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Abstract

This memorandum investigates the application of boundary control techniques to a
rotating flexible spacecraft. More precisely, we consider a rigid body whose center of
mass is fixed in an inertial frame with a flexible beam clamped to the rigid body at one
end and free at the other end. We investigate this configuration under various assump-
tions, depending on whether the motion takes place on a plane, or in the three-
dimensional space, as well as the model we choose for the beam. In each case, we pose a
stabilization problem, propose a feedback law and show that under the proposed control

law, the stability of the configuration is obtained.
The memorandum is organized as follows:

In Chapter 2, we review some basic tools of Newtonian Dynamics and some recent
developments in the nonlinear beam theories, namely the director theory of beams and
the geometrically exact beam theory. Then, as an example, we derive the equations of

motion for the configuration mentioned above.

In Chapter 3, we study the basic configuration under the planar motion assumption
and we use Euler-Bernoulli beam model. We propose two control laws, each consisting
of a torque applied to the rigid body and a force and a torque applied to the free end of
the beam. We show that under the proposed control law, exponential stabilization is

obtained.

In Chapter 4, we generalize the results of Chapter 3 to the motion of the same



configuration in three dimensions.

In Chapter 5, we first prove a stabilization result for the basic configuration using
the geometrically exact beam model, without any linearization. Using this result, we
generalize the results obtained in Chapter 2 to the case of planar motion of the basic

configuration using the Timoshenko beam model.
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Chapter 1

Introduction

Many mechanical systems, such as spacecrafts with flexible appendéges or robot
arms with flexible links, can be modeled as coupled rigid and elastic parts. Such models
are basic to the control of systems which have flexible parts, their stabilization, high pre-

"~ cision pointing, etc., and the control of such systems are becoming increasingly impor-
tant in the design of lightweight, high performance systems. Thus, over the last decade
there has been a growing interest in obtaining new methods for the design, dynamics and
control of the systems which has flexible parts. An excellent review of research in this

area can be found in [Bal.1]; also for a literature survey, see [Tza.1], and for the recent

history of the subject and for additional references, see [Nur.1] and [Lik.1].

Consider a system which has coupled rigid and flexible parts. The motion of the
flexible parts is usually described by a set of partial differential equations with appropri-
ate boundary conditions. Since the motion of the rigid parts are described by a set of non-

linear ordinary differential equations, and since the rigid parts are coupled with the



flexible parts, the overall equations of motion are generally a set of coupled nonlinear
partial and ordinary equations. These equations can be obtained by using the standard
methods of Mech-anics, see, e.g., [Gol.1], [Par.1]. Although the equations of motion
obtained by using different methods, such as using Lagrangians, Hamiltonians, free-body
diagrams, etc., are equivalent, the form of these equations and the complexity they offer
depend on a particular method used in obtaining them. For a comparison of different
methods to obtain the equations of motion for mechanical systems, see [Kan.1] and

[Pau.1).’

In the analysis of flexible structures, particularly in engineering applications, the
common practice is to resort to the finite element modeling, see [Bal.1]. In effect, one
approximates the continuous structure of flexible parts by a finite number of intercon-
nected rigid elements with well-defined structural dynamics. This approach reduces the
 original equations, which are coupled nonlinear partial and ordinary differential equa-
tions, to a set of coupled, nonlinear and finite, although often very large, number of ordi-
nary differential equations. As a consequence , the infinite number of modes, in theory,
associated with the original set of equations is reduced to a finite, although often very
large, number of modes. However, having established a control law for this reduced set
of equations does not always guarantee that the same control law will work on the origi-
nal set of equations, e.g. one might encounter so-called "spillover" problems, see [Bal.2].
Also note that the actual number of modes of a flexible system, in theory, is infinite and

the number of modes that should be retained is not known a priori.

Stability of systems with flexible parts, particularly flexible space structures, has



been studied in the past. In [Mei.3], the Hamiltonian of the whole structure was used as a
Lyapunov fuction to study the stability of a damped flexible spacecraft. A comparison of
control .techniques based on finite element modeling can be found in [Mei.4]. More
recently, [Bai.1] and [Kri.1] studied the dynamics and stability of a rorating flexible
structure from Lagrangian and Hamiltonian point of view, respectively. Both of these
works do not resort to a finite element approximation, but they do not offer a control

scheme.

Recently, [Bis.1] used a Lyapunov type approach which uses the total energy of a
flexible spacecraft as a Lyapunov function candidate to prove the stability of the system
under appropriate forces and torques applied to the flexible spacecraft. Their proposed
control laws contain distributed forces applied to the flexible parts, (i.e., forces which are
distributed over the flexible parts), which are proportional to the deflection velocities.

Implementations of such control laws might not be easy and practical.

In recent years, boundary control of flexible systems, (i.e., controls applied to the
boundaries of the flexible parts as opposed to the controls distributed over the flexible
parts), has become an important research area. This idea was first applied to the systems
described by wave equation, (e.g. strings) [Che.1], and recently extended to the Euler-
Bernoulli beam equation [Che.2,3], and the Timoshenko beam equation [Kim.1]. In par-
ticular, in [Che.2,3], it has been proven that, in a cantilever beam, a single actuator
applied at the free end of the beam is sufficient to uniformly stabilize the beam
deflections, and in [Del.1] the case where the actuator is "concentrated" to an area, as

opposed to a single point actuator, is investigated. Recently, the boundary control tech-



niques has been applied to the stabilization of a flexible spacecraft performing planar

motion in [Des.2].

The purpose of this thesis is to investigate the application of boundary control tech-
niques to rotating flexible structures. As a case model, we study the motion of a rigid
body whose center of mass is fixed in an inertial frame, with a flexible beam clamped to
the rigid body at one end and free at the other end. This basic configuration captures the
essential properties of a flexible spacecraft, (see, e.g., [Bis.1,2], [Bai.2], [Kri.1], [Pos.1]),
such as a flexible spacecraft in a geosynchronous orbit. We consider various cases,
depending on whether the motion takes place in a plane, or in the three-dimensional
space R3, as well as the model we choose for the flexible beam. In each case we pose a
stabilization problem , propose a feedback control law and then show that under the pro-

posed control law, the exponential stability of the whole structure is obtained.

The thesis is organized as follows :

In Chapter 2, we first review some basic tools of Newtonian Mechanics and some
recent developments on the nonlinear beam theories, such as geometrically exact beam
models. Then, as an example, we derive the equations of motion for the basic

configuration mentioned above.

In Chapter 3, we study the planar motion of the basic configuration using the Euler-
Bernoulli beam model. We first derive the equations of motion, define the rest state of the
system and propose two control laws to stabilize this system. Each law consists of a

torque applied to the rigid body, a force and a torque applied to the free end of the beam.



Then we show that under the proposed control laws, exponentially stabilization is

obtained.

In Chapter 4, we generalize the results obtained in chapter 2, to the case of 3 dimen-

sional motion, ( i.e. motion in R3).

In Chapter 5, we first prove a stabilization result for the motion of the basic
configuration mentioned above using the geometrically exact beam model without any
linearization. Then using this result, we generalize the results obtained in chapter 2 to the

case of the planar motion of the basic configuration using the Timoshenko beam model.

The contribution of this thesis is the application of boundary control techniques to
the stabilization of rotating flexible structures. The results obtained here indicate that
these techniques can be used in the various problems arising from the control of flexible

structures; an area which needs futher investigation.



Chapter 2

Preliminaries

2.1 Introduction

In this chapter, we review some basic results of Newtonian Mechanics and Elastic

Beam Theories which will be used in the subsequent chapters.

In Section 2, we outline the basic equations of Newtonian particle dynamics and
rotational dynamics of rigid bodies. In Section 3, we will review some recent develop-
ments on nonlinear beam theories, namely the director theories of beams as developed by
Green and Naghdi [Gre.1,2], geometrically exact beam theory as developed by Simo
[Sim.1], and show that the latter can be treated as a special case of the former theory. In
Section 4, we obtain the equations of motion of a beam clamped to a rigid body at one
end and free at the other using the formulations introduced in the previous sections. The
rigid body-elastic beam configuration introduced in this section is the basic configuration

we study thoroughout this thesis.



2.2 Fundamentals of Newtonian Mechanics

In this Section, we summarize and derive some of the basic equations of Newtonian
Mechanics which will be used in this thesis. There are many excellent textbooks on this

subject. For detailed analysis, the reader is referred to, e.g., Goldstein [Gol.1], or Pars

[Par.1].
2.2.1 Particle Dynamics

It is customary to give the basic equations of Newtonian Mechanics for a particle,
these equations then can be extended to the equations of more complex physical objects,
such as rigid bodies. A particle is a model for a physical object whose dimensions can be
neglected to describe its motion, i.e., it is represented as a point in R3, which is the stan-

dard 3-dimensional Euclidean space.

Let N be a frame in R?, which is specified by an origin 0, and following the usual
convention, 3 orthonormal, dextral (i.e., right-handed) vectors fixed in N, say e, , e;, e3;
the frame N is given by the quad;uple N=e;,e;,6€;3.

Let r = OP be the position vector of a particle P in the frame N=(0,e, , e;, €;). Let

m be the mass of the particle P. Of fundamental importance in Newtonian Mechanics is

the (linear) momentum p of the particle P in the frame N, which is defined as :

=m3E
p=m_- . 2.2.1)

Let f be the net force acting upon the particle . Then Newton’s second law asserts

that there exist a frame in which the net force f and the momentum p are related as



follows:

=4P
=== . (2.2.2)

A frame in which (2.2.2) holds is called an inertial frame. 1t is easy to show that N
and M are two inertial frames if and only if M is in uniform translation with respect to N,

see, e.g., [Gol.1].

Let N be an inertial frame, P be a particle in N, r be the position vector of P in N,
and f be the net force acting upon P. Then the torque T, or the moment of the force

applied to the particle P in N with respect to the origin O of the frame N is defined as :

T=rxf , 2.2.3)

whereas angular momentum L, or moment of momentum, of the particle P in N with

respect to the origin O of N is defined as :

L=rxp , 2.2.4)

where x denotes the standard cross- product in R

Assuming that the mass of the particle P is constant, by differentiating (2.2.4) with
respect to time ¢, we obtain :

dL_dr . dp
@ a P,

=T . (2.2.5)



Equations (2.2.2) and (2.2.5) are the

basic equations of Newtonian Particle Mechanics. We note that the equations of
Mechanics can also be obtained by using other formulations, such as Lagrangian or Ham-
iltonian formulation. This approach will not be taken here. Interested reader is referred to

any textbook on Mechanics, see, e.g., [Lan.1], [Mei.1], [Gol.1], [Par.1].

2.2.2 Rotational Dynamics of Rigid Bodies

Kinematics

Let N be an inertial frame specified by the quadruple (O .e, , e, , e3). Let B be a rigid
body in N. To specify the equations of motion of B, in N, we define another frame fixed
in the rigid body Bg. Let B be such a frame specified by the quadruple (O by, by, by); the

— vectors by, b,, bs) are called the body axes. We will choose O to be the center of mass of

Bg.

The most general motion of By in N is the combined effect of the translation of the
center of mass of By in N and the rotation of B in N. We know that if F is the net force

applied to By, and if O, is the center of mass of By, then with R = 00, we have

MR=F

For this reason we will neglect the translational motion of B in N and consider the
center of mass of the rigid body fixed in N. Hence the motion of By in N reduces to rota-

tion of B in N.
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We will also assume without loss of generality that the origin of N and the center of

mass of the rigid body and the origin of the body frame B, coincide at all times.

Let r be a vector in N, and let #¥ and r? be its components (i.e., triplets) in N and B,
respectively. Then there exists an ortogonal matrix R with det R =1 (i.e.,, Re SO(3)),

such that the following holds :

=R (2.2.6)

or equivalently, we have :

3
ej = EIR,J b; _] = 1, 2, 3 N (2.2.7)
i=

where R;; denotes the elements of the matrix R. By (2.2.7), the j** column of the matrix

R consists of the components of e; with respect to the basis by, by, bs.

As a result of the assumptions above, the motion of B in N is completely described

by the matrix function R (¢) (defined by (2.2.6)). It is well known that :

M —
ot +QR =0 , (2.2.8)

where Q e R¥3 is defined by

__dR 1
Q= Z R , (2.2.9)

where the superscript T denotes a transposition; for details, see, e.g., [Par.1, p.106].
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Differentiating the identity RR” =I with respect to ¢, we obtain :

R r o dRT_
TRTHR(ED =0,

or equivalently Q =- QT i.e. Q is skew-symmetric; thus

0 -0 o
Q=|o; 0 - ) (2.2.10)
-0, o, O
Since Q is skew symmetric, we can define an axial vector o as follows :
3
0= Z(D,'b,' ’ (2.2.11)

i=l

where o is called the angular velocity of B in N.

Upon differentiating (2.2.6) with respect to time, we obtain :

(2.2.12)

Equation (2.2.12), with the aid of (2.2.8) defines the transformation of velocities
between the frames B and N : More precisely, let r¥ =", r¥, rV3)" and
rB =8, r®, r®;)7 . Using (2.2.7) and (2.2.8) in (2.2.12), we obtain :

3 drV; 3 dr8

T—e =T b toxr . ' (22.13)

i=1 i=l

If one defines



ar, _3.a";
(7)N_‘-§, dt

dr 3
& ’ (dt)B—El

then (2.2.13) can be rewritten as follows :

dr, _. dr
(dt )N—(dt)B taoxr

dr",-b
a

12

(2.2.14)
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Dynamics

We now define the angular momentum of the rigid body Bg with respect to the ori-
gin O of the B. Recall that according to our convention, the point O is also the origin of

the inertial frame N and the center of mass of the rigid body Bg.

Let dm be an infinitesimal mass element of the rigid body, r be its position vector in

N. Then L, the angular momentum of By with respect to O, is defined by the integral :
- dar
Lo .—Bj;rx (), 4m

=Irx(coxr)dm s (2.2.15)
Bx

where the second equation follows from (2.2.14) ; we consider m in (2.2.15) as a real

valued measure in R? which defines the mass distribution of the rigid body By .

From vector algebra, we have the relation

rx(oxr)=<r,r>0-<o,r>r ,

where <.,.> denotes the standard inner product in R3. Hence (2.2.15) reduces to

Lo=(Jl<r,r>/-rrldm o (2.2.16)
By

where (r.r) :=r<r,®>, the first parenthesis is the outer product of r with r : the
"column vector r " times the " row vector r ", sometimes called the dyad r.r. In (2.2.16),

I is the unit matrix in R3.
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The inertia tensor of B with respect to O is defined by :

Ip:= I(<r,r>l-r.r)dm . 2.2.17)

By

Hence (2.2.16) takes the form :

L0=IR w . (2.2.18)

The inertia tensor I defined by (2.2.17) is symmetric, therefore one can always find
an orthonormal set of axes such that when referred to those axes, the matrix form of I

becomes diagonal. Such a set of axes is called principal axes of inertia : then the matrix

I reads diag (I, ,15,13).

Let dm be a fixed infinitesimal mass element of the rigid body, r be its position vec-

tor. Then the kinetic energy T of B in N is given by :
1 d d
T = [<(Eow . (5w >dm
By

I<mxr,mxr>dm
Ba

Nl-ﬂ

I o, rx(oxr)>dnm
By

NI-'

—;—< 0, 0> . (2.2.19)

Let the body axes b, , by, b; coincide with the principal axes of inertia of the rigid

body, then (2.2.19) takes the following form :
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T==YLo? , (2.2.20)
where I; is the principal moment of inertia of the rigid body about the axis b;,i=1, 2, 3.

Let T, denote the net torque applied to the rigid body Bg with respect to O. Then

using (2.2.5) we obtain the following :

dL, _
(T)N =Ty . . (2.2.21)

Using (2.2.14) and (2.2.18) in (2.2.21), the latter becomes :

IR‘;—‘;’ roxiho=Ty . (2.2.22)

The above equation is called Euler’s equation of motion for a rigid body. With

3 3
o= Y w;b;, Ig =diag(l,,15,13), and To= ¥ T(;b; , the component form of (2.2.22) along

- i=] i=1

the body axes become :
Lo+ -1 ;=To (2.2.23)

Loy +(U3—-1)y 0 =Tep (2.2.24)

Lo+ =)o 0y =Tgy . (2.2.25)



16

2.3 Nonlinear Beam Models

In this section, we present 2 nonlinear beam models based on a 1-dimensional con-
tinuum model called a Cosserat (or a directed) curve, see, e.g., [Ant.1]. A Cosserat curve
comprises a material curve embedded in R?, together with a number of deformable vector
fields, called directors, attached to every point of the curve. There are different versions
of this approach, depending on the numbers of directors used and the constraints which

are imposed on the directors.

The idea of describing a body as not only a collections of points but also of directors
attached to the points of the body first proposed by Duhem [Duh.1]. The Cosserat broth-
ers then used this idea in the representation of the twisting and the bending of rods and
shells [Cos.1]. Recent interest in this approach began with the work of Ericksen and

Truesdell [Eri.1], who presented a generalized version of Cosserat’s work.

A nonlinear beam model which uses a Cosserat curve with two directors is first
given by Green and Laws [Gre.1], and later developed by Green, Laws and Naghdi
[Gre.2]. Related developments of a Cosserat curve with three directors are given by
Cohen [Coh.1], and DeSilva [DeS.1]. More recently Simo [Sim.1], extending a generali-
zation of the classical Kirchoff-Love rod model due to Antman [Ant.2], obtained the so
called geometrically exact beam model, which proved to be suitable for numerical simu-

lation [Quo.1]. For the classical Kirchoff-Love rod model, see [Lov.1].

In this section, we first give some basic results on elasticity. Then we summarize the
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rod theory developed by Green, Laws and Naghdi [Gre.2]. As a special case of this
theory, following Green and Laws [Gre.3], we obtain the geometrically exact beam

model developed by Simo [Sim.1].

2.3.1 Preliminaries

Let the material points of a 3-dimensional body B; embedded in R? be identified by
a convected coordinate system 0;,i =1,2, 3. ( For the definition of a convected coordi-
nate system, see, e.g., [Mar.1, p.41] ). Let N be an inertial frame and let r' denote the
position vector of a material element of Bz in N. Let g; and g denote the covariant and
contravariant base vectors at points of B at time ¢, respectively; and let g;; and 2" be the

corresponding metric tensors , for i, j =1, 2, 3. By definition we have :

g = or’

‘ 90;

<g .g >=§;

8ij =<8, gl > . (2.3.1)
gi=<g .¢'>

g =det(g; )

Let me Bg be a material point and u be a unit vector. Let AS < Bg be an element of
surface containing m. Let the unit normal to AS be u, measured from one side of AS
which is called the negative side, to the other side of AS which is called the positive side.
We assume that the effect of the positive side of the body on the negative side of the

body is equivalent to a force AF and a moment AG applied to the surface AS. We also
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assume

that the vector % has a limit as AS goes to zero and the vector t defined as :

AF
= lim — 3.2
t Al:}m (2.3.2)

is called the stress vector at me Bg in the direction of u (see, e.g., [Gre.4]).

The stress vector t defined by (2.3.2) depends on the point m, the unit vector u and
the time ¢. In the sequel we assume that t does not depend on ¢. Using the conservation of
the energy of Bg and some symmetry arguments, it can be proven that t must be linear in
u (see, e.g., [Mar.1, p.134]). Thus, at m € Bg, there exists a tensor, called the stress ten-

sor T such that the following holds :

ttn ,u)=T(@m)u . (2.3.3)

Let V be an arbitrary volume in the body Bz and let S be the boundary of V. Then

neglecting the thermal effects, the conservation of energy equation is :

*

dr
dt

dr' dar’
> dV + |<t,
rade s

dt

d . . 1 dl'. _
dt{[,p '+ 5 < S >)dV-£<f' , >ds (2.3.4)

where p* is the mass density, " is the internal potential energy per unit mass, f* is the
body force per unit mass (such as the gravitational force), t is the stress vector at meBg

and <.,.> is the standard inner product in R3.

By using the base vectors defined in (2.3.1), we define the component form of T
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defined in (2.3.3) as follows :
.03
Tg =Yg, i=123 . (2.3.5)
j=1

Correspondingly, we define three components of the stress vector, namely the vectors

3 .
T,=3Vg g =123 . (2.3.6)
j=t

i=3
Hence, if the unit normal u is given as u= Y u;g’, then (2.3.3) reduces to :
~

1 3
t=—YuT, . 2.3.7
3 El 2.3.7)

By assuming the invariance under superposed motions, one can deduce from the
energy equation (2.3.4) the balance of momentum and angular momentum equations

(see, e.g., [Gre.4]).
For our purpose, the balance of momentum equation is :

3 aTl . . dzl"
.2=:|3_9= +p'Vgf =p°Vg roalle (2.3.8)

whereas the balance of angular momentum equation is :

23:&' xT; =0 . (2.3.9)

i=l

Note that (2.3.9) is equivalent to the symmetry of the matrix form of T, which is

called the symmetric contravariant stress tensor [Gre.2].
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2.3.2 Director Theory of Beams

In this section, we outline a theory of beams based on a Cosserat curve with two

(deformable) directors, as developed by Green, Naghdi and Laws [Gre.2].

Let the material points of a body By embedded in R? be identified by a convected
coordinate system, 9;,i =1,2, 3. Let N be an inertial frame and r’ be the position vector
of a material point of Bz in N. We define the covariant and contravariant base vectors g;
and g,i=1,2,3, respectively, and their comesponding metric tensors

gij.87.1,j=1,2,3, respectively, as in (2.3.1).

To specify the configuration of the beam, we introduce the following objects :
(i) a curve c defined in an open interval /IcR as:
C:=[9261 l6,=93=0] , (2.3.10)

(ii) a family of surfaces which are parametrized by 6, =€ e / as:

S§:={9|.93ER | 0; EBE,i=l,2,3,ez=§} . (2.3.11)

We make the following basic assumptions :

Assumption 1 : Let the surface S be defined as in (2.3.11). For each Eel, S¢ is a planar
surface and will be referred to as the cross section of the beam at €. Moreover, Sg is
spanned by 2 vectors d, , = 1,3, called the directors , which satisfy the following equa-

tion :
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d,:=g,0,8,0,t) a=1,3 ,teR ,EelO (2.3.12)

Assumption 2 : Let the curve ¢ and the cross-sections S be defined as in (2.3.10) and
(2.3.11), respectively; in addition, we require that the curve ¢ pass through the centroids

of the cross-sections, i.e.,

[[oup"Vgd0id03=0 a=1,3 kel . (2.3.13)
Sy

Hence, the curve ¢ will be referred to as the curve of centroids (1

Let r (€, t) denote the position vector of ¢ at &, at time ¢, then

r¢.t):=r 0,%,0,1) , (2.3.14)

and a point in the cross-section S¢ is represented by r'®,,&,0;,t), where

r'®,,£,0;,0)=r€,t)+0,d,&,t)+0:d5E. 1) (2.3.15)

since S¢ is planar.

Next, we define the contact force n (£, t) and the contact moment m(§ , t) over the

beam cross-sections S £ as follows :

nE,t):=[[T,d0,d0, (2.3.16)
St :

mE,t):= ”(r'—r)xTzdeldeg , (2.3.17)
St

where T, is given by (2.3.6). To give an interpretation of the contact force n (§.¢) and
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the contact moment m (€ , ¢), let the line of centroids ¢ given by (2.3.10) be defined in an
interval /=[a,b] and let € e L. Then, the effect of the part of the beam which lies on the
(€,b] segment of the beam to the part which lies on the [0,] segment of the beam is
equivalent to the contact force n (§,¢) and the contact moment m (§, ¢) applied to the

beam cross-section S¢.

Using (2.3.15) in (2.3.17), we obtain :
mE, )= [[0,diE, 1)+ 035, 1) 1x T, d0,d0;
Sy

=&, ) xmE,t)+ds&,)xmy§,2) (2.3.18)

where m, and m, are called the contact director force and are defined by :
my:= [[0,T,d6,d6; o=1,3 . (2.3.19)
S

We derive the equations of motion for a beam by using the momentum equation

(2.3.8) and the assumptions 1 and 2.

By integrating (2.3.8) over the cross-section S¢ we obtain the following equation of
balance of linear momentum :
on o°r

EF ™

3 , (2.3.20)

where f is the resultant force per unit length at &, due to the surface loads and to the body

forces; p is the mass density per unit length at . They are given by :
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[(T3d0,-T,d63)+ [fp"Ng f* d01d0; (2.3.21)
oSy S

p=pE) = &Js p*Vg d6,d6; (2.3.22)
:

where 9S¢ denotes the boundary of the cross-section Sg. In calculating f, we use the
Stoke’s theorem (see, e.g., [Spi.1]). We note that by the conservation of mass, p defined

by (2.3.22) is only a function of § (see, e.g., [Gre.2].

By first cross-multiplying (2.3.8) with (r" —r) on the left, then integrating over the
cross-section S¢, using the Stoke’s theorem and (2.3.9), we obtain the following equation
of balance of the angular momentum :
om ., or ade

=+t Xn+l= dyx— 2.3.23
E T R e (2323)

where 1 is the resultant moment per unit length at & due to the surface loads and to the

body forces; for o, B=1,3, yqp are the inertia coefficients of the beam cross-sections.

