IMPLEMENTATION ISSUES
FOR A NETWORK CONTINUOUS-MEDIA I/0O SERVER

George Homsy
Ramesh Govindan
David P. Anderson

Computer Science Division, EECS Department
University of California, Berkeley
Berkeley, CA 94720

International Computer Science Institute
1947 Center St., Berkeley, CA 94704

September 19, 1990

ABSTRACT

ACME (Abstractions for Continuous Media) is a set of abstractions for
input/output of digital audio and video, intended as an addition to a network
window system. This report discusses the design issues in implementing an
ACME server, including 1) the software structure of the server; 2) the process
structure of the ACME component of the server; 3) the interface o CM 1/O
devices, and 4) synchronization of CM data streams.

Sponsored by the California MICRO program, Digital Equipment Corporation, IBM Corporation, Olivetti S.p.A,
Sun Microsystems, and the National Science Foundation.

1. INTRODUCTION

Abstractions for Continuous MEdia (ACME) is a set of abstractions that allow multiple
concurrent clients to output or input digital audio and video data on a workstation. ACME uses
the approach of integrated digital continuous media (IDCM) in which CM data is handled in the
same hardware and software framework as other data.

This report discusses the design and implementation of an ACME server. The remainder of
this section summarizes ACME and proposes a software structure for an ACME server, involving
an ACME kemel, a base window system, and a window system extension. Section 2 discusses
the implementation of an ACME server. Sections 3 and 4 discuss details of CM device interfaces
and network communication. Section 5 discusses the internal details of the ACME kemel. An
Appendix lists the interface between the ACME kernel and other components.

1.1. Summary of ACME

These ACME abstractions are briefly summarized below; a more detailed description is
givenin [1].

Ropes, Strands, and CM Connections

A strand is a stream of audio or video data encoded in a byte stream. Each strand has a
strand type representing the encoding scheme. Multiple strands (say, an audio and a video
stream) may be interleaved in a byte-stream rope; the interleaving scheme is called a rope
type. A CM connection is network connection used to convey a strand or rope.

Logical Devices

A logical device (LDev) is an abstract CM I/O device. There are four types of LDevs:
VWins (video output), VCams (video input), listeners (audio input), and players (audio out-
put). LDevs have various antributes according to their type; for example, a VWin has the
attributes of a graphics window: position, size, and stacking order. Clients can map LDevs
to physical 1/O devices. Multiple LDevs may be mapped to a single physical device; in the
case of players, the server is responsible for ‘‘mixing’’ the respective outputs. The LDevs
associated with the strands of a rope are grouped into a compound logical device (CLDev).

Logical Time Systems

LDevs and CLDevs can be associated with a logical time system (LTS). All strands in an
LTS are played (or generated) in synchrony, even if they come from different sources. The
ACME server ensures that the strands start playing at the same time and remain in lockstep.
The client may also start, stop, or alter the speed of an LTS, affecting the component
strands uniformly.

Resource Reservation

It may be desirable to guarantce the performance of each CM data stream (i.e., 10 ensure
that concurrent activity in the server or its host, the client or its host, or the intervening net-
work, does not interfere with the timing of the input or output). ACME does not itself
define a mechanism for doing this, but the ACME protocol makes a provision for attaching
a real-time *‘session’’ to a CM connection. ACME can then use the real-time constraints of
the session to determine the scheduling of its own processes.

1.2. Software Structure of an ACME Server

ACME is intended to be implemented as an extension of an existing network window sys-
tem such as X11 or NeWS. The proposed software structure of the resulting ‘‘ACME server’’
includes the following components (see Figure 1):

) workstation
clients

O — Window
\‘"‘*’ Window System
O <€ System Extension
[(WSE)
ACME kemel

ACME server

/ operating system

A4

discrete 1/O devices CM 1/O devices

Figure 1: An ACME server consists of a base window system such X11 or NeWS, a window sys-
tem extension (WSE), and the ACME kemel.

The window system is a modified version of the existing window system. It is assumed to
communicate with clients using a window system protocol. This protocol must be extended
to include ACME requests, replies, and events. The additional duties of the window system
include 1) conveying ACME-related protocol requests to the window system extension (see
below); 2) making calls to the ACME kemel to inform it of changes in video window visi-
bility; 3) exporting some utility procedures to the ACME kernel; 4) handling and distribu-
tion of events which are generated by ACME.

The window system extension (WSE) is in charge of decoding extended protocol messages,
and making the appropriate calls to the ACME kemel.

The ACME kemnel exports a procedural interface for creating and controlling instances of
ACME abstractions. The kemnel is largely device-independent.

2. IMPLEMENTING AN ACME SERVER

A typical ACME server implementation will consist of the base window system, the ACME

kemel, and a window system extension, as shown in Figure 2. The window system extension has
several functions:

It implements a set of protocol requests that is an extension of the base window system pro-
tocol. These requests allow clients to gain access to ACME functions. Access to ACME
requests from the WSE is via a procedural interface.

window visibility changes
system
WS protocol ACME
extension ¥
3 = R R requests kernel
i translation events

........................

CM read/write

CM cc?nnection win dOW
establishment

W3 gYSTEM
extension initialization

memory allocation

Figure 2: The interface between the window system extension (WSE), the base window system,
and the ACME kernel. Bold arrows represent the ACME procedural interface. Dotted lines indi-
cate window system dependent components.

° It establishes CM connections, either actively or passively. This function is in the WSE,
rather than the ACME kemel, because the method of connection establishment and resource
identifier assignment is window system dependent. The WSE also supplies functions to
read and write CM data.

e It supplies event procedures callable by ACME for reporting events generated internally to
ACME. These procedures may take action to handle the event, ignore the event, format the
event and queue it for distribution, etc.

