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Abstract

Research in the control and stabilization of large, flexible space structures has pro-
gressed rapidly in the last decade. It is the purpose of this thesis to investigate sev-
eral control system issues arising from. the ﬁse of distributed parameter formulations
in the modelling of these flexible space structures.

The organization of this thesis is as follows. After a brief introduction in chapter
one, chapter two focuses on flexible beam dynamics and control. Standard distribut-
ed parameter beam models are introduced. This is followed by the main result of the
chapter, which gives sufficient conditions for a single collocated sensor/actuator pair
to uniformly exponentially stabilize an undamped, Euler-Bernoulli beam.

In chapter three, a simple spacecraft consisting of a flexible beam attached to a rigid
body is introduced. The kinematics and dynamics for this structure are derived. This

is followed by several control laws which uniformly exponentially stabilize the pro-



posed spacecraft.A The obtained results extend well-known results for modally trun-
cated spacecraft models to the infinite dimensional models used here.

In chapter four, the attitude contrbl problem is considered for the spacecraft configu-
rations of chapter three. Attitude control laws are derived using Lyapunov techniques
under various assumptions on the nonlinear, infinite dimensional spacecraft models.
The control laws bear striking resemblance to well-known results obtained from finite
dimensional, linearized spacecraft models.

In chapter five, the attitude control problem is again considered. Attitude control
laws are again obtained for several spacecraft models derived in chapter three, but
the control methodology differs from chapter four in that the methods of exact lin-
earization are employed. The approach is novel because the methods of exact lin-
earization are normally reserved for finite dimensional nonlinear systems, whereas
the systems under consideration here are infinite dimensional, nonlinear systems.

Implementation issues for the control laws are also discussed.
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To the Reader

The numbering system contained in this thesis should be easy to follow. Theorems,
Lemmas, Remarks, and @menm are all numbered by three digits: the first number
indicates the chapter, the second number the section, and the third gives the number
of the Theorem, Remark, etc. in that section. For example, Theorem 4.3.1 refers to
the first Theorem, Remark, Lemma, or Comment to appear in Chapter 4, section 3.
Similarly, equations are numbered by three digits. (2.1.2) refers to the second equa-
tion of Chapter 2, section 1. Finally, Figures are numbered by two digits: the first
number indicates the chapter, and the second the number of the figure in that chapter.

For example, Figure 2.5 is the fifth figure in Chapter 2.
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Chapter 1

Introduction

Research on the control and stabilization of large, flexible space structures has pro-
gressed rapidly in the last decade. This has been motivated by the many planned
space missions over the next generation, e.g., space station, space telescope, SDI,
etc.

Candidate designs for large space structures generally exhibit a high degree of flexi-
bility. This is because the structural loads to be supported in space are generally not
large, while there is a very high cost at lift-off for using materials heavier than neces-
sary. Using State-of-the-art materials technology, the structures which meet these
requirements are generally quite flexible. Unfortunately, elastic vibrations due to the
flexible nature of the structure are highly undesirable for a number of missions: they
affect telescope pointing accuracy, antenna beamwidths, delicate onboard instrumen-
tation, etc. In addition, the lowest natural frequency of vibration often falls within the
bandwidth of the attitude control system, thus reducing stability margins. Further,
even environmental disturbances (gravity Meng solar heating, etc.) are considered
sufficient to excite structural bending for various missions.

Based on these considerations, designers are led to the concept of actively con-

trolled large space structures. This is achieved by using a variety of sensors and



actuators located about the structure, and operating through on-line computer con-
trollers to tailor the performance aqd behavior of the system. One of the chief difficul-
ties in designing these systems is that they are, in theory, distributed parameter sys-
tems, which means that the system model is infinite dimensional in nature. Combined
with the coupling of these flexibilities with nonlinear dynamics, this means that the
resulting system model is both nonlinear and infinite dimensional.

Not suprisingly, the design of nonlinear, infinite dimensional control systems is a
difficult task. Because of the difficulties, most authors attempt to simplify the dynami-
cal equations so that simpler control methods may be applied. Perhaps the most com-
mon design method in this vein for flexible structures is the reduced-order model
approach. In this approach, the infinite dimensional model of the flexibility is approxi-
mated by a finite dimensional model. This is most commonly accomplished in practice
by using a finite element technique. Once this reduced order model is obtained, a
large body of finite dimensional control theory is available to the designer. One disad-
vantage of such a design technique is the difficulty in choosing the appropriate order
for the reduced-order model. In fact, the unmodelled dynamics corresponding to-the
truncated modes (termed "spillover” by Balas in [Balas 1]) can actually cause insta-
bilities in the-closed loop system designed from the reduced order model. A great
deal of research attention has been devoted to this problem. The interested reader
can find many of the important references in this area in [Joh. 1], [Balas 1].

An alternate approach to this design procedure is to actually consider a distributed
parameter model of the structure, and to design the control law based on this model.
This of course has the advantage that the spillover problem is eliminated, but it has
the disadvantage that the mathematical complexitiés are far greater. Nevertheless,
in this thesis, a distributed parameter model of a particular flexible space structure
will be employed, and the control laws will be derived from this framework.

The thesis is organized as follows:



In Chapter 2, we will consider the control of a flexible, cantilevered, beam modelled
by the Euler-Bernoulli partial differential equations. The most common form of control
employed for this beam is distributed control, with distributed sensing. This means
that forces and moments are applied at every point of the beam (or intervals of the
" beam), with the readouts being the deflections or deflection velocities at every point
of the beam (or intervals of the beam). In practice, however, distributed control and
sensing is difficult to do. Motivated by these engineering consideration, many ana-
lysts have been studying the point sensing/actuation control of distributed parameter
systems. In Chapter 2, we will consider some of the control theoretic implications of
point sensing/actuation versus distributed control, .and then consider the
point/sensing actuation problem of an undamped beam. Sufficient conditions are
~ developed to uniformly exponentially stabilize an undamped beam using a single sen-
| sor/actuator pair located in the interior of the beam. This extends a result in [Che. 2]
which employs a single sensor/actuator pair at the tip of the beam to uniformly expo-
nentially stabilize the undamped Euler-Bemoulli beam.

In Chapter 3, we first derive the equations of motion for a flexible satellite consist-
ing of a rigid hub with an attached flexible appendage. The appendage will be mod-
elled as an Euler-Bernoulli beam. Next, we will consider the stabilization, or detum-
bling, problem for this spacecraft. The stabilization problem consists of using the con-
trol actuators to stop the spacecraft from spinning, and to have the beam vibrations
damp out. Two problems will be considered. First, it will be assumed that the flexi-
ble beam contains sufficient internal damping that no beam control is needed. For this
particular problem, the control actuators mounted on the rigid portion of the spacecraft
are sufficient to perform the stabilization maneuver. The second px-'oblem to be consid-
ered is when the flexible beam is regarded as having insufficient internal damping,
assumed zero. In this case, actuators on the beam (which will be of the boundary

variety) as well as actuators on the rigid hub will be needed to perform the maneu-



ver. The validity of these control strategies is demonstrated by Lyapunov tech-
niques. The obtained results show that many well-known stabilization schemes for
finite dimensional (modally truncated) spacecraft can also be successfully applied to
spacecraft modelled in an infinite dimensional way.

In Chapter 4, we consider the attitude control problem for the spacecraft model
derived in Chapter 3. The attitude control problem consists of using the control actua-
tors on the spacecraft to not only de-spin the spacecraft, but also to move the space-
craft into a specific orientation relative to another frame of reference. As in Chapter
3, we will first consider the problem when the beam damping is assumed significant,
followed by the problem when the beam damping is assumed zero. The methods
again employed are Lyapunov based, using a generalization of LaSalle’s Invariance
principle. The obtained results again show that many well-known attitude control
schemes for finite dimensional (modally truncated) spacecraft can also be successful-
ly applied to spacecraft modelled in an infinite dimensional way.

In Chapter 5, the attitude control problem for a flexible spacecraft is again consid-
ered. This chapter differs from Chapter 4 in that the techniques employed to derive
the control laws are based on the methods of exact linearization. This means we
seek to find nonlinear feedback and a nonlinear change of coordinates to transform the
nonlinear system to an equivalent linear system. The approach employed here is nov-
el in that the methods of exact linearization are normally applied to finite dimensional
nonlinear systems, while the satellite dynamical equations here are infinite dimen-
sional. Using the methods of exact linearization, attitude control laws for several
satellite configurations are derived. Finally, implementation issues for these control

laws are discussed.



Chapter 2

Flexible Beam Dynamics and Control

2.1 Introduction

In this chapter we will first derive the partial differential equations governing the
motion of a uniform, flexible, beam. Two derivations are required in this thesis. In
section 2.2, we derive the equations for the axial fnotions of a flexible beam which
yields the well-known wave equation. In section 2.3 we derive the equations for
transverse motions of a uniform beam. This gives the famous Euler-Bernoulli partial
differential equations. The effect of beam damping on these models is discussed in
both sections.

In section 2.4, the transverse control of a cantilevered, damped beam modelled by
the Euler-Bernoulli partial differential equations is considered. It will be shown that
if the control sensors and actuators are modelled as bounded linear operators (which

is usually the case if the sensors and actuators are distributed elements), then the

resulting transfer functions lie in the algebra ﬁ(O). This means that standard control
factorization theory may be applied to obtain controllers for this distributed system.

In section 2.5, we consider the control of cantilevered, damped beam modelled by
the Euler-Bernoulli partial differential equations, except we now remove the restric-
tion that the beam is damped and that the control sensor/actuator models are bounded

linear operators. In particular, we assume beam damping is zero, and that the control



elements are poiﬁt sensing/actuation. Theorem 2.5.2 gives sufficient conditions for a
single sensor/actuator pair to uniformly exponentially stabilize the beam. This
answers conclusively a conjecture of Chen in [Che. 2]. Finally, Lemma 2.5.10 inves-
tigates the structure of the modes of the undriven beam, in order to glean some gener-
al conclusions regarding sensor and actuator placement.

2.2 Models for Axial Motion of a Uniform Beam

Standard references for the material in this section and the following one are [Pop.
1], [Lan. 1]. Particular page locations of pertinent material for these references can
be found in the text below.

Consider the axial motion of a uniform cantilevered (one end clamped, one end free)

beam depicted in Figure 2.1. Assume that all motion takes place along the x axis.

>

3
A 4

L

L

Figure 2.1

Let L denote the length of the beam, let x denote the position of the cross-section of
the unstressed beam at point x € [0, L). Let &(x, t) denote the strain at cross-sec-
tion x at time t, 6(x, t) denote the stress at cross-section x at time t, and let u(x, t)
denote the axial displacement of the cross section x at time t . Finally, let A denote .
the cross sectional area of the beam (é.ssumed constant for simplicity), let p denote
the mass per unit length of the beam (again assumed constant), and let p(x, t) denote

the external body force per unit length applied along the x-axis.

Consider a differential element of the beam shown in Figure 2.2 Let P(x, t) denote



the axial force at cross section x at time t, which is numerically equal to the algebraic
sum of all x-axis directed external forces acting on the isolated segment, but opposite

in direction. Then balancing the forces on the differential element yields

P+dP

"x

Figure 2.2

2F, =0 — +, P+dP+p(x,t)dx-P-pa_2;_(§_’_t_)dx 0. 2.2.1)

Dividing through by dx and taking limits as dx — 0 yields
gg +p(X, 0 =p azu(x, t) 222)

Note that P(x, t) and o(x, t) are related by P(x, )A = G(x, t). Since A is assumed

constant, (2.2.2) yields

A aca(x, t) +p(x, ) =p a_;g_,_t) (2.2.3)

We now -consider material properties. Assume that the beam material is isotropic,
homogeneous, and further assume that the strains are small. (For a very brief intro-
duction to properties of materials, see Appendix A. The reader is otherwise referred
to [Pop. 1, Chapters 2-4], or [Lan. 1, Chapter 1].) If we further ignore damping and
Poisson’s effect, the stress o(x, t) and the strain €(x, t) are simply related by the

Hooke’s Law relation o(x, t) = Ee(x, t), where E is the Young’s modulus of the



material. Recall that by definition &(x, t) := @é_x,_t) Inserting these expressions in

X
(2.2.3) yields
o2u(x, t _%u(x, t
AE _a%_) +p(x, ) =p _f’z‘_l 2.2.4)

which the reader will recognize as the familiar wave equation, with p(x, t) acting as a
source. ‘

Finally, it is necessary to specify the boundary conditions for this beam configura-
tion. Since the beam is clamped at x = 0, no axial displacement occurs there; lience,

u(0, t) = 0, for all t > 0. If we assume that there is an applied force p(t) at the free

end of the beam (x = L), this means p(t) = P(L, t) = Ee(L, ty/A = Ea“g"* /A. Thus
—

the differential equation and boundary conditions for axial motion of a uniform beam

with constant cross-section and no damping is given by

o%u(x, t) _ . d%ux, 1)

AE 1] , - ? 2.2.5

e Pt =p .( )

u©, =0, _E 9L V_py . (226
A 0x

Suppose now that the beam possess Kelvin-Voight type damping. This means that
each differential element can be considered to be connected to its neighbors by a par-
allel combination of a linear elastic spring, and a linear viscous dashpot ([Pop. 1, p.

116]). These assumptions yield a stress-strain relationship of the form

o(x, 1) = Ee(x, ) + 1 _3_5%_‘) 2.2.7)
t



where 1 is the damping coefficient, assumed constant. Inserting this expression into

the differential equation (2.2.3) and assuming p(x, t) = 0, then yields

AE %u(x, t) + Ana3u(x, t)=p o%u(x, 1) (2.2.8)
ox* ' ox4dt ot~

The boundary conditions for this partial differential equation are easily seen to be

0,9=0, E L 9, ndul, 9_pq 2.2.9
H0.0=0 = A @29

2.3 Models for Transverse Motion of a Uniform Beam
Now consider transverse motions of the uniform beam depicted in Figure 2.1.

Assume all motion takes place in the x-y plane. Consider now an infinitesimal sec-

tion of the beam at point x as shown in Figure 2.3.

Al
V +dV

a
|

dx

Figure 2.3

Let V(x, t) be the shear force at beam cross section x in the direction y. The shear
force is numerically equal to the algebraic sum of all vertical external forces acting on

the isolated segment, but is opposite in direction. Let M(x, t) denote the internal
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resisting moment lacting on the beam cross section at x. The internal resisting
moment is numerically equal to the algebraic sum of all vertical external moments act-
ing on the isolated segment, but is opposite in direction. Let p(x, t) the distributed
force acting on the beam in the y axis direction. Let p be the mass per unit length of
the beam (assumed constant for simplicity) and let u(x, t) denote the displacement of
the beam section from its neutral axis at point x. (Recall the neutral surface is the
portion of the material free from stress and thus strain. The neutral axis is the inter-
section of the neutral surface with a right section of the beam. It will be shown in
(2.3.8) that the neutral axis passes through the centroid of the cross-section area
during pure bending.)

From the condition of equilibrium of vertical forces one obtains

ZFx=0 T+, V+dV +p(x,t)dx-V-p ﬁfz‘_’_gdx =0. (2.3.1)
t

Dividing the expression by dx and taking limits as dx — 0 yields

av;:, D 4 px, ) = p 3% 1) | 2.3.2)

o2

For equilibrium, the sum of the moments about point A also must be zero. So, upon

noting that from point A the arm of the distributed force is dx/2, one has

ZMA=0 D+, M+dM+de-M+(p(x,t)dx-p?ia(;"_t2dx)dx/2=0
t

Divide the expression by dx, and take limits as dx — O to obtain

al\gix, 19 -V(x, t) (2.3.3)

Note that the contribution due to the distributed forces is zero. Inserting (2.3.3) into

(2.3.2) yields
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_9M(x, 1) = SAux, 234
= +px,0)=p —z— (2.3.4)

It thus remains to establish a relationship between the material properties and M(x,

t). To do this, we now make the following kinematic assumption:

Assumption 2.3.1 - Plane sections through the beam taken normal to the x-axis

remain plane during bending.

This assumption neglects shear deformation of the beam, but fortunately the deflec-
tions due to shear are small for a beam whose length is 2-3 times longer than the
span. .

So now consider the deformation of the beam in more detail. Subpose point A desig-
nates a point on the beam neutral axis, and the beam is deformed so that A — A’.

(See Figure 2.4.)

y Initial plane of section
PN\
v ox Yr
u= ‘ys;( ( > e a_v
Voo e AI . ax
X

>
>

—
A \ Deformed Plane
Figure 2.4

Let v(x, t) denote the deformation of point A to point A’ in the y direction. Let y,

denote the distance from A’ to the point of the beam under consideration along the

direction of the deformed plane. The kinematic assumption shows that the plane
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through A in Figure 2.4 is transformed to a plane through A’. Note that the angle of

a_vgc_,_t). Furthermore, since M is

rotation of the plane is simply the slope S
X X

small, cos( a"g" )= 1. Therefore, u(x, t) =-y i%’_‘). By definition of strain,
X

. ou(x, t)
,t) = 2.3.5
e(x, t) (2.3.5)
Therefore,

e(x, t) = _T_a v(x, 9 (2.3.6)

Finally, we must relate the stress G(x, t) to the moment M(x, t). Since this relation-
ship depends on the modelled material properties, we will need to examine two cas-
es. First we will consider the beam without damping, and afterward we will consider

the beam modelled as having damping of the Kelvin-Voight type.
No Damping Present
First consider the case when damping is neglected. The kinematic assumption 2.3.1

implies that the strains in the beam vary linearly as their respective distances from

the neutral axis. Thus

6(x, t) = B(x)y 2.3.7)

where y is the distance from the neutral surface, and B is a constant to be deter-

mined. If we assume that the beam is in simple bending due to an applied moment,
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then there are no forces acting in the x-direction. This implies that the net force in the

x-direction on each cross-section must be zero. Hence,

fo(x.t)dA=0 = fydA:O = JA=0 (2.3.8)
A A

where ¥ is the distance from the neutral axis to the centroid of the cross-sectional
area A of the beam. This equation shows that y is actually zero (since A is not

zero), which means that the neutral axis passes through the centroid of the cross-

sectional area. Next, balancing moments on the cross-section yields

M(x, t) +f o, t)ydA=0 = M=-B f y2dA =: -BI 2.3.9)
A A

where I is the moment of inertia of the cross-section about the z axis. Combining

(2.3.9) with (2.3.7) then yields

o(x, t) = -My/I (2.3.10)

Thus, the differential equation for the transverse motion of a uniform beam is given by

-Ey ﬂai’;_‘) =Ee(x, ) =0(x,t) =-My/l, or

9%v(x, t) _ |
EI _a_i’;_- M(x, t) | (2.3.11)

This is the standard relationship between moment and curvature. Inserting (2.3.11)

into (2.3.4) then yields
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o*v(x, t _ o OW(x, 1)
EI %f:;_)_+p(x, H=p _&(’2‘__ (2.3.12)

which is the famous Euler-Bernoulli model for transverse displacements of a uniform
beam. As in the case of axial displacements, it is necessary to specify boundary con-

ditions. The clamped conditions at x = 0 mean zero displacement and zero slope at x

= (; therefore, v(0, t) = 0, and avgo, - 0 for all t > 0. At the free-end of the beam
X

(x = L), suppose there is an applied force F(t) and an applied moment M(t). Then,

. oV, t) _ . 83V(L, t)
observing (2.3.11) we see that EI__B_xz_ = M(t). (2.3.3) then shows -EI — 3

= F(t). Therefore, the standard Euler-Bernoulli beam model for transverse displace-

ments is given by

o*v(x, t) _ o 0%v(x, t
EI _;;?4__+p(x, )=p __ag_) | (2.3.13)
oxv(L, 1) _ v, 1) _
EI » =Mt -EI » J=F(t 2.3.14
e ® 3 ® .( )
Damping Present

Assume now that beam damping is present, and assume that it can be satisfactorily

modelled as being of the Voight-Kelvin type as before. Then

de(x, t)y (2.3.15)

o(x, t) = Ee(x, t)y + N
ot

First, note that equations (2.3.3), (2.3.4), and (2.3.6) are unaffected if damping is

added. Therefore, €(x, t) = -y gv_ai’;’_g. To determine G(x, t), note that the only
X
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change in (2.3.7) when damping is added is that o(x, t) = B(x, t)y. Therefore, we can
perform the same calculations as before (the balance of forces and moments on the

cross-section) to obtain

fo(x, DdA=0 = fydA=o = JA=0= §=0 (2.3.16)
A A

M(x, t) +f a(x, h)ydA =0 = M(x, t)= -B(x, 1) f y2dA = -B(x, )(2.3.17)
A A

xv(x, 1)

which are of exactly the same form as before. Using the relation €(x, t) = -y —7

we then obtain

ovx, 1) . Iddv(x, o)

M(x, ) = El —5.7— + — =l (2.3.18)

Inserting this expression in (2.3.4) then yields

EI 64 v(x, t)

v(x, t) oXv(x, 1)
AL v (x , (2.3.19)

+1nl _a_x“__+p(x,t)—p —z—

with the easily derivable boundary conditions
EIOV(L, O 4 1 3V, 9 vy (2.3.20)
ox2 oxZot '

BV(L, 1) _ 7 VT, 1) _
-EI I =F(t
ox> N dx“ot ®

2.4 Control of a Flexible Beam - Damping Present

Consider the cantilevered beam of Figure 2.5.



16

gix, xi)

hy(x, )\

Figure 2.5

Consider the control of transverse beam motions. Let fj(t) be the control input force

for the jth actuator whose influence function gl(x, xJ) is determined by the location xJ
and the physical characteristics of the actuator. For example, gi(x, xi) could be 8(x -
x)), where 8(x) is the dirac delta. This situation is called point actuation. More gen-
erally, gi(x, xJ) could be an L2 function that approximates 8(x - xJ) in some sense.
The corresponding differential equation is

n-
p d%u(x, 1) , gy Mux, v +l Pu(x, t) _ f, g, d)  2.4.1)
otZ ox* dJx“ot 1

Assume the ng, output sensors can be modelled by

yi® = j'hi(x, xu(x, tydx + j'mi(x, X;) aaTu(x, tdx i=l,..n, (2.4.2)
0 0

where x; is the location of the ith sensor. This sensor essentially takes a weighted
ou(x, t) . . )

average of u(x, t) and » Y over an interval containing x.. Note that choosin

g —5r g Xj g

hi(x, x;) = 3(x - x;) means that we have point sensing, i.e., y;(t) = u(x;t).
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(At this point, the reader should be somewhat familiar with the theory of linear
state-space systems in infinite dimensional space (see, for example, [Bal. 1]). In
particular, the reader is expected to have a brief understanding as to how the notion of
a strongly continuous semigroup generalizes the notion of the state-transition matrix
from finite dimensional spaces to infinite dimensional space. The reader unfamiliar
with these concepts is referred to any number of excellent sources, including [Bal. 1],
[Mac. 1], or [Paz. 1].

These input and output models can be used to write (2.4.1) and (2.4.2) in a state

space form evolving on the Hilbert space X = HozxLz, (see Appendix B for the defini-

tion of the Sobolev space HOZ[O, L]) The inner product on X is given by the "energy"”

inner product

[f’ g]x = [(f]_s fz)Tv (gl, gZ)T]X = [fl”’ gl”] + [f H gzl

where [e, ¢] denotes the ordinary inner product in L2[c, c+L). The state space sys-

tem on the space X is given by

z=Az+Bf (2.4.3)
y=Cz

where A: D(A) c X - X, B: RM — X, C: X — IR, are the linear operators defined
by

0 1
A= —EI © —1’]134 © 2.4.4)
ox* ox*
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PR . Fu(x, t) ddu(x, t)\T
A:(u g)—)(g,EIT-i-nl_mt_)

D(A) := {(x, x)TI x; € Hp*, x, € Hy?,

X,"(c+L) = x,"(c+L) =0, xl’"(c+L)=x2’"(c+L)=O, }  (24.5)

L
Bi= | g1y, x1) O Gy, xuiy| B¢ fr o £) = 2 fOgx, ¥)(2.4.6)
L L
ci= { e xpoax, [ mex @) T, i1, ., 247
0 0
L L
Ci: (2129 — f hy(x, X))z, (x, H)dx, +| my(x, x)zy(x, t)dx » i=1, ..n,
0 0

Note that although A is defined on D(A), it is not defined on all of X. Furthermore,
using the standard operator norm, A is an unbounded operator on X. B and C, howev-
er, are linear, bounded operators on X.

We next show that by defining the space, inner product and domain of A as above,
the state space system is well-posed. (Recall that a linear partial differential equa-
tion need not admit a solution. See [John 1, Chapter 8] for an example.) To make
precise the notion of well-posedness, we opt for the following definition which will be

used throughout this thesis.

Definition 2.4.1 - Consider the following differential equation evolving on a Banach
space X:

z=Az 2(0)=g ‘ (2.4.8)

where A: D(A) € X — X, is a (possibly) nonlinear unbounded operator and D(A) is
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the domain of the operator A. The system (2.4.8) is said to be wel -posed if

(i) D(A) is dense in X;

(ii) For each z; € D(A), there exists a unique, continuously differen-

tiable function z on [0, o°) (where the derivative is two-sided for t

>0, and on the right for t = 0) satisfying (2.4.8).

Comment 2.4.2 - Condition (i) of Definition 2.4.1 is required to insure that "nearly
all" initial conditions are acceptable, while condition (ii) insures that unique solutions

exist to the differential equation (2.4.8) for these initial conditions.

If A is a linear operator with non-empty resolvent in definition 2.4.1, then the sys-
tem is well-posed if and only if A generates a strongly continuous semigroup [Paz. 1,
Chapter 4, Thm. 1.3].

To show that the state-space system (2.4.3) is well-posed, we need one other

standard result in the semi-group literature.

Theorem 2.4.3 - Suppose that A generates a strongly continuous semigroup on X.

Suppose B: X — X is a bounded linear operator. Then A + B generates a strongly
continuous semigroup on X.

Proof of Theorem 2.4.3 - See [Paz. 1, Theorem 1.1, p.76]. M

Comment 2.4.4 - This theorem merely states that if the system z = Az is well-
posed, then the system z = (A + B)z is also well-posed if B is a bounded linear oper-

ator.

Using Theorem 5.A.2 of Chapter 5, the operator A of (2.4.4)generates a strongly
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continuous semigroup on X. Since we assume that h(x, x;) i=1, 2... n,, my(x, x;) j=1,
. 1y, and g&(x, x¥) k=1, ... ny are L2[0, L] functions, it is easy to show that B and C

are bounded linear operators on X. Since B and C are bounded linear operators, and
A generates a strongly continuous semigroup, Theorem 2.4.2 insures that the closed

loop system
z=(A+BFO)z (2.4.9)
with F e IR jg well-posed.
The assumptions on B and C guarantee other properties as well. We first need the
following result from Appendix 5.A. (Theorem 5.A.2)
Theorem 2.4.4 - For the operator A defined in (2.4.4), the differential equation

i=Az z9 € D(A) 2.4.10)

has an exponentially stable solution z(t) = T(t)z,. Moreover, the eigenvalues of the

system are given in Figure 2.6.



21

Re

Figure 2.6 - Spectrum of the operator A given by (2.4.4)

Comment 2.4.5 - This result merely says that a beam with Voight-Kelvin damping is
exponentially stable, and that the poles of the system (2.4.10) lie in the open left half
plane as shown in Figure 2.6.

Since T(t) is exponentially stable, there is a M > 0 and a 8 > 0 such that ITHOIl < -
Met for all t > 0. Since B and C are bounded linear operators, this means that

ICT()BIl < IICI IBIl Me-3t 2.4.11)

so that the state space system (2.4.3) is input-output stable. (If the boundedness
conditions on C and B are removed, then examples exist which show that systems
which are state-space stable are nor necessarily I/O stable - a very unappealing
result.) Note that the norm condition .(2.4.11) implies that the Laplace transform of
CT(t)B is analytic on the half-plane Re(s) > -8. This observation leads us to the fol-

lowing important result.
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Theorem 2.4.6 - For the state-space system (2.4.3) with beam damping present

(i.e., > 0), the zero state input-output map u — y given by

L
y(t) = f CT(t-t)Bu(t)dt (2.4.12)
0

has its transfer function in the algebra B(0) [Vid. 1, p. 246]. A function f e B(oy) if

for some ¢ < G

@) f (s) has a finite number of poles in the half plane (2.4.13)
Cs= {se CI|Re(s) 20};

(ii) The inverse transform includes - in addition to the exponentials due

to the poles in C -

{0 t<0
f=1& 2.4.14
® E’o £3¢-t) + £,0) t20 @419

where t; are non-negative constants, f,(t) is a L,[0, «) function, and

further,

golfil e <o and
i=

j‘ 2.4.15)
eTUf (Dldt < e

0
In fact, from Figure 2.6, we see that the state-space system has its transfer func-
tion in ﬁ(—n/E + €), € > 0, because there exists a 0 < —1/E + € such there is a finite

number of eigenvalues in €. An interesting point to note is that the transfer func-
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tion is not in ﬁ(co) for 6 < -m/E because —1)/E is an accumulation point of eigenval-
ues.

The importance of the algebra B(0) is that every function f& B(0) has a coprime fac-
torization [Vid. 2, p. 361}, so one can then apply the very rich literature in algebraic
control theory (see [Vid. 2], [Cal. 1]). It would take us too far afield to discuss the
numerous aspects of algebraic control theory. Suffice it to say that the existence of
coprime factorizations allows the determination of all stabilizing compensators, the

determination of all compensators for tracking, disturbance rejection, the determina-

tion of robust stabilizing compensators, etc. We thus see that the fact that the trans-
fer functions lie in B(0) is a very powerful condition indeed.

Before proceeding to the next section, it should also be noted that the fact that the
transfer function lies in f’»(co) insures that a finite dimensional stabilizing compen-

sator exists ([Nett 1], [Vid. 1, p. 367]). This is perhaps not surprising since there
are only a finite number of unstable poles that need to be stabilized, but the result is
very important for engineering purposes. An example of a finite dimensional stabiliz-
ing compensator for the beam equations (2.4.1) is given in [Bon. 1]. The main difficul-
ty is not in obtaining a finite dimensional compensator, but obtaining a compensator of

reasonably low order. This is an area of current research interest.
2.5 Control of a Flexible Beam - No Damping Present
2.5.1 - Control Theoretic Implications of an Undamped Modelled Beam
Consider again the control of a cantilevered beam as shown in Figure 2.6. Suppose

it is known that the beam damping is small, but the actual value is unknown. Since
the beam damping is small, but unknown, it might be reasonable to model the beam
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as. having no damping, i.e. 1 =0in (2.4.1).

Unfortunately, by modelling the beam in such a way we see that the transfer func-
tions obtained from the state-space model (2.4.3) are not in the algebra ﬁ(O). This
is because the undamped beam system is conservative, which means that the result-
ing u'arisfer functions will have an infinite number of poles on the jw-axis, which vio-
lates condition (2.4.13) in the definition of ﬁ(O). It is currently unknown whether

coprime factorizations exist for such systems. Thus, in order to control a beam mod-
elled in such a way means we will have to find a stabilizing compensator based on dif-
ferent methods.

The first question is whether an exponentially stabilizing feedback compensator

even exists for the system (2.4.1)-(2.4.2) when 1 = 0. (In this thesis, only exponen-
tial stabilizability will be considered. Other authors consider the strong stabilizability
problem: find a control law so that the desired quantity goes to zero, but not necessar-

ily exponentially.) If it is assumed that h(x, x;) i=1, 2... n;, mj(x, xj) j=1, .. ny, and
gk(x, xK) k=1, ... n, are L2[0, L] functions, then as before B and C defined by (2.4.6)

and (2.4.7) are bounded linear operators on X. In addition note that Cz HL2 — L2

is a compact map since it is an integral map. Since B is a bounded linear map, and C
is a compact linear map, this implies that BFC, for F € IRMXM0 j5 3 compact linear
map [Die. 1, p. 317]. Because of these properties, there is no exponentially stabiliz-

ing static feedback compensator as the following theorem shows:

Theorem 2.5.1 [Gib. 2, Thm. 1, p. 312] Consider the differential equation

% + Agx(t) = B,X(t) + B,x(t) x(0) = xo € D(Ag) 2.5.1)
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where x(t) is in a real separable Hilbert space X, A, is a self-adjoint linear operator
(see Definition B.3) from D(Ay) (which is dense in X) to X, and B, and B, are com-

pact linear operators mapping X to X. Then the solution to the differential equation

(2.5.1), denoted T(t)x, is not uniformly exponentially stable, i.e., there is no M>0

and 8 > O such that

IT@OISMe®  fort=0. (2.52)

(These conclusions were first pointed out in [Del. 1].)