They are defined as follows:
li= @ - x(T3d8, - T d0y+ [f" - xp'Vg " d6,d6; (2.3.24)
oSe Se
Yop = [[0s0pp Vg d0,d0; «,p=1,3 (2.3.25)
Sg

where 9S; denotes the boundary of the cross-section S¢. In calculating 1, we use the

Stoke’s theorem. Using (2.3.15) in (2.3.24) we obtain :

1= dl X Il + d3 X 13 , (2.3.26)
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where 1, and 1, , the assigned director forces per unit length at £, are defined as :
lo:= [0y (T3d0;-T d0y)+ [[0,p" Vg  d0,d8; @=1,3 . (2.3.27)
oS, S¢

By multiplying (2.3.8) with 6,, o.=1, 3, then integrating over the cross-section Sg,

and using the Stoke’s theorem, we obtain :

, oa=1L3 , (2.3.28)

where the contact director forces m, are given in (2.3.19), the assigned director forces 1
are given by (2.3.27), the inertia coefficients yog are given by (2.3.25), and the intrinsic

director forces k, are defined as :

i=[[Ted0,d6; , a=13 . (2.3.29)
Se

Equations (2.3.20), (2.3.23) and (2.3.28) are the basic equations of motion for a
beam modeled by a Cosserat curve with two directors, as developed by Green, Laws and

Naghdi [Gre.3].

We note that by using (2.3.18),(2.3.26) and (2.3.28) in (2.3.23), the latter becomes :

dg
Xxmgy+ dexky+—xn=0 . (2.3.30)
azl.:i a@ * azl.‘.’t aE-v

Thus, (2.3.23) and (2.3.28) become equivalent to (2.3.28) and (2.3.30).

To obtain the constitutive equations, we first reduce the conservation of energy
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equation (2.3.4) to a line integral by integrating (2.3.4) over the cross-section Sg. Then,

(2.3.4) can be written as :

d 1 or or_ . 1 dd, ddp
—|y+=<—,—>+—= <—,Ys—=—>)E
i SRl it Rl it C
_ ar ada
_£(<f, at>+u=213<l“' > >)dE
or adu
+[<n,=—>+ <my, —>1I (2.3.31)
ot a-—-zl.?o T ]§=§la§2

where c is the curve of the centroids, v is given by :

v:=[[v'p'Vg d6de; , (2.3.32)
S

[u1l b :=u(b) - u(a) for any function u : R — R and the curve of centroids is assumed
a,

to be bounded by &; <& <&,, namely, / =[0, L]. Using (2.3.20) and the fact that p defined

in (2.3.22) only depends on &, (2.3.31) become :

2 ad 0%d
Yy, 2T iy A, T h S <my, 2.3.33)

o
dt ot t A e Ty T & e e 7

By assuming a special form on v, (2.3.33) gives the desired constitutive equations. In the
following section, we give an example for this approach, for details see, e.g., [Gre.2],

[Ant.1].

2.3.3 Geometrically Exact Beam Model
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In this section, we obtain the equations of motion of the geometrically exact beam
model developed by Simo and Vu-Quoc [Sim.1,2], as a special case of the director beam

model presented in the previous section.

We define the curve of the centroids ¢ and the beam cross sections S¢ as defined by
(2.3.10) and (2.3.11), respectively. For simplicity, we assume that the unstressed
configuration of the beam, which is taken as the reference configuration, is such that the
curve of the centroids c is a straight line segment in R3. We also regard & as the arc-
length of c in the reference configuration. Since in this configuration c is assumed to be a
straigt line, without loss of generality it may be assumed that the directors d, , d; defined
in (2.3.12) are orthonormal in the reference configuration. Let D, D; denote such an

orthonormal pair.

The basic kinematic assumption in addition to Assumptions 1 and 2 given in the

previous section, is the following :

Assumption 3 : the directors d, , d , which are taken as an orthonormal pair in the refer-

ence configuration, remain orthonormal at all times . O

Remark : The Assumption 3 precludes any deformation in the cros-sections Sg. In other
words, in the geometrically exact beam model, beam cross-sections can only perform

rigid motions (see [Sim.1]). O

Let the beam be initially in the reference configuration and let D, , D; be the direc-

tors in the reference configuration. By Assumption 3 it follows that there exists a rotation
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matrix A (€, t) € SO (3), such that :

dy=AE.t)D, a=1,3 ,Eel,teR , (2.3.34)

where I is the interval in which & varies. For convenience we define the vectors d, and

D, as follows :
d2 = d3 X d] N D2 = Dg X Dl . (2.3.35)
From (2.3.34) it follows that :

d=AE.)DYx(AE,1)Dy)

=AE,)D, . (2.3.36)

Upon differentiating A (€ , ¢), similar to (2.2.8), we obtain :

SAC.D=WE.NDAG.D . 2.337)
where W is a 3x3 matrix. Note that, since AE, ) € SO (3), hence AAT =1, we have

T _ (9 AAT 9,7
W+W (a: A)A +A(atA )
=9 AAT)=
=3 (AA)=0
Hence W is skew-symmetric. Let the parametrization of W be given as :

0 w3 Wj
W= L] 0 -W ’ (2.3.38)
-wy wy; O
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and define the corresponding axial vector w as follows :
3
wi=Yywd . (2.3.39)
i=1

It follows that Ww =0 and

Wu=wxu forallueR® (2.3.40)

and w is the angular velocity of the planar cross-section S¢.
Similarly, upon differentiating A (€ , ¢) with respect to §, we obtain :

9

3§A(§'t) =QE,.)AE.) (2.3.41)

where Q (& , ¢), similar to W given in (2.3.37), is a 3x3 skew-symmetric matrix. Let the

parametrization of Q be given as :

0 -0 o
QE.t)=l w3 0 —a , (2.3.42)
-0, o O

and define the corresponding axial vector o as :

3
w:= E(D,' d; . (2.343)

i=1

It follows that Q® =0 and similar to (2.3.40), we have :

Qu=wxu forallueR . (2.3.44)
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Following Simo, [Sim.1], we define the pull-back x of ® by A as follows :

k=ATo . (2.3.45)

A straightforward calculation shows that k is the axial vector of the skew-symmetric

matrix K defined as :

K:=ATQA , (2.3.46)

and a comparison of (2.3.46) and (2.3.41) yields :

—==AK . (2.3.47)

Using (2.3.47) and (2.3.37), we obtain the following relation between the axial vec-

torswand x :
OK _ T 90
o =A 2 . (2.3.48)

For the sake of clarity, we note that the quantities defined, such as the contact force
n, the contact moment m, etc., and the equations derived in the previous section remain
the same in this section. In particular, let the contact force n and the contact moment m
be defined as in ( 2.3.16) and (2.3.17), respectively, and let r be the position vector of the
curve of centroids with respect to an inertial frame N. Then the basic equations of motion

are given by (2.3.20) and (2.3.23). For convenience, we repeat them here :

on r
= +f=p —
? or?

3 ' (2.3.20)
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am Br _ azdp
8§ § xn+l= ¥ ¥ yepdeX —-

, (2.3.23)
a=13p=13 or? .

where the resultant force f per unit length is given by (2.3.21), the mass per unit length p
is given by (2.3.22), the resultant moment per unit length 1 is given by (2.3.24) and the

inertia coefficients y g , &, B =1, 3 are given by (2.3.25).

The energy equation (2.3.33), which is used to obtain the constitutive equations,
remains valid. In director theory of beams, the intrinsic director forces k, , k3 cannot be
eliminated from the energy equation (2.3.33). Hence they must appear in the constitutive
equations and a set of dynamical equations involving k; , k3 , which are (2.3.28), must be
added to the equations (2.3.20) and (2.3.23). However, we show next that, in geometri-
cally exact beam model, due to the orthonormality of the directors d, , d3 , the form of the
energy equation (2.3.33) may be changed so that k;, ks no longer appear in (2.3.33).
Hence one need not introduce the intrinsic director forces k, , k; in geometrically exact

beam model.

Using (2.3.30) in the energy equation (2.3.33), we obtain :

2
dy __, 9 94y 9dy
FZTRR T L D AL i

2
=<n, 5+ or >+ Y <kg,wxdg>+ Y, <mg, (wxd )>

a&a a=13 a=13 é

od,
xda+wx >

ag

r
—<n,——>+ <w,kyxdyg>+ <mg,
FZTRR T I £3
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< ad >-< n+ Y 9 my >
=<N, <o w, X X

ogor o§ P

+ Y <= >+ ¥ < —ad“xm >
o XM w,
a=13 a§ * a=13 aE-v ¢
or < or ow

= g 2.3.49

<“’a§a: 3!’; >S+<m, §> , ( )

where we also used that

ad,
=wxd, a=13 |,

ot

and

<a,bxc>=<c,axb> foralla,b,ce R?

We define the following strain measure :

r=aT & _p, . | (2.3.50)

E3

Following Simo [Sim.1], we propose the following form for the internal energy

function y :

v=yT,x) , (2.3.51)

where «xis defined in (2.3.45).

Differentiating (2.3.51) with respect to ¢ and using (2.3.50) and (2.3.48), we obtain :

dy _ 9y or . 9y 9k
o ot
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= i\l_l_ aAT i T azl' _\II_ T aw
<or e Mt N ®
r  __or _\y_ ow
Aar , aga WX 3 >+<A '3 > . (2.3.52)

Comparing the right hand side of (2.3.49) and (2.3.52), since the contact force n and

the contact moment m are independent vectors, we obtain the following constitutive

equations :
A Ay
n=A T , m=A ™ . (2,3.53)

The right hand side of (2.3.23) deserves a special attention. Since

ad,

35 =WX de, =1, 3, and since the inertia coefficients yog , &, B=1, 3 given by (2.3.25)

are symmetric, we obtain :

d%d

Yy X daxyug—f-=ai Y Y dexyep(wxdg) . 2.3.59)
a=13p=13 ot La=138=13

Similar to the rigid body angular momentum equation, we define the beam inertia

tensor Iz as follows :

Iga= Y Y dyxyq(axdg)
a=13p=13

=( X B}_“, Yopldopl —dg.dgl)a aeR® (2.3.55)
a= 13

where 8,3 =1 if a.=p and 0 otherwise; the dyadic product (or the outer product) d,, . dg is

defined as(da.dp)(a)=<dﬁ,a>daforallaeR3.
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Differentiating (2.3.55) with respect to ¢, we obtain :

d .
—[Igwl== Y X yap(wxdy)<dg,w>+Ipw
dt a=138=13

=wx( z Z y@[8¢l-da.d5])w+ Ip w
e=13=13

Iy wHwxlpw . (2.3.56)

Using (2.3.55) and (2.3.56) in the moment equation (2.3.23), the latter becomes :

gm , or +l=Ig w+wxlpw . (2.3.57)

o d&

Equations (2.3.20), (2.3.53) and (2.3.57) are the equations of motion in the geometr-

ically exact beam model developed by Simo and Vu-Quoc [Sim.1].

- Summary :

Starting from basic equations of 3-dimensional elasticity, (i.e., (2.3.8) and (2.3.9) ),
we obtained the basic equation of motion for an elastic beam ,(i.e., (2.3.20) and (2.3.23)).
Modeling the beam as a Cosserat curve with two directors requires one more set of equa-
tions (i.e., (2.3.28) ). By using the energy equation (2.3.33), once the form of the internal
energy v is specified, the constitutive equations can also be found and then together with
the equations mentioned above, these equations form a complete set of equations of
motion for a beam modeled as a Cosserat curve with two directors. By constraining the

motion of directors, (see Assumption 3), these equations reduces to (2.3.20), (2.3.57), and
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(2.3.53), which are the equations of motion for a geometrically exact beam.

2.3.4 An Example : Planar Motion

In this section we give the equations of motion for a beam modeled as a geometri-
cally exact beam described in the previous section. We assume that the beam is clamped

at one end, free at the other and the motion is constrained to take place in a plane.

We consider the following configuration :

0 _ ~ (] 2
Dl e: X ¢

Figure 2.1 : A flexible beam

In Figure 2.1, the quadruple (O , e , e, , e3) denotes the inertial frame N, which cin-
cides with the frame D formed by the initial values of the directors, the quadruple

(0 ,D;, D,, Dy). In the reference configuration, the beam is assumed to be straight along
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the D, axis. In Figure 2.1, P is a point on the curve of the centroids and r is the position
vector of P, the quadruple (P , d, , d; , dy) is the frame E associated with the directors at
P, ¢ is the angle between the axes d, and D, and x is the distance between O and the ini-
tial position of P along the D, axis. The motion takes place in the plane normal to the Dy

axis.

The orthogonal transformation A between the frames D and E admits the following

representation :

1 0 0
A=|0 cosd —sind , (2.3.58)
0 sing cosd

that is, we have the following :

d1=Dl ’
d; = cos¢ D, + sind D, ,

d; =—sin$ D, +cos¢p D,

For simplicity, in the sequel we set § =x. By substituting A in (2.3.37), (2.3.41) and

(2.3.45), we obtain :
_9% -]
w= o d, , K== > d . (2.3.59)

Let u, and u, denote the deflection of the point P from the reference configuration

along the axes D, and D5, respectively. Then we have :

r=( +u7)D2+u3 D3 . (2.3.60)
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Let the components of the strain measure I'" defined in (2.3.50) in the frame D be

©,I,,Iy),ie,

I'=T,Dy+13D; . (2.3.61)

Then using (2.3.58), (2.3.60), (2.3.61) and (2.3.34) in (2.3.50), we obtain :

au2 8u3 .
=1+ X) cosd + ? sing—1 ’ (2.3.62)
du, a
Iy=—-(1+— o 2 ) sing + —al; 2 cosp . (2.3.63)

Using the following component form for the contact force n and the contact moment

m, (note that the motion takes place in the plane normal to the axis e, = Dy =d,):

n=n2D2+n3D3 » m=mlDl , (2.3.64)

and assuming that the cross-sectional inertia coefficients with different index are zero,

i.e., y13=y31 =0, we obtain the following component forms of the equations (2.3.20) and

(2.3.23):
on, ons _9_ %u,
S cosd — a— sind — (nysing+nycosd ) +fr=p—>- ¥ , (2.3.65)
ony an; ¢ azug

3 sing + a— cosh + —— ( nycosd—nssing)+f3= a:2 , (2.3.66)
om 1 ) auz .

m +( +—a—- ) (n,sind + n4 cosd )

ou, 3%
- T( nyCOSh —nasing )+, = y;:,y , (2.3.67)
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where f=f,D, + f ;D3 and 1 =1,D, (see (2.3.20) and (2.3.23)). Finally, assuming the fol-

lowing quadratic form for the internal energy .

2y= Ezrzz + E3F32 + E41(12 ’ (2.3.68)
where E,,E5,E, are elastic coefficients, I, T3 are given by (2.3.62), (2.3.63) and

K= g—i; the constitutive equations (2.3.53) become :

ny=E, Fz » n3=E3 l"3 , m=Esx . (2.3.69)

As for the boundary conditions, we have the following :

u)0,t)=u30,t)=0 , ¢0,t)=0, foralteR , (2.3.70)

nlZ,t)=0 , wmL,t)=0, foralteR , (2.3.71)

where L is the length of the undeformed beam : the equations in (2.3.70) are the clamped

end conditions, whereas the equations (2.3.71) are the free end conditions.

Equations (2.3.62)-(2.3.69) are the equations of motion of a beam modeled as a
geometrically exact beam performing planar motion. Together with the boundary condi-

tions (2.3.70) and (2.3.71), they form a complete set of equations.

Special case 1 : linear inextensible beam

Let the beam be inextensible, i.e., u, =0. Assuming that the deflections u,, 44 and ¢

are small and then neglegting the higher order terms, (2.3.62)-(2.3.69) become :
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8u3

L=0 ., Ty=—r-¢ , 2.3.72)
n=n2D2+n3D3 N m=mlDl N (2.3.73)
an 32u3

Safi=ps (2.3.74)
aml az¢

7 + nj + ll =)’33¥2' , (2.3.75)
n3=53 F3 , m1=E4ai . (2.3.76)

ox

We note that since the beam is assumed to be inexensible, i.e., u, =0, the axial com-
ponent n, of the contact force n becomes indeterminable through the constitutive equa-

tions. Once the deflection u5 and the angle ¢ are found n, can be found using (2.3.65).

Equations (2.3.72)-(2.3.76) are the Timoshenko beam equations [Tim.1]. By using

(2.3.72), (2.3.73) and (2.3.76) in (2.3.74) and (2.3.75), the equations of motion become :

azu 3 2& 32u 3

(S -5h)=p=y 23.77)
3% du; 3> |
ES b +E(S-0)=ym3s 2.3.78)

where we assumed that the elastic coefficients E; , E4 do not depend on x . In the litera-
ture, E3=GA, is called the shear stiffness along the axis d3, and E 4= El is called the

principal bending stiffness relative to the axis d, (see [Mei.2]).
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Boundary conditions (2.3.70) and (2.3.71) now become :

u0,t)=0 , ¢(0,t)=0, forallteR , (2.3.79)
Ua (L ,t)—¢L ,2)=0 ’ ¢(L.l)=0 for all t eR ’ (2.3.80)
where f, = gx .

Special case 2 : inextensible Euler-Bernoulli beam

Assuming that the beam is inextensible and the transverse deflection u; is small, we can

a
approximate the angle ¢ as ¢ = % Using this approximation in (2.3.76), we obtain :

3214 3

ox?

my=E, (2.3.81)

Using (2.3.81) in (2.3.74) and (2.3.75), neglegting the body forces and moments ( i.e.

f2=0,1,=0), the former equation becomes :

a* & a*
3:43 R ey (2.3.82)

E
4 or? ox2r?

This is the Euler-Bernoulli beam equation with the rotatory inertia. Neglegting the

rotatory inertia, i.e., setting y3 =0, yields the Euler-Bernoulli beam equation [Mei.2] :

E ﬂﬁ»pﬂ:o (2.3.83)
fat T A ' e

where we assumed that the principal bending stiffness E , = E/, does not depend on x.



40

The boundary conditions (2.3.70) and (2.3.71) now become :

uz(0,8)=0 , u3(0,t)=0, foralteR , (2.3.84)

Uae(L ,2)=0 , U3e(L ,2)=0, foralteR . (2.3.85)
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2.4 An Elastic Beam Clamped to a Rigid Body

In this section we consider the motion of an elastic beam clamped at one end to a
rigid body and free at the other end. We derive the equations of motion by considering

free body diagrams.

We consider the following configuration :

€3

€
Figure 2.2 : Rigid body with a flexible beam

In Figure 2.2, the quadruple (O , e, , e, , e;) denotes an inertial frame N, the box and
the curved line represent the rigid body Bz and the beam in the deformed configuration,
respectively, C is the center of mass of the rigid body, the quadruple (C ,D;,D,,Ds) is -
the body frame B whose axes are also the principal axes of inertia for the rigid body, Q is
the point at which the beam is clamped to the rigid body, P is a material point of the
beam, the quadruple (P , d, . d,, ds;) denotes the frame of directors at P. The reference

configuration of the beam, which is also assumed to be the initial configuration of the
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beam, is a straight line along the D, axis, x is the distance between the point Q and the

point P in the reference configuration: hence x =0 specifies the point Q.

Let I, =diag (I,,I,,15) be the inertia tensor for the rigid body and w; be the angu-
lar velocity of the body frame B with respect to the inertial frame N. Then the Euler

equation (2.2.22) for the rigid body becomes :
I 0 +0g xIgwr =1 (0,£)xn(0,2)+m@O,)+N. (&) , (2.4.1)

where r (x ,t)=CP, i.e. the position vector of the material point P in the body frame B,
r(0,t)=CQ, N, (¢) is the control torque applied to the rigid body, n(0,¢) and m (0, ¢)
denote the contact force and the contact moment of the beam at Q, respectively. The first
two terms on the right hand side of the equation (2.4.1) represent the torque applied by

the beam to the rigid body.

The“ balance of linear momentum, (2.2.2), applied to the rigid body becomes :

MR=n©,0)+f, +F(@) (2.4.2)

where M is the mass of the rigid body, R = OC, (i.e., the position vector of the center of
mass of the rigid body C in the inertial frame N), f,, is the force due to the gravity acting
on the rigid body Bz due to some mass located at O and F (¢) is the control force applied

to the rigid body.

Assuming that the beam is modeled as a geometrically exact beam, the beam equa-

tions (2.3.20) and (2.3.57) become :
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oan . PR+r)
ag +f—p( atz )N
=p(a—2&) +pcb Xr+2po, x(i':-) +p @p x (0 XT) (2.4.3)
32 v R R X050, R R , 4.
om _ or _ . O(w+ag)
% + 3 X +l=1I (—at )N+(xsr+mk)x1,,(w+mk) . 2.44)

The constitutive equations for the beam retain their form given by (2.3.53) :

n=A-Qy— m=Aﬂl—

T , sl (2.3.53)

where A is the orthogonal transformation between the body axes D; ,i =1,2,3 and the
directors d; , i =1, 2, 3, y is the internal energy function for the beam, the strain measure

vectors I" and « are defined by (2.3.50) and (2.3.45), respectively.

The boundary conditions for the beam are :

r@©,0)=CQ , T@©,)=I, foral te R® (2.4.5)

n,t)=0 , m(@,t)=0, forallteR® , (2.4.6)

where L is the length of the beam in the undeformed configuration. As before, the equa-
tions (2.4.5) are the clamped end conditions and the equations (2.4.6) are the free end

conditions.

Equations (2.4.1)-(2.4.6) together with (2.3.37), (2.3.41), (2.3.45), (2.3.50) and
(2.3.53) form a complete set of equations that describe the motion of a flexible beam-

rigid body configuration described in this section.



Chapter 3

Control of a Flexible Beam Attached to a
Rigid Body : Motion in Plane

3.1 Introduction

In this chapter, we study a special case of the rigid body-clamped beam configuration
introduced in the Section 2.4. We assume that the center of mass of the rigid body is
fixed in an inertial frame and the whole configuration performs planar motion. The first
assumption can be justified if one considers a satellite which consist of a rigid body and a
flexible beam attached to it in a geosynchronous orbit; neglecting the effect of the rota-
tion of the Earth, the center of mass of the rigid body is fixed with respect to the Earth.
The second assumption simlifies the analysis presented in this chapter, but the results

obtained in this chapter will be extended to the 3-dimensional motion in the Chapter 4.

In Section 2, using the Euler-Bernoulli beam model introduced in the previous
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chapter, (see (2.3.83)), we obtain the equations of motion and define the rest state of the
system. Then we pose our control problem which is: if the system is perturbed from the

rest state, find a control law which guarantees that the system is driven to the rest state.

In Section 3 we propose 2 control laws and in the remaining sections we prove that
these control laws solve the control problem posed in Section 2. Moreover, we prove that

the decay to the rest state is exponential.
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3.2 Equations of Motion

We consider the configuration shown in the Figure 3.1 :

axis of rotation

Figure 3.1 : Rigid body with flexible beam : planar case

In Figure 3.1, the quadruple (O, ey, ,, e3) denotes a dextral orthonormal inertial frame,
which will be referred to as N, (O, D;, D,, D4) denotes a dextral orthonormal frame fixed in the
rigid body, which will be referred as B, where O is also the center of mass of the rigid body and
D,, D,, D, are along the principal axes of inertia of the rigid body. The beam is clamped to the
rigid body at the point Q at one end along the D, axis and is free at the other end. We assume
that the rigid body may rotate only about the e; axis and that at all times the axes e, and D, coin-
cide. Let L be the length of the bcam. We assume that the mass of the rigid body is much larger
than the mass of the beam, so the center of mass of the rigid body is approximately the center of
mass of the whole configuration. So we assume that the point O is fixed in the inertial space

throughout the motion of the whole configuration. We also assumec that the beam is inextcnsible,
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(i.e., no deformation along the axis D, ), and homogeneous with uniform cross-sections.

The beam is initially straight along the D, axis. This initial configuration for the beam is
also referred to as the reference configuration for the beam. Let P be a beam element whose dis-
tance from the point Q in the reference configuration is x, let u be the displacement of P along

the D4 axis. Letr (x , ) = OP be the position vector of P.

Neglecting gravitation, surface loads and the rotatory inertia of the beam cross-sections, the

equations of motion (2.4.1), (2.4.3) and (2.4.4) now reduce to :

an _ o

5= (at2 )N , (3.2.1)
dm ,dr

3 + ™ xn=0 |, (3.2.2)
Ip d)R +g xIgr=r0,)xn©0,t)+m@O,s)+N, (¢) , (3.2.3)

where n and m denote the contact force and the contact moment of the beam, respectively, p is
the mass per unit length of the beam, which is a constant by assumption, /p is the inertia tensor of
the beam, which is diagonal, ®y is the angular velocity of the body frame B with respect to the
inertial frame N, the vector N, (¢) is the control torque applied to the rigid body, r (x , t) =OP,
i.e., the position vector of the material point P in the body frame B, and at the clamped end we
hav'e r (0, ¢)=0Q. The first two terms on the right hand side of the equation (3.2.3) represent

the moment effect of the beam to the rigid body.

Since the motion takes place in the plane normal to the D, axis, we have the following com
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ponent forms of the contact force n , the contact moment m and the position vector r of the

point P :
n=n,D+n3D3 , m=mD , (3.24)
u ou
ny=—El — , m=El — , (3.2.5)
3 ox3 ! ox?
r={b+x)Dy+uDy (3.2.6)

where EI is the flexural rigidity of the beam, b =| 0Q | . Note that in (3.2.5) we assumed the

Euler-Bernoulli beam model for the beam.

Since the beam is assumed to be inextensible, the axial deflection is identically zero, hence
the axial component 7, of the contact force n becomes indeterminable through the constitutive
equations, (see [Pos.1]). The axial component of the equation (3.2.1) then determines #,. Since

this equation plays no role in the sequel, the axial component of (3.2.1) will be omitted.

Using (3.2.4)-(3.2.6) in (3.2.1)-(3.2.3), we obtain the following component forms of the

equation of motion :

*u d*u .
p?+EI-aF+pm(b+x)-pm2u=0 , (3.2.7)
IRO=EI (= b uyy (0t) + 1y Q) +N. (¢) (3.2.8)
u©,)=0 , u.(0,t)=0, forallteR , (3.29)

where we used ® = D; and N, (¢) =N, (t) D,. Equation (3.2.7) is the component of the equa-
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tion (3.2.1) along the D5 axis, and the equations (3.2.9) are the the boundary conditions at the

clamped end.

