bool)
(fetch_V3<0> bool)
(preFetch_V3<0> bool)
(trapToBusI_3<0> bool)
(readToBusI_3<0> bool)
(missToBusI_3<0> bool)
(ibToBusI_3<0> bool))

(local

([574] bool)
([735] bool)
([748] bool)
([743] bool)
([886] bool)
([888] bool)
([819] bool)
([747] bool)
([657] bool)
([658] bool)
([647] bool)
([757] bool)
([933] bool)
([655] bool)
([656] bool)
([648] bool)
([832] bool)
([765] bool)
([749] bool)
([821] bool)
([874] bool)
([876] bool)
([868] bool)
([870] bool)
([872] bool)
([866] bool)
([934] bool))

(let [574] (nor2 ibMiss_C2<0> flush_CV2<0>))
(let [735] (nor3 [574] FET_State_C4<2> FET_State_C4<0>))
(let [886] (nand3 [735] FET_State_C4<l> LatchNotSpd_CK0>))
(let [748] (invl FET_State_C4<0>))
(let [743] (invl FET_State_C4<l>))
(let [888] (nand3 [748] [743] FET_State_C4<2>))
(let startingPF_V3<0> (nand2 [886] [888]))

202

(let [819] (invl trapReq_C2<0>))
(let resetffi_V3<0> (nand2 [819] reset_L_Cl<0>))
(let [657] (nor4 FET_State_C4<2> [743] LatchWrKpsw_C2<0> [574]))
(let [747] (invl FET_State_C4<2>))
(let [658] (nor2 FET_State_C4<l> [747]))
(let [647] (nor2 [657] [658]))
(let fetch_V3<0> (nor3 [647] FET_State_C4<0> busSBusy_C2<0>))
(let [757] (invl PF_State_C4<2>))
(let [655] (nor3 PF_State_C4<0> PF_State_C4<l> [757]))
(let [656] (invl [933]))
(let [648] (nor2 [655] [656]))
(let preFetch_V3<0>

(nor4 LatchWrKpsw_C2<0> busSBusy_C2<0> [648] startingPF_V3<0>))
(let [832] (nand2 resetIB_V3<0> phi3<0>))
(let trapToBusI_3<0> (invl [832]))
(let [765] (nand3 phi3<0> [819] reset_L_CK0>))
(let readToBusI_3<0> (nor4 FET_State_C4<2> FET_State_C4<l> [748] [765]))
(let [749] (nand2 [747] [748]))
(let [870] (nand3 [749] FET_State_C4<l> LatchNotSpd_CKO>))
(let [821] (invl LatchWrKpsw_C2<0>))
(let [874] (nand3 [574] [821] FET_State_C4<l>))
(let [876] (nand2 [743] LatchNotSpd_CKO>))
(let [868] (nand2 [874] [876]))
(let [872] (nand3 [868] [747] [748]))
(let [866] (nand2 [870] [872]))
(let missToBusI_3<0> (nor3 [765] readToBusI_3<0> ibToBusI_3<0>))
(let [933] (nand3 PF_State_C4<0> [757] PF_State_C4<l>))
(let [934] (invl [866]))
(let ibToBusI_3<0> (nor2 [934] [765])))

(defcell p4cell
(input

(phi4<0> bool)
(PF_State_Cl<2> bool)
(PF_State_Cl<l> bool)
(PF_State_CKO> bool)
(FET_State_Cl<2> bool)
(FET_State_Cl<l> bool)
(FET_State_Cl<0> bool)
(flush_CV2<0> bool)
(dataValid_C3<0> bool)
(cacheBusy_C3<0> bool)
(busSBusy_C2<0> bool)
(resetIB_CV3<0> bool)
(LatchWrKpsw_C2<0> bool)
(LatchNotSpd_Cl<0> bool)
(blockMiss C2<0> bool)

203

(ibMiss_C2<0> bool)
(startingPF_CV3<0> bool))

(output
(ibWrite_4<0> bool)
(ibTagWr_4<0> bool)
(fetPCToBusS_4<0> bool)
(readML_4<0> bool)
(ldIBrefPC_4<0> bool)
(ibINCToBusS_4<0> bool))

(local

([1285] bool)
([1031] bool)
([1020] bool)
([1112] bool)
([1116] bool)
([1021] bool)
([1218] bool)
([1120] bool)
([1123] bool)
([1023] bool)
([1114] bool)
([1029] bool)
([1030] bool)
([1106] bool)
([1228] bool)
([1179] bool)
([1022] bool)
([1127] bool)
([1131] bool)
([1293] bool)
([1108] bool)
([1300] bool)
([1109] bool)
([1289] bool)
([1297] bool)
([1307] bool))

(let [1109] (invl PF_State_Cl<l>))
(let [1106] (invl dataValid_C3<0>))
(let [1031] (invl [1285]))
(let [1112] (invl FET_State_CK2>))
(let [1020] (nor2 [1031] readML_4<0>))
(let ibWrite_4<0> (nor2 flush_CV2<0> [1020]))
(let [1116] (invl FET_State_CK0>))
(let [1120] (nand4 [1112] phi4<0> [1116] FET_State_CKl>))
(let [1021] (nor2 flush_CV2<0> blockMiss_C2<0>))
(let [1218] (invl [1021]))
(let [1123] (nand2 [1218] LatchNotSpd_CK0>))

