

Copyright © 1989, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

CONSISTENCY AND OBSERVABILITY

INVARIANCE IN MULTI-LEVEL LOGIC

SYNTHESIS

by

Patrick C. McGeer and Robert K. Brayton

Memorandum No. UCB/ERL M89/88

21 July 1989

CONSISTENCY AND OBSERVABILITY

INVARIANCE IN MULTI-LEVEL LOGIC

SYNTHESIS

by

Patrick C. McGeer and Robert K. Brayton

Memorandum No. UCB/ERL M89/88

21 July 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

CONSISTENCY AND OBSERVABILITY

INVARIANCE IN MULTI-LEVEL LOGIC

SYNTHESIS

by

Patrick C. McGeer and Robert K. Brayton

Memorandum No. UCB/ERL M89/88

21 July 1989

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Consistency and Observability Invariance in Multi-Level
Logic Synthesis

Patrick McGeer, Robert K. Brayton,
Department of Electrical Engineering and Computer Sciences,

University of California, Berkeley,
Berkeley, CA, 94720.*

May 4, 1989

Abstract

In this paper, we depict an m-function network on n primary inputs as forming ann + m
dimensional space. In this space there are points that can never occur due to mutual depen
dencies among the functions. This set has been called the the satisfiability don't-care (SDC)
set of the network and can be viewed as a function over the extended space. We show that
the size of the SDC is uniquely determined by the number ofprimary inputs to the network
and the number of functions over it. We demonstrate a sharp criterion for determining which
transformations ofthe network preserve the SDC, and show that most ofthe operations ofthe
MIS-II synthesis system preserve the SDC. This has importance for "implications" which are
used in a number ofnetwork manipulations. This analysis also clarifies how other operations
change the SDC, but in very predictable ways. Finally, we show that most of the algebraic and
some Boolean operations commonly used in logic synthesis preserve the testability ofall but
a single node in a network. An interesting example is algebraic division (or resubstitution) of
one node into another. The testability of only the divisor is possibly changed. Surprisingly the
testability ofnone of the divisor's inputs is changed.

1 Introduction

It has long been known that the use of various consistency and observability conditions in networks
are useful in multi-level logic synthesis[2]. However, the use of these conditions has historically been
impeded by the feeling that most transformations of the network modified these conditions, and so
re-computation ofthe conditions was essential after each transformation. Since re-computation is
potentially expensive, interest has historically centered on incremental updates.

The theme ofthis paper is to explore the consistency and observabuity conditions. The consis
tency conditions most often appear as the so-called satisfiability don't-care setor SDC. These arise
because we depict an m-function network on n primary inputs as forming ann + m dimensional
space. In this space there are points that can never occur due to mutual dependencies among the
functions. Occasionally a subset of the SDC is referred to by the name of a forcing or T- set [16]
or implications. These have been found increasingly useful in many applications [9]. Observability
conditions are related to testability, and have appeared as don't-cares in the form of the fanout
don't care set[2][8].

In this paper we examine and answer the following questions:

'This research supported by the Semiconductor Research Corporation under Contract 87-DC-008

• In transforming a logic network using the various operations of logic optimization and syn
thesis, when and how are the consistency conditions changed? In particular, can we identify
a set of transformations that either leave the consistency conditions invarient. or allow them
to be easily updated in a regular incremental way?

• Given that the SDC is often used as a don't care set in logic .optimization, what can we say
about its size or its inverse? The SDC has been used for verification [10], without notable
success. Can we explain this in terms of the size of the SDC?

• Are the consistency and observability conditions related and if so, in what way? Under what
conditions on a transformation of the network can we guarantee that the observability of a
node (and hence the conditions under which it is testable) is unchanged?

A principle result of this paper is that the consistency and observability conditions are related
and can both be derived using the SDC or a subset. This leads to a precise statement under which
the testability of a signal is preserved, and provides insight into an increasingly important issue
in synthesis for testability - the generation and maintenance of a test set throughout the logic
synthesis process[7].

2 Boolean Spaces, Don't Care Sets and Mapping Between Spaces

In general, a boolean function fj(v) is defined on the space of primary inputs, conventionally
denoted as Bn. Large functions, however, are often better (and sometimes only) realized as part
of larger networks. These networks involve intermediate variables, and hence lead to the definition
of the function on a space of combined intermediate variables and primary inputs; this space is
conventionally represented as Bn+m. This description is incomplete, however, inasmuch as mutual
dependencies among the internal variables, and dependencies of the internal variables upon the
primary inputs, guarantee that a largeset ofpoints on this extended space can never occur. A set
ofsuch points are collectively called theSatisfiability Don't Care (SDC) set,and, where the internal
function fj is represented byvariable y,-, is defined as the set ofthe points in Bn+mcovered by the
function:

3

In the sequel, we demonstrate that every point in Bn+mwhich can't occur is covered by the SDC
set. In this paper we demonstrate the exact size of the SDC set on any network of n primary
inputs and minternal variables. We give an alternative view of forcing sets based on this kerneling
process, discuss the effect ofnetwork transformations on this space, and in particular characterize
the transformations which leave the homomorphism invariant.