One major reason for this negative result is that B and C are bounded operators,
which restricts the feedback. To have any hope of obtaining an exponentially stabiliz-
ing compensator for an undamped beam, it is necessary to remove the restriction that
hy(x, x;) i=1, 2... o, mj(x, xj) =1, ...n, and gk(x, x5 k=1, ... nare L2[0, L] functions.

Perhaps the simplest choice of unbounded linear operators for this problem is choos-
ing a single sensor/actuator pair by h(x, L) = 8(x - L) and m(x, L) = 8(x - L), i.e., a
point force at the tip of the beam of the beam, combined with point velocity sensing at
the tip of the beam. (When the sensor and actuator are located at the same point, the
sensor/actuator pair is commonly referred to in the literature as collocated. Thus, in
this case the sensor/actuator pair is collocated at L.) It is easy to verify for this

choice of hy(x, x;) and mj(x, xj) that C of (2.4.7) is an unbounded linear operator, while

B of (2.4.6) is an unbounded linear operator by inspection (it is a delta function).
In fact, Chen et al [Che. 2] showed that by using this type of boundary control ie.,

X; = L, the resulting system is uniformly exponentially stable, in the sense that the

beam deflections go to zero uniformly exponentially. The method of proof was by con-
struction of an appropriate Lyapunov functional.

In the Chen paper, an open question was reported. Suppose a single collocated
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velocity sensor/force actuator pair is located interior to the beam, rather than at the
tip. Is the system (2.4.1) also pronentially stabilized? In this section, Theorem
2.5.2, this question is partially answered. It will be seen in Theorem 2.5.2 that the
system is uniformly exponentially stable if the position of the collocated pair, denoted

X,, is not located at a node of the original undriven beam, and if x,/L is a rational num-

ber. The method of proof will be by careful eigenvalue and eigenfunction analysis.
Using a theorem of Huang, [Hua. 2], these conditions for exponential stability will be
derived. Afterwards, Lemma 2.5.10 will investigate the structure of these undesir-
able sensor/actuator locations, in order to glean some general conclusions regarding
sensor and actuator placement.

The reader will undoubtedly feel that much simpler methods can be applied to prove
Theorem 2.5.2. Therefore, in Section 2.5.3 we will briefly comment on the inadequa-
cies of classical system theoretic approaches (passivity, etc.) in conjunction with this

particular problem.
2.5.2 Uniform Exponential Stabilization of an Undamped Beam

Consider the cantilevered beam of Figure 2.7, with an applied point force at x = x;.

L

Figure 2.7

Assume for simplicity that p, E, and I are all unity. Also assume that no damping is

present, i.e. | = 0 in (2.44). Let h(x, x;) = &(x - x;) and m(x, x;) = Kd(x - x,)
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where x; € [0, L]; hence we have a single collocated velocity sensor/force actuator
pair located at the interior point x,, with a control gain of K. The goal is to derive
conditions on x, to insure that the beam deflections go to zero uniformly exponentially.
Since a point force is applied at x = x,, there will be a "kink" in the shear force at
that point, which implies that the solution to this problem must be broken into two

parts. One differential equation will consider x € [0, x,], and the other x € [x;, L]

Proceeding along these lines, let y;(x, t) denote the transverse deflection of the beam
at time t for x € [0, x,), and let y,(x, t) denote the transverse deflection of the beam

at time t for x € (x;, L]. Using the formulation for the beam given in section 2.3, the

differential equations for this configuration is given by

§1x, ) +y;”"(x,)=0 xe€ (0,x,) (2.5.3)
Fox, t) +y,"(x,)=0 x € (x, L) | 2.5.49)

where * denotes the partial derivative with respect to time, and * denotes the partial
derivative with respect to the spatial variable x. The initial conditions for this configu-_

ration are

¥1(x,0)=¢,(x) ¥,(x,0)=¥(x) xe [0, x,1. (2.5.5)
¥o(x, 0) = §p(x) ¥o(x,0) =¥,(x) xe€ [x,, L] (2.5.6)
Assume for simplicity that the initial conditions are C™ functions of x. The resulting

boundary conditions are

¥1(X1» ©) = y2(%y, ) ¥y (xp, ) =y (X1, 1) (2.5.7)

Yl”(xp )= Y2"(x1a t) n (xy» =y, (xqs t)+ K).’l(xp ) (2.5.8)
y, (L, )=0 ¥y (L, =0 (2.5.9)
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¥10,0=0 y,©0, ) =0. (2.5.10)

for all t 2 0. The boundary conditions (2.5.7) indicate that at the location of the sen-
sor/actuator pair the displacement and slope are unchanged. The first boundary condi-
tion of (2.5.8) indicates that the moments are unchanged, while the second shows
that the shear force has a jump discontinuity occurring since the actuator is a point
force actuator. Finally, the boundary conditions (2.5.9) and (2.5.10) are simply the
boundary conditions for the cantilevered beam configuration. (See (2.3.14).)

The unbounded operator associated with system (2.5.3)-(2.5.4) is given by

"0 1 0 0

-2 O 0 0
A=| 02 (2.5.11)

0 0 0 1

0o o0 9% 0

s _a?- -

Let the underlying state space for this operator be defined as

X = {(¥1 Yo Y3 YT € H2 x L2x H2x L2 |

y1(xp) = y3(%1), ¥1'(xp) = y3'(x )} (2.5.12)

(Thus, (2.5.3)-(2.5.4) can be written in compact state space form as y = Ay, where y
= ¥y ¥1» Y2» ¥2)T.) Let the inner product on X be [f, gl defined as

[f, g]E = [fl", gl”]l + [fz, g2]l + [fs”, g3”]2 + [f4, g4]2 (2.5.13)

where [, <], is the complex L2[0, X,] inner product, and [, ], is the complex L2[x1,
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L] inner product. Finally, let the domain of the unbounded linear operator A in

(2.5.11) be defined as

D(A) := {73 Yo Y3 Y97 € Ho* x Hg? x H* x H2 | y;(x)) = y3(x¢), y;'(xp) = y3'(xy)s
¥ (xp) = y3"(xy), y'(xp) = y3"(xp) + Kyp(x), ¥3"(L) = y3"(L) = 0, yp(xp) =

¥4(X1)s Yz’(xl) = Y4'(x1)]~(2-5-14)

This leads us to the main theorem of the Chapter.

Theorem 2.5.2 - Consider the cantilevered beam equations (2.5.3) and (2.5.4)
together with initial conditions (2.5.5)-(2.5.6) and the boundary conditions (2.5.7)-
(2.5.10). Let K of (2.5.8) satisfy K > 0. Then the system is uniformly exponentially
stable if x; is not located at a node of the original, undriven beam system (2.3.13),

(2.3.14) (where E=I=p=1 and p(x, t) = M(t) = F(t) = 0), and x,/L is a rational num-

ber.

Comment 2.5.3 - If we choose x; = L, we obtain beam boundary control as in [Che.

2]. Since it is easy to show that L is not a node of the undriven system, Theorem
2.5.5 shows that for such a placement of the sensor actuator pair, uniform exponential

stability results. This agrees with [Che. 2].

The proof of Theorem 2.5.2 is very similar to a proof of a result given in [Che. 3].
The interested reader can find similar calculations to those below if difficulties arise in
following the rather complex derivations given here.

To determine the exponential stability of the system, we need the following theorem

due to Huang [Hua. 2, Thm. 3, p. 51]:
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Theorem 2.5.4 - Let T(t) be a strongly continuous (linear) semigroup in a Hilbert
space satisfying

ITOl<C (2.5.15)

for all t > 0 and for some C > 0. Then T(t) is exponentially stable if and only if

(im|owe IR } cp(A), theresolvent set of A; and, (2.5.16)
B := sup{[liI - A)l||} < 2.5.17)

are satisfied.

Thus, to prove Theorem 2.5.2 we only need to show that the conditions of Theorem
2.5.4 are satisfied. This is done by straightforward, although extremely tedious, cal-
culation below. To perform this task, we will need several preliminary lemmas.

The first condition which must be shown is (2.5.15), which states that the semigroup
generated by the operator A is a contraction semigroup (see Appendix B, Definition
B.1). Because the proof of this result is unrelated to the remainder of the proof, the
details are left to Appendix 2.A. The method of proof is by use of the Lumer-Phillips
Theorem [Paz. 1, Chapter 1, Thm. 4.3 ].

Thus, to apply Theorem 2.5.4 tb Theorem 2.5.2, it remains to show that the resolvent
conditions (2.5.16) and (2.5.17) in Theorem 2.5.4 are satisfied. = (The term resolvent
refers to the operator AI - A. This is conventional terminology in the semigroup liter-

ature.) So now consider the resolvent equation for the operator A defined in (2.5.11):
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- [T o 1 o ol] .-
2+ o0 o0 offn f{’}
M- | % ala | (2.5.18)
o o 90 o[z ¥
N | 0% _
together with the boundary conditions

Yi(x) = y2(x) ¥y, (xy) = ¥, (%) (2.5.19)
y17(x)) =y,"(xp) (2.5.20)
(2.5.21)

ylrn(xl) = yz’”(xl) + Kzl(xl)
10=0, y,’0)=0.

Y2”(L) = 09 yz’”(L) = 0’

If we eliminate z, and z, from the above equations we can thus rewrite (2.5.18) as

Py (0) + ¥, (%) =20, x) + ¥ (x)  0<x<x) (2.5.22)
Py, (x) + ¥, (x) =it20,(x) + ¥p(x) Xy <x<L (2.5.23)
together with the boundary conditions
y1(xp) = yo(xy) ¥1'(x) = yo'(x;) (2.5.24)
y1(%y) = y5 " (xp) + Kitly; 00) + 9y(xp)  y1"(xp) =y, (xy) (2.5.25)
”(L)=0, y,0=0, y,"0)=0. (2.5.26)

y,(L)=0, 1y,

The first thing we will show is that the operator A given by (2.5.18) has no jw-axis
eigenvalues unless x, is located at a node of the undriven beam system. This is the

content of the following theorem.



32

Theorem 2.5.5 - The operator A defined by (2.5.11) has a purely imaginary eigenval-

ue if and only if x, is located at a node for some mode for the undriven system

(2.3.13)-(2.3.14) (where E=I=p=1 and p(x, t) = M(t) = F(t) = 0).

Proof of Theorem 2.5.5 - & Suppose x, is located at a node of the undriven beam

system. By definition, this means that there is some (real) modal frequency T satis-

fying cost'Lcosht’L = -1 such that

(sin?’L - sinht’L)(sint’x;- sinh'’x,) + (cost'L + cosht’L)(cost’x;- cosht’x;) =0.

(2.5.27)
Consider the mode Y(x) associated with ¥
Y(x) := (sinT’L - sinht’L)(sint’x- sinhT’x) + (cosT’L + cosht’L)(cost’x- cosht'x)
. (2.5.28)
Note that Y(x) satisfies the boundary conditions
Y’(L)=0 Y”(1L)=0 (2.5.29)
Y(0)=0 Y’(0)=0. (2.5.30)
Since Y(x) is also a C™ function of x, it satisfies
Y(x,) = Y(x44) Y'(x;7) = Y (x,+) (2.5.31)

Y”(x,-) = Y(x,4) Y(x,5) = Y (x%) (2.5.32)
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In addition, since x, is a node for the modal frequency v, this implies that Y(x,) = 0,

which also means that i:t’zY(xl) =(. Therefore,

Y7(x)) = Y7y #) + 102Y (%)) (2.5.33)

Using Y(x), define the functions y;4(X), z,¢(X), Y20(X)s 29¢(X) by

Y1o(0) = Y(x) 2,0(%) =i1v2Y(x) forx e [0,x]

Yo0(X) = Y(x) 2,0(%) =it2Y(x) forxe [x;, L]

By computation, A(y;o(X) Zjo(®), Yao(X)» Zpo()T = 172y19), -T4y10(),
iT2y,0(x), -T2 T = iW2(y19(X)s Z1g(X)s Y20(X)s Zpo(x)T.  Since (y19(x)s Z1(X)s
¥20(X)s zm(x))T satisfies all the boundary conditions, it is thus an eigenfunction of the

operator A corresponding to the eigenvalue i2. Thus it? is an imaginary eigenvalue
of the operator A.

=> - Suppose A has an eigenvalue A = i'to2 for some 1) € R, T, # 0 with correspon-
ding eigenfunction (y;o(X), z;9(X), Y29(X), zzo(x))T e DA)/((, 0, 0, 0)}. Then, by
definition, there is a T, € R such that A(y;o(x), Z;o(X), Yo%) Zp(NT =
iTg2(y10(%), Z1gX) Yao(X), Zpo(x))T.  Further, by definition, we know that (yo(x),
zio(X)s Yo%), zzo(x))T satisfies the boundary conditions contained in D(A),

(2.5.14). Now define y,(x, t) and y,(x, t) by

¥1(x, t) = exp(ity2t)y;o(x) ' (2.5.34)
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Ya(x, t) := exp(it?Dy 0(x) (2.5.35)

Differentiating (2.5.34) and (2.5.35) twice with respect to time and using the relation-

ships from the eigenfunction equation we see that

1,0 +y,”"(x,0)=0 xe€ (0,x)) (2.5.36)
Fox, )+, (%, ) =0 x€ (x}, L) 2.537)

where * denotes the partial derivative with respect to time, and * denotes the partial

derivative with respect to the spatial variable x. Also note that the energy

Xy L
E(t) ;_-.-;- f(l 716 DR+ ly,"(x, 0% dx + %J'(I $o0x, O+ v, x, D) dx  (2.5.38)
0 X

is constant. The term energy is used because the terms involving time derivatives
represent the total kinetic energy of the system, while the two terms having ” in them
represent the potential energy of the beam configuration. Next, differentiate E(t) with

respect to time to yield

X1 L
E@® = f (N H1+y" ¥ )dx+ f(h §o+y)" ¥ ) dx (2.5.39)

0 Xy

Use the differential equation (2.5.36) and (2.5.37), and integrate by parts to obtain
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X1 L
E(t) = f(_ yl yl”n + yl” yln ) dx + J'(_ 5,2 )'2””‘*' yzll 5,2” ) dx (2‘5.40)

0 X,
Xl L
=- S’l ylrﬂl(x)l _ yz y2”'|L + ( 5’1’ yl”l + yl” yl” ) dx + J‘( 921 y201+ y2n 92” ) dx
X1 0 x
B |

(2.5.41)

Use the boundary conditions in (2.5.14) and integrate by parts again to obtain

X1
=- 5’1("1) yl’"(xl) - S’l, ylnlgl + f(_ 91" yln + y]_” 5’1” ) dx +
0

L
+ 5’2("1) yzln(xl) - 92I YZ”|;1 + f(_ 5,211 y2” + y2” 5’2” ) dX
X1

”r

=- 5’1(31) Yl’”(xl) + 3"1'(11) yl”(xl)‘*‘ ).’2(11) Y2 (xl) - 5'2'(x1) Y2"(x1)

or,

E(®) =- ¥, x)(y,"(x) - ¥2 " (x)) (2.5.42)

Use the boundary condition in (2.5.14) at x; to obtain

=-(Ky,(x;, 1)) 2=0. (2.5.43)

where the last "= 0" term comes from the fact that energy is constant. Thus,
y1&p 0 = 0. Since ¥y(xy, O = itg%exp(itg’yo(cy), this implies that yjo(x;) = 0.

The system of equations (2.5.36) - (2.5.37) and (2.5.14) thus becomes

Ty 10 + Y107 ®) =0 x €& (0, %) (2.5.44)

-Tty,0(X) + Yoo (X) =0 x € (x},L) (2.5.45)
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¥Y10(%9) = ¥20(X1) | Y10 (1) = Yo (X9) (2.5.46)
yloﬂ(xl) = ym”(XI) ylolll(xl) = yzo’”(XI) (2.5.47)
Y20"(L) =0, yzo"'(L) =0, ylo(O) =0, ylo'(O) =0. (2.5.48)
Y10 =0 (2.5.49)

Think of this problem as being the conditions (2.5.44) - (2.5.48), with the additional
constraint y;o(x;) = 0. The equations (2.5.44) - (2.5.48) are simply the eigenfunction

equations for an undriven Euler - Bernoulli beam of length L split into two parts. The

solutions to these equations are therefore (see [Mei. 2, p. 162))

Y, (x) := (sintyL - sinh'toL)(sintox- sinhTx) +
(costyL + coshtyL)(cosTox- coshtgx) for x € [0, x,] and

Y,,(x) := (sintoL - sinhtoL)(sintox- sinhtox) +

(costyL + coshtyL)(cosTox- coshtyx) forxe [x4, L]

where T, satisfies the equation costyLcoshtyL = -1. The additional constraint
Yioxp) =0 implies that Y;(x,) = 0. This implies by definition that x, is a node corre-

sponding to the modal frequency T, This proves the Theorem. ||

Recall that we are trying to show that conditions (2.5.16) apd (2.5.17) in Theorem

2.5.4 are satisfied. Theorem 2.5.5 shows that {i® | ® € IR} is not in the point spec-

trum of A provided that x, is not located at a node for any mode of the undriven beam
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system. However, {io | ® € R} may lie in the continuous spectrum of A. In other

words, although (il - A)’1 exists for all ® € IR if x, is not located at a node for any

mode of the undriven beam system, (iwl - A)'l may not be a bounded linear opera-
tor.

The next step in the proof is to show that the eigenvalues of A are isolated in the
complex plane, with implies that there are no points of accumulation in the finite part
of the complex plane. This step is necessary for the asymptotic analysis that will fol-

low.

Lemma 2.5.6 - Al exists and is a compact operator on X. Furthermore, 6(A) con-

sists entirely of isolated eigenvalues.

Proof of Lemma 2.5.6 - To show that Al exists we must show that equation
(2.5.18) has a solution for each (¢;, ¥, ¢2,' ¥,) in X when A = 0. Therefore, set A=
0 in equation (2.5.18). Note that the differential equation formulation (2.5.22)-

(2.5.26) is an ordinary differential equation in x. These equations can be explicitly

solved (using a state space method, for example) to yield

_o)3
y10) = y1"(0)x%/2! +y, " (0)x3/3! + I (x3| 9y (oo (2550
.3

Yo (X) = ¥o(x1) + Yo (X (X - X) +y" (X )(x - X1)2/2!

(x- Xq- 0‘) 3

+yy " (x)(x - X33 + 5

¥, (c)do (2.5.51)
S|

To determine the constants y,”(0), y;""(0), ¥5(x;), ¥2'(xp), ¥2"(x), and y,"'(x;), we
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use the boundary conditions (2.5.24) - (2.5.26):

(x-0)3
30

X
Y1k = Yo(xp):  ¥17(0)% 22! +y,"(0)x, /3! + f ¥, (0)do =Ya(x))
0

(x-0)2

S5 Pi(0)do =y, (xp)

X
Yl'(xl) = Y2'(x1)3 yl”(O)xl + }’1'”(0)’(12/2 + _r
0

x
Y x) =y,"(x): y,"0) + ¥ O)x, + ﬁx - 0) ¥j(0)do =y,"(x;)
0

X
ylm(xl) = Y2m(x1) + K¢, (x,): yl"'(O) + _r ‘I’l(O')dO‘ = Yzm(xl) +Ko¢,(x;)
0

¥, (L) =0: Yo (%) + ¥ (X (L - xp) + f (L - x;- 6)¥,(c)dos =0
Xy

¥y (@) =0: ¥y (xy) + f ¥y(o)do =0 (2.5.52)
e

Note these equations can be easily solved by back substitution, starting with the last
equation, (2.5.52). Thus, using these coefficients in (2.5.50) - (2.5.51) we have

obtained y,(x) and yo(x). Furthermore, from the resolvent equation we see that
z;(x) = ¢,(x), and z,(x) = ¢(x). Thus, A"l exists. Note that Al by definition
maps X into D(A) c Hy* x Hy? x H* x H2. By the Sobolev embedding theorem [Paz.

1. p. 208] we thus see that A-l is a compact map. Finally, since A"l is compact it has
countably many eigenvalues, with zero being the only accumulation point of these
eigenvalues [Hut. 1, p. 188]. Thus, A has only countably maﬁy eigenvalues with no
accumulation points in the finite part of the complex plane. This proves the lem-

ma. [ |
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We are now ready to proceed to the most difficult (and most tedious) part of the
proof, which shows that the resolvent estimate (2.5.17) holds for A = i® sufficiently

large, provided that the assumptions on x, are met.

Lemma 2.5.7 - Suppose x, is not located at a node of the original, undriven beam

system (2.3.13), (2.3.14), and x,/L is rational. Then the resolvent estimate (2.5.17)

holds for A = i®, ® € IR, provided that @ is sufficiently large.

Proof of Lemma 2.5.7 - Let A =io = i1%, ® € R, T € IR. Without loss of generali-
ty, assume that @ is positive and that the defined variable T is also positive. Note
that the differential equation formulation (2.5.22)-(2.5.26) is an ordinary differential
equation in x. Using a state space formulation, equations (2.5.22)-(2.5.26) can be

rewritten as

gy} (0 1 0 0Yy 0
sl o o 1 ofy 0
w| (¢ ° 0 v 2.5.53)
w/ \&# 0 0 0Ay (it2p, + ¥,
or, xl' = Axl + h (2.5.54)

where y;(x, 1) = (¥;(x), y;'(X), ¥, (), y,”x))T, and the definition of A and b are

obvious from (2.5.53). Note that



0 0 1 0 0 0 0 1
A2_ |0 0 0 11, .3_ ¢ 0 0 0| A%
“|l# 0 0 o0 “lo # 0 o
0o ©# 0 0 0o 0o o0
By taking the power series eA* is obtained by
(€A%);, =1+ x4l + Bx8/81 +... = 3 (cos(x) + cosh(tx))
All other terms of eA* can be obtained similarly:
(€A%);, = 3 (cos(tx) + cosh(tx)) €*%), = 2_11_(sin('rx) + sinh(tx))

(€A%)y3 = -zl-tz(-COS(‘tX) + cosh(tx)) (eA%) = 2—{t3(-sin(rx) + sinh(1x))

40

(€A%)y; = 7 (-sin(Tx) + sinh(tx)) (AR = o (cOS(Bx) + cosh(w)

(€A%),y = 2.1?(sin(1:x) + sinh(tx)) (€A%)y, = 2—ltz(cosh(1:x)-cos(1:x)) (2.5.55)
(€A%)3; = _;_2 (-cos(tx) +cosh(tx)) . (A%)zp = —(sin(ex) + sinh(tx) |
(A%)33 = 3 (cOS(Tx) +cosh(tx)) (A%)34= 5 (sin(ex) + sinh(Tx))

(€A%, = ;(sin('tx) + sinh(tx)) (€A%, = %2 (-cos(tx) + cosh(tx))
(AX)y3= Zsin(on) + sinh(ox) (eAX) 4= 3 (cos(tx) + cosh(Tx))

The general solution for y,(x, 1) is

¥, (%) =A%y, (0) + f A Mo)s  0<x<x
0
i= Y1) + ¥1p(®)

(2.5.56)
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where y;j(x) refers to the homogeneous solution, while ylp(x) refers to the particular

solution. The cantilevered boundary conditions (see (2.5.10)) imply that y,(0) = O,

0, y,”(0), yl”’(O))T-
Similarly, the solution for y,(x) := ( y,(X), ¥, (x), y,"(x), y2"'(x)T can be written

Yo (x)= eATXDy (x ) + I eACM(c)do  x; <x<L (2.5.57)
Xy

= Yop(X) + !21,(7()

where, as in the case of y,;(x) above, y,,(x) refers to the homogeneous solution,
while sz(x) refers to the particular solution. (Alternatively, the solution for y,(x)

could be written in terms of boundary conditions at x = L, which would take explicit

advantage of the form of the boundary conditions there. Unfortunately, the resulting
computations seem to be equally difficult.) Unfortunately, none of the terms of 'xz(xl)
are known. We therefore have six unknown quantities: the four unknown quantities
of y,(x,), together with the two unknowns y,”0), y,”/(0). We also have the 6

boundary conditions given in (2.5.24) - (2.5.26). Writing out these terms explicitly,

and combining them in matrix form yields
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IZCAXI)B (eAxl)14 -1 0 0 Y y1”(0)
l(eAxl)Zs (eAx1)24 0 . '1 0 O yl”,(o)
€2*1)y;  (€A*1)y 0 0 -1 0
(xy)
(eA%1) iy (€ %1y 0 0 0 1 o
Kit2(eA*1),3  Kit2(eA*1) 4 y2 (1)
0 0 (eA(I.-xl))31 (cA(I.-xl))32 (eA(L-xl))33 (eA(I.-xl))34 Y2”(xl)
0 0 (eA(L~Xl))4l (eA(L-Xl))42 (eA(L-xl))43 (CA(L-XI)),;:;I y2ln(xl)
L L -

[~ X
%:SJJ(-sint(xl-c)) + sinht(x,-0))(it29;(0) + ¥y(o))do
0

X
ltzf‘(-cost(xl-o)) + cosht(xl-c))(i1:2¢l(c) + ¥,(o))do (2.5.58)
2ty

X
2_1t Jj (sint(x,-0)) + sinht(x;-0))(it%9;(0) + ‘¥y(0))do
0

X

X1

_; ) (costx,-0)) + cosht(x;-0))(it2hy(0) + ¥;(0)Mdo — Kit%b,
0 - 0(xy)

*
1 | (sint(t-0)) + sinht(L-0))(it205(0) + '¥y(0))do

o

L
.

(cosT(L-0)) + coshu(L-0))(it29y(0) + ¥y(o)do

L
2 o

X1

e

where (eA(I""l))ij refers to the ijth element of the matrix (eA(*1) defined in
(2.5.55), and b, is the first row of the right hand side of the equation. Write this equa-

tion as A*y, = b*, where the definitions of A*, y, and b* are obvious from (2.5.58).
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We now have the following lemma which explicitly gives the determinant of the
matrix A*.

Lemma 2.5.8 - For the matrix A* defined in (2.5.58), det(A*) is given by

det(A*) = 1 (1 + cos(tL)cosh(tL)) -

(costLsinhtL + coshtLsintL)[(sintx,- sinhtx,)]® + ]

(-costLsinhtL, + coshtLsinTL)(COSTX;- cosh'l:xl)2 +
X (2.5.59)
-2sintLsinhtL[(sintx,- sinhtx,;)(costx;- coshtx,)

%|p

+ (1 + cos(tL)cosh(tL))(-sinhtx,costx;+ coshtx,sintx,)

Proof of Lemma 2.5.8 - (2.5.59) results from tedious calculation of the determinant
of A*. The details are omitted. H

Comment 2.5.9 - Note that for K = 0 (no feedback) the equation det(A*) = 0 reduces
to that obtained for the undamped cantilevered beam (see [Mei. 2, p. 162]), as

expected. In addition, if x; = L, the equation reduces to that of beam tip boundary con-

trol, also as expected.

We now proceed to show that the resolvent estimate (2.5.17) is attained for A = i®

sufficiently large. In other words, we must find a constant B > 0, independent of A,

such that

Xy L
f (Iz, )P+ ly,"®)P?) dx + f(|z2(x)|2+ ly, P dx <
0 | Xy



X1 L
B( [ (,00P+ oy dx + [P+ 16" ox )
0 X1

for A = iw sufficiently large. The main observation is that ylp(x) and y;p(x) do not

satisfy the bounds

X1 X L :
f ly1p”CoPdx < C{ f (¥, 00+ 10" P dx + f(l‘l'2<x)rl+ I (0P)dx }(2.5.60)
0 0 RS |

xl xl

f Iy G0PPdx < C f (%, 0P+ 16”00 dx +ﬁl‘l‘2(x)|2+ 6,” ) dx }(2.5.61)
0 0 X '

for A = io sufficiently large. However, the dominant terms cancel, leaving terms

which do satisfy the bounds.
Estimation of [ly,"coll and [ly, G0l

We will give the estimates of ||y1p”(x)|| in detail, and the estimates of ||y2p”(x)||

can be done in a similar manner. Let A =i® = it for T real, and T > 0. From (2.5.55)-
(2.5.56) we see that

X
Yip %)= _21; {(sim:(x—o)) + sinht(x-0))(it20,(0) + ¥,(0))do

If we integrate the portion of the expression containing i1:2¢1(o) by parts twice, we

obtain
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X

ylp"(X) = -2-1‘—‘ _([(sim’(x-c)) + sinht(x-0))(¥;(c))do +

X
_21; j(—sim:(x—o)) + sinht(x-0))(i$,”(0))do
0

51; (sinht(x-0))(i9,”(0) + ‘Fy(@)do +Ollle"ll +I1¥llp))  (2.562)

O'_‘x

Simiarily, the expression for yzp"(x) becomes

X
Y2p (%) = -4% e™x f € )ip,"(0) + ¥y(o))do +

X1

-i—t ECXDCapy(xy) + 0'(xp) ) +O@ (0”1l + 1¥2ll) (2.5.63)

Next, we must compute y;;,”(x) and yp,"(x). These expressions are given by

(2.5.56)-(2.5.57), where the unknown coefficients are determined by the relation

A*yy = b*. It is necessary to compute this inverse to then yield, by Cramer’s Rule,
Yo = (det(A*))'l(adj(A*))b*. Before reaching any conclusions about y,; we must

first investigate the structure of det(A*), in order to give conditions on X, to guaran-

tee that det(A*) # 0, and to give conditions to guarantee that det(A¥*) is bounded

away from zero as T — oo.

Estimation of det(A*)
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Consider again det(A*), explicitly calculated in Lemma 2.5.8. It can be verified, by
brute force calculation, that det(A*) = 0 if and only if x, is located at a node for some

mode of the original beam system. So now assume that x, is a not located at a node

for any mode of the undriven beam system. Under this assumption we desire to give

conditions on x; which insures that det(A*) is bounded away from zero as T — ee.

For 1 very large det(A*) becomes

det(A*) = -;-e“'costL - i%l: €"L{sintx,cosTL + sin?tx,sintL - %costL - -%sim:L -

Lcost + -%sim:L - 0527, COSTL + OS>, SintL - 25intx,cosTX, SintL ]

2
= %e“'costL - %e“‘[sim:L - €0s2TX,COSTL - sin27Tx, sintL] (2.5.64)
T

Note from (2.5.64) that det(A*) is bounded away from zero as T — o= if costL and

[sintL - cos2tx,costL - sin2tx,;sintL] are simultaneously bounded away from zero
as 1:. — oo, This is equivalent to having costL and [1 - sin2tx,] are simultaneously
bounded away from zero as T — oo.

Consider next the set S := {(x, y) | x = costL, y = 1 - sin21x;, T € R}. Note that
although S does not contain the origin, if L/x, is irrational then S is dense in [-1,
1]x[0, -2]. (@t is a space filling curve.) Thus, there is an infinite sequence {s,} < S
such that s, — 0. This means that there may be an infinite sequence {_'tn] such that
det(A*) goes to zero as T — oo, However, if L/x, is rational, then the set S is clearly

not dense, and furthermore it is a closed set. Since 0 ¢ S, this means that there is no

sequence {T,} such that det(A*) goes to zero as T, — oo.
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We have thus reached the following conclusions. First, det(A*) =0 if and only if x;
is located at a node for some mode of the original beam system. Secondly, if x, is not

located at a node for some mode of the original beam system, and if L/x, is rational,

then det(A*) is bounded away from zero as T — e°.
Estimate of y,”(x) and ¥y, (%)

Assume now that the assumptions of the Lemma 2.5.7 are satisfied, i.e., X, is not

located at a node of the original, undriven beam system (2.3.13), (2.3.14), and x,/L is
a rational number. From (2.5.58), yo = (det(A*))1(adj(A*))b*. Because A* is a

6x6 matrix, we will not give the inverse of A* explicitly (to write the matrix down
term by term requires about 4 typed pages), but instead we will give the conclusions
of these tedious operations.