204

205

(let ibTagWr_4<0> (nor4 [1120] [1123] resetIB_CV3<0> LatchWrKpsw_C2<0>))
(let [1023] (nor2 flush_CV2<0> ibMiss_C2<0>))
(let [1114] (invl FET_State_CKl>))
(let [1029] (nor3 [1023] FET_State_Cl<2> [1114]))
(let [1030] (nor2 FET_State_CKl> [1112]))
(let [1022] (nor2 [1029] [1030]))
(let [1228] (nand2 [1106] cacheBusy_C3<0>))
(let [1179] (invl busSBusy_C2<0>))
(let [1127] (nand3 [1228] [1179] phi4<0>))
(let fetPCToBusS_4<0> (nor3 [1022] FET_State_CK0> [1127]))
(let [1108] (invl PF_State_Cl<2>))
(let [1131] (invl ldIBrefPC_4<0>))
(let ibINCToBusS_4<0>

(nor4 flush_CV2<0> resetiB_CV3<0> startingPF_CV3<0> [1131]))
(let [1285] (nand3 [1293] phi4<0> dataValid_C3<0>))
(let [1289] (nand3 [1114] phi4<0> FET_State_Cl<2>))
(let [1293] (nor3 PF_State_CK0> PF_State_CKl> [1108]))
(let [1297] (nor3 [1300] PF_State_CK2> [1109]))
(let [1300] (nor2 PF_State_CK0> startingPF_CV3<0>))
(let readML_4<0> (nor3 [1289] [1106] [1116]))
(let [1307] (nor2 [1297] [1293]))
(let ldIBrefPC_4<0> (nor2 [1307] [1127])))

(defcell racell
(input

(phil<0> bool)
(cacheBusy_C3<0> bool)
(dataValid_C3<0> bool)
(busSBusy_C2<0> bool)
(LatchWrKpsw_C2<0> bool)
(LatchReset_C2<0> bool))

(output
(memBusy_V4<0> bool)
(random_clk<0> bool)
(random_clk_L<0> bool))

(local ([1644] bool)([1657] bool)([1646] bool)([1641] bool))
(let [1644] (invl dataValid_C3<0>))
(let [1657] (nand2 [1644] cacheBusy_C3<0>))
(let [1646] (invl busSBusy_C2<0>))
(let memBusy_V4<0> (nand2 [1657] [1646]))
(let random_clk_L<0> (nor2 LatchWrKpsw_C2<0> LatchReset_C2<0>))
(let [1641] (invl phil<0>))
(let random_clk<0> (nor2 random_clk_L<0> [1641])))

(defcell pffsm
(input

(phil sync)

(phi4 sync)
(memBusy_CV4<0> bool)
(resetEB_CV3<0> bool)
(flush_CV2<0> bool)
(LatchIuEn_Cl<0> bool)
(LatchIuPre_Cl<0> bool)
(LatchWrKpsw_C2<0> bool)
(startingPF_CV3<0> bool))

(state
(PF_STATE_LOGIC<2> bool)
(PF_STATE_LOGIC<l> bool)
(PF_STATE_LOGIC<0> bool))

(output
(PF_State_C4<2> bool)
(PF_State_C4<l> bool)
(PF_State_C4<0> bool)
(PF_State_Cl<2> bool)
(PF_State_Cl<l> bool)
(PF_State_CK0> bool))

(local
([1448] bool)([1447] bool)([1449] bool)([1526] bool)
([1502] bool)([1516] bool)([1433] bool)([1452] bool)
([1476] bool)([1458] bool)([1450] bool)([1445] bool)
([1387] bool)([1388] bool)([1313] bool)([1514] bool)
([1399] bool)([1518] bool)([1520] bool))

(let [1448] (invl PF_State_Cl<2>))
(let [1526] (nand3 PF_State_CK0> [1448] PF_State_CKl>))
(let [1447] (invl PF_State_CK0>))
(let [1449] (invl PF_State_CKl>))
(let [1502] (nand3 [1447] [1449] PF_State_CK2>))
(let [1516] (nand2 [1526] [1502]))
(let [1433] (nor2 flush_CV2<0> LatchWrKpsw_C2<0>))
(let [1452] (nand2 [1516] [1433]))
(let PF_STATE_LOGIC<2>

(nor4 memBusy_CV4<0> resetIB_CV3<0> startingPF_CV3<0> [1452]))
(let [1476] (invl LatchWrKpsw_C2<6>))
(let [1458] (nand3 [1476] LatchIuEn_CK0> LatchIuPre_CKO>))
(let [1450] (nand2 [1448] PF_State_CKl>))
(let [1445] (invl startingPF_CV3<0>))
(let [1387] (nor4 [1458] [1450] PF_State_Cl<0> [1445]))
(let [1388] (nor2 PF_STATE_LOGIC<2> [1452]))
(let [1313] (nor3 resetIB_CV3<0> [1387] [1388]))
(let PF_STATE_LOGIC<0> (invl [1313]))
(let [1518] (nand4 [1448] [1449] [1313] PF_State_CK0>))
(let [1514] (nand2 [1502] [1450]))
(let [1399] (nor2 resetIB_CV3<0> PF_STATE_LOGIC<2>))
(let [1520] (nand2 [1514] [1399]))

206

\

(let PF_STATE_L0GIC<1> (nand2
(let PF_State_C4<2> (prev phi4 PF_
(let PF_State_C4<l> (prev phi4 PF_
(let PF_State_C4<0> (prev phi4 PF
(let PF_State_Cl<2> (prev phil PF
(let PF_State_Cl<l> (prev phil PF_
(let PF_State_CK0> (prev phil PF

[1518] [1520]))
STATE_LOGIC<2>))
STATE_L0GIC<1>))
"STATE_LOGIC<0>))
State_C4<2>))
State_C4<l>))
State C4<0>)))

207

	Copyright notice1989
	ERL-89-85 (1 of 3)
	ERL-89-85 (2 of 2)
	ERL-89-85 (3 of 3)