The rest state of the system given by (3.2.7) and (3.2.8) is defined as follows :

0o=0
u(x)=0 0<sx<L . (3.2.10)
(x)=0 0sx<L

Our control problem is to find an appropriate control law N, (¢) , control force and control

torque at the free end of the beam such that if the system given by (3.2.7)-(3.2.9) is perturbed

from the rest state, the control law will drive the system to the rest state.
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3.3 Stabilizing Control Laws

In this section we propose two stabilizing control laws to solve the control problem
posed in the previous section. Each law consist of appropriate control force and torque

applied at the free end of the beam and a control torque applied to the rigid body.

3.3.1 Control Law Based on Cancellation

This control law applies a force n (L , ¢) and a torque m (L , t) at the free end of the
beam and a torque N, (¢) to the rigid body. They are specified as follows : we choose

a>0, >0 and k > 0; then for all ¢ > 0, we require the following equations:

—Elu (L ,t)+0au (L,t)=0 3.3.1)
Elug, (L ,t)+Puy (L,t)=0 , (3.3.2)
N, (t)=EI (b g 0.8)—ug 0,2k ® (3.3.3)

where m(L, t)=Elu_(L,t)D;, and N.(¢t)=N_(t)D;. Because of the boundary condition
(2.4.6) at the free end, n, (L , ) =0 and since n; =— EI uy,, (see (2.3.75) and (2.3.81)), it

follows thatn (L ,¢t)=—El u, (L ,t)D4

Equation (3.3.1), {(3.3.2), resp.,} represents a transversal force, {torque, resp.,}
applied at the free end of the beam in the direction of, {around, resp.,} the axis Ds, {the
axis Dy, resp.,} whose magnitude is proportional to and whose sign is opposite to the end

point deflection velocity i, (L ,t), {end-point deflection angular velocity u, (L .t), resp.,} of
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the beam. To apply the control laws given by (3.3.1)-(3.3.3), the end point deflection
velocity u, (L, t), the end point deflection angular velocity u, (L, t), the rigid body angu-
lar velocity o (t) and the moment applied by the beam to the rigid body must be meas-
ured. This moment consist of the effect of the contact force n(0,¢) and the contact
moment m (0, ¢) at the clamped end. Both can be measured by using strain rosettes and

strain gauges, respectively, [Ana.1].

The control law (3.3.3) is reminiscent of a " computed torque " type control law in
Robotics , [Pau.1]. When substituted in (3.2.8), it cancels the effect of the beam on the
rigid body. This type of control law has been applied to the attitute control of a satellite

with a flexible beam clamped to it [Ana.1].

3.3.2 Natural Control Law

This control law applies to the free end of the beam the same boundary force
n (L , ) and the boundary torque m (L , ¢) as specified by the equations (3.3.1) and (3.3.2)

, respectively; but the torque applied to the rigid body is now given by :

N.@¢)=-rL ,t)xnL ,t)-mL ,t)-k t) , (3.3.4)

or equivalently in component form :

N.(¢)=El (b +L) e (L ,8)—El ug(L 1) =k (t) . (3.3.5)

This control law is "natural” in the sense that it enables one to choose the total

energy of the whole configuration as a Lyapunov function to study the stability of the
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system.

The control law given by (3.3.1), (3.3.2) and (3.3.5) requires that the end point
defiection velocity 4, (L , t), the end point deflection angular velocity uy (L ,¢) and the
rigid body angular velocity o(¢) be measured. The first two could be measured by optical

means and the latter by the gyros.

In the following sections, we show that the two control laws proposed in section
3.4.1 and Section 3.4.2 stabilize the system given by (3.2.1)- (3.2.3), i.e., when this sys-
tem is perturbed from its rest state given by (3.2.10), these control laws drive the system

to the rest state.
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3.4 Stability Results for the Control Law

Based on Cancellation

Consider the system given by the equations (3.2.7)-(3.2.8) and the control law given

by the equations (3.3.1)-(3.3.3). After substituting (3.3.3) in (3.2.8), we get :

Ro+ko=0 forallteR, . (3.4.1)

Therefore we have the following solution for a(t) :

() = 0) e<-;—’£)z forallt e R, . (3.4.2)
R
The remaining equation (3.2.7) can be put into the following state space form :
dlu 0 1 | u 00| (u 0 343
dt | u —_.E_'I.i() o +(020 u:+—(;)(b+x) ! (3.4.3)
p ox*

where @(t) is given by (3.4.2). We define the following function space H in which the

solutions of (3.4.3) evolve :

H:={(@ u) |ueH? uel?. (3.4.9)

where the function spaces L?, H* and H* are as defined below :

x=L
L2 :=(f:[0,L]1>RI [fldx<e} (3.4.5)
x=0

Ht :=(f e L2 fieL?,i=l,..k } (3.4.6)
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HYy:=(f e H* 1 f(O)='0)=0} . (3.47

In H, we define the following inner product, which is called "energy" inner product

x=L x=L
<z,2>g:= [ Elug ity + [ pu i dx, for all z .7 e H. (3.4.8)
x=0 x=0

wherez =(u )T ,7=@ ).

Note that, (3.4.8) induces a norm on H, which is called "energy norm". This norm is
equivalent to a standard "Sobolev" type norm which makes H an Hilbert space (for more

details, see [Paz.1] and [Che.2]).

To put (3.4.3) into an abstract equation form, (see (3.4.12) below), we define the

following operators A : H - H ,B : RxH — H and functionf : R, = H,

= o 1 3.4.9
A<l ma | 649
p ox*
[0 o 4‘
B®=| 20y 0 , (3.4.10)
_ [ 0
f@)= -_m)(b ox) ) (3.4.11)

where the dependence on x is supressed as is usually done in abstract formulation.

3.4.1 Remark : The operator A is an unbounded linear operator on H, i.e., it is not con-

tinuous as a map on #. The operator B(.) is bounded on R,. Since w(t) and (1) are
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exponentially decaying functions of ¢, (see (3.4.2)), so is|| B(¢)|| , where the norm used

here is the norm induced by the energy inner product given by (3.4.8). O

Using the above definitions, (3.4.3) can be put into the following abstract form :

%=Az+8(t)z+f(t) :@)=z0c H (3.4.12)

where z =(u 4,)T. The domain D (A4) of the operator A is defined as follows :

D@A)={( u)" : u eHy*, u, eHy?, — El ugo (L) + 01, (L) =0, (3.4.13)
El un(L)+Buy(L)=0} ,

where aa.>0and §> 0.

It is well known that the operator A : D(A)cH — H defined in (3.4.9), with its
domain D(A) and H defined as in (3.4.13) and (3.4.4), respectively, generates an

exponentially decaying semigroup T (t), (see [Che.1, Thm.3.1]). That is, the solutions of

z=Az , z(0)=z9e DA) , (3.4.14)

which are equivalent to the following equation and boundary conditions : forall ¢ € R,

p Uy +Elug, =0, xeO,L) , (3.4.14.1)
@©,0=0 , w4 ©0.,0)=0 |, | (3.4.142)
—Elu(L)+ou(L)=0 (3.4.14.3)
Elug (L) +BugL)=0 . (34.144)

are given by z(t) = T(t)z, and there exist positive constants M >0 and 8 > 0 such that :
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HT®| sMe ¥ (3.4.15)

where the norm is the norm induced by the energy inner product defined by (3.4.8).

We give some definitions and results from the semigroup theory which will be fre-

quently used in the sequel. For details, the reader is referred to, e.g., [Paz.1], [Gol.2].

3.4.2 Definition : (Semigroup, strongly continuous semigroup)

Let X be a Banach space. A one parameter family T(t):X - X ,0<t <o, of

bounded linear operators is a semigroup of bounded linear operators on X if :
(i) : T(©)=1, (I is the identity operator on X ),
() :T@ +s)=T¢)T(s)foreveryt,s 20.

A semigroup T(r),0<t <o, of bounded linear operators on X is a strongly continuous

semigroup of bounded linear operators if :

IimT (t)x =x forevery x e X
10

A strongly continuous semigroup of bounded linear operators on X will be called a Cy
semigroup. Let T'(t) be a Cq semigroup. If || T(r)|| <1, then T(¢) is called a Cy semi-

group of contractions. O

3.4.3 Theorem (Hille-Yosida). A linear operator A is the infinitesimal generator of a Cq

semigroup of contractions T'(¢) if and only if :
(i) A is closed and D (A), the domain of A, is dense in X,

(ii) the resolvent set p (A) of A contains R, and for every A >0,
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—AY!| s+
a1 -ay!|l <4

Proof : See [Paz.1,p.8] . O

3.4.4 Theorem (Lumer-Phillips). Let A be a linear operator with a dense domain D (A)
in a Hilbert space X . If A is dissipative, i.e., <x ,Ax><0 for all x € D(A), and there is a
Ao > 0 such that the range of the operator (\g/ —A) is X, then A is the infinitesimal gen-

erator of a C, semigroups of contractions on X .
Proof : See [Paz.1,p.14]. O

3.4.5 Theorem (Pazy). Let A be the infinitesimal generator of a Cq semigroup T (¢). If

for some p, 1<p <eo

IHT(t)xIIPdt <oo forallxeX ,
0 .

then there are constants M > 1 and & > 0 such that

HT@)|| <M e ™

Proof : See [Paz.1, p.116]. O

Consider the equation (3.4.14). Next we prove that the operator A defined by (3.4.9)

generates an exponentially decaying C semigroup, this result was first given in [Che.1].

3.4.6 Lemma. Consider the spaces D(A) defined by (3.4.13) and H defined by (3.4.4)

with the inner product given by (3.4.8). Then, D(A) is dense in H.
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Proof : Suppose not.Then D (A) is a proper subspace of H, and since H is a Hilbert space
and D (A) is closed, there exists az #0,z € H such that <z ,x>=0forallx e D(A). Let
z =(z; z5)" Then forall x =(x, x)7 eD(A), the following holds :
L L
[BI 21 X1p dx + [Pz x5dx =0 . (3.4.16)
0 0

Choosing x, =0 and noting that the class of C* functions are dense in D (4), it fol-

lows that z;,, =0 almost everywhere in [0, L]. By the boundary condition z, (0) =0 it fol-

lows that z, =0 almost everywhere on [0, L ].

Similarly putting x; =0 in (3.4.16) and repeating the same argument, we conclude
that z, =0 almost everywhere in [0,L]. Hence z =(z; z9)T =0, which is a contradiction.

a

3.4.7 Theorem : (Existence, Uniqueness). Consider the abstract differential equation
(3.4.14), where the operator A, its domain D(A), and the space H are given by (3.4.9),
(3.4.13), and (3.4.4), respectively. Then the operator A generates a C semigroup T'(¢) on

H, (i.e., existence and uniqueness of the solutions of (3.4.14)).

Proof : We use the Lumer-Phillips theorem (e.g. theorem 3.4.4) to prove theorem 3.4.7.
Note that by Lemma 3.4.6, A is a densely defined operator on H. So, to prove the

theorem, we need to show that :

(a) A is dissipative, i.e.,

<z . Az><0 forallze D(A) | (3.4.17)
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(b) for some A > 0, the range of the operator (\/ —A)~! is H. That is, there exist a A>0

such that for any ye H, the following equation has a solution zeD (A4 ):

AI-Ax=y . (3.4.18)

To prove the assertion (a), we first note that since z =Az, showing that (3.4.18)

holds is equivalent to showing the following :

4 =2 2
dt<z ,z>-dt(”z“ )SO ’

where the norm is the norm induced by the energy inner product (3.4.8).

Consider the system defined by (3.4.14); call E, (¢) its energy, then :
Ei(t)=—<z,2>

L
% El ug,’dx +£p ulde (3.4.19)

Oty ™

where z = (u «,)T. Upon differentiating (3.4.19) with respect to time ¢ and noting that the

coefficients EI and p are constants, we obtain :

dE) & r
i =£Elux,ux,dx+_([pu,u,,dx

L L
=£Elunumdx-£81u,umdx

L L
= [ET ey g dx — ET (L) ey (L, 0)+ [ET 1ty hy, dix
0 0



L L
= [EI uyy Uy dx —EI (L, 1) e (L, 8) +EI U (s ) e (Lo 8) = [ET thy Uy, i
0 0

=—ou XL, 1)-Pu’L, 1) (3.4.20)

where, in the second equation we used (3.4.14.1), in the third and fourth equations we
used integration by parts and the boundary conditions (3.4.14.2). Then, by using the
boundary controls (3.4.14.3), (3.4.14.4) we obtain (3.4.20), which proves that the opera-

tor A defined by (3.4.9) is dissipative in H.

To prove assertion (b), i.e., that the range of the operator (A7 —A) is H for some
A > 0, we show that for any y € H there exists a z € D (A) such that the equation (3.4.18)

holds, i.e. we have the following :

AI-A)z =y

Lety =(f g)T € H be given. We put z =(u w)T. Using (3.4.9) and without loss of

generality putting % =1, (3.4.18) becomes equivalent to the following equations :

Au-w=f  fO=f0=0 |, (3.4.21)
Uy TAW=g (3.4.22)
@ =u(0)=0 , wO=w,(0=0 |, (3.4.23)
U (L) +AW(L)=0 (3.4.24)

U (L) +Bw,(L)=0 (3.4.25)
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where (3.4.23)-(3.4.25) are the boundary conditions.

By using (3.4.21) in (3.4.22), we get :

Upe +A2U =Af +g . (3.4.26)

Putting A% =—1*, a general solution of (3.4.26) which also satisfies the first two boundary

conditions in (3.4.23), (i.e., u (0) = u,(0)=0), is given as :
u(x,t)=C, (coshtx — costx) + C, (sinhtx — sintx)

+ iz [T sint(z - 0) —sint(x ~0) [ A @) +8@1do (3.427)
: )

where C, and C, are the constants of integration which will be determined by the remain-
ing boundary conditions (3.4.24) and (3.4.25), sinh (.), cosh (.) : C — C are the hyperbolic

sine and the hyperbolic cosine functions, respectively.

Using (3.4.27) and (3.4.21) in the boundary conditions (3.4.24) and (3.4.25), we

obtain the following matrix equation :

an a] [Cy f1

S P P (3.4.28)
where
ay, =T(sinhtl —sintl) +i at’(coshtl —costL) (3.4.29)

a2 =T3(coshtL +costL) +iat’(sinhtl —sintL) (3.4.30)
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agy =73(coshtl +costL) —iB(sineL +sintl) (3.4.31)
a2 ="(sinhtL +sintl) — i pr’(coshtl —costl) (3.4.32)
L

1= ‘2—lf cosht(L — 6) +cost(L —0) J[—i T f (o) +g(0) 1 do
0

L
"—‘f—‘j{ sinht(L - 6) - sint(L —0) [[-i ©f(0)+g(0) 1do —af L) , (3.4.33)
0

L
fa= ‘2—:][ sinht(L — o) +sim(L — ) [[-i 2 f (©)+g(0) 1do
0

.al
%EII cosht(L —©) - cost(L —0) ][ -i T f(0) +g () 1do +Bf. (L) ., (3.4.34)
0
where i is the imaginary unit Vy-1.

Claim : For all A>0,0>0,and B>0, the matrix M =[a;),i,j=1,2, where

a; ,i,j=1,2are given by (3.4.29)-(3.4.32), is nonsingular.

Proof : Suppose not. Then, for some choice of A>0,a>0,and B> 0, the matrix M
defined above becomes singular. Since A>0 and A2=-1*, we have t#0, hence by
choosing f =g =0, (3.4.33) and (3.4.34) implies that f ; =f,=0. Then , since the matrix
M defined above is singular, it follows that (3.4.28) will have a nontrivial solution
(C, C,)T #0. Putting this solution in (3.4.27) and using (3.4.21) one obtains a nontrivial
solution z=(u w) #0 of the equation (A/-A)z=0. This implies that

A<z,2>=<Az,z>=0,butsince A>0,z #0and A is dissipative, this is a contradiction. O
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Therefore for all A>0, >0, and B> 0, the equation (3.4.28) has a unique solution
(C, CT. Putting this solution in (3.4.27) and (3.4.21), we obtain the solution z = (u w)f
of the equations (3.4.21)-(3.4.25). This proves that for all A > 0, the range of the operator
(A1 -A) is H. Hence by the Lumer-Phillips theorem, (see Theorem 3.4.4), the operator
A defined in (3.4.9) defines a C semigroup of contractions T(¢) on H; that is the equa-

tion (3.4.11) has a solution z (¢), this solution is unique and is given by :

z(t)=T(t)zg y2oe DA)

(see [Paz.1, p.102, Thm.3.1]). O

3.4.8 Theorem (Exponential Decay). Consider the abstract differential equation
(3.4.14), or equivalently the equations (3.4.14.1)-(3.4.14.4), where the operator A, its
domain D(A), and the space H are given by (3.4.9), (3.4.13), and (3.4.4), respectively.
Let T(¢) be the C, semigroup generated by the operator A. Then there exist positive con-

stants M > 0 and 8 > 0 such that the following holds :
| T@)|| sMe¥® forallteR, . (3.4.35)
Proof : To prove (3.4.35), we first define the following function V(¢) :

L
Vie)=20-e)t E\()+2 [px u u dx (3.4.36)
0

where ge (0,1) is an arbitrary constant and the energy E (¢) is defined by (3.4.19).



64

We prove the theorem in two steps. First we show that there exist a constant C >0

such that the following estimate holds for all zeR, :

RA-e)t-CE)SV(1)sRU-et+C)EN) (3.4.37)

then differentiating V,(t) with respect to time, we show that there exist a T > 0 such that :

dv,(t)
dt

<0 forall t 2T . (3.4.38)

Combining (3.4.37) and (3.4.38), it follows that

E@)< Vi) forall t >T (3.4.39)
M=ea-¢:-0) 1 o
where Ty=max { T ¢ }.
' 2(1-¢)

Since by (3.4.20), E,(¢) is bounded, from (3.4.37) it follows that V (T') < . Using

(3.4.39), from Pazy’s theorem (Theorem 3.4.5), (3.4.35) follows.

To prove (3.4.35), we first need the following simple estimates . Since

u (0) = u,(0) =0, we have :

u()=[uydx , w(s)=fuzdx selOL] . (3.4.40)
0 0

Using (3.4.40) and the Jensen’s inequality, (see e.g., [Roy.1, p. 110]), we obtain the fol-

lowing estimates :

L L
u(sYP<L futde SLun’dx s e[OL] . (3.4.41)
0 0
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In the sequel, we frequently use the following simple inequality :

ab5(82a2+-81—2-b2) forall a,b,5eR,,5#0 . (3.4.42)
For simplicity, we define the quantity A, as follows :

L
A:=2 fpx uou, dx . (3.4.43)
0

Using (3.4.42) in (3.4.43), we obtain the following estimate :

L L
| Ayl 2pL (Ju?dx + fu,? dx)
0 0

<CE(t) . (3.4.44)

where C = ——ZP—LF Using (3.4.44) in (3.4.36), we obtain (3.4.37).
min(->-,—)
2 2

To prove (3.4.38), we first differentiate A, defined by (3.4.43) with respect to time :

L L
dA,
L L
=—2EI Ix Uy Uy dx +2 pr U uy dx (3.4.45)
0 0

where in the second equation we used (3.4.14.1). Using integration by parts, we obtain :

L
2El [X ey ty dx =2 El Lty (L, t) e (L, 1) =2 ET up (L, £) g (L, 1)
0

L
—EI Luy "L, )+ 3El fu,2dx (3.4.46)
0
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L L
20fx u ug dr=pL u’L.t)-fouldx . (3.4.47)
0 0

Using (3.4.45)-(3.4.47) in (3.4.36) and collecting likewise terms , we get :

Vi 2a ):dE‘ +2(1-¢)E i
a U TR g 1Y

L
=—2(1-g)ot uL,t)-2(1~€) Bt u, (L, t)~¢fpudx
0

L
~ @ +©)[El ug® dx =2 EILuy (L t) thor (L, ) +2 Eliy (L ) e (L1 1)
0

+EI Lug XL, t)+pL uX(L,t) (3.4.48)
where we have used (3.4.20).

Using the boundary controls (3.4.14.3), (3.4.14.4) and the inequality (3.4.42), we

obtain the following estimates on some terms which appear in (3.4.48) :

—2EI Lug(L,t) U (L, t)= =20 L u, (L, t)u,(L,t)

2al
812

wXL,t) (3.4.49)

L2alLd?uL,t)+

C2EN u (L, t)ug (L, t)=—=2PBuy(L,t) uy(L,t)

<2 B 8,2 uxz(L,t)+%%ux,2(L,t) . (3.4.50)
2
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Using (3.4.49), (3.4.50) in (3.4.48) and collecting likewise terms, the latter equation

becomes :

av, 2al
—_—=- 1-gost - -
& RA-9 52

L
pL 1w L, t)—¢€fp u dx
0

2
-[2(1-¢)pt - %2% - %g—]un’(L, t)

L
—~[Q+©)fEl ug>dx —QaLd? +2B 87w L, 1)1 (3.4.51)
0

where 8, , 8, are arbitrary nonzero numbers. By choosing 8, and 3, sufficiently small and
using (3.4.40) and (3.4.41), the last line in (3.4.51) can be made negative. Hence we con-

clude that there exists a T > 0 such that :

av,(t)

<0 foral t>T ,
2 or

hence (3.4.35) follows from (3.4.39) and Pazy’s theorem (Theorem 3.4.5). O

Now we are ready to prove that the solutions of the original equation (3.4.12) also
decay exponentially. First due to the exponential decay of the angular velocity (z), (see
(3.4.2)), there exist positive constants ¢, >0, ¢, >0, §; > 0,8, >0, such that forall £ 20

[|B@)I| <cie™ (3.4.52)

£ @] €cpe™ (3.4.53)

where B (¢) and f (¢) are given by (3.4.10) and (3.4.11), respectively.
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3.4.9 Theorem : (Exponential decay) Consider (3.4.12), where the operators A, B(.) and

the function f () are defined in (3.4.9), (3.4.10), and (3.4.11) respectively. Then :

(i) for all zye D(A), (3.4.12) has a unique solution z(.), which is given by :

z(t)=T(t)zq+ iT(t—s) B(s)z(s)ds + :J;T(t-s)f (s)ds, for all t=20 , (3.4.54)
where T(¢) is the semigroup generated by the operator A,

(i) for all zoe D (A), the solution z(.) , given by (3.4.54), decays exponentially to O.

proof :

(i) Since B () is globally Lipschitz on H and || B(¢)|| is exponentially decaying to 0, (see
(3.4.38) ), and since the operator A generates a Cosemigroup by theorem 3.4.7, it follows
that A +B () generates a unique, globally defined (i.e., defined for all teR,), semigroup

on H, (see e.g., [Paz.1, pp.185-188], [Mar.1, pp. 389-389)).

Since f eL'[R, H] and is a C* function of t, ( see (3.4.11) and (3.4.2) ), by standard
theorems on nonhomogeneous partial differential equations, (see, e.g., [Paz.1, pp.105-

110] ), it follows that for all zge D (4), (3.4.12) has unique solution defined for all zeR,.

That the solution may be given as (3.4.54) can be verified by substitution of (3.4.54)

in (3.4.12) and using % =AT.

(ii) By taking norms in (3.4.54) and using (3.4.17), (3.4.52), and (3.4.53) , we obtain :
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t
Hz@)|| <M e || zol| +[M c1e™ ™| z()|| s
0

t
+[M cpe™ e ds (3.4.55)
0

Evaluating the last integral and multiplying each side of (3.4.55) by e¥, we get:

MCz
| z)e¥|| <M || zol| + 535, ¥ -1

!
+M e e || z()e®| ds . (3.4.56)
0

Applying a general form of the Bellman-Gronwall lemma, (see, e.g., [Des.1, p.39]),

we obtain the following :

Mc, -
[ z¢)e®|| <M ||zoll + €@ % 1

3-8,
t MC|
Mc s
+Mcie ® M|zl +E?é(e(5'5’)’—l)] e ds
0
Mc M L c
2 (5-52)1_ 1 & - 2 - 5
SM|I20||+8_82(8 1)+ 81 e dlzoll 8"52)(1 € )
M2cicy Ms.ﬁ -8 -8)
- 1-e™" . 3.4.57
G- 5)05, -5 ¢ 7€ ) (3457)

Multiplying each side with e, we conclude that z(.) decays exponentially to zero.
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3.5 Stability Results for the Natural Control Law

In this section we show that the natural control law given by the equations (3.3.1),

(3.3.2), and (3.3.5) stabilize the system given by the equations (3.2.1)-(3.2.3).

We define the energy E,(t) of the system given by the equations (3.2.1)-(3.2.3) as

follows :
1 1k 1"
Eqt) =5 <ug , [pog>+ -2—£p <r, ,r>dx + EJ)'EI ugldx (3.5.1)

where the first term is the rotational kinetic energy of the rigid body, the second term is
the kinetic energy of the beam and the third term is the potential energy of the beam, see,

e.g., [Mei.2].

3.5.1 Proposition : Consider the system of equations given by (3.2.1)-(3.2.3) and the
control law given by (3.3.1), (3.3.2), and (3.3.5). Then, the energy E,(t) defined in (3.5.1)

is a nonincreasing function of time.

