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Abstract

Tmplementing an algorithm that computes the values of geometric quanti-
ties has required their translation into explicit coordinate arrays compre-
hensible in an appropriate computer language. The simplicity and intuition
inherent in the mathematical expression of geometric objects is lost in a
profusion of coordinates rendering programs difficult to implement, under-
stand, and debug.

This problem is overcome by providing a set of programming language
constructs based on geometric objects rather than their coordinate repre-
sentations. These objects and operations on them are adapted from stan-
dard mathematical usage. The actual coordinate computations are hidden
and carried out automatically, resulting in a concise program looking much
like its mathematical counterpart.

These constructs are suitable for programming a range of geometric
computations. Examples show their use in the calculations of linear geom-
etry, computer graphics, finite element analysis, relativistic kinematics and
robotics.

A compiler for the language constructs can check geometric expression
syntax and semantics. It can also recognize special operators and operands
(diagonal or sparse matrices, for instance) so that unnecessary and possibly
inaccurate floating-point operations are automatically avoided. Calls to a
runtime package actually carry out the operations on representations of
geometric objects. The issues involved in writing such a compiler and its
associated runtime package are discussed. A preliminary implementation
is presented and the prospects for its generalization assessed.






Chapter 1

Introduction

Solutions of geometric problems on a computer have been hampered by computer
language constructs inadequate to support operations on geometric data types. In
particular, current languages oblige us to express a geometric object (a vector or
linear transformation, for instance) as an array or matrix of coordinates. Conse-
quently, the code to solve a geometric problem is obscured by the large number of

index manipulations required to access these coordinates.

I have developed a set of types and operators for geometric objects that make
most coordinate manipulations unnecessary. These constructs can be added to
an appropriate computer language. Coordinate computations are carried out au-
tomatically, letting the programmer concentrate on the geometrical issues. The
formalism also provides a simple but powerful set of geometric operations in a

form closely resembling standard mathematical usage.

1.1 Overview

This thesis begins with a couple of short examples to indicate the need for a
clear, coordinate-free notation and corresponding programming language con-
structs. Other approaches to solving geometric problems on a computer are also

discussed. Chapter 2 develops the notation that becomes the basis for a set of
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geometric types and operators. Chapter 3 presents these types and gives a syntax
for declaring and operating on simple geometric objects. Chapter 4 provides a
series of diverse examples that show the usefulness of the language constructs in
writing simple, clear prorgams to solve a range of problems. Chapter 5 discusses
the issues involved in implementing the language constructs both in general and as
an extension to an existing compiler. Chapter 6 describes a preliminary compiler
implemented as a pre-processor for C. Chapter 7 concludes with some remarks
on the usefulness of the work and whether or not it should be extended so as to

produce a viable geometric programming system.

1.2 Motivation

As an example, consider the problem of finding the point where a line intersects
a plane not parallel to the line. Assume the line is specified by a point p on it
and a unit direction vector v parallel to it, and the plane by a point q on it and
a unit vector n normal to it (Figure 1.1). This problem is most naturally solved
by substituting the parametric equation of the line (x = p + tv) into the implicit
equation of the plane (n-(x —q) = 0) to get

,_n(a-p)
n-v
so that the intersection point 1s
n . —
D+ (a-p)
n-v

In a language like C, let us declare data structures to hold these quantities,

#define N 3
structure line { real p[N]; real v[N]; } ;

structure plane { real q[N]; real n[N]; } ;
a traditional program to compute x might look as follows

function intersect(l,m) returns array{N];



Figure 1.1. Geometric quantities associ-
ated with computing the intersection of a
line with a plane.

1 is line[p,v]; m is planelq,n];
begin

return add(p, scalarMult(dotp(n, diff(q,p))/dotp(m, v), v));
end intersect

I have assumed that the routines diff, dotp, add and scalarMult to manip-
ulate arrays have already been written.

This program, although simple, has many -problems that become especially
cumbersome in more complex applications. One of the worst is that the program
looks little like the formula from which it arose. The functional prefix notation
obscures the clarity of the mathematical infix notation. Another difficulty is that
the program works for a fixed N only; a new subroutine must be made for each
number of dimensions, yet the solution to the line-hyperplane intersection problem
looks the same in any number of dimensions.

Even greater problems come about from representing the geometric objects as

arrays of numbers. Many applications use a multitude of coordinate systems so



that a simple array of coordinates is really insufficient without an indication of the
pertinent coordinate system. Further, the plane normal vector does not transform
in the same way as the line’s direction vector under a change of coordinates. In
any case, coordinate conversions may be required that would obscure the geometry

of the problem even further under a barrage of matrix multiplications.

Arrays also obscure the distinction between points and vectors. A point is
a location in space, while a vector is a displacement between points. It makes
no sense to add two points, although their difference can be interpreted as the
displacement from the second to the first. The distinction between points and
vectors is essential in some problems, and so should be made clear in a program

solving such a problem.

These problems are overcome by providing constructs that account for the
definition of linear and affine objects and operations upon them. Calculations are
written in coordinate-free notation; the compiler or run-time package chooses the

coordinate system or systems for evaluation.

With these constructs, the data structures used to store the parameters for the

intersection problem are similar to those for the previous program

#define N 3
structure line { point p; vector v; } ;

structure plane { point q; vector n; }

but the distinction between points and vectors is made explicit. The subroutine
itself looks like:

function intersect(l,m) returns point;
1 is linel[p,v] ; m is planelq,n] ;
begin :
return p + (nf*(q-p)) 7 ( nfx v) * v ;
end intersect
Nothing need be said about different coordinate systems or transformation
rules for normal vectors. Any necessary computation on coordinates represent-

ing the various geometric objects are hidden from the programmer, making the



resulting program look very much like the formula itself.

A more complex example comes from the study of mechanical systems. If
the kinetic energy of a system is quadratic in the system’s velocities, Lagrange's
equations provide a way to obtain its dynamical equations(1]} in the form f = Ma,
where f is an n-tuple representing forces, M is a symmetric matrix (the inertia
tensor), and a is an n-tuple of accelerations. If T is the kinetic energy of any
conservative(l] physical system and F' the n-tuple of applied forces in compatible
units, Lagrange’s equations are

i (£> - g_ =FT

dt \ 8¢ Oq ’
where ¢ = (g1,...,¢)T and ¢ = (d1,--- ,dn)T describe the system’s position and
velocity, respectively. For mechanical systems in which 7 is quadratic in the veloc-
ities, the derivatives at a point in configuration space can be found symbolically.
In this case the first term is of the form MaT + bT (b is a function of position and
velocity), and the second term is an n-tuple ¢, a function of position and velocity.
Rearrangement of Lagrange’s equations yields Ma = F — b—c, or f =Ma with
f=F—-b-—c.

Finding the path of a mechanical system through configuration space can be
viewed as a geometric problem. As a consequence of Lagrange’s equations, the
path that the configuration parameters (degrees of freedom) follow through con-
figuration space is a shortest path on a surface of constant energy. The spaces
of interest in this problem are the configuration space, the tangent space to the
configuration space (velocity space), and the three dimensional space in which
energies, velocities, and accelerations are measured and computed. Various maps
relate configuration positions and velocities to their three dimensional counter-
parts. These maps along with their derivatives appear in Lagrange’s equations.
Once the appropriate maps have been found, the value of the inertia tensor M

can be computed.

The formalism enables the programmer to refer to the spaces and maps di-



rectly, without reference to a profusion of indistinguishable coordinate arrays. A
program that uses the formalism in solving Lagrange’s equations displays geomet-
ric calculations in succinct notation similar to standard mathematical usage (such

a program appears in a later chapter).

1.3 Other Approaches

Most of the previous work in this area can be divided into two categories. The
first category is languages or systems for handling arrays. APL (Array Processing
Language) is a programming language, one of the major objectives of which is to
simplify constructing and operating on multi-dimensional arrays[2]. While APL
provides terse specification of array operations, including such common operations
as matrix addition and multiplication, it does not make any provision for geomet-
ric objects such as points and vectors. APL is inadequate for supporting these
objects because there is no means to associate a coordinate frame with an array;
expressions are thus coordinate dependent. The same deficiencies plague other
systems designed primarily for handling arrays and matrices: examples include
TORRIX[3] and MATLAB/4].

The second category consists of systems to handle operations on specific types
of high-level geometric objects. Examples of such systems include: graphics lan-
guages such as PostScript[5] and graphics standards(6], robot programming lan-
guages that allow a user to position three-dimensional rigid objects and specify
robot arm manipulations of those objects[7][8], and even geometric calculators
based on homogeneous coordinates that allow specification of and calculations on
points, lines, and planes[9]. The problem with these systems is that they are too
specific. There is no way to generalize their constructs to higher dimensions (or
even lower dimensions) or to other related geometric problems. The methods to

be presented here could be used to build such systems.

A different approach is taken in symbolic systems designed to handle geometric



objects[10][11]. Such a system uses the language of differential geometry to build
and manipulate such objects as tensors, forms, and connections. Manipulations
include a number of symbolic computations of interest to differential geometers.
This is in contrast to programming language constructs designed to aid in the de-
termination of numerical values for geometric objects. A symbolic system might
be used to produce code using the language constructs that, once the desired sym-
bolic manipulations have been performed, finds numerical values for the resulting
objects given differing input parameters.

There are several possible options for implementing the language constructs.
One is to simply provide a set of routines that handle geometric objects in coordinate-
free form. Another is to use a language providing object-oriented constructs to
incorporate geometric objects and operations (candidate languages for this ap-
proach include Ada[12], C++[13], or LISP-based LOOPS[14]). The most compre-
hensive possibility modifies an existing compiler to recognize geometric constructs
so that optimization and error checking can be done at compile time. These op-
tions will be taken up in Chapter 5, but before discussing their merits, we must
decide what geometric objects and operations are pertinent, how they are to be

represented, and how they are likely to be used.






Chapter 2

Geometrical Foundations

The purpose of this chapter is to familiarize the reader with the mathematical
concepts and notation used in later chapters and to provide some simple examples
with which to gauge the efficacy of the programming constructs to be introduced.

It is not meant to be a comprehensive introduction to linear geometry.

2.1 Geometry

Mathematicians have devoted much effort to develop succinct notations for the
precise expression of geometric concepts. The inability of programmers to translate
this notation to programming language constructs has accounted for considerable
difficulty when writing a program to solve a geometric problem.

To alleviate this difficulty, I review several elements of linear geometry in a
consistent notation suitable for adaptation to an appropriate programming lan-
guage. The resulting programming constructs also aid the computer solution of
problems in differential geometry because differential geometry is built on linear

approximations.



2.2 Linear and affine spaces, mappings

One result of the usual way of programming a geometric problem is a confusion
between points and vectors. Both are typically implemented as coordinate arrays
in which the number of entries is equal to the dimension of the modeled space. This
superficial similarity may mask the differing effects of coordinate transformations
on points and vectors.

In fact, a point represents a location in some space, while a vector represents a
displacement between two points[15]. An immediate consequence is that a trans-
lation of a space affects its points, but not the vectors between points. Further,
the sum of two vectors makes sense as one displacement followed by another; the
resulting total displacement is another vector. However, the sum of two points,
two locations in space, is not a geometric quantity. While it is possible to sum the -
coordinates of a pair of points, the result depends on the choice of origin and thus
on more than the points themselves.

Similarly, it is nonsense to negate a point, multiply a point by a scalar or
subtract a point from a vector. However, we may think of the addition of a point
to a vector as a displacement of the point by the vector, resulting in a displaced
point. We can also interpret the difference of two points as the displacement

between them.

These ideas are formalized by recalling the definition of a linear space[15] and

defining an affine space, A, as:

(1) For every pair of elements P,Q € A, there is assigned a vector of a linear
space L called the displacement between P and Q and denoted PQ (or
Q-P)

(2) For each element P € A and each displacement v € L there is exactly one
element Q in A such that v = PQ.

(3) If P, Q and R are arbitrary elements in A, then PQ + QR = PR.

Functions can be defined that operate on the elements of linear spaces or affine
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spaces. The linear map operates on a linear space element and produces another
linear space element (possibly in a different space); recall that any linear map M
satisfies M (au + Av) = aM(u) + SM(v) where o and B are scalars. An affine.
maj; takes linear or affine space elements to linear or affine space elements. An

affine map M4 with a linear space as range satisfies
Ms(v) = Mr(v)+ O

If O' is a vector, then M, takes vectors to vectors; if O’ is a point, then M4 takes

vectors to points.

An affine map with an affine space as range is of the form
M4(P) = M (OP) + O/,

where M, is a linear mapping, O is an element in the domain of M4, and O’ is
an element in its range. The range can either be a linear space (in which case
M 4 takes points to vectors) or an affine space (in which case M, takes points to
points). If O = O’, M, is often (inappropriately: an origin must be specified)
called a pure linear operator. If My is the identity, then M, 1s called a pure
translation by (or through) OO’

2.3 Bases

A (finite-dimensional) linear space is equivalent but not identical to the space of
coordinate n-tuples where n is equal to the dimension of the linear space. These
two spaces are said to be isomorphic[16]. A bijective (one-to-one and onto) linear
mapping relates any two isomorphic linear spaces. Once an origin has been picked,
the affine space of points can also be described by some n-tuple.

The relationship of vectors of points to n-tuples is specified with a coordinate
basis or affine coordinate basis, respectively. A coordinate basis (or linear basis or

simply basis) consists of a set of linearly independent linear space elements. It can
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be used to express any vector in terms of n coordinates. The vector is recovered
from the coordinates by multiplying each of the basis vectors by the corresponding
coordinate, and summing the results.

An affine basis consists of a basis and an origin. Once an origin has been
determined, a point can also be represented as an n-tuple by adding the origin to
the vector defined by the n-tuple in the linear basis.

Using the rules of matrix multiplication, if (xi,... ,Xn) is a basis for a vector

space and Vv is a vector in that space, we write

431
v=| X1 " Xn : =o1X; + ...+ anXq,
Qan

N i’
n—tuple

where each of the a; is a scalar. The same formula specifies a point if the vector
represents a displacement from a fixed origin.

The n-tuples form a convenient way to represent vectors and points in a com-
puter. However, the basis belongs to the modeled space, and only the modeler
knows the relationship between the basis vectors and their representation in the
computer. For an affine space, only the modeler knows the location of the origin
relative to which the affine basis specifies a point’s coordinates. The basis and
affine basis that take n-tuples to the modeled vectors and points are called in-
tangible. Other bases may be defined on the modeled space, but they can all be

related to the intangible basis (and thus to one another, if none is singular).

The basis is a linear or affine operator taking n-tuples into the space of vectors
or points. Since there are many distinct bases for a given linear space, there are
many ways of expressing a modeled vector as an n-tuple. But the modeled vector
(or point) is the same regardless of the basis in which it is expressed.

In robotics, a different basis is introduced for each joint in a robot arm (Figure

2.1). Figure 2.2 shows the situation in graphics where a modeled object defined

in terms of a world coordinate basis is viewed on a computer screen defined in
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Figure 2.1. A jointed robot arm, with | Figure 2.2. Projecting a 3-D graphi-
a coordinate frame at each joint. cal object onto a 2-D screen defined in
terms of an eye coordinate frame.

terms of an eye coordinate basis. In general, problems in geometry are often
efficiently solved by choosing advantageous bases in which to calculate. We would
like a convenient means for specifying an object in any one of these bases without

having to remember later in which basis the object was last specified.

2.4 Change of Coordinates

To distinguish between n-tuples and vectors, ¥, @ denote n-tuples, while v, u
denote the corresponding vectors. Similarly, P and Q denote n-tuples whose
corresponding points are P and Q.

Suppose we are given two n-tuples

(5% 'Ul

<1
Il
[
B
(o
<4
Il

Un v



13

describing the same vector v in coordinate bases C and C’, respectively. The

relation between these two n-tuples is given by a matrix of scalars

my ... Min
V=MV, M=
m,u ... Mpn
This means that if C = (cy,.+.,¢n) and C' = (cy,. .. ,c’), then v can be wnitten
v = ci...ch | MV = Ci...Cn | V.

Since the same M works for any v, M also relates C and C’, that is,
cC'M=C.

The rows of M determine the relationship among corresponding pairs of n-tuples,
while its columns determine the relationship of the two sets of basis vectors. M 1is
often called the “matrix of C with respect to C".”

C and C’ map an n-tuple onto a vector, so C-! and C’~! map a vector onto
an n-tuple. That is, C~! computes the coordinates of a vector in coordinate basis

C. Thus we may write

M=cC"'C.

This formula gives us a useful interpretation of the matrix M. M first takes
coordinates in C and produces the corresponding vector. It then extracts the
coordinates of this vector in coordinate basis C'.

If C; is an affine coordinate basis with C as basis and O¢ as origin, then
P = C4(P) = CP + Oc so that C;'(P) =CY(P - O¢). An affine coordinate
basis will also be referred to as a coordinate frame. If Cj is another affine basis
with C' as basis and O¢ as origin, then the map taking a point’s coordinates in

C; to coordinates in C; is

My(P) = C; 7 Cy(P)
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or
My (P)=C"'CP+C"(Oc - Oc¢)=C"'C(P+C(Oc - Oc)).

Thus M; is an affine operator taking n-tuples to n-tuples with an offset in its
domain or its range (or possibly both; the offset may be distributed between
domain and range).

In computer graphics, objects are typically arranged in a hierarchy with each
object made up of a set of pre-existing objects. Each pre-existing object is placed
by giving the relationship of its coordinate basis to that of the object of which it
is a part. If C} is the embedded object’s basis and C'y is the embedding object’s
basis, the relationship is given by M.

If X is a linear transformation taking vectors to vectors, then we may write
u = Xv for appropriate vectors u and v. Extracting coordinates in C on both
sides of the equation and inserting the identity transformation as C'C'~' between

X and v gives the coordinate representation of vector transformation X:
C-lu=(C1XC)C' 'v.

That is, if @i represents u in C and V represents v in C’, then M = C-1XC'is
the matrix representing X in these coordinate bases. Rewriting X in terms of M
gives

X =CcMC™.
This formula can be used to interpret X as taking each vector of C'’ to a corre-

sponding vector of C M.

Just as C is a basis for a vector space, C~! is also a basis. The operation of

C-! may be expressed as

so that each row of C~! operates on v to produce a single coordinate. Each row

in C~!is thus a linear functional or covector; it maps a vector onto a real number.
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The rows of C~! constitute a basis on the space of covectors L*, dual to the linear
space L. Such a basis of coordinate extractors is called a coordinate system.

Thus there are three kinds of linear space of the same dimension with which we
are concerned: the space of n-dimensional vectors, the space of linear functionals
on n-dimensional vectors, and the space of n-tuples (which can be used to represent
either of these). So that the notation of matrx multiplication can be employed
when working with coordinates, the coordinates of an n-tuple representing a vector
are written in a column, while those of an n-tuple representing a covector are
arranged in a row. This distinction adds a fourth kind of linear space: the row
n-tuples.

The affine analog for a coordinate system is an affine coordinate system:

»

¢

P=c;'(P)=C(P-0)=| : {(P-0).

In this case ¢};(P) = c}(P — O) is called an affine functional with offset in its

domain.

C

2.5 Inner Products; Duality

Since L (spanned by C') and L* (spanned by C~!) are both linear spaces of the same
dimension, there are many isomorphisms that relate them. One such isomorphism
is determined by the inner product defined on the linear space L. The inner
product is a bilinear functional B with these properties: for v,u € L,

(1) Symmetry: B(v,u) = B(u,v).