3 The Boolean n-space and the Boolean n-cube

In general, one can derive a geometric picture of the boolean n-space as an n-dimensional cube as
follows. Consider the n-dimensional Cartesian co-ordinate system. Since each variable can only
assume the values 0 and 1, we are left with the immediate conclusion that the dimension of the
space represented by the variable x can be restricted by planes at x = 0 and x = 1. Once this has
been done in every dimension, the resulting object is an n-dimensional cube.

Now. one can represent a function on this cube in a variety of ways; in particular, one can
consider a function as an arbitrary set of vertices on this cube, or as a partition of the vertices of

the cube into three sets, an off-set, an on-set, and an external don't-care-set. This formulation is
awkward, however, for multiple-output functions. For such functions (say, in particular, functions
with m outputs and n inputs), one can consider the space as a 2n+m-dimensional cube in the
obvious way. In this manner the extended space Bn+marises from the primary input Bn.

3.1 Notation

There is a great deal of notation in this paper, largely because the focus continually shifts from
the primary input space Bnto the extended space Bn+m. So that the inherent chaos may become
some form of order, we detail the notation here.

Functions over Bn+TOwill be denoted /,-, and associated with each fj is a variable yj. Further,
each such fj is a representation ofa function pver Bn, the global image ofyj, fy in the sequel, we
formally show the correspondence of fj and fj. If we refer to a function / without subscript, this
will correspond to the variable y.

Cubes as products of literals have both a geometric and a set-theoretic interpretation. In the
geometric interpretation, if a literal x appears in a cube w, then w lies wholly on the face x, and
we write w C x. In the set theoretic-interpretation, where a cube is a set of literals, we have that
x Gw. Further, the union and intersectionoperations have precisely opposite semantics in the two
interpretations. Obviously this is confusing, and the only way to establish clear semantics is to pick
one ofthe two interpretations and stick to it. In this paper, we adopt and maintain the geometric
interpretation throughout.

If a cube is fully-specified, it is a single point, also called a minterm or a vertex. In the remainder
of this paper, an arbitrary cube over the primary input space will be referred to by the symbol v;
a cube over the extended space will be referred to by the symbol w. Occasionally w will be written
uv; u will be understood to stand for the intermediate or function variables specified in w.

A table summarizing this notation will be given after the discussion of mappings between the
spaces.

3.2 Maps Between Spaces

There are many maps from Bn+monto Bn. The most obvious is the trivial projection operator
V : Bn+m -• Bn, which may be informally defined by partitioning each vertex of Bn+m into its
primary input co-ordinates v and intermediate variable co-ordinates u. From this, we define:

V(uv)= v

Now, V is one of the most trivial mapping operators from B n+m onto Bn.
The evaluation map 0 : Bn -• Bn+m is defined in the obvious way. For each function fj, we

have (assuming fj is completely specified) either fj(v) = 1 or fj(v) = 0. From this observation, we
obtain w= 9(v), by writing w= ui...umv, where u5 = yj iffj(v) = 1, and yjif fj(v) = 0.

Now, it is immediately clear that:

Theorem 3.1 For each vertex v o/Bn, there is exactly one vertex w o/Bn+m such that w= 0(v)
Proof: Follows immediately from the observation that every variable in the extended space is
assigned a value by fully specifying the variables in the input space. •

Notice immediately that there are 2n points w ofBn+msuch that w = 6{v) for some v. Since
these points must all be distinct, it follows that there are precisely 2n+m - 2n points wofBn+mfor
which there is no v such that w = 9(v). This set takes on added significance due to the next
theorem, which identifies such points as the SDC set.

Figure 1: Cube Representation of / = xy

Theorem 3.2 SDC = {w\w £ B{V(w))}

For this proof, we will be using the trivial projection operator V : B n+m -> Bn, defined above.
Note that if w= 6(v) for any v, then w= $(V(w)).
Proof: w# 0(V(w)). Let v = V(w). Now, clearly there is some /,- such that fj(v) = 1 and </"•
is a literal of w, or /^(v) = 0 and yj is a literal of w (if not, iu = 0(v), contradiction). Hence
w£yj@ fj, and so is in the SDC. Similarly, ifwis in the SDC, v = V(w) then there is some fj
such that w€ yj1, and /^(t;) = 0or w€ ft» fj(v) = 1. In either case, w^ 0(t>). •

The cube corresponding to f = xy is shown in figure 1. The darkened circles correspond to
the elements of the SDC set. The two key facts to draw from this discussion are first, that the
Satisfiability Don't Care set is really not a don't care set at all, since it is trivial (the empty set)
when viewed as a set in the primary input space; and second, that the size of the SDC set is
uniquely determined by the number ofintermediate and output variables in the network. Both of
these observations are immediate corollaries of the observation that the SDC set is the projection
ofthe null cube ofthe primary input space onto the extended space.