Proof : Upon differentiating (3.5.1) and using (3.2.1), we obtain : (here we note that the

vector Ix @y is the angular momentum of the rigid body with respect to O in the body
frame B, hence (%(IR og)), =l g + O X Ig00g)

L L

dE, :
=<@g ,IgOp + g XIgg >+ [p<r, 1y >dx + [El up iy dx
0 0

dt
' L L

=<0p ,lg0p +0g xIpg >+ [<(r)p +OxF, 0, >dx + [El uyity, dx
0 0
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L
=< g ,Igp + g xIgig >+<0, frxn, dx >
0

L L
— JEI wy Uy dx + [ET tgtiyy dix
0 0
L

=<p ,lpg +@g xIg@g +rxn | ~fre xndx >
x=0L 0

L L
—jEI Uy Uprr, dX +IEI Uy Uy dX
0 0

=<0)R,IR(;)R +mp xIpwgp +[rxn+m] I >
x=0,L

L L
—IEI U, Up, dx +J'El Ul dX (3.5.2)
0 0

where [u(x)] x|=a b =u(b) - u(a) for any vector valued function u:[0,.L] — R3. In the
first equation we llsed the vector differentiation rule (2.2.14); in the second equation we
used (2.2.14) and the balance of linear momentum equation (3.2.1); in the third equation
we used (3.2.5) and (3.2.6); in the fourth equation we used integration by parts. Then, by

using the balance of angular momentum equation (3.2.3) and integration by parts, (3.5.2)

follows.

Using integration by parts and the boundary controls (3.2.1), (3.2.2), we obtain the
following : |
L L

EI [ty Uy dx =EI (L t) e (L, 1) = [ET thy g dix
0 0

L
=El (L, 1) gy (Lo 2) = El g (L, 8) the (L, 8) + [EI ty g dx
0

L
C=ou (L, )+ Buy ML, )+ [EN uy uy dx (3.5.3)
0
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L
=ou L, 1)+ Puy (L, )+ [El gy gy dx (3.5.3)
0

where in the first and second equations we used integration by parts and the boundary
conditions (3.2.9). Then, using the boundary controls (3.3.1) and (3.3.2), we obtain

(3.5.3).

By using (3.5.3) in (3.5.2) and by using the remaining torque control (3.3.4) and the

rigid body angular momentum equation (3.2.3), we obtain the following :

f—f%:-k (1) — ou, (L, 1) - Bug (L, t) . (3.5.4)

Since E’z(t) <0, it follows that E,(¢) is a nonicreasing function of time. (1

Note that proposition 3.5.1 does not imply that the energy E,(¢) actually decays to
0. In the next theorem we prove that the decay of Ex(t) is as O( -:—) for sufficiently

large .

3.5.2 Theorem : (Asymptotic Decay of Energy)

Consider the system of equations given by (3.2.1)-(3.2.6), (or equivalently consider equa-
tions (3.2.7)-(3.2.8)), the boundary conditions (3.2.9) and the control law given by equa-

tions (3.3.1), (3.3.2), and (3.3.5). Then there exists a T >0 such that the energy E(¢)

given by (3.5.1) decays as 0(%) forall: 2T.
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Proof : The proof is analogous to the proof of Theorem 3.4.8. We first define the follow-

ing function Vy(¢) :

L
Vi) =2(1-e)t Ex0)+2 fpx (4 +0 (b +x))ug dx (3.5.5)
0

where €€ (0,1) is an arbitrary constant.

We prove the theorem in two steps. First we show that for some constant C >0, the

following estimate holds :

QA-8)t~-CDEt)SVt)SQR (-8t +CDES) . (3.5.6)

Then, differentiating V,(¢) with respect to time, we show that there exists a T > 0 such

that

dv (1)
dt

<0 forall t2T . (3.5.7D

Then, combining (3.5.6) and (3.5.7), it follows that :

VAT)
E, ()< 2i-9:-Cp foralt>T, , (3.5.8)
here T, = r, =
where Ty=max (T, 209 }.

Since by (3.5.4), E(t) is bounded, from (3.5.6) it follows that V,(T) <. Hence,

(3.5.8) proves that the energy E(¢) decays as O (%) for sufficiently large ¢.
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For simplicity, we define the quantity J, as follows :

L
=2fpx(+0@®+x))u dx . (3.5.9)
0

We need the following component form for r, which follows from (3.2.6) and

(2.2.14):

r,=—ouD,+(u +®@® +x))D; . (3.5.10)
We first note the following simple inequalities :

(@ +b)*<2(@*+b» a,beR (3.5.11)

ab582a2+éb2 a.b,5eR 520 . (3.5.12)
To obtain (3.5.6), we need the following estimate :

L L
| J1l S2pL Julde +2pL [ +0 (b +x))*dx
0 0

L L
<2pL?fu 2dx +2pL J<r, 1, >dx
0 0

<CES) (3.5.13)

2
where C,=4L + % The first inequality follows from (3.5.11); the second inequality

follows from (3.4.41) and (3.5.10) and then (3.5.13) follows from the definition of E ()

given in (3.5.1). Using (3.5.13) in (3.5.5), we obtain (3.5.6).
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Differentiating J, with respect to time, we obtain :

dJ L . L
Ttl=2jpx [t4y + (b +x)] ity dx +2 [p x [, + @b +x)] y dx
0 0

L L L
=—-2EI Ixu, umdx+2pjx mzuu,dx+2pjxux,u,dx
0 0 0

L
+2p [x 0 (b +x) uy dx
0

L L
=—2El [X thy gy dx +p [Lu, XL, 1) = [u?dx] @? +p L u*(L, 1)
0 0

L L
~[puldx +2p (LB +LYu(L, )= [b +2x)u, dx Jo (3.5.14)
0 0

where in the second equation we used (3.2.7). Then, using integration by parts (3.5.14)

follows.

Using (3.5.14) in (3.5.5), we obtain :

Y2 _2a €)1t dE2 +2(1-€)E L4
dat ( dt 27 ar

=—k @¥(t)—ou, (L, 1)~ Puy XL, 1)

L L
+(1-e)lge?+(1-€)fp 0®u’dx +(1-)fp (4 +@ (b +x)) 2 dx
0 0

L L
H1 - ©)[El ug2dx—2El [x u, g, dx
0 0
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L L
+p [Lu XL, 1) - [uldx] @ +p L u (L, 1) [pudx
0 0

L
+2p (L +L)uy(L,t)= b +2x)u dx Jo . (3.5.15)
0

To obtain a bound on some of the terms which appear in (3.5.15), we need the fol-

lowing estimate which follows from (3.4.40), (3.4.41), (3.5.1) and (3.54):

L L
212 2L
u(s)?<L guxzdx Sngux,zdx S SFE0) STHEA0) (3.5.16)

Using (3.5.11), (3.5.12), and (3.5.16), we obtain the following estimates for some of

the terms which appear in (3.5.15) :

L L L L
Jp @ +o® +x))2dx = Jpudx +[p 0’ +x) dx +2fp@® +x)u dx
0 0 0 0

L L L
<fp u,* dx +p @*[(b +x)* dx +2 8> [p w2 dx
0 0 0

2 L
+ —9——28“2’ [ +xdx (3.5.17)
1”0
where 8, #0 is an arbitrary real number;

L
~2El [X Uy thy dx =—2 El Ly (L 1) oy (L, 1)+ 2 El w, (L2) e (L1 1)
0

L
+El Lug XL, t) =3 EI [u,2dx
0

=20L L, t)u(L,t)=2Bu,(L,t)ug(L,1)
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L

2
+ 2 w38 futax
0

2L a
522

<L o8 u XL, t)+ u L, t)+2B8%u,XL,1)

L

2
+-2g3%u,,2(L,t)+%u,2(L,t)—3EIjunzdx . (35.18)
0

where the first equation follows from integration by parts and the boundary conditions
(3.4.14.2), the second equation follows from the boundary control laws (3.3.1) and

(3.3.2), and then (3.5.18) follows from (3.5.12), 3, # 0, 8; # 0 are arbitrary real numbers;

L 4p L3E,0
plLyXL. 1) Ju*dx] w?< —pEI—z() o (3.5.19)
0
where we used (3.5.16), (3.5.1) and (3.5.16);
C2pLM +L)u(L, )@<2pL(b +LYu XL, t)+2pL(b +L)* " (3.5.20)
L
L L 2p J(b +2x)Ydx
~2p 0 +2x)u dr <282 pu?dr +— = o (3.5.21)
0 0 4

~ where 3, #0 is an arbitrary real number.

Using (3.5.17)-(3.5.21) in (3.5.15), we obtain the following :

dvsy < 2 2
T-—[Z(l—e)kt =D Jo+—-[2(1—€g)ot =D, Ju,“(L, t)

L
—[2(1-©)Bt =D3 luy (L, 1)~ (€~ Dy) [p u,* dx
0
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. _
~[(€+2) [El uz?dx —(2L a82+2B 8% L, 0)] (3.5.22)
0
where
2p (1-6)L3E0) 4 pLEy0)
Dl—(l—e)lk'l' El + El
L L
L 20 [ +2x)dx 2 [(b +2x)?dx
+p [0 +x)? dx 0 2 , 3.5.23
p g( x)dx + 52 + 5 (3.5.23)
DF%’-WL +20L(b +L) (3.5.24)
_28  LP
D, 52 = (3.5.25)
Dy= 28]2 + 2842 ’ (3.526)

and §; , i = 1,...,4 are arbitrary nonzero real numbers.

Lete e (0,1) be fixed. Using (3.5.16), we can obtain the following inequality :

L

L, <fug?ax . (3.5.27)
0 .

L

Hence, by choosing 8, and 8, sufficiently small so that the following inequality holds :

(2L a82+2P38%) 1
(€ +2)El T

the last line in (3.5.22) can be made negative. Also by choosing &, and 3, sufficiently

small, we can have D 4 < €. Then from (3.5.22) the inequality (3.5.7) follows, i.e.,
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dv,(t)
dt

<0 forall t 2T ,

D, D, D,
21-e)k ' 2(1-8)a’ 2(1—a)l3} )

where T =max{

Combining (3.5.7) and (3.5.6), we obtain (3.5.8), that is :

VaT) forall t >max (T —C—l—)
RQA-e)t-Cy) '2(1-¢) !

Ez(t) <

which proves that for sufficiently large ¢, E,(t) decays as O (-:—). a

Remark : If one chooses B =0, i.e., no torque control at the free end of the beam, (see

(3.3.2)), then the conclusion of Theorem 3.5.2 still holds, that is for sufficiently large ¢,

the energy E,(t) decays as 0(%). This can be concluded by observing that B =0 implies

D3=0, (see (3.5.25)). Therefore in (3.5.22) the term multiplying u, XL, t) becomes

identically zero. But since the remaining terms are all negative, it still follows that
av, . .
7 <0 for sufficiently large ¢, hence (3.5.8) follows. On the other hand, if one puts

k =0 and/or o= 0, this conclusion does not follow from (3.5.22), due to the strictly posi-
tive terms D, and/or D,. In other words, Theorem 3.5.2 holds for k >0, >0,and $20.

a

3.5.3 Existence, Uniqueness and Exponential Decay of Solutions

In the previous section, we proved that the solutions of equations (3.2.7) and (3.2.8)
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together with the control law (3.3.1), (3.3.2) and (3.3.5) decay as 0(%) for sufficiently

large ¢. In this section, we prove that the solution of the equations mentioned above

exists, is unique, and decays exponentially to zero.

Without loss of generality, in the sequel we put

p=1, EI=1 , Ig=1 . (3.5.28)

Using (3.3.5) in (3.2.8), we obtain :

L
0= +x) by dx ~k® . (3.5.29)
0

We can put (3.5.29), and (3.2.7) into the following abtract form :

L"’;(t—‘)= (7+g@) . i0eDA) ., (3.5.30)

where 7 =(u u, @) € H :=H xR, where H is defined by (3.4.4) and D(4) :=D(A) xR,
where D(A) is defined in (3.4.13). A :D(A)cH — H is a linear unbounded operator

whose matrix form is specified as follows :

A=(a; i, j=1,23} , (3.5.31)

- where all g;; are zero except :
ap=1 ,

a4 L a4
a2|=-y—(b +x)£(b +x)-éx—4dx ,
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an=k® +x)

L
a4
=|b+x) —5 dx
as !)( x)ax“

ap=-k

The nonlinear operator g : H — H is defined as follows :

g@)=(8, 82 8907 . (3.5.32)

where

g81=83=0 ,
g2=0u
In H we define the following inner product :

L

[+ 00 +) [, + 66 + 0] dr + % fug s de + 5 00, (3.533)
0

<z ,7> = >

Oty ™

1
2
where z =(u u, ®)T and 7 =@ 4, ®)". The corresponding "energy" norm Ej (1) induced

by (3.5.33) is:

1

L L
EL(t)=%-J[u, + (b +x)]2dx+-;-Iunzdx+-2-m (3.5.34)
0 0

In view of the energy E (¢) defined by (3.4.19), which is an appropropriate energy

for the plane vibration of an Euler-Bemnoulli beam without rotation, a natural extention
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which includes the effect of rotation is the following :

r 1
funldx + o . (3.5.35)
0

2
&+ 2

O‘—vl"

E0=7[u

NI—-

We note that (3.5.35) is equivalent to a standard Sobolev norm which makes Ha
Hilbert space, see [Che.2]. Next we prove that the norms defined by (3.5.34) and (3.5.35)

are equivalent.

3.5.4 Lemma : (Equivalence of Norms). Let the space H be defined as in (3.4.4) and
the space H be defined as H = H x R. Then the norms defined by (3.5.34) and (3.5.35) are

equivalent .

Proof : By using (3.5.11) it follows that :

EL@®)SM,E.t) , (3.5.36)

L
where M; =max(2, 1+2 [(b +x)* dx}.
0

To prove the inequality in the other direction, first using (3.5.12) we obtain :

L
L L 26 +x)dx
-2 0fb +xu, dr <28 u’dx+ 5 @ (3.5.37)
0 0

where §#0 is an arbitrary real number. Using (3.5.37) in (3.5.34) we obtain the follow-

ing :
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L L L L
2E (t)=Judx + (b +xYdx @ +2 [0 (b +x) u, dx + [u,?dx + o
0 0 0 0

L L
2(1 - ), dx + fuge 2 dx +(1+C - ECZ—) 0, (3.5.38)
0 0
L
where C =2 [(b +x)? dx.
0

C
C+1

Choosing d e ( ,1), we have 1-8>0and (1+C - %) > 0. Therefore com-

paring (3.5.38) and (3.5.35), we obtain :

E, (t) 2 min{(1 -8, (1+C - %) VEL() . (3.5.39)

By using (3.5.39) and (3.5.36), we conclude that the norms defined by (3.5.34) and

(3.5.35) are equivalent. O

Next, we consider the linear part of the equation (3.5.30) :

A

dZL a "
— =4, 4@eDA) (3.5.40)

where A is defined by (3.5.31) and 7, =(u 4, ®)”. Note that (3.5.40) is equivalent to the

following system of equations : for all ¢ 20,

Uy +lUy +QB +x)=0 , xe@©OL) , (3.5.40.1)

L
0=[b +X g dx k® (3.5.40.2)
0
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u@©,t)=u.0,2)=0 , ' (3.5.40.3)
—U (L, t)+aulL,t)=0 , (3.5.40.9)
U (L, t)+Puy(L,t)=0 . (3.5.40.5)

3.5.5 Theorem : Consider the equation (3.5.26) where 7, =(u « o)’ , A is given by

(3.5.31),D(A)=D(A)x R, and D (A) is given by (3.4.13). Then we have :

(i) The operator A generates a C semigroup 7 (¢),

(if) The semigroup T'(¢) decays exponentially, i.e., there exist constants M >0 and 5> 0

such that

[|T@)|| sMe® forallteR | (3.5.41)

where the norm is given by (3.5.34).

Proof :

(i) By lemma (3.4.2), D(A) is dense in H. Hence D(A)c H = H xRisdensein H.

We use the Lumer-Phillips theorem to prove the assertion (i), see Theorem 3.4.4.

Hence, we have to show that
(a) : A is dissipative,

(b) : for some A > 0, the range of the operator (LI —A )is H.

To prove assertion (a), we differentiate the energy E, (t), use (3.5.40), and the con-

trol law (3.3.1), (3.3.2) , and (3.3.5). Then, we obtain :
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L L
%=I[un +(;J(b +x)] 1 + (b +x)] dx +jux" g dX + OO
0 0

L L
=~ [hee [ty + @b +3)] dx + [y Uy A + OO
0 0

=—k?—ou L, t)-PugAL,t) <O (3.5.42)

which proves that A is dissipative.

To prove assertion (b), we first define the following linear operator

Tp :D(@A)cH - H:

fD = {t,'j i,j=1,2,3 )} (3.5.43)

where all t;; are zero except :

a
Ly =— b + b + —_— dx ,
21 == x)0|( x)ax,

L
ad
=|b +x)— dx ,
31 l( x)8x4

and we define the operator A, : D(A)cH —» H:

Al =.AA - fD . (3.5.44)
We first note the following remarks :

1) A,:D(A)c H —» H is a linear unbounded operator . Its domain D(4,) is equal to
D(A). By using Theorem 3.4.3 and noting the block diagonal form of A, it follows that

A, generates an exponentially decaying C, semigroup. Hence, (M —4,):H — H is an
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invertible operator for all A > 0. In fact the range of (\/ —A))! is equal to D(A) and by

Hille-Yosida theorem, (see Theorem 3.4.3), we have :

| M =4 s% A>0

2) The operator T, : D(A) cH — H is a degenerate linear operator relative to the A,
(see, e.g. [Kat.1, p. 245]). By definition, the range space of Tp is finite dimensional and

there exist positive constants a and b such that :

|| Tp7|| <allZl] +b|| 44|  forall Ze D(A) . (3.5.45)

That the operator T, has a finite dimensional range follows from (3.5.43).

By using (3.5.43), (3.5.44), and (3.5.30) in (3.5.33), we obtain the inequality

(3.5.45) for some a >0and b > 0.

From the remarks 1 and 2 above it follows that T\ =A™ : H— H is a bounded
linear operator with finite dimensional range ; hence|| Tp (M —A)™|| <M for some M >

0 and Tp (M - A,)™" is a compact operator, (see, e.g., [Kat.1, p. 245]).

Next we need the following fact :
Fact : for all A> 0, the real number 1 is not an eigenvalue of the compact operator
ToM A7
Proof : Suppose hot. Then there existsaA>0anday € H,y #0 such that the following

holds :
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y=TpM -4y, . (3.5.46)
Define x € D(A) as
x=(M -4y
Then (3.5.46) implies that the following equation also holds :
M =-A;-Tp)x =0
But since A =A, +7Tp is dissipative and A > 0, it follows that x =0, which implies

y =0, which is a contradiction. O

From the above fact it follows that the operator / —Tp (M — A )™ is invertible for all
A> 0. Hence we conclude that (\f —A) : H — H is invertible for all A > 0 and its inverse

is given by :

M =-A'=N =AY -Tpu -4ApH!

This shows that (\/ —A) : H — H is onto for all A> 0. From this and the fact that A
is dissipative it follows that A generates a C semigroup, see Theorem 3.4.4 (Lumer-

Phillips theorem).

(i) To prove the exponential decay of the semigroup 7'(¢) generated by A, as in the proof

of Theorem 3.4.8, we define the following function V, (z) :

L .
VL(t)=2(1 - eMEL () +2 [x [u + (b +x)) ue dx (3.5.49)
0

where € € (0,1) is a constant.
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Using the inequalities (3.5.16) and (3.5.12), we obtain the following estimate :

L L L
12 fx [ + (b +x)]uy dx | <2L[u2dx +2L[[u, + b +x)1* dx
0 0 0

L L
< 2L%[u,% dx +2L|[u, + (b +x)P dx
0 0

<K E| @) ’ (3.5.50)

where K =max(2L?, 2L). Hence we have the following estimate for V, (¢) :

R(1-e¢ -K1E, ()SV,(t)sS21—-e)x +K1E (¢) forallt20 . (3.5.51)

Differentiating (3.5.49) and using (3.5.40), we obtain the following :

dv,(¢) dEL (¢) r

o =2-o— +2(1—e)EL(t)+26[x [, + @b +x)u, dx

L
+2Ix [u, + Xb +x)]u,, dx
0

dEL(2) r
=2(1-e—_— +2(1 —©)EL(t) =2 [x oy Uy dx
0
L L
+2_[x U Uy dx +2 (ojx b +x)u, dx . (3.5.52)
0 0

For the last two terms, using integration by parts and (3.5.12) we obtain the following

estimates :

L L
2 fx uy uy dx =Lu (L. 1)~ [w?ax (3.5.53)
0 0
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L

L 2
2m£x (b +x)uy dx < %m’+52(£x B +x)uy dx )

L 2
s%m% SLL® +Lyu @, )= [(b +20)u, dx]
0

L
s-;?m2+2621,2(b FLYuL, 1) 42080 + 2L fuldx ,  (3.5.54)
0

where we used Jensen’s inequality in the last step, (see, e.g., [Roy.1, p. 110]). Using
(3.4.46), (3.5.53), (3.5.34) , (3.5.42), and (3.5.54) in (3.5.53) and using the argument we

used in the proof of Theorem 3.4.8, we conclude that there exists a T 20 such that

av,
?L- <0, for all ¢+ 2T. Combining this with (3.5.52) and (3.5.42), we conclude that

v, (T)

EL(t)Sm ,

"~ for all ¢t >max (T ,—Ka }. Hence , jELz(t)dx <o , therefore by Pazy’s theorem
- 0

2(1
(Theorem 3.4.5), (3.5.41) follows, i.e. the semigroup T(t) generated by A decays

exponentially. O

From Theorem 3.5.5 it follows that the linear part of the equation (3.5.30) generates
an exponentially decaying semigroup 7 (r). Using this fact we can prove the following

theorem :
3.5.6 Theorem : (Existence, Uniqueness and Exponential Decay).

Consider the equation (3.5.30), where 7 = (u, &, w)" , the operator A is given by (3.5.31)
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and g is given by (3.5.32). Let T'(¢) be the semigroup generated by A. Then :

(i) For all 7(0) € D (A), equation (3.5.30) has unique solution 7(¢),

(ii) In terms of the semigroup T'(r) generated by A, this solution may be given as :

!

2@)=T@) O + [Tt -s)g @) ds (3.5.55)
0

(iii) this solution 7(t) decays exponentially.

Proof :

(i) Since A generates a C, semigroup T'(¢) and g : H — H is a C™ function, by the stan-
dard theorems on partial differential equations (see, e.g., [Paz.1, pp. 183-191})), it follows
that (3.5.16) has a unique solution for all 7(0) e D (A), which is defined locally in time,

i.e., in a time interval (0, T) for some T >0 . But since the solutions are bounded and
asymptotically decaying as 0(—1—), this local solution can be extended to a global solu-

tion, i.e., defined for all ¢ 2 0.

(ii) This assertion may be proven by back substitution of (3.5.55) in (3.5.30) and using

are) =AT ().

(iii) Using (3.5.32) in (3.5.34), we obtain :

L L
I1g@I] =fo'u?dx <L%* Juz?dx <L?%*||g@]|* (3.5.56)
0 0
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where in deriving the first inequality we used (3.5.16).

By taking norms in (3.5.55), using (3.5.41) and multiplying by ¢ we obtain :

L
11 £ @e¥|| <M|| 2] +[M L2%%| £ (s)e¥|| ds . (3.5.57)
0

Since 7(¢) is asyptotically decaying at least as 0(%) by Theorem (3.5.2), it follows

that for any y> 0 which satisfies y< %, there exists a T > 0 such that

ML20*(t)<y< % forall t 2T . (3.5.58)

Applying the Bellman-Gronwall lemma to (3.5.58) we obtain :

1| 2@)|| <M||2Q)]| e ®™* forall t2T . (3.5.59)
|



Chapter 4

Control of a Flexible Beam Attached to a
Rigid Body : Motion in Space

4.1 Introduction

In Chapter 2 we introduced a rigid body-flexible beam configuration and derived the
equations of motion for this configuration, (see Section 4, Chapter 2). In chapter 3 we
studied a special case of this configuration; we assumed that the rigid body center of
mass is fixed in an inertial frame and that the motion of the whole configuration is res-

tricted to be a planar motion in that frame.

In this chapter we continue to study the configuration mentioned above. We assume
that the center of mass of the rigid body is fixed in an inertial frame, but the motion of the

whole configuration is not restricted otherwise.

92
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In Section 2 we give the equations of motion and define the rest state of the system.
Then we state the control problem, namely if the system is perturbed from the rest state
to find appropriate control laws which drives the system to the rest state. We then extend
the control laws proposed in Chapter 3 to solve this problem,(see Section 3, Chapter 3).
In the remaining sections we show that the proposed control laws solve the control prob-

lem posed above.
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4.2 Equations of Motion

We consider the following configuration : Figure 4.1 shows the rigid body (drawn

as a square) and the beam ; P is a point on the beam.

Figure 4.1 : Rigid body with flexible beam.

In Figure 4.1, the quadruple (O, e, e,, ¢;) denotes a dextral orthonormal inertial
frame, which will be referred to as N, the quadruple (O, D,, D,, D;) denotes a dextral
orthonormal frame fixed in the rigid body, which will be referred as B, where O is also
the center of mass of the rigid body and D,, D,, D4 are along the principal axes of inertia
of the rigid body. One end of the beam is clamped to the rigid body at the point Q along
the D, axis and the other end is free. Let L be the length of the beam. We assume that

the mass of the rigid body is much larger than the mass of the beam, so the center of
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mass of the rigid body is approximately the center of mass of the whole configuration.
So we take it that the point O is fixed in the inertial space throughout the motion of the

whole configuration and the rigid body may rotate arbitrarily in the inertial space.

The beam is initially straight, along the D, axis. Let P be a typical beam element
whose distance from Q in the undeformed configuration is x, let #; and u; be the dis-
placement of P along the D, and D; axes, respectively. We assume that the beam is inex-
tensible, that is the beam deflection u, along the D, axis is identically zero. Let
r(x,t)=OP be the position vector of P. Let the beam be homogeneous with uniform

cross-sections.