From y, = (det(A*))1(adj(A*))b*, we see that y,”(0) and y,”’(0) depend on
¢,(x), ¥,(x), and 0y(x), ¥o(x) (namely, in ihe integral terms involving b*). How-
ever, if the terms involving ¢,(x), ¥y(x) are explicitly calculated, and inserted into
the equation for y,,”(x), one finds that the higher order terms drop out, leaving terms
of order 0(‘11'1(||<[>2(x)||22 + |[¥,®llp). (It should be pointed out that we have

explicitly used the fact that det(A*) is bounded away from zero as T — . If det(A¥*)

is not bounded away from zero as T — oo, i.€., if x;/L is irrational, then we cannot con-
clude that the residual terms are O(t!([|o,(x)I,2 + [[¥,(X)llp). This is where the
proof breaks down for arbitrary x,.) Furthermore, if the leading terms involving ¢,(x)

and ¥,(x) are explicitly calculated, one finds that these terms precisely cancel the
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terms given by (2.5.62). In other words, y;,”(x) is given by

X
Yin &) =- -#"‘f (€%)0,"(0) + ¥;(@)do + O (lloy"ll; + II¥4]1;))
X

+ O 1(lloy”ll; + N¥,1l))

Similarly, y,,”(x) contains terms involving ¢(x), ¥,(x), and ¢p(x), ¥(x) (namely,
in the integral terms involving b*). Analogous to y;,”(x) above, the higher order
terms involving ¢,(x), ¥;(x) drop out, leaving an expression of order O('c'l(llq)l”ul +
II¥,ll)). Also, the leading terms of y,,”(x) again precisely cancel the leading terms

of yzp”(x). In other words, y,p,"(x) is given by

X
Yo (X) =- 21% e’ f (€")i9,"(0) + ¥y(0))do -
X
L eIy xy) + 0g'xp )+ O (llgy "Ml + 1¥ll))
The conclusion of this work is that yl"(x) =Y ) +ypp (x) and ¥ (X) = yon"(x)

+ yzp"(x) does satisfy the resolvent bound (2.5.17). In other words, there exists a

constant B, independent of

xl L
[ yeoPax + [ 1y, 7opax <
0 X1
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X1 L
B( [ 2,00P+ 100 dx + [(F00P+ 10" WD @565)
0 X

Finally, in order to prove Lemma 2.5.7, we need to give estimates on the terms z,(x)

and z,(x) in (2.5.18).
Estimates of z;(x) and z,(x)

From (2.5.18) we see that z,(x) and zy(x) are given by

2,(x) = ity (%) + 1 (x) . (2.5.66)
z,(x) = it?y,(x) + §;(x) (2.5.67)

To get an estimate on z,(x) and z,(x) it is necessary to first get an estimate on y,(x)
and y,(x). This is done by taking the inner product of both sides of (2.5.22) with

yi(x) to obtain

[Ty, (%), y, 01y + [y (), y,(01; = [it29, (x) + ¥1(x), y,()]; (2.5.68)

Integrate the left hand side of this equation by parts twice, and use the boundary
conditions (2.5.24) - (2.5.26), to obtain

¥, %)y (xp) - ¥17 Py (xp) + [y1”7(X)s ¥, (0] <ty (0, y1(01
= [it29, (x) + ¥, (x), y, (0], (2.5.69)
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Perform the same operations on the y,(x) equation, (2.5.23), to obtain

'Y2'"(x1)Y2(X1) + Y2”(X1)Y2'(X1) + Uz”(x), y:”(x)]z ‘14[}’2(7‘)» y2(X)]l,
= [11205(x) + F5(X), Y,(X)], (2.5.70)

If we add these two equations, (2.5.69) and (2.5.70), we obtain

[y, (), ¥, 00} Py (), 1000y + [y27 (%), y2 05 - Tya(x)s ¥,
'Y2m(x1))'2(x1)+ yl"'(xl)yl(xl)-!- YZ"(xl)Y2'(x1) 'yl"(xl)yl'(xl) +
= [1126,(x) + ¥, (%), y, (0], + [1T205(x) + ¥5(x), y,()] (2.5.71)

Using the boundary conditions (2.5.24-(2.5.26), this expression simplifies to

Iy, (), y,"(0]; “Ty (%), y,0]; + [¥5"(x), y5" )], - Ty, (), Y,(01,
- Kit?{y;(x), y; 0]y + Kop(xp )y *(xp)
= [i120,(x) + ¥ (x), y; (0] + [iT20,(x) + ¥(x), y,()]; (2.5.72)

Rearrange this expression to yield

Py, (), y,00]; + PLYa(x), ¥2X)]; = Re{-[i120,(x) + ¥,(x), y,)], +

[y;"(x), y;7 ()], + [y, (%), y," (%)), + Kitz[yl(x), y1(®)]; + Koy(xp)y*(xp))

=Re[-[i1:2¢2(x) +¥)(x), y,(x)]5 +[Y1”(’f)’ yl”(X)]l +
[y, (), y2 ()15 + Kd(x)y *(xq)) (2.5.73)
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Next, use the inequality [a, b] < [a, a]/8% + 82[b, b] for any 8 € R/{0). This yields

< [y, (%), y17 001 + [y2 (%), y2 ()] + [92(x), 9o(x)]; + Plypx), yo(01,/4 +

[0, §;()]; + Ly (%), y,(01,/4 + Re (Ko, (x )y, *(x1)} (2.5.74)

Finally, note that Re{K¢(x))y;*(x))} < Kx,2([0;, ¢1]; + [y}, y3};). (The reader

should consult Proposition 3.4.5 if there is difficulty in seeing this.) Inserting this, and

simplifying the expression shows that there is some constant C > 0 such that

[y, (%), y1(X)]; + [y5(x), yo(X)], S I_Eiz{ [yl”(x). Yl"(x)]l + [)'2”(3‘), Y2”(x)]2 +

[$5(x), 9200 + [97(x), $1(x)]; }

Finally use this inequality in (2.5.66) and (2.5.67) to obtain

Ilzl(X)Illz < N2 Ilyl(X)lhz + ||¢1(x)||12
< C{lly,0ll;2 + lly,(0ll,2 + llo®llp2 + ool 23+ ey oll 2 2.5.75)

Similarly,

llz,)lly2 < Clly, GOllg2 + lly,llp2 + g2 + lldy ol %)+ lo,0ll,2  (2.5.76)

Proof of Lemma 2.5.7 - If we combine (2.5.65), (2.5.75), and (2.5.76) we see that

for |A| = |o| sufficiently large, there is a constant B, independent of A sufficiently large

such that
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xl L xl L
f Iy, )lPdx +f lyy " (Oldx-+ f Iz, G)fPdx + f lz(0Pdx <
: X4

0 X1 0
X1 L

B(f (F, P+ 10,"C0P) dx +f(‘1’22(x)+ $,7"(x)) dx @.5.77)
0 X1

This completes the proof of the lemma. ll

Proof of Theorem 2.5.2

& To prove the result, we use the converse of the Theorem 2.5.4. Assume x, is not
located at a node of the original, undriven beam system (2.3.13), (2.3.14) (where

E=I=p=1 and p(x, t) = M(t) = F(t) = 0), and x,/L is a rational number. Condition

(2.5.15) has been shown in Appendix 2.A. Lemma 2.5.7 shows that there is a 0 < @

- -1

< oo such that Sol;p; %g” - A) ll}< o, Theorem 2.5.5 and Lemma 2.5.6 show that for
. -1

any @y < o, {i® | ® < @) C p(A) and so‘;g[cl.l)(;“’ - A7) < . Combining these

two results show that {io | ® € R } < p(A) and sup{Jlio - A)‘l||} < oo , This

proves the theorem. W

Although this theorem proves conclusively that exponential stability does not result
for arbitrary sensor/actuator placement in the interior of the beam, there are interest-
ing properties associated with this problem. This is the content of the following lem-

ma.
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Lemma 2.5.10 - The set of nodes of the undriven beam, given by

N={x,¢€[0, L] | (sintL - sinhtL)(sintx,- sinhtx,) + (cosTL + coshtL)(costx,

- coshtx,) = 0, for some L satisfying costLcoshtL =-1} (2.5.78)

are dense in the beam, ie., N = [0, L]. In addition, m(N) = 0, where m(N) is the

Lebesgue measure of N.

Proof of Lemma 2.5.10 - Consider any closed interval [a, b] with0) € a<b<sL. It
will be shown that there is at least one node contained in this interval. Rewrite the

node equation (2.5.78) as

(sintL - sinhtL)sinTx, + (CosTL + coshtL)COsTX,

= (sinTL - sinhtL)sinhtx;+(costL + coshtL)coshtx, 2.5.79)

Using a standard trigonometric formula on the first two terms yields

Kcos(tx, + ¢) = (sinTL - sinhtL)sinhtx,+(costL + coshtL)coshtx, (2.5.80)

where K2 = (sintL - sinhtL)? + (costL + coshtL)? and ¢ = tan’! {(sintL - sinhtL) /
(costL + coshtL) }.  Using costLcoshtL = -1 and further trigonometric simplifica-

tions, K2 can be simplified to

K2 = (sintL - sinhtL)2 + cos2tL + cosh2tL - 2
= (sintL - sinhtL)2 - sin2tL + sinh2tL

= (sinTL - sinhtL)? - sin?tL + cosh2tLsin?tL



54

= (sintL - sinhtL)? + sinZtLsinhtL (2.5.81)
Now we simplify the right hand side of (2.5.80):

RHS = (sintL - sinhtL)sinhtx,-sin*tL coshtx,/costL
= (sintL - coshtLsintL)sinhtx,-sinh?tL costLcoshtx,
= (1 - coshtL)sintLsinhtx,+ sinhtLsintLcoshTx,
= sintL[-coshtLsinhtx, + sinhtLcoshtx, + sinhtx,]

= sintL[sinht(L-x,)+ sinhtx,]

Finally, a few more straightforward calculations gives

= 2sintLsinh(tL/2)cosht(x, - L/2) (2.5.82)

To verify that the equation (2.5.80) has solutions, we note that cosht(x;-L/2) <
cosht(L/2) for x; € [0, L] Multiplying both sides by 2sintLsinh(TL/2) yields suc-

cessively

2sintLsinh(tL/2)cosht(x, - L/2) < 2sintLsinh(tL/2)cosht(1/2)

< sintLsinh(tL) forx, € [0, L] (2.5.83)

by the "double angle formula" for sinhx. Using (2.5.81) and (2.5.82) in (2.5.80) yields

{(sintL - sinhtL)? + sin®tLsinh?tL}%3cos(tx, + ¢)

= 2sintLsinh(TL/2)cosht(x, - L/2) (2.5.84)
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Inequality (2.5.83) shows that, for all x; € [0, L], the RHS of (2.5.84) has magnitude
less than or equal to the coefficient on the cos(tx; + ¢) term. Therefore, solutions do

exist. It is easy to see (see Figure 2.8) that there are at least LtL/x] solutions in [0,

L], where Le]denotes the integer floor function.

2sintLsinh(tL/2)cosht(x; - L/2)

S|

>

T

Kcos(tx; + ¢)

Figure 2.8 - Graph of equation (2.5.84)

In addition, for any interval [c, d] C [0,- L]there is at least one solution in this interval
as long as d - ¢ 2 2/ Lt/x). Therefore, for the given interval [a, b], choose T large

enough so that 2/ Lt/x] < € = a-b. This concludes the proof of the first part of the lem-

ma.

To show that m(N)=0, note that the number of zeros of the mode equation (contained
in (2.5.78)) for each modal frequency (i.e., for each value of 1) is finite, and the num-
ber of modal frequencies is countable (with an obvious 1-1 correspondence with the
integers). Therefore N is the union of a countable number of finite sets, hence N is

countable. This implies m(N) = 0. |
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Since m(N) = 0, this means that the probability of placing the actuator on a node of
any mode is zero! This means that the system is exponentially stabilized by a veloci-
ty feedback placed in the interior of the beam, with probability one.

Of course from an engineering viewpoint it is probably hopeless to attempt to uni-
formly stabilize the beam using velocity feedback in the interior of the beam. The fact
the nodes are dense in the beam means that the uniform exponential decay constant
is most likely very small. However, it is very easy to place the actuator so that a
specified finite number of modes would be exponentially stabilized. Given a finite
number of nodes, one would place the sensor/actuator pair at a position where the
modes of interést have relatively large deflections. This is the common intuitive
method used by engineers in placing actuators when the beam model is modally trun-
cated (see [ Joh.1, 508-509]).

2.5.3 Relationship to Passivity

The knowledgeable reader will probably feel that the 'Iheorém 2.5.5 is somehow

related to passivity concepts. It is the goal of this section to exhibit this relationship.

Using (2.5.42) we see that if y,”'(x;) - y,”"(x,) = F(t), the applied force at point

X, then
‘rF(t) y(x,, t)dt = f‘gf E(tdt (2.5.85)
= E(t) - E(—°) = E(1) (2.5.86)

if we assume the energy at t = —oe is zero. Thus
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J‘ (@'t + ET§)dz 20 (2.5.87)

-0

This shows that our beam plant is passive [Des. 2, p. 173]. Furthermore, our feed-
back law is strictly passive [Des. 2, p. 173]. (It is simply the gain K.) By the passiv-
ity theorem, [Des. 2, p. 181] we can conclude that the map

Ft)— y(x;,t) (2.5.88)

is L2 stable. -Since the system is linear, one can easily show that this implies the
map (2.5.88) is exponentially stable.
Unfortunately, these passivity arguments do not yield the same results as Theorem

2.5.2. The main problem is that the above result only says that y(x;, t) goes to zero

exponentially, but says nothing about y(x, t) for x # x,. One could probably use the

above results, coupled with arguments involving continuity of solutions of differential
equations, to obtain the results of Theorem 2.5.2, but unfortunately it doesn’t seem
easy.

There is one final comment that should be made regarding Theorem 2.5.2. The pas-
sivity theorem above shows that the closed loop system is input/output stable. What
we really desire is that the closed loop system be state space stable. Is there any
way to show that input/output stability implies that the system is state space sta-
ble? From the study of finite dimensional linear systems, we know that if a system is
I/O stable, and the state space representation is minimal (ie., controllable and
observable) then the system is also state space stable. In [Jac. 1] and [Cur. 1], thisA
concept is extended to a broad class of infinite dimensional systems. Unfortunately,

the class does not include the example of Theorem 2.5.2. The primary reason for this
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is that the operators B and C of (2.4.6) and (2.4.7) are unbounded operators. Unfortu-

nately, there is no obvious extension of the above mentioned papers to include such

operators.

2.6 Conclusions and Future Research

In terms of future research, much still remains to be done. When beam damping is
included in the Euler-Bernoulli model, it was pointed out in section 2.4 that finite
dimensional compensators exist. The current method for obtaining such compen-
sators is to approximate the infinite dimensional compensators, which usually leads
to a controller of high order. From a practical viewpoint, it is desirable that compen-
sators be of low-dimension, so that the current method is unsatisfactory. A method-
ology for obtaining controllers of reasonably low order would be of great practical
importance, not only for flexible structure control but also for other distributed parame-
ter systems. An example of an optimization based approach for such design consider-
ations can be found in [Har. 1].

In section 2.5, the stabilization problem for the Euler-Bernoulli beam with no damp-
ing was considered. A uniform exponential stabilization scheme was proposed for a
collocated sensor/actuator pair located at an interior point of the beam. The obtained
conditions were sufficient. The natural extension of the result given here would be to
find conditions under which the system is uniformly exponentially stabilized when

X,/L is irrational. Another important unresolved problem is to obtain the exponential

decay rate as a function of beam parameters, especially the position of the sen-
sor/actuator pair. This has been done for a beam with an applied moment at the tip in
[Reb. 1], but the methods do not easily extend to general sensor/actuator pair loca-
tions. Another very important research topic would be to extend Theorem 2.5.2 to a

beam modelled by the Timoshenko vbeam model (see [Russ. 1]). The Timoshenko
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beam model is apparently becoming something of an industry favorite, combining rela-
tively simple formulation with regsonably accurate prediction of beam behavior. In
[Kim 1], the beam tip boundary control was used to uniformly exponentially stabilize
such a model, just as Chen et al [Che. 2] used this scheme to stabilize the Euler-
Bemoulli model. Thus, such an extension would be a natural complement to the
result obtained here.

Finally, there is still considerable work to be done in the area of multiple, perhaps
non-collocated sensors and actuators for flexible structure control. A first step would
be to evaluate the affects of multiple sensors and actuators on simple beam models,
and then attempt to apply such methods for more complicated structures. Perhaps the
greatest drawback to a distributed parameter formulation of such flexible structures is
the resulting mathematical complexity (see the proof of Theorem 2.5.2!), which is
probably the main reason finite dimensional approximations are used in practice. It is
still an open question as to whether large scale distributed parameter system formu-
lations applied to future large space structures will be analytically tractable at both

the conceptual level and the computational level or not.
Appendix 2.A - Proof of Condition (2.5.15)

Consider again the differential operator A defined by (2.5.11). Let the space X, the
energy inner product [s, «Jg, and the domain of A, D(A) be defined as in (2.5.12)-

(2.5.168).
A simple calculation shows that the norm induced by the inner product (2.5.13) is

equivalent to the Sobolev type norm induced by H2 x L2 x H2 x L2, Therefore, the
space X, along with the inner product (2.5.137) is a well-defined Hilbert space. Also,
note that D(A) is dense in X.

To show existence and uniqueness of solutions to the differential equation (2.5.3)-
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(2.5.4), it suffices to show that A generates a contraction semigroup. To prove that A
generates a contraction semigroup, we will use the Lumer-Phillips Theorem [Paz. 1,
Chapter 1, Theorem 4.3]. To apply this Theorem, we must show that (i) A is dissipa-
tive (see Def. B.1), and (ji) for some A > O the range of Al - A is all of X. To show
(i) first note

[ Af’ ﬂE - [f 0’ fl”]l + [_fl”ll’ f2]l + [f4”’ f3ﬂ]2 + [_f3l"l’ f4:|2
Integrate by parts, and the insert the boundary conditions to obtain

[Af, flg= £ ;"1 + (£, £571 - flm(xl)fz(xl)
[f4”’ f3”] + [f l”, f4l] - f3rll(x1)f4(x1)

Integrating by parts again, and inserting the boundary conditions yields
[Af, f]g = -Kf22(xl)

Therefore, A is dissipative.

To show (ii), and thus complete the proof, we need only show that for some A > 0
the range of Al - A is all of X. This is done in two steps: (a) For A =1, the range of
I-Aisdensein X, and (b) the range of I- A is closed.

Proof of (a) - Take A =1, and suppose 3y € X such that [(I - A)z, ylg=0forall ze

D(A). If z=(z) 2, 23 z)T andy=(y; ¥, ¥3 ¥4 > then [(I- A)z, ylg= 0 implies

[2,” - 23", y1"y + (27" + 25, Yoly + (23" - 24", y3"lp + (237" + 24, Y41p= 0 2.A.D)

Set z, = z; = z, =0. Integrate (2.A.1) by parts to obtain [z,"”, y; + y,] = 0. Now
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let z, be an arbitrary C™ function satisfying the boundary conditions z;(0)=0,
z,’(0)=0, z,"(x,)=0, and z,”(x,)=0 . Then clearly (z, 0,0, 0 )T € D(A), and the
class of such elements is dense in H04x{0]x{0]x{0}. Hence, the equation (2.A.1)
implies y, + y, = 0. The only way that this is possible is if y;(x) = -y,(x), for all x €

[0, x,]. Next, choose z; =23 =12, =0. The equations then become

[- 2,", ¥,y + (25, Y51, =0 (2.A2)

Next, choose z, to be an approximation of y,, where z, =y, except for arbitrarily
small neighborhoods of the initial conditions, which may unfortunately differ. Then
(2.A.2) yields [y, y;"1; = [y Yoli of [y2" -¥2"ly = [y2, ¥2l;. The only way that
this can occur is if y;(x) = -y5(x) =0, forall x € [0, x;]. By a similar calculation, it
can be shown that y;(x) = -y4(x) = 0, for all x € [x;, 1]. Hence y=0, and thus the

range of I - A is dense in X.

Proof of (b) - Let y, =( - A)x, converge to y € X. We must.show that I x € D(A)

such that y = (I - A)x. Since A is dissipative, we have

gl = 1A - A)xgli? = | %2 - 20 x5, Ax) + | Axli? (2.A.3)
> Ix 2 + Il Ax 2 (2.A.4)
> I x, 12 (2.A.5)

Since y, converges, this implies x;, converges to some value x € X. (Consider a
Cauchy sequence y, - yp,). Hence, by (2.A.4), Ax, converges. If x;= (X;; Xpp Xg3

Y and x=(x, X, X5 X T, then
Xn4 1 X2 X3
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Axy= Ry K™ Xpz Kpg™)T (2.A.6)
which shows that x, € H4, Xy € H2, X3 € H4, X4 € H2. This implies that x € D(A),

from which it follows thaty=(I- A)x. W
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CHAPTER 3

SPACECRAFT DYNAMICS AND STABILIZATION

3.1 Kinematics and Dynamics of a Flexible Spacecraft

In this section the kinematics and dynamics of a flexible spacecraft model will be
developed. The structure consists of a flexible, cantilevered beam attached to a rigid
body. This particular configuration is becoming popular in the literature (see [Bai. 1],
[Mon. 1], [Bis. 1], [Kwa. 1]) because it reflects in many ways the hybrid rigid/flexible
structures envisioned in future spacecraft. Indeed, structures such as deformable mir-
rors, solar panels, or radar/laser arrays attached to rigid spacecraft yield equations
similar to those of the proposed model. In this thesis an infinite dimensional model of
the flexible beam will be used, instead of the finite dimensional approximation that
most authors prefer.

The derivation of the kinematics and dynamics of the structure will be done from an
entirely classical approach: the derivations use Newton’s third law of motion, and the
conservation of angular momentum. Surprisingly, the method does not seem to be the
norm of the literature. For example, in [Bai. 1], the equations of motion are derived
from a Lagrangian viewpoint. This approach of course has the advantage that the
equatiohs of motion can be derived in the same way regardless of the generalized
coordinates used. However, the resulting Frechet (Banach space) derivatives must

be tediously calculated.
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In a classical approach, the main disadvantage is that particular generalized coordi-
nates are chosen, but in most applications the choice is clear. In addition, the
approach is ideal for systems with external forces acting on them, which of course is
the case for control system design. Finally, the computations of the equations of
motion are simpler, because no Frechet derivatives are required.

With this classical approach in mind, this section is ordered as follows. Section
3.1.1 discusses change of coordinates between coordinate frames, and section 3.1.2
derives the resulting kinematics. In section 3.1.3, Gibbs parameters for attitude
determination are presented, along with the resulting kinematics. In section 3.1.4, the
spacecraft model is precisely defined, and the resulting dynamical equations are
derived. In section 3.1.5, the beam model is introduced and the dynamics of the rotat-
ing beam are derived. Finally, in section 3.1.6, the equations are combined to give the

spacecraft models used in this thesis.

3.1.1 Change of Basis

Vectors, Frames, and Triples
Consider a three dimensional Euclidean space E, which includes the notion of points,

lines, distance, angle, etc. A vector is a magnitude and a direction. For example,

given two points in the space E, O and P, the vector Ql_” is the line segment going

from O to P (hence an arrow at P). The concept of a vector is quite different than the
position of a point in space. Having chosen an "origin" O, the position of the point P
is uniquely specified by the vector 9?, . Note, however, that P may be specified by
different origins and different vectors.

We next introduce the concept of a frame. A frame is a set {Og, b;, By, b3}

where Op is a point in E and b, by, B3 are a family of orthonormal, dextral (right-
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handed) vectors in E  The point Og is the origin of a coordinate system determined by

the axes B, By, B3, where the B;’s are attached to Op.

Clearly, a vector may be expressed in terms of the basis vectors in any frame of

interest. For example, a unit vector W, may be resolved in terms of the vectors b,

by, bzof the frame {Og, b;, By, b3} by

W =wy b +w, B+ ws b (3.1.1)

where w; is the cosine of the angle between W and b;. Using this resolution, we

can define the triple w = (w;, Wp, w3)T. The symbol ¥ refers to a vector in E, which

is independent of any frame, while w is a triple which presupposes a vector and a

frame.

Multiple Frames
Suppose now we fix a frame {Og, &), &7, &3}, which we shall refer to as the iner-
tial frame, and choose another frame {Og, B;, Bp, B3}, which will be referred to as

the body frame. The basic problem is to specify the position and orientation of the
body frame with respect to the inertial frame. The position of the origin of the body

frame, Og, with respect to the inertial frame is specified by a vector Y, defined by
OB = OE + 1) ’ that iS, X) = OEOB (3.1.2)

One way to specify the orientation of the body frame is to resolve each b, i=1,2,3,

along the inertial vectors €,;, €p, €3, exactly as in (3.1.1):
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b=y &1 +y1282+Y1383 (3.1.3)
Bo=y1 81+ Y2 &2 +Y23 83 (3.1.4)
B3 =y3; &1+ Y3 82+ Y33 83 (3.1.5)

Let Y = {y), sothat [R; By Bal=[&1 € &dlY. The matrix Y is called the

direction cosine matrix because the ij element of Y, (Y)y;, is the cosine of the angle

between b; and ¢;. Note that orthonormality of b; By Bzand g, &5, &3imply that
Y is an orthogonal matrix, i.e., YIY = L Since both frames are dextral, this means
that det(Y)=1.

.Note also that Y is a coordinate transformation that maps triples determined by the
body vectors B; B B to triples determined by the inertial vectors &;, €. &3
That is, if R =R, B; + R, By + Ry b, then the components of YRy are the compo-
nents of the vector R resolved along the vectors &), &, €3, i.¢. YRg =Rg.

To summarize, consider a point P which is specified by the vectof r, = OgP with
respect to the inertial frame. P can also be specified by a vector R = Q_B_l:with

respect to the body frame. Thus, P can also be specified by a vector ¥, + R with
respect to the inertial frame i.e.,

=Y +R (3.1.6)

If R refers to the triple of R with respect to the body frame, y the triple of 1) with

respect to the inertial frame, and r the triple of I, with respect to the inertial frame,

then
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r=y+YR GB.1.7)

For further details on this materiai, the reader is referred to the excellent exposition

of [Wer. 1, Chapter 12]. [Hug. 1], [Mort. 1] or [Kane. 1] are also good sources.

3.1.2 Kinematics

Angular Velocity

We now consider the time derivative of Y defined by (?). Since all elements of Y

are scalar functiohs of time, the time derivative of Y, denoted Y, is simply

Yu Y12 Y13
Ya Y22 Y3 (3.18)
Y31 Y32 Y33

[

Y=

where the overdot can be applied without fear of ambiguity. In a slight abuse of nota-
tion, we now define the matrix @* € R33 by @*= YTY. (This notation is used in

[Hug. 1].) First, note that @* is skew-symmetric. This follows since X + (@¥)T =

Y+ YMT=YTY + YTY = gt_(YTY) =1=0. Hence, @" has the representation

0 —W; O,
ot = @ 0 - |- | (3.1.9)

-0, o 0

for some @, @,, @3 € IR. We then define the triple @ := (@, ®,, 0)3)T. Although

@ is not the triple of a particular vector (it is simply the components of an algebraic
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relation between Y and Y), following tradition we nevertheless define a vector @ by
Q = b +0,bk+ @4 B3, which we shall call the angular velocity vector of the

body frame with respect to the inertial frame.

Kinematics of Vectors and Triples

Consider again the point P of the previous section specified by the vector I, = OgP
with respect to the inertial frame. If the point P is moving in space, then an observer
in the inertial frame and an observer in the body frame see different motions for P due
to the relative motions of the frames. We denote vector time-derivatives with

respect to the inertial frame by an overdot,' ("), and a subscript t, ( ), for time deriva-
tives with respect to the body frame. Note that €; =0, and by =0, fori=1,2, 3.
Let 1, = OgP be specified by the triple w = (W;, Wy, wy)T. Differentiating I,

IV

with respect to the inertial frame yields

=& S8+l & & Sli =08 & i GLIO

since the rate of change of the inertial frame with respect to itself is zero, i.e., ;é)i =
0. Note also that the time derivative of a triple, unlike the time derivative of a vector,

can have only one meaning, so the simple overdot can be applied without ambiguity to

the triple r. Similarly,let R =[ B; By B3IR then

Ry =[ b; by h3IR (3.1.11)

Therefore, differentiating (3.1.6), I, = ¥, + R, yields
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i =3 +[8 By BJR+[B; by ByR
= 3 +[8; by bR+ R (3.1.12)

To determine [B; B, By, differentiate (3.1.3)-3.1.5), [B; b Bad=[ & &

£3]Y, with respect to the inertial frame:

(B Bp Bal=1[8 & SIY+[ & & &a¥ (3.1.13)

Inserting €; =0, Y=Yo*and[B; B Bil=1[& & &3Y into the expression

(3.1.13) yields in succession

(B By Bol=[ & & siYor
= [B; By Bglo* or,

[8 B bal= @xib b, B3 (3.1.14)

where x denotes the usual vector cross product. Thus, using (3.1.14)) in (3.1.12))

yields

i, =3 +axR +§ (3.1.15)

Equation (3.1.15) is a coordinate free expression that gives the relates the velocity

of a point as seen by an observer in the inertial frame ( 1,), to the velocity of the point

as seen by the observer in the body frame (_R)t). In inertial coordinates, this calcula-

tion is similar. From (3.1.7),r =y + YR, we obtain by time differentiation



70

i=y+YR+YR
i=y+Ya'R+YR (3.1.16)
where we have again used Y =Y@*. As stated previously, there is no ambiguity with

differentiation of triples with respect to time since they are not vectorial functions.
Suppose now that the point P is accelerated with respect to either frame. Then, by

computation in coordinates

f=y+ Y@'R +Y&'R+Yo*R+ YR + YR

= y+ YO"@'R) +Y@'R +2YW R+ YR
=+ Y@ @R) + @R +20*R+ R) 3.1.17)

As was the case with @, define @ to be @ := @ B;+ @, Bo+ @ B, which we

shall call the angular acceleration vector of the body frame with respect to the inertial

frame. Using this definition, one can derive the vector analog of (3.1.17):

f=%+Rt +@xR ©2axR+ ax(@xR) (3.1.18)

The physical interpretation of the terms in equation (3.1.18) is as follows. The first
term is the acceleration of the origin of the body frame with respect to the inertial
frame, the second term is the acceleration of P with respect to the body frame, the
third term gives the acceleration due to the angular acceleration @ , the fourth term is

the Coriolis acceleration, and the last term is the centripetal acceleration.
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3.1.3 Gibbs Parameters

Since Y defined by (3.1.3)-(3.1.5) is an orthogonal matrix, it has redundant parame-
ters. Indeed, YTY = I implies that y,, y,;, and y3, are related by y;;2 + y5,% + y3;
=1,etc. Thus, to completely specify the orientation we do not need all 9 parame-
ters. It can easily be shown that if Y is a real orthogonal matrix, with det(Y) = 1,
then Y has 1 as an eigenvalue. This means there is a real triple b such that Yb = b.
This gives Euler’s Theorem [Kane 1, p. 14]: The most general displacement of a rigid
body with one point fixed is equivalent to a rotation of the body about some axis.
Thus, to completely specify the orientation, only three parameters are needed: two
parameters specifying an axis of rotation, and a third parameter specifying the angle
of rotation about the axis. One way of doing this is to define a triple (called the

"Gibbs Parameters”, or the "Rodrigues parameters”) [Kane 1,p. 16] § € R3 by
g=tan(¢/2)e  ¢e (-m,7) (3.1.19)

where ¢ is the angle of rotation (in radians) of the body frame about the axis of rota-
tion e € IR3. As in the case of ®, £ is not the triple of a particular vector, but is sim-

ply a description of the rotation that must be applied to {Og, b;, By, B3} to orient

(Op. B, By, B3} with {Op, &1, &2, &3)-

Since £ and Y both specify the orientation of the body frame with respect to the iner-

tial frame, they must be related. In fact, Y can be parametrized in terms of § by [Kane
1, p. 17]

YE =21 +ETE) 1+ EET +EX]-1 (3.1.20)
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where I is the 3x3 identity matrix, T denotes transpose and £ is the matrix represen-

tation of the cross-product with § as in (3.1.9).

Gibbs Parameters Kinematics
From Y =Y@* and the definition of £ given above, along with the equation relating

Y and & (3.1.20), one can obtain the following differential equation for §: [Kane 1, p.
62]

E=1+EET +EMo. (3.1.21)

1
2
If t » ot) is known, then this differential equation can be solved, (starting from

some initial attitude &(ty)), yielding E(t) for all 2, and hence by (3.1.20) Y(&) for all

21,
One comment should be made at this point regarding solution of the differential
equation (3.1.21). If the initial orientation of the body frame is a m rotation about

some axis with respect to the inertial frame, then from (3.1.19) we see that &ty =

0. For such a case, one needs to redefine the inertial frame (say by rotation about an

appropriate axis) so that &(t;) # e>. Such a procedure will also be necessary if one

desires to drive the attitude to an orientation which is a ® rotation about some axis
with respect to the inertial frame.

There are, of course, other parametrizations of Y by attitude variables. In fact, most
.authors use either Euler quaternions or Euler angles for the parametrization [Dwy. 1,
3], [Mon. 1], [Vad. 1]. However, as discussed in [Dwy. 2], the Gibbs parameters
are probably the best choice of kinematic variable for control synthesis in that it

avoids state constraints and/or feedback singularities that are usually present when
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other variables are used. These problems occur because more than three parameters
are used to specify the attitude, which means that the resulting control problems have

constraints due to parameter redundancy. (Only three parameters are required to

specify orientation.)

3.1.4 Spacecraft and Reaction Wheel Dynamics

The physical model is depicted in Figure 3.1. The structure consists of a rigid body
in which a thin, flexible, cantilevered beam-like appendage of length L is attached.

Assume the beam is uniform and of constant cross-section.