Not only is the SDC set large, it is quite evenly spread on the cube. In particular, notice that
every vertex in SDC has at least mneighbours in SDC2, and at most n in JDC. This fact gives
us an intuitivefeel for the well-known observation that the inverse of the SDC set is hard to write
down: every vertex is on the border of the set.

This picture of the extended space and the SDC set will help us understand the effect of
transformations that we make on a network in optimizing it. First, we need to discuss cofactors
and don't-care sets on a network.

4 Don't Care Sets on the Extended Space

In the preceding discussion, it was assumed that the functions over the primary input space were
completely specified. To some large extent this is valid; every network eventually realized is fully

i.e. yj appears in w

for any w€ SDC, simply hold the input part fixed and change an occurence ofany w to yj, or vice-versa

Notation

Bn

v

•Qn+m

W

VJ

fj
h
e

SDC

Definition

Summary of Notation

Space of primary inputs to the network
Generic cube over Bn

Space of all variables in the network
Generic cube-over Bn+m(sometimes written vu)
A node in the network

Local function associated with node yj over Bn+m
Global function (also global image) associated with node yj (function over Bn)
Evaluation map from Bn->Bn+m; 0(v) e yj ifffj(v) = 1
Sjfe ®/j); equal to the complement of the range of 9

specified in the sense that some value is computed on each output for each primary input combi
nation. However, not all primary input combinations occur, and for those combinations ofprimary
inputs which do occur, some primary outputs may not be meaningful. Both these sets ofevents are
conventionally captured in don't care sets, which are vectors of the primary input space for which
the values of some or all outputs are undefined.3

The question is how such combinations can be realized in this picture ofa high-dimensional
space, where the on- and off-sets of each function are each realized indirectly as points in SDC
lying on the appropriate n + m - 1 dimensional face of the cube.

If we consider the don't cares, we realize that these are vertices for whichsome or all functions
fj could be either one or zero; further, in every implementation, each such function will be one or
zero. Hence the obvious conclusion is that these don't-care sets represent cubes in the extended
space of which exactly one is in SDC set. Hence these sets represent allowable shifts in the SDC
set.

Thesize of the set ofpoints in the extended space represented by each don't-care vertex on the
input space is dependendent upon how many functions have a value ofdon't-care for this input
combination. If r functions are don't-cares for some input vertex v, then this represents a total
of 2r vertices on the extended space, of which all but one must lie inside the SDC and of which
any one will lie outside the SDC. Note, incidentally, that these points form a cube of size r in the
extended space.

Consider, for example, the drawing in figure 2. This is the function / = xy, with a don't-care
point selected at xy on theprimary input space. Note this corresponds to two points on the shaded
cube; every realization ofthis function must choose one ofthese points to lie in SDC, and another
to lie inside the SDC.

5 Cofactors in the Extended Space

The cofactor operator is generally regarded as an evaluation homomorphism; fx is the function /
evaluated on the face x = 1.

In the new formalism, however, we can adopt a more geometric picture. In general, since we
distinguish between the cofactor of / with respect to x and the cofactor of / with respect tox, the
set of points fx can then be regarded as the space where / = 1 and x = 1 on the extended space;
inparticular, we can think ofthecofactor as the set ofpoints outside the SDC set on then+ m- 2

3In fact, don't-care sets are incomplete representations of such conditions; for afull discussion of this phenomenon,
see [5]

Figure 2: f = xy with a Don't-Care point at xy

dimensional-cube yx, where, as usual, y is the variable corresponding to /. (Technically, fx is a
function independent of x with the relation xf = xfx holding).

It is important to prove that this correspondence is exact. For the moment, assume that x is
a primary input. We want to show that vertex v of the primary input space G fx iff 9(xv) lies
on the face y ofthe extended space. This gives the precise correspondence, since such vertices are
precisely the vertices lying outside the SDC set and on the quarter-space yx.

Theorem 5.1 For an input variable x:

fx = ySDCyx

Proof: SDC gives the set of consistent points in the extended space, i.e., the range of 9. Thus:

/ = y{wy\u> € SDC]
fx = y{wyx\w € SDC}

= ySDUyx

Note that this proof relies on the fact that xwas aprimary input. If a: is not aprimary input, we
need to modify things somewhat. First, however, we must ask the question of what distinguishes
a primary input from an intermediate variable on the extended space. The answer is that an
intermediate variable has associated with it a local function, and so a local satisfiability don't-care
set. Now, when we cofactor / against ageneral x, we wish to treat this a: as a primary input rather
than an internal node; the reason for this is that cofactoring is intended to model the effect of a
fault at x, i.e., x set to a value independent of the value on its inputs. Conceptually, we do this by
reforming the network with the function associated with x removed, forming the satisfiabiHty don't-
care set for this network and applying the theorem of this section. The satisfiabiHty don't-care set
for this modified network is:

SDC(x) =-£yj® Si •

Figure 3: The Cofactor of / with respect to x

Since there are now 2n+1 inputs to this network, there are 2n+m - 2n+1 points in SDC(x), which
can also be viewed as the set ofpoints inBn+moutside the range ofa new evalutation map denoted
9X. 9X is the evaluation map of the network with x disconnected from its function, and can be
derived from the network by considering the modified global functions /(x).