Neglecting gravitation, surface loads and rotatory inertia of the beam cross-sections,
equations (2.4.1), (2.4.3) and (2.4.4) which are the equations of motion of the whole

configuration, are now reduced to: forall ¢t 20

on _or
on _ oT 4.2.1
o ™ ,0<x<L ( )
gm O n=0 ,0<x<L 4.22)
ox ox
[Ro+0xIg0=r(0,)xn0,)+mO,t)+N. () (4.2.3)

where n (x, t) and m(x, ) are the contact force and the contact moment , respectively,
(see Section 3, Chapter 2), p is the mass per unit length of the beam, which is a constant

by assumption, L is the length of the beam, /I is the inertia tensor of the rigid body,

3
which is diagonal, @ = 3 @;D; is the angular velocity of the rigid body with respect to the

i=1
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inertial frame N and N, (¢) is the control torque applied to the rigid body, (see, e.g.,

[Ant.1]).

Equation (4.2.1) and (4.2.2) state the balance of forces and the balance of moments
at the beam cross sections and equation (4.2.3) is the rigid body angular momentum
equation. Note that the first two terms in the right hand side of (4.2.3) represent the

torque applied by the beam to the rigid body.

We use the Euler-Bernoulli beam model to give the component form of the contact
force n and the contact moment m in terms of the beam deflections u,, u3. Assuming
that the beam is inextensible, neglecting the torsion and neglecting the higher order
terms, we express the contact force n, the contact moment m, and the position vector r in

terms of u, and u, as follows: for0<x <L ,¢ 20,

m=m;D;+m;Dy+msD; , n=nDy+nD+n3D; , 4.2.4)
my=Eljus. , ns =-»EI WM s 4.2.5)
my=—El u , nm=—Eluu , (4.2.6)
r=u;D,+(b+x)Dy+usD; , 4.2.7)

where EI, and El, are the flexural rigidity of the beam deflections along the axes D, and
D, , respectively, and b is the distance between the points O and Q. For more details on

the constitutive equations, see [Mei.1].

Since we have neglected the axial and the torsional vibrations of the beam, the axial
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component 7, of the contact force n and the torsion component m, of the contact moment
m become indeterminable by the constitutive equations, (see [Pos.1]). Once the beam
deflections u; and u, are found, the D, components of the equations (4.2.1) and (4.2.2)

can be used to find n, and m,.

Since the beam is clamped to the rigid body at the point Q , we have (see Figure

4.1):
u;0,t)=u,0,t)=0, ¢20, i=13 . (4.2.8)
The rest state of the system is by definition :

o=0
u(x)=u;3(x)=0 O0<x<L . 4.2.9)
u(x)=u3x)=0 0<x<sL

We now state our
Stabilization Problem :

If the system given by the equations (4.2.1)-(4.2.8) is perturbed from the rest state
defined by (4.2.9), find an appropriate control law that drives the system to the rest

state.(d
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4.3 Proposed Control Laws :

We propose two stabilizing control laws. Each law consist of appropriate forces
and torques applied to the beam at the free end and a torque applied to the rigid body.

We note that these two control laws differ in the torque applied to the rigid body.

4.3.1 Control Law Based on Cancellation

This control scheme applies a force n (L, t) and a torque m (L, r) at the free end of the
beam and a torque N, (¢) applied to the rigid body. They are specified as follows : we

choose

a; >0, B; >0, and a 3x3 symmetric positive definite constant matrix X, (which can be

chosen diagonal); then for all t2 0, i =1, 3, we require the following equations :

—ELuo (L, t)+oyu,(L,t)=0 4.3.1)
Eliu, (L, t)+Biu(L,2)=0 4.3.2)
N, (¢)=—T10,£)xn(0,£)-m O, t)-Ka(t) . 4.3.3)

Equation (4.3.1), {(4.3.2), resp.} represents a transversal force, {torque, resp.}
applied at the free end of the beam in the direction of, {around, resp.} the axis D; whose
magnitude is proportional to and whose sign is opposite to the end point deflection velo-
city u; (L, t),{end-point deflection angular velocity u; (L, t), resp.} of the beam along the
direction of D; axis, for i =1,3. Also note that to apply the control laws given by
(4.3.1)-(4.3.3), the end point deflection velocities u; (L, t), the end point deflection angu-

lar velocities u; (L,t), the rigid body angular velocity vector @(s) and the moment
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applied by the beam to the rigid body must be measured. This moment consist of the
effect of the contact force n (0, ¢) and the contact moment m (0, ¢) at the clamped end.

Both can be measured by using strain rosettes and strain gauges, respectively [Ana.1].

The control law (4.3.3) cancels the effect of the beam on the rigid body. To see this,
substitute (4.3.3) into (4.2.3), then equation (4.2.3) becomes a set of nonlinear ordinary
differential equations. Then substitute the solution «(¢) of (4.2.3) into the beam equation

(4.2.1). Now the latter becomes a set of linear partial differential equations.

Equation (4.3.3) is reminiscent of a "computed torque” type control law in robotics,
[Pau.1]. When substituted in (4.2.3), (4.3.3) cancels the effect of the beam on the rigid
body. This type of control law recently has been applied to the attitude control of the

flexible spacecraft [Ana.1].0
4.3.2 Natural Control Law

This control law applies the same boundary force n (L, t) and the moment m (L, ¢)
as specified by the equations (4.3.1) and (4.3.2), respectively, but the torque applied to

the rigid body is given by :

N, @¢)=-—r(L,t)xnlL,t)-mL,)-Ko@) , 4.3.4)

where K is a 3x3 positive definite constant matrix.

This control scheme is "natural” in the sense that it enables one to choose the total

energy of the whole configuration as a Lyapunov function to study the stability of the
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system.

Unlike the control law (4.3.3), when (4.3.4) is substituted in (4.2.3), it does not can-
cel the effect of the beam on the rigid body. As a result of this, the equations (4.2.1)-
(4.2.8), together with the control laws (4.3.1), (4.3.2), and (4.3.4) form a set of nonlinear
ordinary and partial differential equations. This control law requires that the end-point
deflections u; (L, t), the end-point deflection velocities u;, (L, t), the end-point deflection
angular velocities u;, (L, t) and the rigid body angular velocity vector o(t) be measured.

The first three could be measured by optical means and the latter by gyros.

4.3.3 Assumption :

Throughout our analysis, the initial conditions u; (x,0) and u; (x,0) are assumed to be
sufficiently differentiable (i.e., C? in ¢ and C* in x ) and compatible with the boundary

conditions (4.2.8), (4.3.1), and(4.3.2), fori =1, 3.
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4.4 Stability Results for the Control Law Based on Cancella-
tion :

After substituting (4.3.3) in (4.2.3), we obtain the following rigid body equation :

Ro+oxo=-Ko . 4.4.1)

4.4.1 Proposition : Consider the equation (4.4.1). There exist a ¢ >0 and an o> 0 such

that for all initial conditions ® (0) € R3, the solution o (¢) of (4.4.1) satisfies

|| @t)|]2sc e || @0)]] 2 for all t=0 . 4.4.2)
Proof: Consider the following "energy function" for the rigid body :

ER(t)=%<(o(t). Lo®)> . 4.43)

Eg () is the rotational kinetic energy of the rigid body with respect to the inertial

frame N. Also note that since I =diag (I}, 12, 13), we have

Iil| ©||2S2Eg SIpgll 0|2 forall ne R® (4.4.4)

where I, =min(l |, /9, I3) and I s =max(ly, 12, 13).
Differentiating (4.4.3) and using (4.4.1) we obtain :

E};(t)=<m,1R(;)>
=—<,0x/o>-<0,K 0>
=—<a, K> . (4.4.5)

But, since K is symmetric and positive definite, there exist positive, nonzero con-
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stants A; and A,, which may be taken as the minimum and the maximum eigenvalues of

%(K +KT), respectively , such that the following holds :

Ml o)l 2s<a, K 0><M,|| 0|2 foral oe R . (4.4.6)

sing (4.4.4)-(44.6), we obtain (44.2) where c= min(/y, 12, 13)

2,

a= max(/ y, I5,13) ° =

Next, we obtain the component form of equation (4.2.1). After applying (2.2.14)

twice, we obtain the following :

d*r dxr . dr
(F)N=(?)B +mxr+2mx(7)8 +ox(oxr) . 4.4.7)

Using (4.4.7) in (4.2.1)-(4.2.8), we obtain the following equations which govern the
motion of transverse beam deflections in D, and D5 directions, including the boundary
conditions : forall t 20
El\ Uz +P U1y +2p Oty +p (0 + 0y @3) 3

—p (ol +0P)u-p(03-w@,) (b +x)=0 0sxs<L ,  (443)
El3 Uigeey +P thzy —2p Wiy, —P (02— @ ©3) 4y
—p (02 +02)us+p (@ +0y)(b+x)=0 0sx<L (4.4.9)

u(L,t)y=uyL,t)=0 ., up@,)=u;)l,t)=0 , (4.4.10)
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-Ell ulm(L,t)+a,u1,(L,t)=0 ’ —E13u3m(L,t)+a3u3,(L,t)=0 ’ (4.4.11)
EIluln(L,t)+B,uw(L,l)=0 ’ Elgugn(L.t)+B3u3,,(L,t)=0 . (4.4.12)

Equations (4.4.8) and (4.4.9) can be rewritten in the following state space form :

. [ o 1 0 o] = .
uy EI 4 u,
d | %u P ox Uy
drlus| = 0 0 0 1| | us
U3 0 0 __E_Ila_“ ol |4
- - p ox? -
0 0 0 0 7 [u] 0
02 +@2 0 (i + ) =20, | fuy| | (03— @0 (b+x)
+ 0 0 0 0 ity + 0 ,(4.4.13)
0y — 03 20, @2 + )7 0 Lust —(@; + @y03) (b+x)
whose solutions evolve in the following function space H :
H={(uy u u; us)' 1 ueHy?, ugeﬂoz,u“ELz,U3,€L2} , 4.4.14)

where the function spaces L2, H* and H¥ are as defined below :

x=L
L2={(f :(0,L]> R [fldx<e}
x=0
H:=(f e L2 fieL?,i=l,..k} ,
H={f e H* | f(O=f"(0)=0)
In H, we define the following inner product, which is called "energy" inner product

L
<z,7>p:= [(ENU g 1+ Eljtag tag ) dx
0
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L
+ [pQuy iy, +usily)dx  forall z ZeH . (4.4.15)
0

Note that, (4.4.15) induces a norm on H, which is called "energy norm". This norm
is equivalent to a standard "Sobolev" type norm which makes H an Hilbert space.( for

more details, see [Paz.1] and [Che.2]).

To put (4.4.13) into an abstract equation form, we define the following operators

A:H—->H,B:R,xH > H and functionf :R, > H,

0 1 0 0]
Ell a4
=19 o o0 o0
p oxt
A= 00 o 1 , (4.4.16)
El, 3¢
0 0 _Els 0% 0
p ox*
T 0 0 0 0
02 +a2 0 —(0,+0,0;) 20,
B(t)= 0 0 0 0 . 4.4.17)
0~ 0,03 20; O+ 0
I 0
(w3 — 00 (b+x)
f@= 0 X (4.4.18)
(@ + 0,003) (b+x)

4.4.2 Remark : The operator A is an unbounded linear operator on H , i.e., it is not con-
tinuous as a map on H. The operator B(.) is bounded on R,. Since w(t) and (r) are
exponentially decaying functions of ¢, (see proposition 4.4.1 and equation (4.4.1)), so is
|| B(t)|, where the norm used here is the norm induced by the energy inner product

given by (4.4.15).0
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Using the above definitions, equation (4.4.13) can be put into the following abstract

form :

%=A2+B(t)z+f(t) , zQO)=zoc H , 120 , (4.4.19)

where z =(u, u,, 43 us )7. The domain D (A) of the operator A is defined as follows :

D(A)={(uy uy u3 u3)7 : uyeHy',uy, eHo', uz e H? ,us eHp?, (4.4.20)
—Eluy L)+ 0y uy, (L)=0,
Elyuyn(L)+B 41 (L)=0,
—Eljusg (L) +oqu3 (L)=0,
Elyusn(L)+Prusy(L)=0}

From lemma 3.4.2 it follows that D(A) given by (4.4.20) is dense in H given by

(4.4.14).

Next, we state the existence and uniqueness theorem of the solutions of (4.4.19).

4.4.3 Theorem : Consider equation (4.4.19) with A,B, f defined in (4.4.16)-(4.4.18),

respectively; or equivalently consider equations (4.4.8)-(4.4.12). Then :
(i) The operator A generates an exponentially decaying Co semigroup T(¢) in H: that is,

there exist positive constants M >0 and &> 0 such that

[1T@)|| sMe™ foralt=0 4.4.21)
where for all ¢ 20, T(¢) are bounded linear maps in H;

(i) for all zge D (A), the differential equation given by (4.4.19) has unique classical solu-

tion , defined forallt 20 ;
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(iii) in terms of T(¢), that solution z(¢) of (4.4.19) may be written as :

t !

2(8)=T(t)zo+ [T(t—s) B(s) z(s) ds + [T(t—s) f (s)ds, for all t20 . (4.4.22)
0 0

Proof :

(i) Due to the block diagonal form of A, Assertion (i) is an easy extension of theorem
3.4.7.

(ii) Since B(.) is globally lipschitz on H and || B(¢t)]| is exponentially decaying due to
Proposition 4.4.1, (also see remark 4.4.2), it follows that A+B(.) defines a unique, glo-
bally defined semigroup on H, (see, e.g., [Mar.1, pp. 388-390] , [Paz.1, pp. 185,190]).
Since f eL![R,H] and is a C* function of ¢, (see (4.4.18)), by standard theorems on
nonhomogeneous linear partial differential equations (see, e.g., [Paz.1, pp. 105-110]), it

follows that (4.4.19) has unique solution in H defined for all £ 2 0.

(iii) That the solution may be given as (4.4.22) can be verified by substitution, using

%=A T and T©)=I. O

Next, we prove the exponential decay of the solutions of (4.4.19).

4.4.4 Theorem : Consider equation (4.4.19), where the operators A, B(.) and the func-
tion f(.) are defined in (4.4.16),(4.4.17) and (4.4.18) respectively; or equivalently con-
sider (4.4.8)-(4.4.12). Then for all zye D(A), the solution z(.) of (4.4.19) decays

exponentially to 0.

Proof : By taking norms in (4.4.22) and using (4.4.21), we obtain : for all t 20
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4
[ z@)|| <M e™ ]|z +£M e B)|| || z(s)|| ds

!
+[M e F)l| ds . (4.4.23)
0

But since o(t) and (;)(t) are decaying exponentially, it follows from (4.4.17) and

(4.4.18) that there exist positive constants c; >0, ¢, >0, 3; >0, and 3, >0, such that for all

£20
IBO®I sce™ (4.4.24)
@I Sce™ (4.4.25)

Using (4.4.24),(4.4.25) in (4.4.23), evaluating the last integral, and multiplying each

side of (4.4.23) by ¥, we obtain :

MCz

&t
z()e® || sM|| zol| +
| 1 zo =

t
€ )+ M e e || 2(s)e® || ds (4.4.26)
0

Now applying a general form of Bellmann- Gronwall lemma ,(see, e.g., [Des.1]),

and using the following simple estimate

I 4 oo
feas<feas— | (4.4.27)
h 0 51

we obtain the following :
€2

M -
Il z()e¥ || <M || zoll +ﬁ(e(8 & _ 1

M¢|
C2

!
M
& @G-8 =3
+£Mc1e [M||zo||+6_82(e -] e™>ds
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MC:

Mc M%; —5— c
<M zoll +5og @ -0+ e ¥ dlnoll -gTg) A=
M2y cy 3 65 -8
" —5)0-5,-5) e (1-e ) . (4.4.28)

Multiplying each side with e~ we conclude that z(.) decays exponentially. O
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4.5 Stability Results for the Natural Control Scheme

For simplicity we will take the positive definite matrix X as K =diag (ky, k2, k1),
(see (4.3.4)). Then equations (4.2.1)-(4.2.3) together with the boundary conditions (4.2.8)

and the natural control law (4.3.1),(4.3.2), and (4.3.4) become : for all ¢ 20

El\ Uy +P Uy +2P Q3+ (04 0y 03) Uiy

—p(02+0)uy—p(y—wy) (b+x)=0 O<x<L ,  (4.5.1)
El3 U +P 3y —2p Wty —p (O — @y 03) 4y

~p (02 + 02 us+p (@ +@03) (b +x)=0 O<x<L , 4.5.2)

L
1@y + (3= [)0y03 + k1@ = El3[(b +X Mgy dx 4.5.3)
0
. L L
12(02"' ([l —13)0)3(0x +k20)2=EI3Iu1u3m dx —EIJu3u Loxx dx N (4.5.4)
0 0
. L
[3(!)34'(’2-11)0)10)24‘/(30)3:—511 (b+x )ulmdx s (45.5)
0
uL,t)=usL,t)=0 s (L, )=us(L,t)=0 (4.5.6)
—El oLy )+ 0y (L) =0, —Ely g (L, 0) +0gug, (L, 1)=0 4.5.7)
Eluyg (L, t)+ Bty (L, )=0 , Eljus(L,t)+Pauag(L.1)=0 . 4.5.8)

To prove the stability of the system given by (4.5.1)-(4.5.8), we first define the energy of
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the system as follows :
1 17 1
E@)=75<0,l0>+ [p<rr >dc+ 3 [ Elu 2+ Elqusg?) dx 4.5.9)
0 0

where <.,.> denotes the standard inner product in R3 ; the first term in (4.5.9) is the rota-
tional kinetic energy of the rigid body, the second term is the kinetic energy of the beam,
both with respect to the inertial frame N, and the last term is the potential energy of the

beam .

4.5.1 Proposition : Consider the system given by the equations (4.5.1)-(4.5.8) . Then
the energy E (¢) defined by (4.5.9) is a nonincreasing function of ¢.
Proof : By differentiating E (¢) with respect to ¢, and using (4.2.1), (2.2.14), we obtain

d L

-EE(t)=<o),IRc'0+mxIR o>+ [p<r, 1, >dx
0

L
. +J.(Ellum Ul + Eljuqy u3m)dx
0

L
=<, l[r0+0x[p 0>+ [<r,n, >dx
0

L
+j( El 1 U1y + El3llagllag,) dx
0

v L L
=<0,[RO+0xIg 0>+ [<)p , 0> dx + f<0 xn;>dx
0 0

L
+J(E11ulu U it +El3u3n uam)dx
0
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L L
=<0, RO+0xIg 0>+ [<0xn,>dx —El Juy 1 dx
0 0 .

L L L
~ El3 [u3; W3geee dx +Ely [ 10 di +El3 [ U3 dx (4.5.10)
0 0 0

Using integration by parts we obtain the following equation , fori =1,3:

L
EIl; ju,-, Wi AX = El;upr (L, Du;(L,t)
0

L
— Elittyy (L, )tig (L, )+ E; [ty i dX 4.5.11)
0

Using (4.5.11) and boundary conditions (4.5.7) and (4.5.8) in (4.5.10), we obtain

E(t)=—<®,Ko>—0y 1%L, t)—03u3L,1t)

—Bru L, 1)~ Ps Uz (L, 1) SO . (4.5.12)

Since the rate of change of the energy is nonpositive, it follows that the energy is a

nonincreasing function of time. forall ze H. O

4.5.2 Remark : If we set o; =B; =0, for i =1,3, and X =0, (i.e no control applied to
the system), we obtain E(¢)=0: as expected, the total energy (given by the equation

(4.5.9)) is conserved. O

4.5.3 Remark : We need an estimate, which states that if the energy given by (4.5.9)
stays bounded, then so does the beam deflections u;(x,t) and their derivatives

uy (x, t),(hence so does r(x, t)), forall x € [0, L], for i =1, 3. Using the boundary condi
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tions and the fundamental theorem of calculus, for i =1,3 we conclude that for all

0<x <L ,forall¢t=20:

ui(x, 8) = fu (s, 0)ds . (4.5.13)
0

Therefore, using Jensen’s inequality, (see, e.g., [Roy.1, p.110], [Mit.1]), we obtain

L
;e P SL [uzXs, t)ds . 4.5.14)
0

By using the same arguments, we obtain, forall x e [0, L]

L
(uz (e, P SL JuXs, t) ds (4.5.15)
0

hence, combining (4.5.13) and (4.5.14), we obtain :

L L
e, P SL JuXs,0)ds SL? Ju X, t)ds . O (4.5.16)
0 0

Next, we will show that the rate of decay of the energy is at least % for large ¢.

4.5.4 Theorem : Consider the system described by the equations (4.5.1)-(4.5.8). Then
there exists a T >0 such that the energy given by (4.5.9) is bounded above by O (%) for
all ¢t >T.

Proof : As in the proof of Theorem 3.4.8, we first define the following function V (¢) :

L
V@)=2(1-)E () +2 px [uy +u3—ayb +x)] uy, dx
0
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L
+2 [px [us + (b +x) -0 Juz dx 4.5.17)
0

where € € (0,1) is an arbitrary real number.

We prove the theorem in two steps. First we show that for some constant C, >0, the

following estimate holds :

R(A-e)-C{E@)SV(@)<[2(1—¢) +CIE(t) t20 . (4.5.18)

Then differentiating V (¢), we show that there exists a T > 0 such that :

i‘—"d{-‘l <0 ¢2T . (4.5.19)

Combining (4.5.18) and (4.5.19), we obtain :

V() c
W-ep-c, ‘omlT . (4.5.20)

E@)< TS

Since by Proposition 4.5.1 the energy E(¢) is bounded on R,, it follows that

V(T) < =, hence (4.5.20) proves that for sufficiently large ¢, E (¢) decays as O (%).
For simplicity, we define the quantities J, and J, as follows :

L
Jy=2[px luy, +opus—y(b +x) uy, dx 4.5.21)
0

L
J2=2 [px (ug + (b +x)— il uz, dx . : (4.5.22)
0
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Also applying the differentiation rule (2.2.14) to (4.2.7), we obtain :

re=[uy +0u;—w3b +x)] Dy + [z 4, — 0 u3] Dy
+ (U3 + 01D +x)—wu,] D3 . (4.5.23)
To obtain (4.5.18), we need the following simple inequalities :
(@a+b)*<2@*+b?» a,beR (4.5.24)
b2
ab582a2+? a,b,5eR ,5£0 . (4.5.25)
Using (4.5.25) in (4.5.21) and (4.5.22), we obtain the following estimates :

L L
|J1] S2pL [luy, +opus—a3b +x)2dx +2p L [uy,2dx
0 0

L L
S2L fp<r, ,r>dx +2pL? Ju, 2 dx
0 0

SKE(@) foralt=20 , (4.5.26)

4pL* : .
where K, =4L + T The second inequality follows from (4.5.16) and (4.5.23), and
1

then, (4.5.26) follows from (4.5.9);

L L
| 72| <2pL flus, +@y(b +x)— pu P dx +2p L fuy,?dx
0 0

L L
S2L fp<r, v >dx +2p Luse?dx
0 0
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<K,E(t) forallt =20 , 4.5.27)

4pL? . .
where K,=4L + T The second inequality follows from (4.5.16) and (4.5.23), and
3

then (4.5.27) follows from (4.5.9).

Using (4.5.26) and (4.5.27) in (4.5.17) we obtain :

201 -t K —KJE@)SVE)S[2(1-e)t +K,+KJE(t) 120

which proves (4.5.18).

To prove (4.5.19), we first differentiate J

a5, _k : :
— =2 [px Ly + Gpty + sy = b +3) 1y At
0

L
+2 [px (uy, + 03— @y + X)) Ut 15 dx
0

L
=2 Ix [ = El 8 1300 = P2U3; — P@1 03U 3
0

L
+ p(0 + 032y — p,wp(b +X)] uyy dx +2 [P x wy, Uy dx
0

L L
+20; [px gy dx =205 fpx (b + XDy, dx
0 0

L L L
=-2EI, J'x TR\ 4 —2pa)2[xu 1x M3 dx —mela)gfxugu 1x dx
0 0 0
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L L
+p(@ + 0))[Lu 2L, 1) = Juy? dx] - 2p0@fx (b +x)uy, dr—pLity, (L 1)
0 0

L L L
— [ur® dx +2p0gf Lus(L, )y (L, £)— [xuz iy, dx = Jusuy, dx ]
0 0 0

L
—2p@s[L(b +L)uy (L. t) = (b +2x)uy, dx] (4.5.29)
0

where in the second equation we used (4.5.1). Then, integrating by parts and using the

boundary conditions (4.5.6) we obtain (4.5.29).

Similarly, differentiating J,, we obtain

ar, k : .
— =2 [px sy + @b +x) - gy — gty T gy
0

L
+2]px [usg, + 01D +x)— 0] U3y dx
0

L
=2 [x [ = El 33000 + Pty — P03l
0

L
+ (@2 + 0y — p,y(b +x)] s, dx +2 [p x Uy, uzy dx
0

L L .
~20; [px Uy Uz, dx +20) Jpx (b +X)ugy dx
0 0

L L L
== 2El3 [x Ua lspee dx + 20 xus 1y, dx — 2003 3, dx
0 0 0
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L L
+p(0 + @ A)Lu AL, £) - [us? dx] - 2p@y03[x (b +x)u3, dx +pLug (L, 1)
0 0

L L L
— Jua,® dx = 2p@] Lu (L, )uny (L, £) =[x a3, dx — Juyus, dx )
0 0 0

L
+2p@y[L (b +L)us, (L, t)= (b +2x)us dx 1 (4.5.30)
0

where in the second equation we used (4.5.2). Then, integrating by parts, using the boun-

dary conditions we obtain (4.5.30).