(2) Positive definiteness: B(v,v) > 0 with equality if and only if v is the zero

vector.

Usually B(u,v) is written (u, V). 7

If C is a basis and u = Cii and v = CV are expressed, then the standard

inner product in C is given, in coordinates, by vTd. This formula is not valid in
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all coordinate systems; if the change of coordinate matrix M = C*C' relates the

primed n-tuples to the unprimed ones, then
(vyu) = VTi = ¥ (MMH)'w.

If M is an orthogonal matrix (MTM = MMT = I), then the inner product is
the same if computed in either C or C’. Any basis in which the inner product is
standard is called orthonormal.

The interpretation of v*, the dual of v, depends on a chosen coordinate system.
This preferred system is usually made to coincide with an orthogonal system, and
we define v* by

v'u = (v,u) forall u.
Another way of specifying an inner product is to give its matrix in some basis
so that |
(v,u) = (C~v)N(C™'u)
where N is a positive definite symmetric matrix. From this formula,
v: = (C'v)TNCL
Consequently, ¥* = ¥7 in an orthonormal basis.

The inner product defines a norm by ||v|| = /(v,v). It is also used to define
the angle between two vectors: HSEI,TH‘%T = cos(a) where a is the angle between the
unit vectors v and u.

Any positive definite inner product is standard in some basis. However, some-
times it is useful to relax the positive definiteness criterion.  As long as it is
non-degenerate, then there is some coordinate basis in which an inner product is

given by
1
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(the off-diagonal elements are zero). 7 is called the indez of the inner product.
Inner products with index zero are positive definite; a linear space with a positive
definite inner product is called euclidean. The Minkowski space, of interest in rel-
ativity, is a 4-dimensional space (three space dimensions plus one time dimension)
with an inner product of index 1. The inner product of a vector with itself in this
space is called its invariant interval, the sign of which determines if the vector is
timelike, lightlike, or spacelike.

2.6 Subspaces

A subspace R of a linear space S is a linear space whose elements form a subset
of S. An affine subspace R, of an affine space S, is a linear subspace passing
through some point. In three-space, for example, a plane is a two-dimensional
affine subspace, and a line is a one-dimensional subspace. A zero-dimensional
subspace is a single point.

There are many ways to specify a particular subspace within a space. For
instance, in euclidean three-space, a plane may be specified as a point and two
spanning vectors, three points, a point and a normal vector, or a normal vector

and a distance from an origin.
The most obvious subspace specification is a set of spanning vectors defining
the linear subspace (with an origin if the subspace is affine). Thus, we may write
ay

u= Vi...Vm

Qm

for u € R. The m linearly independent vectors v; span R in the total space S; the
«; are scalars. The dimension of R is m. This type of subspace specification 1s

sometimes called parametric, because as the a; vary, the resulting u vary over R.

A second method specifies a subspace by supplying a set of covectors orthogonal
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to R. In this case we require each vector of R to satisfy
v;'u=0, 1=0,..,n—m,

where n > m is the dimension of the total space S. The vectors v; corresponding
to each v,* are each orthogonal to any vector in R; the v, thus determine the
orthogonal complement to R. This form is often called implicit specification, since
the subspace is defined by a set of equations that its vectors must satisfy. In
general, a specification may be mized consisting of both parametric and implicit
parts.

If m > n/2, the pure implicit form is more compact than the pure parametric
form since fewer vectors (or linear functionals) need be given. If m < n/2, the
parametric form provides the terser specification. In three-space, a line is typi-
cally specified with a vector giving its direction (parametric form), although two
independent linear functionals (or vectors orthogonal to the line’s direction) are
sometimes used (Plucker coordinates). A plane is usually specified with a single
vector orthogonal to it (a normal vector).

Converting from parametric to implicit form or vice versa may require arbitrary
choices. If a plane R, in three dimensions passes through P and is spanned by v,

and v,, its parametric equation is
P+ a;vy +azvs.
Its implicit form is immediately found as
(vixvy)-(Q-P)=0.

for all Q € R. However, if we are given only the point P and a normal vector n,
finding two spanning vectors requires arbitrarily choosing a vector w; perpendic-

ular to n after which a second one can be found as w; = n x w;.
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2.7 Projections

A projection is a linear operator that maps a vector to a fixed subspace. Consider
a linear subspace R of a linear space S. Pick a basis Cr on Rand Con S. If
Cr={c1,...,¢m}and C = {€1,..-,Cm,...,Cn}, then a projection P : L — S can
be written
P =CrzC™!

where ¥ is a rectangular matrix with ones along its diagonal and zeros elsewhere.
The effect of P is to first compute the coordinates of a vector in a coordinate
system C in which a subset of the basis vectors span the subspace, toss away the
unneeded coordinates by applying £, then get the projected vector in the subspace
with the coordinate system Cr.

We can use an inner product to define an orthogonal projection; if P is an

orthogonal projection, then
P(w)(w—Pw)=0

for any vector w. To obtain this relationship, we define
¢
Cr" =

It is easy to verify that
P = CR(CR'CR)_ICR‘.

For instance, consider the situation depicted in Figure 2.2 in which the position
of the screen basis E is specified in terms of of a unit vector e giving the eye
direction (the direction into the screen) and a second unit vector f that projects
onto the screen’s y-axis. Then E = (vy, vy, V3) with

vy = €
(I —ee”)f

(I — ee”)f||’
Vi = V3 X V3.

Vo =
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ee is the orthogonal projection onto e, so I — ee” is the orthogonal projection
onto the plane perpendicular to e. v; requires no normalization because v, and

v; are perpendicular and each have unit length.

2.8 Multilinear Operators

So far we have considered vectors, covectors, linear operators (linear maps), and
bilinear functionals (inner products). These objects belong to a class of general
objects called multilinear operators[17]. An n-linear operator takes n linear space
elements as argument and produces a linear space element as result. The term
multilinear means that the operator is linear in each individual argument element
for any choice of the remaining argument elements.

Multilinear operators of practical interest take as argument a collection of p
vectors from a particular linear space and g vectors from the corresponding dual
space (in general, the order in which the vectors are supplied to make up the
argument is significant). Such a p+g¢-linear operator is said to be contravariant of
order p and covariant of order g. The terminology comes from the way in which
coordinates of the operator transform when expressed in a particular coordinate
system. If the range of a multilinear operator is the real line, then it is called a

tensor; a tensor T is a mapping

T:}/xVx...xV:x}/‘xV‘><...><V‘—~>R.

—

v

p q

If V is the space of n-tuples, then T is sometimes called a classical tensor[18].

2.9 Determinants, Cross Products and Rigid Mo-
tions

The determinant is central to the algebra of the cross product and related oper-

ators, as well as their generalizations in higher dimensions. These operators, in
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turn, form a means for concise representation of rigid motions.

The determinant in n dimensions is an n-linear functional taking n vectors to
a real number. It is also skew-symmetric, meaning that its value changes sign if
any two argument vectors aré interchanged. It turns out that any skew-symmetric
tensor of covariant order n in n dimensions is unique up to a constant factor{19].
The determinant is the particular tensor of this form whose value is equal to one
when evaluated on an orthonormal set of vectors.

The determinant partitions the set of bases on a space into two equivalence
classes: those with positive determinant and those with negative determinant.
Those bases assigned a positive value are iositively oriented, while those assigned
a negative value are negatively oriented. Because of skew-symmetry of the de-
terminant, interchanging two vectors of a basis reverses its orientation. In three

dimensions, for instance,
det(u,v,w) = —det(w,v,u).

The determinant is useful in its own right because it computes the oriented
volume of the parallelepiped spanned by the argument vectors. In particular, if

any subset of its argument vectors is linearly dependent, det = 0.

These properties allow the determinant to be used as the algebraic starting
point for deriving several useful functionals and operators in coordinate-free form.
Let f(vi,...,vn) to be the n-linear functional f applied to the tuple of vec-
tors (v1,...,vn). Consider the bilinear functional B" derived from the three-

dimensional determinant by
BY(v,w) = det(u, v, w).
Another way of writing B" makes use of the ezterior derivative operator(20] J:

(uldet)(v,w) = det(u, v, w).
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Computing a second exterior derivation ulvldet (exterior derivation is associa-

tive), we obtain

(ulvldet)(w) = det(u,v,w).

It is easy to see that the dual of the cross-product, (u x v)*, satisfies the same
relationship as ulvldet.
Returning to the skew-symmetric bilinear functional uldet, we can define a

linear mapping u* by
w*(u*v) = (uldet)(v, w) = det(u, v, w).

uX is the linear map corresponding to the bilinear functional uldet. That is,
u*v=uxv.

The operator u* can be used to differentially specify any rigid motion in three
dimensions. To do so, consider the equation NM(6) = £M(6), where N and M
are both linear mappingé of a space onto itself (automorphisms). The solution to
this equation is

M(8) = ezp(6N).

N specifies a vector field over its domain. M(6), applied to a vector v, computes
the “solution curve” of this vector field at time @ starting from v. (That is, if a
particle is placed at an offset v from the origin at time 6 = 0 and its velocity at
each point is given by the vector field IV, then the particle will be offset from the
origin by ezp(§N)v at time 8. If the vector field is given by u”* then ezp(fu*)
is a proper orthogonal transformation (a rotation) parametrized by 8. If uis a
unit vector, 8 is the rotation angle in radians about the axis u. This method of
specifying a rotation (or, when origins are added, any rigid motion|21]) is compact
and displays the relevant parameters clearly.

These techniques can be applied in n-dimensions to yield similar operators. As
one example, the ezternal product of n — 1 vectors (vi,. .. ,Vn-1) in n dimensions
is

vid...dvpopddet.
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The external product is the n-dimensional generalization of the dual of the cross-
product because the resulting covector is orthogonal to each of the vectors vq,..., V1.
The method of differential specification of a rigid motion extends to non-
positive definite inner products. Relativity provides an example. A Lorentz trans-
formation T is a rigid motion of Minkowski space. It is therefore expressible as
T = exp(6S), where S is a skew-symmetric operator[22]. In this case T describes
the motion in Minkowski space of an object starting from rest undergoing uniform

acceleration (possibly coupled with uniform rotation) after proper time 6.

2.10 Derivatives

Differential geometry attempts to describe the structure of surfaces of arbitrary
dimension through relationships among linear approximations to these surfaces.
Therefore, I introduce notation for derivatives of geometric quantities so that
programming language constructs can be developed that can aid in the computer

solution of problems in differential geometry.

Suppose a vector Vv is given by its coordinates in some coordinate system C
so that v = CV. Then v/ = CV' + C'V. This formula can be interpreted as
stating that the velocity of a vector in a moving coordinate system is a sum of
two components: the velocity of the vector relative to the moving system and the
velocity due to the movement of the system itself(23]. The velocity of the system
(C') is always relative to some other (fixed) system.

If ¥ is constant in C (that is, v remains fixed relative to C), then v =C'v.
Carrying this reasoning from the vector v toa whole coordinate system C, suppose
C = XD where X is a linear transformation and D is another coordinate system.
Then C' = XD’ + X'D. Since D is fixed relative to itself, C' = XD’ relative
to D. In this way a transformation rule for velocities of vectors and coordinate
systems is obtained that appears formally the same as the change of coordinate

formulae for fixed vectors. The component of the velocity due to the movement of
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the coordinate system relative to a fixed system is hidden by expressing a vector
velocity relative to the coordinate system in which the vector itself is expressed.
If the velocity relative to some other coordinate system is desired, an implicit
addition of relative coordinate system velocities is carried out.

This technique can be used for partial derivatives as well, as long as partial
derivatives relative to differing variables are kept separate. It can also be used for

higher order derivatives.






Chapter 3

Programming Language
Constructs for Geometry

The notation and methods of the last chapter form the basis for programming
language objects and operators that facilitate the programming of geometric prob-
lems. These constructs can, in principle, be embedded in most any programming
language, as they do not affect control structures. However, they are most natu-
rally added to a declarative language admitting the use of infix operators (PASCAL

or C, for example).

This section may be treated as a manual for the language constructs. The
reader may find it simplest to read sections 3.1 through 3.4 and the beginning of
section 3.5, and then skip to Chapter 4, referring to this chapter as required.

3.1 Spaces

All geometry is based on the structure of one or more spaces. A space consists of
a collection of vectors or points of the same dimension. No computation is carried
out on a space, but rather on the objects that refer to them. Therefore spaces

have function at declaration time only.

A space declaration associates a space name with a number of dimensions. The

25



26

pumber of dimensions may vary at run time, although compile time optimizations
may be possible if it is fixed. Spaces with different names, even if they have the
same number of dimensions, are distinct.

Additional structure may be created by grouping two or more spaces to form a
cartesian product space. The order of the spaces in such a grouping is significant.
For example, we might set

S=5x...x 5,
Once again, n may vary at run time. As an example, one may be building an
interactive robot arm modeler that accepts as input a number of joints. Each
joint is assigned a configuration space S, so that the total configuration space of

the arm is S. If all of the S, are the same S;, we may write
S = 51 *xn.

The syntactic definition of a space declaration is:

spaceDeclaration :=
space spaceName dimension 7 ;
space spaceName ( spaceList ) ;
space spaceName spaceName ** n ;
spaceList :=
spaceName
spaceName , spaceList

In this as in all syntactic definitions, the bold typeface indicates keywords or
literals, while italics indicate variable names. Syntactic categories are indicated
by roman type. Different forms of a syntactic category are placed on separate
lines. An optional argument is denoted by placing angle brackets around it. The

character n signifies a positive integer.

Ezamples of space declarations:
space M3 dimension 3; /* Three dimensional space */
space joint dimension 2; /* joint with 2 d.o.f. */

space configé joint **x n ; /* 6d configuration space */
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A space declaration actually induces the definition of three spaces. The first
is the linear space of vectors, denoted by the unadorned name given the space.
The second is the space of covectors on that linear space, denoted by affixing the
a.dj.oint sign (T) to the end of the space name (the adjoint sign is used instead
of the standard asterisk because asterisk is already reserved as the multiplication
sign). The third is the corresponding affine space of points, denoted by prefixing
the space name with the keyword affine.

For each n there is a predefined space of vectors, called the n-tuples, that
corresponds to an array of n real numbers aligned in a column. These spaces are
given the names Rn. The dual space to Rn is Rnf, an array of n real numbers

aligned in a row. There is no affine space corresponding to the n-tuples.

3.2 Maps

Once spaces have been defined, geometric objects that inhabit or refer to those
spaces may be introduced. Points and vectors, as well as all of the other objects
mentioned in the last chapter, can be handled in a unified framework.

We begin by considering only linear objects (vectors, covectors, linear maps and
tensors). All these objects can be thought of as multilinear operators with one
or more domain spaces and a single range space. (General multilinear operatérs,
operating on tensor product spaces, could be treated by allowing multiple range
spaces, but I have not found application for this generality). For example, a vector
can be treated as a map from the real numbers (1-tuples) to a linear space. A
coordinate system is a map from the n-tuples to a linear space of dimension n.
The determinant is a map from n identical vector spaces of dimension n to the

reals.

A linear object is declared:

objectDeclaration :=
map domainSpaces -> rangeSpace name ;



domainSpaces :=

domainSpace

( domainSpaceList )
domainSpaceList :=

domainSpace , domainSpace

domainSpace , domainSpaceList
domainSpace :=

spaceName
rangeSpace 1=

spaceName

Ezamples of linear object declarations:
map R!-> M3 vec; /* A vector */
map M3 -> R! covec; /* A linear functional */
‘map R3-> M3 basis; /* A coordinate basis */
map R3-> R3 mat; /* A matriz */
map (M3,M3) -> R! B; /* A bilinear functional */
To make declarations more. palatable, it is essential to provide macros for

declaring the most common objects. In particular, the declarations

vector in M3 vec;

vector in }"131L covec;
are equivalent to the first two example declarations.

A geometric object is actually stored as an array of coordinates and a list of
pertinent coordinate bases. The items in this list are called the bases of storage.

With some simple extensions, the same methods can be used to handle affine
objects and maps. All that is required is a mechanism to indicate which of the
spaces are affine, and for linear spaces, to indicate when a map has a vector offset
in either its domain or its range. An affine space is indicated by prefixing the
affine keyword to its name. A similar construction, using the keyword offset

placed before a space name, indicates a map with a vector offset in the linear space
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it operates on or maps to. A vector offset in a domain space is subtracted from
the argument vector before the map is applied to it. A vector offset in a range
space is added to the vector result of a map.

These changes are incorporated by expanding the syntax for space names in

the map declaration:

spaceName :=
space

affine space

offset space

Ezamples of affine object declarations:
map M3 -> R! afunc; /* An affine coordinate */
map R® -> affine M3 aBasis; /* An affine coordinate basis */
map R? -> offset R? é.Mat; /* An affine coordinate transformation */

3.3 Points

The only elementary geometric object that cannot be cast as some type of map 1s
the point. A point is simply a location in space. Therefore, a special construction

is used to declare a point:

pointDeclaration :=
point in spaceName name ;

so that, for example

point in M3 p ;
makes p a point in M3. A point is an element of the affine space corresponding to

the named space; a point may not be declared as an element of a space of n-tuples.
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3.4 Scalars

A scalar is a real number. A scalar may be identified with a linear map of a linear
space onto itself, where the map is given by multiplication of the argument vector

by the scalar. In particular,

map R! -> R! s ;
must declare s to be a scalar. However, it is more natural to use the host language’s

syntax for real number declaration:

real s ;
or something similar.

In light of this equivalence of R! with scalars, adding spaces of 1-tuples to a

linear map’s domain space list has no effect on the declared map. For instance,

map R2->R3 M ;

and

map R3,R! -> R® M ;
declare the same object. The reason is that if z, is a scalar, then linearity of M
implies M (z,,z2) = M(z;) - z2. There is nothing to be gained by adding a scalar

argument to a linear object; the scalar can be applied separately.

3.5 Arrays

Scalars are grouped into arrays that represent geometric objects. For instance, a
covector in a space of dimension n is represented by a row n-tuple, which is an

array of n scalars arranged in a row.

real tuple[n] ;
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declares such an n-tuple. But an n-tuple is also a map from scalars to the space

of n-tuples, so that

map R" -> R! tuple ;
makes tuple a row n-tuple. Therefore, both declarations of tuple must be treated
as equivalent.

If a set of geometric objects of the same type have a linear range space, then
it makes sense to form linear combinations of them. The linear combination can
be formed by arranging the maps in a row and applying them to an n-tuple

representing the coefficients.

In this way, adding an array subscript to a geometric object adds the corre-
sponding space of n-tuples to the end of the list of the object’s domain spaces.

For instance,

' map M3 -> R! ¢€[3] ;
arranges three covectors in a row to form a coordinate system on M3; the declara-
tion
map M3 -> R?® C ;
is equivalent.

In general, the declaration

map Si,..., Sp, R™, ..., R => Spyq 0b] -5
(without loss of generality, all n-tuple spaces appear at the end of the domain

space list) is exactly the same as

map Si, ..., Sp, R™,...,R"%=1 => S,,; obj [ngd

and, by repeated application, the same as

map Si,...,5p => Sp+1 objlnil---[ngl ;
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This equivalence identifies array dimensions with domain spaces of n-tuples. To
obtain a range space of n-tuples, a second subscript indicator, used in declarations

only, is introduced. Thus,

real column<3> ;

declares column to be a column of 3 scalars, the same as

map R! -> R® column ;
Ounly one use of angle brackets is allowed, and it must be the last subscripter in
the declaration.