For concreteness, we give an example of the SDC for the network yx = xy,y2 = x + yx. In
figure 4(top), we show the SDC for the network with both y2 and yY as internal variables. In figure
4(bottom), we show the SDC for the network treating yi as a primary input.

Note we can write the SDC in the first case as yxx + yrf + yixy + y2xfi + y2x + y2yx. For the
second case, the SDC(which is SDC(yi)) is written y2xyi + y2x -f- y2y\.

Theorem 5.2 fx = ySDC(x)
yx

Proof: For x a primary input, SDC = SDC(x) and the result follows from theorem 5.1. For x
not a primary input, SDC(x) is the set of consistency conditions for the network N(x). f is the
local function ofy, and so is identical in both networks. Thus by theorem 5.1

fx = ySDC{x)
yx

Corollary 5.3 flx) =V(SDC(x)yx)
Note that since SDC(x) = SDC for a primary input x, this definition is valid for cofactors

defined with respect to a primary input.
There is one more interesting thing to say. We can now provide an exact count ofthe number of

vertices added to the SDC by any non-primary-input yj, regardless of the function at yj. The fact
that the number of vertices in SDC which do not appear in SDC(y-) (the amount contributed by
the local SDC ofyj, Vj 0 fj) is a constant is surprising. Nevertheless, it follows as an immediate
consequence of the theory developed above.

y «= 0
2

y = 0
2

f2 = yi + x, yx = x

y.

f 2 = yx + x

Figure 4: SDC for yi as a Function and as a Primary Input

Theorem 5.4 For each fj in a network of n primary inputs and m functions,

\SDC(yj)n(yj@fj)\ = 2n

Proof: The formula is just the number of vertices which appear in the LSDC that would not
otherwise appear in the SDC, i.e., those vertices in the SDC only because yj is a function. Thefact
that it is 2n follows immediately from the fact that:

SDC = SDC(Vj) U(yj 0 /;)

Now, \SDC\ = 2m+n - 2n. SDC(yj) is the SDC ofthe network formed by considering yj as a PI.
This is a network ofn+1 primary inputs and m-1 functions, and so its SDC, SDC(yj) is ofsize
2m+n - 2n+1. The quantity we are after is the difference of these two sizes, which is:

2m+n_ 2n _ (2m"**n —2n"'"M

or:

2n+l _ 2n _ 2n(2 _ 1) = 2n

as desired. •

The theorem is somewhat more intuitive when it is considered that each primaryinput combi
nation determines the value of x, and hence adds one vertex to the SDC.

6 The Observability Function and The Fanout Don't-Care Set

A final class of true don't-cares appears from the observation that not all functions are visible as
output functions. Of the m functions realized in a network, perhaps r will appear as outputs, and
only these are directly observable. The remainder are only ofinterest to the extent that they are
observable at the outputs. When the results are unobservable, the result of these functions are
don't-cares.

Unobservable functions are classically treated as those for whom one or another of the stuck
faults is untestable. It has been shown[6,14]that the set ofall stuck-at-0 tests for a node x through
primary output / in a combinational network is the function:

„dFj
x~UxL

(i.e., we force a; to be 1 in the good network and observe the difference at" the outputs) and the set
of all stuck-at-1 tests is the function

xSxL

The observability function is obtained by summing ^- over all outputs Fj4

ieoutputs

Now, the function ^ is defined in terms ofcofactors:

g£ —fx © fx

*Note that what is really meant here is that the faulty network is N(z) with input x stuck-at. Hence the
measurement of the difference should really be taken over the global image of N(x)\ what is really meant here is
dFtLQX • hi order to be consistent with the testing literature, we stick to the conventional notation

From the previous definition of the generalized cofactor in the preceding section, we can write each
cofactor as the set ofvertices ofthe appropriate face outside theappropriate SDC set. In particular,

gj" = JxQfx

= V(SDC(x)yx)®V(SDC(x)yx) (1)

To obtain the fanout-don't care (FDC) setassociated with output /, we simply invert (1), denoting
the inverseof the exclusive or function as boolean equality ©", to obtain:

V(SDC(x)yx)T§V(SDC(x)yx) (2)

Now, notice that the observability function is a function of the primaryinputs, and so too must
beits inverse, the fanout don't care set. This is a don't care set for one internal function x, and so
each vertex maps to a point in SDC. Thus the fanout don't-cares increase the don't-care vertices
for this function over the space of the primary inputs.