° It makes calls to initialize and terminate ACME, supplying an OS-independent memory
allocation interface to ACME, and supplying a routine whereby ACME can queue a request
for processing by the base window system.

The base window system itself must be modified or extended in two ways: 1) the internal window
structure must be generalized to include VWins, and some provision must be made to distinguish
a VWin from a window; 2) the window system must notify ACME of all changes to VWin visi-
bility, using calls in the ACME procedural interface.

2.1. Implementation of the Window System Extension

2.1.1. Add ACME Requests to Interpreter

The protocol interpreter is the portion of the window system software which interprets the
client byte stream as a sequence of requests, and causes the window system to perform the

appropriate actions. In NeWS, it is a modified PostScript interpreter. In the X11 sample server,
it is the DIX layer of the server code.

The WSE defines an extension to the base window system protocol providing access to the
ACME requests to clients. It must translate extension protocol requests into the appropriate pro-
cedure calls to the ACME kernel. These interface include calls to create, destroy, and manipulate
ACME resources.

In the case of NeWS, postscript-callable primitives corresponding to the ACME requests
would be made available to PostScript programs running on the server. In the case of X11, a pro-
tocol extension would be added which defines new requests.

2.1.1.1. Resource Creation Requests

Calls to create player, create_listener, create_vwin, create_vcam,
create cldev, and create_lts. are made when the client requests that an ACME resource
be created. The identifier is a pointer to a block of storage which will be initialized to contain the
data for the resource. The WSE must preallocate this storage before calling the resource creation
procedure. The required size of the storage is sizeof (type).

The reason the WSE allocates storage is that VWins are associated with WS private data
(configuration, stacking order, erc.) in a WS dependent manner. The window struct might be
extended to contain a VWin struct, or a pointer to a VWin might be added to the window struct,
or a pairwise association between VWins and windows could be kept in a hash table or other data
structure. Clearly the WS is best equipped to handle the problems of storage allocation for
VWins. We extend the preallocation requirement to all ACME resources for consistency.

ACME knows nothing about the WS private data (e.g., stacking order) associated with a
VWin. The only information available to ACME about a VWin is the region of the screen into
which the video pixels should be transferred, and even this information must be maintained by
the WSE. This is done using the requests in Section 2.2.2 below.

Within ACME, all resource identifiers are pointers to structs. If the identifiers used by the
WS are of a different format than pointers, or if there is a risk of collision of identifiers, the WSE
must maintain a map between client-supplied identifiers and pointers to ACME structs. This map
can then be used to translate the resource IDs received in client requests into their corresponding
pointer values. When a resource is destroyed, the WSE should destroy the entry in the map.

In pure NeWS, no ID translation is needed, since pointers serve as resource identifiers. In
X11, however, the client is responsible for assigning IDs to resources it creates, so ID mapping is
needed. The X11 sample server already has such a mapping facility, and a method for adding
new resource types to it. OpenWindows provides a facility whereby X11 resource IDs can be
associated with NeWS objects. In this case, the X11 interpreter must of course map client sup-
plied resource IDs to pointers to ACME objects.

2.1.1.2. Resource Manipulation Requests

The calls map_ldev, unmap_ldev, map_cldev, unmap_cldev, destroy ldev,
destroy_cldev, get_ldev_attributes, set_ldev_attributes,
get_cldev_attributes, start_lts, and destroy_lts manipulate existing resources.
The functionality of these procedures is detailed in the Appendix. In general, the WSE should
call these procedures whenever the client makes a corresponding request.

2.1.2. Management of CM Connections.
The WSE must provide a mechanism for establishment of CM connections, both actively

(server-initiated) and passively (client-initiated)!. If the base window system already supports
active establishment of connections, as does NeWS, the CM connection establishment protocol
may be an extension. Otherwise, a new request must be implemented, allowing clients to
actively create CM connections. When a new CM connection has been established, the WSE
registers it with ACME so that it can be identified by its ACME ID. If a CM connection exists
between two ACME servers, each endpoint has its own ID. Client-level IDs are conveyed by two
mechanisms:

(1) When a connection is created actively (in reponse to a client request), the ID is assigned
in the normal manner for the particular window system: In X11, the ID is contained in the
connection establishment request; and in NeWS, the connection establishment request
retumns the ID.

(2) Whan a CM connection is accepted (passively) by the ACME server, the connection ID
must be conveyed by some other mechanism. In X11, the client sends the ID to the
ACME server in a ‘‘registration’’ request containing enough information to identify the
connection (e.g., its port numbers, Internet addresses, and protocol number). In NeWS,
the client queries the server for the connection ID.

In some applications, a client C may request that a server A establish a CM connection to a
second server B. C leams the connection ID on server A using the mechanism (1). If C is also a
client of server B, it learns the connection ID on server B using mechanism (2). If the CM con-
nection is for use by another client C’ of server B, C must convey to C’ enough information to
identify the connection (using a RPC protocol external to ACME), and C’ then leams its ID using
mechanism (2).

The WSE must also provide read cm data() and write cm_data () procedures for
CM connections, to be used by ACME. It is possible that some WSEs may wish to support more
than one transport protocol. In this case, the WSE must be able to discern between connections
using different protocols, so that the read cm data() and write_cm data() procedures
can perform the correct actions. The ACME CM connection descriptor has a WSE private data
index, to be used for OS and WS dependent connection information, which can be used to make
this determination.

2.1.3. Event Handling

Event reporting procedures are provided by the WSE for each event type generated by
ACME. Whenever an ACME event is gencrated, the ACME kernel calls the appropriate pro-
cedure for that event type. These procedures may 1) take action to handle the event, 2) ignore the
event, or 3) format and queue the event for delivery to interested client(s) by the window system.
Lightweight processes are preemptively scheduled within the ACME kemel, but in order to sim-
plify WSE implementation, ACME guarantees that calls to event reporting procedures will be
non-reentrant.