Differentiating V (¢) with respect to time, using (4.5.23) to evaluate the inner pro-

duct <r, , r,> and using (4.5.29), (4.5.30) we obtain the following :

e 20 Gy Y
C8 =20 - B 120 -0EO+ — 4

=—2(1 -&)t<o, K 0> —2(1 —€)t oy, XL, 1) —2(1 — )t ogus, XL, t)

—2(1 — )t Prit 1 (L, t) = 2(1 — €)t Pautag XL, 1)

L L
+(1-8)<0, [ge>+ (1 —)El | [u 12 dx +(1 - €)EI;3 fusg? dx
0 0

L L
-2 Ell jxulxulm dx —2E13 Ixu;;,ugm dx
0 0

L L L
—efpuy,? dx —€fpus,® dx +2(1 - €) Jouy [0yus — @yb +x)] dx
0 0 0

L L
+(1-8) [plogus — 036 +x)1 dx +(1-¢) [plou; — @zl dx
0 0
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L L
+2(1—€) [pug, [ +x)] - 0] dx +(1 =€) [plo(b +x) - u,]” dx
0 . 0

L L
— 2paafxt 1, U, dx — 20003 fxuzu,, dx
0 0

L L
+p(ay? + 03D Lu (L, ) - _[u PZdx]- 2pa)1c02_[x (b +x)uy, dx
0 0

L L
+pLuy XL, t) +2pw,[ Lu3(L,t)u,,(L,t)—Ixu3,u,, dx -_[ugu,, dx ]
0 0

L
—2p@3[L (b + L)y (L, )= (b +2x)uy, dx ]
0

L L
+2p@y fxus.uy, dx — 20003t 3 dx
0 0

L L
+p(@2 + 0D Lus (L , 1) — fus? dx] - 2p@ym3[x (b +x)us, dx
0 0

L L
+pLuy, L, 1) = 2005l Luy(L, )z (Lo 1) = Prutixey dx = Juyuy dx |
0 0

L
+200y[L (b +L)us (L, 1)= (b +2x)us, dx ] . (4.5.31)
0

We need the following estimates for some of the terms which appear in (4.5.31):

K in(@)2 + 0,2 + 05%) $<00, K 0> Skpp (02 + 02+ 0, (4.5.32)

3
where we put o=Yo;D;, K =diag(k,,ky,ky) and kpy=mintky,k;,k3) and

i=]
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kmax =max(ky , kqy, k3) ;
I in(@2 + 02 + 05%) $<0, [ 0> S I (02+ 02+ 05D (4.5.33)
WherCIR =diag(11,12,13),1min=min(11,12,13), andlmu=max(ll.12,13);

L
=2 El; [X Uiges Wiz dx =—2 El; Lty (L1 #) Ui (L, 8) + 2 EI; e (L, 1) Ui (L, 1)
0

L
+ EI; Lu,-nz(L, t)-3El; Iu,-nzdx
0

=20; L ug(L,t)uy(L,t)—2P; uye(Lrt) (L, 1)

L 2 . L
b AL, t)=3EL; Jun? dx

+ El, Uins !

2L‘(1,'
2

<2L o ‘y;zuixz(L,t)+ u;,z(L,t)

2 8.
) +2Bi G,-zui,,z(L, t)+ ——Bé‘uwz(L,t)

(]

Lp;? L
EI‘ Uiy AL, t) =3 EL; Jue®dx (4.5.34)
i 0

s

+

fori =1, 3, where y; ,0; ,i =1, 3 are arbitrary nonzero real numbers; in the first equation
we used integration by parts and the boundary conditions (4.5.6), in the second equation
we used the boundary controls (4.5.7) and (4.5.8). Then using (4.5.24), we obtain
(4.5.34).
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Using (4.5.16), (4.5.9) and the fact that E(t) <E(0), (see proposition 4.5.1), we

obtain the following estimates :

L L oL2
ui X 1) SLfuy* dx SL¥un*dx < Z-EQ) (4.5.35)
0 0 i

L

L L
Jou[opus — s(b +x)] dx <8” Jou,* dx + 5 [logus - aslb +2) ds
0 0 1 0

L L L
<8 fpuyds + %%m,z fus? dx + %%0)32 o +x)? dx
0 1 0 1 0
L
K
<35’ gpu Wlde + 8—;«»3 +ol+a?) (4.5.36)
1

3 L
where 9, is an arbitrary nonzero real number, K| =max { 4 LEIE © , ZpI(b +x)*dx). The
3 0

first inequality in (4.5.36) follows from (4.5.25), the second inequality follows from

(4.5.24). Then using (4.5.35), we obtain (4.5.36).

Similarly, using (4.5.25) and (4.5.35), we obtain the following estimates :

L . L L
[plegus — a3(b +x)1 dx <2pw;? [us? dx +2pay? [(b +x)* dx
1} 0 0 .

SKy 02+ 02 +ws%) 4.5.37)

3 L
where K, =max 4 I;EIE © , 2pj(b +x)? dx }, the first equation follows from (4.5.24), and
3 0

then using (4.5.35), we obtain (4.5.37);



121

L
[plosu, - sl dx SKy@+ o +0) (4.5.38)
0

4pL3E(0) 4pL3E(0)
El, ' EI,

where K3 =max {

}s

L L
Jpusoy(b +x)— wpuq) dx <87 [pus,® dx + —P— j[col(b +x) — wu ) dx
0 0

L
K
<32 J;pu3‘2 dx + g;(wlz +02+md) (4.5.39)

3 L
where K ,=max { 4 l‘;f: © , 2pj(b +x)2dx} and §, is an arbitrary nonzero real number,
1 0

the first inequality follows from (4.5.24), (4.5.25) and then using (4.5.35) we obtain

(4.5.39);

L
Jplon@® +x)—apu P dx S Ko + 02+ 0®) (4.5.40)
0

where K 4 is given in (3.5.39).

Similar to the estimates obtained above, using (4.5.25) and (4.5.35), we obtain the

following estimates for some of the terms which appear in (4.5.31) :

L L
=2 Ipxulxug, dx <21,852 J'pu 2 dx +%‘:T(oz Iu
) 0

L
<2182 pus? dx + é(mﬁ +ol+od) (4.5.41)
0

2
where K 5= 4 LI‘EIE ©
1

’
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L L L
=2 Ipxmlabugu 1x dx £ 2pL0)12 IU32 dx + 2pL (032 Iu 112 dx +
0 0 0
<Ko +02+0?) (4.5.42)

4pL*E(0) 4pL3E(0)
El; ' EI

where K¢=max(

b

r 4pL3E (0)
(PLu 2L 1) - p fuy® dx )@y + %) < —PE,—(w12 +ol+0) (4.5.43)
0 1

L L L
“2pfx(b +x)00u 1, dr <2py? [x%(b +x)? dx +2pwy® Juy,* dx
0 0 0

<KAol +a2+wd) (4.5.44)
r 4pLE (0
where K7 =max{2p[x*(b +x)*dx , —%(-)'],
0 1

2pLus(L, )iy (L, 1), < 2pLus*(L , t)0,2 +2pLuy (L, t)

3 .
< nglz D @2+ 0 + 0t +2pLur XL, 1) (4.5.45)

L L L
2pfxwpugeuy, dx S2LE Jour? dx + 25w uy, dr
0 0 4 0

<2L8;° qu 2 gy 4 4L 5(0) @2+ +0sd) (4.5.46)
El304
L L 4pL3E (0)
—2p£aau3ul. dx <285* [puy,? dx + —‘;,—y—ml% 0l +0d) (4.5.47)
0 3V5
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—2pL(b +L)uy (L, )03 S2pL(b +L)uy ML, 1) +2pL (b + LY 02 + 0,2 +@42) , (4.5.48)

L
L L 2pf(b +2x)? dx
20[(b +2x)uy, 0, dx < 28* [puy, 2 dx + 9 ¥ @2+l +0d) (4.5.49)
0 0 6
r r 20L%E(0)
2p[x yu s, dx <287 fpuy 2 dx + —f;m.;—(mh ol +a) (4.5.50)
0 0 3

L L L
—2p[x @031 3, dx <2pLoy? Ju,? dx +2pL g’ Jus 2 dx
0 0 0
SKgo2+02+ad) (4.5.51)

4pLE(0) 4pL%E(0)
El, ' El;

where K g = max(

}s
L 3

[PLu(L, 1) pfus? dx )@ + @) < 2 "E IE @ o2+rat+vad (4.5.52)
0 3

20L(b +L)us (L, )0, S2pL(b +L)uz AL, 1) +2pL (b +LY 02+ 0t + ) , (4.5.53)

L
L 2pfb +2x)? dx

L
—20[(b +2x)us, @y dx <288 [pus,® dx + — @2+0l+o?) ,  (4.554)
0 0

3¢2
—2pLu (L £, (L, 1)y < 2pLuy*(L, t)w,? +2pLus XL, t)

. .
< D@+ of v+ 2pLus LoD (4.5.55)

L L L
Zp [y de S 282 fpus® s + 2L fun? ax
0 0 0
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L 2
<208 ouyax + BEED 024024 0d) (4.5.56)
0 El 39
r r 4pL°E (0)
2p [pusuy, dx <2816% fpuy,? dx + —h(mlz +02+0d) (4.5.57)
0 0 1°10

L L L
~2pJx(b +x)00053, dx <2pw,? [xXb +x)? dx +2pws? Jus,? dx
0 0 0

< K9(0)12 + 0)22 + 0)32) R (4.5.58)

L
where Ko =max(2p[x%(b +x) dx , 5"—’;—‘;‘"(—0)}.
0 3

Using (4.5.32)-(4.5.58) in (4.5.31), and collecting likewise terms, we obtain the fol-

lowing estimate :

dvdft—) <= [2(1 — kit — D110 + 0% + %) = [2(1 — )yt = Daluy, "L ¢)

- [2(1 —€)ast — D3Jus, XL, t) - [2(1 —€)Byt — D 4luy, XL, 1)

L L
—[2(1 - &)Bst — Dsluy, (L, t) - (€~ D) [puy,® dx — (€ — D7) fpus,® dx
0 0

L
—-[(e+2)El, Iu 1> dx = QL oY% + 2P0, (L, 1))
0

L
— [ (€+2)El; Jusq % dx — QLOgYs? +2B30:Dus3, (L, )], (4.5.59)
0



where

K K
Dy=(1 -+ —+ +K3+K g+ —> + Ko+ LLEQ)

5, 5, El,
8pLE(0) ., 4pL2E(0) , 4pL3E(0)
+Kq+ + + +4pL(b +L
7 EI 3 EI 3842 EI 3852 p ( )
L
2p[(b +2x)* dx \
+ 0 2 + 2pL E(ZO) +K8+K9
3 El38;
L
2pf(6 +2x) dx
L0 N 4pLE (0) + 4pL3E (0)
352 El,8y? EI 8,5 ’
2L(11
Dy=——+2pL +2pL(b +L) ,
N
2L oy
D;3= 2 +2pL +2pL(b +L) ,
Ya
2 LB
%, LBy

4= 012 Ell ’

_2s LB

D + ,
57 6,2 | Els

Dg=08,2+2L 82+ 28 +282 +2L 8>

D7=38,2+28;2 +28¢> +2L 8¢ + 2802
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(4.5.60)

(4.5.61)

4.5.62)

(4.5.63)

(4.5.64)

(4.5.65)

(4.5.66)

and §;,i=1,.,10 and ¥;,0;j=1,3 are arbitrary nonzero real numbers and
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K; ,i =1,..,9 are positive numbers defined between the equations (4.5.32) and (4.5.58).

Let €e(0, 1) be fixed. Then by choosing §; ,i =1...., 10 sufficiently small one can
have €>Dg¢, €>8;, (see (4.5.65) and (4.5.66)). Also by choosing ¥;,0; j=1,3
sufficiently small, the last two line in (4.5.59) can be made negative, (see (4.5.15)). Then
(4.5.19) follows from (4.5.59), i.e., we obtain
-4% <0 t>T ,

D, D, D, D, Ds

where T =max{ 2(1 =k~ 2(1—€)ay * 2(1—€)o " 2(1-€)B; * 2(1 —€)Bs a

Using (4.5.19) and (4.5.18) we obtain the following ( see (4.5.20))

V) t >max(T , € )

S o6, w-o

which proves that for sufficiently large ¢, E(z) decays as 0 (%). 0

The existence, the uniqueness, and the exponential decay of the solutions of the

equations given by (4.5.1)-(4.5.8) are presented in the following section.



4.6 Exponential Decay of the Solutions
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In this section, first we give an existence and uniqueness theorem for the linear part

of the equations (4.5.1)-(4.5.8), (i.e. the "natural” control scheme ). Then including the

nonlinear terms, we prove the exponential decay of the solutions of the same equations.

For simplicity, as in section 5, we will take the symmetric positive definite matrix X

to be equal to diag (k, k5, k4). For the sake of clarity, we repeat equations (4.5.1)-(4.5.8)

here : forall¢t 20

ElNUpooy P UL +2P D U3, +p (@, + 0 ©3) Us
-p (02 +02)uy—p(y~@,)(b+x)=0 0<x<L
Ely sy +p U3 —2p D2 Uy, -9(032—0)10)3)“1

—p(O2+02)us+p (O +@03)(b+x)=0 0<x<L

L
10y + (I3 = [)0,03 + k 10y = EI3[(b + X Mggey dx
0

L L
10 + (I = 1030, + kg = El 5[t \U3ey dX — EI Ju3th ey dx
0 0

L
1305+ (2= 1 D010, + ky@3 = El [ = (b +X Moy dX
0

uyL,t)=usL,t)=0 , Uy (L,t)=us(L,t)=0 .

4.6.1)

4.6.2)

(4.6.3)

4.6.4)

4.6.5)

» (4.6.6)
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—Ell ulm(L, t)+alul,(L,t)=0 , —El3u3m(L.t)+03u3,(L,t)=0 ’ (4.6.7)

Elju (L, t)+B1u1,,(L,t)=0 ’ Elgugn(L,t)'*'ﬁgugn(L,t):O . 4.6.8)

Let the function space H be the same as defined in (4.4.14). Define a new function
space H as H :=H xR®. Then, separating the linear and nonlinear parts, the equations

(4.6.1)-(4.6.8) can be put into the following matrix form :

%:—:A: +T;(z)+g() . (4.6.9)

where z =[u; uy, u3 u3, @ W a;)7.
A:H — H is a linear operator whose matrix form is specified by the following :

A={my:i=1..,7,j=1.7} , (4.6.10)
where all m;; are zero except :
mp=myu=1 ,

Ely @4 El, L o*
- b+)|(b+x)— dx .
p oxt I3 )l( )8x4

myy=-—

k3
ma=- 0

4

El; 3% EI L
30 S payfom o
0 ox

Mgy =— ————
“a p oaxt I

ky
Mmys= -;1—(b+x) ,

El,% o*
= )
msy =T !;(b+x,ax4dx ,
ky
ST
ky
'"66:"'1: ’



The operator T; : H— H is a nonlinear integral operator defined as :

’J:( El, N
U3 |(———ugu
0
L' E,
Ti(z)= | wy( ~ 7, W3 +
0 2
0
L El,
I( =7, W3 +
o 12

The operator g : H— H is a nonlinear operator defined as :

8(2)=[81(2)... g2
where all g; (z) are defined as follows :

81(2)=83(Z)=0 ’
I1=-1,

8z)= 7 guyt
2

k
+ "2'(021‘3 —2 @y Uy, + (0% + 037 — 0,313 — ©,(x(b+x)

I

g4(2) = =00, =
2

ks
-, G2y + (0% + 0,2 U3 — 03 | — (b +x)

I,-1;
8s(z)= 7 020
1
Iy—1
8e(z)= 7 1‘01
2
I,-1
87(2!)=l 20’10)2

0

0

I -1,

I,-1,
Iy

15
U U3y, ) dX

2

1
_2u3u1mz ) dx

1y
_2u3uln:n: ) dx

W0, (b+x)

0003 (b+x)
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(4.6.11)

(4.6.12)
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Note that A :H —» H is an unbounded linear operator and its domain D(A) is
defined as D(A) : =D (A) xR3, where D(A) is defined in (4.4.20). Since D (4) is dense in

H, it follows that D(A) is dense in H.

In H we define the following "energy" inner product:

<z ,ZA>1=110)1(61+12(026)2+13(D3(:)3

L
+ [pluy, — y(b+x)) iy, — B3(b+x)] dx
0

L
+ [plus +@y(b+x)] [id3, + @y(b+x)] dx
0

L
+ j(Ellumliln + El jua g 35, ) dX
0

This inner product induces a norm on H, which is given below :

L
A1z || 2 =2E@) =10+ 1,0 + 505+ [(Elu15% + Elju3.% ) dx
0

L
+ fpCluy — 03b+x) P+ [ug + qd+x)2)dx . 4.6.13)
0
Note that the usual "Sobolev" type norm which makes H a Banach space is

given by :

L
[1z]12= 02+ @2 + 0%+ [(u? +uy 2 +u e ) de (4.6.14)
0

L L
2 2
+[Cus? +us +uze ) dx + [(uy  +us®) dx
0 0

But, from Lemma 3.5.4 it follows that the norms given by (4.6.13) and (4.6.14) are

equivalent.
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4.6.1 Theorem : Consider the linear operator A: H— H given by (4.6.10). Then :
(i) 4 generates a Co semigroup T(¢);

(ii) there exist positive constants M > 0 and 8 > 0 such that the following holds :

Nl sMe™> ., 20 . (4.6.15)

Proof :

(i) We will use the Lumer-Phillips theorem to prove (i),(see thorem 3.4.4). Thus, we have

to show that A is dissipative and the operator (M —A):H —H is onto for some A > 0.

To prove that 4 is dissipative, consider the following equation :

%:Az , z(0)eD@A) . (4.6.16)

Then, differentiating (4.6.13) and using (4.6.16) and (4.6.10), we obtain the follow-

a L

S = 11010 + 100y + 130305 + [pluyy — 03(b+0)] [y = @5(b-+x)] dx
0

L
+ [plug + oy (b+x)] [U3y + @(b+x)] dx
0

L
+_[(Ellumu|m + El g3 Uyyry )dx
0

= — k@2 — ko@y? — ka@y? — oquy, %L, t)
— a3 AL, £) = Brityu AL, £) = Pattag (L. 1) SO . (4.6.17)

This proves that A is dissipative.
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To prove that the linear operator (M —A):H — H is onto for some A >0, we decom-

pose the operator A as follows :

A=A+Tp , (4.6.18)

where A,: H — H is defined as :

0 1 0 0 0 0 0
EI] a4
-0 0 0 0 0 0
p ox?
0 0 0 1 0 0 0
El, »*
A= 0-—22"00 o0 o0 , (4.6.19)
p ox
ky
0 0 0 00— 0 0
I,
k2
0 0 0 O 0 — 0
I,
L kj |
0 0 0 0 0 0 —
I3
and the operator Tp: H —H is defined as :
Tp=A-A; . (4.6.20)

We first note the following remarks :

1) The operator A, : H— H is a linear unbounded operator . Its domain D (4,) is equal to
D (A). By using Theorem 3.4.7 it can be shown that A, generates an C, contraction semi-
group. Hence, ./ —A,): H— H has an inverse which is a bounded linear operator on
H . In fact, the range of (M —A,)"! is equal to D (4 ), and by Hille-Yosida theorem, (see

Theorem 3.4.3 ), we have :

[l =AY < A>0, Ae R

1
k ’
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2) The operator Ty, : H— H is a degenerate linear operator relative to the A,, (see [Kat.1,
p. 245]). By definition, the range space of T is finite dimensional and there exist posi-

tive constants @ and » such that :

| Tpz|| <allzl| +b||Az|| , foralzeD(A) . (4.6.21)

That the operator T, has a finite dimensional range follows from (4.6.20),(4.6.10)

and (4.6.19).

By using (4.6.20) and (4.6.14), it can be shown that (4.6.21) holds for some positive

a and b, (see Theorem 3.5.5).

From Remarks 1 and 2 above, it follows that Tp (A =A ;)™ : H— H is a bounded

linear operator with finite dimensional range ; hence|| Tp (M —A)™!|| <M for some

M >0and Tp(M —A,)" is a compact operator, (see [Kat.1, p. 245]).

Next we need the following fact :

Fact : for all A> 0, the real number 1 is not an eigenvalue of the compact operator
Tp(M -Ay.

Proof : Suppose not. Then there existsaA>0and ay e H,y#0 such that the following
holds :
y=TpM -A)Tly . , (4.6.22)

Define x e D(A) as

x=M -A)y
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Then (4.6.22) implies that the following equation also holds :
(M —AI—TD)X =0

But since A =A, +T)p is dissipative and A > 0, it follows that x =0, which implies

y =0, which is a contradiction. O

From the above fact it follows that the operator / —T (M —A)™! is invertible for all
A>0. Hence we conclude that (M —A,~Tp): H— H is invertible for all A> 0 and its

inverse is given by :
M —-A,-Tp) =M -A) 7 -TpM -A)™H!
This shows that (M —A,—Tp): H— H is onto for all A>0. Then, the assertion (i)

follows from the Lumer-Phillips theorem, (see Theorem 3.4.4).

(ii) To prove that the semigroup T'(r) generated by A is exponentially decaying, we first
follow a similar argument we made in proving Theorem 4.5.4, (see theorem 3.5.5). We

first define the following function V (¢): for all t 20

L
Ve)=2(1-e)t E()+2 JAx (uy, — 3(b+x))uy, de
0

L
+2 [px (uy, - 0y (b+x)us, dx (4.6.23)
0

where € € (0, 1) is arbitrary.

Following the arguments made in the proof of Theorem 4.5.4, it can be shown that

there exists a K > 0 such that the following estimate holds :



135

QU-ex-K)E@®)SV(@)SQU-ex +K)E()
Differentiating V' (r) with respect to ¢, using (4.6.1)-(4.6.8) and following the line of
the proof of Theorem 4.5.4, we can conclude that there exists a T >0 such that V(¢) is

bounded above for all ¢ > T. Therefore E (t) is bounded above by 0(%) ,forall t>T .

Hence for some M >0,

[EXe)dt s
0
The assertion (ii) then follows from a theorem due to Pazy, (see Theorem 3.4.5). O

We now establish the existence and uniqueness of the solutions of (4.6). The main
difficulty is the fact that the nonlinear operator T;(z) : H— H defined by (4.6.11) is also
unbounded, i.e., it is not defined for all z € H. But, with an appropriate norm defined on

D(A), (see (4.6.24) below), T;(z) : D(A)— H becomes an C* operator.

In the sequel, for simplicity we will assume that EI, = El;3=: El, this requires that the

beam cross sections have certain symmetry about D, axis.

4.6.2 Theorem : Consider the system given by (4.6.9), where the operators A, T, and

g are defined in (4.6.10)-(4.6.12), respectively. Then:

(i) for all initial conditions z(0)e D(A), (4.6.9) has unique classical solution z(.) defined

forall:>0;

(ii) in terms of the semigroup 7'(¢) generated by the linear operator 4, this solution can be

written as :
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: t
2() =Tz + [Tt - )Ty z () ds + [Tt —s)g(sNds 5
0 0

(iii) the solution of (4.6.9) decays to 0 exponentially.

Proof :

(i) Following [Seg.1], we define the following norm on D A):

Izl =14zl ., zeD@A) (4.6.24)

where || .|| is defined in (4.6.14).

A simple calculation shows that this norm is equivalent to a standard Sobolev norm
for D(A). Hence D(A) with this norm becomes a Banach space. Let us call this space
[D(A)). Then T; : [D(A)] = H becomes an C* operator, since its components are linear

combinations of products and integrals of the components of z over [0, L], (see (4.6.8)).

Also note that g : H — H, as defined by (4.6.12), is a C*™ map, since its components
are products of the components of z. Therefore it follows from a theorem due to Segal,
[Seg.1, p. 351, Thm. 2], that (4.6.9) has unique classical solution for all initial conditions
z(0) e D(A), defined in [0, 5] for some &> 0. (Segal considers this case as a "singular”
case and shows that, as long as the perturbation term 7; in (4.6.9) is a Lipschitz operator
from [D (A)] into H, the standard methods for finding the solution of (4.6.9) still work).
But since Theorem 4.5.4 shows that the solutions aré decaying to 0, this local existence

theorem can be extended globally (i.e., for all ¢ > 0).

(ii) This may be proven by substitution in (4.6.9);
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(iif) Since by Theorem 4.5.4 the solutions of (4.6.9) are decaying to 0 in H, it follows
that the positive orbits 04*(t)={z(t)e H | z(0)=2zq, ¢t >0} belong to a compact set in
H . Therefore by a generalization of LaSalle’s invariance argument to the infinite dimen-
sional spaces , (see e.g., [Hal.1]), and by the energy decay estimate (4.5.12) it follows
that asymptotically the rate of change of the energy given in (4.5.12) decays to 0. That

is, u; (L, t), uzy(L,2),i =1,3 and &X¢) decay to 0, as t — oo,

Using the norm defined in (4.6.13) and the operator T; : H—» H defined in (4.6.11),

we obtain the following :

L 2
El El
lel(z)”l)2 =12[I( ulu3xm+_u3ulm)dx]
0o I2 Iy
L 2L

EI El
+pl I(-I_u3ulxm+l_ulu3xm Ydx ] j’u32 dx
o I 2 0

x=L El El 2L
+pL [ (~T Uiy + g e ] JuPdr . (4625)
x=0 2 2 0

Defining the following quantity as J; , using integration by parts and (4.6.6)-(4.6.8),
we obtain the following:

L
Jr i = JCET 43t yoper — ETtt 30y ) i
0

L
=Elt e (Lo t)u3(L , t) = [Elit 1z 3, d
0

L
—Eluseey (L, t)uy(L, t) + [Eluse iy, dx
0

=oquy (L, usL,t)—ogus (L, thuy(L,t)
+ Blu 1x (L' t)qu(L’ t)_' B3u3n(L' t)u lx(L’ t) . (4.6.26)

Using the inequality (4.5.19) in (4.6.26) we obtain the following estimate for J; :
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L 2
I =1 [CET 31y — El U ) dx ]
0

<o 2ust (L, t)uy (L, t)+otu L, t)usz (L, t)
+B2ua 2 (L, ) U2 (L, )+ Bstuy 2 L, ) Uz L 1) . (4.6.27)

Finally, using (4.6.27), (4.5.6), and (4.5.7) in (4.6.25), we obtain the following esti-

mate :

el uoll 2ol 4.6.28)

where v,(¢) : R— R is asymptotically decaying to 0, by the LaSalle’s invariance argu-

ment, (see above).