7 Transformations on the Network

The purpose of logic synthesis is the redesign of the networks which implement these functions.
We depict this general process as a sequence ofwell-defined transformations of the network, which
yields a network realizing the same function which is hoped to be in some sense simpler. We are
here concerned with demonstrating that certain of these transforms preserve certain properties of
the network; to wit, the satisfiability don't-care set (and so theforcing sets), and the testability of
nodes for stuck-at-faults. We summarize the relevant notions.

A boolean network N is a set ofnodes, each of which is a pair (yj, fj) yj is the unique variable
name of the node; fj is a function over some set of variables (yil ...yjk), where each yj. is a node in
the network. If fj = yj, then yj is a primary input.

Each node_ has a global image fj, which is the function of the node realized over the primary
input space, fj is defined as follows:

fj = {v € Bn\9(v) € yj]

The consistency condition on fj is that it truly represents the global function ofthe network, i.e. it
represents the function that would be obtained by collapsing the network in the conventional sense.

We begin by considering classes of transformations.
At the lowest level, the set of transformations of the network may be divided into two categories:

those that change the dimensionality of the extended space and those that do not. The reason for
treating these classes oftransform separately is that the objective of this section is to classify the
effect of the various transforms on the SDC set. Clearly transforms which change the space change
the SDC set. However, they do so in such a way that the set over the expanded (or contracted)
space can be easily derived.

7.1 Changing the Dimensionality of a Network

When we say expansions or contractions of the space, we mean simply the addition or deletion of
a variable, with its accompanying function. Substituting the variable into the network through the
use of division, or collapsing the variable out of the network by elimination, are considered separate
operations. Further, we make the strong assumption that either the addition or deletion operations

10

are correct in the obvious sense: that is, they do not affect the images of the existing or remaining
functions.

The effect on the SDC ofadding a new variable is clear. The function space expands by one
dimension. Let yj be the new variable. Every vertex w in the previous SDC set becomes two
vertices in the new SDC set tfjw and yjw, since adding the new variable will not change the fact
that no vertex.of the primary input space satisfies w. Now, for each vertex wnot in the previous
SDC set, one of the two new vertices yjw and yjw goes in the SDC set, according as to whether
the new function is 0 or 1 on V(w).

The key thing to understand is that the addition ofa dimension can be shown to require the
addition to the SDC set of precisely those points contained in the local SDC of the function being
added:

Vj 0 fj
and hence we can write, denoting the new SDC as SDC:

SDC' = SDC + (yj®fj)

The effect ofdeleting a variable issimilar. Let yj be the variable under deletion. Each vertex w
such that both yjW and tfjw were in the previous SDC set goes into the new SDC set, SDC, and
each other vertex w remains outside the new SDC set. Note that because the size of the SDC set
is strictly a function of dimension, there are precisely 2n of the latter vertices in the space. Hence
in each dimension there are exactly 2n vertices of the SDC distance 1 in that dimension from the
complement of the SDC.

In sum, the deletion ofthe node represented by the variable yj merely requires that the SDC
be re-expressed by the Shannon expansion:

SDC = SDCyjSDCyj

Transformations that do not change the space can be further subdivided into those that do not
change the SDC and those that do. The objective of this section is to arrive at a precise criterion
for this determination.

7.2 Transformations Which Leave the Dimensionality Fixed

In general, there are don't-care sets (e.g., input, output, and fanout don't-cares), but many trans
formations do not use them. Formally, we say a transformation does not use a don't-care set if the
transformation remains invariant when the don't-care sets are reduced to 0. In such a case, the
transformation must leave the SDC set invariant, for the transformation must leave the SDC set
invariant when the don't-care sets are 0. It is always possible to do this reduction, since each of
the three true don't-care sets is entirely a matter of specification: the input and output don't-care
sets are explicitly specified. The fanout don't-care set for each internal node is derived from the
specification ofsome nodes of the circuit as primary outputs.

Since the don't-care sets for a boolean network N are thus specifications of a circuit, we can
then formally define a circuit as an ordered pair (N, D) where N is a boolean network in the usual
sense and D is a vector of don't care sets, where D{ is the don't-care set for node /,• of a network.
D{ is equal to the union of the input, fanout, and output don't-care sets of node /,-.

AtransformationT is then amapping from acircuit (N, D) to a new circuit (N', D'); in general,
N £ N' and D ^ D'\ in this subsection, we are considering only transformations where the set of
nodes is preserved bythe transformation (though, perhaps, the local functions at the various nodes
may change).

11

A transformation T(N,D) -* (N',D') is said to be invariant iff for each node yj, the global
image fj of yj is preserved.

Theorem 7.1 A transformation is invariant iff it leaves the SDC unchanged.