€3

N

Flexible Beam

Figure 3.1 - Spacecraft Configuration

Affix the dextral body coordinate frame, denoted {Og, B;, Bz, b3}, to the rigid
body center of mass Og. { ;, By, B3} are orthonormal vectors which coincide with
the rigid body principal axes of inertia; in addition, assume the B3 axis coincides with

the centroidal axis of the undeflected beam, and that the beam is attached at c_lg,gr
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Control inputs mounted on the rigid body (not shown in Figure 3.1) consist of three

torque jets, three force thrusters and three momentum wheels. For i=1, 2, 3, the
torque jets J; produce a pure torque T about the by axis, the ith thruster produces a

force Fpy’ in the direction 33, and the ith momentum wheel spins about an axis paral-

lelto R, thus also producing a torque t;’ about b3

First, some notation will be needed. Let I, be the rigid body inertia tensor (including
torque jets and Jocked wheels) calculated with respect to the body frame {Og, B;, By
, ba}. Let I,= diag(yy, Ly L,3) €R3 where L, is the rotary inertia of wheel i.
Let Q, = (Q,1> Qya» Dy3)T €R3 where Q; denotes the angular velocity of wheel i

about its axle (in body coordinates), and let mg be the mass of the rigid body. Letz

3
X = z‘lti b; denote the torque due to the torque jets, with T = (Tq, Ty, 1:3)T denoting
1=

3
the triple of % with respect to the body frame. Finally, Fbg = Zbei b is the force
i=
the beam exerts on the body at ¢ b3, with corresponding triple F, g = (Fyg;, Fypo»
3
Fog3)? with respect to the body frame, while MRB = lz=ll\'1b3i_b,i is the moment the

beam exerts on the body at ¢ B3, with corresponding triple Myp = (Myg;, Mypo,

M,g3)T with respect to the body frame.

Rigid Body

For simplicity, all calculations will be performed in coordinates, rather than vectors.
It should be stressed that nearly all the calculations can be performed using vectors.
The reader is encouraged to try these calculations, using methods identical to that of

section 3.1.1.
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Now consider a free-body diagram drawn around the rigid body portion (excluding
thrusters) of the spacecraft. Note that the triple of the angular momentum of the rigid

body with respect to the body frame, calculated about Og and, denoted by h, is Iy® +

1,Q,. Therefore, the triple of the angular momentum with respect to the inertial

frame is Yh. Therefore, computing the time derivative Yh yields
o + I, Q,, + oxlj@ + oxI,Q, =1+ *Eyp + Myp. (3.1.22)

where ¢ = (0, O, c)T. The right-hand side of (3.1.22) is the net torque (calculated
about Og) applied to the rigid body. It is composed of the torque due to the torque

jets, and the net moment that the beam applies to the rigid body. Next, apply New-
ton’s third law of motion to the free-body with respect to Og, an inertial frame.

Assume that the torque jets apply no net force on the rigid body. Since y gives the
coordinates of Og with respect to the inertial frame,

mg¥ = YEF,5 + Fr (3.1.23)

where Fr is the triple of f_-;; of the force thrusters with respect to the inertial frame.

(Hence, Fr = YEy".)

Momentum Wheels

* Now draw a free-body diagram about the momentum wheels alone. Compute the
rate of change of the angular momentum associated with the momentum wheels with
respect to the inertial frame, and write out the components associated with the wheel

axles, to obtain, in matrix form,
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L@+ Q)= (3.1.24)

where T = ©H,.%,% )T, 17 is the torque exerted by the ith motor on the rotor of

the ith wheel. Complete details for this calculation, and the others above, can be
found in many sources, for example [Hug. 1, p. 67].

Finally, substituting (3.1.24) into (3.1.22) yields
(p— 1)@+ @0 + @ \Q,, =2 - T +c" Eyp + Myp. (3.1.25)
3.1.5 Beam Dynamics

Consider now a free-body diagram drawn around an infinitesimal section of the
beam located between z b3 and (z+dz) b3. (See Figure 2.2 and Figure 2.3 in Chapter

2) Letu = (uy, uy u3+z)T denote the triple of W with respect to the body frame of a
point p whose undeformed position is z B3, and let u, denote the triple with respect to

the body frame of the rate of change of 1 with respect to the body frame. Let F(z) =
3 .
.Zfi b; denote the shear force acting on the section of the beam at z b3, and
1=

F(z + dz) the force acting on the section of the beam at (z+dz) B3. Then, since the

acceleration of P with respect to the inertial frame is given by (3.1.9), writing New-

ton’s third law with respect to the inertial frame yields

u+ OF u +20* u, + @M@ - dE(z) + Y13 =0. (3.1.26)

Note that it is assumed the beam mass per unit length is unity, and
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im E@+d2)-E@)

dE@ = g0 =

(3.1.27)

Up to this point no beam model has been employed. The term dE(z) is the only
term in (3.1.26) which is model dependent. ‘We will model the beam as an Euler-
Bemnoulli type beam, with Voight-Kelvin damping [Pop. 1, p.116] (often referred to as

viscous damping), and for simplicity we will ignore torsion. Let p; (= E;I; in Chapter
2) denote the flexural rigidity of the beam in the ith direction, and let k; ( = ;L in

Chapter 2) be a positive constant reflecting the rate of energy dissipation of the beam
in the ith direction, i=1, 2, 3. Assume for simplicity that the beam has its principal
axes of inertia parallel to the principal axes of the rigid body, so that the expression
for F(z) for an Euler-Bemoulli beam becomes (see (2.2.4) and (2.3.13))

E(z)=-pd’() - kd"(u) (3.1.28)

, Py B, )
where p=diag(ty, ip» M), k=diag(k;, ky, ky) and ¥O=(—57, —3 72, 3 2) .

Hence, for such a beam dF(z) becomes

dE(z)= —19(u) - kaf,) (3.1.29)

ey P,
where 3(*)=( —a;g—)l , % - —;,—2(2)3 )T. Insert (3.1.29) into (3.1.26) to obtain

u+ OF u + 205, + @MW) + @) + ko) + Yl§=0 (3.1.30)

Suppose force thrusters F;, i=1, 2, 3 are present at the end of the beam with the

direction of F; parallel to b;. The force due to thruster F; is positive if the force exert-
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ed is in the direction b;. Then the boundary conditions for this configuration become
(see Chapter 2, and [Pop. 1, pp. 385-386, 124, 128])

u,(c) =u,y(c) = u,(c) = 0, u’(c) =uy(c) = 0
u;"(c+L)=uy"(c+ L)=0 (3.1.31)
By (¢ + L) + k(¢ + L) = -F, i=1,2

l.l3“3’(c + L) + k3“3t'(c + L) = "F3

The first set of boundary conditions indicate that no deflections occur at the point of
attachment and that there is no slope in the transverse directions at the point of
attachment. The second set indicates that there is no moment at the free end of the

beam, while the third and fourth set indicates that the force at the point of attachment
is F;(1).
To complete the derivation of the spacecraft model, we must determine the relation-

ship between Fyp in equations (3.1.23) and (3.1.25) and the beam, and between Mg

in equation (3.1.25) and the beam. From (3.1.28)

F,p =F©) =o'l . - k'@l . (3.1.32)

As for the moment at the point of attachment My g, note that there is no moment due
to axial effects. Further, we ignore torsion. Therefore, (Myp)3 = 0. The transverse

moments are, as in Chapter 2,

M@) = (0" + kg, @, 10y + kyuy @), OT (3.1.33)

Therefore,
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M, p =M(©)= (119,"(0) + kyuy"(0), Kpup"(0) + kpup (), 0)T (3.1.34)

In this thesis, other formulations of F,z and My will be useful. Using the boundary

conditions for a free-end beam (which occurs when F = 0 at z= L in (3.1.31)) we also

obtain

C+L
Fip = f [wo@) + ki) 1dz (3.1.35)
c
c+L, L
Mg = f ( f col[(udw + ko(up); 2» O]dx)dz (3.1.36)
c z

where col(a, b) is the column vector aT, bT)T, and (@); 5 = (a;, ap)T. These equa-
tions are obtained by direct integration.

There is one more formulation that will occasionally be used in this thesis. Recall
that u = (uy, uy, z + u3)T where the u; are the deflections in the direction _b,l Then,
using (3.1.34), (3.1.28) and the boundary conditions for the free-end beam, fixed end

beam (which occurs when F is zero)

C+L

c*F,p +Myp = f u* [uo() + ko) 1dz (3.1.37)

Cc

as a simple integration will show. (The right hand side is simply the summation of

the infinitesimal moments about Og.)

In this paper, all these formulations will be used extensively. It should be noted that

we know of no other author that uses the formulation (3.1.20) - (3.1.21). In fact, one
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author [Bai. 1, p.52, Remark 4.5] claims that there is no relationship of the form

(3.1.35) and (3.1.37)!

3.1.6 Spacecraft Models

Flexible Space Structure With Momentum Wheels (FSSMW)

Sections 3.1.1-3.1.5 gave the kinematics and dynamics for the flexible spacecraft
illustrated in Figure 3.1. Combining (3.1.21), (3.1.25), (3.1.24), (3.1.23), (3.1.20),
(3.1.32), (3.1.34), (3.1.30) and (3.1.31), we obtain the model of the flexible spacecraft

used in this paper:
E= lm+8T+ & (3.1.38)
- 1)0 + 00 + 0,0, =1- T+ Fp+Myp  (3.139)
L(d+ Q,) =% (3.1.40)
mg¥ = YEFyp + Fy (3.141)
(FSSMW)| Y& =2(1 +ETE) [ 1+ EET+EX]-1 (3.1.42)
F,p = F(©) =@l ;- k@) (3.1.43)

Mg = (9,70 + kjuy"©), 1”@ +koup"©), 0T (3.1.44)
u,+ GF U+ 200, + OF@ ) + po@ + ko(wy) + Yilg=0 (3.145)
u(c) = uy(c) = u,(c) = 0, u,’(c) =uy(c) = 0
u"C+L)=u"(c+1)=0 (3.1.46)
Ku(c + L) + ku,”(c + L) =-F;, i=1,2.

“/3“3'(0 + L) + k3“3t'(c + L) = 'F3

As noted before, equations (3.1.43) and (3.1.44) will be occasionally modified to the
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relations (3.1.35) and (3.1.36). Also, the expression c* Eyp + Mg in (3.1.39) will

sometimes be replaced by (3.1.37).

For simplicity, refer to the set of equations of the flexible space structure with

momentum wheels as (FSSMW).

Rigid Structure With Momentum Wheels (RSMW)
In the case where the beam is absent, we also obtain the equations of motion of a

rigid spacecraft with momentum wheels:

g= %[I +EET + EXw. (3.147)
®RSMW) (- 10+ 00 + 0,0, =1- ¥ (3.1.48)
L(d+Q,)=17 (3.1.49)
mgy = Fy " (3.1.50)

Let this system of equations for the rigid structure with momentum wheels be

denoted as (RSMW).

Flexible Space Structure Without Momentum Wheels (FSS)

We will often be concerned with controlling the spacecraft maneuvers with the
torque jets and beam actuators only. In actual spacecraft, the torque jets are used to
move the spacecraft around (due to their high achievable torque), while the momen-.
tum wheels are used to precisely cancel the effects of small environmental torques
such as solar torques [Ben. 1], and make fine attitude adjustments. Thus, our stan-
dard flexible spacecraft model, denoted (FSS), is (FSSMW) with the momentum
wheels locked:
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E=lm+ET+ e (3.1.51)
I,d + 0*ljw =T +c*Fyp + Myp. (3.1.52)
mgy = YE)Eyg + Er (3.1.53)
(FSS) | Y® =201 +ETEy 1+ EET +£X] -1 (3.1.54)
E,p = F(©) =@l . - k'@ .. (3.1.55)
Myp = (4181"(0) + kyuy"(©),  Moup"(0) + koup"(©), 0)T (3.1.56)

u+ @F 0+ 20° y, + ON@M) + WO + k@) + Ylg=0  (3.L57)
uy(©) = uy(c) = u3(c) = 0, uy(c) = uy’(c) =0
" (c+L)=uy"(c+L)= 0 (3.1.58)

“‘iui”'(c + L) + kiuitnl(c + L) = -Fi’ i=1, 2.

_ |J/3113'(C + L) + k3u3t’(c + L) = ‘F3

Rigid Structure Without Momentum Wheels (RS)
Our standard rigid spacecraft model, denoted (RS), is (RSMW) with the momentum
wheels locked:

E= I+ +EM0 (3.1.59)
(RS) Ipo + @ =1 (3.1.60)
mg¥ =Fr (3.1.61)

Note for either rigid spacecraft model (with or without momentum wheels) the rota-

tional and translational terms are decoupled. From a control point of view, this means
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we can perform maneuvers on each of the terms separately, and there is never a need
to fire the force thrusters and torque jets simultaneously. For either flexible space-
craft model, these terms are coupled. This is because the beam flexes and changes
the center of mass of the spacecraft, and conversely the acceleration of the center of
mass of the rigid body and the rotation of the rigid body causes the beam to flex. In
general, this means that both sets of actuators will be needed for each type of maneu-

VEr.

Remark 3.1.1 - It is interesting to examine what happens to (FSS) (without the
momentum wheels) as the flexural rigidities p;, i= 1, 2, 3, go to infinity, ie., as the

structure becomes rigid. Intuitively, (3.1.52), (3.1.53), and (3.1.57) should reduce to
(3.1.60) and (3.1.61). First consider (3.1.52). It can be rewritten

Lo + o'lj0 =1+ fux (g OF u + 20 u, + 0@ W + Yy )dz (3.1.62)

where (3.1.37) and (3.1.57) have been used. Since p; —> e, u; = 0and y, > 0

(3.1.62) becomes

Lo + @ =1-,0 - L@

where I, is the inertia tensor of the beam calculated in the body frame about Op.

Thus (3.1.52) indeed becomes (3.1.61) in the limit. Next consider (3.1.53). Using the

- reformulation (3.1.35)
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c+L

mg¥ = Y(§) f[u&(n_n) + ko(u) 1dz +Fr
Cc
Cc+L

= YO [ (g 0F u+ 20 n + O@W + Yy Mz +Fr
c
C+L

=Y® | ( @ u+ 0¥ + Yy Yo+ Er

C
d2 c+L
=- :i?{Y@f gdz]*-ET
C
d2
.y (Y®g,) *Er

where ¢, is the center of mass of the beam with respect to the body frame, and where

the derivatives are taken with respect to the inertial frame. Thus, (3.1.53) does

reduce to (3.1.61), except now y refers to the center of mass of the structure including

the beam. Finally, consider (3.1.57). Since p — o0 fori =1, 2,3 there is no material
deformation so that d(u) (= d(u,)) = 0. However, what is Ho(w) as p; — o= ? In fact,

(3.1.57) - (3.1.58) are meaningless equations in the sense that po(w) + ko(u)

becomes any value necessary in order that the rigid body equations (3.1.60) and

(3.1.61) hold. So, in general, po(u) + ko(u,) does not equal zero as one might

expect. Thus, (FSS) does become (RS) as the flexural rigidities become infinite, as

expected.

With these ideas in mind, we now develop the last spacecraft model that will be
needed.

Flexible Space Structure Ignoring Axial Effects (FSS/A)
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Suppose now we ignore axial effects. Clearly the formulation (3.1.55)-(3.1.56) of

2
(FSS) is unacceptable since, as shown in Remark 3.1.1, the term ps_aﬁl” becomes
2

meaningless as the structure becomes rigid. Therefore, as in Remark 3.1.1, we will

use the formulation

Fyp = (-11u;7(0) — kyuy(€), -Hauy™(€) — iy (C),
c+L

- [f (@F u + 20° u, + QX@W) + Y1y )3dz])T (3.1.64)

C

Mg = (Hyu,7(0) + kyuy "), Ppup”(©) + kpup "(€), 0)T (3.1.65)

Using this formulation of Fyz and My, we obtain the model for the flexible space-

craft without momentum wheels, and ignoring axial effects:
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i 10+ BT+ Bl (3.1.66)
Iyd + @@ =T +c*Fpp + Myp (3.1.67)

mp¥ = Y©F,p +Er (3.1.68)

(FSS/A) | Y® =21 +ETE) [ 1+ EET +EX]-1 (3.1.69)

Eyp = (@) ~ k"0, g = k")

cf (@F u + 20° b, + G + Y'Y )3d2)T (3.1.70)
Myp = (H07@) + gy @, 107 + kgug@, 0T (B.L7D)
(u+ GF u+ 20% u, + @@ + HA@ + kA y, ) + Y'Y, 5= 03.1.72)

u;(c) = ux(©) =0, u,’(c) = uy(c) = 0

u,"(c + L) =u,"(c + L) =0 (3.1.73)

| Wy + L)+ ku,”(c + L) =-F;, i=1,2.

It should also be noted that since axial effects are ignored, u = (u;, u,, z)T, where z is

the point of the beam under consideration.

3.2 Spacecraft Stabilization - Introduction

In this section and the following one, we consider the stabilization, or detumbling,
problem for spacecraft. The problem consists of designing a control law such that the
spacecraft stops spinning, and if there are flexible portions to the structure, the beam
deflections and velocities go to zero.

For a rigid spacecraft, the problem is well known and several schemes exist.
Indeed, a sample control law will be given in Theorem 3.3.1. For a flexible structure,
the problem is fairly straightforward if the beam is modelled by its finite dimensional

approximation. In this case, strictly passive feedback utilizing torque jets on the rigid
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body, and collocated sensors and actuators on the beam can be used to stabilize the
system.

When the beam is modelled in an infinite dimensional form, the results in the litera-
ture are currently somewhat limited. In [Bis. 1], a stabilization scheme is proposed
using distributed control on the beam, and an asymptotic stability result is obtained.
From an engineering viewpoint, though, the value of such a result is somewhat dubi-
ous for two reasons. First, distributed control along a beam is not easy to do, nor is
measuring the velocities along the whole length of the beam. Secondly, asymptotic
stability means that if we start from an initial state sufficiently close to an equilibrium
point, then all trajectories of this system tend to the equilibrium point. For a space-
craft, our primary interest in a detumbling maneuver is to decrease the angular veloci-
ty from a possibly large value to a small value, or zero. Thus, the control goal should
be to obtain a control law that guarantees global asymptotic stability results (i.e.,
starting from any initial state, the system tends to the rest state), or better yet, an
exponential stability result.

We now address these issues in the next three sections. In Section 3.3, Theorem
3.3.1, we propose a feedback control law for the torque jets to exponentially stabilize
the rigid spacecraft. The method of attack uses Lyapunov techniques.

In section 3.4, we will consider the flexible spacecraft in section 3.1.5, where the
beam damping will be assumed significant. Theorem 3.4.1 gives a control law which
stabilizes this system using the torque jets and the force thrusters mounted on the
rigid body. The method of proof of this result is as follows. First, we will define an
energy functional E, and then a modified functional V. Using V, it will be shown that
E<Kh, for t sufficiently large.. This will give a global asymptotic stability result. By
separating the linear and nonlinear parts of the pertinent differential equation, and
using a Bellman-Gronwall argument, it will then be shown that the system is actually

exponentially stable if the mass of the rigid portion of the spacecraft is much larger
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than the mass of the flexible beam. In Theorem 3.4.5, a modified control law which
accounts for possible nonlinearities in the sensors and actuators is proposed. Using
methods identical to that of Theorem 3.4.1, a global asymptotic stability result is
obtained.

Finally, in section 3.5, we will consider the flexible spacecraft in section 3.1.5, but
this time the beam da;nping is assumed zero. For this problem, active beam control
will also be needed to stabilize the system. The beam control will be of the boundary
variety discussed in Chapter 2. Theorem 3.5.1 gives a linear control law, which
results in global asymptotic stability. Theorem 3.5.2 gives a similar result but allows
sensors and actuators to contain sector nonlinearities. The method of proof is identi-

cal to that of Theorem 3.4.1 in that it uses Lyapunov functionals.

3.3 Stabilization of Rigid Spacecraft

In this section we consider the problem of spacecraft stabilization described above.
The main reason for discussing the rigid spacecraft first is to elucidate some of the
ideas that will be used in the more general case of a flexible spacecraft. The mathe-
matical complexities are far greater in the flexible case, but the ideas behind the con-

trol laws are very similar.
Theorem 3.3.1 - Consider the rigid spacecraft (RS) described in section 3.1.5. Since

the rotational and translational motions are decoupled, we need only to consider the

rotational term

IOQ + 0 =1 (3.3.1)

Let the control law be
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Ti=-g (@) (33.2)

where g (@) lies in the sector [c, ) ¢ > 0, (e, cyll @ I? < @'g @) < o).

Then @ — 0 exponentially , i.e., the body stops spinning exponentially.

Comment 3.3.2 - There is a simple interpretation of this result when g () = K 0,
where K ; is a positive definite matrix. The - K o applied torque decreases the mag-

nitude of [0, and the @'l term doesn’t affect the magnitude of Iy® since Ip® L
@*,0. For small values of ®, @0 is negligible. Thus, roughly speaking, (3.3.1)
looks like Iy®=-K @, which is exponentially stable since both I and K | are posi-

tive definite.

Proof of Theorem 3.3.1 - Consider the Lyapunov function candidate

E@ = 1aTp 02 g0l el (3.3.3)
where Ap;(Io) is the minimum eigenvalue of I, E() represents the total rotational
kinetic energy of the system. Note that E(@) is positive definite since I, is positive

definite, and it is decrescent ([Vid.1 p. 143]) for the same reason. Differentiating

E(w) with respect to time, denoted E(w), along trajectories of the system we obtain

E@ =0'l)e (3.3.4)
=@T(-0*T,w + ) (3.3.5)
=wlz (3.3.6)
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Inserting the control law £ :=- gm(@_) we obtain

E@ =-0Tg @< < l@l’<0 (3.3.7)

where the last inequality follows form the sector condition on gm(g). Note that E@)

is negative definite. Since E(w) is positive definite and decrescent, and E(w) is neg-
~ ative definite, from [Vid. 1, p.154] we can conclude that our nonlinear system is glob-

ally asymptotically stable, i.e., V@, € R3, @ — 0 as t = oo. This, however, does

not say that @ — 0 exponentially. However, combining (3.3.3) with (3.3.7) we obtain

Ew _ _ < (3.3.8)
E@ - 2,0

Integrating form O to t we thus obtain

E(@) < EQ)exp(-c ,2Apin(lo) (3.39)

Since I is positive definite and ¢ > 0, this shows that E(@) — O exponentially.
Therefore, %kmin(lo)ll [0 ||2 < E(w) implies that @ — 0 exponentially, which proves

the theorem. [ |

3.4 Stabilization of Flexible Spacecraft - Beam Damping Present

The previous section gave a control law which stabilized the rigid spacecraft. In this

section, the stabilization scheme is expanded to include the flexible spacecraft (FSS)
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described in section 3.1.5. The chief difficulty in showing these results is that the
beam is modelled in an infinite dimensional form, so that most of the standard stabili-
ty results in nonlinear system theory (for example, LaSalle’s Theorem) do not strictly
apply.

In this section, we will first consider the spacecraft model with beam damping pre-
sent, and then with the damping absent. The idea in proving these results is similar
to Theorem 3.3.1 for the rigid spacecraft.  First, we will define an energy functional E
which is positive definite, and then a modified functional V. Using V, it will be shown
that E < K/t for some constant K and for t sufficiently large. For the case where the
mass of the rigid body is much larger than the mass of the beam (a reasonable engi-
neering assumption), then it will be shown that the closed loop system is actually

exponentially stable by using a Bellman-Gronwall type argument.

Theorem 3.4.1 - Consider the flexible spacecraft model described in section 3.1.5
and denoted (FSS/A) where axial effects have been ignored. Also assume no active

beam control, i.e., Fi(t) =0, i=1,2,3 in (3.1.60). The equations then become
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E= [+ET+0 (3.4.1)
[0+ @@ =T+ Fyg + My (3.4.2)
mp¥ = Y©®Fg +Er (3.4.3)
YE =20 +ETEO N1+ EET +Ex]-1 (3.4.4)
EbB = (-ulul”’(c) - klultlll(c), -'p/le2”'(C) — kzuztlll(c)’
c+L

f (@ u + 20" u, + @F@ + Yy )3dz)T (3.4.5)
Cc
Myp = (119,70) + kyuy"(€),  Hauy"(©) + kpup"(c2),  O)F (3.4.6)

(@ + OF u + 20° u, + @XM + po@) + ka1, ) + Y1), ;= 0(3.4.7)
u;(c) = uy(0) = 0, uy’(c) =uy(c) = 0 (3.4.8)

u"(c+L)=uy"(c+ L)y=0 u”(c+L)=uy"(c+ L) =0
Assume that damping is explicitly present, i.e. k; >0, i=1, 2. Let the control law be

1:=-K,0 (3.4.9)
Fr= K, ¥ (34.10)
where K | and Ky are positive definite matrices. Then for any initial conditions suffi-
ciently smooth
()@ and y go to zero as t — e, and u(x, t), u(x,t) go to zero as

t — oo in appropriate norms.

(i) If the mass of the rigid body is much larger than the mass of the

beam, then @, ¥, u, and u, all go to zero exponentially as t —> co.

Before proving Theorem 3.4.1, we first prove the following simple proposition which

will be used extensively in the calculations below. The proposition merely states that



deflections and deflection velocities can be bounded by the higher order derivative

(energy type) terms.

Proposition 3.4.2 - Let u = (u,, uy, uy+z)" denote the position (in body coordinates)

of a point P whose undeformed position is z b, as above. Then u satisfies

c+L
() (u(z,t))?s Lf(ui'(z, )%z i=1,2,3.
C
c+L
i) (ylz )P< L f (@ )Yz i=1,2,3.
C
c+L
(i) (u(z,1))*< L f "z )%z  i=12
c
c+L
(v) (u/z, 0 )*< L f 0z, D)2z i=1,2.
Cc
c+L
v) (yz, 1)< sz Wz 9%z  i=1,2.

C

Proof of Proposition 3.4.2 - (i) Using the fundamental theorem of calculus and the

boundary conditions u;(c, t) =0, fori=1,2,3 and forallt € R*,
X
l.li(z, t) = fui’(z, t)dz
c
Therefore, by the Schwarz inequality we have

X c+L

2
(y(z,v) )2 = [ fui'(z, t)dz] <L f (v/(z, t))2dz

c Cc
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which proves statement (i). Statements (i), (iii), and (iv) are proved similarly.

Combining (i) and (iii) then yields statement (v). W

Proof of Theorem 3.4.1 - The first step is to verify that our system is well - posed.
That is, we must show that solutions exist and are unique. This is straightforward

and is done in Appendix 3.B. Assuming existence and uniqueness of solutions, we

define the energy functional as
c+L
7 o= 1 T ) 2
E@& ¥,0u0)=2000 + | I@+atu+Y!i),ld
c
c+L
+ .%mBII yI2+ f(ul(ul")z + ug(uz”)z )dz (3.4.13)

c

(For simplicity, let E denote E(®, § ¥, u, u).) The term energy is used because

the first term is the rotational kinetic energy of the rigid body, the second term is the
total kinetic energy of the beam, the third term is the translational kinetic energy of
the rigid body, while the last term is the potential energy of the beam. Thus E repre-

sents the total energy of the spacecraft system. Next, we desire to calculate the time

derivative of E, which will be denoted as E. We could calculate the answer term by

term, but a little thought makes the job infinitely easier. Recall that

g—t(Energy) = instantaneous power delivered to system + dissipated power of system

This then implies
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ctL
E=olt+ FTy-{ fkl(u,p2 + ky(uy)?dz ) (3.4.14)
C

The first term of (3.4.14) is the instantaneous power delivered by the torque jets,
the second term is the instantaneous power delivered by the external thrusters, and
the last term is the dissipated energy in the system due to beam damping. Inserting

the values of Fp and g from (3.4.9) - (3.4.10) then yields

c+L

E=-0'K 0- §'K; ¥ fkl(ult")2 + ky(up")? dz ) (3.4.15)
C

<0

Unfortunately, E can be shown to be only negative semidefinite, rather than negative

definite as was the case for the rigid spacecraft. Using a generalization of LaSalle’s
Theorem to infinite dimensional systems (see Chapter 4), we could get a global
asymptotic stability result. But that is not our pian of attack here. Instead, we intend
to find a modified Lyapunov type functional and perform calculations to get stronger
convergence results.

So now consider the function

Cc+L
T
V= f [, + @ u+ Y1 9,0 (u)dz (3.4.16)
c
c+L T
= | Y@+ u+Y!19,] (Yu) ,dz (3.4.17)

Recall -2aTb <aTa+bTb=1llali2+1bll 2, Therefore,
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c+L c+L

2 2
2V, < f I Qg+ 0" u+ Y13l dz+ fu (u) ol dz (3.4.18)
¢ c
C+L , c+L
< fll n+@u+ Yyl dz+ sz[(ul")2 + (uy)1dz (3.4.19)
c C

where we have used Proposition 3.4.2 to obtain (3.4.19). Therefore, -2V, < mE for

some m > 0. Rewritten, this becomes V; 2 -mE/2. Next, calculating the time deriva-

tive of V, (use 3.4.17), again denoted Vl, we obtain

c+L
. T
V= f ( [yt Silxll'*'zglx!l +Qx@xﬂ)+Y'li)1,2](B)1,2)dZ
c
c+L 2
+f Iy, + o g+Y'li)12II dz

c+L

= [ e + 0 gl Ty, I+ @+ YT i)l &) (B.420)

where (3.4.6) has been used. Integrate the first term twice by parts and use the

boundary conditions (3.4.7)-(3.4.8) to obtain

c+L
- f (a2 + K8y + Koy uy” + kg )dz
C
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c+L
2
R R E W (3.421)

So define the modified Lyapunov functional as V := Et + V,. The statement after

(3.4.18) shows that

V 2 Et - mE/2 = (t-m/2)E. (3.4.22)
Next, computing the time derivative of V, we obtain

c+L
V=Et+E+ V= (-0'K 0- K §- f(kl(un")2 + ky(uy")? )dz }t
C
c+L
+ % o'le + %mBII yI?+ % f(ul(ul")2 + Py(uy)? )z
c

c+L 2 c+L 5
+1 f ly, + @ u+ Y1l 'dz + f Iy +@*u+Y1y),l 'dz  (3.4.23)
[ C
c+L

- f By + By(uy")? + Kquy"uy” + kouyuy” dz )
C

= (1 oMo - @K 00 + ( Jmgl ¥ 12 - 'Ky $ 1)

c+L ) c+L
. . 2
+%f Ilgt+g"g+Y'1xlldz +f Il(gt+g"_1_1_+Y'lx)1,2IIdz-
c c

C

c+L c+L
) % f( Hy(uy")2 + (") Mz - (fkl(un"ﬁ + ky(uy)? dz} t  (3.429)
C
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c+L

- .I‘( k lu l”u 1 tll + k2u2”u2tll ) dz

C

Now note the following facts:

1 Ny +@u+Y1gl2<iy 2+l @ uliZ+ i Y1y 12
=t =t

<y 2+ 1 @202+ 0g 12,

Therefore,
c+L c+L c+L
1 . 2 - 2 2 2 2
ly, + @*u+ Y1yl dz SLUZIE+ g i'dz + lall jl ull"dz (3.4.25)
[ c c
2. aTb <5%aTa+ bTh/8% for all § € R/{0}, and forall a, b e R™. (3.4.26)
c+L c+L
3.” Using Fact 2 above, -I( kyju;"uy” + kouyuy,” Wz < 52 fkl(ul'OZ + kz(uz”)2 dz
Cc C
c+L
2 ” 2 ” 2
+ 1/8 f( k,(uy)? + ky(uy”)? XMz , for all § € R/(0). (3.4.27)

c

Now using Facts 1, 2, 3, and Proposition 3.4.2 in (3.4.24) above, we obtain

c+L
T 3 2J 2. T 1 c2. 37 o2
oTge+3 1@1°) I uldx - @K@ 0 +( Fmyll ¥+ dLugl
c

v <(1
V_(2

c+L
¥y 30)- JiC 2 - Py ? + (ngf2 - Fg)uy? Joz +

C
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c+L
+.(- %t-ﬁ- 1/8% + %M") fkl(un")z + k,(uy")?dz (3.4.28)

c

Thus, if we choose & small enough and t large enough, V can be made negative. In

other wordé, there exists a T > 0 and a & > O such that V < 0, for all t > T. Thus,

from (3.4.22), this shows that

E®)<V(D/t, forallt2>T. (3.4.29)

Using the definition of energy (3.4.13) we thus see that () = O as 1/t, y = 0 as

c+L c+L
11, ﬁl (g, +@* u+ Y1y),1 2dz — 0 as 1/t and f(ul(ul”)z + Wy(u,")ddz — 0
o] [+

c+L
as 1/t. ‘This in turn implies &(t) — 0 as 1/t, ¥ — 0 as 1/, fu (l_,t)uu%z —0as 1ft
C

c+L

and f(ul(ul")z + Wy(u,”)?)dz — 0 as 1/t. Using Proposition 3.4.2 (v), the latter
C

terms shows that u,(x, t) = 0 as 1/t uniformly in x, and u,(x, t) = 0 as 1/t uniformly
in x. Thus aXt) and ¥ go to zero as 1/t, u;(x, t) and u,(x, t) go to zero in L2, and

u,(x, t) and u,(x, t) g0 to zero as 1/t uniformly in x. This proves (i)

Proof of (ii) - First, separate the linear and nonlinear parts of the differential equa-
tion (FSS). It will be shown that the linear part generates an exponentially stable
semigroup. From the first part of the Theorem, we will bound the nonlinear terms by
terms that go to zero as 1/t. Using a Bellman-Gronwall type argument will then com-

plete the proof. The details are left to Appendix 3.A. W
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Remark 34.3 - It is instructive to consider this nonlinear system from an

input/output point of view. If equation (3.4.14) is integrated from -e= to t, we obtain

c+L
f (@'z+ ErT§)dz - lf( fkl(un")2 + ky(uy”)? dz) dt } = fgf E(t)dt(3.4.38)

-0 C -00

=E(1) - E(—) = E(t)

if we assume the energy at t = —oe is zero. Thus

JS (@Tz+ EfT§)dz 20 (3.4.39)

-00

This shows that our spacecraft system is passive [Des. 2, p. 173]. Furthermore,
our feedback law (3.4.9) - (3.4.10) is strictly passive [Des. 2, p. 173]. By the passiv-

ity theorem, [Des. 2, p. 181] we can conclude that the map

T (O]
= = | (3.4.40)

is L2 stable. Since the feedback law (3.4.6) - (3.4.7) is linear, one can show using
arguments similar to Theorem 6.4.14 of [Vid. 1] that this implies the map (3.4.40) is
globally asymptotically stable.