2.1.4. Miscellaneous Modifications

acme_init () should be called once by the WSE before using any ACME global data
structures or procedure calls. acme_done () should be called once by the WSE after it is done
using all ACME global data structures and procedure calls.

Some storage management procedures must be provided by the WSE. These include
acme_alloc(), acme_free(),and acme_realloc (). ACME uses these to manage storage
for ACME internal data. Descriptions of these are provided in the Appendix.

CM connections are simplex, and their data direction is independent of which end is active.

2.2. Modifications to the Base Window System

2.2.1. Modifications to the Window Descriptor Structure

The basc window system’s internal data structure must be able to contain VWins. More
storage is required for a VWin descriptor than for a window descriptor because of VWin private
data. Therefore the window descriptor must either be increased in size to hold the extra data, or a
method must be devised for associating a VWin private data block with a VWin.

Some window systems, such as the X11 sample server, provide a means whereby exten-
sions can extend the size of a window descriptor. In other cases, the window system will have a
pointer field in the window descriptor which can be used as a pointer to an VWin private data
block. In still other cases, the window system will have no provision for extending the window
descriptor. In these cases, the WSE will have to maintain a mapping from window descriptor to
VWin data block.

Also, there must be some method of distinguishing VWins from windows. An appropriate
method for doing this will be obvious once it is decided how to extend the window descriptor.

2.2.2. Notifying ACME of VWin Visibility Changes

The base window system must be modified to notify ACME of the visible area (*‘clipping
region’’) of each VWin. Any visibility changes on VWins must be reported to ACME so that it
can update its private visibility structures. This is accomplished by means of the screen area arbi-
tration requests. These are vwin_move notify, vwin_resize notify,
vwin _configure notify, and vwin_clip mask_notify. These procedures allow the WS
to inform ACME of a VWin'’s size, position, and visible region.

A window/VWin reconfiguration operation may involve several steps by the WS: 1) ACME
operations as listed above; 2) damage events sent to clients; 3) copies between different parts of
the frame buffer; 4) copies to backing store; 5) copies from backing store; 6) fills from back-
ground patterns. The WS must do these steps in a ‘*safe’’ order, or else it is possible that video
will incorrectly overwrite graphics. For example, suppose that a graphics window is partially
overlapped by a sibling VWin, and that the graphics window is raised. If the clipmask of the
VWin were modified after redrawing the graphics window, it is possible that the shared area will
be overwritten with video data, thus leaving it damaged but with the WS unaware of the damage.

In general, there are multiple safe orders for any given reconfiguration problem. A simple
scheme that guarantces a safe order is the ‘‘shrink-graphics-grow’’ scheme: Whenever any
reconfiguration affects the visible regions of one or more VWins, let A and B be the regions of
the screen on which the VWins in question are visible after and before the reconfiguration,
respectively. Perform the reconfiguration as follows: First, reduce the VWins area to the intersec-
tion of A and B. Next, perform all needed graphics operations, such as drawing window borders,
moving graphics image data, or filling with background pattemns. Finally, modify the VWins
clipmasks to their final shapes. This scheme has the property that the portion of a VWin not
affected in the reconfiguration will continue to display video throughout the reconfiguration.

If a WS supports backing store, this mcans that it already has a mechanism for detecting
when damage to a window is about to occur, since this is precisely when the contents of the
about-to-be-damaged regions are saved into backing store. Such a WS could easily be modified
to check whether the about-to-be-damaged window is a VWin and, if so, subtract the area about
to be obscured from the VWin’s clipmask instead of storing its contents in backing store. Since
the damage dctection must be done before the damage actually occurs in order for backing store
to work properly, the WS automatically provides the correct ordering for shrink-graphics-grow.

Also, since events which notify clients of damage to their windows are normally sent after
any graphics operations on the framebuffer are completed, a similar modification to the damage

event generation mechanism can be made to support growing of the VWin’s clipmask: When
damage is detected on a window, check if the window is a VWin. If so, then instead of generat-
ing a damage event for a given area and sending it to a client, simply add the area to the VWin’s
clipmask.

Another scheme for avoiding damage to graphics windows by VWins is to temporarily stop
writing video data into the VWins which are affected by the reconfiguration. After the
reconfiguration is complete, the video output can be restored. ACME provides the
freeze vwin() procedure for this purpose. Simpler still, but even worse functionally, is to
freeze all video output during any reconfiguration using freeze_video ().

The WS may use any or all of these techniques to avoid damage to graphics. It may freely
intermix the techniques. The guiding principle is that the WS has final responsibility for control-
ling ACME properly so as to avoid damage.

3. ACME PROCESS STRUCTURE

In this section, we discuss the process structure of an ACME server. We define a simple
abstract model of CM 1I/O hardware, and discuss the operating system support necessary for
implementing the server. We then describe the partitioning of server functionality into real-time
threads, and how these threads communicate. Finally, we explain how logical time systems may
be implemented.

3.1. Hardware Platform

In order to discuss video and audio devices uniformly, we need an abstraction that applies
to both. For this purpose we define a CM device group as CM 1/O hardware having the following
properties.
™ It has a memory (the CM device memory) that can be accessed by the CPU. This access

may be direct or by DMA depending on the device group.

° It has one or more transducers that convert from device memory to analog output, or from
analog input to device memory.

e It has zero or more device coprocessors (DCPs) that operate on the device memory. In
some cases, the transducers may be connected to the device coprocessors (through, for
instance, their serial ports). Input or output to the transducers may only be through the
DCPs. In other cases, input and output may be performed directly to the transducers.