To test the array equivalence in general, consider the map
M:S,..,Sp, R, RY > Spiq.
Define M(z,,...,x,) with z; € S; to be a map
R™,..,R™ = Sp4y.

But this map is canonically expressed by giving its values on combinations of
the basis vectors, one from each of R™. []], n; values are required, each given
by M(z1,..2p, €l el) where 1 <= i; <=n, and e’ is the ith canonical ba-
sis vector of R". Each combination of canonical basis vectors is indexed by a
combination of array subscripts in the appropriate ranges: M(z1, ..., z,)[t] - [1g).

Array bounds that specify a solitary array element are equivalent to adding
a space of 1-tuples, which has no effect on an object’s type. Therefore, single
element array specifications are ignored.

Finally, an n-tuple space created by adding an array specification can be made
contravariant (the default) or covariant. A covariant space is indicated by affixing

the adjoint sign to the array specification. For instance

map R3R3T R¥ R3->R! T ;

or equivalently
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real T[31[31T[31713] ;

declares the classical tensor on R*denoted by Tyt

3.6 " Vectors and Covectors Revisited

Consider the four declarations:

map M3 -> R! vi ;

map R' => M3t v2 ;

map M3t -> R! v3 ;

map R! -> M3 v4 ;
The first two objects, v1 and v2, are both covectors of exactly the same type, by
the definition of M3t. v4 is a vector in correépondence with the covector v2. v3
should also be a vector, in correspondence with vi. This outcome is achieved by
noting that the adjoint operator applied to a space reverses the point of argument
application for an element in that space. That is, a vector may be considered as an
operator taking a covector to a scalar. Normally, the covector taken as argument
is placed immediately to the left of the vector. A covector takes a vector to a
scalar when the vector appears directly to the right of the covector. Thus v3 and
v4 have exactly the same type.

The relationship between an object U; : Sy,..., S, — Sp+1 and another U, :

S1y e Spy SL,I — R! is made explicit by the relationship '

Us(z,y) = y"Ui(2)
with z € S; X ... x Sp and y € Spy;. If we were to define
Us(z) = Uz(z,-) = Ur(2),

then U, and U, could be represented as the same object. However, we make this

identification only for the cases of vectors and covectors. For example, although
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they follow the same transformation rules, it apparently does not make sense to

add a bilinear functional on S; X SI to an automorphism of S;.

3.7 Representation

3.7.1 Linear and Affine Part Selection

Origins, offsets, and linear parts of affine maps may be selected by treating them
as compound data types and applying an approprate built in selection operator.
The selectors are Daff (for domain affine part), Raff (for range affine part), and
lin (linear part). A map with multiple domain spaces requires that the selector
Daff be subscripted so that the appropriate origin or offset can be selected. The
subscript number indicates the element of the space list to be used. (Even a linear
space with no offset is assigned a subscript, although it 1s iliegal to extract an

affine part from such a space.)

For instance, if A is an affine coordinate basis on a space S declared by

map R® -> affine S A ;

then A.lin obtains the linear map from n-tuples to the linear space embedded in
S, A.Raff obtains the origin of the affine basis, and A.Daff is illegal.

3.7.2 Coordinate Representation

A map or a point g is represented as a list of pointers to coordinate bases and an
array of coordinates. The implication is that if a coordinate basis changes (relative
to the intangible basis), g changes with it. Changes automatically propagate
through coordinate bases defined in terms of one another.

The coordinate bases referred to by an object may be accessed using the se-
lectors Dbas (domain basis) and Rbas (range basis). A map with multiple domain

spaces requires the selector Dbas to be subscripted just as with the selector Daff.



35

The result of such a selection is a pointer to the coordinate frame in the indicated

space.

3.8 Expressions

A geometric expressionis a multi-dimensional arithmetic expression in some basis.
The geometric result of a geometric expression is independent of the basis chosen
for calculation, although the result must be represented with coordinates. An
appropriate basis in which to calculate can usually be determined from the bases
used for representing the expression’s operands.

Expressions involving geometric objects can appear anywhere that a host lan-
guage expression can appear. In particular, some geometric expressions evaluate

to scalars. For instance, one might want to branch on the sign of a dot product:

if (VT *u > 0)
return(TRUE);
else return(FALSE);

3.8.1 Terminology

Every geometric object is either a map or a point. A map may refer to several
spaces in its domain and one in its range. Two space references match if they name
the same space. Two space references matck ezactly if they match and the same
modifications (affine, offset, or none) are applied to the matching space. A space
reference is linear if no modifications are applied to it. Two maps have exactly.
matching domain space lists if both lists contain the same number of spaces and
the corresponding elements match exactly. Two maps are of the same type if their

domain space lists match exactly and their range spaces match exactly.
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3.8.2 Binary Operations
Addition (+)

Two maps may be summed if their domain space lists match exactly, their domain
spaces match, and at most one of the domain spaces is affine. The result has the
same list of domain spaces as the operands. The range space is affine if either
operand has an affine range. It is linear if both operands have linear ranges.
Otherwise, it is offset linear if either operand has an offset linear range.

The general formula for finding the sum of two maps is found by setting T1(z) =

Li(z — z1) + 1 and Ty(z) = Loz — z,) + v; and computing the sum I2:
R(z) = (L1 + La)(z — 1) + La(z1 — 22) + y1 + y2.

Each of z1,y; and zo,y, may or may not be present. Each z; and y,, if present,
may be either a vector or a point, depending on the type of Ty and T,. While
addition of maps is commutative, the representation of the result may depend on
the order of the operands if either of z; and z; are present. This is because the
domain offset of the result is taken to be z; and the term Lo(z; — 22) is added to
the result’s range offset.

As examples of addition, two tensors may be summed if their covariant and
contravariant degrees agree and they operate on the same spaces; the result has
the same type as the operands. Two affine coordinate bases may be added to yield
a new affine coordinate basis. Two matrices of equal dunensxons may be added to
yield a new matrix of the same dimensions.

A point and vector in the same space may be added to yield a point in that

space.

Subtraction (-)

The operands allowable for subtraction follow the same rules as for addition e\cept

that if either operand has affine range space, it must be the first. Similarly,a v ector
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may be subtracted from a point, but not vice versa. The formula for the difference

of two maps T; and T is

R(z) = (L1 — Ly)(z — z1) + La(z1 — ) + Y1 — V2.

Composition (o)

The range space of the first operand must match the (solitary) domain space of
the second. If one of the spaces is affine, both must be. The result has the domain
space list of the first operand and the range .s'pace of the second. However, if this
range space is linear, the result’s range space will be offset linear if either (1) the
first map has an offset linear or affine range (2) the second map has an offset linear
or affine domain. The reason for this modification can be seen by writing two maps
in general form and computing their composition. Let Ti(z) = Li(z — 1) + »
and Ty(z) = Ly(z — z3) + y2. The composition is R = Ty(Ty(z)) or

R(z) = Lo(Li(z — 21) + 1 — 22) + v2 = LoLa(z — 21) + La(y1 — 22) + 2.

As in the case of addition, each of the z; and y; may be a vector or a point if it
is present at all. The term Lo(y1 — ;) is present unless y; = z, (or neither are
present at all) requiring that R have an offset in its range. No provision is made
to check if y; = z2, so if either of these terms is present, the range of R is either
affine (if y; is a point) or offset linear (if y, is a vector or is not present).

A point may not be an operand of composition.

Multiplication (*)

Multiplication can be used in place of composition if both opcrands refer to ouly
linear spaces in their domains and ranges. Otherwise, the rules for and results
from multiplication are the same as those for composition. For instance, two

matrices of appropriate dimensions (that is, with the appropriate n-tuple spaces
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as domain and range) may be multiplied to yield another matrix. Or, a vector

may be multiplied by a covector to yield a scalar.

Tensor Product (®)

Operands for tensor product must both be linear maps (refer to only linear domain
spaces) with R! as range. The result is a map with domain space list equal to
the concatenation of the first operand’s domain space list followed by the second
operand’s domain space list. The range of the result is R!.

A vector may be an operand of tensor product; for this purpose it is considered
a map from the appropriate space of covectors to R

In coordinates, if T) and T are arrays, the resulting array R i1s given by
Rliy)- - [ia)lf1] -+ lim) = Talia) - [in] - Teln) - - Um)-

Cross Product (x)

Cross product is allowed in the language extension between two vectors or cov-
ectors in the same three-dimensional space. The result has the same type as the
arguments. There is a generalization of the cross-product to higher dimensions,
but for simplicity (and because there would probably be no use for it), it is only
allowed in three-dimensional spaces.

The cross product of two vectors, u X v is implemented as det(u,v,o)T (see
below).

Assignment (=)

One object may be assigned to another of identical type. The result of an assign-
ment is the right hand side of the assignment expression after the assignment las

taken place (thus, assignments may be nested).
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In addition, a format similar to that of FORTRAN’s one-line function statement
may be used to specify the significance of arguments to the assigned map. Sce the

scction below on argument evaluation.

3.8.3 Unary Operators
Unary Minus (-)

Unary minus may be applied to any map with linear or linear offset range. The

result has the same type as the operand.

Inverse (post superscript —1)

Inversion may be applied to any map whose domain and range space have the
same number of dimensions. The result is a map with domain space equal to
the operand’s range space, and range equal to the operand’s domain. There is no
provision to check that a map is actually invertible or to detect poorly conditioned
inverse computations. Responsibility for detecting and handling such cases rests

with the programmer.

Adjoint (post superscript t)

Adjoint may be applied to a vector, a covector, ora map with a single linear domain
space and linear range space that match. The adjoint operation swaps the range
and domain spaces of its operand. The adjoint of a vector is the corresponding
dual covector, and the adjoint of a vector is the corresponding vector. The effect
of the adjoint operator is determined by the inner product currently in effect on
the space referred to by the operand (see below). The adjoint of an n-tuple is its

transpose, as is the adjoint of a matrix.
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Unary cross (post superscript x)

Unary cross may be applied to a vector or covector in a three-dimensional space.
The result is a skew-symmetric linear map (a map with range and single domain
spaces both exactly equal to the single space referred to by the operand). s* =

sJdet, where det is the determinant on the space referred to by s.

3.8.4 Argument Evaluation

A map may be applied to'arguments in the same way as a function is called with
arguments in the host language. That is, a map’s value on a list of arguments is
found by appending the arguments, separated by commas and enclosed in paren-
theses, to the name of the map. The number of arguments must be the same
as the number of domain spaces of the map. Each argument must belong to the
corresponding domain space. If the domain space is affine, the argument must be
a point in that space. If the domain space is linear or offset linear, the argument
must be a vector in that space. The result of argument application 1s an element
of the map’s range space.

Not all arguments need be supplied to a map with multiple domain spaces. A
new map with a reduced number of domain spaces results from partial evaluation of
a map, corresponding to exterior derivation. An unevaluated argument is indicated
with the placeholder o. The resulting map has the list of domain spaces of the
original map with each space corresponding to an evaluated argument deleted.
The domain spaces that remain correspond to the unevaluated arguments. The
range space of the result is the same as that of the original map. For instance, if
det is the determinant in three dimensions, then det(u,v,e) 1s uJvl]det. That is,

det(u,v,e) * w = det(u,v,w). Similarly, det(u,e,e) is uldet = u* so that

det(u,e,e)(v,w) = det(u,v,w).
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Arguments may be applied to a map on the left hand side of an assignment.
When this occurs, the arguments are treated as formal parameters to the ex-
pression appearing on the right hand side of the assignment. The type of eacli
argument is given by the corresponding space of the map on the left hand side.
For instance, if B is a bilinear functional on M3, Cis a coordinate basis on M3. and

Mis a 3 x 3 matrix, then B may be assigned by

B(x1,x2) = (C1 % x1)T = M » c1 * x2 ;

The expression on the right hand side must be linear or affine (depending on
the type of the map being assigned) in each argument. Partial evaluation is not

allowed on the left hand side of assignments.

3.8.5 Subscripting

Arrays may be subscripted just as host language objects are subscripted. Because
of the identification of maps that refer to n-tuple spacés with arrays, a subscripter
applied to a map is equivalent to evaluating the map on a certain canonical basis
tuple of R". Consider the list of n-tuple spaces formed by appending a map M's
range n-tuple space (if there is one) to the list of its domain n-tuple spaces (if
there are any). If the first n-tuple space in this list is R¥ with canonical basis
tuples e;,...,ex (&1 = (1,0,...,0)*, e; = (0,1,... ,O)T, etc.) then application of
the subscripter [i] to M yields

Mi] = M(e,...,0,e;,0,...,0)

where the argument e; is placed in the position corresponding to the first n-tuple
space in M’s list. Further subscripters cause partial evaluation on basis tuples of
cach space in the n-tuple space list in sequence. If any of the n-tuple spaces are
dual spaces (spaces of row n-tuples), the corresponding row basis tuple is used 1n

place of the column tuple.
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Evaluation on particular n-tuple spaces can be suppressed by using the empty

subscripter [] as a placeholder. For instance, if a matrix A is declared

map R®->R® & ;
then A[i][j] selects a;;, A[J[j] selects the jth column of A, while A[i] [] (the
same as A[i]) selects the ith row of A.

A subscripted map may appear on the left hand side of an assignment.

3.8.6 Grouping (Cartesian Product)

Two or more maps may be grouped together to form a new map. Two types of
grouping operations are possible: the first creates a new map whose range space
is the cartesian product of of the grouped maps’ range spaces taken in order; the
domain space lists of the grouped maps must match exactly. This grouping is
indicated by enclosing the comma separated list of maps in the range grouping
brackets [, ). The second grouping operation interchanges the role of range and
domain spaces. Domain grouping (indicated with {4 ]a) requires that the maps
for grouping have only one domain space. For either range or domain grouping.
the indicated cartesian product space must have been declared as such explicitly
(although that cartesian products of n-tuple spaces exist automatically).

The grouping operators are intended to make block operator construction
stmightforward. For instance, if A is a 3 X 3 matrix, t is a column 3-tuple and u

is a row 3-tuple, then

[~ [dAt]a
[ u,1)a )

creates a 4 X 4 matrix.
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3.9 Coordinate Bases

Every geometric expression must actually be carried out as a coordinate manipu-
lation in some coordinate basis or bases. Ideally, the coordinate bases selected are
irrelevant to the value of the geometric expression. However, because geometric
objects are represented as finite precision quantities in the computer’s memory,
and because converting from one coordinate basis to another is slow, the bascs
actually selected can have consequences for program accuracy and speed. A suc-
cinct notation is required to specify the bases used in the evaluation of a geometric

expression.

3.9.1 The @ Operator (prefix Q(b,...,b,) or @)

@ has two forms. In the first form, it takes a list of coordinate bases as arguments.
The coordinates of the geometric object following the @ are extracted in the spec-
ified bases. On the right hand side of an assignment @(b) acts just like b~ *, but
it allows the specification of any number of coordinate systems and may appear

on the left hand side of an assignment. The assignment

e(b;,...,by)1lvalue = czp ;
sets the coordinates of 1value to the array ezp in the bases supplied to @. No
evaluation takes place; the bases of storage of 1value arc set to the list enclosed

in parentheses. For example,

Q(b)V = [r o F) 0 F 1 ]r ;
sets the coordinates of the vector v to be (0,0,1)T in the basis b.

In its second form, @ is a shorthand to control basis selection in binary expres-
sions. In the expression

exp; binop exp;

the expressions exp; and exrp; may possess differing bases of storage. Typically, 1t

is desirable to convert the appropriate bases of exp, to those of exp or vice versa
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so that the coordinate manipulations indicated by binop can be performed.
Q@erp; binop exp;

forces the conversion of ezp,’s coordinates to pertain to the bases of storage of
ezp, while
“exp binop Qezrp;
has the opposite effect.
@ may not be applied to both ezp, and ezxp;. The default is for

exp, binop exp;

to be evaluated as

Qezp, binop ezp,.
That is, the coordinate bases used for evaluation of a binary expression are the
bases of storage of the first operand.

The precise effect of @ depends on binop. If binop is addition, subtraction,

cross product, or assignment, then

Qv binop w

is short for

@(v.Dbas[1],...,v.Dbas[n],v.Rbas) binop @(v.Dbas[1],...,v.Dbas [n],v.Rbas)w

with one difference: the result of binop has the indicated bases of storage, but w
itself is left unaffected (v.Dbas[] and v.Rbas may or may not be present, depend-
ing on the type of v and w). If binop is multiplication or composition, then Qv

binop w is short for

@(v.Dbas,v.Rbas) binop @(w.Dbas[1],...,w.Dbas [n],v.Rbas)w

Note that the bases of storage for the domain spaces of the result are the domain

spaces of w. Again, no conversion takes place on the value stored in v.

@ can be used in argument application in an analogous way.
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Qv (wy,...,Wn)
converts each ¥; to the basis v.Dbas[i] to compute the value of v applied to
(v1,...,¥a); this is the default. The other possibility is to apply @ to any or
all of the arguments w; to cause conversion of the ith basis of storage of v before
evaluating v on the arguments.
Finally, @ has no effect on the computation of tensor product, because no

coordinate conversion is required in this case.

3.10 Functions

Functions may return or be passed maps or points. Spaces may be passed to
functions. A passed space may be used in the local declaration of a map or point
so that generic functions of geometric objects on differing spaces may be written.
A function’s return value declaration may also refer to passed spaces. Spaces may

not be returned by functions.

3.10.1 Built-in Functions

Several functions provide access to special gebmetric objects.

Intangible Basis

The function intang takes a space description as argument. If the space is linear
(or offset linear), the function yields the map that is the intangible linear basis
on the indicated vector space. If the space is affine, the intangible affine basis is
returned. Applying the function intang to a space of n-tuples yields an n X n

identity matnx.
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Dual map

The function dualMap takes as argument a linear space name and returns the
matrix that takes a vector’s coordinates in the intangible basis to the corresponding
covector’s coordinates in the intangible dual basis. This function may appear on

the left hand side of an assignment so that the duality relationship may be set.

Changing the dual map may affect the inner product on a space. If C is the

intangible coordinate basis and C* is the corresponding dual basis, then
C*=MC™.
For a vector v,
v-=(MCtv)Tct
so that
vw = (C V) IMICcC(Clw) = (C'v)TMTM(C'w).
Therefore MTM determines the inner product when v and w are written in the
coordinates of the intangible system.

dualMap(S) is set to the identity when S is declared. If S is an n-tuple space,
dualMap(S) cannot be changed; it is always the identity.

Exponentiation

The exp function, when applied to a map with a linear range space and single
linear domain space of the same dimension, yields a map of the same type that is
the exponential of its argument. exp may not be applied to any other type of map.
exp is meant to be used to compute rotations in three dimensions. Computing the

exponential of a general square linear map may be a poor idea numerically.

Determinant

The det function accepts a linear space name as argument and returns the map

that is the determinant on that space. det has n domain spaces, where n is the



47
dimension of the argument space, and its range is R.

Identity Map

I(S) returns the identity map from the space S into itself. S may be either an

affine space of points or a linear space of vectors.

Rectangular Identity Tensor

rect(ny,...,Nn;,) returns an array with dimensions [n] --[nm,]. All entries are
zero except the entries [i1]---[in] with 3y = - = im. In particular, rect[p,ql]
returns the p x q matrix with ones along its diagonal and zeros elsewhere. This

matrix is useful in building projections.

Zero Map

zero(domainSpaceList -> rangeSpace) returns the zero map from the domain
spaces domainSpaceList to the range space rangeSpace. For example, zero(R*->

R3) returns the zero 3 x 3 matnx.