Despite these positive outcomes, passivity arguments are unfortunately unsuitable
to complete the proof. Note that the passivity result above says nothing about the

beam. Indeed, one needs to make other complicated arguments to reason that u and
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u, go to zero asymptotically. In addition, passivity theorems do not yield exponential

stability results such as those obtained in Theorem 3.4.1. Again, other arguments

unrelated to passivity would be needed to complete the resuit.

Remark 3.4.4 - To implement the control law (3.4.9)-(3.4.10) one must be able to
determine @ and ¥ by measurement. To measure @ one simply uses rate integrating
gyros mounted on the rigid body [Wer. 1, p. 199]. To determine Yy one can use accel-

rometers attached to the rigid body.

From an engineering viewpoint, the control scheme in Theorem 3.4.3 has the draw-
back that the control sensors and actuators are assumed linear. Unfortunately, all .
sensors and actuators have some residual nonlinearities. The following theorem

takes into account a class of such nonlinearities.

Theorem 3.4.5 - Consider the system of Theorem 3.4.3. Let the control law be

T:=-g,@ (3.4.41)

Ep:= 8y () (3.4.42)
where gm(g) is a nonlinear function lying in the sector [cm, o), Cy > 0, (.e.,
coll @ 12 < @Tg(@) <) and gy(y) is a nonlinear function lying in the sector [cy, o),
Cy > 0. Assume that the system is well-posed, i.., the closed loop system has a

unique, continuously differentiable 'solution for all initial conditions sufficiently

smooth. Then the system is globally asymptotically stable, i.e., @, ¥, u, and u, all go

to zero as t —> oo,
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Proof of Theorem 3.4.5 - The proof is almost identical to that of Theorem 3.4.3, and

will thus only be sketched. Define E exactly as in (3.4.13), and compute E to obtain
(3.4.14). Inserting the control law (3.4.41)-(3.4.42) then yields

c+L
E=-0'g @ - gy (1) ( fkl(uu")2 + ky(uy")? dz }
C
c+L

< -c ll @2 cy I ¥ I12- fkl(ul;'ﬂ + ky(uy")? dz }

c

<0

We next choose V; exactly as in (3.4.16). Defining V = Et + V,, one can repeat the

same calculations to obtain (3.4.22), i.e., V 2 (t-m/2)E for all t 2 0. Next, computing
V, note that the modified control law only affects the terms involving E. Therefore, V

is given by

c+L

. 2 .2 . .

\' S(%QTIOQH-% el fu ulil dx-cwllgllzt)+(-;-mBII¥II2+ %Lllxlﬂ-
C

c+L

ey 110~ [Cuy/2 - By + (gf2 - Sy 1z +

C
C+L
e St + 1%+ 3 M) fkl(un")z + ky(uy")?dz

C

Note that this expression is almost identical to that of (3.4.28), with the difference

that the c ll @ I? term has replaced the @TK @ term, and the cy I ¥ 2 term has

replaced the iTKS, § term. Thus, if we choose 8 small enough and t large enough, V

can be made negative. In other words, there exists a T > 0 and a &’ > 0 such that V<
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0, for all t 2 T. Thus, this shows that E(t) < V(T) / t, for all t 2 T, which proves the
Theorem. [ |

3.5 Stabilization of Flexible Spacecraft With Beam Control

The previous section gave explicit stabilization schemes for the flexible spacecraft
system (FSS) when beam damping is present. However, if damping is small, the
exponential decay rate guaranteed by the theorems is undoubtedly quite small. This
means that the beam oscillations may occur for an undesirably long time. Since future
space structures will contain flexible portions with small damping [Joh. 1], many ana-
lysts have studied the problem where beam damping is assumed zero. If the damping
is zero, then Theorem 3.4.1 is probably not true, so some sort of beam control will be
needed to guarantee that beam deflections go to zero. As remarked previously, in
[Bis. 1], an asymptotic stability result was obtained using distributed control along
the beam. From an engineering perspective, this is unfortunately unimplementable.
(It should also be noted that using the methods of this section, or the passivity meth-
ods mentioned in the above remark, the [Bis. >1] can be shown to not only guarantee
asymptotic stability, but exponential stability - a far stronger result.) A more reason-
able engineering approach is to consider boundary control of the type discussed in
Chapter 2, since only limited additional hardware is required.

This was done for the planar case in [Des. 1], and extended to the 3 - dimensional
case in [Mor. 2]. Theorem 3.5.1 differs from the [Des. 1] and [Mor. 2] in that effects
due to the coupling of the translational term is taken in account, whereas it is ignored
in the these two papers. The price to be paid is that exponential stability is not readi-

ly apparent.

Theorem 3.5.1 - Consider the flexible spacecraft model where axial effects are

ignored, described in section 3.1.5 and denoted (FSS/A). Also assume that no beam



damping is present, i.e. k =0 in (3.1.57)-(3.1.60). Then the equations become

E= [+EET+E0

Ip® + @Tp® =T+ Eyg+ Myp

mp¥ = Y&Fyp + Fr

Y® =201 +ETO T+ EET +£*1-1

Eyp = (9,70 —kyuy"@)  —Ha07) = ki)

(@F u + 20 b, + @MW) + Y1y ) dz)T
[
Mg = (13u,7(©) + kyu,,"(c), Hou, () + kyuy“(C), 0)T

U+ OF u + 20° u, + @@W + PO + Y'§ )y =0
u,(c) = uy(c) = 0, uy’(c) =uy’(c) =0
u,"(c+L)=uy"(c+L)=0

wuc+1)=-F, i=1,2

Let the control law be

1:=—ng
ET:= 'Kyy.

B4 :=-A((nlc+ L) +oXuc+ L)+Y1ly) )12
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(3.35.1)
3.35.1)
(3.5.2)

(3.5.3)

(3.5.4)
(3.5.5)

(3.5.6)

(3.5.7)

(3.5.8)
(3.5.9)

(3.5.10)

where K e R33 is a positive definite matrix, K, € R3%3 js a positive definite matrix,

a>0,p>0,and A e R2x2 j5 a positive definite matrix. Then the system is globally

asymptotically stable, i.e., @, ¥, u, and u, all go to zero as t — oo, In fact, ®, ¥, 4,

and u, all go to zero as 1/t as t — oo,
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Proof of Theorem 3.5.1 - The proof is very similar to that of Theorem 3.4.1 and will
only be sketched. Of course existence and uniqueness of solutions must be estab-

lished, and this can be done similar to the proof in Appendix 3.B. Next, choose an
energy functional E exactly as in (3.1.13). Compute E to obtain E = -QTKwQ -
(e +L) + ©F u(e +1) + Y1 9,7 A (e +1)+ @ u(e +1) + Y1 95 - ¥'K; &,

which, as before, is the instantaneous power delivered to the system. Let the modi-

fied functional be

c+L
Vi=21-0F+ | 20 [ +0fu+ Y1, (¥)dz  (GS1D

Again, we can find a m,, m,, and ms > 0 such that V 2 (m;t- mp)E - m3, for all t 2
0. By tedious calculation, using methods very similar to the proof of Theorem 3.4.1, it
can be shown that there exists T > O such that V <0, forallt>T. Thus, E(t) goes

to zero as 1/t. |

Finally, we have a theorem, analogous to Theorem 3.4.5, which allows for a class of

nonlinearities in both sensors and actuators.

Theorem 3.5.2 - Consider the system described in Theorem 3.5.1, and given by
equations (3.5.1)-(3.5.7). Let the control law be

1:=-g,@ (3.5.12)
Er:= -g)-,(i) (3.5.13)
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B, :=-ge(ylc+ L)+ ulc+ L+Y19), (3.5.14)

where g (@) is a nonlinear function lying in the sector [c, *°), C, > 0, gy&) is a
nonlinear function lying in the sector [c)-,, o), cs, > 0, and gp(( u(c + L) + o* u(c +

L) + Y1y )12 is a nonlinear function lying in the sector [Cg, *°), cg > 0. Assume
that the system is well-posed, i.e., the closed loop system has a unique, continuously
differentiable solution for all initial conditions sufficiently smooth. Then the system is

globally asymptotically stable, i.e., @, ¥, 1, and y, all go to zero as t — oo.

Proof of Theorem 3.5.2 - Identical to that of Theorem 3.5.1. The reader should also

consult the proof of Theorem 3.4.5'if there are any difficulties. W

Remark 3.5.3 - To implement this control law, @, ¥, u(c + L), and y(c + L) must be

measured. Remark 3.4.4 discusses the measurement of @ and y. To measure u(c +

L), and u(c + L), ie., the position and velocity of the tip of the beam, one can use

optical methods.
3.6 Concluding Remarks and Future Research

Some rather encouraging trends can be gleaned from the stabilization results of sec-
tions 3.4 and 3.5, as well as the thesis of Morgul. In Morgul’s thesis, he extends the
stabilization result to the structure of section 3.1, where the flexible beam is modelled
by the Timoshenko beam model. The control law is very similar to those obtained
here. Thus it appears that the beam model employed is not crucial in the stabilizabili-
ty of the rigid body/beam system. As long as the beam is exponentially stable, or can

be exponentially stabilized by beam control methods, it appears that the overall struc-
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ture can be stabilized by a linear control law of the form (3.5.8)-(3.5.10).

Unfortunately, this conjecture has not been proved rigorously. The way to proceed
would be to consider the most complete beam model currently available, the so-called
geometrically exact beam models of Naghdi et al (see [Gre. 1], [Gre. 2]), Simo (see
[Sim. 1]), etc. which reduce to the other models when appropriate terms are ignored.
The main difficulty is the complicated nature of the model, which would make it very
difficult to establish existence and uniqueness of solutions for the resulting differential
equations. In addition, one would have to dream up the appropriate modified Lya-
punov functional to establish the exponential stability results. As we have seen
above, the energy functional is generally not sufficient to establish the exponential
stability of the system. If one were to establish such a result, it would encompass all
the results in this chapter, and provide a broad generalization to the attitude control

laws presented in the succeeding chapters.

3. A Appendix
We first need a preliminary theorem which will figure prominently in the proof below.

Theorem 3.A.1 - Consider the following differential equation evolving on a Banach

space X

% = Ax + f(x) (3.A.1)

where A: X — X is a linear map, possibly unbounded, and where f: X — X is a Cl

lim [{e9ll

i =0 Suppose it is known that (i) A generates an expo-

function satisfying

nentially stable semigroup and (ii) the differential equation (3.A.1) is globally asymp-

totically stable, i.e., for any initial condition x; € D(A), the solution to the differential

equation (3.A.1), denoted x(t) = S(t)x,, satisfies lIx(ll — 0. Then lIx(t)l — O expo-
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nentially.

Proof of Theorem 3.A.1 - Let T(t) denote the semigroup generated by A. Using

the "variation of constants" formula yields for xge D(A)

t
x(t) = T(t-ty)xqy + fT(t-‘l:)f(x(‘t))d’t
o

Take norms on both sides to obtain

t
Ix(Oll < ITQ-t lxg +f|rr(t-c)u If(x(l  de (.A2)
Y
By assumption, IIT(t-ty)ll < Mexp(-3(t-ty)) for some M > 0 and some o > 0. Also,

with the assumption on f(x), there is a p > 0 such that IIfx())l < olix(t)ll/2 for all
lIx(t)l < p. Since the system (3.A.1) is globally asymptotically stable by assump-
tion, there is a t* 2 ¢ such that lIx(t)ll < p for all t 2 t*. Inserting these expressions

into (3.A.2) yields

t

(el < MedEtNix*il + _g_ e x(o)ldz (3.A.3)
t*

Define u(t) by u(t) := lix()le®t™), Then (3.A.3) becomes

t
() € Mu(t*) + % u(r)de

t*
Using the Bellman-Gronwall lemma [Vid. 1, p. 292] on this expression then gives

u(t) < MeSEM2y(p%)  or



lix(O)ll < Me X W2)1x (%)l

which proves the Theorem. |

Proof of Theorem 3.4.1 - part (ii)
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To show that the decay rate is exponential, we will first show that the linearized

part of (3.4.1)-(3.4.10) is exponentially stable if the mass of the rigid body is much

larger than the mass of the beam (Lémma 3.A.3). Using the results of part (i) of

Theorem 3.4.1 and the Bellman - Gronwall type result Theorem 3.A.1 above will then

yield the result.

For notational simplicity, axial effects will first be considered. At the end of the

proof, we will show that ignoring the axial terms does not affect the proof of Theorem

34.1.

Consider a new differential equation X = Ax where A is the linearized portion of

(3.4.1) - (3.4.10):

i c+L c+L ]
151 & wdcyaz + 15! e ez +
- -le 0 c+LL, © C+LL ¢
15[ ([ colt@ae),  Olddz 1y o] cottaen, ,, o1z
c z c z
A= C+L c+L
] Y ] Y ]
0 Kjmy X f W)z HB{ KDz
0 0 0 I
c+L c+L
0 YK/mp (- L Wz k() - L | kd()dz
o 20 3] o) 0
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(3.A4)

(Refer to section 2.1 for the definition of the various terms in A.) Note that Y is the

direction cosine matrix evaluated at the rest state of the spacecraft. Let the space A
operates on be X = R3xIR3xH2xH,2xH,'xL2xL2xL?, and let the domain of A, D(A),
be defined as

D(A) = ((x; Xy X3 X4 X5 XgXg xs)Tl X € R3, Xy € R3, X3 € H04, X4 € H04, X5 €
H2, x5 e Hg x; € H, x5 € H2, x5(0)=xg(C)=0, X3"(c+L) = x4"(c+L) =

x6n(c +L) - x7”(c +L) - 0’ X3'"(C +L)=x4l”(c +L)=x6’”(c +L)=x7"'(C +L)=O,
x5'(c+L)=x8'(c+L)=0] (3.A.5)
Let the inner product on X be

[a,bly :=[a1,by IR+ mg[a,,bylp+ [a3,b5] + [a4,bs] + [a5,bs] + [ag:bgl + [a7,b7]

+ [ag,bg](3.A.6)

where [a, bl is the ordinary inner product in IR3, and [a, b] is the ordinary L2 inner

product.

Lemma 3.A.2 - Consider A of (3.A.4). Suppose the mass of the rigid body is much

greater than the mass of the beam. Then A, the closure of A, generates an analytic

semigroup on X.

Proof of Lemma 3.A.2 - Define A’ as follows
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_-10'le 0 0 0o | (B.AT)
0 -K/mg 0 0
A=l o 0o 0o I
0 0 -—pa¢) -kd()

Using Theorem 5.B.2, A’, the smallest extension of A’, generates an analytic semi-

group on X. Now, let D@A" denote the domain of this closed extension.

(Unfortunately, A’ is not closed on D(A”). We must enlarge the domain to make A’

closed.) Define the operator B by B := C A’, where C: X — X is the operator defined
by

i c+L c+LL ]
Io.l Lx vydz + Io.lﬁf COI[(X4)1,2, 0]dx)dz
c cz
-! ] Y c+L
—_— dz
c ¥2| = vy
Y3 e (3.A.8)
Yy 0
- C+L
x|
-1

(where v, € R3, v, € R3, v, eHyxHy>xHg!, v, €L2xL2xL2.) Let the domain of B be

D@®) := D@"). With this definition of B, we see that it is simply A - A’, when A and

A’ are restricted to D(A) given by (3.A.5). (Recall A’ restricted to D(A) is simply

A’ from the definition of closure.) The idea behind the proof is to try to use Theorem

B.10, the perturbation theorem on analytic semigroups. To use Theorem B.10, the
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first thing which must be done is to show that B is a closed operator. Unfortunately,
B is probably not a closed operator on D(B). However, the next best thing would be

that B is actually closable, so that we can define an extension of B which agrees with

B on D(B).

Therefore, we will first show that B is closable. Note that for f € D®B) = DA

2
C+L c+LL
Io-lrgﬁ Af)ydz + ) f col{(( Ay 2, 0ldx)dz]
c z
¢ c-'i'-L
I Bf llx® = Y | (B'Dydz
de
c (3.A.9)
0
c+L
1 . , 1 ’

where we have used the notation (a); = a;. Using the definition of norm (3.A.6) this

expression becomes

C+L Cc+LL
IBfll> = lllo“rs"f (A'Dydz + f( f col((( A'T)y)y 5 Oldx)dzlllp? +
Cc CcC z
c+L c+L c+L

-, 1 < =
mg| %.Bf (A'Dydz PR + (ﬁlj f I YK (&), +f (KD, dz [PRdz
[+ Cc C

Using the Cauchy-Schwarz inequality and the triangle inequality repeatedly, this

expression becomes
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c+L c+L L,
< (O @)t [c T)IIC A, llg2dz + f(ufcol[(( Ay, Oldxligddz] +
C C z

c+L ct+L
’. 1 A’ <’
n%s f IC A D IPRdz + (nTB jL YK, (A, + f (A'D)ydz PR

Cc C

c+L L
L -, 2 , )
< _(I(_)”max [CJ;“( A f)4"[R dz + L _{"COI[(( A f) 4)1,2, 0]“lR dx ] +

c+L

c+L
< 1 - -
%J I A'D,lPRdz + ('{ﬁBjI-(HKy( Kyle? + fI (Kydz IPr )
[+ C

c+L L
L -, <
S ) [cfu( A'f)lig2dz + Lﬁl( D, IPgdx] +
c C

c+L ct+L

L -7, 1 2. A7
- B_cf I A'D4lPRdz +(EBjL(om2(Ky)ll( Ayl + L { ICA'Dy 1PRdz )

‘Finally, since I ~ mp this means

L tn %7
IBfIh? < - KIAT I’ (3.A.10)

for some appropriate K. To show that B is closable, take any sequence x;, — 0, x, €

D®B) = DA"). We must show that Bx, — 0. (See [Bal. 1, p. 221].) From (3.A.10)

we see that

L <
1By llx” < 7 KIl A%, %%
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Since is A’ closed by definition, x, € D@&)— 0 implies A’x, — 0. Thus, Bx, —0,
so it is indeed closable. Let B denote this closed operator, and let D(B) denote the
new domain of this operator.

We now need to show that the conditions of Theorem B.10 are satisfied for A" and B.
This means we must show that (i) B is a closed operator (ii) DA) < D(B) and (iii)
there exists & sufficiently small and B 2 O such that for x € D@A”) || Bx|| < o] A’x]| +
Blixll. We have just shown (i). As for (ii), note that D®B) o D®B) = DA"). Thus it
only remains to check the norm condition on Bx. From (3.A.10) we see that there is

a C > 0 such that || Bx||2 £ Cl| A%x II2. In particular, inspection of the (3.A.10) shows
that C ~ L/mg.  Thus, if the mass of the rigid body is sufficiently greater than the

mass of the beam, the conditions on Theorem B.10 are met so we can conclude that A

= A’ + B generates an analytic semigroupon X. W

In an abuse of notation, but for the sake of simplicity, let A denote the closed opera-

tor A.

Lemma 3.A.3 - Consider the operator A of (3.A.4). Suppose the mass of the rigid
body is much larger than the mass of the beam. Then the operator A generates an

exponentially stable semigroup T(t) on X.

Proof of Lemma 3.A.3 - Since A generates an analytic semigroup by Lemma 3.A.2,
then by Proposition B.9 of Appendix B, we know that T(t) satisfies IT(I <

Mexp(wy(t)), where @ = sup{Re(A)| Aeo(A)}. It thus suffices to verify that the
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spectrum of A is strictly negative and bounded away from zero. To compute the spec-

trum of A we first add Y-!(row2) to row 4, and we know this does not change the

spectrum. Performing this operation we obtain

c+L
 [fpwedae
-10‘le 0 c+LL €

f(f col[(0a(-)); 2, Oldx)dz f(jcol[(ka(°))1,2» Oldx)az

CiL i
X ka()dz +

c+LL c

c z cz

4L oL
0 -Kymg aYB{ ua(-)dz HYB{ kd(-)dz
0 0 0 I
o 0 —3(-) 3(:)

Since the matrix is block upper triangular, the spectrum is easily seen to be

{ 0 (Iy 'K )Uo(-Ky/mg)u 0[

0 I }
—po(-) —ka()

Since I, K_, K, are all positive definite, the eigenvalues of the first two terms in the
()

curly brackets are strictly negative. As for the last term, using Lemma 5.B.2, we

know that the spectrum of this operator is strictly negative, and bounded away from

the jo-axis. Thus, the spectrum of A is strictly negative, and bounded away from the

jw-axis. From Proposition B.9, we thus conclude that A generates an exponentially

stable semigrouponX. W
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To conclude the proof that ®, ¥, u, and u, go to zcro exponentially, we now separate

(3.4.1)-(3.4.10) into its linear and nonlinear terms. The linear term is very similar to

A, but not quite. In A, axial effects were considered, whereas in Theorem 3.4.1, axial

effects were ignored. However, the linear part of (3.4.1)-(3.4.10), denoted A”, does

generate an analytic, exponentially stable semigroup. This can be seen as follows.

Choose the state variable to be (@, ¥, Uy, Uy, Uy u?_t)T. Then A” is explicitly given

by
Ik, O
i m‘gx;
0 0
. 0
(Y'IEX(')):;
mg(mg + L)
0 0
0 0
0
'(Y-le('))l,z
mg
0

c+L -
Iy e coll(uaC) + k3 - Oz +
ac+L1, .
197 (] <ol + K3y 5> Ol
C Z
+L +L
Y I].Ll(-)""dz v fkl(-)"”dz v fest 0 y leat 0
-I_ﬁ- c 0 E’ c O E fuz(.)nudz El_ J'k2(')”” dZ
0 0 o0 € 0
0 0 1 0
0 0 0 1
_u2(.)u” + -k2(°)”” +
c+L c+L
l 2707 0 i ° ’ll'dz O
EB{ hy)dz mB‘{ 20
WO + Ky
c+L c+L
O 1 V{4 0 1 {4
-HTB { p‘l(’) dz e _{ k](') dZ-

3.A.11)
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To show that this linear operator generates an analytic semigroup can be done in

exactly the same way as before, using the perturbation theorem on analytic semi-

groups. In fact, conceptually the proof is simpler because there are no u” terms due to
axial displacements present. (Notationally, however, the proof is much tougher!)

The only thing that remains to be checked is whether the semigroup is exponentially

stable. If we multiply the second row of this matrix by Y], and then add the upper
2x2 block to the last two rows, we obtain an upper triangular matrix as before. The
spectrum is therefore the union of the individual blocks. Since the matrix is block

upper triangular, the spectrum is easily seen to be

1.1 . (YK);.
{ o (Iy 'K U Ky/mB+Y.’3;BTn%.£_))

() (e O I U G 0 I ]. (3.A. 12)
_""1 ( .)II” _kl(°)”” _uz(.)n” -kz(')””

where, in a notation specific to this proof, Y. 3 is the third column of Y, whereas
(Y‘le)3,. denotes the third row of the matrix Y'llg,.
Since Iy, K, K, are all positive definite, & (Ig'K,) lies in the open left half-

plane. From Theorem 5.B.2, the spectrum of the last two terms also lie in the open '

left half plane, since by assumption, k, > 0 and k, > 0. Thus, it only remains to show

that all eigenvalues of the matrix

Ky/mg + Y. 3 _KY, (3.A.13)

lie in the open left half-plane.
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By assumption, Ky is positive definite, and the mass of the rigid body is much larger
than the mass of the beam L. Therefore, the eigenvalues of (3.A.13) are all strictly
negative. ((3.A.13) essentially looks like A + €B, where A is negative definite, €
arbitrarily small, and B arbitrary.)

Hence, the spectrum of A” given by (3.A.12) is negative and bounded away from
the jw-axis. Using the fact that A” generates an analytic semigroup, combined with
Proposition B.§, shows that A” generates an exponentially semigroup on X. Next,
we want to show that the remaining terms can be bounded by Kl|(®w, ¥ , u, u) lix2,
for some K > 0, so that Theorem 3.A.1 can be applied. The nonlinearities are

c+L 0
- IO.I@XIOQ) +Io-l J uX 0
| wre - 20F - &F @ W)
0
X c+L 0 :

mB .
f@"g - 20x y, - @* (Q° W) )5dz
C

fl@, ¥,u,1):=

@@ - 207y - OF @ W)y,

(3.A.14)

(3.A.14) also contains terms in @®. However, using (3.4.1) @ can be replaced by
terms involving @, ¥, u, and y,. The motivation here is simplicity of notation.) There
is no difficulty in establishing such a bound for all terms not involving @, since they

are clearly at least quadratic in @, u, and u,. So it only remains to show that the

terms involving @ are also at least quadratic in the state variables. An inspection of

(3.A.14) shows that it suffices to show that ||l can be bounded above by
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Cli(@, ¥,u, 1) lx for some C>0. So consider the equation for :

nrr ”7n

1 lC+L Bou, "+ kyuy
@= K@ - l@w +y f u* Hauy ™"+ kquy’ Z (3.A.15)
. ¢ |@Q-200y-0" @),

c+L,
Iyl

0
e+ L ( 0 2Y''K, 3 }dz

where we have used the formulation (3.1.24) for c*Fyg + Mp, and the term

Y '151)3 has been explicitly calculated. (See the discussion in the paragraph above
equation (4.3.16) if there is any difficulty in establishing this.) An inspection of
(3.A.15) shows that only the terms inside the integral pose any difficulty, since
Il-lo‘l(mxlog)ll < C’Il_@]lm2 for an appropriate C’. If we integrate by parts twice on

”wr nn

the terms involving W,u, and Hou,””, these terms can be bounded by potential

c+L c+L
energy type terms, i.e., terms of the form Iul(ul’ﬁzdz and Jul(ul")zdz . (This is
Cc C

primarily why we chose this formulation of ¢*F,z + Myp.) Using similar means, the
other terms in the integral can also be bounded by energy type terms. Hence, insert-
ing these bounds on® into (3.A.14), shows that the nonlinearity f(w, ¥ .U, u)can be

bounded as

lIf@, ¥,u,u)llx < K@ ¥,u 1) llx?

for an appropriate K > 0.

We have thus shown the following facts: (i) The linear part of (3.4.1)-(3.4.10) gen-
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erates an exponentially stable semigroup, (ii) the nonlinear part f(®, ¥ , u, u) satis-

lim. £

fies x—0 |ixll

=0 (where x = (@, ¥ .Uy, Uy, Uy Uy)T), and (using the first part of

Theorem 3.4.1) (iii) the differential equation is globally asymptotically stable. Thus,

Theorem 3.A.1 applies so we conclude that @, ¥, u, and u; go to zero exponentially.

Appendix 3.B

Proof of Existence and Uniqueness of solutions to the equations of Theorem
34.1

To verify that the coupled nonlinear partial differential equations given by (3.4.1)-
(3.4.10) have a unique, continuously differentiable solution, we use standard semi-
group theory. The idea is to first separate the differential equation into its linear and
nonlinear terms. It is easily verified that the linear portion has a unique, continuously
differentiable solution. Thinking of the nonlinear term as a perturbation, it remains to
show that the "perturbed" system has a unique, continuously differentiable solution.
This will follow from a result of Segal if, very roughly speaking, the perturbation is
"less unbounded" then the linear portion.

First, separate the differential equation into its linear and nonlinear parts. The lin-
ear part, denoted A”, is given by (3.A.11), while the nonlinear part is given by
(3.A.14).

Let the space A” operates on be X =IR3xR3xH,?xH,2xL%xL?, and let the domain of

A”, D(A”), be defined as

D(A”) = {(x; X, X3 X, X5 Xe)1IX; € R, x; € R3, x5 € Hy?, x4 € Hp, x5 € Hy?,
“xg € Hgh x3”(c+L) = x(c+L) = xg"(c+L) = xg"(c+L) = O,
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X43"(C+L)=x4(C+L)=X5"(C+L)=xg"(C+L)}=0}

Let the inner product on X be

[ably := [a;,b,]r + mplay.bylr+ [a3”,b3"] + [a4".by"] + [a5,b5] + [ag:bgl

where [a, bl is the ordinary inner product in R3, and [a, b] is the ordinary L2 inner

product.

It is easy to verify that D(A’) is actually a Banach space when equipped with the

graph norm
lxlig? := lixli2 + NAxII2

where lixll is the L2 norm. Let [D(A’)] denote this Banach space. Further note that

the nonlinear term f is a compact operator on [D(A)]. Indeed, f is actually C” on
[D(A7)]. Using [Seg. 1, Theorem 4.1], we can thus conclude local existence and
uniqueness of the differential equations of 3.4.1.

From the proof of Theorem 3.4.1, we see that solutions are exponentially stable if

they exist, so the local existence and uniqueness result can be extended globally, i.e.

for all t 2 0. This concludes the proof. I
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CHAPTER 4

ATTITUDE CONTROL VIA LYAPUNOYV TECH-
NIQUES

4.1 - Introduction

In the remainder of this thesis, we consider the problem of satellite attitude control.
In its simplest form, the problem consists of trying to move the satellite to a specified
orientation with respect to the earth. This might be desirable, for instance, if the
spacecraft were to be pointed at an earth station or target.

As might be suspected, this problem has been studied extensively, especially when
the spacecraft is a rigid body. The standard approach to rigid body attitude control is
to linearize the spacecraft equatiohs of motion about a nominal orbit and design a lin-
ear control law for the linearized equations. (For example, see [Mork 1], [Hir.1], and
[Dou. 1}.) This approach is perfectly valid for small spacecraft adjustments, such as
those needed to compensate for solar torque effects, gravity gradients, and other
small external disturbances. For flexible spacecraft, the approach is similar: Model
the flexible portions of the spacecraft by a suitable finite dimensional approximation,
linearize the resulting equations of motion around a nominal orbit, and design a suit-
able linear control law. This design methodology assumes small perturbations,
including small deflections in the elastic components of the structure. Again, these
assumptions are perfectly valid and even desirable for spacecraft such as communica-
tions satellites, where large deflections of solar panels, for example, are undesirable.

Future generations of space vehicles will have entirely different requirements. For
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applications such as the Strategic Defense Initiative (SDI), spacecraft will be
required to slew over large angles, at fast angular rates. It is easy to see that either
of these two requirements completely v.invalidate the linear analysis of traditional
spacecraft control system design, which assumed small perturbations of current
orbital position. Motivated by such requirements, a myriad of nonlinear attitude con-
trol laws have been proposed for both rigid and flexible structures. (See, for example,
[Dwy. 1], [Dwy. 4], [Mei. 1], [Vad. 1] and [Mon. 1].)

Almost without exception, however, the methods of these papers assume that the
flexible portion of the structure (which is possibly infinite dimensional) can be suit-
ably modelled by a finite dimensional approximation. The resulting equations are then
ordinary, nonlinear differential equations, from which the attitude control law is then
designed. The difficulty is choosing an appropriate finite dimensional approximation
to the system. Currently, there is no systematic way of choosing such an order, and
each author has his own method of verifying whether the unmodelled modes (the
"spillover" effects) affect the system performance.