As an example, a DVI board [6] would be a CM device group. Its device memory is
VRAM, its transducers include VDP2 and frame capture, and its DCP is VDP1.

3.2. Operating System Support

ACME uses ‘‘CM threads’’ to handle CM data. Primitives for thread creation/deletion,
sleep locks, and spin locks are nceded (these are typical features of thread interfaces such as C-
threads and POSIX Pthreads [5, 11]).

Ideally, CM threads should be preemptively scheduled according to real-time requirements,

both among themselves and with other system processes. This implies an OS-level (rather than a
user-level) implementation of threads. CM Threads must be able to change their priorities to
reflect when the next message should be completed. These can be achieved using the following
set of system calls:

get_current_time(time); /* read high-resolution clock */

sleep_until (time); /* put thread to sleep until given time */

change_deadline(x); /* change deadline (scheduling priority) */

Ideally, these functions should be implemented in such a way that they do not make a system call

in the average case. For example, get_current_time() can be implemented using a
hardware clock mapped into the server address space. We are currently investigating low-
overhead methods for implementing the other system calls.

To achieve the needed real-time behavior, CM threads need to be able to read a high-
resolution clock with low overhead. Threads need to be able to sleep until precisely a given
instant of time (when a particular continuous media message might be expected to arrive) and
have a particular priority on wakeup.

Because an ACME server needs performance guarantees, it must eliminate page faults by
locking some pages (e.g., the code and data used by CM threads) into physical memory. It will
need a system call like

lock_pages(low, high); /* lock pages in physical memory */
Such an interface, for example, has been proposed for Mach and for the POSIX Pthreads interface
[5].

A second memory-related issue is how to move data between the address spaces of the
server and the kemel. In a typical scenario, CM data (say, part of a rope) arrives from a network
interface. It is passed to the ACME server, which divides it into its strands. Each strand is then
passed back to the kernel, to be output to a DAC or video DCP. Software copying is an
inefficient mechanism for data movement because it uses CPU power and bus cycles [12]. One
alternative to copying is VM remapping. This technique is used in Mach [9] and in DASH [12].

3.3. Partitioning Server Functionality

In some window servers, processing of clicnt requests is first-come-first-served (FCFS) and
it suffices to implement the server as a single process. In cases where operations are time-
consuming, it may be necessary to use one thread per client [2]. This prevents one client from
starving another.

The real-time nature of ACME necessitates a process structure that is more complex than
either of these. The CPU processing done by the ACME server can be divided into three
categories:

e Non-real-time functions. This includes all standard window system operations, and ACME
operations not directly manipulating CM data.

e Functions that have real-time constraints, but that can do ‘‘work-ahead’’ (e.g., preliminary
processing of data from CM connections).

e Functions that have real-time constraints, and that cannot work ahead (e.g., copying data
between main memory and framebuffer memory).

We propose a process structure for ACME in which the above functions are handled by
separate processes (threads). This makes it possible for any activity to preempt a lower-priority
activity (necessary for assuring tight deadlines) and for an activity to asychronously ‘‘work
ahead’’ when possible (desirable for amortizing context switch overhead over more messages).

Threads that have real-time constraints (real-time threads, see below) communicate data
using the strand buffers in main-memory. Strand buffers contain data corresponding to a particu-
lar LDeyv, in the strand format of that LDev. When two input LDevs are mapped to the same
PDev and have the same strand format, they share a single strand buffer.

Our design uses the following threads (see Figure 3):

° The non-real time tasks are handied by the window system thread. This thread is responsi-
ble for processing all protocol requests and making appropriate calls to the ACME pro-
cedural interface (see Section 2).

10

WS control connectionsM connections

network 1/0 threads

WS thre AKage-'

passing

strand buffers

NG ®/ device /O threads

memoi 9 memo? E

CM device groups

Figure 3: In addition to a window system thread for discrete 1/O operations, the ACME server
uses two types of real-time threads: network I/0 threads handle data on CM connections, and
device 1/0 threads transfer data to and from CM I/O devices. The threads communicate through
data FIFOs and with message-passing.

e For each output CM connection, there is a single network output thread that handles data
arriving on that connection. This thread separates the data into strands, does software for-
mat conversion if needed, and leaves the data in strand buffers.

° For each input CM connection, there is a single network input thread that gathers data from
strand buffers, combines it into a rope, performs output conversion if needed, and writes the
result to the CM connection.

e For each CM device group, there is a single device 1/0 thread. This thread supervises the
operation of the device group: It transfers data between strand buffers and the device
memory, and handles messages requesting CM device group functionality. If a coprocessor
is present, the device I/O thread controls it.

The real-time threads (the network and device 1/O threads) communicate with the window
system thread using messages. The window system thread sends thread startup information and
thread control signals (such as kill, suspend and resume) as messages. Each thread has a FIFO
““mailbox’’ to which these messages may be sent. The send() operation is non-blocking. A
message receive () may be blocking (if the thread needs to receive some information before
proceeding) or non-blocking. Since the messages do not cross address space boundaries, the mes-
sage passing system may be implemented using shared memory and the synchronization primi-
tives.

11

3.4. Structure of Real-Time Threads

A network output thread may work ahead if data arrives ahead of schedule on the CM con-
nection. The thread changes its deadline as it processes data. It sleeps only when waiting for
more data or if it has worked too far ahead in advance. It receives blocks of rope data from the
network, separates the rope into its constituent strands and performs strand format conversions.
Each network input thread executes a loop of the following form:

for (;;) |
check for control messages;
read a block of rope data from connection;
unravel rope block into its constituent strands;
if (we have worked too far ahead or there is no more data)
sleep until when next data block is expected;
else

change deadline to when the next message should be processed;

}
A network input thread can fall ‘‘behind schedule’’ up to the maximum CPU delay associ-
ated with the CM connection. It executes a loop of the following form:

for (;:) |
check for control messages;

combine strands into rope block, performing conversions as necessary;

transmit rope block on connection;
if (ahead of schedule)

sleep until the time the next block will be generated;
else

change deadline to when the next message should be sent;

}

Each 1/0O device thread periodically outputs a block of data to the I/O device. The loop for
output from a strand buffer is structured as follows:
for (;:;) |
check for control messages;
move the data from strand buffers to device memory;
start device coprocessors;

change deadline to when the next block should be sent to the device;

sleep until the time the next block should be output;

3.5. Message Passing

The main thread communicates with the real-time threads using message-passing. We now
list the messages communicated between the main thread and the network and the device 1/O
threads.