Similarly, using the norm given by (4.6.13) and the operator g : H — H and the ine-

qualities (4.5.18), (4.5.19), we obtain the following estimate similar to (4.6.28) :

[1ge!| svu®llz@®l] (4.6.29)

where 1,(t) : R— R is asymptotically decaying to zero, by LaSalle’s invariance argument.

Using the estimates (4.6.28), (4.6.29) and following the arguments made in the
proof of Theorem 4.4.4, (i.e. using a generalized version of the Bellman-Gronwall

lemma), we conclude that the solutions of (4.6.9) are decaying exponentially to 0. O



Chapter 5

Control of a Timoshenko Beam Attached
to a Rigid Body : Planar Motion

5.1 Introduction

In this chapter we continue to study ‘the motion of the rigid body clamped beam
configuration introduced in chapter 2, section 4. We assume that, as in previous chapters,
the center of mass of the rigid body is fixed in an inertial frame and the flexible beam is
clamped at one end to the rigid body and free at the other end. In Chapters 2 and 3, we
studied this configuration using the Euler-Bemoﬁlli beam model to obtain the equations
of motion of the flexible beam. In this chapter we use the so called geometrically exact
beam model and its appropriate linearization to study the motion of the flexible beam

rigid body configuration.

In Section 2, we derive the equations of motion of the whole system and state the

139
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control problem. In Section 3, we propose a "natural” control law to solve the control
problem posed in Section 2. In Section 4, we first show that, without using any lineariza-
tion, the proposed control law stabilizes the system introduced in Section 2, though one
cannot easily extend this result to obtain asymptotic or exponential stability. Then using
appropriate linearization of the geometrically exact beam model and assuming that the
whole motion takes place in a plane, we prove that the system is asymptotically stable.
We note that the assumptions stated above yield to a Timoshenko beam, clamped to a ri-
gid body at one end and free at the other, (see Chapter 1, Section 3). Then, in Section 5,

we prove the exponential stability of the whole motion.
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5.2 Equations of Motion

In this section, we consider a rigid body whose center of mass is fixed in an inertial
frame and a flexible beam, clamped to the rigid body at one end and free at the other. In
previous chapters we used the Euler-Bernoulli theory to model the flexible beam. In this
section, we use the geometrically exact beam model given in Section 3 of Chapter 2 and
show that under appropriate control laws applied at the free end of the beam and a torque
control applied to the rigid body, the energy of the whole configuration becomes a nonin-

creasing function of time, i.e., the proposed control laws stabilize the system.

We consider the following configuration : Figure 5.1 shows the rigid body (drawn

as a square) and the beam; P is a point on the beam:

Figure 5.1 : Rigid Body with Flexible Beam
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In Figure 5.1, the quadruple (O, e,, e, e;) denotes a dextral orthonormal inertial
frame, which will be referred to as N, the quadruple (O, Dy, D;, D3) denotes a dextral
orthonormal frame fixed in the rigid body, which will be referred as B, where O is also
the center of mass of the rigid body and D,, D,, D; are along the principal axes of inertia
of the rigid body. The beam is clamped to the rigid body at the point Q at one end along
the D, axis and is free at the other end. Let L be the length of the beam. We assume that
the mass of the rigid body is much larger than the mass of the beam, so that the center of
mass of the rigid body is approximately the center of mass of the whole configuration.
Hence, we assume that the point O is fixed in the inertial space throughout the motion of
the whole configuration. We also assume that the beam is inextensible, (i.e. no deforma-

tion along the axis D,), and homogeneous with uniform cross-section.

The beam is initially straight along the D, axis. Let P be a point on the curve of cen-
~ troids whose distance from Q in the undeformed configuration is x, (i.e., when the beam
is straight along the D, éxis), let the quadruple (P, d,, dy, d5) denote the frame of directors
located at P, where d, , d,, d; are the directors at x, (see Subsection 3.2 of Chapter 2).
Let r(x, t) = OP be the position vector of P. We aléo assume that Assumptions 1 and 2 of

Subsection 3.2 of Chapter 2 and Assumption 3 of Subsection 3.3 of Chapter 2 hold.

Let, as in Chapter 2, A(x, t) € SO (3) be the orthogonal transformation between the

body frame and the frame of directors; more precisely we have :

d;(x,t)=A(x,t)D; , =123 , ¢t20 , x [0,L] . (5.2.1)
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Since A (x,t)e SO(3), it follows that there exist 3x3 skew symmetric matrices

Q(x,t)and W (x, t) such that the following holds (see (2.3.42) and (2.3.38)) :

AC) oG OAG. )

OA (x,1) _
3 TR Wix,t)A(x,t) . 5.2.2)

Let @ (x,t) and w (x, t) be the axial vectors corresponding to the skew-symmetric
matrices Q and W, respectively: @ (x, t) determines the rate of change of the rotation
matrix A(x, t) as a function of x; w(x, t) determines the rate of change of the rotation
matrix A(x,?) as a function of ¢. The strain measures used in the geometrically exact
beam model are the vectors I' and x defined as :

r=AT %;--nz . x=ATo . (5.2.3)

For additional information, see [Quo.1], [Sim.1].

Neglecting gravitation, surface loads and assuming that the center of mass of the
rigid body is fixed in the inertial frame N, the equations of motion for the beam, (2.4.1),
(2.4.3), and (2.4.4), the constitutive equation for the beam, (2.3.53), and the boundary

conditions for the beam, (2.4.5), are now reduced to :

on _d&r
ox (8t2 N 24
om o . dwtop) '

Ip g +0g Xx[goog =r (0,)xn©0,)+m(@©0,)+N. ¢¢) (5.2.6)
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—ASY A
n=ASE . m=AgE (5.2.7)
r0nN=0Q ., A@n=I (5.2.8)

where n(x,t) and m(x,t) are the contact force and the contact moment of the beam,
respectively; p is the mass per unit length of the beam; /5 is the inertia tensor of beam
cross-sections, which is constant by assumption; @y is the angular velocity of the rigid
body in the inertial frame N; I is the inertia tensor of the rigid body, which is a constant
diagonal matrix by assumption; N,(¢) is the control torque applied to the rigid body;
y(T, x) is the internal energy (i.e. potential energy) per unit length of the beam, which at

the moment need not be a quadratic function of its arguments.

We note that, (5.2.4) and (5.2.5) state the balance of forces and the balance of
moments at the beam cross-sections, (5.2.6) is the rigid body angular momentum equa-
tion, (5.2.7) is the constitutive equation of the beam and (5.2.8) gives the boundary con-

ditions at the clamped end.

We define the rest state of the system given by (5.2.4)-(5.2.8) as follows :

g =0 (5.2.9)
o _p xe(0L] (5.2.10)
x Dz o ' ' L

A=l . xel0L] . .2.11)

It is easy to see that (5.2.9) holds for all ¢ € R, if and only if the rigid body does not

spin the inertial frame N.
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Let the curve of centroids be represented by :

r(x,t)=u;D;+(| 0Q| +x +uy) Dy+u3 D3 (5.2.12)

and, by (5.2.8), u(0, t)=u5(0, t)=u+(0,¢)=0 for all  20. Then (5.2.10) holds for all

t € R, if and only if the beam displacements u, , 4, , 5 are identically zero.

If (5.2.10) holds for all ¢ € R,, then the beam deflections u, , 5, 453 do not depend
on time, hence by the first boundary condition in (5.2.8) they are identically zero on
[0,L]1xR,. Conversely, if u,,u;,u, are identically zero on [0,L]xR,, then (5.2.10)

trivially follows from (5.2.12).

Also note that, (5.2.11) holds if and only if the strain measure x defined in (5.2.3) is
identically zero on [0, L] xR,. If (5.2.10) holds, then the first equation in (5.2.2) implies
that the skew-symmetric matrix Q (x, t) is identically zero on [0, L]Xx R,, which then
implies that the corresponding axial vector ® and hence the strain measure x are all ident-
ically zero on [0,L]x R,. Conversely, if x is identically zero on [0, L]x R,, then so are
the axial vector ® and the corresponding skew-symmetric matrix Q. Then (5.2.2), implies
that A do not depend on x, hence by using the boundary condition (5.2.8), we obtain
(5.2.11). Furthermore, if (5.2.10) holds, (5.2.11) implies that the other strain measure T’

defined in (5.2.3) is also identically zero on [0, L] X R,.

Stabilization Problem : Our stabilization problem is stated as before : Let the system
given by (5.2.4)-(5.2.8) be disturbed from the rest state given by (5.2.9)-(5.2.11); find

appropriate control laws which drive the system back to the rest state.
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5.3 Natural Control Law

This control law applies a force n(L, t) and a torque m (L, ¢) at the free end of the
beam and a torque N, (t) to the rigid body. They are specified as follows : we choose 3x3
symmetric positive definite matrices X ,L ,M (which all can be chosen diagonal); then

for all ¢ 2 0 the "natural control law " requires :

nL,t)=-L (@ (L,t))p , (5.3.1)
m(lL,t)=-Mw(L,t) , 5.3.2)
N.@®)=-rL,t)xn(L,t)-m(L,t)-K og , 5.3.3)

where r is the position vector of P with respect to O, the subscript B in (5.3.1) denotes
that the time differentiation is carried out in the body frame B, (see Section 2.2 ), wis the
axial vector associated with the skew-symmetric matrix W introduced in (5.2.2) and wg

is the angular velocity of the rigid body in the inertial frame N.

The force n(L, t) given in (5.3.1) represents a transversal force acting at the free
end of the beam whose magnitude depends linearly on the end-point deflection velocity :

Using previous notation, let n, , n,, n5 denote the components of the contact force in the

3
body frame B, (i.e.,, n= Y, n;D;); let u, , u, , u; denote the beam deflections along the axes
i=1

D,,D,,D,. If the symmetric positive definite matrix L is diagonal, L =diag (o , o , 0%3),

the component form of (5.3.1) now reads : fori =1,2,3,¢ 20

n;(L,t)+a| ui,(L, t)=0 ’ (5.3.4)
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which justifies the interpretation of (5.3.1) stated above.

Roughly speaking, (5.3.2) specifies a torque m (L, ¢) applied at the free end of the
beam whose magnitude depends linearly on the "deflection angular velocity " at the free
end. The relation between (5.3.2) and the corresponding torque control at the free end of
the beam stated in previous chapters, (see, e.g., (4.3.2)), depends on a particular
parametrization of the orthogonal transformation matrix A (x, t), hence the parametriza-
tion of the vector w (x,¢). To see that in special cases (5.3.4) reduces to, say (4.3.2),
which is the corresponding torque control law at the free end of the beam when we use
the Euler-Bernoulli beam model, let us consider the planar motion introduced in Section

3 of Chapter 2. Then A has a particular parametrization given by the equation (2.3.58) :

1 0 0
A=|0 cosp —sind ,
0 sing cosd

where ¢ is the angle between the director axis d, and the body axis D,, (see Figure 2.1).

Then (5.2.2) yields w= aa—q:Dl, (see (2.3.59)). To a first order approximation we have

o= % where to simplify notation we denote here by # the beam deflection along the D,

axis. If m=m, D,, then the component form of (5.3.2) reads, forall t 20

ml(L, t)""ﬁ] u,,(L,t)=0

Neglecting gravitation, a generalization of this equation leads to (4.3.2).
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5.4 Stability Results for the Natural Control Law

Consider the system given by (5.2.4)-(5.2.8) together with the control law (5.3.1)-
(5.3.3). To study the stability of this system, as we did in the previous chapters, we
define the energy of the system as follows : for allz 20

L
E(‘)=—;'<(°R »Ip mR>+%Ip<r, ,r>dx
0

L L
+ ';'.k("’k +w),Ip (g +W)>dx + ‘;-IW(F’ Odx (5.4.1)
0 0

where <.,.> denotes the standard inner-product in R3, and r, is the abbreviation for
(r,(x,t))y. The first term in (5.4.1) represents the rotational kinetic energy of the rigid
body, the second term represents the kinetic energy of the beam in the inertial frame N,
the third term represents the rotational kinetic energy of the beam cross-sections and the

last term represents the potential energy of the beam.

54.1 Proposition : Consider the system given by (5.2.4)-(5.2.8) and (5.3.1)~(5.3.3).

Then the energy E (¢) defined in (5.4.1) is a nonincreasing function of time.

Proof : Differentiating (5.4.1) with respect to time ¢, we obtain :

L

L
gE—(Q=<o)k ,—gt—(IRmR)>+jp<r,  Ty> dx + f<(og +w),% [Ip (g +W)]>dx
0 0

dt

L L
dy ar 9y  ox
+£<ar’ a:>d”£<ax'a:>d"
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L
=<@g , g Og) + W X Ip@p>+ [<(r,)p + g xT, 0> dx
0

L
+J<((DR +w),lp %((DR +w) g +(wp +w)x Ip (®p +w)>dx
0

L L
+ <Q‘E a—1-‘>dx+ <i‘|’- §5>dx

5 or ' ot 0 ok’ at ’ (5.42)

where in the second equation we use (5.2.4) and the relation between the time derivation

in two frames (see (2.2.14)).

Using integration by parts, we calculate various integrals in (5.4.2) as follows :

L L

<(r,)p » N> dx =<(r,)p ,n> | - |<(r)p ,n>dx , 5.4.3
gman g m> 1 i[(:)sn (5.4.3)
L L

[<og xr,n,>dx =<ay , frxn, dx>
0 0

L
=<@p ,rxn, | >—<mp, r, xndx> |, 544
R xx=0L R g: ( )

L
J’<(0)R +W),]B % ((DR +W)B +(0)R +w)xlp ((DR +w)>dx
0

L
= [<(og +w),m, +r, xn>dx (by (5.2.5))
0

L L
..—.£<w,m,>dx + <@g ,lm, dx >

L L
+f<w,r, xn>dx + [<wp ,r, xn>dx (g does not depend on x)
0 0
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L

=<w,m> | —[<w, ,m>dx +<wg ,m |
x=0,L ¢ x=0,L

L L

+[<wxr, ,n>dx +<ag, fr.xnde> (5.4.5)
0 0

where u | :=u(b)—u(a)foranyu:R - R3,
x=a,b

Using (5.4.3)-(5.4.5) in (5.4.2), we obtain :

E(t—)=<mR,IR(bR + Mg X[pWp +rXn | +m | >
dt x=0,L x=0,L

+<(r)p 0> | +<w,m> |
x=0,L x=0,L

L L
-j<(r,,)3 —WXTr, ,n>dx - |<w, ,m>dx
0 0

+j %., a">dx+j<—‘!£ %‘:>dx . | (5.4.6)

Differentiating (5.2.3) with respect to time ¢ and noting that the internal energy y of
the beam is invariant under the rigid body motions (i.e., y measured in the body frame B
is equal to y measured in the inertial frame N, for details, e.g. see [Mar.1, p.194],

[Gre.5]), we obtain

A0y _ 3 anydr

G =P % A G
__ AT ar T azl'
=AW A G
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=AT[(rg)p —Wxr,] 5.4.7)
where in the second equation we have used (5.2.2) and the skew-symmetry of W. Then, |

using the definition of the axial vector w associated with W, we obtain (5.4.7).

Using (2.3.48), which is stated below :

Ok _ATSW
Ge=Nw

and using (5.4.7), (5.2.6), and (5.2.7) in (5.4.6), we obtain :

dE(t) I |
=<Wp ,rxn +m +N.(t)>
dt R x=L x=L ¢

L L
= f<@u)p —wxr, 0> dx - f<w, ,m>dx
0 0

L L
+ [<ATn, AT[(ry)p - WX 1> dx + [<ATm, ATw, > dx
0 0

+<(ry)g ,n> | +<w,m> | ) 5.4.8
8 x=0,L x=0,L ( )

Since A is an orthogonal matrix, the second and the third lines cancel each other.
Also by the boundary conditions (5.2.8), upon differentiating with respect to time ¢, at
the clamped end we have :

(r,©2))p=0 , w(O:t)=0 forallt=0 . (5.4.9)

Using (5.4.9) and the control law (5.3.1)-(5.3.3) in (5.4.8), we obtain :
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dE(t)
dt

=—<wg ,K 0g>-<(r,(L,t)),L (r,(L,t))>

-<w(L,t),M w(L,t)> . (5.4.10)

Since by our choice the matrices K ,L ,M are positive definite, it follows from

(5.4.10) that the energy E (¢) defined in (5.4.1) is a nonincreasing function of time. O

5.4.2 Remark : In the derivation of (5.4.10) we have used the nonlinear equations
(5.2.4)-(5.2.8) without any linearization. Futhermore, we have not imposed any restric-
tion on the internal energy y of the beam, other than the assumption that it depends on
the strain measures I" and x, and the assumption that it is invariant under rigid body
motions, which is a standard assumption in theory of elasticity, (see, e.g. [Mar.1, p.194]).
From this assumption it follows that the rate of change of the internal energy y as
observed in the inertial frame N and as observed in the body frame B must be the same,
since these two frames differ only by a rotation which does not depend on the spatial

coordinate x.

Special Case : Let us assume that the internal energy v is an uncoupled quadratic func-
tion of T and x, which leads to the standard linear constitutive equation, (see €.g.

[Sim.1]); that is we have the following :

w(F,K)=%<I‘,Cll‘>+—;-<K,C2x> , (5.4.11)

where C, and C, are diagonal constant matrices with positive elements. Upon differen-

tiating (5.4.11) we obtain :
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%‘tl’_r%-qr,),, + g xr,c1r>+%<r,c1(r,)a +ap xC,T>

+%<(x,)3 +op xx,C, x>+%<x.cz(x,)3 +wg xCrx>

=<(rl)8 ,C1r>+<(K3)B -C2K>

+—;—<o)R xl",C,l“>+-;—<l",(oR xC,T>

1
+—;—<coR xx,C2x>+E<K,mR xCyx>

By using the following equation

<a,bxc>=<axb,c> foralla,b,ceR®

it follows that the sum of the each of the last two lines in the above equation are zero.

Since 9y _ C,T'and y _ C, x, it follows that
ar ox

i‘&!tl’-=<%‘ll{-,(r,),,>+<%‘£,(x,)3>
O

5.4.3 Remark : Since in deriving (5.4.10) we have not used any particular parametriza-
tion of the transformation matrix A and any particular form of the internal energy func-
tion y, (5.4.10) is a generalization of previously obtained rate of energy equations, such
as (4.5.12). If we use small deformation assumption and the 'Euler-Bernoulli beam
model, then (5.4.10) reduces to (4.5.12). To see this, let u;,u;,u3 denote the beam

deflections along the axes D, , D, , D,. Furthermore let us neglect the axial deformation
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(i.e., u=0 on [0,L]1xR, ), and the torsion of the beam (i.e., no rotation of the beam

cross-sections about D, axis). Then, small deformation assumption leads to :

W=y Dy —uyyDy

Using the above equation, (5.4.10) leads to (5.4.12) :

dE(t)

= =—<wp ,K 0g>—oquy AL, t)—oqus, XL, t)

- ﬁlu lxtz(L )= B3u3y2(L £) (5.4.12)

where, for simplicity, we have chosen L =diag (; , 0z , 03), and M =diag By, B, Bs). O

To prove that the solutions of (5.2.4)-(5.2.8) with the control law (5.3.1)-(5.3.3)
decay to the rest state defined by (5.2.9)-(5.2.11), we need to parametrize the orthogonal

transformation matrix A and specify the form of the internal energy function .

In the sequel we will assume that the whole motion takes place in a plane whose
unit normal is the inertial axis e;. More precisely, we consider the configuration given in

Figure 5.1 with the following assumptions :

(i) The axes e, , D, , d, coincide at all times and rigid body may rotate only about the axis

€

(ii) The whole motion of the beam takes place in the plane spanned by the axes e; , es;
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(iif) The axial deflection (i.e., along the D, axis) and the torsion (i.e., the rotation of the

beam cross-sections about D, axis) is negligible.

The orthogonal transformation matrix A between the body frame N and the frame of

directors, now admits the following representation :

1 0 0
A=|0 cosd sin ) (5.4.13)
0 —sind cosd

where ¢ is the angle between the director d, and the body axis D, (see Figure 2.1).

Using (5.4.13) in (5.2.2), we obtain the following :

w=%—TD1 , x=w=iq-Dl . (5.4.19)

Let u :=u, denote the beam deflection along the D, axis and let I';, I'; denote the
components of " given by (5.2.3). Then assuming small deflections for ¢ and # and

neglecting higher order terms, (5.2.3) reduces to :

=0 |, r,=g—z-¢ . (5.4.15)

Following [Sim.1] and the standard linear theory, we assume the following qua-

dratic form for the internal energy function for the beam :

2y(T, x) = GAT2 + El k2

=GA(u, -9 +El$,%> (5.4.16)
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where G is the shear modulus and A is the cross-sectional area along the axis Dj, EI is
the principal bending stiffness relative to the axis Dy, and x; is the component of « along

the axis D, (see (5.4.14)).

With these assumptions and neglecting the higher order terms, the relevant com-

ponent forms of equations (5.2.4)-(5.2.8) now reduce to :

GA (g, — &,) =puy +pO®b +x)—p&*u (5.4.17)
El¢p +GA(u; —0)=1Ip 0y +6) (5.4.18)
Ig6=bGA [, (0, £) — ¢ (0, )] + EI 9, (0, ) +N.(¢) (5.4.19)
u@1t)=0 , ¢@©1¢)=0 foralt20 , (5.4.20)

where b =| 0Q |, 8 is the angle of rotation of the rigid body about the axis e,, hence we

have,

Wp =0 Dl =é Dl ’ (5.4.21)

I is the principal moment of inertia of the beam cross-sections about the axis d; and /¢

is the principal moment of inertia of the rigid body about the axis D;.

The component form of the natural control law (5.3.1)-(5.3.3) now become :

GAlu,(L,)-oL,))+au(lL,t)=0 , (5.4.22)

Elg,(L,t)+Po,(L,t)=0 , (5.4.23)
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N,(¢)==(b +L)GA[u (L, 1) = 0L, )] —E[Q (L, t)~k® (5.4.24)

where o.> 0, and B > 0 are arbitrary positive numbers.

The total energy E () given by (5.4.1), now becomes :
1, 22 1% 17 :
E@)= —2-1392 +=fp<r, ,r,>dx + = flp (9, +0)* dx
2% 2

L L
1 PRy 1 2
*5 JGA(u, o) dx + 2!5”’* &, (5.4.25)

and the rate of change of E (¢) given by (5.4.10) now reduces to :

L ok f-au’n-BoL. (5:4.26)

5.4.4 Theorem : Consider the system given by (5.4.17)-(5.4.20) together with the con-

trol law (5.4.22)-(5.4.24). Then there exists a T 20 such that for ¢ 2T, the energy E(t)

given by (5.4.25) decays as O (%).

5.4.5 Remark : Equations (5.4.17)-(5.4.20) are the component forms of equations

(5.2.4)-(5.2.8) under the assumptions :

(i) the motion takes place in the plane normal to the axis e,, the axes e; , D, , d; coincide

at all times and the rigid body rotates about this common axis,
(ii) the axial deformatin and the torsion are negligible,

(iii) higher order terms are negligible.
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As a result of these assumptions, (5.4.17)-(5.4.20) represent the equations of motion
for the planar motion of a rigid body whose center of mass is fixed in an inertial frame,

with a beam modeled as a Timoshenko beam, clamped to it. 1
5.4.6 Remark : If we use the conclusion of Theorem 5.4.4 in the expansion of E(¢),
(5.4.25), and EE%, (5.4.26), then we obtain :

é—)O as t — oo

o, (x,t)>0 ,foralxe[0O,L], ast—oe ,
¢, (x,2)>0 . ,forall xe [O,L], ast—oe ,
u(x,t)>0 ,forall xe[O,L], ast—oe ,

u,(x,t)>0 ,foralxe[0,L], ast—oee

These limiting behaviors imply that the solutions tend as ¢ — = to the rest state

defined by (5.2.9)-(5.2.11). O

Proof : We define the following function V(¢) :
L .
V()=2(1—-epE(t) + 2Ipx [u, +0(b +x)]u, dx
0

L L
+2[l5x 0, (9, +8) dx + 815 6(4, +6) dx
0 0

L
~8fpuly, +6(b +x)dx (5.4.27)
0

where € € (0, 1) and 3 > 0 are constants yet to be determined.
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To prove the theorem, we first show that there exists a constant C > 0 such that the

following estimate holds for all # 2 0:

R -ex-ClE@) S V(@) S 20-ex+CIE@) . (5.4.28)

Then we prove that there exists a Ty 2 0 such that

V) <o forant=2T, . (5.4.29)

Combining (5.4.28) and (5.4.29) we obtain :

V(T
E(@)s m ,t>T . (5.4.30)

c

where T =max (T, 20 -9

}.