This thesis will dispense with such issues by considering the flexible portion of the
spacecraft modelled as being of infinite dimensional form. The main disadvantage of
such an approach is the corresponding mathematical difficulties, which tend to obscure
the physical principles behind the control laws.

In séction 4.2 attitude control laws for a rigid spacecraft are proposed. In Theorem
4.2.1, a linear attitude control law for a rigid spacecraft is proposed. The proof is by
Lyapunov methods; a Lyapunov functional is constructed, and its derivative is com-
puted to be nonpositive. From LaSalle’s Invariance principle, we will conclude that
the system is globally asymptotically stable. Observing that the linearization about
the origin yields a linear system with strictly negative eigenvalues, combined with a
theorem from Appendix B will give an exponential stability result.

In Theorem 4.2.3, another attitude control law is proposed for a rigid spacecraft.
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The control law is a nonlinear control law, which would take into account possible
nonlinearities in sensors and actuators. The method of proof is again by Lyapunov
methods, and a global asymptotic stability result is obtained.

In section 4.3, an attitude control law for a flexible spacecraft with significant beam
damping is proposed. The method is proof is identical to that of the rigid spacecraft,
with the exception that we must use an infinite dimensional version of LaSalle’s The-
orem. The control law is linear, and an exponential stability result is obtained.

Finally, in section 4.5, we consider the attitude control of a flexible spacecraft
where the beam damping of the spacecraft is assumed zero. This assumption neces-
sitates the use of beam control, which will be boundary control of the type used in
Chapter 2 and Chapter 3. The method of proof is similar to that of sections 4.2 and
4.3, where again the infinite dimensional version of LaSalle’s Theorem will be used.

Using the linear control law, exponential stability is once again obtained.
4.2 Lyapunov Based Attitude Control Law for a Rigid Spacecraft

To help illustrate the ideas for the following sections, we will first consider the atti-

tude control of a rigid body. The equations of motion for the structure are

E= 101+ +Elo. @.2.1)

Iy + 0@ =1 4.2.2)

where as in Chapter 3, section 3.1.4, @ is the angular velocity of the spacecraft with

respect to the inertial frame, I; is the spacecraft moment of inertia with respect to the

body frame, T is the torque due to the torque jets, and § is the Gibb’s vector repre-

senting the spacecraft attitude with respect to the inertial frame. Since the rigid struc-
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ture rotational and translational terms are decoupled, we can assume y = 0.
In this chapter, the attitude control problem will to be to design a control law so that
& — 0, ® = 0, and, when appropriate, have the beam displacements and velocities go
to zero. This insures that the attitude is corrected, and stays that way for ever after.
Lyapunov type control laws for rigid spacecraft have been obtained before ([Mort.
1] is the first reference known to the author), but the implementations have required
nonlinear feedback. The Lyapunov control law given below will be similar in style to

the above papers, but it will be implemented using linear feedback.

Theorem 4.2.1 - Consider the system described by (4.2.1) and (4.2.2) above. Let

the control law be

=k - K0 (4.2.3)

where Km e R3:3 §s positive definite and kg €eR, kg > 0. Then the system is exponen-

tially stable, i.e., @ and £ go to zero exponentially. (Physically, this means that the

body stops spinning, and the attitude is corrected.)

Proof of Theorem 4.2.1 - Consider the Lyapunov functional
o= 1 T : T
V(w, &) = 7@ ] +k§ln(1 +£'9) (42.4)

The first term represents the energy of the body (recall that the velocity of the center
of mass of the rigid body is assumed zero), while the second term is a measure of the
attitude "energy". It is easy to see that V is a positive definite function ([Vid. 1, p.

141]). Also note that
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V@ b =ald+(1+ §T§)'1k§2§,1' 13 (4.2.5)
= @T(-w¥gm + ) + (1 + ETE) Tl 2ET( % M+EET+EX0)  (4.2.6)

= oT1+ktTo 4.2.7)
P &
=-0"K @ < 0 (4.2.8)

where (4.2.7) has been obtained by noting that @ 1 @*[j@ and £l E*a,and (4.2.8)
is obtained by insertion of the control law (4.2.3) into (4.2.7).

Note that V(@, &) = 0 if and only if @ = 0, which in turn implies that & = 0. Using
(42.2), T=0, and (4.2.3) implies that £ = 0. Thus the largest invariant set [Vid. 1, p.
156] of system (4.2.1)-(4.2.2) containing {§*@ | @ = 0} is {(0, 0)}. Thus the condi-
tions of LaSalle’s Invariance principle [Vii 1, p. 157] are met and we conclude that
for all initial conditions @, and §0 the trajectories of the system (4.2.1)-(4.2.2)
approach zero. |

To show that @ and @& both go to zero exponentially, note that the linearization of

the system (4.2.1), (4.2.2), and (4.2.3) about zero is

E=1lg 4.2.9)

N

It = k.8 - K0 (4.2.10)

Since, I and K  are positive definite, and kg > 0, this means that the eigenvalues of

this linear system are all strictly negative. Thus, the conditions of Theorem 3.A.1 of

Chapter 3, Appendix A are satisfied, and we therefore conclude that the nonlinear
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system (4.2.1), (4.2.2) and (4.2.3) is exponentially stable. ||

From an engineering perspective, it would be nice if the control law (4.2.3) allowed
some nonlinear terms. This is because sensors and actuators, no matter how careful-
ly constructed, contain some residual nonlinearities. The following theorem allows a

class of such nonlinearities.

Theorem 4.2.2 - Consider the system described by (4.2.1) and (4.2.2) above. Let

the control law be

2 :=-kETEE - g (4.2.11)

where k(ETE) is an arbitrary nonlinear function satisfying oo > k(ETE) > ¢; >0, and
g(®) is a nonlinear function lying in the sector [c,, ), i.e., for some ¢, > 0,

c,ll © I2 < @Tg(w) < =, Then the system (4.2.1)-(4.2.3) is globally asymptotically

stable, i.e., @ and & go to zero.

Proof of Theorem 4.2.2 - Consider the Lyapunov function candidate

T
1
V@ b= -;-.QTIOQ + j&dx (4.2.12)

1+x

First note that V(@, £) is a positive definite function. This follows since
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3

T,
V(a, &) 2 _gTIO_ + f “1_gx= _ @I o +¢,In(1 + Ty 42.13)
+X

which is clearly a positive definite function. Next, by computation

T,
V@ & =ao + @géf)g) 2%TE (4.2.14)
k(ETE)
= T_H ng)(l +ETEETw (4.2.15)
= QTyk(.éTﬁ)éng . (42.16)
=-aTg@) < <Nl wl? (4.2.17)

where (4.2.17) is obtained by insertion of (4.2.11) into (4.2.16), and the last inequali-
ty results from the sector condition on g().

Note that V(a, £) = 0 if and only if @ = 0, which in turn implies that @ = 0. Using
(4.2.2) and (4.2.3) we obtain k(ETE)E = 0 which implies that § = 0. Thus the largest
invariant set of system (4.2.1)-(4.2.2) containing {£*®@ | @ = 0} is {(0, 0)}. Thus the
conditions of LaSalle’s Invariance principle are met and we conclude that for all initial

conditions @y and & the trajectories of the system (4.2.1)-(4.2.2) approach zero.

Remark 4.2.3 - To implement the control law (4.2.3)-(4.2.11) one must be able to
determine £ and ®. As stated in Remark 3.4.4, one can determine ® by use of rate

integrating gyros mounted on the rigid body. To determine the attitude &, a variety of
methods can be used. Utilizing star sensors, horizon sensors, sun sensors, €tc., one

can estimate the direction cosine matrix Y of (3.1.3)-(3.1.5) directly. For example, if
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the direction of a star in body coordinates is measured as u (a unit vector), and the
direction of the star in inertial coordinates is determined from a star catalog to be U,
then u and U are related by U = Yu. By using several measurements, a least squares
estimate of the direction cosine matrix can be obtained [Wer. 1, p. 457]. Once the
direction cosine matrix is obtained, the Gibb’s vector § can be algebraically solved for
by using equation (3.1.20), which relates Y and §.

Alternatively, one could estimate § directly. The difficulty here is that the resulting
estimation problem is nonlinear, and thus requires nonlinear filtering. An example of
this type of procedure for estimating the quaternion attitude vector can be found in

[Gai. 1].

4.3 Lyapunov Based Control Laws for a Flexible Spacecraft - Beam Damping

Present

In this section we propose an attitude control law for a flexible spacecraft in much
the same way as the rigid structure. Unfortunately, the proof of the result will be far
more difficult since LaSalle’s Invariance principle does not hold for infinite dimension-
al systems. (Its proof relies on the compactness of the unit ball in R") We will first
need to introduce a generalization of LaSalle’s Invariance principle, based on the the-
ory of gradient systems [Hale 1]. It should we stressed, however, that the intuition

is exactly the same as that in the rigid case.

Definition 4.3.1 - If T(t): X — X is a strongly continuous (possibly nonlinear) semi-

group on a Banach space X, an equilibrium point of T(t) is a point x of X such that

Tx=x,Vt 20.
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Definition 4.3.2 [Hale 1, p. 20] - Let X be a Banach space, T(t) : X — X be a strong-

ly continuous (nonlinear) semigroup. The semigroup is said to be a gradient system if

(i) Each bounded orbit is precompact (Recall a set E in a metric space is precompact
if there is a finite covering of E by sets of diameter < €)
(ii) There exists a Lyapunov functional for T(t); that is, there exists a continuous

function V : X — R with the following properties
(iia) V(x) is bounded below;
(iib) V(x) > oo as | x| — oo}
(iic) V(T(t)x) is nonincreasing in t for all x € X
(iid) If x is such that V(T()x) = V(x) for all t 20, then x is an equilib-
rium point of T(t).

Comment 4.3.3: It is easy to see that condition (i) is trivially satisfied for ordinary
nonlinear differential equations since in R™, a set is precompact <> the set is bound-
ed. The conditions contained in (ii) are exactly the same conditions required for

LaSalle’s Invariance principle to hold in finite dimensions.

Gradient systems yield the following generalization of LaSalle’s Invariance Principle.
[Hale 1, p. 20]

Theorem 4.34 - If T(t) is a gradient system, then the -limit set «(x)

(= 1’; Otg 'tI'(t)x, Vx € X)belongs to the set of equilibrium points of T(t).

Proof of Theorem 4.3.4 - (See [Hale 1, p. 20].) Since V satisfies (iib) and (iic), it
follows that the positive orbit through x is bounded. Thus, by hypothesis, it is pre-

compact. Also, V(T(t)x) has a definite limit as t — oo since it is a nonincreasing func-
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tion that is bounded below by (iia): let ¢ denote this limit. Since the positive orbit is
precompact, @Xx) is compact and invariant. The fact that V is continuous implies that
V(T(t)y) = ¢ for all y ew(x) and for all t € R*. Hypothesis (iid) implies that y is an

equilibrium point. W

Theorem 4.3.5 - Consider the flexible spacecraft model where axial effects are
ignored, described in section 3.1.6 and denoted (FSS/A). Also assume no active

beam control i.e., F;(t) =0, i= 1,2, 3in (3.1.73). The equations then become

E= 10+ &7+ 0 43.1)
IO+ @@ =1+ Fpp + Myp. (43.2)
mg¥ = YEE,g + Fr 43.3)
YE =201 +ETE) 1+ EET+EX]-1 (4.3.4)
Fyp = (u(0) = kyuy "), ~Haa™(©) = kyuiy"(©),

o (4.3.5)

(@F 1 + 20% u, + QM@ + Yy )5dz)T
c . :

Myp = (1,9,70) + kjuy @, 1guy(€) + kpup), )T (43.6)
(st OF u+20% u, + GY(@M) + PO + ko) + Y1), ,=0 “3.7)
u;(c) = uy(c) =0, uy’c) = u)(c) =0

u"C+L)=u " +L)=0 u”(c+L)=u"(c+L)=0 (43.8)

Assume that damping is explicitly present, i.e. k; >0, i=1, 2. Let the control law be
T:= -k§§ -K @ (4.3.9)
Ep:= -KS, y o (4.3.10)
where K € R3x3 js a positive definite matrix, kg € R with kg > 0, and Ky is a positive

definite matrix. Then the system is globally asymptotically stable, i.e., ® — 0, & — 0,
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u—>0,u —0, y — 0in appropriate norms. Furthermore, if the mass of the rigid

body is much greater than that of the beam, then @ =0, £ - 0,u — 0,y, = 0, y -

0 exponentially.

Proof of Theorem 4.3.5 - The method of proof will be to first show that our space-
craft system is a gradient system, and then use Theorem 4.3.4. This will give an glob-
al asymptotic stability result. Then applying Theorem 3.A.1 will show that the decay
rate is actually exponential.

First, consider the Lyapunov function candidate

c+L 2
E@& ¥,0u):= 100 + f lly, + @*u + Y1 gl dx
c
. c+L
+ 2 myll 2+ f[ul(ul")2 + 1@ dx +kin(1+ET8)  (43.11)
c

. (For simplicity, let E denote E(w, §, ¥, u, u,), and let E denote the time derivative of

E@ & ¥.,u, u)) Note that E 2 0 and the similarity between this Lyapunov func-

tional and the one obtained for the rigid body in Theorem 4.2.1 and the flexible struc-
ture in section 3.4: The first three terms represent the total kinetic energy of the sys-
tem, the fourth term the potential energy of the system, and the last term the measure
of attitude "energy”. Note that this functional satisfies requirements (iia) and (iib) in
the definition 4.3.2 of the gradient system. We need to verify the rest of condition (ii),
and then afterward we will show that condition (i) is achieved. .

We can compute E exactly as in Theorem 4.2.1, but reasoning similar to that of Theo-

rem 3.4.1 allows us to write the answer down by inspection. As before, recall that

the rate of change of energy is the instantaneous power delivered to the system.
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Since the external forces acting on the system are the torque jets, external thrusters

and the forces applied to the beam, we must have

c+L
E=@Tt+F Ty - { fkl(un")2 + ky(uy”)? dz }+(1 + §T§)'1k§2§r 13
c
c+L
= @lt-{ f[kl(un")2 + kyuy? dz } +Ef Ty +k§§TQ (4.3.12)

C

The first term of (4.3.12) is the instantaneous power delivered by the torque jets,
the second term is the instantaneous power delivered by the force thrusters (recall
that the instantaneous power must be calculated with respect to the inertial frame),
the third term is the dissipated power due to the beam damping, and the last term is

simply the rate of change of the attitude energy which has no simple physical interpre-

tation. Inserting the control law giving F and 1 from (4.3.9)-(4.3.10) then yields

c+L
E=-0"K o- fkl(un")2 + ky(uy )2 dz ) - iTKS, ¥ (4.3.13)
Cc

<0

Thus, condition (iic) in the definition 4.3.2 of gradient systems is verified. To show
(iid), we need to show that if E(T()x) = E(x) for all t 2 0, then x is an equilibrium
point of (FSS). From (4.3.13), E(T()x) = E(x) for all t 2 0 implies that @ = 0, y =0,
and (gt"(z) )1' 2=0in L2. This in turn shows that ® = 0,y =0, @ =0, ¥ =0, and (
u"(z) )1, 2=0 in L2. From Proposition 3.4.2, (ii) and (iv), the latter term implies that

u,(2) =0, i=1, 2. Equations (4.3.7) and (4.3.8) then reduce to
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(1, +Ho@); =0 (4.3.14)
u;(©)=0,(0)=0, u’(©)=uy (=0 u"(c+1)=0 W (c+L)=0 (43.15

ul;n(c + L) = 0’ uznl(c + L) = O, “it(z) = 0, i=1, 2.

It is easy to show that the only solution satisfying this linear differential equation,
the given boundary conditions and the conditions u,(z) = 0, i=1, 2 is the zero solu-
tion. Therefore, u; =0, u; =0, uj, =0 and up, = 0. Finally, combining these results in
(4.3.12) and (4.3.9) shows that § = 0. Thus, E(T (x) = E(x) for all t 2 0, implies
that x = 0, i.e., x is an equilibrium point of (FSS). Thus (iid) of definition 4.3.2 is sat-
isfied.

Thus, it only remains to show that bounded orbits are precompact. To show this, we

first need a lemma, followed by a lemma, again due to Hale ([Hale 1, p. 14]):

Definition 4.3.6 - A family of mappings T(t), t 2 0, on a Banach space X is said to be

conditionally completely continuous for t 2 t, if, for each t > t; and each bounded set B

in X for which {T(s)B, 0 < s <t} is bounded, the set T(t)B is precompact.

Lemma 4.3.7 [Hale 1 p. 14] - Let St), t 20, be a strongly continuous (nonlinear)
semigroup on a Banach space X satisfying

t
S®)x =T(x + fT(t-s)BS(s)xds
0

for t>0and all x € X where T(t) is a CO (nonlinear) semigroup on X and B is a
mapping from X to X satisfying
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(i) B is compact (i.e., B is continuous and for any bounded subset E of

X, B(E) is compact);
i) | IT® | € @), c: R¥— R*, c(t) continuous with litm ct) =0.
—yco

Then S(t) = T(t) + U(t), where U(t) is conditionally completely continuous.

The reason for introducing Definition 4.3.6 and Lemma 4.3.7 is contained in the fol-
lowing lemma. This lemma will allow us to verify that our system satisfies condition
(i) in Definition 4.3.2 for gradient systems. (Incidentally, the proof of the following
result does not seem to be anywhere in the literature, although Hale says that it is

"clear". For completeness the proof is performed, with no claim to its originality.)

Lemma 4.3.8 - Suppose that S(t) satisfies the conditions of Lemma 4.3.7. Then
bounded orbits of S(t) are precompact.

Proof of Lemma 4.3.8 - Suppose the positive orbit through xy € X is bounded. To
show that the bounded orbit is precompact, we must show M = {S(s)xy: 0 < 5 < oo}

is precompact. By definition, M is precompact if, given € > 0, there exists a finite

subset Mg € M such that for each x € M there is a xg € Mg satisfying || x - xg || <&
By assumption M is bounded, say || x || < K, for all x € M. Note that M = M, L M_,
where My = {S(s)xy: 0 <5 < o}, and M_ = {S(s)xg: tg <'s <oo}. Note also M_ =
S(tyM. Thus, M = My U S(tpM = My U (T(tp) + U(t)M < My L T(gM v
U(tpM. '

Since T(t) satisfies || T(®) || £ (), c: R¥— R, c(t) continuous with litr_n):(t) =0,
then foranyx e M, | TOx I <IT® 1l x Il <c(t) K. Thus, there is a t5 > 0 such

that || T(t)x || <&, for all t2>t,. Fix this value of ty.
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Next, since S(t) is strongly continuous, there exists a finite set {t;, t, tj} such that
for each t € [0, ty) there exists t, € {ty, ty, ... tj} such that || S(t)xq - S(t)xg lI<e.

Finally, consider U(tyM. Since U(ty) is conditionally completely continuous by
hypothesis, and since {U(s)xy: 0 < s < ty} is bounded, this implies that U(tpM is
precompact, and hence there is a finite subset My < U(ty)M such that for each x €
U(tyM there is a xy; € My satisfying || xy-x Il <&

n
So now define Mg = My V kL-)l S(t)xg , finite by construction. Now, take any y €
M. Then, y € Mg, or y € T(tgM, or y € S(tpM. For any of these situations, the

above construction shows that there is a ygp € Mg satisfying || y - yg Il < & This

shows that M is precompact. W

With these results in hand, we are finally able to complete the proof of Theorem
43.5. We wish to write the closed loop system as the sum of an exponentially sta-
ble system plus a compact function so that Lemmas 4.3.7 and 4.3.8 apply. Before pro-

ceeding, we need the the following facts.

1. Using (4.3.3) and (4.3.5), (E;g); can be explicitly calculated to be

c+L
mp

. . X 1 Y-l i
(E'bB)S=——mB+L'[ (&*u + 200%y, + 0*(@* v _mlgg_)g, d.Z

(ii) Note that (Fy,g); does not affect (4.3.2) since c*(Fyg)3 = 0. It only affects 4.3.3)

in a significant way.

Using these two facts the closed loop system (4.3.1)-(4.3.10) can be written in the

" suggestive form
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g_-gq. §+ ﬂ+§§T+QX]Q (4.3.16)

I,@ + 0w =-K @+c*Fyp+Myp- %kgé 4.3.17)

)
mms=-Ky 476 G,
0

Cc+L 0
Y(©Emg 0 . }
Yl dz 4.3.18
+mB+L{( Qo*y, + oX@ ) - —fn(‘fB—")3 (4319

c+L O
, Y©mg | 0
mg +L1 ¢ | (v [y} -0"0 - K o+ & Fip + Myp)l);

c+L 0
cemfl e

mB +L (kglo-lgx u )3
YE) =21 +ETE) [T+ EET+EX]-1 (4.3.19)
Fop = (-11u17(0) —kyuy, (), -Hpuy"(€) — kpipy"(©),
c+L
m:+L (@ u +20"y + 0" @ W- ‘ﬂy_l)s dz)T  (43.20)
M, 5 = (1,"©) + kyu, ©), Bguy(©) +kpuy @), 0)T (4.3.21)

(uy + Iy [-@*Tp@ - K @ +c* Fyp + Myg]* u + 20%n,

+ QD +HIW W+ Y~ (gl W), @32)

u;°(c)=uy’(c)=0, u,"(c)=uy’(c)=0 u,"(c + L)=0 uy(c+L)=0 (4.3.23)

u;”(c+L)=0,u"(c+L)=0

Think of the three encircled terms in the equations above as the perturbation, while
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the remainder generates an exponentially stable semigroup by Theorem 3.4.1. To
apply Lemma 4.3.8 and Lemma 4.3.9, it thus remains to show that the perturbation

term is a compact map.

Lemma 4.3.9 - The perturbation term £: R3x R3Ix H2xH2x R » R3x R3xR3

x L2 x L2 defined by
g+ 0+ 87+ Elo
o kE
f( & @, uy, Uy, 2)= c+L, 0 (4.3.24)
! Y(E)mp ( 0 ]dz

mg+L c (kglo'lix u )3

L ‘(kgl().lgx w, 2
is compact

Proof of Lemma 4.3.9 - Recall that a compact function [Hut. 1, p. 207] is a continu-
ous function that maps bounded sets to relatively compact ones.  Clearly, the first

two components of f are compact, since these terms are finite dimensional, continuous

functions. First consider the last component of f, - ,;Io-lgx u, denoted f5, which maps
R3xHy2xHy?x R - L2x L2 (Recall u=(u;, uy z)T when axial displacements
are ignored.) If we write fs=f’c g, where g: R3 xHoszozx R — R3xL2xL2%x
R is the embedding map, and f’: R3x L2xL2xR - L2 x L2 is defined by f’ (&,
@, uy, Uy 2Z)= (-kglo'1§" u )1,2. Clearly, f’ is a continuous function, and by the

Sobolev embedding theorem [Paz. 1, p. 208], g is a compact map. Moreover, f ’ is a



139

bounded map since it is a projection of a bilinear function [Die. 1, Thm. 5.5.1]. Thus
f ’o g maps bounded sets to relatively compact ones. Finally, since f ‘o g is continu-
ous, this implies that fg=f "o g is compact.

Finally, consider the third component of f

ct 0
Y(©mg 0
mg + L c (kglo-lgx u )3

denoted f;, which maps R3 x Hy? — R3. Note that. f5 can be written as f; = gjo g’

where g; is the integral operator

c+L
gt = Y&ms [ [ o |g
mg + L c (h)3

mapping L2 — R3 and g’ is the operator (kglo'lgx u); mapping R3 x H02 X H02 x R
— L2 . By arguments exactly the same as the above paragraph it can be established

that g’ is compact. Clearly, g; is a bounded linear functional. Therefore, f; = go g’ is
also compact. Thus, all components of f( g o, u;, Uy, z) are compact, which proves

thelemma. W
With this final lemma, we are finally able to complete the proof of Theorem 4.3.5.
Completion of the proof of Theorem 4.3.5

By combining Lemma 4.3.9 and Theorem 3.4.1, we see that the conditions of Lemma

43.8 are satisfied. Thus, for the given control law (4.3.9) - (4.3.10), bounded orbits
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of (FSS) are precompact, so that (i) of Definition 4.3.2 is satisfied. Since we have
previously verified condition (ii) of Definition 4.3.2, this shows that the system (FSS)
is a gradient system. Using Theorem 4.3.4, all trajectories evolve toward the set of
equilibrium points of T(t), which is clearly {0}. Thus (FSS) with the control law
(4.3.9)-(4.3.10) is globally asymptotically stable.

To show that the decay rate is actually exponential if the mass of the rigid body is
much larger than the mass of the beam, consider the linearization of the system
(4.3.1)-(4.3.10) about zero:

i-

[0}

B[

Ip@ =-ke§ - K0 +¢* Fyp + Myp.

mgy =Fyp-Ky ¥
c+L c+L
Eop = (J (quy™ + Kkquy")dz, J (Hpuy™ + kpup,™)dz,
¢ C
-1 )3)T
c+L L
Mg = j (J col[(MA) + kAw,)); 5, 0]dx)dz
c z

u,+ How)+kad( u,) + 2= 0
u;(c)=u,(c)=0, u,’(c)=u,(c)=0

u,”(c+L)=0 uy”(c +L)=0, u;”(c+L)=0,u"(c+ L)=0

Note that £ is connected to the dynamics only through @. Therefore, the state space
form of these equations is in block upper triangular form, consisting of the &-o block

and the block of the terms in ¥, u, and u,. This means that the spectrum of this linear

system is the union of the spectrum of the §- block
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0 I
'kglo'l B Kn)
and the spectrum of the remaining terms. The spectrum of the remainder of the
dynamics are shown to be exponentially stable in the proof of Theorem 3.4.1, part(ii)
(see Lemma 3.A.3) if the mass of the rigid body is much greater than the mass of the
beam. Therefore, the linearization of the system (4.3.1)-(4.3.10) is exponentially sta-

ble. It is also easy to verify that the remaining nonlinear terms, denoted f€ o, ¥, uj,

. . Gl : .
Uy, Uy, Uy,) satisfy }lgb_lfic'l)T_= 0, where x = (€, @, ¥, Uy, Uy, Uy, uy)T. (See the

proof of Lemma 3.A.3 if there is difficulty in establishing this.) We have therefore
obtained the following information: (i) the linear part of (4.3.1)-(4.3.10) is exponen-

tially stable, (ii) the nonlinear portion of (4.3.1)-(4.3.10) satisfies %%: 0,

and (iii) (4.3.1)-(4.3.10) is globally saymptotically stable. Thus, Theorem 3.A.1

applies we conclude that @ — 0,£ — 0,u — 0,u, = 0, Y — 0 exponentially. W

Analogous to Theorem 4.2.2, we have the following theorem, which allows for a

class of nonlinearities in the sensors and actuators.

Theorem 4.3.10 - Consider the system described in Theorem 4.3.5. Let the control
law be

z:=-kETOE - g, (@ (4.3.25)
Er:=-g,® : (4.3.26)

where k(ETE) is an arbitrary continuous nonlinear function satisfying == > k(ETE) 2 ¢,
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>0, gm(_g) is a continuous nonlinear function lying in the sector [cw, o), C, > 0, and

gy(i) is a continuous nonlinear function lying in the sector [cy, o0), cy > 0. Assume

that the system is well-posed, i.e., there exists a unique, continuously differentiable
solution to (4.3.1)-(4.3.8) with control law (4.3.25)-(4.3.26) for all initial conditions
sufficiently smooth. Then the system is globally asymptotically stable, i.e., ® — 0,&

—0,u—0,u,— 0, ¥y — 0 in appropriate norms.

Proof of Theorem 4.3.10 - The method of proof will be again to verify that the sys-
tem is a gradient system, and then apply Theorem 2.3.4. Consider the Lyapunov func-

tion candidate

c+L

. e 14T ey 2
E@f ¥,nu):=10"0 + | g+ u+Y' il dx
C

o4l jTﬁ
1 Ty A m2 m2 k___
+ Lmglly 1P+ f[ul(ul )+ )] dx 4 1(3,‘,)( dx

C

(For simplicity, let E denote E(®, &, ¥, u, 1), and let E denote the time derivative of
E@, & ¥.,u u).) Asin Theorem 4.2.2, E is a positive definite function. Therefore

this functional satisfies requirements (iia) and (iib) in the definition 4.3.2 of the gradi-
ent system. By using exactly the same methods as in Theorem 4.3.5, one can verify
that conditions (iic) and (iid) of definition 4.3.2 are also satisfied. Thus, the remaining
task is to show that condition (i) holds, i.e., bounded orbits of the system are precom-
pact.

If we insert the control law (4.3.25)-(4.3.26), we can separate the resulting differen-

tial equation into two parts. One part will be the globally asymptotically stable sys-
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tem whose equations are described in Theorem 3.4.5. This system will be perturbed,

much like (4.3.16)-(4.3.23). It can be verified that the resulting perturbation is

E+11+EET + EXlo
*ETOE
(€ o, up, Uy, 2)= Y®m TL( g
mp+ Lo (ETDIE u)
-kETOIE w5

This ﬁerturbation can be shown to be compact, exactly as in Lemma 4.3.9. (The
only difference in the proof is the k(ETE) term, which by hypothesis is continuous.
Otherwise the proof is exactly the same as Lemma 4.3.9.)

Using Theorem 3.4.5, this last compactness result, and Lemma 4.3.7, we thus con-
clude that bounded orbits of (4.3.1)-(4.3.8) together with the control law (4.3.25)-
(4.3.26) are precompact. Combining the previous results, we thus conclude that
(4.3.1)-(4.3.8) together with the control law (4.3.25)-(4.3.26) is a gradient system.
Using Theorem 4.3.4, all trajectories evolve toward the set of equilibrium points of
T(t), which is (0). Thus (FSS) with the control law (4.3.25)-(4.3.26) is globally

asymptotically stable. H

4.4 Lyapunov Based Attitude Control for a Flexible Spacecraft - Beam Damping
Absent

Theorem 4.4.1 - Consider the flexible spacecraft model where axial effects are
ignored, described in section 3.1.6 and denoted (FSS/A). Also assume that no beam

damping is present, i.e. k = 0. Then the equations become
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= 1O+ET+E0 (4.4.1)
oo + @To@ =1+ Eyp + Myp (4.4.2)
mg§ = YEF,5 + Er (4.4.3)
YE =2(1 +ETE 1+ EET +EX] -1 4.4.4)
Fop = (1u©,  —i0,7(),
c4L
(6 x u + 20x u, + Gx(@xw) + Y1§ )3dz])T (4.4.5)
Mg = (i@, 1puy©, O)T (4.4.6)
(u+ OF u + 200 u, + OGN + Ho + Y'li)1,2= 0 (4.4.7)
u,(c) = uy(e) = 0, uy’(c) = uy’(c) =0 (4.4.8)
u,"(c+L)=uy(c+ L)=0 By (c + L) =-F;, i=1, 2.
Let the control law be

T:= -k§§ -K @ (4.4.9)
®12=-A(gc+ L)+ uCc+ L)+Y'P), (4.4.10)
Er:=Kj ¥ (4.4.11)

where K  is a positive definite matrix, kg € R with kg >0, A € R?%2 is a positive defi-

nite matrix, and Ky is a positive definite matrix. Then the system is globally asymp-

totically stable, i.e., @ — 0, & — 0,u — 0,u, = 0, y — 0 in appropriate norms.

Proof of Theorem 4.4.1 - The method of proof will be exactly the same as before:
we will show that our spacecraft system is a gradient system, and then use Theorem

4.3.4. Again, consider the Lyapunov function candidate
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c+L
2
E@& y,uu):= %QTIOQ + f Ilgt+gxg+Y'ljr_ll dx
c

c+L
+ 1 myll P+ f[ul(ul”)z + 1y(uy"?] dx +keln(1 +ETE) (4.4.11)

C

(For simplicity, let E denote E(q, E y,u u,), and let E denote the time derivative of
E(@ & ¥,u u)) This functional is exactly the same one that was used in the proof

of Theorem 4.3.5. Note again that this functional satisfies requirements (iia) and (iib)
in the definition of the gradient system. We need to verify the rest of condition (ii),

and then afterward we will show that condition (i) is achieved.

As has become habit, we can write down E by inspection. For a mechanical sys-
tem, recall that the rate of change of energy is the instantaneous power delivered to
the system. Since the external forces acting on the system are the torque jets, exter-

nal thrusters and the forces applied to the beam, we must have

E=o't + Flu(c+ L)+ uc+ L)+Y !9+

FrTy + (1+ET0 K 28TE (4.4.12)

= Tt +Flgc+ D)+ uc+ D+ Y1 P+FTy +kEle

The first term of (4.4.12) is the instantaneous power delivered by the torque jets,
the second term is the instantaneous power delivered by the force actuators on the
beam (recall that the instantaneous power must be calculated with respect to the
inertial frame),' the third term is the instantaneous power delivered by the external

thrusters, and the last term is simply the rate of change of the attitude energy which
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has no simple physical interpretation. Inserting the values of E, Fy, and 2 from

(4.4.9)-(4.4.11) then yields

E =-0"K 0- (5c+L) + @ u(c +L) + Y1 ); 5T A (a(c +1)

+@*u(c+L) + Y19 ,- gTK)., ¥ (4.4.13)

<0

Thus (iic) is verified in the definition of gradient systems. To show (iid), we need to
show that if E(T(t)x) = E(x) for all t = 0, then x is an equilibrium points of (FSS).