Proof: If a transformation is invariant, it leaves the global image of each node unchanged. Hence
the map 9 : Bn -• Bn+m is left unchanged, and so to is its range, SDC. Hence the SDC is left
unchanged. Conversely, suppose T leaves SDC unchanged. For any function /,

/ = {w\w € SDCandw Gy}

since SDC is unchanged, then so is /, and hence so is / = V(f). m

Corollary 7.2 Every transform on a completely specified network where every node is a primary
output is invariant.

Proof: On such a network, for every node, the don't-care set is 0. Thus the global image of each
node must be unchanged and, by theorem 7.1, the SDC is unchanged. •

This result gives the key insight into the basic theorem of invariant transforms. Since every
transform on such a super-specified network is invariant, the next question is, which transforms
behave the same way on a super-specified and incompletely-specified network? Such transforms
must be invariant; further, only these transforms are invariant, as we see below.

Theorem 7.3 Let T(N,D) = (N',D') be any transformation ofa network. T is invariant ifffor
every D, T(N,0) = (N',D") (i.e., N' is obtained independent of D).

Proof: For every D, let T(N,0) = (N',D") and T(N,D) = (N',D'). Since T is unchanged
even when the network is completely specified, and since the SDC can only be changed under a
rotation specified by a don't-care set D, it follows that the SDC is left unchanged by T, and so
it follows that T is invariant. For the converse, T is invariant, and so all global images remain
unchanged. Thus the don't-care set Dj was not used to change /,-. Hence T(N,D) = (N',D') and
T(N,0) = (N',D"). u

Interestingly, for all the abstraction of this theorem, one can say immediately that all the
transformations within the MIS-II[3] synthesis system, with the sole exception of node-simplify,
do not change the SDC set, and so the forcing sets remain invariant under this transformation.
Further, node-simplify does not change the SDC or the forcing set of any node unless external or
fanout don't-cares care used.

One can further say that topological optimizations, such as the global flow procedure, implicitly
use the fanout don't-care set, and so potentially change the SDC set. However, this can be shown
to occur in only a small set of dimensions; in particular, if the SDC set is formed of a series of local
SDC sets, only the local SDC sets of an identifiable set of functions need be changed. We now
elaborate this point.

Consider the global flow optimization procedure, especially as elaborated in [4]. This procedure
encompasses two phases. In the first phase, a cutset ofnodes between some node / and the primary
outputs is identified, such that, if g is in the cutset, setting a value on / forces a value on g; the
local function at g is thenmodified to make its dependence on / explicit. This phase is an invariant
transformation, since the expansion is explicitly constructed to preserve the global image ofg.

In the second phase, edges leading out from / are deleted from nodes h between / and the
cutset. This explicitly changes the global functions of such nodes h, and, hence, the various sets

12

which depend upon these global functions must be recomputed. An immediate question that
arises is whether the entire SDC and the forcing sets must be recomputed, a potentially expensive
proposition. The answer to this question may be answered in the negative, due to the following
result.

Theorem 7.4 Let T(N,D) = (N',D') be any transformation. Let fj 6 N, fj GN' (i.e., the local
function on yj is unchanged). Further, for each yk afanin of fj, let fk be unchanged. Then f)j is
unchanged.

Proof: fj can be obtained by collapsing fk into fj in place of yk. m
This immediately implies that the only change that need be made in the satisfiability don't-care

set is the recomputation of the local SDC's of those functions that have explicitly changed, and in
the forcing sets of those functions whose global image has changed. So even in the case when a
transform is not invariant, the techniques of this section can be used to demonstrate that only a
subset of the don't-care set has changed.

8 Testability Preservation

Every operation in a logic synthesis system has as itsultimate goal theminimization ofthenetwork.
Avital component of this strategy is the removal of redundant edges. Hence we would not expect
most operations on a network to preserve exactly the observability function for each node. However,
we can attempt to discover which nodes and edges have had their observability functions potentially
affected by each transformation.

We will first discuss the testability output stuck faults: that is, the condition that the output of
a node is testable for stuck-at-faults. This is not the condition usually sought by testing algorithms
or logic synthesists interested in redundancy removal; these seek whether every edge is testable for
stuck-at faults. However, this is the property most strongly related to the fanout don't-care sets.
Further, it is strongly related to edge testability, in the following-sense. Ify is an input to node /,
then for each primary output g we have the identity:

dg _ dgdf
3y W$y

Hence if we can show that fj- and §£ are preserved for agiven node and input edge, we have shown
that the test function for that edge is preserved. Further, we can artificially insert a buffer at each
edge; thus the testability of the output of the buffer is equivalent to the testability of the edge.

Now, for the remainder of this discussion, we will only be concerned with invariant (or SDC-
preserving) transforms. Clearly transforms which change thefunctions ofnodes in the network have
the potential to radically alter the test set. If we consider the set of SDC-preserving transforms
we see that the condition of preservation of the SDC is not strong enough tomaintain testability;
maintaining the testability of node x requires that not only must SDC be maintained, but SDC(x)
must be maintained, since the observability function is defined in terms of SDC(x). We state this
intuition formally here.