The network output thread is started when the CLDev is created. When data is received
over a connection, the network output thread increments a counter to update the amount of data
that has arrived but not yet been displayed. Rope blocks are divided into their constituent strands
and the data is placed in the strand buffer. When the counter reaches buffer size (see [1]) the net-
work output thread sends a START _STRAND message to the device threads (see below). When
the amount exceeds the near-full point value set by the client, the network thread sends a
STOP_DATA message to the window system thread. The window system thread sends the
corresponding event to the client. The network output thread receives a CLEAR_BUFFER mes-
sage when the client sends a request to clear the CLDev buffer. Additionally, when the CLDeyv is
destroyed by the client, a KILL message is sent to the network output thread.

12

The network input thread is sent a START message when the CLDev is mapped. It com-
bines the data from the different strands and sends the resulting rope block on the CM connec-
tion. When the CLDev is unmapped, a STOP message is sent to the thread. When the CLDev is
deleted, the thread received a KILL message.

The window system thread communicates with the device output thread also through mes-
sages. The messages required for this purpose are listed below.

SETUP_STRAND: This message instructs the device thread to prepare the device for I/O from a
specified strand buffer. The device thread may perform some device-dependent initializations but
does not start reading data from the strand buffer. In particular, the device thread may download
some microcode needed to handle the strand.

PREPARE_STRAND: This message informs the device thread to prime the device pipeline (if any).
The device fills the pipeline from the strand buffer but does not start displaying the data. Once
the pipeline is full, no more data is read from the strand buffer.

START_STRAND: This message is issued whenever the CLDev transits to the Ready state. The
effect of this message is to commence display immediately, if the CLDev or LDev is mapped. If
the CLDev or LDev is not mapped, data is discarded from the strand buffer into the *‘bit bucket’’
at a rate determined by the characteristics of the physical device.

MAP STRAND: This message is sent to the device whenever the client sends a request to map the
CLDev or LDev. If the device has been sent a START_STRAND message, the effect of this mes-
sage is to display data from the strand buffer. If not, this message just sets the map state of the
physical device. A subscquent START STRAND message will enable display from the strand
buffer onto the physical device.

sTop_STRAND: This message prevents the device from reading the strand buffer until a subse-
quent start strand message is reccived. This coincides with the transition of a CLDev from
a Ready t0 a NotReady state.

UNMAP_STRAND: This message is sent to the device whenever the client sends a request to unmap
the CLDev or LDev. If the device thread is currently displaying data, it switches to discarding
the data into the ‘‘bit bucket’’. If the CLDev is in the NotReady state, this message simply
records the state of the strand as being unmapped.

END_STRAND: This message terminates I/O from a strand buffer.

CHANGE _PROPERTIES: Changes in the specific attributes of an LDev are conveyed to the device
thread using this message. For instance, a change in the gain level at which the particular strand
is output is indicated by sending a change properties message to the device thread in charge
of the speaker.

The device input thread needs only four messages: SETUP_STRAND, MAP_STRAND,
UNMAP_STRAND and CHANGE_PROPERTIES. These messages have the same functions as for the
device output thread. For input LDevs, local ccho is implemented as follows: If an input LDev
has a non-null local echo attribute (see {1]), the LDev’s strand buffer is shared by the device input
and device output threads. When the input LDev is Ready, it sends a PREPARE_STRAND fol-
lowed by a START_STRAND message to the device output thread. After this instant, the device
output thread either discards input data (if the local echo LDeyv is not mapped) or echoes input (it
the local echo LDev is mapped). When the input LDev is mapped, the main thread sends a
MAP_STRAND message (as usual) to the input thread. When the local echo LDev is mapped, the
device output thread is sent a MAP_STRAND message. Thus, local echo does not depend on the
map state of the input LDev.

13

3.6. Implementation of LTSs

When a number of CLDevs are mapped to the same LTS and the LTS is started by the
client, the ACME server must ensure that the CLDevs start displaying simultaneously. Two cri-
teria must be met before the CLDevs which are mapped to an LTS are started: all CLDevs must
have received enough data so that they do not starve?, and all PDevs must be ready to begin
display. Consider a PDev that is not ready to display immediately after it has received its first
data item (an example of this is a DVI board decoding a keyframe before being able to start
displaying video). If this PDev is mapped to the same LTS as a PDev that offers instant response,
then simply waiting for the first criterion to be met does not guarantee synchronization.

Each LTS descriptor has, in addition to pointers to its CLDevs, a *‘ready count’’. When the
client issues a StartLTS request, the ready count is set to zero, and SETUP_ STRAND messages are
sent to the device threads. Each network I/O thread keeps track of how much data has arrived on
its associated connection, and increments the ready count (the ready () operation on the LTS)
when a sufficient amount of data has been received. When an LDev is ready to display data, the
device 1/O thread performs a ready () operation on the LTS.

Whenever the LTS s ready count reaches the total number of CLDevs and associated LDevs
mapped 10 it, the start criteria have been met. Each time a network 1/O thread or a device /O
thread increments the ready count, it checks the value against this target. If the target has been
reached, START STRAND messages are sent to all appropriate device I/O threads, and display
commences. The last thread to issue the ready operation also records the (real) start time of the
LTS.