From (4.4.13), E(T(t)x) = E(x) for all t 2 0 implies that ® = 0, y =0, and (u(c +L) +
@ u(c +L) + Y1 §); 5 =0. Equivalently, (4.4.13) implies that @ =0, ¥ =0, and
(uy(c +L))y 5 =0. This in turn shows that @ = 0, ¥ =0, uy(c +L) =0, @ =0, and ¥ =0.

Equations (4.4.7) and (4.4.8) then reduce to

(uy +Ho@) ); =0 (4.4.14)
u,(€)=uy(c)=0, u,"(c)=uy’(€)=0 u;"(c + L)=0 uy"(c+L)=0"(44.15)

u,”(c+L)=0,uy"(c +L) =0, yfc+L) = 0.

It.is easy to show that the only solution satisfying this linear differential equation

and the given boundary conditions is the zero solution. Therefore, u; = up =0 and uy,
= u,y, = 0. Finally, combining these results in (4.4.2) and (4.4.9) shows that E=0.

Thus, E(T(t)x) = E(x) for all t > 0, implies that x = 0, i.e., X is an equilibrium point of
(FSS). Thus (iid) is satisfied.
Again, we must show that bounded orbits are precompact. Let us write the closed

loop system in the suggestive form
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E=-8+ §+ [I+§§T+§"L

Ipd + 0@ =-K,0+Fyp + Myp - | k£

&
=Ky 5076
Y(E)m f 0
+ =B
mB"'L O b + oF @ m"_)- j} }z (4.3.18)

c+L, 0
, YCm, ( 0 },z
mg+ Ly | (* [y 0@ - K@+ ¢ Fyp + Myp)l)s

c+L 0
+§¥@‘_I’B [ 0 )dz
(kglo & u)s

YE) =21 +ETE) T+ EET+EX]-1
Fyp = (19,7©),  —Hu,(0),
c+L

f(sgxu + 20%y, + @@ 1) - Y__IS!;¥)3dz )T

mg

mg+L "~

Myg = (1u,"@), Bauy"@), 0)F

(uy + (o [-0"@ - K @ + c* Fyp + Mppl)* u + 20 u,

+ @M@ + KW + Y19); = (ke lg 18wy

...............................

u,(c)=u,(c)=0, u,’(c)=u;’ ©=0 u”(c+L)=0 uy,"(c+L)= 0

Kyu;(c + L) =-F, (1), Byu,"(c + L) =-F,(t)



148

where (F,(1), Fz(t))T =-A(glc + L) + @fuc + L)+ Y1 1)1,2. The encircled por-

tion of the equation can be thought of as the perturbation, while the remainder is glob-
ally stable by Theorem 3.5.1. Note that the perturbation is of the same form as the
Theorem 4.3.5, so it is a compact map, by Lemma 4.3.9. Then, applying Lemma 4.3.6,
followed by Lemma 4.3.7, we conclude that bounded orbits are precompact. Thus,
conditions (i) and (ii) are verified in the Definition 4.3.2. We therefore have a gradi-
ent system, so that Theorem 4.3.4 applies. From 'this, we conclude that all trajecto-
ries of (4.4.1)-(4.4.11) evolve toward equilibrium points of the system, which is clear-
ly {0}. This proves that the system is globally asymptotically stable. I

Finally, we have the analogous result to Theorems 4.2.2, 4.3.10, which allows for a
class of nonlinearities in the sensors and actuators. The proof is exactly the same as

those of Theorems 4.4.1, 4.3.5 and 4.3.10, and thus will be omitted.

Theorem 4.4.2 - Consider the system described in Theorem 4.4.1. Let the control

law be

T:=- g, (@) - kETOE
Er:= -gy(l)
)2 =-ge(nlc+ L)+ @ uCc+ L)+ Y1),

where k(ETE) is an arbitrary continuous nonlinear function satisfying o= > kETE) = ¢,

>0, gw(g) is a nonlinear function lying in the sector [cm, o), Cy > 0, gy(y) is a non-
linear function lying in the sector [cy, o), cy >0, and ge((n(c + L) + o*u(c+ L)+

Y139 )12 is a nonlinear function lying in the sector [Cg, ), cg > 0. Assume that the
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system is well-posed, i.e., the closed loop system has a unique, continuously differen-

tiable solution for all initial conditions sufficiently smooth. Then the system is globally

asymptotically stable, i.e., @, ¥,u, and u, all go to zero ast — eo.

4.5 Conclusions and Future Research

This chapter has developed an attitude control law for a variety of spacecraft sys-
tems: a rigid spacecraft, a flexible spacecraft with significant beam damping, and a
flexible spacecraft with zero beam damping. The laws were seen to be implementable
by linear or nonlinear static state feedback, and global asymptotic stability was
obtained for each configuration. |

As for future research, most of the questions remaining have to do with practical
implementation. From a theoretical viewpoint, if a stabilization result could be
obtained for the so-called geometrically exact beam model (see the end of Chapter 3),
then it is easy to see that a feedback law similar to those of Theorem 4.3.5 and 4.4.1
would yield similar results. The major practical problems would implementation of
these feedback laws with torque thrusters which are usually only full on - full off
thrusters, rather than proportional thrusters. Another practical problem would be to
determine the effects of limited obtainable force and torque from the actuators.

The major disadvantage of these Lyapunov based laws is that they are essentially
“infinite horizon". Exponential stability is guaranteed in the above theorems, but
there is no straightforward relationship between the control parameters and the expo-
nential time constant. This makes it difficult for the engineer to design for an a priori
decay rate. In addition, one would ideally like an attitude control law that would steer
from one attitude to another in a fixed time interval. Unfortunately, Lyapunov based

control laws as they are known at present are not suitable for such a design goal. Tt
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is with these engineering ideas that we turn to the next chapter. -
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Chapter 5

ATTITUDE CONTROL USING THE METHODS
OF EXACT LINEARIZATION

5.1 Introduction *

It is now well known that a number of nonlinear control systems of engineering inter-
est can be transformed by a static state feedback and a nonlinear change of coordi-
nates into an equivalent linear system [De L. 1], [De L. 2], [Mey. 1]. In particular, in
the area of attitude control, the method has proved to be quite useful. Dwyer [Dwy.
1] used this method of linearizing transformations to obtain exact nonlinear continu-
ous time control laws for large angle rotational maneuvers for a rigid body by use of
external thrusters. Similar methods are employed in [Dwy. 3] to design control laws
for a rigid body controlled by both external thrusters and momentum wheels.

This method has also been successfully been used for designing a nonlinear attitude
control law for a satellite with flexible appendages. In [Mon. 1], the control law was
derived for a satellite with its flexible appendages modelled by their finite dimensional
modal approximation. However, implementation of the control scheme required infor-
mation about the beam velocities and displacements at several points of the beam. In
practice, these are difficult measurements to make.

The purpose of this chapter is to outiine the design and implementation of a nonlin-
ear feedback control law for a satellite with flexible appendages without the restric-

tions of [Mon. 1]. The spacecraft to be considered will be a rigid body with a single
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flexible appendage attached to the rigid body. The appendage will be modelled as an
Euler-Bernoulli type beam, rather than its finite dimensional approximation. The con-
trol law will be derived using linearizing transformations in the spirit of the above
papers, but the implementation will be considerably different than [Mon. 1] in that it
will not depend on the beam displacements and velocities, but rather on the forces
and moments at the point of attachment. These quantities can easily be determined

by the use of strain rosettes.
5.2 Exact Nonlinear Attitude Control Law for a Rigid Spacecraft

As in the pmﬁous chapter, we will first examine the rigid body to help elucidate the
ideas for studying the flexible structure. The control law will be obtained by methods
of exact linearization. (For a thorough explanation of this procedure, see [De L. 1],
[Sas. 1], and, in particular, [Isi. 1).) More precisely, we desire to find a static state
feedback and a nonlinear change of coordinates to transform the nonlinear differential
equations of the rigid spacecraft (RS) into a "normal form" [Isi. 1, p. 8], i.e. a system
with linear input-output dynamics, and a corresponding unobservablé, possibly nonlin-
ear subsytem. The use of exact linearization for obtaining attitude control laws for a
rigid spacecraft was first obtained in [Dwy. 1] and expanded in [Dwy. 2] and [Dwy.
3]. The derivation given below is a slightly more modern method, and will serve as

the basis for the design of the flexible spacecraft control law.

Theorem 5.2.1 - Consider the rigid body spacecraft model without momentum

wheels described in section 3.1.6 and denoted (RS):

E=1{+EET +E0. (5.2.1)

L@ + @y =1 (5.2.2)



153

Let the control law be

1= @M@+ 2(1 + ETO (1 - E9CBE - D) - LETwo (523)
where B >0 and y> 0 then
(i) The attitude E(t)—0 exponentially, and _é,(t)—)O exponentially;

(ii) The angular velocity @(t)—0 exponentially, and @(t)—0 exponen-
tially.

Proof of Theorem 5.2.1 - We follow the linearization procedure given in [Isi. 1,
sec. 2.3, 3.3]. Usually, an output is present in our state space formulation, and we

would then "differentiate the output until an input appears”. Since no output is speci-
fied, we are free to choose it. Since we are attempting to control &, a logical choice is

to choose £ =(&;, &, &3)T to be the "dummy" output function. Differentiating & yields

(5.2.1), which will be repeated here for convenience.
&= 1 @A+EET+E90 (5.2.4)
Since no input appears in this expression differentiate again

E= QA+ + TN+ JA+ET+EHR . (5:2.5)

The calculation of the derivative in the first term is rather tedious; after computation

we plug its value in and obtain

= 1T+ o+ Ew) + 1+ 8T + £
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%<I+§§T+§*)[@T@>g +@]. (5.2.6)

Insert (5.2.2) and use the fact that I is invertible to obtain

o

E=1a+ET+E e + 1 (@ +1)] (5:2.7)

Note the term outside the square brackets is nonsingular with inverse 2(1 + ETe)l

(I - EX): using properties of cross-product and the fact that EX§ = 0 yields

1a+EET+£9-20 +ETO1A- 89 = 1+ 8O- £ + EET

- EET(E") + £* - E* @M | (5.2.8)
= (1 +ETE) [T + EET- EXEM (5.2.9)
= (1 +ETE I+ EET + ETEI- EET) (5.2.10)
=1 (5.2.11)

Then, choose the following control law (by setting the RHS of (5.2.7) equal to some

new exogenous input w and solving for T)

1= 0@+ gl @ +EET+ 891w - L€ wo

= @M@+ 2(1 + ETE (1 - 9w - [ ETw)w (5.2.12)

where w is a vector of real valued functions, and again can be thought of as a new

exogenous input. Applying (5.2.12) to (5.2.7) then yields the linear system

E=w. (5.2.13)

On this controllable linear system, the poles can be placed as desired. For example,

let
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w= BE—1E. (5.2.14)

where B > 0 and y > 0. Inserting (5.2.14) into (5.2.13) and writing (5.2.13) in state
space form yields

HEERH

which implies (since B > 0 and ¥ > 0) that ()—0 exponentially, and E(t)—0 expo-
nentially. In turn, (5.2.1) shows @(t)—0 exponentially. Finally, using (5.2.3) in
(5.2.2) shows that @(t)—0 exponentially. Since a combination of (5.2.14) and
(5.2.12) yields (5.2.3), (i) and (ii) are proved.

Comment 5.2.2 - The reader familiar with the exact linearization literature will note
from (5.2.11) and (5.2.7) that the nonlinear system (RS) with dummy output y = § €
IR3 has (vector) relative degree (2, 2, 2) [Isi. 1, p. 76], so the linearizing feedback

(5.2.12) is as expected. Because the original system is of order 6 (state variables g

and @) and the linearized system is also of order 6 (state variables § and g), there

are no zero dynamics. In other words, the linearization is a global linearization.

Comment 5.2.3 - The design using the linearized system (5.2.13) can be done in
many ways other than the simple pole placement done here. One desirable form of
the controller on the linearized system (5.2.13) would be to use a fixed end linear
optimal control law. This would yield a controller which would steer from one attitude
to another in a fixed time interval. This is a major improvement over the Lyapunov

based control laws obtained in Chapter 4.
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53 Exact Nonlinear Attitude Control Laws for a Flexible Spacecraft - Beam

Damping Present

For simplicity, we will control the satellite by using the torque jets only. (See
Remark 5.3.3 at the end of Theorem 5.3.1 for further comments). As noted in section
3.1.6, attitude control for a flexible spacecraft differs from that of a rigid spacecraft in
that the rotational and translational terms are coupled. This means that in contrast to
Theorem 5.2.1, the force thrusters on the rigid body as well as the torque jets on the
rigid body will be needed to perform the maneuver. Most authors ignore the transla-
tional term entirely ((Mon. 1],), arguing that the mass of the rigid body .is much larger
than the mass of the beam. In Theorem 5.3.4, this assumption is rigorously justi-
fied. To this author’s knowledge, this is the first direct proof that the assumption is
correct to appear in the literature.

To design the control law, the method of linearizing transformations will again be
used. Strictly speaking, since the flexible spacecraft model (FSS) contains partial dif-
ferential equations, the methods mentioned above do not necessarily apply. Howev-

er, we will proceed blindly along these lines and investigate what happens.

Theorem 5.3.1 - Consider the flexible spacecraft without momentum wheels
described in section 3.1.6, and denoted (FSS). Assume explicitly that damping is pre-

sent. Also assume no active control on the beam, so that Fy(t) = 0, i=1, 2, 3. The

equations then become
E=ln+ET+ 80 ' (53.1)
IOQ+Q"IOQ =1+c*Ep+Mp (5.3.2)

YE) =201 +ETE) 1+ EET+EX]-1 (5.3.4)
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Fyp =F@©) =—po'(wl . - k'@

Mg = (10,7(0) + kpuy€), Hay"(0) + kg (@), O)F

U+ OF u + 20, + ©@N@") + K@) + k) + Yl =0 (5.35)
u,(c) = uy(€) = u3(c) =0, uy’(c) =uy(c) =0

u,”(c +L) =uy"(c + L) =0 (5.3.6)

u,”(c + L)=0 u,"(c+ L)=0 uy'(c+ L)=0

Suppose now that we can determine Eyp(t) and M,g(t) by on-board measurements.

(See Appendix A for an example of how this might be done). Apply the control law

1= 0o+ 2(1 + ETE (1 - EN(BE - ) - [ET e g - My (5:37)
Fr= - YE)F,p - mpAy (5.3.8)

where B >0, y>0and A € R3%3 is a Hurwitz matrix. Then
(i) The attitude E(t)—0 exponentially, ;md g(t)-—)O exponentially;
(ii) The angular velocity @(t) — O exponentially, and @(t) — 0 expo-
nentially;
(iii) The velocity of the center of mass of the rigid body y(t) — 0 expo-

nentially, and §(t) — 0 exponentially;

(iv) The beam deflections u(x, t) and beam velocities u(x, t) both go to

zero exponentially.

Proof of Theorem 5.3.1 - As in the proof of the rigid body case, we attempt to lin-

earize the equations using an appropriate feedback and change of coordinates. It is

convenient to choose the dummy output function to be z = col( § , ¥). Following the
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linearization procedure we first differentiate & This yields (5.3.1), as before. Since

no input appears, differentiate again. This yields (5.2.6) as obtained previously:

g=1a+gT+ E 00+l (539)

Insert (5.3.2) and use the fact that L is invertible to obtain

&= '% (@ +EET + ENETo + [y {(-0"go + *Fog + Mg +2}].  (5.3.10)

Now set,
2:=%-cFpg-Myp (5.3.11)

where, again, F,z and M, 5 have been measured, and £ is a vector of real valued func-

tions. (% can be thought of as the new exogenous input.) Insert (5.3.11) into (5.3.10)

to obtain

E=L1a+EeT + E9¢ETwe + ) (-0 e +1)]. (5.3.12)

1
2
But this is exactly the form of the equation one gets for a rigid body without flexible

appendages (see (5.2.7)). Since the term outside the square brackets is nonsingular

(see 5.2.8), we can apply the following control law

T:= @ o+ IO[% (1 +EET + 9w - [HETo)w

= 9"+ 2(1 + ETE (1 - Ew - [iE T (5.3.13)

where w is a vector of real valued functions, and again can be thought of as a new
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exogenous input. Applying (5.3.13) to (5.3.12) then yields the linear system

E=w. (5.3.14)

We now consider the other dummy output variable, ¥ . Differentiating ¥ yields

from (5.3.3)

¥ =[Y(E)Fyp + Erl/mp. (5.3.15)

Therefore, choosing the control law for the force thrusters to be

Ep:=-YE®F,p + mgFy (5.3.16)

where ET is the new exogenous input. Inserting this control law into (5.3.15) yields

y= Ep. (5.3.17)

The equations (5.3.14) and (5.3.17) thus comprise decoupled, controllable linear sys-

tems which can be designed using methods of the engineers choice. For example, let

wi= PE—1. (5.3.18)
Fr = -Av. (5.3.19)

where p > 0, ¥y > 0, and A is a Hurwitz matrix. Insert the control law (5.3.18) and

(5.3.19) into (5.3.14) and (5.3.17). Then the nonlinear, infinite dimensional system
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given by (5.3.1)-(5.3.6) reduces to a set of linear, ordinary differential equations, cou-
pled to a nonlinear differential equation:

gl [0 1 0 [¢g

> | = > . 5.3.20
g Br v 0 £ ©.3.20)
¥ 0 0 -A ¥

1, + po) + ko(u,) +gEE L L, u)=0 (5.3.21)

where g€, §, ¥, U, u,) is obtained from equation (5.3.5), and the various relationships

between ®,® and &, §

The first two components of (5.3.20) imply (since B > 0 and y > 0) that E(t)—>0

exponentially, and _é,(t)—)O exponentially. From (5.3.1), @ = 2(1 + ETe1a - §,x)§
whence it follows that ®w(t)—0 exponentially. From (5.3.18), (5.3.14) and (5.3.9) we
also have that @(t)—0 exponentially. The last component of (5.3.20) shows that
¥(t) and $(t) =0 exponentially. Since a combination of (5.3.19) and (5.3.16) yield
(5.3.8), and (5.3.18), (5.3.13) and (5.3.11) yield (5.3.7), (i), (ii) and (iii) are proved.

To show part (iv), we must verify that the solution to the partial differential equa-
tion (5.3.21) is exponentially stable. Note we are simply verifying that the "zero
dynamics" are exponentially stable. Since the proof of the result requires tedious,
although straightforward, arguments from semigroup theory, the details are left to the
Appendix to this chapter, Appendix 5.A. It should be intuitively clear, however, that
as the rigid body stops rotating and translating, the beam vibrations damp out due to

internal beam damping. This is intuition behind the proof in the Appendix . |

Comment 5.3.2 - The interpretation of the control law is simple. First, the effect of

the flexible body on the rigid body is removed by (5.3.11) and (5.3.16). We are left
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with decoupled translational and rotational dynamics, exactly as in the rigid space-
craft. This rigid structure is the controlled by (5.3.19), (5.3.13) and (5.3.18) which is
exactly the same form of control obtained in Theorem 5.2.1 (see (5.2.12) and (5.2.14)).

Remark 5.3.3 - In the case where momentum wheels alone are used to control the
structure, the control law is very similar to the one in Theorem 5.3.1. The equations
of motion and kinematics for this structure are given in section 3.1.6, and denoted

(FSSMW). In this case, let the control law be defined by

z:=0 » (5.3.21)
v o= - 0Nl - 01, Q. - 201 + ETEY 10y L)X - E-BE— 1) +

Ao - 1)ETW® + *Fyp + Myp (5.3.22)
Fpi= - YEF,p - mgAy (5.3.23)

where >0, >0, and A € R3x3 is a Hurwitz matrix. For this choice of control law it
is easy to verify, using exactly the same methods as in the proof of Theorem 5.3.1,

that the conditions (i), (ii), (iii), and (iv) of Theorem 5.3.1 are satisfied.

One undesirable feature of the proposed control law in Theorem 5.3.1 is its complexi-
ty. In contrast to Theorem 5.2.1 for the rigid space structure, both sets of actuators
are needed for the attitude maneuver. This is because, as stated previously, the rota-
tional and translational terms are coupled. It would be very nice from a practical point
of view if an attitude control law could be obtained using only one set of actuators.

This is the content of the following Theorem.

Theorem 5.3.4 - Consider the flexible spacecraft without momentum wheels

described in section 3.1.5, and denoted (FSS). Assume explicitly that damping is pre-
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sent. Also assume no active control on the beam, so that Fy(t) = 0, i=1, 2, 3. The

equations then become

E=JH+EE"+ L

L@ + @Iy = T+ c* Eyp + Myp.

mp¥ = Y®E,p + Er

YE =201 +ETE 1+ EET+EX]-1

Fyp =—0'@l - k@)l

Mg = (10,7) + Kup"(0), Houy”(0) + Kpu0(), O)T
u,+ OF U+ 207, + @@ W) +pow) +kdy) + Y1§=0
u,(€) = uy(€) = u3(c) =0, uy’(c) = uy(c) =0
u,"(c+L)=uy"(c+ L)=0

0" +1)=0 uy”(c+L)=0 ug(c+L)=0

(5.3.24)

(5.3.25)
(5.3.26)

(5.3.27)

(5.3.28)

(5.3.29)

Suppose again that we can determine Fyp(t) and M,g(t) by on-board measure-

ments. Apply the control law

1 = 0+ 2(1 + ETE) (I - EN(-BE — 1) - [oE @) *Fyp - My

(5.3.30)

where B > 0, and y > 0. Assume that the mass of the rigid body is much larger than

the mass of the beam. Then

(i) The attitude £(t)—0 exponentially, and _é_,(t)—-)O exponentially;

(ii) The angular velocity @—0 exponentially, and ®—0 exponentially;
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(iii) The beam deflections u and beam velocities u, both go to zero

exponentially.

Proof of Theorem 5.3.4 - The bulk of the proof is almost identical to that of Theo-
rem 5.3.1. Choose the dummy output function to be & Differentiating § twice with
respect to time yields exactly the same linear system as Theorem 5.3.1. Inserting the

control law yields

E= BE—1E (5.3.32)

which shows (i). Observing (5.3.24) and using the fact that £ and é £0 tO zero expo-
nentially gives @—0 exponentially. Using (5.3.9) and (5.3.32) also shows that @—0
exponentially. This proves (ii).

Thus, the only difference' in the proof is in showing that the beam velocities and
deflections go to zero exponentially. The proof is similar to that of Theorem 5.3.1, and

the details can be found in Appendix 5.A.. W

Remark 5.3.5 - As remarked previously, this result gives a rigorous justification of
an assumption used widely in the literature; namely, to design an attitude control law,
one can ignore the translational term if the mass of the rigid body is much larger than

the mass of the beam.

5.4 Exact Nonlinear Attitude Control Law for a Flexible Spacecraft - Beam

Damping Absent

In the previous section, attitude control was obtained by decoupling the rigid body

from the beam, and applying a rigid body control law. By decoupling the two compo-
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nents we are then left with an uncontrolled, damped beam. However, if the damping
is small, or essentially negligible, then oscillations in the beam can continue for an
undesirably long time. In this section we will consider the problem when the beam
damping is assumed to be zero. Since there is no damping in the beam, it is easy to
see that the control laws of section 5.3 will not work because the beam oscillations
will not die off. Thl;S, if we are to employ a decoupling linearization law in the spirit of
Theorem 5.3.1 or Theorem 5.3.4, beam control will be needed to stabilize the beam.

The type of beam control to be employed will be of the boundary variety discussed in
Chapter 2. As stated in Chapter 2, the main reason for using boundary control is that
it is far easier to implement then distributed control. The specific form of boundary
control to be used are force thrusters at the tip of the beam, combined with velocity
sensors also located at the tip of the beam.

With these ideas in mind, we now have the following Theorem:

Theorem 5.4.1 - Consider the flexible spacecraft without momentum wheels
described in section 3.1.6, and denoted (FSS). Assume beam damping is zero, i.e. k
=01in (3.1.57). Then the equations of (FSS) become

E= 10+ 88T + Exle. | (5.4.1)
I,® + OxIpo =T + c* Fyp + Myp. (5.4.2)
mpi = YEF,p +Fr (5.4.3)
YE =21 +ETE 1+ EET+EX]-1 (5.4.4)
Eyp =—13'Wl ¢

Mg = (9,70), Iu,"c), 0)T

uy+ OF u+ 205y, + OF@Y +pa@) + Yy =0 (5.4.5)

u;(c) = uy(c) =us(c) = 0, u’(c)=uy’(c)=0



165

u,"(c+L)=uy"(c+1L)= 0 (5.4.6)

l.l.iui”’(c + L) = 'Fi, i= 1, 2. MU3'(C + L) = 'F3

where F(t), i=1, 2, 3, is the the point force actuator associated with the ith axis.

Let the control law be

£ 1= @+ 2(1 + ETO 0 - EY(BE ) - hET @@ c*Fyp -Myp (547

ET = - Y@EbB - mBAi (5.4.8)
Fi(t) := -0 uy (c+L) i=1,2, 3. (5.4.9)

where B >0, 7> 0, A € IR3®3 is a Hurwitz matrix, and 0;>0, i=1, 2, 3. Then

(i) The attitude &(t) — 0 exponentially, and _é,(t) — 0 exponentially;

(ii) The angular velocity @(t)—0 exponentially, and @(t) > 0 exponen-
tially;

(iii) The velocity of the center of mass of the rigid body y(t) —0 expo-
nentially, and ¥(t) — O exponentially;

(iv) The beam deflections u(x, t) and beam velocities u(x, t) both go to

zero uniformly exponentially.

Proof of Theorem 5.4.1 - See Appendix 5.A.. W

Comment 5.4.2 - The interpretation of the control law is again simple. The rigid body
torque law (5.4.7)-(5.4.8) decouples the rigid body from the beam, and then stabilizes
the rigid body. The beam boundary control law (5.4.9) exponentially stabilizes the
beam. Thus we are again left with two decoupled exponentially stable systems, as in

Theorem 5.3.1.
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Remark 5.4.3 - From the proofs of Theorem 5.3.1, 5.3.4 and 5.4.1, we see that it is
only crucial for the beam configuration to be exponentially stable. In particular, the
Euler-Bernoulli beam model employed was not crucial in the proofs of the Theorems.
This means that any exponentially stable beam model can replace the Euler-Bernoulli
model, and the conclusions of the theorems are still true. For example, a damped
Timoshenko beam model would suffice, or an undamped Timoshenko beam model with
beam boundary control would also work (see [Kim 1]). From an engineering view-
point, the only difference is in the calculation of the forces and moments at the point of
attachment, and the calculation of beam response during maneuvers, quantities which

clearly depend on the beam model employed.
5.5 Conclusions and Future Research

This chapter has considered the attitude control problem for a flexible satellite con-
sisting of a elastic beam clamped to a rigid hub; the former is modelled as an Euler-
Bernoulli beam. Two improvements were seen over previous exact linearization
based attitude control laws. First, the laws were seen to be easily implementable
using strain roseitcs. Second, the laws took into account an infinite dimensional
beam model, rather than a finite dimensional approximation. The latter improvement
means that there is no need to worry about "spillover" problems associted with finite
dimensional approximations.

In terms of future research, there is still quite a bit of work to do. The main problem
with these exact linearization based control laws is that they are not robust. For the
stabilization problem considered here, robustness comes for free, but for geheral
tracking problems this is not the case. This is well-known in robotics, where the

"computed torque methods", also based on exact linearization, are known to exhibit
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tracking errors due to the inherent non-robustness of these laws (see [Sas. 1]).
Thus, it would be very desirable to find ways to enhance the robustness properties of
these controllers.

Other problems are still worth investigating, among them shaping of beam response,
sensor and actuator placement, and implementation issues dealing with limitations on

achievable torque in the control jets and on energy expenditures.

5.A Proofs of Exponential Decay

We first need the following result which will be used in all of the proofs of this

appendix.

Theorem 5.A.1 - Consider the following differential equation evolving on a Banach

space X:

x=Ax+f(t)x +gt) xo€ D(A) B.A.1)

where A: X — X is a linear map, possible unbounded, and where f: IR x X — X and g:
IR — X are C! functions. Suppose it is known that (i) The system is well-posed, i.e.,

there is a (strong) unique solution to (5.A.1) (ii) A generates an exponentially stable
semigroup (iii) (I — 0, and (iv) lig®il — 0 exponentially. Then, for any initial
condition x, € D(A), the solution to the differential equation (5.A.1), denoted x(t) =

S(t)x, satisfies lix(Hll — 0 exponentially.

Proof of Theorem 5.A.1 - Let T(t) denote the semigroup generated by A. Using

the "variation of constants" formula yields
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t
K = Tty + | TEO@R®D + g@lde
t

Take norms on both sides to obtain

t
Ix@il < IlT(t-to)Illlxoll +fllT(t-1:)|l [ Nf¢e)l lix(oll + lg(ollldt
to
Now use the fact that IIT(t-tp)ll < Mexp(-3(t-t)) for some M > 0 and some & > 0,

and lig®ll < Mgexp(-Bg(t)) for some Mg > 0 and some Sg > 0 to obtain

t
lix(tl < Mexp(-3(t-ty)lixgll + fMexp(-S(t-’t))[ll[f(t)lllIx('l:)II+Mgexp(-8g('c))]d1:
to .

Directly integrate the terms involving the exponentials to obtain

t
Ix(tl € MedQlixgl + MM, [e 3810 e3t10)] + fMe‘s(“T)ll[f(t)lIllx('c)lld't
§ - Ssg o

(5.A.2)

Note next that since If(t)l — 0, there is a t* such that If()ll < 6/2M, for all t > t*.

Inserting this expression into (5.A.2) yields

t
k@l < MeSEENxgl + MM e8¢ &80 + f_g_ et Dlix(v)lidr
t¥

5 -9,

for all t 2 t*. Now set u(t) = es("ﬁ)llx(t)ll. Inserting this then yields
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t
u(®) < Mu(tg)+ MM, [eB-300). 17 + %f u(r)de
o - E-gg t*
Now apply the generalized Bellman-Gronwall Lemma [Des. 2, Appendix E] to obtain
t
< Mu(t*}+ MM, [e@-38)tt). 1] + ﬁMu(t*)+ MM, B3 1)) § e 3tD2g4e
-9, - 8- ?s 2

Evaluate the integrals by direct integration to finally obtain

u(t) € Mu(t*)+ ng[e(ﬁﬁgm-t*)- 1] + Mu@t®)(l - ed2), (5.A.3)
8 - 9 MM (e(3-08)(+-t*). SE-t*)12)
S -
g

To recover lix(t)ll, multiply both sides of (5.A.3) by e Ot™), Note that every term

is then exponentially decaying. Thus, there is some M” > 0, &” > 0 such that

lix(oll < Mg S )
for all t > t*, which proves the Theorem.

Proof of Theorem 5.3.1

To show that the beam deflections and velocities go to zero exponentially, we will
first show that the linear portion of the beam dynamical equations (5.3.5)-(5.3.6) gen-
erate an analytic, exponentially stable semigroup (Theorem 5.A.2). Using the results
of part (i) of the Theorem and the Bellman - Gronwall type result above (Theorem
5.A.1) will then yield the result.

Consider a new differential equation X = Ax where A is the linear portion of (5.3.5):
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A:=|: 0 . :| (5.A.4)
() k()

(Refer to section 2.1 for the definition of the various terms in A.) Let the space A
operates on be X = R3xIR3xH,2xH2xH,!xL?xL%xL?2, and let the domain of A, D(A),

be defined as

D(A) = {(x; X, X3 X; X5 Xg X7 Xg)TI X; € R3, x, € IR3, x; € Hp*, x4 € Hyt, x5 €
H?, x € Hpt, x; € Hpf, xg € H2, x4(c)=xg(c)=0, X5"(c+L) = x,"(c+L) =
x6”(c +L) - x70(c +L) = 0’ x3”l(c +L)___x4lu(c +L)=x6”l(c +L)=x7lll(c +L)=O,

Xg'(C+L)=xg'(c+L)=0) (5.A.5)

Let the inner product on X be

[a,blx = [a},b1] g+ mp[ay,0, )+ [a3,b5] + [a4,b4] + [a5,bs] + [agbg] + [a7,b7]

+ [2g,bg)(5.A.6)

where [a, bl is the ordinary inner product in IR3, and [a, b] is the ordinary L2 inner

product.

