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ABSTRACT

Next-generation distributed systems will support continuous media (digital au-
dio and video) in the same hardware/software framework as other data. Many
applications that use continuous media (CM) have end-to-end performance re-
quirecments such as minimum throughput or maximum delay. To reliably sup-
port these requirements, system components such as CPU schedulers, networks,
and file systems must offer realtime semantics. A meta-scheduler coordinates
these components, negotiating end-to-end guarantees on behalf of clients. The
CM-resource model, described in this paper, provides a basis for such a meta-
scheduler. The model defines a workload parameterization, an abstract inter-
face to resources, and an end-to-end algorithm for negotiated reservation of
multiple resources; the division of delay is based on an economic model.
Clients make reservations for worst-case workload, and resources offer hard de-
lay bounds. However, system components may ‘‘work ahead’’ within limits,
increasing the responsiveness of bursty non-realtime workload.



1. INTRODUCTION

Much recent work has studied the use of audio and video as input/output media for user
interfaces [8,13,31-33,38]. We call audio and video continuous media (CM) because they are
perceived as changing continuously over time. We say that a distributed computer system pro-
vides integrated digital continuous media (IDCM) if it has the following properties:

. CM data is stored and transmitted exclusively in digital form.

. Except for user-interface 1/0 devices, CM data is handled by the same hardware (CPU,
memory, networks, [/O system) as other data.

° CM data is handled in the same software framework (programming language, operating sys-
tem, file system, network communication, window server) as other data.

A comparison between IDCM and other approaches, and a high-level design of an IDCM system,
are given in 3, 5].

The video plavback program shown in Figure 1 is an example of an IDCM application. The
application, running on a workstation, allows the user to select a video program to be viewed (the
method of selection might involve a menu-based browser or a database query). A CM-capable
window server provides user [/O [6]. When the sclection is made, &ie application instructs the
window server to prepare a ‘‘video window’’. The application then begins rcading data from a
remote file system and forwarding it (via local IPC) to the window server. The window scrver
passes the data to a DSP device for decompression, causing the data to be displayed in the video
window.

Applications in an IDCM system may have rcaltime performance requirements such as
bounds on end-to-end throughput and delay. For example, the video playback application
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Figure 1: Video playback, a simple IDCM application. The application reads digital audiofvideo
data from a remote file server, then sends it to a CM-capable window server. '




requires that data be read from the disk file and transferred to the video decompression and
display unit at a minimum average data rate. This rate is determined by the data representation;
for example, stereo CD-quality audio is 1.4 Mbps and DVI compressed video is 1.2 Mbps [24].
Applications may also require bounds on end-to-end delay. For simple telephony, this bound is
typically in the range of 100-200 milliseconds. For applications such as musical telephony it may
be 10 milliseconds or less [23].

The task of an IDCM application is simplified if it can be ‘‘guaranteed’’ that the system
will handle CM data with the necessary performance levels for the duration of its execution. In
order to make such a guarantee, the shared components, such as CPU, file system, and network,
must support ‘‘reservations’’ in which the client specifies its workload and the component pro-
vides a performance guarantee. Furthermore, to provide end-to-end guarantees it may be neces-
sary to use a meta-scheduler to coordinate components (see Figure 2). A meta-scheduler is a dis-
tributed software layer that ‘‘reserves’’ components on behalf of client applications; it is not
involved in the actual usage of the components.

A meta-scheduler must define a uniform model of how the components operate and interact.
Some goals for a meta-scheduler and its model include:

Abstraction: Rather than prescribe a particular scheduling policy, the model should define
an abstract interface that can be implemented by a range of scheduling algorithms, both
preemptive and nonpreemptive. In this way, existing hardware and software components
with realtime properties can be used with litde or no modification.

Coexistence: The model should allow realtime and non-realtime workload to coexist, and
the impact of CM on the response time of non-realtime traffic should be minimized.
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Figure 2: A meta-scheduler acts as a mediator between applications and realtime system com-
ponents. It reserves capacity on behalf of clients; the clients then access the components directly.




End-to-end guarantees: To support end-to-end CM application requirements, the model
must encompass all system components: CPU scheduling, I/O, networks, and so on.

The CM-resource model is intended as a basis for a CM meta-scheduler. The components
of the model are as follows. A resource is a subsystem that stores, manipulates, or communicates
CM data (it may handle other workload as well). Resources may be reserved in sessions with
workload, delay, and cost parameters. Sessions may be combined into compound sessions. The
division of delay among sessions uses an economic approach: delay is apportioned in a way that
minimizes total cost. The model allows buffer space requirements to be computed, so that packet
loss due to buffer overrun can be avoided.

The CM-resource model uses the linear bounded traffic model proposed by Cruz {10]. The
model is based on conservative assumptions: clients must reserve resources bascd on their worst-
case needs, and resources must offer hard upper bounds on delay. However, the model provides
flexibility by allowing resources to ‘‘work ahead’’, making full resource capacity available to
bursty non-realtime clients. In addition, any unused portion of a reservation can be used for other
purposes.

CM applications may also have synchronization requircments, e.g., that two streams must
be displayed simultaneously or that one must immediately follow another (14,21]. We do not
discuss synchronization in this paper. However, the CM-resource model provides a basis for syn-
chronization as well as performance guarantees.