Chapter 4

Programmed Examples

This chapter presents several examples of geometric calculations and shows their
implementation using the constructs introduced in the previous chapter. The aim
is to show that the use of these constructs leads easily from the mathematical

formulation of a geometric conﬁputation to a simple program to carry it out.

4.1 Linear Geometry

These routines perform some simple and typical geometric calculations that make
sense in n dimensions, although n is usually 2 or 3. The routines are: intersec-
tion point of a line with a (hyper)plane, intersection point of n hyperplanes, and
the segment of closest approach between two lines. Similar calculations underle
a variety of geometric algorithms, especially those from computer graphics and

computational geometry.

4.1.1 Line — Plane intersection

This function is almost identical with that presented in chapter 1 to solve the same
problem. As in that example, the line is assumed to be specified parametrically,

and the plane specified implicitly. The line is represented in a single language

48
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object as an affine basis (with one basis vector) on the input space. The plane is
similarly represented as an affine coordinate that is zero on the plane. Another
way of saying this is that the plane is given by a point on it and a vector normal
to it. Both the line’s direction and the plane’s normal are assumed to be unit
vectors. |

In the following program, Lines 1—4 declare the function lineWithPlane as
returning a point in the input space S and taking three arguments: the line 1, the
plane p, and the space in which they lie. Line 8 computes the dot product of the
plane normal with the line’s direction, which gives the cosine of the angle between
these two unit vectors. Line 10 makes a crude test of the accuracy of the solution
about to be computed by comparing the absolute value of the dot product with a
small fixed constant EPSILON. Line 11 returns NOTAPDINT if the line and plane are

deemed parallel. Otherwise, the point is computed and returned in lines 13—14.

In this as in all examples, the host language is C.

1 pointin § lineWithPlane(S,1,p)

2 space S;

3 map R1 ~> affine S 1;
4 map affine S -> R1 P;
L

6 double cosAngle;

7

8 cosAngle = p.lin * s.lin;

9

10 if (abs(cosAngle) < EPSILON)

11 return NOTAPOINT ;

12 else

13 return 1l.Rorg

14 - (p.lin * (1.Rorg - p.Dorg) / cosAngle) * 1.lin;
15}

Notice that line 14 could have been written

- (p( L.Rorg ) / cosAngle * 1.lin ;
because p is an affine functional with origin p.Dorg on the domain space. In fact,

a plane is often represented by an affine functional with an offset in the range
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space R!. Then the plane equation takes the formn-(x — o)+ d = 0, where d is

the offset (a scalar). Such an object is declared as

map affine S -> offset R! p ;
In this case the domain origin is always the origin of the intangible affine basis, and
the range offset gives the distance to the plane from the origin along the normal
direction. As long as the point x is expressed in some basis with origin at o, the
subtraction implied by the plane equation (actually n subtractions, where n is the
dimension of the space S) of o from p need not actually take place, because the
coordinates of o are all zero in such a basis. Then the plane equation (in three

dimensions) becomes the familiar coordinate form of a plane equation
iz + naz2 +n3zz+d =0

where (nl,nz,na)T are the coordinates of the normal vector and (z., z2, z3)T are
the coordinates of p relative to 0. Omitting the subtraction of the origin when its

coordinates are known to be zero is one optimization discussed in the next chapter.

4.1.2 Intersection point of m planes in m-dimensional space

The intersection point of m (hyper)planes in m dimensions is found by solving the
m equations

nj(x —qi) =0.
By introducing a point p to be taken as the origin on which to base calculations,

these equations become

nj ni(q: — p)
(x—p) = :
n;, n;.(qm — P)
so that the intersection point is
n;\~ / nj(q: —p)
= :
n;, n;.(qm — P)
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point in §  point0fPlanes(S,q[],calcOrg)

space 5;
map affine S -> R1 q[dim(S)];
point in S calcOrg; /* Origin to base calculations on */

double d[dim(S)];
map S -> R1 C<dim(S)>;

int i;
10 for (i=1; i<=dim(S); i++)
1 {
12 d[i] = q[il.1lin = (p[i].Dorg - calcOrg);
13 C[i] = ql[i].lin;
14 }
15 return(calcOrg + C™! * d);

16 }

calcOrg (corresponding to o in the above equations) is the origin on which to
base calculations. Line 3 declares q to be an array of plane equations. The number
of elements in this array is equal to the dimension of the space S. Similarly, line
6 declares the column m-tuple d with m equal to the dimension of S. Notice this
implies allowing local arrays to be allocated dynamically when the function is
called.

The for loop in lines 10—14 computes n}(q; — calcOrg) for each : while at
the same time creating a coordinate system from the plane’s covectors. Line 15
computes and returns the intersection point.

No check is made to ensure that no two planes are coplanar or nearly so. One
way to do this would be to estimate the condition number of C and check that
it is not too large before computing C~!. More sophisticated tests, based on the
accuracy of the input plane equations, could be used to verify the accuracy of
the computed intersection point. As written, if the intersection point is poorly

defined, a floating point exception may occur when C~! is computed.
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Figure 4.1. The segment of closest approach
of two lines

4.1.3 Closest Approach of Two Lines

To find the segment of closest approach for a pair of lines, we note that the segment
must be perpendicular to each line (Figure 4.1). If the first line is parameterized
as 0, + uv; and the second as 0, + uvy, the perpendicularity constraints lead to
two equations: '

vi[o; + 8vi — (02 + tv2)] =0

V;[Ol + svy; — (02 + th)] =0

where s and ¢ are the parameter values for the first and second lines, respectively,

at which the closest approach occurs. After some algebra, we obtain

_ (02— 01)*[v1i = va(V1 - V2)]
1—(vy-v2)?

and
(01 — 03)*[v2 = Vi(V1 - V2)]
1- (V1 . V2)2

so that the segment has endpoints P; = 0y + sv; and P, = 04 + sV,.

t =
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The segment of closest approach of the two lines is represented as P, and the
displacement vector P, — P; as an affine coordinate basis on the line containing the
segrﬁent of closest approach. After checking that the input lines are not parallel,
the function computes the parameter values s and ¢. Lines 17 and 18 obtain P,
and P, by applying the bases 11 and 12 to the scalars s and t, respectively. Line

19 returns a value by assigning the affine basis to the function name.

1 map R1 -> affine M3 closelines(11, 12)

2 map R1 -> affine M3 11, 12;

3 {

4 double vDotu; /* Cosine of angle between the two lines */
5 doudble t,s; /* Parameter values at closest points */

6 point in M3  P1, P2;

7

s  vDotu = 11.linl » 12.1in;

9 if (abs(1 - vDotu*vDotu) < EPSILON)

10 closeLines(x) = NOTAPOINT + NOTAVECTOR(x);

11 else {

12 s = (11.Raff - 12.Raff)T * (12.1in - vDotu * 11.1in);
13 s = 8/ (1 - vDotuxvDotu); _

14 t = (12.Raff - 12.Raff)T * (11.1in - vDotu = 12.1in);
15 t =t / (1 - vDotu*vDotu);

16

17 P1 = 11(s);

18 P2 = 12(t);

19 closelines(x) = P1 + (P2 - P1) * x;

20 }

21}

The separate calculation of P; and P; could have been omitted and line 19 written

closelLines = 11(s) + (12(t) - 11(s)) * x;
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4.2 Graphics

4.2.1 Scene Hierarchy

In computer graphics, modeled objects are typically built from combinations of
simpler objects. Each combination then becomes a building block for even more
complex objects. This process of recursively building complex objects from simple
ones is referred to as the scene hierarchy[24].

In this set-up, a distinct affine coordinate basis is associated with each object.
Each simpler object in a complex object is placed by giving the position of the
simple object’s basis relative to the complex object’s basis.

One way to do this is to give the affine coordinate transformation (matrix plus
offset) that describes the simple object’s affine basis with respect to the complex
object’s basis. In this scheme, the data structure that defines a graphical object

contains a coordinate basis

map R3 -> affine M3 C ;

and a list of simple objects that make it up. Each list element contains a pointer

to a simple object’s definition as well as an affine matrix

map RB -> offset R3 X ;
that relates the simple object’s basis C4 to the complex object’s basis Cc by Cs =
C.X.

X can be specified by giving the locations of the simple object’s basis vectors
and origin in terms of the complex object’s basis vectors and origin (see section
2.4). If the embedding is rigid, this relationship may be set by giving an axis of
rotation a, and angle theta, the origin o about which rotation occurs, and a final

vector translation:

X(cp) = C™! * exp(theta * aX)(C * cp - o) + o + t;



55

Thus, we apply a transformation to the coordinate basis C, and X gives the coor-
dinates of the this new basis with respect to C.

This scheme makes it easy to refer to geometric quantities in hierarchically de-
fined objects. Points, vectors, coordinate bases, and objects that are represented
with these (lines and planes, for example) are referred to directly. All that is
required is to execute a statement like the one above for each coordinate basis
embedded in another. If a geometric operation is carried out on objects embed-
ded in disparate coordinate bases, a run-time system can perform the coordinate
conversion automatically. _

The object X is a matrix with n-tuple offset that relates two coordinate frames.

It is also possible to relate coordinate frames with a transformation

map affine M3 -> affine M3 T ;
so that Cs = TC.. T may be set with the statement

T(p) = exp(theta * a*)(p - o) + o + t;

The difference in type between X and T makes the distinction between “premulti-
plication” and “postmultiplication” of coordinate transformations explicit, a dif-
ference that is sometimes confusing if all maps are represented as matrices. X is
a coordinate map that can be thought of as applying to the coordinates of the
points in the simpler object, so successive applications of X induce motions rela-
tive to the simpler object’s coordinate frame (a “turtle” motion, or motion of the

object “relative to itself”). T is a transformation of points, so the motion 1t in-
" duces is coordinate-free, not relative to any coordinate frame (a “global” motion).
It is illegal to apply T on the right of a coordinate frame, just as it is illegal to
apply X on the left. An explicit distinction is made between these two kinds of
motion specification in the language extension, eliminating any confusion about
their effects.
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4.2.2 Computing Screen Coordinates

As discussed in chapter 2, displaying a 3-D graphical object requires finding its co-
ordinates in terms of a screen coordinate basis; these coordinates describe the 2-D
projection of the object to a display device (Figure 2.2). The position of the display
screen is given by a point at its center. Its orientation is specified by giving a nor-
mal to the screen plane and a vector that, when projected onto the screen’s plane,
aligns with the screen’s y-axis. The following function, makeProj, computes the
map that takes points in the modeled 3-D space to pro jected coordinates on a dis-
play screen. The display screen’s center is given in screen coordinates by sc; scale
is the screen length of an object unit vector. The subroutine makeScreenFrame
returns a coordinate frame defined by an eye direction and screen projection of

the object’s y axis (see section 2.7) centered at center.

1 map affine M3 -> offset R2 makeProj(center,e,f,sc,scale)
2 point in M3 center;

3 vectorin M3 e, f;

4 double sc[2];

5 double scale;

6

7 makeProj(P) = scale * rect(3,2)

8 ) * makeScreenFrame(e,f,center) !(P) + sc;
9

10

11 map R3 -> affine M3 makeScreenFrame(e,f,center)
12 vectorin M3 e,f;

13 point in M3 P;

14 o

15 map R3 -> M3 C;

16 e /= norm2(e);

17 cfo] = e;

18 C[1] = (I(M3) - e * ) * £;

19 c[1] /= norm2(C[1]);

20 cf[2] = c[o] x c[i];

21 ) makeScreenFrame(x) = C = x + center;

22

makeProj computes screen coordinates for a parallel projection. In perspective

projection the size of an object’s image on the screen is indirectly proportional to
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Figure 4.2. Perspective projection onto the
viewing screen.

its distance from a viewpoint (Figure 4.2). If z,y, and z are the coordinates of a

point to be projected, and z’ and y’ are the projected coordinates, then

[} z 1 y
= d = e—
z z—d and ¥ z—d

where d is the perpendicular distance from the eye to the screen.

Since this transformation is non-linear, it cannot be represented with a lan-
guage extension object. The following routine accepts a point and returns its
projected coordinates. B is the coordinate basis returned by makeScreenSys and
d is the distance from the screen to the eyepoint. As before, 8 is the screen scale
factor. sc are the coordinates of the screen’s center.

1 double PerspProj(B,d,s,sc,P)[2]
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2 map affine M3 -> R3  B;

3 double d,s;

4 double sc[2];
5 point in M3 P;

6 {

7 double coords[3];

8 double value[2];

9 double szminusd;

10

coords = B~ I1(P);

(=
—

12 szminusd = 8 / (cooxrds[2] - d);
13 value[0] = coords[0] * szminusd;
14 value[1] = coords[1] * szminusd;
15

16 return value + 8C;

17}

Notice that we have not used homogeneous coordinates in either this or the
first graphics example. A point in a 3-D space is represented in homogeneous
coordinates (relative to a fixed origin) by 4 coordinates (z y z w)T under the

equivalence
(zyzw)~(x'y’z'w')<=>3a;é0:(zyzw)=a(:c'y’z'w').

This representation is often used in computer graphics because rotations, trans-
lations, and the perspective transformation can all be represented with 4 x 4
matrices[25]. The resulting coordinate dependent notation is justified in the name
of uniformity: the transformation taking an object all the way through the graph-
ics hierarchy to the display screen can be coalesced into a single 4 X 4 matrix (a
final division is still required to find the perspective projection). This represen-
tation confuses affine transformations of space (and, in particﬂar, rigid motions)
with perspective transformations when in fact the perspective projection occurs

only after all affine transformations have been carried out.

Besides being confusing, the 4 x 4 representation is wasteful. A non-perspective

transformation is represented with a 4 x 4 matrix as

(5 1)
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where A is a 3 x 3 matrix, and ¢ is the translation 3-tuple. When this matnx is
applied to the coordinates of a point P = (z y z 1), each of the three elements
of t is multiplied by 1, resulting in three unnecesary multiplications. Four more
unneeded multiplications occur when the bottom row is applied to P, for at total

of 7 out of 16 multiplications wasted.

In contrast, our method, besides hiding the actual coordinate computations.
represents transformations as a 3 X 3 matrix with a 1 x 3 translation requiring
only the necessary 9 multiplications to apply to a point’s coordinates. Even when
additions are considered and the computation of z—d is included in the tally (which
can be absorbed into the 4 x 4 formulation), the coordinate-free representation still

requires fewer operations.

4.3 Finite Element Assembly

The finite element method models the physical behavior of a continuous medium
by breaking it up into a number of pieces of finite size[26]. Equations are devel-
oped that describe the behavior of each individual element. These equations are
usually assumed to be linear. For example, in the case of structural mechanics,
the forces (stresses) generated at nodes of an element are assumed to be linear in

the displacements (strains) of those nodes. This leads to the equation
f=ku

where f represents the forces applied to the element nodes, u the displacement
from equilibrium of the nodes, and k a linear map from displacements to forces.

k is usually referred to as the element stiffness matrix.
fi Uy

In general, f = : and u = : where n is the number of element

fn Up

nodes. The forces f; and displacements u; may be vectors from a one, two, or

three dimensional space, depending on whether the problem under analysis deals
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with a one, two, or three dimensional structure. The map k therefor has a block
structure

kiy ... kin

k=1 : .

ki ... knn

Once the element stiffness maps have been determined, they are assembled into

a global stiffness map, K, that describes the behavior of the complete structure.
F Uy

This leads to an equation F' = KU with F' = : and U = : where m 1s
F Um

the total number of nodes in the structure. The correspondence between F; and
U; with the f; and u, for each node is given by the position of the node in the
global structure. The same goes for the placement of the k;; into the global map
K.

The global map is actually represented as a matrix so that an approprnate
numerical matrix equation solver can be called to obtain the global displacements
from the applied forces (or vice versa). Therefore the matrix representing each k;
in the global coordinate frame must be found before it is placed into the matnx
of K.

Suppose that the problem being solved is a two-dimensional one, and the ele-
ment with which we are concerned is triangular. Figure 4.3 shows such an element

incorporated into a simple truss. We declare

space M2 dimension 2 ;

map M2 -> M2 k[3][3] ;
to set up the element map k. Each k[i][j] is determined by the characteristics
of the element. A subroutine that sets the value of k[i] [j] does so in some
coordinate basis; this may as well be the intangible basis. That is, there is an

array of matrices

real m[2] [2][3][3] ;
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(2) ®)

Figure 4.3. (a) A triangular finite element.
(b) A simple truss incorporating three trian-
gular elements

and the subroutine sets each m[1[]1[i] [j] according to the characteristics of the

particular element. Then

k[il1[j] = intangM2) * m[]J[J1[i1[j] * intang(m2)~';

The advantage to this approach is that the element behavior is specified inde-
pendently of the global structure. Each element is located in the global structure
by giving a coordinate basis with which its axes are to align[27]. This information,
along with the correspondence of local nodes to global ones, completely specifies
the global structure. It is just as easy to build a structure with disparate elements

(even with differing numbers of nodes) as it is to build one from identical elements.

A particular element with map k that is to align with the basis B in the global

stiffness matrix is incorporated by computing

B~! * k[i]J[j] * B
and adding this matrix into the appropriate position in K for each i and j. If Kis
declared

real K[2][2] [m] [m] ;

(recall that the structure is 2 dimensional), then k is incorporated with

K[pllql = K[pl[q] + B! = k[il[j] = B ;
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The correspondence between p and i (the same as that between q and j) is de-

termined by the correspondence of the element nodes to the global nodes.

It turns out that in nearly all finite element problems, the local stiffness map
is symmetric in the sense that k[i][j] = k[j][i]l. This implies that the global
stiffness matrix is also symmetric. An efficient implementation of the language ex-
tension must take account of symmetric operators to reduce storage requirements

and avoid unnecessary computation of redundant matrix elements.

4.4 Relativity

In relativity, space is considered to be four dimensional, with three space dimen-
sions and one time dimension. Such a situation is easily described in the language

extension:

space M3 dimension 3 ;
space time dimension 1 ;
space spaceTime ( M3,time ) ;
The space spaceTime must be endowed with the Lorentzian inner product to
give it the geometry of relativistic space-time. This is done using the innerp

function:

innerp(spaceTime) = [ [¢ I(R3) , zero(R3) las
(4 zero(R3) |, -1 Ja Ir s
This accomplished, many familiar operations of special relativity are easily
carried out. For instance, an event may be specified by giving its position and the

time at which it occurred relative to the “laboratory” (the intangible) frame:

e = intang(affine spaceTime) * [ x,y,z,t |

The displacement d between two events el and e2 is found as
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d = el - e2 ;

d’s invariant interval is simply dtd. If the invariant interval is positive, the dis-
placement is spacelike, meaning the two events could have occurred at the same
time (in some inertial frame). If the interval is negative, the displacement is time-
like, indicating that the events could have occurred at the same place. If it is zero.
the events can be separated only by a light beam travelling between them.

Suppose v is a column array of three coordinates representing a particle’s mea-
sured velocity in the lab frame. (assume that our units are chosen with the velocity
of light, ¢, equal to one, so that ||v|| = 1 implies the particle is a photon). Then
the following code fragment produces a matrix M that converts displacement coor-
dinates in the lab frame to coordinates in the moving frame and uses this matnx

to define the value of a moving basis B.

real v[3];
real M[3] [3];
real u[3];
real g;

v / norm(v);
g = sqrt(1l - norm(v)**2);

M [,[dI(R3)+u*ut*(g-1) , "B * V4,

8
9 [d g * VT ’ g ]d ]r ’
10 B = intang(spaceTime) * M ;

u

N W=
L] na

Line 6 makes u a unit 3-tuple in v’s direction. Line 7 assigns the ubiquitous value
V1-— '0’12- (c =1 in this case) to g. Lines 8 and 9 use this information to compute
M, and line 10 produces the desired basis[22]. To find the coordinates cd of the

displacement in the moving frame, we simply write

cd = B! xd ;
This leads to the usual relativistic effects of Lorentz contraction, time dilation,
and change of simultaneity that occur when space-time events are coordinitized in
differing inertial frames([28].