Theorem 5.A.1 - Consider the differential equation

§ +pAy +Ay=0
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where A is a positive definite, self-adjoint unbounded linear operator operating on a
Hilbert space X, and p € R, p > 0. Write this differential equation in state space form

as

where x:=(y, 5,)T_ Let the domain of the operator L be D(A)®D(A). Then the clo-

sure of L, denoted L, generates an analytic, exponentially stable semigroup on W =
D(A%3)®X.

Proof of Theorem 5.A.1 - See [Hua. 1, Theorem 4.1}, or [Mas. 1, Theorem 1.1].
Using this result, we immediately have the following theorem.

Theorem 5.A.2 The closure of the operator A defined in (5.A.4) generates an analyt-

ic, exponentially stable semigroup T(t).

Proof of Theorem 5.A.2 - The operator consists of 3 decoupled components. Two
components are due to transverse components, and one is due to axial deflections. It

thus suffices to show that the operators

0 1 0 1
= dL, =
M e st | A TR0 %0
dz* ozt 0z 0z2

for some k > 0,corresponding to transverse and axial deflections, respectively, satisfy

the conditions of Theorem 5.A.1. We will consider L, and L, will follow similarly.
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Consider the differential operator Q_‘;('_Z. Using a simple integration by parts, it is
z

easy to verify thatforg,he { x e HO4 | x”(c+L) =0, x"’(c+L) = 0},

P 1ore 1 and (5.A.7)
[a—z4,g] (g, z4] an

(2 =@ ¥, (5.A8)
az 972 072

where [+, ¢] is the ordinary L2 inner product. (5.A.7) shows that a‘;('z is a self-
72

adjoint operator on L2 with the domain {x € H04 | x”(c+L) =0, x"”’(c+L) = 0}. Equa-
tion (5.A.8) combined with Proposition 3.4.2 shows that it is also a positive definite
operator. Therefore, using X = L2, DA) = {x € Ho4 | x”(c+L) = 0, x”’(c+L) = 0}, and
Theorem 5.A.1 shows that the closure of Ly generates an analytic, exponentially sta-
ble semigroup. By identical reasoning, the closure of L, generates an exponentially

stable semigroup. Hence we conclude that the closure of A of (5.A.4) generates an

exponentially stable semigroup. |

Proof of Theorem 5.3.1, part(iii) - Rewrite (5.3.5) in state space form as

Lo WH BN
[—l-ltt]= —H9(s) -ka( (Qx) - =208 Y-li (5.A.9)
u
°”[ :|=: A[ ] * B(t{u] + 0 (5.A.10)
u,

=
s =

I
s
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A, B(t), f(t) are obvious from (5.A.9). From Theorem 5.A.2, the closure of A gener-
ates an exponentially stable, analytic semigroup. Since © and @—0 exponentially by
design, IIB(t)ll goes to zero exponentially, where Il Il denotes the norm induced by the
inner product (5.A.6). Finally, since §—0 exponentially by design, lIf(t)ll goes to zero
exponentially. Thus, the conditions of Theorem 5.A.1 are met, and we conclude that u

and y, go to zero in the X (energy) norm. M

Proof of Theorem 5.3.4, part(iii) - To show that the decay rate is exponential, we
will first show that the linear part of (i) is exponentially stable (Lemma 5.A.6).
Using the results of part (i) of the Theorem and a Bellman - Gronwall type proof will
then yield the result.

Consider a new differential equation X = Ax where A is the linearization of (5.3.28)

at the origin:

0 I

c+L c+L

-pa() - L . k() - L | kd()dz
mB{”"”“Z mB{ ®

(5.A.11)

(Refer to section 2.1 for the definition of the various terms in A.) Let the space A

operates on be Hosz02xH01xL2xL2xL2, together with the corresponding “energy"

inner product

[f’ g]x = [(fl’ fz, f31 f49 f59 fG)T, (glv gz, 83, 84, 85» gG)T] =[fl”’ gl”] + [fz”, gz’,] +
(3", 83”1+ [fy, 84] + [f5, 85] + [fg, 86l- (5.A.12)
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where [e, ] denotes the ordinary inner product in L2[c, c+L]. The term energy is
used since the first three terms of the inner product (5.A.12) represent the potential
energy of the beam, while the latter 3 terms represent the kinetic energy of the beam.

Let the domain of A, D(A), be defined as

D(A) = {(x; x5 X3 X4 X5 Xg X7 xs)TI X, € Ho4, Xy € H04, X3 € H2, X4 € H04, Xg €
H04, Xg € H2, X3(C)=x4(c)=0, X,"(c+L) = Xp"(c+L) = x4"(c+L) = X5"(c+L)
=0, X;"(c+L)=xy"(C+L)=xX4(c+L)=xs""(c+L)=0, X4'(c+L)=xg'(c+L)=0}

(5.A.13)

One should note the strong similarity between this operator, and the operator A’
(defined by (3.A.4)) used in the proof of Theorem 3.4.1, part (ii). In fact, Lemma
3.A.2 immediately yields

Lemma 5.A.3 - Consider A of (5.A.11). Suppose the mass of the rigid body is much

greater than the mass of the beam. Then A, the closure of A, generates an analytic

semigroup on X.

Proof of Lemma 5.A.3 - For simplicity, but in a abuse of notation, let A denote the
closure of the operator A of (5.A.11). Note that A of (5.A.11) is simply A’ of (1.2)
restricted to the last two components. Thus, since A’ of (1.2) generates an analytic

semigroup, then so does A of (5.A.11).

Before proceeding, we need to compute the spectrum of the operator A of (5.A.11).

This is the content of the following Proposition.
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Proposition 5.A.4 - Consider the linear operator A given by equation (5.A.11).

Consider the eigenvalue problem

Ax =Ax (5.A.14)
Then A has eigenvalues
At =- kvt Vz.;%is vt o2 (5.A.15)
AE=- kvy® + ‘%2"34 ~ 4gvy” | (5.A.16)
where the v, satisfy

COShViLCOSViL + %E(COSVILSinhVIL + COShViLSinViL) =-1 i=1, 2 (5.A.17)

cosv;L = (sinvgL) / vmp. (5.A.18)

The eigenvectors corresponding to these eigenvalues are

x5 =([13,0,0, 1,1, 0,0)T
x,E= (0,115 0,0, 2,71, 0)T

X3i = (0, 0, [ ]3 ’ 0, O’ Mi[ ]3)T

where [ ]; = (2¢;,/(v;mp) - C;1)cosv;(z-c) - Cio(sinv;(z-c) + 1/(vymp)) +

CilCOShVi(Z'C) + Ciz(SinhVi(Z'C) - ll(vimB)), i=1, 2, and
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[ 13 = (sinvs(z-c) - 1/(v3mp)) + coshvs(z-c)1/(vsmg). Also, the c;; satisfy

cosv:L + coshv;L. sinv;L + sinhv;L - 2cosv;L/(vimg) || i1
i i i i i i"B =0 i=12 5 A.19
sinhv;L - sinv,L.  cosv;L + coshv;L + 2sinv;L/(v;mp)|| €i2 =4, (.A.19)

Comment 5.A.5 - As mg — oo, inspection of (5.A.17)-(5.A.18) show that the eigen-
values, modal frequelflcies, and eigenvectors approach that of a clamped-free beam
(IMei. 1, p. 71). This is certainly to be expected, since as mg — oo, the rigid body is

becoming an "infinite wall".

Proof of Proposition 5.A.4: Direct computation shows that Axii = Ki*%cii. The con-

ditions that the v; and c;; satisfy come from the beam boundary conditions

y(c)=0,u;(c)=0

u”i(c+L) =0, u”(c+L) =0

which correspond to zero deflection and velocity at the fixed end, and zero moment
and force at the free end.

To obtain the Cije write an arbitrary eigenvector as a linear combination of coshv; (z-
c), cosv;(z-c), sinhv;(z-c) and sinv;(z-c), i =1, 2, and similarly for the v; term.
These combinations must satisfy the boundary conditions if they are to be eigenvec-
tors. Since there are 4 boundary conditions and four unknown coefficients, we get a
homogeneous system of 4 equations and 4 unknowns. If the coefficients are to be

nonzero, the determinant of the corresponding matrix must be zero. The determinant

of the system is precisely the conditions (5.A.17) and (5.A.18). Partially solving the
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resulting system, and inserting the partial solution results in the system (5.A.19).

Analogous to Theorem 5.A.2, we have the following Lemma which shows that A of

(5.A.11) generates an exponentially stable semigroup.

Lemma 5.A.6 - Consider the operator A of (5.A.11). Suppose the mass of the rigid
body is much larger than the mass of the beam. Then the operator A generates an

exponentially stable semigroup.

Proof of Lemma 5.A.6 - Since A generates an analytic semigroup, then by Proposi-

tion B.9 of Appendix B, we know that T(t) satisfies IT(t)ll < Mexp(wy(t)), where @,

= sup[Re(?\.)l Aeo(A)). It thus suffices to verify that the spectrum of A is strictly
negative and bounded away from zero. From Proposition 5.A.4, examining (5.A.15)-

(5.A.16) we see that this indeed the case. This proves Lemma 5.A.6. |

Proof of Theorem 5.3.4 part(iii) - Rewrite (5.3.5) in state space form as

c+L

0 I
{f‘} . [E] (5.A.20)
. AW | . ko) - 1 .

—o() ﬁl.3{;.|,B()dz kd(+) _B{ka()dz u,

0 I u
Loy - o8 20| n,

Ll fu u
or, | g, |~ A NE B(t 5 (5.A21)
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where A and B(t) are obvious from (5.A.20). From Lemma 5.A.6, the closure of A
generates an exponentially stable, analytic semigroup. Since © and @—0 exponen-
tially by design, IIB(t)ll goes to zero exponentially, where Il I denotes the norm
induced by (5.A.12). Finally, since §—0 exponentially by design, Iif (Il goes to zero
exponentially. Thus, the conditions of Theorem 5.A.1 are met, and we conclude that u

and u, go to zero exponentially in the X (energy) norm. W

Proof of Theorem 5.4.1, part (iv)

The idea of this proof is identical to the others in this appendix: separate the linear
and nonlinear portions of the differential equation, verify that the linear portion gener-
ates an exponentially stable semigroup, and then apply Theorem 5.A.2.

Consider now the linear portion of (5.4.5):

| 0 I
A=l e 0] (5.A22)

Let the space A operates on, X, be defined as
X = Hy? x Hy'x Hylx L2x L2 x L2 (5.A.23)

where the HK are defined in Appendix B, and let the corresponding "energy" inner

product be

[£, 8lg := (£}, £5r f30 4o fs, f)Ts (&) B 830 84 Bs: 80) I = [} 8,71 + [5", 8,1 +
(", 8,71+ [fy g4l + [fs g5l + [ 8. (5.A.24)

Let the domain of A, D(A), be defined as

D(A) = {(x; X5 X3 X4 X5 x6)TI X| € H04, Xy € H04, X3 € H2, X4 € HO‘", X5 € H04, Xg
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e H2, x5(0)=x4(0)=0, x;"(0)=xy(C)=x4'()=x5"(€)=0, X,"(c+L) = X;"(c+L)
=X5"(c+L) = Xg (c+l) = 0, xl"'(c+L)=ax4(c+L), x2”’(c+L)=Bx5(c+L),
X3'(C+L)=Yxg(c+L)} " (5.A.25)

where 00, >0, and y>0.

Theorem 5.A.7 Consider the operator A of (5.A.22) together with the corresponding
space (5.A.23) and inner product (5.A.24). Then A generates an exponentially stable

semigroup.

Proof of Theorem 5.A.7 - This follows from Theorem 2.5.2 of Chapter 2, when x; is

chosentobe L. W
Using this result, the proof of Theorem 5.4.1 follows easily.

Proof of Theorem 5.4.1 - The rigid body control law (5.4.7) forces §&(t)—0 expo-
nentially exactly as in the proof of Theorem 5.3.1. To show that the beam velocities
and deflections go to zero, use exactly the methods of the proof of Theorem 5.3.4.

More explicitly, rewrite (5.4.5)-(5.4.6) in state space form as

1, 0 I ' . 0 I u 0
w]_ u
or, u, = + B(t u, + f(t) (5.A.27)

A, B(t), f(t) are obvious from (5.A.26). Theorem 5.A.7 shows that A generates an

=

=

exponentially stable semigroup. Since @ and @©—0 exponentially by design, IIB(t)ll

goes to zero exponentially, where Il Il denotes the norm induced by (5.A.24). Finally,
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since §—0 exponentially by desigh, IIf(t)ll goes to zero exponentially. Thus, the con-

ditions of Theorem 5.A.1 are met, and we conclude that u and u, go to zero exponen-

tially in the X (energy) norm. W

Appendix 5.B - Proof of Existence and Uniqueness of Solutions

The proof of existence and uniqueness of solutions to the closed loop systems in
Theorems 5.3.1, 5.3.2, and 5.3.4 is presented below. The proofs are of a somewhat
different flavor than the proofs of finite dimensional nonlinear differential equations.
Technical difficulties occur because there are unbounded operators present, which are
not present in most finite dimensional nonlinear differential equations. The proofs
below use standard perturbation theorems in semigroup theory [Paz. 1]. The intu-
ition behind these results is that if solutions exist to the unperturbed equations, then
equations exist to the perturbed equations as long as the perturbations are sufficient-

ly "nice", in a sense to made precise.
Existence and uniqueness of solutions to Theorem 5.3.1

Upon substitution of the control law (5.3.7) and (5.3.8), note that (5.3.1), (5.3.2),
(5.3.3), (5.3.4) become ordinary differential equations. The existence and uniqueness

of these differential equations is easy to verify. For, observing (5.3.20), we see that

&), g(t), @, & and ¥ satisfy linear differential equations. Thus, the only difficulty is
the partial differential equation (5.3.5) and boundary conditions (5.3.6).
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1+ @ X u -+ 20x U, + @x(axy) + pow) +kawy) + Y1y =0 (5.B.5)
u;(c) = uy(c) =u4(c) = 0, uy’c)=uy(©) = 0
u"(c+L)= wc+L)= 0 (5.B.6)

ulnl(c + L) =0 uznr(c + L) =0 ua’(c + L) =0

Rewrite (5.B.5) in state space form as

u, 0 1], 0 I][E]_ 0 (5.B.7)
ue|™|-wo) k00| u | Therey - ¢ 209 w]” vy
or, | I . u u
g

A, B(1), f(t) are obvious from (5.B.7). From Theorem 5.A.2, A generates an expo-
nentially stable, analytic semigroup. Since @ and ®—0 exponentially by design,
IB(t)ll goes to zero exponentially, where Il Il denotes the norm induced by the inner
product 5.A.6. Hence B(t) is a bounded linear operator. Finally, since §y—0 exponen-
tially by design, IIf(t)ll goes to zero exponentially.

Using [Paz. 1, Chapter 4, Corollary 2.10], A + f(t) generates a strongly continuous |
semigroup. It is easy to verify, using a Bellman-Gronwall type argument, that A +
f(t) generates an exponentially stable semigroup. Finally, using [Paz. 1, Chapter 5,

Theorem 2.3] (5.B.7) has a (strong) continuously differentiable solution, for all u, €

D(A). |

Proof of Existence and Uniqueness of Solutions to Theorem 5.3.4
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The proof of global existence and uniqueness is almost identical to that of Theorem
5.3.1. Upon substitution of the control law (5.3.30), note that (5.3.24), (5.3.25),
(5.3.26), (5.3.27) become ordinary differential equations. The existence and unique-

ness of these differential equations is easy to verify, since, as in the proof of Theorem

5.3.1, &), _é,(t), ®, O and ¥ satisfy linear differential equations. Thus, the only diffi-
culty is the partial differential equation (5.3.28) and boundary conditions (5.3.29).

gu+s§*g+2g"g,+g"@xm + 1) + kay) + Y1y =0
u,(c) =uy(c) =u4(c) =0, u,’(c) =uy(c) = 0
u,"(c+L)= uw,"(c+L)=0

ulm(c +L)= 0 uélll(c +L)= 0 u3'(c +L)= 0

Rewrite this in state space form as

0 I
[Qt] C+L 1 c4L Itg:l
= 1 . ]
Uy | [FuoC:) - EB{ po()dz —ka() - EB ) a()dz | | n,
T lorey - oF  —20% u, | (5.B.8)

or, [!t:| [u] {u]
w = A + B(t
o I B,

A, B(t) are obvious from (5.B.8). From Lemma 3.A.2, A generates an exponentially
stable, analytic semigroup. Since @ and ®—0 exponentially by design, IIB()ll goes
to zero exponentially. Hence B(t) is a bounded linear operator.

Using [Paz. 1, Chapter 5, Theorem 2.3}, A + B(t) generates a strongly continuous
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semigroup. (In fact, it generates an exponentially stable semigroup.) This shows

that there is a unique, continuously differentiable solution, for all u, € D).

Existence and uniqueness of solutions to Theorem 5.4.1

Upon substitution of the control law (5.4.7)-(5.4.9), note that (54.1), (54.2),
(5.4.3), (5.4.4) become ordinary differential equations. The existence and uniqueness

of these differential equations is easy to verify, since §(t), i(t), ©®, O and y satisfy
linear differential equations. Thus, the only difficulty is the partial differential equation
(5.4.5) and boundary conditions (5.4.6).

U+ OF u + 207y, + OX (@) + PO + Y 1§ =0
u,(€)=u,(c) = u5(c) =0, u,’(€) =uy’(c) = 0
u,"(c+L)=uy"(c+L)=0

Ku;”’(c + L) = -0 uy(c+L), i=1,2.

H3U3'(C + L) = -a3 ll3t(C'|'L)

Rewrite (5.4.5)-(5.4.6) in state space form as

y_t_[ 0 I:l[g}r 0 1 u _[o ] (5.B.9)
b [0 Off m] feMey - & 20| %] Yy
) o

A, B(t), f(t) are obvious from (5.B.9). From Theorem 2.5.5, A generates an exponen-
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tially stable semigroup. Since @ and @—0 exponentially by design, IIB(t)ll goes to
zero exponentially. Hence B(t) is a bounded linear operator. Finally, since §—0
exponentially by design, lIf(t)ll goes to zero exponentially.

Using [Paz. 1, Chapter 4, Corollary 2.10], A + f(t) generates a strongly continuous
semigroup. It is easy to verify, using a Bellman-Gronwall type argument, that A +
f(t) generates an exponentially stable semigroup. Finally, using [Paz. 1, Chapter 5,

Theorem 2.3] (5.B.9) has a (strong) continuously differentiable solution, for all u, €

D(A).
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APPENDIX A - DETERMINATION OF SHEAR FORCES AND MOMENTS

Determination of beam forces and moments is highly problem specific. In this
appendix, we will consider the determination of forces and moments due to a rectan-
gular beam attached to a rigid body. See Figure A.1.

The problem with determining these quantities is they cannot be directly measured,
but rather must be determined through some other quantity which can be measured.
The simplest way of doing this is by use of strain gauges and rosettes. The reader
unfamiliar with these devices can find a simple discussion in [Pop. 1, p. 311] or a

more complete discussion in [Het. 1, chapt. 5-9].

A.1 Stress and Strain Tensors

Only a very brief discussion of material properties will be given here, mainly to fix
notation. Readers interested in a more detailed exposition are referred to [Pop. 1,
Chapters 3, 4] or [Lan. 1, Chapter 1].

Let the position of a particle P in the beam be r;i + 1,j + r;k (where i, j, k refer to

the unit vectors along some X, y, z coordinate axes). Upon application of forces to

the beam, deformation occurs and the point P moves to (1) + upi + (15 + up)i + (13 +
Us).l_(_.

Let exi"j denote the ij-th component of the strain tensor defined as

au, u- Buk _u_'
€ -
XiX; = 2( < T ax a"k) (A.1.1)

with summation over k, where x;:=x, X,:=y, X3:=Z.
Now consider an infinitesimal cubic volume element centered about a point P of the

beam, with faces of area AA. Let Gxixj denote the ij-th member of the stress tensor

defined as
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. AF, .
= lim iJ ii=
Oxxy = A0, —2 i, j—'1,2,3 (A.1.2)

where Ain j is the x;th component of the force acting on face j of the cube. (Faces

1 and 4 have outward normals parallel to the x and -x axes, respectively, faces 2 and

5 refer similarly to y and -y, and 3 and 6 refer to z and -z.)

By assuming homogeneous, isotropic material, and also assuming small strains, we

get Hooke’s Law relations between stress and strain

Exx = Ogy/E - VO, /E - VO, /E (A.13)
Eyy = Oyy/E - VO,/E - VO ,/E (A.1.4)
€4, = Op,fE - VO, /E - VO JE (ALS)
€y = Oyy/G (A.1.6)
€y, = cyz/G ‘ (A.1.7)
&y, = O,,/G (A.1.8)

where E is the Young’s modulus for the material, v is Poisson’s ratio, and G is the
shear modulus.
In general, the contributions to Poisson’s ratio is small and hence for simplicity it

will beignored. Then equations (A.1.3) - (A.1.5) simplify to

Exx = Oxx/E (A.1.9)
Eyy = cyy/E (A.1.10)
€55 = O,/E (A.L11)

A.2 Forces and Moments Affecting Beam
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Consider a rectangular beam as shown in Figure A.1.

Rosette #2

Rosette #3

osette #1

Figure A.1 - Rectangular Beam under consideration

Recall that the neutral surface (or elastic line) is the portion of the beam which does
not change length during deformation. In the case shown here, it is simply the z-
axis. In determining stresses due to bending moments, the fundamental assumption
is that the strains vary linearly as their respective distances from the neutral surface.
With such an assumption, and using equilibrium conditions for an arbitrary beam seg-

ment, it is easy to show that the bending moment about the x-axis =: M, is [Pop. 1,

p. 182]

M,=L0,,/x (A2.1)
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where L= [x2dA = ab%/12. Similarly,

M, = Iyou/y (A.2.2)
where M, is the bending moment about the y-axis and I,= fy2dA =ba3/12.
If the bar undergoes a moment M, about the z-axis, the torsional shear distribution

is somewhat difficult to compute. However, it turns out that the distribution (see Fig-
ure A.2) has a maximum occurring at the midpoint of the longest side (in this case,

the side parallel to the y-axis).

(Gze)max \

Figure A.2 - Shear Stress Distribution

The maximum shear stress turns out to be [Pop.1, p. 167]

(6 ) max = M/ba%c.

where it is assumed that a>b, and o is a parameter depending on the b/a ratio, and

M, is the moment about the z-axis. Hence,

M, = (0,,)maxba’e | (A.2.3)

By symmetry, it is also clear that (G,y)yay = M,@/b%, which occurs at the midpoint
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of the shorter side (the side of length b). Hence we must also have

M, = (G, Jnax /b (A2.4)

To determine the shear stresses in the beam, recall that the shear distribution for a

rectangular bar subjected to a shear force in the x-direction V, is parabolic in nature

and given by [Pop. 1, p. 232]

Figure A.3 - Shear Stress Distributrion
due to vertical shear

Vv
Opy(X1) = —ﬁz( (%)2"‘12) xy € [0,b/2]

(See Figure A.3) This shows that the shear stress is zero at the boundary (x;=b/2)

and has a maximum at x;=0 of value (Gyy)pax = Vxb?/8 I,. Solving for V,,

=.8 =__3
| v, = ._a_z. Ix(ozy) =-5r (o‘zy) (A.2.5)
Similarly,
v =-38 =._3 :
y~ FZ [y(ozx)max = ﬁ (sz)max (A.2.6)

where Vy is the shear force in the y-direction.
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Finally, to determine the axial stress induced by a tensile or compressive force,

note that the average stress over a cross-section is simply F,/A = —0,, since the

cross-section is constant over the length of the beam (when considering axial forces

alone). Hence, F,, the axial force in the z-direction, is

F=-Ac,, (A2.7)

z

In the following, only small deflections will be considered, so that the principle of
superposition holds. That is, the resultant strain in the system is the algebraic sum
of the individual strains when applied separately. Superposition of stresses as well

as strains also follows from the previous assumption of Hooke’s Law.

A.3 Force and Moment Determination from Strain Rosettes

In order to determine the forces and moments affecting the beam, strain rosettes
are mounted on the beam as shown in Figure A.l. With the rosettes placed as

shown, the following information is obtained:

Rosette 1: B . ' (A.3.1)

€2y €z || x= b/2, y=0, z=c

Rosette 2: €y Gy | (A.3.2)
| €2x €z || x= 0, y=a/2, 2=

Rosette 3: ey Eyy | (A33)
L &2y €z || x = -bf2, y=0, z=c

Rosette 4: 'exx gxzj (A.3.4)

| E2x 8z || x= 0, y=1a/2, z=c

From these measurements, the forces and moments affecting the beam can be

determined by use of equations (A.2.1)-(A.2.6), superposition, and the Hooke’s Law
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relationships.  Specifically, at rosettes 1 and 3 equations (A.2.1), (A.2.2), and
(A.2.6) shows that ( y=0 at both 1 and 3 so that there is no contribution due to M,))

0, =-F/A+ Myx/Ix

= [o6,l; + 6,l3 = 2F/A
Oyl - Ol3 = 2Mb/2L, = Mb/L,

= {Fz=- _% Gyl + 0l
M, = L/l - 05l3)

Similar arguments show that

M= Iy/a(czzl 2° <""zzz|4)

By the Hooke’s Law relationships, o,,= Ee,,. Hence,

F, =22l + €5l (A3.5)
M, = L/bE(e,, |1 - e5l3) (A3.6)
M,= L/Ea(e,, |5 - €19 (A3.7)

Since the rosettes at each of these positions determine the strains in the parenthe-

ses, F, My, M,, are determinable from the experimental data.

Finally, to determine M,, V,, and Vy consider Figure A.2. Since the stresses are

additive at one side of the cross-section, but subtract from one another on the: other

side, it is easy to solve for the quantities M,, V,, and Vy. Proceeding along these

lines, use Figure A.2 and equations (A.2.3), (A.2.4) and (A.2.5) to obtain
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€216 = Oyyl | = +M0/b%a + 3V /22b (A3.8)
€436 = 0y l3 = -M,0/b%a + 3V /2ab (A.3.9)
g, |,G =0, ], = +M,/ba%0 + 3V, /2ab (A.3.10)
€, 4G = 05l 4 = -M/ba2a + 3V, /2ab (A3.11)

Since ezx| 1° ele 3 elez, €, | 4 are known by measurement, and since b, a, and o are

known, equations (A.3.8)-(A.3-11) is a system of 4 equations in 3 unknowns. From

this system, a least-squares solution for M,, V,, and Vy can be found.

Note that if ¢ is small, the moments and forces acting on the body by the beam are

close to the corresponding values at the point of attachment. Thus,

Mp'= Mi+Mj+ Mk (A.3.12)
Ep'= Ei+Ej+Ek (A.3.13)

If i, j, k are parallel to the b, b,, b axes, respectively, then Myp’ = M,p and Epg’
= Fyp. Otherwise there is a (fixed) rotation matrix Q, as in the discussion of kine-
matics in section 3.1.1, such that [b; b, b3]Q= [i i kl. Then the components of

M, ; and Fy g are Q[components of M,z ] and Q[components of Fyg’], respectively.

Remark A.3.1 - If we add Kelvin-Voight damping to our model of the form, i.e. we
add damping of the form

o;= Egjj + My %%jj

°jk= Gejk + T‘Jk%tg"k j#k ’
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then the formulas change very simply:
A A . .
Fz=-ﬁ(eu|1 +&,l4) - ¢ &,l1 +égl9)-

My =L(egl 1 - El3 VED + LiEg 1 - 8213 g
M= Ly(epl2 - £l /B2 + Lyl 255 |4 N2

For the torsion and shear calculations, just rewrite the LHS of (A.3.8)-(A.3.11) to

obtain

ey 1G + Nyybyyl 1 = 05|y = +Mab%a + 3V /23b
ezyl 3G + T]zyézyl 3= Gzyl 3= -Mzcl/bza + 3Vy/2ab
€, | G + Nyypel g = Opel o = +M /b2 + 3V, /2ab

€, ) 4G + Nyubpxl 4 = Ol 4 = -Myfba?a + 3V, /22D

and again compute a least-squares solution for M, Vy and V,.

All of these computations presuppose that the strain derivatives can be deter-
mined. Of course, one could get an approximation of these quantities by on-line finite

differences, i.e.

£, = &t - )

€,,(D) = T

where T is the time between strain samples.
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Appendix B
Useful Facts From Semigroup Theory

Notation: Let HX[c, c+L], k=0, 1, ... be defined as

HOc, c+L] := {f € L2[c, c+L] }

HX[c, c+L] := {f € L[, c+L] I f, f’ ... £ € L2[c, c+L]}
Also, define

Hyllc, c+1] := {f e L2[c, c+L] ! f, Pe L2[c, c+L] and f(c) =0}
Hy2[c, c+L]:= (f € L[c, c+L] I f, F, e L?[c, c+L] and f(c) = f'(c) = 0}
Hy*[c, c+L]:= (f € L2[c, c+L] I f, F, £, £, £ L?[c, c+L] and

f(c) =f'(c) =0}

For simplicity of notation HK will denote HK[c, c+L], HOk will denote Hok[c, c+L],

and L2 will denote L2[c, c+L].

Before proceeding, we need to introduce some definitions and notation from the
semigroup literature. The interested reader can find excellent expositions on this sub-

ject in many texts, e.g. [Paz. 1], [Kat. 1], [Bal. 1].

Definition B.1 - A linear operator A on a Hilbert space X, A: X > D(A) — X is said
to be dissipative if for any x € D(A), [Ax, x] 0.

Definition B.2 - A linear operator A on a Hilbert space X is said to be closed if its
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graph is closed.

Definition B.3 - A linear operator A: X D D(A) — X on a Hilbert space X with dense
domain D(A) is said to be self-adjoint if A=A*, where A* denotes the adjoint opera-

tor of A.

Definition B.4 Let T(t) for all t € [0, ) be a bounded linear operator in a Banach

space X. {T(t)} is said to be a strongly continuous semigroup if

@) T(t+s) = T()T(s) = T(s)T(t), for any 0, any s20.
) TO)=I
(iii) IT(t)x - xI = 0, as t—0+, forany x € X.

Definition B.5 - Suppose T(t) is a strongly continuous semigroup on a Banach space

X. The linear operator defined by

D(A) := (x € X| {n_n)-'l(;&);—l exists)

and Ax = HmI®X = X forx e D(A)
t>0 X

is called the infinitesimal generator of the semigroup T(t), and D(A) is called the

domain of A.

Comment B.6 - We see from the the definition that the infinitesimal generator is the
generalization of the matrix A for the matrix exponential eAAt in finite dimensional sys-
tem theory. If A is a matrix in IR™" the domain of A is all of X since A is a continu-

Ous operator.
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Definition B.7 A strongly continuous semigroup {T(t)} satisfying IT(t)ll < 1 for all

t € [0, o) is called a contraction semigroup. If there exists K>0, 8>0 such that the

semigroup satisfies IIT(I < Ke‘&, then T(t) is termed an exponentially stable semi-

group.

Definition B.8 A semigroup {T(t)} is said to be analytic if there exists a sector A of

the form

A={ze C: ¢;<arg(®) <¢g ¢; <0<y}

containing the real axis with

(i) z — T(z) is analytic in A.

(i) T() =1L lim T(z)x =x, foranyxe X.
z —)2
zZ€

(iii) T(zy+zy) = T(z))T(z) = T(zx)T(z,), for any z,€ A, and any zyeA.

In the proofs in this thesis, we will often be interested in establishing that a semi-
group is exponentially stable. Analogous to the finite dimensional case, one would
hope that if the eigenvalues of the operator are all negative and bounded away from
the jo-axis, then the semigroup is exponentially stable. Unfortunately, this is ‘not
true in general. (See [Hua. 2] for a counterexample.) Further, there are very few
easy methods to determine whether a semigroup is exponentially stable. However, if

A generates an analytic semigroup, then we have the following result [Tri. 1, p. 387] .

Proposition B.9 - Suppose a linear operator A generates an analytic semigroup T(t)

on the space X. Then T(t) satisfies IT(tIl < Mexp(wy(t)), where @y = sup{Re(?L)|
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Ae o(A)}.

Proposition B.9 shows that if is often advantageous to know if one has an analytic
semigroup. One way of obtaining analytic semigroups is by perturbing an analytic

semigroup. One perturbation theorem for analytic semigroups is the following:

Theorem B.10 [Paz. 1, p. 80, Thm. 2.1] - Let A be the infinitesimal generator of an

analytic semigroup. Let B be a closed linear operator satisfying D(B) © D(A) and

IBxIl < allAxli + blixll for x € D(A).

There exists 8 > O such that if a € [0, 3], then A + B is the infinitesimal generator of

an analytic semigroup.
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