After an LTS bas started, its value increases monotonically, but not necessarily at the same
rate as real time. Each of the constituent I/O devices (video system, audio converters) may have
a timing base that differs slightly from the real-time clock. It may be possible to ‘‘vary the rate’’
of an 1/O device in software, e.g., by repeating or skipping video frames or audio samples, or by
interpolating audio samples. In the normal case, the rate of progress of an LTS is determined by
the I/O device that is hardest to vary (typically audio). The rates of the other devices are varied
as needed to maintain synchronization. An LTS may also pause (i.e., stop advancing) because
one or more of its CLDevs starves. In addition, client requests may stop, resume, and vary the
rate of an LTS (these operations and their semantics have not yet been defined).

The current value of an LTS and a list timer requests for the LTS are maintained in the LTS
structure. The device 1/O thread for the time-generating device as defined above periodically
updates the value and handles timer requests (by making the appropriate call to the WSE).

3.7. Networks and Protocols

The ACME design requires that CM data be carried on network connections. As with CPU
scheduling, this raises the issue of how to guarantee performance. This problem has two related
components: 1) the performance of the underlying network; 2) the performance and characteris-
tics of transport protocols.

Networks with nondeterministic media access protocols, such as Ethemet, cannot provide
performance guarantees in general. They can be used for CM data as long as the competing load
is bounded or nonexistent. Token-ring networks such as FDDI [10] can provide performance
guarantees in a more flexible way. Future nctworks such as BISDN [3] may have a fixed set of
performance levels. With either of these latter networks, the question remains of how to

2 “‘Jitter’” (variable transmission delay) can cause starvation even if the minimum average data rate is maintained
by the CM sender.

14

coordinate the network with other system resources; the CM-resource model addresses this prob-
lem.

Finally, transport protocols such as TCP [8] are not ideally suited to continuous media.
Their mechanisms for error recovery and flow control may be unnecessary, and when exercised
may interfere with real-time performance guarantees. Researchers have developed other transport
protocols the may be better-suited to CM [4,7]. However, we believe that TCP may be sufficient
in many cases, especially if other mechanisms (such as the workload limits imposed by the CM-
resource model) prevent its error and flow-control mechanisms from being exercised.

4. CONCLUSION

We have sketched the implementation of an ACME server, and its integration into a net-
work transparent window system. ACME can be implemented largely separately from the win-
dow system, but the window system has to be modified slightly to provide support for VWins.
Operating system support will have to be expanded to provide page locking, multiple threads per
address space, fast memory transfer between address spaces, real time deadline scheduling, and
guaranteed performance network sessions. We have introduced the notion of CM device group,
and have sketched a set of primitives allowing the ACME server to access such device groups in
a unified way. We have proposed a process structure for the ACME server consisting of the
group of processes forming the window server, a network I/O thread for each CM connection, and
a device 1/O thread for each CM device group; and we have shown how these processes are to
communicate. And finally, we have sketched a scheme whereby output from a number of dif-
ferent CM sources can be temporally synchronized.

10.
11.

12.

15

REFERENCES

D. P. Anderson, R. Govindan and G. Homsy, ‘‘Abstractions for Continuous Media in a
Network Window System’’, International Conference on Multimedia Information Systems,
Singapore, Jan 1991.

J. Brezak, 1. Elliott and N. Meyers, ‘‘A Multi-threaded Server for X and PEX"”’, Proc. X
Technical Conference, 1990, Boston, MA, Jan 1990.

W. R. Byme, T. A. Kilm, B. L. Nelson and M. D. Soneru, ‘‘Broadband ISDN Technology
and Architecture’’, IEEE Network, Jan. 1989, 23-28.

G. Chesson, *“XTP Design’’, Proc. IFIP International Workshop on Protocols for High-
Speed Networks, Zurich, May 9-11, 1989.

W. Corwin, ‘‘Realtime Extension for Portable Operating Systems’’, Technical Committee
on Operating Systems of the IEEE Computer Society, P1003.4/D1, Dec 1, 1989.

A. C. Luther, Digital Video in the PC Environment, McGraw-Hill, 1989.

G. M. Parulkar and J. S. Tumer, ‘“Towards a Framework for High Speed Communication
in a Heterogeneous Networking Environment’’, I[EEE INFOCOM 89, , 655-667.

J. Postel, *‘Transmission Control Protocol’’, DARPA Internet RFC 793, Sep. 1981.

R. Rashid, A. Tevanian, M. Young, D. Golub, R. Baron, D. Black, W. Bolosky and J.
Chew, ‘‘Machine-Independent Virtual Memory Management for Paged Uniprocessor and
Multiprocessor Architectures’’, IEEE Trans. on Computers, Aug. 1988, 896-908.

F. E. Ross, *‘FDDI - A Tutorial’’, [EEE Communications Magazine, May 1986, 10-15.

A. Tevanian, R. Rashid, D. Golub, D. L. Black, E. Cooper and M. Young, ‘‘Mach Threads
and the Unix Kernel: The Battle for Control’’, Proceedings of the 1987 Summer USENIX
Conference, Phoenix, Arizona, June 8-12, 1987, 185-197.

S. Tzou and D. P. Anderson, ‘‘A Performance Evaluation of the DASH Message-Passing
System”’, Technical Report No. UCB/CSD 88/452, Computer Science Div., EECS Dept.,
Univ. of Calif. at Berkeley, Nov. 1988.