These constructions form the foundations for more complex computations in
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relativity[29]. For instance, suppose a particle with charge q is moving through an
electromagnetic field with velocity v as measured in the lab frame. The particle’s

proper velocity, n is constructed by

n = intang(spaceTime) * [ v , 1/ sqrt(1 - vix v lr s
Now suppose that the electric field at a point measured in the lab frame is E
and the magnetic field is B. Then the electromagnetic field tensor F is constructed
as[30]

F = intang(spaceTime) * [ [4 B , -E ld»
[a Ef, 0 )4 ], * intang(spaceTime)™';

This map takes velocities to forces, so that

: k=q=*F=*n;
sets k to the proper force (also called the Minkowski force) exerted by the field
on the charged particle. k’s first three coordinates in some inertial frame give the
apparent force on the particle as measured in that frame, while the last compo-
nent gives the proper power (the rate at which energy increases) instantaneously
delivered to the particle by the field.

4.5 Robot Dynamics Using Lagrange’s Equations |

As discussed in the introduction, one way to find the equations of motion of a
dynamical system is to employ Lagrange’s equations|31]. Let ¢: ¢ = (q1,-- -, qn)T
and ¢ = (¢1,..-,dn)T describe the system’s position and velocity, respectively, and

T denote its kinetic energy. Then

_d. ?_1: _QZ_FT
dt \ 9q dq

where F is the tuple of applied forces. The indicated derivatives are carried out
in some chosen coordinate system, so position, velocity, energy, and force must all

have compatible units.
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If the robot arm consists of N segments[32], then the kinetic energy is given
by

1 M=t
T= 5 ;} (moTv; + wlJiw;)
where m; is the mass of the ith segment, J; its inertia tensor, and v; and w; are its
linear and angular velocity. Assume that each joint has two degrees of freedom.
one rotational and one translational, so that ¢; = (3‘) and ¢; = (ﬁ') describe
the configuration (joint) positions and velocities (6;,u;,6;, and u; are all scalar

quantities). Then

6o
Ug

v;= (Al Bg--- A} B;00---00)| : | (4.1)
I\T!.‘ éN
un
and .
6o
Uo

w,~=(C00---C,~0 00---0 0) (42)
) v On
unN

for appropriate vectors (in the three-dimensional velocity space) Af , B; and C,.
The maps N; and M; are maps taking configuration velocity coordinates to three-

dimensional linear and angular velocities.

If .
6o
Ug
Oy
uN
then T = :TWz, W = ¥ W; with

1
W,' = E(m,M,TM. + N,TJ,N,) (43)
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Lagrange’s equations become

.. LOW
Wi+ Wgqg—gq 6_qq=fapplied

where ¢ are the configuration accelerations.

Obtaining Lagrange’s equations is thus a matter of computing derivatives of
W, found by differentiating (4.3) and summing. The derivatives of M ; and N,
are found by differentiating the vectors A{ , B; and C;. These are computed by
noting that the vectors on which they depend (joint axis, vectors from joint to cur-
rent and previous centers of gravity) have constant coordinates in the appropriate
coordinate frame.

Suppose Vv is such a vector, F; the linear coordinate basis in which its coordi-
nates are constant, so that v = Fy(7); then v = F;(%). For an angle §; and an axis

with constant coordinates @, in F;_,
Fi(v) = Fi_1(?) exp(6;ay). (4.4)
Application of the chain rule yields
F(v) = 0:Fi137 exp(6:37)(7) + Fia(9) exp(8:a]) (45)

giving a recursion for F;. The same procedure works for each of the partial deriva-

tives

O (v o
aq — \ 96; Ou;

of a vector v.
The left hand side of Lagrangé’s equations has been determined; all that re-
mains is to compute the forces due to gravity before adding in the applied forces

to complete the right hand side.
The program to find the equations of motion begins by defining the spaces of

interest:
1 #define N N /* Number of joints */
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Figure 4.4. Vector quantities pertaining to
robot arm segment i.

#define M 2 /* Number of degrees of freedom /joint */
#define THETA 1
#define U 2

space joint = RM ;

space jVelocity = RM ;

space config = joint*=*N;

space cVelocity = jVelocity*xN;
space M3 dimension 3;

space TM3 dimension 3;

© 0 a4 N R W N

-
[l =]

Because the joint positions and velocities are most conveniently expressed as
a set of scalar quantities, the joint and velocity spaces are made to be M-tuple
spaces. M3 is the space in which the arm is actually embedded, and TM3, velocity
space, is the tangent space to M3 at a fixed origin.

Before computing the equations of motion for a particular value of (g, ¢). the
geometry of the robot arm must be specified by giving the placement of perti-
nent vectors in the appropriate coordinate bases; physical properties are specified
by masses, inertia tensors, and the relative locations of centers of mass. These

quantities are noted in Figure 4.4. a; is the axis of joint i (about which rotation
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occurs), s, is the unit vector pointing from joint i to segment i’s center of gravity
(joint translation occurs along this direction). The distance from the joint to the
center of gravity along s, is given by the configuration variable u;. r; gives the dis-
placement from the segment i’s center of gravity to joint i + 1. The coordinates of
these vectors in the ith coordinate basis must be supplied by the calling procedure
(denoted in the program by placing a ‘c’ before the vector’s symbol), along with
the mass of the ith segment and its inertia tensor (a matrix) expressed relative to
the ith basis.

12 double ca[N][3], cs[N][3], crIN][3];
13 double m[N];
14 double J[N][3][3];

The other inputs are the configuration positions and velocities:

15 double q[N][M];
16 double qDot [N] [M];

The routine to compute the inertia matrix W and the reaction plus gravity force
tuple £ begins by declaring the N coordinate bases and their derivatives and partial
derivatives (there would be NM partial derivatives for each basis (M = 2), but

gﬁ- = 0 for all j, so there are only N). Temporary variables are also declared to

hold the transformations relating the ith basis to the ¢ + 1st.

17 map R3 -> affine M3 F[N];
18 map R3 -> TM3 FDot[N];

19 map R3 => TM3 pdF[N][N];
20 map R3 -> R3 T;

21 map R3 -> R3 TDot;

Next come the vectors that give the current position of the robot arm joints,
segments, and centers of gravity (as determined by q and gDot), and derivatives
and partial derivatives of these quantities. Also declared are Mi and Ni and their
derivatives and partials, that correspond to N; and M, in equation (4.3). W,
W and the 2N %%:— are formed by summing combinations of Mi and Ni and their
derivatives as determined by equation (4.3). Notice that W and Wdot are 2V x 2]\

matrices (because jVelocity is the same as R?, while pdW is an array of 2V partial
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derivatives of W. (requiring 8 N3 storage). As for the partial derivatives of a;, s,

and ry, g%'} = g%*} = g{# = 0 for all i and j, so space is only set aside for the partials
3 J J

with respect to §;.

22 vectorin M3 a[N], s[N], r[N];

23 vector in TM3 aDot[N], sDot[N], rDot([N];
24 vector in pda[N][N], pds[N][N], pdr[N][N];
25

26 map cVelocity -> cVelocity W, Wdot;

27 map cVelocity -> cVelocity pdw[N] [M];
28

29 map cVelocity -> TM3 Mi, Ni;

30 ‘map cVelocity -> TM3 MiDot, NiDot;

31 map cVelocity -> TM3  pdMi[M], pdNi[M];

Referring to equations (4.1) and (4.2),

A} = Z(rk_l + uxsg) X aj, (4.6)
k=1

BJ' =8y and CJ' = a;.
Because storage has already been set aside for the derivatives and partials of s ;
and a;, only A; and its derivative and partials need be separately computed at
each step.

32 vector in TM3 - Ai[N], AiDot[N], pdAi[N][N][M];

With all the variables accounted for, the geometry of the arm is set up by
giving the positions of the vectors a,, s; and r; and their derivatives in terms of
the coordinate frames F; and their derivatives. This block of code is executed only
once. Changing the coordinate frames (as a result of a change in the configuration

variables) automatically causes changes in the positions of the arm segments.

33 for (i=1; i<=mn; i++)

3¢ o

35 o(F[i]) ali] = calil;
36 o(F[i]) s[i] = cs[i];
ar e(F[i]) rl[i] = crlil;

38 Q(FDot[i]) aDot[i]
39 @(FDot[i]) sDot[il

calil;
cs[i];
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40 0(FDot[i]) rDotli] = crl[i];
4 for (k=1; k<=N; k++)

42 {

43 o(pdF[i] [k]) pdali] [k] = cali] ;
44 e(pdF[i] [k]) pds[i] (k] = cs[i] ;
45 ) e(pdF[il [k]) pdr[il[k] = crli] ;
46

47}

The routine for computing W and the reaction forces for a particular set of ¢,
and ¢; begins by initializing the base coordinate frames and W.

48 F[1] = intang(M3);

49 Fdot[1] = intang(TM3);

s0 for (k=1; k<=N; k++)

51 o

52 ) pdF[1]1[k] = intang(TM3);

53

s4 W = zero(cVelocity,cVelocity);

55 Wdot = zero(cVelocity,cVelocity);

After initialization the loop on i begins that computes the quantities for the
tth arm segment. A’ must be computed along with its derivatives and partials.
This is done by adding in contributions from the current values for j < ¢ according

to equation (4.6). This is possible because
Al = AL, + (rio1 +uisi) X a;.
Differentiating this formula give§
Al = A7 + (Ficy + uis) X &, + (Ticy 4 uis;) X é_‘i

. .. 84! 8Al g ey .
with a similar formula for T e = 0 for k < 7, while for k = 7 it 1s —s; X a,.

After computing AJ for i < j and the associated derivatives, A! and its derivatives

are found in a similar manner from
i _
A" = 'u;s; X a;.

u;s; is computed and stored in the temporary vector sui. u;s; = u;s; + u;s, is

stored in suDoti, and the partial with respect to 8 is stored in pdsui(].



s6 for (i=1; i<=N; i++)

57 {

58 sui = q[i][0] = s[i];

59 suDoti = qDot[i][U] * s[i] + q[i][U] * sDot[il;
60 for (k=1; k<=i; k++)

61 pdsuilk]l = q[i]1[U] * pds[i][k];

62 for (j=1; j<=i-1; j++)

63 {

64 Ai[j] += (sui + rli-1)) x aljl;

65 AiDot[j] += (xDot[i-1] + suDoti) x a[jl

66 + (rli-1] + sui) x aDot[j];
67 for (k=1; k<=i; k++)

68 {

69 pdAi[j1[k] [THETA] +=

70 ) (pdr[i-1] [k] + pdsuilk]) x alj]
71 + (r[i-1] + sui) x pdalj](k];
72 pdAi[j]1[k] [U] = zero(TM3);

73 }

74 }

75

76 Ai[i] = sui x al[il;

77 AiDot[i] = sui x aDot[i] + suDoti x alil;

78 for (k=1; k<=i; k++)

79 {

80 pdAi[i] [k] [THETA] = pdsuilk] x a[il

81 + sui x pdafli][k];
82 pdAi[i] [k] [U] = zero(TM3);

83

84 pdAi[il [i1[U] = s[i];

Now that the various vectors and their derivatives and partials are known, the

maps N; and M; and their derivatives are formed.

85  for (j=1; j<=i; j++)

86

87 Mi[j] = C Ai[3] , s[j] );

88 Ni[3i] = ( alj] , zero(TM3) );

89

90 MiDot[j] = ( AiDot[j]l , suDot[j] );
91 NiDot[j] = ( aDot[j] , zero(TM3) );
92

93 for (k=1; k<=i; k++)

94 {
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95 pdMi[j] [k] [THETA] = ( pdAi[j] [kx] [THETA] , pds[j]1[k] );
96 pdMi[j] [k] [U] = ( pdAi[jI1[k][U] , zero(TM3) );

97 pdNi[j] [k] [THETA] = ( pdal[jllk] , zero(TM3) );

98 /¥ pdNil[j1{x] (0] =0 */

99 }

100 }

An implicit coordinate conversion takes place as N;, M;, and their derivatives are
built (for simplicity, I have used parentheses for the range grouping brackets). The
constituents of these maps are expressed in various coordinate frames. But the
maps themselves are (by default) expressed in the unspecified frame. Therefore,
by the rules on coordinate conversions laid out in section 3.9, the constituents’

coordinates are found in the unspecified frame and these are stored in the maps.

Now M;, N; and their derivatives are used to compute W;, W, and %%Ii, e %"L.
n

From equation (4.3),
. 1 . . . .
W; = E[m,-(M,.T M; + MIM) + (NFIN; + NIIN)]

with a similar formula for the partial derivatives. These values are not stored
separately, but are added to the totals.

w1 W+=0.5 % (m[i] * MiT « Mi + Wil « J[i] = Ni);
102 .
103 WDot += 0.5 * ( m[i] * (Mil * MiDot + MiDot! * Mi)

104 + Nil % J[i] = NiDot + NiDotT * J[i] = Ni );
1356 for (k=1; k<=i; k++)

107~ |

108 pdW[k] [THETA] += 0.5 = ( m[i] :

109 » (Mit « pdMi[K][THETA] + pdMilk][THETA]T * Mi)

110 + Nit » J[4] * pdNi([x] [THETA]

m + pdNi[k] [THETAIT » J[4] * Ni ),

1:2 pdW[k] [U] +=

114 0.5 » ( m[i] * (Mil % pdMi[x] [THETA] ,
115 + pdMi[k] [THETA]T * Mi));

116 }
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The last step at the end of the ith iteration is to compute the ¢ + 1st coordinate

frame and its derivative and partials as indicated in equations (4.4) and (4.5).

117 T = exp(q[i] [THETA] = calil®)

118 TDot = ca[i]® * T * qDot[i] [THETA];

119 Fli+1]1(x) = F[i].lin(x) *= T + F[i] .Raff + si + ri;
120 FDot [i+1] FDot[i] * T + F[i].lin * TDot;

121

122 for (k=1; k<=i; k++)

123 pdF[i+1] [k] = pdF[i][k] = T;

124 pdF[i+1] [i+1] = F[i].lin =* cafil]® = T;
125 }

After the nth iteration, W has been computed and all the quantities are available
for computing the reaction forces. Before doing so, the forces due to gravity
are computed. g is a unit vector pointing in the direction of gravity; gc is the
gravitational constant. rki is a temporary vector for storing the moment arm
from the axis of the ith segment to the center of gravity of the kth segment (for
i < k). It is not hard to show that the angular force due to gravity is the sum of
the lengths of the projections of these cross products onto the gravity direction.
The linear force is the sum of the masses of the segments following joint :. Ya[N] (]

holds the tuple of forces.

126 vectorin M3 g;

127 real gc;

128 vectorin M3  rki;

129 double Ya[N] [2];

130 for (i=1; i<=n; i++)

131 {

132 for (k=i+1; k<=n; k++)

133 {

134 rki = F[k+i).org + r[k] - F[i]l.org) x alil;

135 Ya{i] += m[k] * ( gc = abs(glf * rki) , 1);
136 }
137}

The components of f have all been assembled; all that remains is to compute their

sum.

138 £ = Ya - Wdot * cqgDot + cqDot! * pdW * cqDot + fApplied;
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Here fApplied is the tuple of applied joint forces and torques.

Now we have the equations of motion of the robot arm in the form

Wq = freaction + fapplied-

This equation can be solved for § to get the joint accelerations. These accelerations
can be used to step the configuration velocities, and the velocities to step the
configuration positions, obt‘aining new positions and velocities. Then the whole
process of setting up and solving the equations can be repeated, leading to a
simulation of the system over time[33][34].

This longer example has shown the power of the language extension to carry
geometric concepts from mathematical expression to computer calculation. Each
set of computations looks very much like its mathematical counterpart. This
correspondence makes the program easy to understand, debug; and modify in

spite of its moderately complex calculations.






Chapter 5

Implementation

Geometric objects must be represented as coordinate arrays in the computer’s
memory. For a program making a geometric computation to reflect the geom- -
etry of the problem rather than the configuration of the computer’s memory, a
set of routines must be provided to manipulate the coordinate representations of
objects. In our case, the objects are either maps or points, and the manipulations
are described in section 3.3. In addition, checks on the semantics of geometric ex-
pressions and optimizations on the coordinate representations of these expressions
may be made at compile time.

Implementation is thereby divided into two parts: a compiler to convert geo-
metric expressions to coordinate manipulations, and a run-time package to carry
out those manipulations. All the objects and operations specified in chapter 3
could be implemented by a set of procedures that manipulate representations of
geometric objects while making run-time checks on operands’ types. The manip-
ulations include geometric object memory management, coordinate conversions,
and coordinate versions of geometric operations. The checks enforce semantic re-
strictions on the spaces to which a manipulated set of objects refers. Most of these
checks, as well as some of the manipulations, may be performed ahead of time by

a compiler.

We shall return to the possibilities of a compiler for geometric declarations

75



76

and expressions presently. First, though, we discuss the implementation of the

run-time system.

5.1 Representation

A linear map is represented as an array of real coordinates along with a list of
pointers to coordinate bases. The number of spaces referred to by the map de-
termines the number of array dimensions and coordinate systems pointers. For

instance, if M3 is a three-dimensional space,

map M3 -> M3 X ;
is represented as an array Xa[3][3] with two coordinate basis pointers, while a

vector

map R! -=> M3 v ;
is represented as an array va[3] with one coordinate basis pointer. An n-tuple

space requires no coordinate basis pointer, so that

map R3->R® M ;

is represented as an array M[3] [3], while a coordinate basis

map R® -> M3 C ;
is represented as an array Ca[3] [3] with one coordinate basis pointer. If D is the

basis pointed to, then
C=D=xCa.

In this way one coordinate basis is represented in terms of another with a matrix
that may change at run-time. The intangible basis is indicated by the null pointer.

A point is represented as a singly-dimensioned array of coordinates with a
pointer to a coordinate frame. A coordinate frame may also be pointed to by

a vector, in which case only the frame’s linear part is significant. Affine maps
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are represented in the same way as linear maps, but with an additional singly-
dimensioned array for each affine or offset linear space referred to by the map.

Each extra array represents a point or vector offset.

The offset or point’s coordinates must represent it in the same basis or frame
as the corresponding linear part of the map. Otherwise, two coordinate basis
pointers would be required for each offset linear or affine space referred to by an

affine map: one for the linear part and one for the offset or point.

5.2 Coordinate Conversions

The set of geometric operations specified in chapter 3 is implemented as a set
of operations on coordinate arrays. This representation requires that, when nec-
essary, coordinate transformations from one basis to another be carried out at
run-time. Such conversions consist of two parts: finding a chain of coordinate
bases that determines the conversion, and carrying out that conversion by apply-
ing the transformation to the coordinates.

Finding the chain of coordinate bases from one basis to another means finding
a path between two nodes in a tree of coordinate bases with the intangible basis
at the root. Each node of the tree points to its parent. Finding a path from one
basis A to another B amounts to finding the common parent P (which is at worst

the intangible basis).