A transform T(N,D) is said to be test-preserving for node yj if the fanout don't-care set of
node yj is left unchanged by the transformation.

Clearly every transformation worth the name will affect the fanout don't-care set of at least
some nodes, so the problem is not to characterize the transforms which leave the entire set ofoutput
don't-care sets invariant, but, rather, to characterize for a given transform which-don't-care sets
are left invariant. Fortunately, this set is easily characterized:

13

Theorem 8.1 Let T(N,D) be an invariant transform. IfSDC(x) is left unchanged by T, then
the observability function ofx is unchanged and hence the transform is test-preserving.

Proof: Recall that the cofactor of/ wrt x can be written (/ corresponds to variable y, as before):

fx = ySDC(x)yx

Hence we can write |£ as:
V(SDC(x)yx) ©V(SDC(x)y-)

Since SDC(x) is preserved, and since the observability function is a sum over the primary outputs
Fj of -$£, it is preserved if SDC(x) is preserved.

Thus the question ofthepreservation ofthe observability function for node x is then thequestion
ofthe preservation ofSDC(x). Recall the definition ofSDC(x):

SDC(x)=Y,VJ®fj

and recall that this is precisely equal to the SDC of a network which differs only from the original
network in that node x is replaced by a primary input x; indeed, it was this observation that led
to the definition ofcofactor over the extended space. Recall also that N(x) is the network N with
node x replaced by a primary input labelled x. Note that ifa: is a primary input, then N(x) = N.

Theorem 8.2 Let T(N, D) = (N',D') be any invariant transformation such that T(N(x), D(x)) =
(N'(x),D'(x)). Then T preserves SDC(x).

This theorem encodes a pair of informal observations. First, an invariant transform preserves
the cofactors of every primary input, and, second, that ifthe function attached to node x is ignored
by the transform, then x is indistinguishable from a primary input and so its cofactors and hence
its observability function are preserved by the transform.
Proof: Since T(N(x), D(x)) = (N'(x),D'(x)), SDC(x) of N' is equivalent to the SDC of the
network obtained by taking the transformation on N and then removing the function feeding x.
This is equivalent to the SDC of N(x), since T is invariant. But this is SDC(x) of JV, and hence
SDC(x) of N' is equal to SDC(x) of N, and so T preserves SDC(x). u

The corollaries of this theorem are immediate. One need not actually form the network N(x)
for each node x and then compute the transformation; it suffices to determine which functions
fj are used by the transformation. If the function attached to node yj is unused, then it follows
instantly that the transform operating on N(yj) returns the same result as that operating on N,
and so by the theorem the testability ofnode yj is unaffected.

As an example, consider the transformation given by the algebraic division procedure [11][3].
Algebraic division examines only two functions, those of the divisor and the dividend. Hence
it follows immediately that at most the testability of the divisor and the dividend are affected.
In fact, this observation can be generalized. Consider the classic form of the boolean division
algorithm in figure 5, taken from [3]. Note that the only functions referred to in this procedure
are those of f and g. Hence, the classic boolean division procedure has no greater or lesser effect
on testability than does the algebraic procedure. This result seems counterintuitive, based on the
usual intuition that boolean procedures are more powerful than algebraic procedures, and on the
experience that boolean division seems to return better results than algebraic division. Nonetheless,
the fact that the classic boolean division procedure uses only the local SDC associated with the

14

•

bool-divide(f, g)
q, r <- alg-divide(f, g)
minimize r with respect to the DC set (x © g) + qx
(quotient, remainder) <- alg-divide(r, x)
return (quotient + quot, remainder)

Figure 5: Classic Boolean Division

divisor means that in some sense it has no more information than the algebraic procedure. In
an attempt to gain better results, subsequent boolean division procedures expand the don't-care
set somewhat to gain a larger neighbourhood of information; these revised procedures can affect
testability and redundancy more globally, but it is important to realize that one can analyze the
effect on redundancy in precisely the same manner; loosely, an invariant transformation can only
affect the observability of those nodes yj such that the effect of the transformation is dependent
upon the function fj. We can state the effect of various transformations on the observability of
various nodes in a series of corollaries. The omitted proof of each corollary is, formally, that the
named transformationis dependent upon the functions of only the named nodes.

Corollary 8.3 Algebraic and Classic Boolean division affect the observability function of (at most)
the divisor and dividend.

Corollary 8.4 Collapsing node f into node g affects the observability function of (at most) f and
9-

Corollary 8.5 Adding node f to or deleting node f from the network does not affect the observ
ability function of any node g -fi f.

Further, if one attempts to simplify a node using thesubset-support filter [13] on the SDC and
no external or fanout don't-cares, one can use this theorem to make strong statements concerning
the preservation of testability of most of the network.