Since E (1) is nonincreasing by (5.4.26), from (5.4.28) it follows that V(T) <<, and

(5.4.30) proves that for sufficiently large ¢, E (¢) decays as O (%).

Due to the boundary conditions (0, #) =0, ¢(0, t) =0 for all ¢ 20, similar to (4.5.14)
we obtain the following estimates which follows from the Jensen’s inequality (see, e.g.,
[Roy.l, p- 110]):

L
¢*(x,t)SLfo;2ds  xel0OL] (5.4.31)
0

L
wix,t)sLfu2ds  xe[OL] . (5.4.32)
1]
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Using (5.4.31), we obtain the following estimate :

L L L L
fue? dx = [(u, - + ) dx <2f(u, - )2 dx +2L% [0, 2 ax . (5.4.33)
0 0 0 0
For simplicity, we define the quantities A, ,A;,A;,and A4 which appear in (5.4.27)
as follows :
L .
Ay:i=2fpx[u, +6(b +x)lu, dx (5.4.34)
0
L .
Ay:=2flgx0, (4, +0)ax (5.4.35)
0
L .
Ay:=3[lp6(0, +O) a&x (5.4.36)
0
L .
Ag:i=—8fpulu +8b +x)dx . (5.4.37)
0
Since r(x, t) = (b +x) D, +u D4, using the differentiation rule (2.2.14), we obtain :
(%'t;)” =—0u D, + [y +6(b +x)] D; . (5.4.38)

Using (5.4.31)-(5.4.33) and (5.4.38), we obtain the following estimates :

L L
| Ayl <pLfu,?dx +pLf[u, +6(b +x)I* dx
0 0

L L L
< 2pLf(u, - 9)* dx +2pL3[0,% dx + Lfp<r, ,r,> dx
0 : 0 0



<K\E@®)

max {ZPL .2pL3 L }

where K = L G E

. R
min (5=, 55 )

L L
| Ap| SIpLf6,2dx +IpL[(¢, +8)* dx
0 0

<K,E(t) ,
max {IgL ,L
where K, = Us )
min (2,1 GA E
2272 "2

L L
| As] <8l [0? dx + 8l [(4, +6)* dx
0 0

L L
< 8lp L0, dx + 8lp [(9, +6)? dx
0 0

<K,E(t)

max {8IzL%,3)

}

Where K3 = Ik 1 GA ElI

mnly2r )

L L
| Agl <8pfu?dx +8p[lu, +6(b +x)I dx
0 0

L

L
< 28pL%[(u, — 9)* dx +28pL*[0, % dx +
0 0

SK4E(!) ,

L
8fp<r, ,r,>dx
0
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(5.4.39)

(5.4.40)

(5.4.41)

(5.4.42)
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max {28pL2,28pL*, )

I

where K 4=

1
2’272 "2
Using (5.4.39)-(5.4.42) in (5.4.27), we obtain the following :

RA-ex-CIE@)SV@)<R(1-ex +ClE(E) , (5.4.43)

where C =K + K, + K3+ K 4. This proves (5.4.28).

To prove (5.4.29), we first differentiate A, with respect to time:
a, Gt : L -,
7“—‘ =2[px iy +6(b +x)luy dx +2fpx [, +8(b +x)luy dx
0 0

L L
=2J'pxu,u,, dx +2]pxu,,é(b +x)dx
0 0

L L
+2[GAx, (uz —§;) dx +26%prxuu, dx
0 0

L L
=pLu, XL, t) - [pu, > dx +2[ pL (b +L)u (L, t)— [p(b +2x)u, dx 16
0 0

L L
+GA Lu (L, t)— GAfu,® dx —2GA[xu, ¢, dx
0 0

L
[pLu®(L t)-pfudx 16* (5.4.44)
0

where in the second equation we used (5.4.17). Then, using integration by parts and the

fact that 8 does not depend on x, we obtain (5.4.44).
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Since 6(.) does not depend on x, A, is equivalent to the following :
L
Ay=2lpx(0+0)(0+8) dx . (5.4.45)
0

Upon differentiating (5.4.45) with respect to time, we obtain :

dA, L L .
— =2lax(@+8)y dx +2[xIp (9, +6)@ +0), dx
0 0

L L
=IgL @, +0)* | —[Ig(@ +6)? dx +2[Elx¢; 0 dx
x=L 0 0

L
+2[GAx ¢, (u, — ¢) dx
0

L
=l L@, +0)* | —[I3(0, +6)*dx +EI Lo,? |
sl +07 | - +6) LS

L L L
— [E19,2dx +2GAJx¢,u, dx ~GA L¢* |  +GAf¢*ax (5.4.46)
0 0 x=L 0

where in the second equation we used integration by parts and (5.4.18). Then, using

integration by parts, we obtain (5.4.46).

Upon differentiating A5, we obtain :
dA; L X L, . L .
— = 8[15 (¢, +6)* dx — 81506, +6) dx +3[l¢(¢, +6) dx
0 0 0

L L L
= 8[15 (& +6)? dx —8[l56(, +6) dx B[Q[EI 9, + GA (4, ~ §)] dx
0 0 0
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L L L
=8[lp (9, +6) dx - 8[Ip0(0, +0) dx +8EI¢9, |  -3EIfo,%dx
-0 0 x=L 0

L L
+8GAgu | —8GAfo,u dx -3GA[p*ax (5.4.47)
x=L 0 0

where in the first equation we added and subtracted 9, in the second equation we used
(5.4.18). Then, using integration by parts and the boundary conditions (5.4.20), we obtain
(5.4.47).

Similarly, upon differentiating A 4, we obtain :

dA L . L .
T: = — 8fpu, [u, +6(b +x)] dx — 8fpulu, +6(b +x)] dx
0 0

L L L L
= —8[pu, 2 dx - 88[p(b +x)u; dx — 8[u[GA (ux - 9;)] dx — 86%fpu? dx
0 0 0 0
L L
= —8[pu,® dx - 38[p(b +x)u, dx — 8GAuw, |
0 0 x=L

L L L
+8GA[u,2 dx +3GA[u¢, dx - 86 fpudx (5.4.48)
0 0 0

where in the second equation we used (5.4.17). Then, integrating by parts and using the

boundary conditions (5.4.20), we obtain (5.4.48).

Differentiating V (¢) with respect to time and using (5.4.44)-(5.4.48), we obtain the

following :
ave) .. dE(@) _ 3, dA;
P 2(1 —¢ex @t +2(1-e)E(t)+ Y, @

i=1
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==2(1- )kt 0? - 2(1 - e)ouu, AL, t) - 2(1 - )Pt &, (L, t)

L L
+(1- 6%+ (1 —©)fp<r, , 1> dx +(1-©)flp (0, +0)* dx
0 0
L L
+(1 - &)GA[(u, — ¢)? dx + (1 - )EI[6, 2 dx +pLu, (L, 1)
0 0

L L
— [pu2 dx +20pL (b +L)u, (L, 1) - Jpb +2x)u, dx 10 +GA Lu, XL, 1)
0 0

L L L
- GAJu,® dx - 2GA[xu, 0, dx +p [Lu*(L, £) - [u® dx 167
0 0 0

L
+L Lo +02 | [, +8)%dx +EI Lo |
s L (¢, el E|;B o, +6) [ el
L L L
- [E10.%dx +2GA[x0,u, dx ~GA L§* | +GAfo? dx
0 ) x=L [)

L L
+8f1 (¢, + ) dx — 8[158(¢, +9) dx + 3EI 60, | .
0 0 x=

L L L
- 8EIf0, 2 dx +3GAou | -8GA[o,u dx —3GA[$? dx
0 x=L 0 0

L L
- S_I'pu,2 dx - Séjp(b +x)u, dx — 8GAuu, |
0 0 x=L

L L L
+3GA[u, dx +3GA[uo, dx - 80%[pu*dx (5.4.49)
0 0 0

where in the first equation we used (5.4.27) and (5.4.34)- (5.4.37). Then, using (5.4.26),
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(5.4.25) and (5.4.44)- (5.4.48), we obtain (5.4.49).

Using (5.4.38), the integral associated with the inner product <r; , r,> can be written

L L L L L

Jo<r, . 1> dx =6%Jpu® dx + Jpu,? dx +26p(b +x)u, dx + O} +x)?ax (5.4.50)
0 0 0 0 0

After cancellations, using (5.4.50) and collecting likewise terms, (5.4.49) becomes :

dv L

= ~[20-0k -1 -0 - fp@?+@® +x)) dx

0
L L .
—(LuX(L, 1)~ [pu? dx +8fpu® dx 16’
0 0
L L L .
—(e+8] fou,® dx - [e+ 8] [E19,2 dx — [e— 3] [Ip (¢, +6) dx
0 0 0
L L L
+ (8- 1)GAJu, 2 dx +(1 - GA[¢? dx +(1 - €)GA[(u, - 9)? dx
0 0 0
.L L . .
+[2(1-€) - 818Jp(b +x)u, dx — 8[I50(9, +6) dx
0 0
—[2(1 —g)ow —pLIu, AL, t) - 2(1 —€)Pro, AL, t)

L
+2[pL (b +L)u (L, t)—pf(b +2x)u, dx 10 + GALu*(L, 1)
0

+IgL (L, 1) +6()) +EI9, L, t)— GALYXL, 1)



+SEIQ(L , 1)05 (L, £) — 8GA [(4 (L, ) = 4L, DU (L, 1)

Using the following simple inequalities

2
ab$82a2+% a,b,deR, 80 ,

(@+b)*<2a*+b®» a,beR

167

(5.4.51)

(5.4.52)

(5.4.53)

boundary controls (5.4.22), (5.4.23) and the fact that the energy E (¢) stays bounded, we

obtain the following estimates for some of the terms which appear in (5.4.51) :

L L
Juz dx L""jux2 dx
0 0

L L
< 2L7%(u, — ¢)* dx +2L*[,2 dx
0 0

<M,EQ ,

max {2L%,2L%)
min{ﬂ'; 1 GA EL}
2°'2' 22

where M| =

u (L,H)SM,EQ0) ,

3
where M, = —— X {21L é’; ) ——, (see (5.4.32) and (5.433)),
min[i.—,—,—}
2 2 2 2

L L
!(bzdx <L2fo.2dx, (by (5.431) ,
0

(5.4.54)

(5.4.55)

(5.4.56)
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L L L
fa, —)? dx <2 [u, 2 dx +2 [§? dx
0 (1] 0

L L
<2 fulde+2 [0, 2dx by (5433) (5.4.57)
0 0
L
L L plo +x)?dx
Jo® +x)u,8 dx <8 Jpu,? dx + la—z—e2 ., (by 5452) , (5.4.58)
0 0 1
L. . L - gL .,
[1a 60, +6) dx < 8.2[I5 (9, +6)* ax + ge , (by (54.52)) , (5.4.59)
0 0
u,(L,t)éS&zu,z(L,t)+$éz . by (5.452) , (5.4.60)
L
L L pfb +2x)* dx
fp® +2x) dr <87 fou?d + ————0" . (by (5452 (5.4.61)
0 0 4
2

GA Lu,*(L,t)=GA L¢2(L,t)-2aL¢(L,t)u,(L,t)+-?;—:u,2(L,t)

L
SGA LML, 1) +20L%8s2[0, 2 dx
0

20°L +ﬁ)

*s2 T Ga

wXL,t) , (by 54.22) , (5.4.62)

IpL(@,(L,t)+6)2 <25 Lo L, t)+2IgL 6% , (by (5.4.23)) , (5.4.63)
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2
s Lo, (5.4.64)

SE]¢(L’ t)¢x(L’ t)=-SB¢(Ls t)¢l(Lt t)

< SBOAVL, 1) + §%¢,2(L. )
6

L
< 8BL 86,2 dx +§%¢,2(L,t) , (by (5.452),(54.31) , (5.4.65)
0 6

—8GA[u (L, t)— &L, )] (L, t)=8ouy (L, t)u(L,t)

L
< 8oL 82 u,tdx + %uﬁ(L. ), (by (54.22)§5.4.66)
0

where §; , i =1....., 7 are any nonzero real numbers.

Using thé estimates (5.4.54)-(5.4.64) in (5.4.51), the latter becomes :

av , L

O < (21 - e)s - D) - [e-+ 8 - (201 - )8, - 28w,
0

—[2(1 —€)ar = Dlu, XL, t) - [2(1 - €)Bt — D319, *(L, 1)
L
—[e+8—(3-8-26)GAL? - 2aL%5;* - 3BL 8¢* 1[¢, % dx

0

L L
— (6= 8321l (¢, +0)* dx — [(2e - )GA - 8adfu,2dx (5.4.67)
0 0
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where

I
Dy=(1-€)lg +(2p+8)M1+-8%+pLM2+2IBL _,._21;1;3%’&
L L
L Q1 -e)-8)pfb +x)?dx  2p[(b +2x) dx
+pf +x)? dx + > +— . (5.4.68)
0 81 84
Dy=pL +2pL(b +L)52 + 20k 4 &L, Ba (5.4.69)
52 AT e 4.
2
Di=2;,L + B+ B (5.4.70)

El "~ 5

By choosing € and § sufficiently close to but smaller than 1 and by choosing
§; ,i=l,..,7 small enough, each term multiplying the integral terms in (5.4.67) can be

made negative. To see this, define € and  as follows :

g:=1-¢ ,  8:=1-8 . (5.4.71)

Then sufficient conditions to make the coefficients of the integral terms in (5.4.67)

negative are :

(1+GALHS +(1+2GALYDE<2 - (5.4.72)

2e<8<1 . (5.4.73)



171

It is easy to see that one can find € and § sufficiently small which satisfy (5.4.72)

1 1

d (5.4.73), (e.g., ch f=— 1 and §= —8mM8—
and ( » (&g, choose € 8(1 +2GAL?) an 2(1+2GAL?

) . Then choosing

5; ,i =1,..,7 small enough, the coefficients of each integral term in (5.4.67) become

negative. Then, from (5.4.67) it follows that :

dv(t)
v ’ T ’
7 <0 t>T,

D, D, D,
2(1-e)k ' 2(1-¢g)a ' 2(1 -¢)B

where T, = max( }, which proves (5.4.29). Then combin-

ing (5.4.29) and (5.4.28) we obtain

E(t)s—v—ql)— t>T
2(1-ex -C ! ’

where T =max (T, }, which proves that for large t, the energy E(¢) decays as

_C
2(1-¢)

0(%). O
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5.5 Existence, Uniqueness and Exponential Decay of Solutions

In previous section, we proved that the solutions of the equations of motion, i.e.,
(5.4.17)-(5.4.24), decay at least as 0(—1—) for large ¢. In this section we establish an

existence and uniqueness theorem for the solutions of the equations mentioned above,
and then prove that solutions actually decay exponentially. We use ﬁle same techniques
used in the proofs of relevant theorems in previous chapters, such as Theorem 3.5.5 or
Theorem 4.6.1; hence here without giving detailed calculations, we give brief sketches of

proofs and refer to the relevant equations or theorems, when appropriate.

We repeat the equations of motion we studied in previous section, namely (5.4.17)-

(54.24) :forallt 20,x € (O,L)
Uy = —p—(un ¢,)+—(b +x>j (b +x) (e = ;) dx ——(b +x)J(u, ¢) dx

L
+%(b # 1) dx +kB +x)0+pPu  (5.5.0)
R 0

L
o =Elos + G, —0)+ SA[ b +x) (e - 02) dx
Ip Ip Ip o

L
- GAfq, - )m_j%d”ke , (5.52)
RO

L
é--——j(b+x)(u -¢,)dx+—j(u, 0) dx — lj(p,,dx—ké : (5.5.3)
RO
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u@©,0)=0 , ¢©0,t)=0 , (5.5.4)
GAu,(L,t)-oL,t))+oulL,t)=0 , (5.5.5)
Elo,(L,t)+Po,(L,t)=0 . (5.5.6)

We define the function space Hy in which the solutions of (5.5.1)-(5.5.6) evolve, as

follows :

Hp:={(u u, 6 &, )7 lueHy, 6 Hy,u el?,¢,cL?,8eR} (5.5.7)

where the function spaces L2, H* , H; are introduced in (4.4.14).

Equations (5.5.1)-(5.5.3) can be put in the following form :

&R

=Az +g(z) , (5.5.8) .
where z =(u u, ¢ ¢, 6)7 € Hy, the operator A : Hr — Hr is a linear unbounded operator

whose matrix form is specified as follows :

A= [ m"j : i,j =1,..., 6 } , (5.5.9)
where all m;; are zero except :

mp=myu=1

GA 9*  GA r ?? GA £a
= + (b + +x)— -_— _— .
moy; e o2 I (/] x)g o x)ach dx In (] +x)£8x dx

L L L
_ GA 9 GA EI o*
map = Rl +x)£ (b +x)3-de + 5= +x)£dx + +x)‘([ax2 i,
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mys=k(® +x)

_GAJd  GA 9 . _GA
Ma = Ip 8x+ 'l(b-l-) dx gax ’

El ¢ GA GA GAL EIS &

== b +x —dx+ dx+——dx ,
me= T o2 In j( ) !, 4 ox2
mys=k ’

L L

__GA GA¢ 0
msi= - g(b+x) dx+IR£axdx ,

Gat 3 Gat . E: 3

=— +x)—dx - — -] .
msy= - g(b x)axdx A gdx lRoaxzdx
mss=—k

the operator g : Hr — Hy is a nonlinear operator defined as :

g@)=(@g; - g7 . (5.5.10)

where all g; are zero, except :

gx2)= 6%u

Note that for all r > 0, the operator g (.) is Lipschitz in z in the ball B(0,r).

The domain of the operator A is defined as :

DA):={(u u 6 6, O eHT lue HY,pe Hy,u, e HYy, 0, e H;,0€ R,
GAlu (L, t)— &L, )]+ o, (L, 1)=0,

El$,(L,t)+Po(L,t)=0} . (5.5.11)

In H; we define the following inner-product :
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L L
<z, i>= %IRQB+ -%—J'p[u, +8(b +x)] [, +6(b +x)] dx + -;—jsm,é, dx
0 0

L L
+ 2 [1p @ +O)G, + O dx + 3 [GAG ~ OV ~Drax (5.5.12)
0 0

wherez=(u u, ¢ &, )T € Hyand 7=t i, ¢ & 6) e Hy.
Note the standard Sobolev norm which makes Hr a Banach space is :

L L L L L
Nzl 2= [u?dx + fu,? do + fu dx + 62 dx + [o,2dx +6° (5.5.13)
0 0 0 0 0

but, by using inequalities (5.4.31)-(5.4.33), (5.4.52), and (5.4.53), it can be shown that
the norm induced by (5.5.12) is equivalent to the norm defined by (5.5.13), (the proof of

this fact is similar to the proof of Lemma 3.5.4).

5.5.1 Theorem : Consider the linear unbounded operator A : Hy — Hy given by (5.5.9).

Then :

(i) A generates a C semigroup T'(¢);
(iii) there exist positive constants M > 0 and &> 0 such that the following holds :

| T@)|| sMe™® 20 (5.5.14)

where the norm is the norm induced by the inner-product defined in (5.5.12).

Proof :
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(i) We use Lumer-Phillips theorem to prove the assertion (i), (see Theorem 3.4.4). Hence,
one has to prove that A is dissipative and the operator M — A : Hy — Hr is onto for some

A>0.

As before, differentiating the norm induced by (5.5.12) we obtain : forall z € Hy ,

%=2<z ,Az>

=—k0%—ow XL, t)-BOAL,t) SO (5.5.15)

which is the energy estimate (5.4.26). This proves that A is dissipative.

To prove that the linear operator A/ —A : Hr — Hy is onto for some A>0, we

decompose the operator A as follows :

A=A +Tp (5.5.16)

where A, : Hr — Hr is a linear unbounded operator defined as :

Ayi= (mytij=1..5} . ‘ (5.5.17)

where all n;; are zero except :

np=ny=1 .
n21=ﬂa—2 ’
Ip ox?
-.GAd

p ox
nys=kMb +x) ,
GA 0

nygy=——— ,
4 IB ax
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-

43 IR axz ’
n45=k ’
nss=—k

The operator A, : Hr — Hy is a linear unbounded operator whose domain D(A)) is
equal to D (A) c Hy defined by (5.5.11). It is known that A, generates a C semigroup in
Hr, (see [Kim.1, Lemma 1.1 ). Hence M —A : Hy — Hr is an invertible operator for all

A>0.

The operator T : Hr — Hr is a degenerate linear operator relative to A,, (see
Theorem (3.5.5)). Hence, as proven in theorem 3.5.5, it follows that for all A>0,

I -Tp(M —A,)"': Hy — Hy is an invertible linear operator and we have the following :

W -Ay'=1 AU -TpN -ApH) T,
which proves that (A —A) : Hy — Hry is onto for all A > 0.
This, together with the fact that A is dissipative proves that A generates an C semi-

group in Hy.

(ii) To prove the exponential decay of the semigroup generated by the operator A defined
in (5.5.9), we first define the energy E,(t) associated with the inner-product (5.5.12), that

is:

E(@t)=<z(t),z(t)> . (5.5.18)
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Similar to (5.4.27), we define the following function V(¢) :

L L
Vi(t) =2(1 - €)iE \(2) +2[px [, +O(b +x)]ut; dx +2[Ipx, (9, +6) dx
0 0

L L
+8[Ip 0(0, +0) dx —Sfpu(u, +6(b +x)dx . (5.5.19)
0 0

Following exactly the same proof of Theorem (5.4.4), we obtain the result that E,(z)
decays as 0(—:-) for large ¢, (see (5.4.30)). Then exponential decay follows from Pazy’s

theorem (see Theorem 3.4.5) cited in the proof of theorem 3.5.5. O

Next we prove the exponential decay of the solutions of (5.5.8) :

5.5.2 Theorem : Consider (5.5.8) where the linear operator A :D(A)c Hr — Hr is
given by (5.5.9) and the nonlinear operator g : Hr — Hy is given by (5.5.10). Let T'(¢) be

the C, semigroup generated by the linear operator A. Then :
(i) for all zye D(A), (5.5.8) has a unique solution z (¢);

(ii) in terms of the semigroup T'(¢) generated by A, this solution can be written as :

2()=T(t)zo+ [T(t -s)gz(sNds ' (5.5.20)
0

(iii) this solution z(¢) decays exponentially.
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Proof :

(i) Since A generates a C, semigroup T(¢) and g : Hr — Hr is a C™ function, (see
(5.5.10)), it follows that for all zoe D(A), (5.5.8) has a unique solution defined locally in
time. But since for sufficiently large ¢, T(¢) = 0(%) by Theorem 5.4.4, it follows that the
solution is in fact defined for all ¢ 2 0.

(ii) This may be proven by back substitution of (5.5.20) into (5.5.8) and by using
dr

— =AT.
at

(iii) From (5.5.10) and (5.5.12) it follows that
17 .
11812 = [06%? dx
0

< %pé‘M, 2|2 (5.5.21)

max{2L?%,2L%)
R 1 GA E,
22272

‘where M= , (see (5.4.54) ). Since 67 is decaying at least as

min{
0(%) and since || T(¢)|| <M ¥, applying the Bellman-Gronwall lemma to (5.5.20),

(see the proof of the assertion of (iii) of theorem (3.5.6)), we conclude that the solution of

(5.5.8) is decaying exponentially. O



Chapter 6

Conclusion

In this thesis we dealt with the stabilization of flexible spacecraft. We consider a
rigid body-flexible beam configuration as a case model, (see Section 3.2). We assumed
that the center of mass of the rigid body is fixed in an inertial frame, and the flexible
beam is clamped to the rigid body at one end and free at the othgr end. We considered
three cases : In Chapter 3, we studied the motion of the basic configuration in plane with
the beam modeled as Euler-Bernoulli beam; in Chapter 4 we removed the planar motion
assumption and in Chapter 5 we studied the motion of the basic configuration in plane
with the beam modeled as Timoshenko beam. In each case we proposed appropriate
force and torque laws, which include boundary forces and torques applied at the free end

of the beam, to stabilize the configuration in question.

In Chapter 3, we proposed two control laws to stabilize the basic configuration per-
forming planar motion. The first control law is based on cancellation, (see Section 3.4),

where an appropriate control law applied to the rigid body cancels the effect of beam on

180
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the rigid body, (see (4.3.3)). This law enables one to study the rigid body and the flexible
beam separately. The second control law is not not based on a cancellation and enables
one to use the energy of the whole configuration as a Lyapunov function. The stabiliza-
tion problem we dealt with here is the stabilization of angular velocity of the rigid body
and the beam deflections. The results obtained and the techniques used here can be used
to study the other problems encountered in the control of flexible structures, such as atti-

tude control, orientation, tracking, etc. , (see [Ana.1])
In Chapter 4, we extended the results obtained in chapter 3 to the case of the motion
in R? of the basic configuration, and we proved some results similar to the ones obtained

in chapter 3.

In Chapter 5, we consideder the basic configuration with the beam modeleded, first,
as a geometrically exact beam and then as a Timoshenko beam. In the first case, general-
izing the control laws proposed in previous chapters we obtained a stability result,
without using any linearization, (see Proposition 5.4.1). As a future work, generalization
of this stability result to a possible exponential stability result might be useful. In the
remainder of chapter 5, we considered the planar motion of the basic configuration with
the beam modeled as a Timoshenko beam, which comes from appropriate linearization of
geometrically exact beam model. Then using previous results we obtained some results

similar to the ones obtained in Chapter 3 and Chapter 4.

The results in this thesis shows that the boundary control techniques can be applied
to the control of flexible structures. Applications of these techniques to the control of
configurations other than the one we used here, (e.g. dual-spin spacecraft with flexible
attachements); also applications to different control problems, such as tracking, pointing,

etc., can be useful.
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