Each edge in the path from a node to the common parent specifies a coor-
dinate transformation. Label the transformations along the path from A4 to P
TAP,...,TAP and those from B to P TP ... TBP The change of coordinates

from A to P is
My=T/ o...0TAP

and that from B to P is
MB=TIBP0--~OT,.BP



78

so that the change from A to B is
Mupg = B 'A = (MB)_1 - My,

Changing coordinates from basis A to basis B is a matter of following the
paths to the common parent, concatenating the transformations TAP ... .TAF
and TBP ... TBP to form M, and MB, inverting Mp, and obtaining M 4p.

The transformations may be affine or linear, depending on the type of conver-
sion being carried out. Let Ti(s) = M;(z — z;) +y;. Then the concatenation T;o T;

1s

T(Ti(z)) = Mi(Mj(z —z;)+y; — =)+ ui

= M.’MJ'(I —:l)j)+M,'(yj—.’C,')+y,' (5.1)
= MM — 25+ My —20) + (5.2)

Thus T(z) = Tio Tj(z) = M(z — z1) + 1 with M = MM, z; = z; and y; =
Mi(y; — :r.-) + yi. We choose (5.1) to compute the concatenation, because (35.2)
would require inverting M ;.

Composing two general coordinate conversions requires multiplying two matri-
ces and applying a matrix to an n-tuple (along with a vector addition). Invefting a
general conversion requires only a matrix inversion: ify = T(z) = M(z —z1) + 1.
thenz =T Yy) =M (y—wn)+ 1.

Usually the z; term is not present in the conversion equations, because an

affine basis is typically declared

map R3 -> affine M3 C1 ;

allowing for an offset only i1 its range. Only if a basis is declared

map offset R® -> affine M3 C2 ;

can the z, term be present in coordinate conversions, because only in that case is

storage set aside for an offset in the domain.
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Finally, although concatenating a series of transformations and computing an
inverse may be computationally expensive, the procedure frequently reduces to
only‘one concatenation or a single matrix inversion. For instance, if all coordinate
bases are directly related to the intangible system, an inversion and concatenation
are all that could be required. Although the full generality of computing coordinate
conversions is required to handle all cases, the only example in Chapter 4 that

actually uses this generality is the scene hierarchy.

5.2.1 Applying Coordinate Conversions

Once the required transformation has been found, it must be applied to the map
or the point to carry out the conversion. The conversion affects each part of the

map in a different way. We first consider the linear part.

Each component of the linear part of a map is either contravariant or covariant.
The coordinates of a contravariant component (think of a vector), when arranged
in a column, transform by applying the change of coordinate matrix on the left.
A covariant component (think of a covector) transforms by applying the inverse
of the change of coordinate matrix to the right of the coordinates arranged in a

row. In general, if the representation of a map X is
X:R™ x---x R™ x R™ 1 % - xRt o V.

Then the first » components transform covariantly while the last s transform
contravariantly. If the range space V = RP, then that component transforms con-
travariantly, while if V = R”T, then it transforms covariantly. A map component
is represented by R? if the map’s declaration names a space with dimension g in

the corresponding position; Rt represents a cual space.

The map X is represented as an array

X[n;)---[n,J [m]---[m,] [p]

while the linear part of the coordinate transformation is a square matrix
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M[r] [r]
where r = n; or r = m; or r = p depending on which component is being trans-
formed. If the component transforms contravariantly, then the transformed X,

denoted X' 1s
X[in) - [da] o [rrort) = 2O MARUIKE] - [26] - [ rraa]:
2
If the component transforms covariantly, the formula is

xl[il] Tt [ik] T [ir+a+1] = ZM-IU][ik]x[il] T [ik] Tt [ir+a+1]'

A separate coordinate conversion may be needed on each map componeﬁt to con-
vert the map to its representation in the desired coordinate bases.

A map’s affine parts transform as points, vectors, or covectors, depending upon
their type. An affine part representing a point (arising from an affine space com-
ponent) transforms as a point: if its coordinates are given by an array p € R" and
the coordinate transformation is T(z) = M(z — z1) + y1, then the transformed
coordinates are T(p). A vector offset (arising from an offset space component)
transforms as a vector or covector according to whether the corresponding com-
ponent is a named space or its dual. If v € R" gives the coordinates of the offset,
then Mv gives the transformed coordinates for a vector, while M -Ty gives them

for a covector.

5.3 Compilation

The preceding discussion fails to take account of checks to ensure that the op-
erations carried out on geometric objects do make sense. There are also other
checks and optimizations for special kinds of objects, such as orthogonal or sym-
metric matrices. Such checks may of course be performed at run-time by calling

subroutines to make declarations and carry out operations, but it is desirable to
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have a compiler make them beforehand, saving time and storage at run-time, and
detecting errors before the program is run.

The compiler can, in principle, be added to a compiler for any language. Ge-
ometric objects occur only in declarations and expressions. The syntax for decla-
rations is expanded to include geometric objects (spaces, maps, and points) and
that for expressions to include geometric operations.

Each geometric object is represented at compile time by a list of spaces to
which it refers and a corresponding list of coordinate bases. The space information
encodes the object’s type. The actual values for the coordinate bases of storage
may not be known at compile time, but relationships among them may be (c.f.
the robot arm dynamics example).

Checking expression semantics is straightforward because the type of any ge-
ometric subexpression determines what can be done with it. The rules given in
chapter 3 specify what relationships must hold among the objects’ types in a
geometric operation. These rules also specify the type of the result. Each subex-
pression recognized by the compiler can thus be assigned a type. If the type of
a subexpression is incompatible with the operation being applied to it, an error
message is printed and compilation continues (although no code is produced).

If an expression is well-formed, the compiler produces code to implement it.
The most basic method for generating code is to simply generate a call to a
subroutine that performs the indicated geometric operation. However, a naive

approach can yield poor code.

Consider the statement

a=b+c;
where a, b, and ¢ € R". The quadruple notation for the intermediate code corre-

sponding to this statement is

T « (add, b,c)

a—T
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That is, first, the expression b+c is recognized and the code for it generated.
Then the expression a =ezp is recognized, and the code for it generated. This
code is wasteful even if a, b, and c are real numbers, but it is n times worse for
n-fuples.

The situation is even worse for composition. Consider the statement

M=M=*N ;

where M and N are n x n matrices. Writing this as

T «~ (multiply, M,N)
M~T
requires n? storage for the temporary matrix T. In fact, only an n-tuple is
required as temporary storage if it is used to store each row of M in turn as each
new row of M is being computed. This example shows further that unless expression
trees are built and analyzed, common constructions may be inefficient: in this case

2

n? — n storage is wasted by the naive approach.

5.3.1 Optimization

These examples suggest constructing an expression tree for each expression, and
only generating code after the highest-level expression has been parsed. Expression
tree analysis is straightforward to implement, but some compile-time optimizations

require data-flow analysis of the program, a more difficult task.

Suppose our program contains the two lines:
T = exp( theta * s*) ;

Z=T71w;
where s, z, and w are vectors of R® and T is a map R3® -> R® Comput-

ing T~! for a general T requires both floating point computation (which may be
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ill-conditioned) and storage. However, if T is an orthogonal transformation, no
computation nor any storage need be used, because T-! = TT.

The compiler recognizes that T is orthogonal after executing the first statement
from expression tree analysis. 8% is skew-symmetric. Multiplication by the scalar
theta does not affect skew symmetry. Therefore T is set equal to the exponential
of a skew-symmetric operator, which is orthogonal.

We do not know what code intervenes between the first and second statemént,
but T must be traced through that code at compile time to see if it remains or-
thogonal. This can be done using the techniques described in [35]. However,
another method avoids data-flow analysis. The declaration syntax for maps may
‘be expanded so that particular matrices may be declared orthogonal by the pro-
grammer. A matrix so flagged must always remain orthogonal. The compiler can
enforce this restriction by checking each expression as it occurs in the program
for the presence of the orthogonal matrix. If it occurs, the expression is analyzed
to ensure that any matrix assigned to the orthogonal matrix is in fact orthogo-
nal. For instance, the exponential of a skew-symmetric matrix is orthogonal. The
product of two orthogonal matrices is again orthogonal, but in general the sum or

difference is not.

The same technique of declaring a map to have certain properties also works for
other special objects: symmetric and anti-symmetric maps and diagonal matrices.
As with orthogonal matrices, the code that the compiler produces to implement a
particular operation depends on the special properties of the map, if any. In the
case of a diagonal matrix, for instance, only the diagonal elements need be stored
or computed. Storing anything in an indexed off-diagonal element is illegal, while
the value of any off-diagonal element is automatically zero.

Care is required in assigning special properties to maps that are not coordinate
arrays to ensure that the properties are coordinate-free. Diagonality makes sense
only for a matrix; a diagonal matrix expresses a particular linear operator only in

certain special coordinate bases. Symmetry (or anti-symmetry).is a coordinate-
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free property, but the matrix that expresses a symmetric map is only symmetric
when expressed in an orthonormal basis. Therefore storing and computing just
half the entries in a symmetric map’s coordinate representation is only possible if
the pertinent bases are known to be orthonormal ahead of time. Bases may change
at run-time, and so may the inner product that determines orthonormality. While
data-flow analysis could again be used to discover those bases that are always
orthonormal, this complexity can be avoided by allowing only coordinate arrays
to be assigned special properties.

Another more flexible possibility is to let the programmer declare that certain
spaces contain only orthonormal bases. When bases are assigned, the compiler
checks that they are indeed orthonormal (the inner product on such a space is
not allowed to change). A map on such spaces could be assigned special proper-
ties without the possibility of those properties being destroyed in the coordinate
representation of the map.

A similar situation arises when considering large sparse matrices. It makes no
sense to talk about a sparse linear operator, because sparsity depends on the co-
ordinate basis. But many geometric problems that specify relationships between
~ a number of simple components become sparse matrix problems when the com-
ponents are assembled (finite element analysis, for instance). It is not a goal of
the language extension to provide methods for solving sparse matrix problems, as
several systems are available for doing so. However, the extension must provide
methods for efficiently building and storing sparse matrices, so that assembled
geometric problems can be handed to an appropriate package for solution.

Various methods may be used to encode a sparse matrix. One method is to list
the non-zero elements along with their positions in the matrix. Because different
sparse matrix representations are appropriate in different situations, there must
be a way for the programmer to select one of them. Rather than provide a fixed
set of sparse matrix representations that may be inadequate for some applications,

it makes more sense to allow the programmer to specify or design his own rep-
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resentations. Object oriented languages, such as C++ or Ada, provide a means
for doing this. A new type is created (in this case representing a sparse matrix),
and the action of operations such as addition and multiplication on objects of
this type are specified by overloading these operations. In a LISP-based object-
oriented environment, the standard properties would be carried to a special object
by inheritance, while special properties would override the standard defaults. The
same technique is approprate for other special matrices that may be of interest

in certain applications, such as banded, Toeplitz, or Vandermonde matrices[36].

5.3.2 Run-time Optimization

In applications that allocate geometric objects at run-time, it is worthwhile for
the run-time package to provide some optimizations. Consider, for instance, an
interactive graphical editor that reads hierarchical object descriptions from a file
at run-time. A coordinate frame is allocated for each node in the hierarchy as the
object is read in, so nothing can be known at compile time about the relationships
between the coordinate frames. The sequence of operations necessafy to carry out

a coordinate conversion can only be determined at run-time.

In such cases it is useful to cache coordinate conversions so that if the same
conversion is required several times in a row, time will not be wasted recomputing
it. Such a cache is indexed by a pair of coordinate basis pointers: the basis
that a cached transformation converts from and the basis it converts to. When a
coordinate conversion is required, the from and to basis pointers are hashed to give
a pointer into the cache. Then the cache entry is checked to see if its coordinate
basis pointers actually correspond to those desired. If so, the cached conversion is
used. If not, the conversion is computed and replaces the old cache value.

This is in contrast to a situation in which the structure of the relationship
among coordinate bases is fixed, as when modeling a specific robot arm, for in-
stance. In this case, the sequence of operations required to compute a coordinate

conversion can be found at compile time by analyzing those expressions in which
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coordinate bases are assigned values in terms of other coordinate bases. This
information is used to build the coordinate basis tree at compile time. When a
conversion is required, this tree is analyzed at compile time and the appropriate
code generated. If the same conversion is required in a different expression, the
conversion is stored temporarily before either expression is computed, and the

stored value used as required (cf. common subexpression evaluation).

Even though some coordinate conversions can be determined at compile time,
the penalty for always determining them at run-time is not very great. Suppose
a linear map L is the composition of two linear maps: L = L; o L. It may
be possible to determine at compile time that the domain coordinate basis of
L, is the same as the range basis of L,, so that the generated code will simply
perform a matrix multiplication of the representations of L; and L, without first
performing any coordinate conversion. The same determination is made at run
time by comparing the basis of storage pointers for L;’s domain and L,’s range.
Thus the only inefficiency is a pointer comparison, the cost of which is small
compared to that of multiplying two matrices. In general, the cost of determining
the sequence of coordinate conversions to convert from one basis to another is
small in comparison to the cost of actually concatenating the sequence to find
the coordinate conversion. When the relationships between coordinate bases can
be found at compile time, it is only worth doing so if the small improvement in
program speed can be justified. Such may be the case if vectorized hardware
is available that performs matrix operations in about the same time 1t takes to

perform a pointer comparison.



Chapter 6

Experience

6.1 Geometric Editor

A preliminary version of a runtime package providing the language extension con-
structs was created to support development of the 3-D graphical editor “Jessie”[37].
A user could use the mouse to select, rotate, translate, and scale objects displayed
on the screen. Polyhedral objects could be built by linking vertices together into
faces or by combining previously defined objects.

The runtime package provides C data structures defining points, vectors, affine
transformations, and coordinate frames, as well as a set of routines to manipulate
these objects. Vector manipulations include addition, subtraction, and dot and
cross products. Other routines apply a transformation to a point or vector and
compose transformations. Routines are also provided to create rigid motions given
an axis, angle, and origin, as well as to extract the axis and angle of a proper linear
rigid motion.

The implementor of Jessie found the basic geometry packrge useful. Most of
the code in Jessie is concerned with the user interface, reading and writing descrip-
tion files, and building data structures. Geometry pervades these tasks, however,
and the package’s intuitive interface made geometric calculations straightforward

to implement. The implementor was left free to implement and debug the non-
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geometric portions of the program without being confused by geometric operations.
The simplicity of these operations also carried through to portions of the user in-
terface; a rotation, for example, was specified by selecting an axis (perhaps the
edgé of a polyhedron) and giving an angle (perhaps defined by a pair of connected
edges).

6.2 Compiler

Once the basic features of the language extension were decided on, a compiler for
its constructs was developed for C[38]. The compiler is a pre-processor that reads
a C program with language extension constructs and converts it to a standard C
program. This program is then compiled and linked with a library of runtime
routines that perform the geometric operations.

Because a geometric expression may appear anywhere a host language expres-
sion may appear and geometric objects may appear within host language data
structures, the pre-processor must fully parse the whole program presented to it.
The simplest way to achieve this parsing is to adapt the compiler for the host
language. Because of my familiarity with C and the UNIX language development
tools that implement the C compiler, choosing C as the host language seemed the
simplest way to produce a compiler for the language extension.

Other choices for the host language are certainly possible. Object-oriented lan-
guages, such as C++, Ada, or even Common Lisp come to mind as likely candidates,
because geometric objects can be given the same status as host language objects,
and operator overloading can be used to implement the geometric operations. An
overriding reason for having a compiler instead of a just a runtime library, how-
ever, is to allow geometric expression optimization. None of these ob ject-oriented
languages provide a method for expression analysis and optimization at compile
time. Therefore using any of them would still require compiler modification. As

the C compiler is simpler than the compilers for any of these other languages, C
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seemed the better choice.

The pre-processor was built using the existing code for the C compiler. First,
the lexical analyzer was modified to recognize the keywords pertaining to the
language constructs such as space, dimension, map, affine and so on. Some
new operators must also be recognized. The characters specifying addition and
multiplication of geometric objects are the same as those already present in C, but
there are no operators for such things as composition and *. Because C uses almost
every character on the keyboard, these operators (and others) were introduced
using an escape notation like TeX’s[39):
compose and .

X.

Next, the YACC code for the C compiler was stripped of its actions. The actions
were replaced with code to simply copy the recognized text back to the output.
This has the effect of parsing a C program and reproducing it as it was input,
the only changes being in the type and amount of whitespace present. This ac-
complished, new rules were added to recognize declarations of spaces, maps, and
points.

The action taken on recognizing a space declaration is to record the space’s
dimension information in a space data structure. If the space is a cartesian product
space, the data structure also records the list of spaces making up the product.
This information is saved for later use in checking the semantics of expressions
involving objects declared on these spaces. A space declaration does not cause
any C code to be output.

The action taken upon recognizing a map declaration is to store the pointers to
the indicated spaces in a map data structure aiong with flags indicating whether
each named space is invoked as linear, offset linear, or affine. The same information
is stored for a point declaration. This information is used later during geometric
expression analysis (in conjunction with space information) to check geometric

expression semantics.
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The information also determines the size of a block of storage that will hold a

map. For instance, the affine coordinate basis B declared as

map R3 -> affine M3 B ;
requires 12 real numbers (assuming M3 is a three-dimensional space): 9 for the
matrix representing its linear part, and 3 for representing the offset in the range
space. One pointer is required to indicate the range coordinate basis in which the
three columns of vector coordinates and one column of offset coordinates determine
vectors. This pointer will be NULL if that basis is the intangible basis. A single
word is also set aside for flags that indicate the type of the map to the run-time
package. Since all real numbers used to represent maps are assumed to be double
precision, this particular map requires 8 x 12+ 1 x 4 + 1 x 2 = 102 bytes for its
storage. The preprocessor generates a C declaration for each map or point to set

aside this storage. In this case the generated declaration is

char B[102];
. The storage required for other objects is computed in a similar fashion.

In general, the number of real coordinates required for a map’s linear part is
equal to the product of the dimensions of the named spaces. Each space named
as affine or offset adds a number of coordinates equal to the dimension of the
named space. For storage allocation purposes, a point is treated as having no
linear part and one affine component. Finally, the number of coordinate basis

pointers is equal to the number of non-n-tuple spaces.

The only other portion of a program that is affected by the language extension
1s expressions. New rules were added to the grammar to take account of new
operators such as composition and cross product. Expression trees are built as
rules are reduced and expressions recognized. If it turns out that an expression (or
subexpression) involves no geometric objects, the expression tree is traversed and
its text reconstructed and output. Some standard C operators make sense when

applied to geometric objects; in particular, the ‘&’ operator can be applied to a
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geometric object to yield its address just as with any standard C object.
Expressions involving geometric objects are checked for correctness according
to the rules for operators laid out in chapter 3. A badly formed expression gener-
ates an error message; an acceptable expression causes output of code that calls
run-time package functions to evaluate the expression. In general, the implemen-

tation of a binary operator a binop b takes the following form:

push(a), push(b), binop(flags)
a and b are pushed onto a “geometry” stack, the storage for which is set aside
in an include file prepended to any program converted by the preprocessor. The
flags argument tells the binop routine about the types of a and b so that binop
can easily locate coordinate basis pointers and coordinate data within a and b.

binop removes a and b from the stack and replaces them with a binop b.

There are variations on this theme. If binop is assignment, a’s address is not
pushed onto the stack but is passed to the assignment routine directly instead. If
binop is multiplication or composition and a or b is a scalar, then a or b (respec-
tively) is passed directly to a scalar multiply routine instead of being pushed. In
the case of grouping operators, each of the elements of the group is pushed and
then the final result is formed from the elements on the stack.