16

APPENDIX: THE ACME PROCEDURAL INTERFACE

This Appendix describes the C procedural interface of the ACME kemel. The following
primitive types are used: PLAYER, LISTENER, VWin, VCAM, CLDEV are ACME-defined
structs. STRAND and ROPE are structs representing strand and rope types. PDEV is an integer
representing a PDEV ID. FRAC is a rational number. LDEV_ATTRS is a struct containing the
generic LDev attributes. BITMAP is a bitmap represented as an origin, size and 2-D byte array.

In each operation that creates an object of type X, the first argument is a pointer to
sizeof (X) bytes of memory, allocated by the WSE.

1. ACME Requests

1.1. LDev Requests

/* create an audio output LDev */
int create_ player(

PLAYER *player,

PDEV pdev, /* must be audio output */

STRAND strand, /* must be audio */

int volume[4]); /* volume control attribute values */

/* creates an audio input LDev */
int create_listener(

LISTENER *]listener,

PDEV pdev, /* must be audio input */
STRAND strand, /* must be audio */

int volume([4]):

/* create a video output LDev */
int create_vwin(

VWin *vwin,

PDEV pdev, /* must be video output */
STRAND strand, /* must be video */

int xoffset, /* offset in native image */
int yoffset,

FRAC xscale, /* magnification factors */
FRAC yscale);

The WSE must call vwin configure_notify() and vwin_clipmask_notify() on a
newly created VWin before it is mapped (see below).

/* create a video input LDev */
int create_vcam{

VCAM *ycam,
PDEV pdev, /* must be video input */
STRAND strand); /* must be video */

/* destroy an LDEV */
int destroy ldev(
LDEV *1dev) ;

If the LDev is mapped, it is first unmapped. This procedure fails if this LDev is part of a CLDev.

int map_ldev(
LDEV *1ldev) ;

If LDev is of output type, starts displaying output on the associated PDev. If LDev is of input
type, starts sending input on the associated connection.

int unmap_ldev (

17

LDEV *1dev) ;

If LDev is of output type, stops displaying output on the associated PDev. If LDev is of input
type, stops sending input on the associated connection.
/* get current attribute values */
void get_ldev_attributes(
LDEV *1ldev,
LDEV_ATTRS *attrs);

/* set attribute values */

void set_ldev_attributes(
LDEV *ldev,
LDEV_ATTRS *attrs);

The only attributes that can be set are the specific attributes. The generic attributes in the struct
are ignored. To change only a subset of the specific attributes, call get_ldev_attributes (),
change the values of concem, then call set_ldev_attributes ().

1.2. CLDev Requests

int create_cldev(

CLDEV *cldev,

ROPE rope,

CONNECTION *connection,

LTS *1ts,

LDEV *ldev_list); /* ptr to array of pointers to ldevs */

All LDevs must have the same input/output type, and this type must match that of the connection.
This becomes the input/output type of the CLDev. If the CLDev is of output type, processing of
data arriving on the connection starts immediately. Display of data does not start until the start
criteria for the LTS are met. If the CLDev is of input type, data is collected from input PDevs
and processed into strand buffers immediately. Data is not written to the connection until the
start criteria for the LTS are met.

/* destroy a CLDev */

void destroy cldev (

CLDEV *cldev) ;

This does not destroy the constituent LDevs.
/* map the LDevs for which bits are set */

int map_cldev (
BITMAP which);

/* unmap the LDevs for which bits are set */
void unmap cldev(
BITMAP which);

void get_cldev_attributes(
CLDEV *cldev,
CLDEV_ATTRS *attr);

hsufl the buffer of an output LDev */
void cldev_clear buffer(
CLDEV *cldev);

Performs a clear buffer operation on the indicated CLDev. This consists of clearing the rope
buffer and all private queues, stopping display or capture on all PDevs, and resetting the CLDev
to the not ready state.

18

1.3. LTS Requests

/* create an LTS */
int create_lts(
LTS *1ts);
All CLDevs created after this call, with their Its field pointing to this LTS, will be associated with
this LTS. All such CLDevs must have the same input/output type, and that input/output type
becomes the type of the LTS.

void start_lts(
LTS *1ts);

Notifies ACME that it can start the LTS as soon as the start criteria are met. In the case of an
output LTS, these criteria are: 1) enough data has arrived on each connection to avoid starvation,
and 2) each constituent LDev must be ready to display. As soon as these criteria are met, ACME
will start display to all mapped LDevs associated with the LTS. The first chunk of data displayed
from each rope is guaranteed to correspond to the same value of real time.

In the case of an input LTS, the start criterion is that all LDevs must be ready to send data.
The first chunk of data sent on each rope is guarantced to correspond to the same real time value.

/* destroy an LTS */
void destroy 1lts(
LTS *1ts);

All associated CLDevs must have been destroyed previously.

1.4. CM Connection Requests

int register_cm connection
CONNECTION *conn,
BOOLEAN in_or_out,
CONNECTION_ID handle);

Registers a CM connection with the ACME server, so that CM data can be sent or received on it.
In_or_out specifies the direction of the connection. handle is OS-specific information which
allows ACME to rcad or write the connection via the read cm data() and
write cm_data () calls to the WSE.

CM connection establishment and maintainance is the responsibility of the WSE. This
request does not cause ACME to initiate a connection; it simply tells ACME that a certain
transport level connection is to be used for CM.