Earlier, we had occasion toobserve the duality ofnode and edge testing. We now use this again,
for another purpose. If the observability function for each edge out ofa node is preserved, then the
observability function for the node is obviously preserved. We can use this to say immediately:

Theorem 8.6 Algebraic and the Boolean division of[3] do not affect the observability function of
the dividend, f. Similarly, collapsing node g into node f does not affect the observability function
of f.

Proof: Note for / in both cases, neither the local function ofany successor node of/ was affected
by the operation, nor the function on any input edge of such a successor node. Hence for each edge
e out of / to successor node h, §£ is unaffected, and, similarly, ^ is unaffected for each output
Fj, since h was neither the divisor, dividend, nor the node being collapsed. Hence we have that
-gf was unaffected, giving the result. •

This theorem has an interesting, and counterintuitive, consequence. Only the observability of
the g, (respectively the divisor or the node being collapsed) is affected by the division or collapsing

15

computation. This runs deeply counter to one's intuition, which suggests that the inputs to g
are similarly affected, since these inputs have paths through g to the output. In particular, one's
intuition would argue that if g were made more or less observable by a transformation, then, at
least potentially, its fanin should be made observable also. However, a little reflection obtains the
following. If g in fact divides into / in a non-trivial way, then every fanin ofg is a fanin of /, and
hence the paths from the fanins of g are neither created nor destroyed.

In this section, we have shown that in any form of division, only the observability function of
the divisor is affected: the observability function of every other node in the networkis unaffected.
Further, the operation of collapsing a node intoa successor affects only the observability function
of the node being collapsed.

9 Conclusions and Future Work

In this paper, we have demonstrated a technique by which the effect of transformations on the
consistency and observability conditions in a network are preserved, and have used this technique
to analyze a variety ofprocedures which have appeared in the current logic synthesis literature. In
particular, we have demonstrated that no transformation can affect the consistency conditions in
a network unless some form of external or fanout don't-care sets are used, and that observability
of nodes and edges is affected by current transformation techniques in a very limited way. As
we continue this research, we foresee two major applications. First, this technique can be used
to evaluate synthesis heuristics to get some quantitative idea of their power; and, second, that
we may use this technique to prove that a great deal of computation is unnecessary following
transformations: for example, we have used this technique to show that most transformations
preserve the .F-sets of a network in most cases, and that in other cases only a small, identifiable
subset of the ,^-sets have changed.

References

[1] S. B. Akers. On a theory ofBoolean functions. J. SIAM, 1959.

[2] K. A. Bartlett, R. K. Brayton, G. D. Hachtel, R. M. Jacoby, R. Rudell, A. Sangiovanni-
Vincentelli, and A. Wang. Multi-level logic minimization using implicit don't cares. IEEE
Transactions on CAD, 1988.

[3] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang. Mis: a multi-level logic
optimization system. IEEE Transactions on CAD, 1987.

[4] R. K. Brayton, E. M. Sentovich, and F. Somenzi. Don't cares and global flow analysis of
boolean networks. In IEEE International Conference on Computer-Aided Design, 1988.

[5] R. K. Brayton and F. Somenzi. Boolean relations and the incomplete specification of logic
networks. In Proceedings of VLSI '89, 1989.

[6] H. Fujiwara. Logic Testing and Design for Testability. The MIT Press, 1985.

[7] G. Hachtel, R. Jacoby, K. Keutzer, , and C. Morrison. On the relationship between area
optimization and multifault testability of multilevel logic. In International Workshop on Logic
Synthesis, 1989.

16

[8] G. Hachtel, R. Jacoby, and P. Moceyunas. On computing and approximating theobservability
don't-care set. In International Workshop on Logic Synthesis, 1989.

[9] G. Hachtel, R. Jacoby, P. Moceyunas, and C. Morrison. Performance enhancements in BOLD
using "implications". In IEEE International Conference on Computer-Aided Design, 1988.

[10] G. D. Hachtel and R. M. Jacoby. Algorithms for multilevel tautology checking. IEEE Trans
actions on CAD, 1988.

[11] P. C. McGeer and R. K. Brayton. Efficient, stable algebraic operations on logic expressions.
In Proceedings of VLSI '81, 1987.

[12] J. P. Roth. Diagnosis ofautomata failures: a calculus and a method. IBM J. Res. Develop,
1966.

[13] A. Saldanha, A. Wang, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. Multi-level logic
simplification using don't-cares and filters. In Design Automation Conference, 1989.

[14] Frederick F. Sellers, Jr., M. Y. Hsiao, and L. W. Bearnson. Analyzing errors with theBoolean
difference. IEEE Transactions on Computers, 1968.

[15] L. Trevillyan and L. Berman. Improved logic optimization using global flow analysis. In IEEE
International Conference on Computer-Aided Design, 1988.

[16] L. Trevillyan, W. Joyner, and L. Berman. Global flow analysis in automated logic design.
IEEE Transactions on Computers, 1986.

17

	Copyright notice1989
	ERL-89-88