The difficulty with implementing geometric expressions as stack operations is
that geometric objects are large so that pushing them is time consuming. This
problem is alleviated by performing some simple optimizations when analyzing

expressions. The basic optimization is to recognize expressions of the form

r = a binop b
and implement them as a single function call to a routine that that performs binop
on a and b and places the result in r. In fact, the routine that performs the stack
version of binop calls the assigning version of the routine, so no new runtime code
is required.

This optimization and a similar one for unary operators are the only stack
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optimizations performed by the preprocessor. A more sophisticated scheme would

recognize expressions of the form
r= Z a,binop;b;

and use a routine for each ¢ that accumulated the result of a;binop;b; in r. Doing

so would eliminate most geometry stack operations.

The calls to runtime routines are separated by the C comma operator rather
than making each call a separate statement. The reason is that geometric expres-
sions can appear anywhere a standard C expression can appear. Because a , b
first evaluates a and then yields the value of b as result, a geometric expression
is carried out as a comma separated list of runtime routine calls. The value of
the expression is the value that the last routine returns. Geometric expressions
evaluating to a scalar are handled by simply making each runtime routine return
a scalar if the operation it is performing produces one.

This use of the comma operator is troublesome in only one instance. Suppose a
programmer writes a function that accepts geometric objects as arguments. Each
argument is pushed onto the geometry stack before the function is called, forming
a comma separated list. The last item in the list is the call to the programmer’s
function. The problem is that after the function returns, the passed arguments
must be popped off the stack. This cannot be achieved by adding a call to the
pop routine at the end of the list, because that would destroy any (non-geometric)
value returned by the function. The solution is to have the function itself pop the
arguments before it returns. But if the function returns implicitly without actu-
ally executing a return statement, then the preprocessor must evaluate function
control flow to discover the last statement and insert the call to the pop routine
there. Currently the preprocessor does not perform this analysis. Of course, the
astute programmer will pass the address of a geometric object to a function rather

than the object itself to save copying it onto the geometry stack.

Incidentally, if the function returns a geometric object, the popping can be

done after the function returns. Before the function is called, space is pushed on
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the geometry stack for its return value, after which any geometric arguments are
also pushed. Then the function is called. After the function returns its value 1s
stored on the geometry stack, so calling the pop routine after the function call

cannot destroy the function’s value.

In retrospect, it might have made more sense to implement the language con-
structs as a package for C++ or as a set of classes for a lisp-based object-oriented
system. Most of the development time was spent on the language design rather
than the implementation. Using a standard object-oriented system would have
made it easier to change the implementation as the language design changed as
well as simplifying integration with already existing language constructs. As al-
ready pointed out, the main disadvantage of impleﬁaenting the language constructs
in an object-oriented environment is the lack of opportunity for compile-time op-
timization. While compile-time optimization is essential for this application, the
time spent on language design and the tedium of implementation as a C prepro-

cessor left little time for inclusion of anything but rudimentary optimizations.

6.3 Runtime Library

The preprocessor produces as output a C program that makes calls to a runtime
package of routines that manipulate the blocks of storage that represent geometric
objects. The routines are divided into two layers. The higher-level layer is the
object layer. Its routines evaluate operations on geometric objects. There are
also routines to allocate a geometric object given its type. The lower-level layer
is the coordinate layer. It contains routines that manipulate coordinate arrays
(matrix multiplication and addition, for example). An object level routine calls
coordinate level routines to perform the coordinate computations required to carry
out a geometric operation.

The link between the object and coordinate layers is the coordinate basis re-

solver. When a routine is called to carry out an operation on two or more geometric
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objects, the appropriate basis pointers from each object are compared. If they dif-
fer, the conversion routine is called to convert the coordinates of all objects to a
common basis. The default bases are given by the rules laid out in section 3.9.1,
but most routines carrying out geometric operations also accept an optional list
of coordinate basis pointers that determine the bases in which the operations are
carried out. This list, when specified, implements the @ operator described in

section 3.9.1.

The runtime data structure for a geometric object is divided into two parts.
The first part is simply a block of coordinate data. The second part essentially
duplicates the compiler’s information about the object: number of component
spaces and the dimension of each one, and whether each component is linear,
offset linear, or affine. Pointers to the object’s coordinate data (the linear part
and any affine or offset parts) are also stored. While this information could all be
handed to the runtime package directly by the compiler, the duplication simplified
debugging the runtime routines by making geometric objects self-contained at
runtime. It also makes it simpler to use the object data structures and associated

routines as a library without the compiler.

Finally, the dichotomy between object-level operations and coordinate-level op-
erations simplifies efficient implementation of the runtime package on processors
that are optimized for vector operations. Most efficiencies may be taken advan-
tage of in the coordinate-level without affecting the implementation of the object-
level or the compiler. Machine dependencies are isolated in the coordinate-layer,
making implementation on different machines straightforward. In some cases,
manufacturers are already providing efficient implementations of coordinate-level

operations[40].
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6.4 Pre-processor Results

There is little experience with the pre-processor that has been implemented. Two
of the simpler examples from chapter 4 have been successfully compiled into work-
ing programs (the line-plane intersection and the intersection of n-hyperplanes).
Larger examples have not been tried because not all the language extension fea-
" tures have been implemented in full generality. Further, getting the pre-processor
to correctly analyze all C constructs, especially compound data types and function
declarations, is a tedious process.

Perhaps more useful than the preliminary pre-processor is the runtime package
created to support its output. Routines are provided to declare these objects so
that the package can be used independently of the pre-processor (although few
runtime checks are performed to ensure that expressions are well-formed). The
package was easy to implement once the abstractions of geometric objects were
clearly defined. The headers describing each of the runtime package routines are
provided in the Appendix.

The routines formed the basis for a simplified version of the dynamics example
described in section 4.5. A program was written that simulates the dynamics of a
sequence of connected links. Each link is attached to the next with one rotational
degree of freedom. The masses and inertia tensors of the links are read from a
file. In the first few time steps of the simulation, a force is applied to the first
joint, which is anchored at the origin. At each time step, the program calls a
subroutine much like the one presented in section 4.5 to set up the equations of
motion. ‘Then the equations are solved for the joint accelerations, and these are
used to update the current joint velocities and positions. Conservation of energy
is crudely enforced by renormalizing the joint velocities at each time step (more
sophisticated techniques are possible; see for instance [41]). The simulation runs
in real time for up to about 6 links on a Silicon Graphics 4D workstation. The

Appendix presents some still sequences from the simulation along with the portion



of the program that sets up the equations of motion.
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Chapter 7

Conclusion

Implementing a program that carries out geometric computations has been difficult
due to a lack of programming language constructs to support geometric data types.
In this thesis I have attempted to remedy this situation by describing geometric
quantities in a consistent coordinate-free notation suitable for embedding in an
appropriate programming language.

This attempt has been moderately successful. When written in coordinate-free
form, calculations correspond to the geometry from which they arose rather than
seemingly unrelated coordinate manipulations. Since geometric objects are based
on spaces of points and vectors, checks can be made on the semantics of geometric
calculations, obliging a programmer to have a clear understanding of the geometry
of a particular problem before attempting to program its solution. The resulting
clarity and consistency of those portions of a program that deal with geometry
make palatable the implementation (or the rewriting) of large CAD and geometric
modeling systems.

The power of the language extension coupled with a compiler, however, can
only become apparent in complex applications. The preliminary compiler han-
dles only relatively simple geometric computations. Effective support for more
complex applications requires support for many more optimizations than are cur-

rently implemented. The benefits of a simple and natural appearing program may
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be more than offset by the runtime penalties paid for lack of adequate compile
time optimization.

The reason that more optimizations were not added to the compiler is that it
is hard to decide which ones to add. Each application seems to require its own
set of optimizations; yet, to be viable, the compiler must be useful in a varety
of applications. A related issue is that of integrating user-defined objects (sparse
matrices, for instance) into the language extension. In retrospect, it would have
made more sense to add the extension to an language like C++ that allows operator
overloading. Doing so would have simplified specifying special kinds of geometric
objects and how geometric operations behave when applied to them. It would
not, however, have helped in optimization. Perhaps a mechanism similar to that
for creating special objects is required for specifying special optimizations such as
those that arise when the coordinates of an origin are known to always be 2610 o1

when all coordinate bases are known to be orthonormal.

The central benefit of the language extension is to reduce the time a program-
mer must spend to implement a computer solution to a geometric problem. In
spite of clear geometric programming constructs, a programmer must still fully
understand the geometry of the problem for which he seeks a computer solution,
so that the only time to be saved is in reducing the tedium of writing the repetetive
code required to keep track of coordinate representations of geometric objects. In
the case of the examples presented in this thesis, this savings was small in com-
parison to the time required to analyze the geometry of the problem. In more
sophisticated applications with large numbers of similar geometric objects the re-
lief from handling coordinate representations may become more apparent, but I
have not had the opportunity to verify this.

The language extension’s unified framework provides a straightforward way to
declare, build, and operate on basic geometric objects. Because of the variety of
geometric applications and programming languages in which they may be imple-

mented, it is not so much a particular implementation of the language extension
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but this framework that is significant. This thesis gives methods by which the
framework can be implemented in any programming language. Considerable ef-
fort is required to upgrade or rewrite the existing compiler and associated runtime
package before they can be used to program sizable examples. This effort is justi-
fied only if the problems of optimization and extensibility are overcome. Only then
will it be possible to convince enough potential users to try an implementation of

the language extension so that it can be given a fair test.
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Appendix

Simulation of a Linked Chain

This appendix presents a program that simulates a linked chain as described in
chapter 6. Sequenced stills from the simulations are provided on the next pages.
All the links have the same mass and intertia tensor (the intertia tensor is that
of a relatively thin rod). The exact values of these parameters can be modified
by changing a data file that the program reads when it starts up. This file also
specifies the initial impulse forces applied at the connection of the first link to the
fixed origin.

The program itself appears after the stills. It consists of three sections. The
first section declares the various vectors and maps that the program refers to. The
second section sets up the equations of motion in a manner analogous to the ex-
ample of section 4.5 except that there is no translational degree of freedom. The
third section (the main program) steps the simulation through time, calling the
routine to set up the equations of motion and then solving them for the accelera-
tions. This portion of the program is as simple as possible; more complex schemes
could result in more accurate and faster stepping. The significance of the program
for this thesis, however, rests with how the equations of motion are set up, and

not how they are solved.

For completeness, the headers for the routines that manipulate geometric ob-

jects are provided at the end of the program listing.
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/* A geometric object (a map or point) is not much more than a block of

* storage filled with floating point coordinate data and integer dimension
* data.

x/

typedef struct gobj GOB;
typedef struct ginfo GIN;

struct gobj {
int n;
short flag:
short pad; /* so as to align on a double word boundary */
char obj;
}:

/* An object info block points to things in an object. They are filled in by
* the highest level routines so that the subroutines don’t have to search

* for data in the undifferentiated GOB.

*/

#define MAXCOMPONENTS 4

struct ginfo {

int n;

short flag:;

short *flags;

int *dims;

GIN **bases;

double *1lin;

double * (aparts[MAXCOMPONENTS]) ;
}:

/* Flag bits */
/* Flags for a whole map */

#define SYMMETRIC 01
#define ORTHOGONAL 02

/* Flags for individual spaces */

#define ADJOINT 01
#define OFFSET 02
#define AFFINE 04
#define NTUPLE 08

#define AFFOFF (OFFSET | AFFINE)

#define HAS (flag,value) ((flag & value) != 0)
#define SETON(flag,value) (flag=flag|value)
#define DOMAIN(gin) (gin->bases{0])

#define RANGE(gin) (gin->bases[gin->n - 1])
#define DOMAINI 0

#define RANGEI (gin) (gin->n =~ 1)
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/* Module to declare geometric quantities and set up equations of motion */

#include <stdio.h>
#include "struc.h"

#include "sizes.h"
#define THETA 0

#define abs(x) ({((x)>0)?(x):(-x))
/* Variables that describe geometry and physics */

extern double ca[N+1][3],cs([N]([3],cr[N][3];/* axis, unit to cog, cog to next */
extern double m([N]:; /* masses */
extern double J([N]I[3]1(3]); /* Inertia tensors */

/* Configuration positions and velocities */

extern double g[N} [M];
extern double gDot [N] [M];

/* Coordinate frames and transformations relating them */

GIN F[N], FDot[N], pdFI[N]([N]:
GIN T, TDot;

/* Vectors describing the joints’ positions and their derivatives */

GIN a([N+1), s[N], r[N]:

GIN aDot [N+1], sDot[N], rDot[N]:;

GIN pda[N+1][N], pds[N][N], pdr[N][N};
/* GIN -sui,suDoti,pdsui[N]; */ :

/* Various important maps, including W and its derivatives, and
* the maps that form them.
*/

GIN W, WDot, pdW[N] [M];
GIN Mi, Ni;

GIN MiDot, NiDot:;

GIN pdMi (N] [M], pdNi[N] (M];
GIN fReact;

GIN Ai[N], AiDot[N], pdAi[N]([N][M]:
/* Temporary variables needed by some of the computation routines */

GIN tempMap;
GIN tempVl, tempV2;

/* declareThings() - create the objects declared above. This is simply
* a set of tedious calls to the declaration routines.

* Wp and fp are set to point to the linear parts of W and fReact,

* respectively.

*/

#define NOFLAG (short)0

declareThings (Wp, fp)
double **Wp, **fp;
A

register int i, 3j, k;
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for (i=0; i<N; i++)
{
gMakeMap2 (& (F[i]),3, 3,NOFLAG, (short)AFFINE);
gMakeMap2 (& (FDot [i]), 3, 3, NOFLAG, NOFLAG) ;
for (j=0: 3J<N; 3j++)
gMakeMap2 (& (pdF [1] [3]), 3, 3, NOFLAG, NOFLAG) ;
}
gMakeMap2 (&T, 3, 3, NOFLAG, NOFLAG) ;
gMakeMap2 (&TDot, 3, 3, NOFLAG, NOFLAG) ;

for (i=0; i<N; i++)

{
gMakeVector(&(al[i]), 3,NOFLAG) ;
gMakeVector (& (s[i])), 3,NOFLAG) ;
gMakeVector (&(r[i)), 3,NOFLAG) ;

gMakeVector (& (aDot [i]), 3,NOFLAG) ;
gMakeVector (& (sDot [i]), 3, NOFLAG) ;
gMakeVector (& (rDot [i]), 3, NOFLAG) ;

for (J=0; 3j<N; 3j++)
{
gMakeVector (& (pda[i] [3j]),3,NOFLAG);
gMakeVector (& (pds[il[j]), 3,NOFLAG) ;
gMakeVector (& (pdr{i] [j]),3,NOFLAG) ;
}
}
gMakeVector (& (a[N]),3,NOFLAG).;
gMakeVector (& (aDot [N]), 3, NOFLAG) ;
for (j=0; J<N; j++)
gMakeVector (& (pda[N] [j]), 3,NOFLAG) ;

gMakeMap2 (&W, N*M, N*M, NOFLAG, NOFLAG) ;
gMakeMap?2 (&WDot ,N*M, N*M, NOFLAG, NOFLAG) ;
for (i=0; i<N; i++)
for (j3=0; j<M; j++)
gMakeMap?2 (& (pdW[i] [3]),N*M, N*M, NOFLAG, NOFLAG) ;
gMakeVector (&fReact, N*M, NOFLAG) ;

gMakeMap?2 (&Mi,N*M, 3, NOFLAG, NOFLAG) ;
gMakeMap2 (&Ni, N*M, 3, NOFLAG, NOFLAG) ;
gMakeMap?2 (&MiDot ,N*M, 3, NOFLAG, NOFLAG) ;
gMakeMap2 (&NiDot,N*M, 3, NOFLAG, NOFLAG) ;
for (i=0; i<N; i++)
for (3=0; J<M; J++)
{
gMakeMap2 (& (pdMi[i] [j]),N*M, 3, NOFLAG,NOFLAG) ;
gMakeMap? (& (pdNi[i] [j]),N*M, 3, NOFLAG, NOFLAG) ;
}

for (i=0; i<N; i++)
{

gMakeVector (& (Ai[i]), 3,NOFLAG);

gMakeVector (& (AiDot [i]), 3, NOFLAG) ;

for (j=0; 3J<N; F++)

for (k=0; k<M; k++)
gMakeVector (& (pdAi[i) [j] [k]),3,NOFLAG) ;

}

gMakeMap2 (&tempMap, 3, 3, NOFLAG, NOFLAG) ;
gMakeVector (&tempV1l, 3,NOFLAG) ; .
gMakeVector (&tempV2, 3, NOFLAG) ;
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*Wp = W.lin;
*fp = fReact.lin;
}
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/* setVectors() - sets the values of the pertinent vectors and their

* derivatives by setting their coordinates in the appropriate coordinate
* frame. These vectors pertaining to segment i are then used to set up
* the i+lst frame and its derivatives.