2. Clipping Region Change Requests

ACME need not know about the window hierarchy. Instead, the WSE must notify ACME
of the clipping region of cach VWin. These procedures are called by the WSE to implement this
protocol. The following terms are used: The full region of a VWin is the portion of a VWin that
would be viewable if it were unobscured. The clip mask of a VWin is the portion of the VWin
that is viewable on the screen, expressed in coordinates relative to the VWin’s origin (upper-left
comner). The viewable region of a VWin is the portion of the screen upon which the VWin is
currently viewable (this is the clip mask, but expressed in screen coordinates). Let A and B
denote the VWin’s viewable regions before and afier the change. All of the calls are synchronous
in the sense that no pixels will be written to (A - B) after call returns.

int vwin_move_notify(

VWin *ywin,
int newx,
int newy) ;

Notifies ACME that a VWin has moved from its former position. In response, ACME starts

19

copying the video image data into the new position, as defined by newx and newy. This call does
not alter the VWin’s clip mask.

int vwin_resize_ notify(

VWin *ywin,
int newwidth,
int newheight);

Notifies ACME that a VWin has changed size. In response, ACME starts copying video image
data into a new region, as specified by newwidth and newheight. If newwidth and newheight
imply a full region that excludes any portion of the YWin’s current clip mask, the excluded
portion is subtracted from the clip mask.

int vwin configure_notify(

VWin *id,

int newx,

int newy,

int newwidth,
int newheight);

Notifies ACME that a VWin has changed size and/or position. In response, ACME starts copying
video image data into the new viewable region defined by newx, newy, newwidth, newheight, and
possibly a modified clip mask defined as follows. Let B’ and A’ denote the VWin's clip masks
before and after an imaginary vwin_resize_notify () on the VWin with the given newwidth
and newheight. 1f (B’ - A’) is nonempty, it is subtracted from the VWin’s clip mask.

This call must be made to initialize the configuration of a VWin after it is created, and
before it is mapped.

int vwin_clip mask_notify(

VWin *ywin,
BITMAP_ OPERATION opl,
BITMAP *bml,
BITMAP OPERATION op2,
BITMAP *bm2,
BITMAP_OPERATION op3,
BITMAP *bm3,

I I

This procedure allows the WSE to alter a VWin’s clip mask. The specified bitmaps are added to
or subtracted from the VWin’s clip mask, as specified by the bitmap operations. The resulting
clip mask is clipped to the VWin’s full region, defined by the size of the VWin. This call must be
made to initialize the clip mask of a VWin after it is created, and before it is mapped. The initial
clip mask for a VWin is null.

An alternative version of this call could take regions represented as collections of run length
encoded ‘‘spans’’. The choice of version is best determined by the structure which ACME uses
internally to specify clip masks. This, in tum, depends on the video processor architecture: If the
video processor can access the clipping bitmap and the video image data in one memory cycle
(e.g., if the alpha channel is used to store the bitmap and the VSP accessed R, G, B, and alpha all
in one cycle), then the performance of the bitmap method will be good. On the other hand, if
extra memory cycles are required to access the bitmap, and if some internal processor registers
are available, it might be better to simply read one span at a time into the processor registers, and
copy the whole span with no further access to clipping information.

The following are utility calls that can be used by the WSE to simplify the task of
reconfiguring VWins without overwriting graphics data on the screen.

freeze_vwin(
VWin *ywin,

20

BOOLEAN state);

This call with a state of FALSE suspends copying of video image data into the VWin’s viewable
region. No pixels are copied into the viewable region after this call returns. With a state of true,
resumes copying. This call can take up to one frame time to return, and should be avoided if
possible.

freeze_video(
BOOLEAN state);

This call with a state of FALSE suspends copying of all video image data for all VWins. No
pixels are copied into the framebuffer after this call returns. With a state of true, resumes
copying. This call can take up to one frame time to retumn. and should be avoided if possible.

3. Initialization
The following are calls for initializing and terminating ACME.
int acme_init();
This should be called once by the WSE after WS startup and before calling any other ACME
procedures, or referencing any global ACME data structures.
void acme_done();

This should be called once by the WSE before WS shutdown. No ACME procedures should be
called or any ACME global data structures referenced after this call.

4. Procedures Exported by the WSE

4.1. Memory Allocation Procedures

The following procedures are used by ACME for storage allocation and deallocation. They
must be provided by the WSE, and made available to ACME:

void *acme_alloc(unsigned int n);

This procedure is a wrapper around whatever storage allocation mechanism is used by the WS. It
returns a pointer to n bytes of newly allocated storage.

void acme free(void *p);
A wrapper around the WS deallocation mechanism, this procedure frees the block of storage
pointed to by p.

void *acme_realloc(void *p, unsigned int n);
This procedure takes a previously allocated block of storage pointed to by p, and returns a pointer

to a block of storage of size n, the first k bytes of which are initialized to the value of the old
block (k is the size of the old block).

4.2, Miscellaneous WSE Procedures
void acme_insert_ws_request (char *p, unsigned int len);
This procedure inserts a ‘‘fake’” window system request into the request stream. The window

system should process this request at some later time. ACME uses this call to implement
deferred requests.

4.3. CM Connection Read/Write Procedures

int read cm_data({
CONNECTION *cm_conn,
void *buf,
unsigned count) ;

21

This reads the next count bytes of CM data from the indicated connection into the buffer.

int write_cm data(
CONNECTION *cm_conn,
void *buf,
unsigned count);

This writes count bytes of CM data from the buffer to the indicated connection.

5. Event Reporting Interface
The WSE must provide a procedure for ACME to call when events are generated.

void report_event (
EVENT_TYPE type,
void *data) ; /* type-specific additional data */

enum EVENT_TYPE {

CLDbevStopData, /* rope buffer nearly full */
CLDevBufferQverrun, /* rope buffer full, data lost */
CLDevStartData, /* rope buffer nearly empty */
CLDevBufferEmpty, /* rope buffer empty, device starved */
CLDevStartNotify, /* report CLDev LTS start time */
CLDevEndData, /* end-of-data marker reached in rope */

/* includes LTS stop time */
CLDevDataStamp, /* data mark reached */

/* includes LTS time, opaque data */
LTSAlarmClock, /* LTS alarm clock reached; includes time */

LTSStartNotify /* LTS has started; includes real time */