*/

setVectors ()
{ .
register int i, k;

gCopyData(a{0].lin,ca[0],3);
gMakeRotMat (T.lin,cal[0],q[0] [THETA]) ;
gSkewCompose (&TDot,ca[0],&T) ;

gCopyData (pdrF{0] [0].1in, TDot.1lin, 3*3);
for (k=1; k<N; k++)
gZeroMat (pdF[0] [k] .1lin, 3,3);

gCopyData (F[0].1in,T.1lin, 3*3);
gZeroMat (F[0] .aparts{1l],3,1);

gScalarMult (&TDot, &TDot,gDot (0] [THETA]) ;
gCopyData (FDot [0] .1in, TDot .lin, 3*3);

gZeroMat (W.1lin, N*M,N*M) ;
g2eroMat (WDot .lin,N*M,N*M) ;
for (k=0; k<N; k++)

gZeroMat (pdW[k] [THETA] .lin,N*M, N*M) ;

for (i=0; i<N; i++)

{
gSetVector(&(a[i+l]),&(F[i]),cali+l]));
gSetVector (&(s[il]),&(F[i]),cs[i));
gSetVector(&(r(il),&(F[i]),cr{il]);

gSetVector (& (aDot[i+1]),& (FDot [i]),ca[i+1l]);
gSetVector (& (sDot [i]),& (FDot[i]),cs([i]):;
gSetVector (& (rDot [1i]),& (FDot [i]),cx([i]):

for (k=0; k<=i; k++)

{
gSetVector (& (pdafi+1] [k]),& (pdF[i] (k]),cali+l]);
gSetVector (& (pds (il [k]),&(pdF[i] [k]),cs([i]):;
gSetVector (& (pdr(il [k]),&(pdF(i] [k]),cr[i]);

}

for (k=i+1l; k<N; k++)

{
g2eroMat (pda[i+1] [k].1lin,3,1);
gZeroMat (pds{i] [k].1lin,3,1);
gZeroMat (pdr(i] {k].1lin,3,1);

}

if (i == (N-1))
continue;

gMakeRotMat (T.lin,ca{i+1],q[i+1]) [THETA]):;
gSkewCompose (&TDot,ca[i+1],&T);

gMatMult (F[i+1].1in,F[41]).1in,T.1in,3,3,3);
gCopyData (F[i+l] .aparts([1},F[i] .aparts(1],3);
gAddToMat (F[i+1] .aparts{1],s[i].1in,1,3);
gAddToMat (F[i+1].aparts[1},r[i}.1lin,1,3);
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gapply (& (FDot [i+1]),& (FDot [i]),&T);

gMatMult (tempMap.lin,F(i].1lin,TDot.1lin,3,3,3);
gScalarMult (&tempMap, &tempMap, ghDot [i+1] [THETA]) ;
gAddToMat (FDot [i+1] .1in, tempMap.lin,3,3);

for (k=0; k<=i; k++)
{
gapply (& (pdF [i+1] [k]), & (pdF [i] [k]),&T);

}
gMatMult (pdF [i+1] [i+1].1in,F[i].1lin,TDot.1in,3,3,3);
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/* setUpEqns() - Get the equations of motion. This is done by doing each

* segment in turn and adding its contribution into the total. First we get
* the map Ai and its derivatives. This information is used to build Mi

* and Ni, and these are used in turn to compute Wi and its derivatives.

setUpEagns () )
{

register int i, 3j, k;

gZeroMat (Mi.lin,N*M, 3);
gZeroMat (Ni.lin,N*M, 3);
gZeroMat (MiDot .lin,N*M, 3);
gZeroMat (NiDot .lin,N*M, 3);
for (k=0; k<N; k++)
{
gZeroMat((dei[k][THETA]).lin,N*M,3);
gZeroMat ( (pdNi (k] [THETA]) .1lin,N*M, 3);
}
for (3=0; J<N; j++)
{
gZeroMat (Ai[j].1lin,3,1);
gZeroMat (AiDot [3j].1lin,3,1);
for (k=0; k<N; k++)
gZeroMat (pdAi(3j] [k] {THETA) .1in,3,1);
}

for (i=0; i<N; i++)
{
for (3=0; 3j<i; j++)
{
/* Get Ai[j) += (r[i-1] - s[i]) x alj] and its derivatives */

subAndCross (& (Bi[3)),&(r[i-1]),&(s[i)),&(al3)));
dotAddAndCross (& (AiDot [j]), & (rDot [i-1]}),&(sDot [i]),&(al])),
&(r[i-l])l&(s[i])l&(aDot[j]));
for (k=0; k<=i; k++)
addAndCross (& (pdAi[3] [k] [THETA]),
& (pdr[i-11(k]),&(pds[i]l[k]),.&(ali])):
} .
/* Now get Ai[i] and its derivatives */

gCross (& (Ai[1i]),&(ali)),&(s[i])):

gCross (& (AiDot [1]),& (aDot [i]) ,&(s[i]));
gCross (&tempVl, & (a[i]),&(sDot[i]));
gAddToMat (AiDot [i].1lin,tempVl.1lin,3,1);

for (k=0; k<=i; k++)

{
gCross (& (pdAi[i] [k] [THETA]) ,&(pdalil [k]),&(s[i])):
gCross (&tempVl,&(a[i)), &(pds[i]) [k]1)):
gAddToMat (pdAi[i] (k) [THETA].lin, tempV1.1iA,3,1);

}

/* Now form Mi, Ni and their derivatives */

for (j=0; j<=i; j++)

{
indexSet (&Mi, j, & (Ri[3])):
indexSet (&Ni, j,&(al(3jl)):
indexSet (&MiDot, j, & (AiDot [j])) ;
indexSet (&NiDot, j, & (aDot [j1));
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for (k=0; k<=i; k++)
{
indexSet (& (pdMi [k} [THETA])), 3, & (pdRi[3] [k] [TBETA})) ;
indexSet (& (padNi [k] [THETA])), j,&(pda[j] [k])):
}
}

/* Now comes the fun part: accumulating W, Wdot, and pdW */

accumW (&Mi, &Ni,m[i],J([1i]);
accumdW (&WDot, &Mi, &§MiDot, &§Ni, &NiDot,m(1i],J[i]);
for (k=0; k<=i; k++)
{
accumdW (& (pdW (k] [THETA]),
&Mi, & (paMi [k] [THETA)), &Ni, & (pdNi [k] [TBETA]) ,m[i], J[4i]);

/* Now we have to compute and add up the reaction forces */

gMatMult (fReact.lin,WDot.lin,gDot,N*M,N*M, 1) ;
finishReact (fReact.lin,gDot, pdW) ;
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/* Utility routines called by the set up routines setVectors() and setUpEqns{)
*/

/* gSkewCompose(r,v,m) - sets the map r to v*x * m. v must be a map
* representing a three-dimensional vector and m must be a map with
* 3-dimensional range.

*/
gSkewCompose (r, v, m)
GIN *x;
double *v;
GIN *m;

{
gMakeSkewMat (tempMap.lin,v);
gapply(r,m, &tempMap) ;

}

/* addAndCross(r,a,b,c) - compute r += (a+b) x c. */

addAndCross(r,a,b,c)
GIN *r, *a, *b, *c;
{
gAdd (&tempVl,a,b);
gCross (&tempV2,c, &tempVl) ;
gAddToMat (r~>1in, tempv2.lin, r->dims[0],1);
}

/* dotAddAndCross(r,a,b,c,d,e,f) - compute r += (a+b) x ¢ + (d+e) x £f.
*x/

dotaAddAndCross(r,a,b,c,d, e, )
GIN *r, *a, *b, *c, *d, *e, *f;
{
addAandCross(r,a,b,c);
addAndCross(xr,d,e,f);
}

/* indexSet (r,j,v) - Assumes r is 3 x n. Sets the jth column of r to v's
* coordinates (assumes v is 3 x 1).

*/

indexSet (r, 3, Vv)
GIN *r;
int 3:
GIN *v;
{
register int i,d;

d = r->dims [0}
for (i=0; i<3; i++)
(r=>1lin) [d*i + 3] = (v->1lin) [i];
}

/* accumW(Mi,Ni,m,J) - accumulates W += m * Mi~T * Mi + Ni~T * J * Ni.
* Recognizes that W is symmetric and so sets W[i][3] = W[j][i].
x/

accumW(Mi,Ni,m, J)
GIN *Mi, *Ni;
double m, J[311[3];
{
register int i,3,k,1;
register double t;
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{
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for (j=0; 3<3; j++)
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t 4= (Mi=->lin) [N*j + i] * (Mi->lin) [N*j + k);
(W.1lin) [1*N + k] = ((W.lin) [k*N + i] +=m * t);

}

i++)
k++)

for (i=0; i<N;
for (k=0; k<=i;
{
t =0.0;
for (3=0:
for (1=0;

j<3; J++)
1<3; 1++4)

t += (Ni->lin) [N*1 + i] * J[3)1[1] * (Ni->lin) [N*j + k]:
(W.1in) [i*N + k] = ((W.lin) [k*N + i] += t);

}

}

/* accumdW(dw,Mi,dMi,Ni,dNi,m,J)
* dW += m *
* Since W is symmetric, so is dw,
* /

accumdW (dW, Mi,dMi,Ni,dNi, m, J)
’ GIN *dwW, *Mi,*dMi, *Ni,*dNi;
double m, J[3}[31:
{
register int i, j,k,1;
register double t;

i++)
k++)

for (i=0; i<N;
for (k=0; k<=i;
{
t =0.0;
for (3=0;
{
t +=

4<3; J++)

(Mi->1lin) [N*j + i] *

(Mi~rT * dMi + AMi~T * dMi) +

- accumulates

(Ni~T *» J * dNi + dNi~"T * J * Ni).
allowing the same savings.

(dMi->1in) [N*3 + k] +

(dMi->1in) [N*j + i] * (Mi->lin) [N*j + k];

}
(dW->1in) [i*N + k] =

}

i++)
k++)

(i=0; i<N;
(k=0; k<=i;

for
for
{
t = 0.0;
for (3=0;
for (1=0;

j<3; j++)
1<3; 1++)

((AW->1in) [k*N + i] 4+=m * t);

t 4= (Ni->lin) [N*1 + i] * J[31[1] * (dNi->1lin) [N*j + k] +
(dNi->1in) [N*1 + i) * J[3]1 (1] * (Ni->linm) [N*3 + k],

(dW=->1in) [i*N + k] =

}

/* finishReact (£, gd, pdW)
*/

finishReact (£, gd, pdW)
double *£, *qgd:
GIN pdW([N] [M];

{

register int i,3j,k;

((dw=>1in) [k*N + i] += t);

- computes £ = -f + gDot"T * pdW * gDot
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register double t:

for (k=0; k<N; k++)
{

t =0.0;

for (i=0; i<N*M; i++)

for (3=0; J<N*M; J++) ‘
if (abs( ((pdW[k] [THETA]).lin) [i* (N*M)+3] ) > le-11)
t += gd[i] * ((pAWI[k][THETA]).lin) [i*(N*M)+3j] * qd[3]:

f£[(k] = -£[k) + 0.5 * t;

}
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Main module: calls setup routines and solves equations of motion at each
time step. Checks change in energy from last step; if it is too big,

the time increment is halved and the the equations recomputed. If the
change is tiny, the time step is doubled (unless it is already at the
maximum. After incrementing the velocities and positions, the velocities
are renormalized to enforce conservation of energy.

/

* % % * X * ¥

#include <stdio.h>
#define PI 3.14159265358979
#include "sizes.h"

double ca[N+1][3],cs[N][3],cxr[N])[3); /* axis, unit to cog, cog to next */
double m[N]; /* masses */
double JI[N][3])[3]: /* Inertia tensors */

/* Configuration positions and velocities */

double q[N] [M];
double gDot [N] [M]:
static double lastg[N][M], lastqgDot [N] [M];

/* Everything is in CGS units */

#define DELTAT 0.05
#define THRESH 0.01
#define NSTEPS 100
#define FRICTION 0.001

#define abs (x) (((x)>0) 2 (x) :~(x))
double £fa0[NSTEPS]:;

main ()

{
register int i, j, k;
double *W,*f;
double saveW[N*M] [N*M];

double gDDot [N*M];
double inc([N*M]:

double d,d2;

double temp;

double E = 1.0, lastE = 1.0;
register double factor;
double sgrt():

int flag = 0;

int noAddedEnergy = 0;

d = DELTAT:;
declareThings (&W,&f) ;
setInitial();

/* dispInit(); */
for (3=0; JI<N*M; j++)
gbbot [3] = 0.0;
for (i=0; ; i++) ‘

{
for (3=0; J<N*M; j++)
{
lastqgl[3jl1[0] = gl[j1(0];
lastgDot[j][0] = gDot[3][0];
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}
lastE = E;

do {
/* fprintf (stderr,"Step: %d E: %g\n",i,E); */

d2 =d *d / 2.0;
for (3=0; J<N*M; J++)

inc[j] = d2 * gDDhot[j] + d * gDot[3]1[0];
gAddToMat (g, inc,N*M, 1) ;

for (3=0; J<N*M; Jj++)
inc(j)] = d * gDDbotI[j];
gAddToMat (gDot,inc,N*M, 1) ;

setVectors();
setUpEgns () ;

E = 0.0;
for (3=0; J<N*M; j++)
for (k=0; k<N*M; k++)
E += gDhot [3J1[0] * W[j*(N*M) + k] * gDot(k][0]:

if ( noAddedEnergy && (abs(E ~ lastE) / lastE) > THRESH)
{
d =4d/2.0;
fprintf (stderr,"Halving d: Now %g. Redoing this step\n",d);
for (3=0; J<N*M; j++)
{
gDot [§1[0] = lastgDot[3][01:
ql3j1(0) = lastq(3jl(0];
]
flag = 1;
}
else { -
flag = 0;
if ( ((abs(E - lastE) / lastE) < (THRESH / 4.0)) && (d < DELTAT) )
{
d=2.0 *d;
printf ("Doubling d: Now %g. Continuing\n",d):;
}
}
if (d > DELTAT)
d = DELTAT;
}
while (flag):

gMatInv(W,N*M, (short)0);

if (i<NSTEPS)
£[{0] += faO[i);

if ((i>=NSTEPS) || (fa0[i] == 0.0))
noAddedEnergy = 1;

gMatMult (gDDot,W, £, N*M,N*M, 1) ;

if (noAddedEnergy)
{
factor = lastE / E;
factor = sgrt(factor);
for (3=0; J<N*M; j++)
gbot [3]1[0] *= factor;
E = lastE;
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}

for (3j=0; 3<N; j++)
{
if (ql[3j]1[0] > 2 * PI)
ql(3j1(0) == 2 * PI;
if (g[3]I0)] < -2 * PI)
ql3jli0] += 2 * PI;
}

if ((i % 30) == 0)
writeState(i/30);

14
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/* setInitial() - set up the initial conditions and the values of the
* geometric quantities
*x/

#define HS 2.0
#define RS .1
#define MS 1.0
setInitial ()
{
register int i;
FILE *data;
char name[20];
char num(3];

strcpy (name, "data/links");
sprintf (num, "$d4d",N) ;
strcat (name, num) ;

data = fopen (name,"r"):;

for (i=0; i<N; i++)
{ .
fscanf (data,"%1f $1f %1f",&(caf[il(0]), &(calil[1l]), &(calil([2]) ):
fscanf (data, "$1f %1f $1f",&(cs[i][01), &(cs(il}[1])), &(cs[i)([2])) )
fscanf (data, "$1f %$1f %1f",&(cr[i])[0]), &{cr[il([1l]), &(cxrl[il([2]) ):
fscanf (data, "$1f",& (m[i]) )

gZeroMat (J[4i]1,3,3):
J[il1[0]){0] = m[i] / 2 * RS * RS;
J[(1i](11[1] = m[i] / 4 * RS * RS * ( 1.0 + HS * HS / (3 * RS * RS) );
J[i)(21(02) = J[11([1]1(1);
b}
for (i=0; i<N*M; i++)
{
ql(i][0])] = 0.0;
gDot [1][0] = 0.0;
}
for (i=0; i<NSTEPS; i++)
fal0[i] = 0.0;
i=20;
do {
fscanf (data, "$1f",& (fal0[i]) )
} while (falO[i++] != 0.0);
fclose (data);
}

/* writeState(step) - write out the coordinates of the frame origins into
* the file data/t<step> in unigrafix format.
*/
writeState (step)
int step:;
{
FILE *out;

static char head[] = "data/t":
char fname([20],num([20];
register int i;

strcpy (£name, head) ;
sprintf (num, "%d", step) :
strcat (fname, num) ;

if ((out = fopen (fname,"w")) == NULL)
{
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fprintf (stderr, "Danger: can’t open output file %s\n", fname);
return;

}
for (i=0; i<N; i++)
fprintf (out, "v vi%d %1lg %lg %lg ;\n", i,
(F[i).aparts(1]) [0], (F[i).aparts([1])([1], (F[i}.aparts[1])[2]);
fprintf (out, "v vi%d %1lg %lg %lg :\n",1i,
(F[N-1] .aparts[1]) [0] + (s{N-1].1in) (0],
(F[N-1] .aparts[1)) (1] + (s{N-1].lin)[1],
(F[N-1].aparts[1]) [2] + (s[N-1].1in)[2)):

fprintf (out,"w x ( ");

for (i=0; i<N+1; i++)
fprintf (out,"v%d ",i);

fprintf (out, ™) ;\n");
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/* Headers for object-level and coordinate-level routines used by
* the simulation program.

*/

/* gapply - compute gl * g2 or gl \compose g2

* The restriction on compatibility of gl and g2 is just that

* the range space of g2 must exactly match the single domain space of
* gl. Thus gl has exactly two spaces;

* neither gl or g2 can be a point.

* Here we assume coordinate conversions have already been done, so the
* bases of storage better match.

* r must point to a big enough block of storage to hold the result.

* It must also have the right type, as its flags are not tampered

* with.

*/
gapply(r,gl,g2)

GIN *r;
GIN *gl, *g2;

/* gMakeObj - make an object by allocating space for the coordinate data
* and filling in the appropriate pointers in the information block

* Arguments:

* g - pointer to information block

* n - number of dimensions (number of spaces)

* flag - top level flags (like orthogonal)

* flags - an array of flags for each space (specifying AFFINE, OFFSET, etc.)
* dims - an integer array of space dimensions

*/

gMakeObj(g,n, flag, flags, dlms)
GIN *g;
int n;
short flag;
short flags|[]):
int dims{]:

/* gMakeVector - make a vector

* v points to the info block, dim is the dimension of the vector,

* and covariant is TRUE if the vector is a covector, otherwise false.
* Calls gMakeObj ()

*/
gMakeVector (v,dim, covariant)
GIN *v;
int dim;

short covariant:;

/* gMakePoint - make a point
* p points to the info block, and dim is the dimension of the point
* Call gMakeObj()

*/
gMakePoint (p,dim)
GIN *p;
int dim;
/* gMakeMap2 - make a map with one domain space and range space.
* map points to the info block
* n,m give the dimensions of the domain and range
* f0 and fl1 tell whether the map is AFFINE, OFFSET, or COVARIANT on
* the domain and range spaces.
* Calls gMakeObj ()
*
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gMakeMap2 (map,n,m, £0, £1)
GIN *map:;
int n,m;
short £0,£1;

18
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/* Coordinate-level routines

*/

/* gMakeRotMat - create a rotation matrix given an n-tuple rotation axis
* and an angle.
* g points to the matrix result

*/
gMakeRotMat (g, axis, angle)
double *g;
double *axis; /* axis of rotation - assumed to be a unit 3-tuple */
double angle; /* angle of rotation */

/* gSetVector(v,f,c) - sets vector v to have coordinates ¢ in frame f.

*/

gSetVector(v,£f,c)
GIN *v,*f;
double cl}:

/* gldentMat (r,n) - sets the square matrix r to the n x n identity.
*/ '

gIdentMat (r,n)
double *r;
int n;

/* gZeroMat (r,n,m) - set the n xm matrix r to the zero matrix

*/

gZeroMat (r,n,m)
double *r;
int n,m;

/* gMakeSkewMat (r,v) - sets the 3 x 3 matrix r to v°"x, where v is a 3 element
* column.

*/

gMakeSkewMat (r, v)
double *r;
double *v;

/* gScalarMult(r,m,s) - multiply the linear part of the map m by the scalar
* s, placing the result in r’s linear part. r and m may be the same.
x/

gScalarMult(r,m,s)
GIN *r, *m;

double s;
/* gNeg(m) - Negate the linear part of the map m.
* /
gNeg (m)
GIN *m;
/* gSubtract(r,a,b) - £ind the linear difference r = a - b.
*/

gSubtract (r,a,b)
GIN *r, *a, *b;

/* gAdd(r,a,b) - find the linear sum r = a + b.
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*/

gAdd(r,a,b)
GIN *r, *a, *b;

/* gCross(r,a,b) - the cross product of the 3-D vectors a & b is placed in «r.
*/

gCross(r,a,b)
GIN *r,*a,*b;
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/* Routines to manipulate matrices
* No provisions are made for optimization in case of special matrices

*/.

/* gMatMult - Multiply the matrix a by the matrix b, putting'the result in r.
* a isnxm b ismx p.

*/

gMatMult (r,a,b,n,m,p)
double r[l,all,bll:
register int n,m,p;

/* gSubFromMat - Compute the matrix subtraction mat := mat - sub
*/

gSubFromMat (mat, sub, n,m)
double *mat, *sub;
register int n,m;

/* gAddToMat - Compute the matrix addition mat := mat + add
* / .

gAddToMat (mat,add,n,m)
double *mat, *add;
register int n,m;

/* gCopyData - Copy amt real numbers from src to dst
*/ )
gCopyData (dst, sxc,amt)
double *dst, *src;
int amt;

/* gNegateMat - Negate the n xm matrix mat
x/

gNegateMat (mat,n,m)
double *mat;
register int n,m;
/* gMatInv - replace the n x n matrix mat with its inverse.
* If flag is ORTHONORMAL, time is saved by overwriting mat with its
* transpose.

*/
gMatInv(mat,n,flag)
double *mat;
int n;
short flag;