The CM-resource model was first presented by Andrews (7]. This paper explores Andrews’
original model and offers some refinements and extensions. The paper is organized as follows.
Section 2 defines the resource and session abstractions, and Section 3 deals with compound ses-
sions. Section 4 describes techniques for implementing a CPU scheduler, an FDDI network, and
a file system as resources. Section 5 discusses related work, and Section 6 is the conclusion.

2. RESOURCES AND SESSIONS

The CM-resource model decomposes a distributed system into a set of resources. A
resource may be a single schedulable device such as a CPU, or a complex system such as a net-
work. Resources provide a standard interface, described in this section, for their reservation and
use.

2.1. Describing Workload

The CM-resource model defines a parameterization of workload, i.e., the arrival process at a
particular interface in the system. Workload is described in terms of discrete messages (units of
work, typically blocks of CM data).

Definition. N, (t, t,) denotes the number of messages arriving at an interface / in the time
interval [tq, £1), where 1o <?;.

In the CM-resource model, all arrival processes arc described as follows:

Definition. A linear bounded arrival process (LBAP) is a message arrival process at an
interface / with three fixed parameters:

M = maximum message size (bytes)
R = maximum message rate (messages/second)
W = workahead limit (messages)

that, for all ¢ < ¢, satisfies
Nyt t) SR It =1l + W (D



The long-term data rate of an LBAP is MR bytes per second. The parameter W allows
short-term violations of this rate constraint, modeling programs and devices that gcnerate
““bursts’’ of messages that would otherwise exceed the constraint. These bursts consist of mes-
sages that have arrived ‘‘ahead of schedule’’; they do not reflect burstiness in the underlying data
stream (see Section 2.8). The extent to which arrivals are ahead of schedule is quantified as fol-
lows:

Definition. The workahead w (t) of an LBAP is

w(t)=max{0,N(t0,t)—R|t—tol} (2)

o<t

We observe without proof that w(t) is finite and right-continuous, and that the expression
(N(tot)—R!t ~tyl) is maximized by a particular value of rq. Intuitively, w(¢) is the largest
“‘message excess’” (relative to R ) during any time interval ending at ¢. More concretely, w (1) is
a function that increases by 1 on each message arrival, decreases with slope —R otherwise, and
remains nonnegative (see Figure 3).

Claiml.w()<W forall:t.
Proof. The claim follows from Eq. 1 and Eq. 2. O

A bound on the amrivals during a time interval can be given in terms of workahead at its
endpoints:
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Figure 3: The workahead function w(¢) for an LBAP with R = 0.5 and message arrivals at times
0.5, 3.0, 3.25, and 4.5. The corresponding logical arrival times are 0.5, 3.0, 5.0, and 7.0.




Claim 2. Forallt; <t,,
Nt Swtp—-w(t)+RIty—1 !

Proof. from Eq. 2, let ¢4 be such that
wt =N, tg - Rt —1tql.
Then
w(t))2N(tg, t) — Rty — ¢l

=N([0.Il)+N([1,[2)—R“1—Iol —R|[2—11|

=wD+NE L) —RIty—1tyl

from which the claim follows. O

2.2. Describing Delay

The second central issue in our model is how to parameterize the delay between two inter-
faces in the sysicm. We use a notion of delay that takes workahead into account. For a given
LBAP, let my- -+ m, denote the sequence of messages, and let agy - - - a, denote their arrival
times.

Definition. The logical arrival time [ (m;) of a message m; is
Im;)=a; +w(a;)R
Equivalently, / (m ) can be computed as follows:
limg)=ay (3)

[(m; ) = max(a;,y, L(m;) + 1/R)

Intuitively, /(m) is the earliest time message m could have arrived if workahead were not
allowed (sce Figure 3; note that the logical arrival times of consecutive messages are separated by
at least 1/R )

Definition. The logical delay d (m) of a message m between two interfaces /| and /, is
d(m)=1ly(m)—1y(m)
where /;(m) is the logical arrival time of the message at interface i .

The motivation for this definition is as follows: If a message arrives ahead of schedule at a
device and is queued there, the delay should be ‘‘charged’’ to the previous device up until the
logical arrival time of the message. The actual delay of a message m between two interfaces may
be greater than /(m) (if m arrives ahead of schedule) or less than [ (m) (if m is completed ahead
of schedule). It can be shown that /{(m) is nonnegative.

2.3. Resources and Sessions

As indicated earlier, a resource is an entity that handles streams of CM messages (as
perhaps non-realtime workload as well). The messages arrive at an input interface and, when
their processing by the resource is complete, at an output interface. A resource may be a single
device such as a CPU, or a system of interacting devices such as a network. Examples are given
in Section 4.

Prior to using a resource, a client must crcate a session with the resource. Each message
handled by a rcsource is associated with a particular session. A session has the following



parameters:

M = maximum message size (bytes)

R = maximum message rate (messages/second)
W, = input workahead limit (messages)

W, = output workahead limit (messages)

D = maximum logical delay (seconds)

A = minimum actual delay (seconds)

U = minimum unbuffered actual delay (seconds)

The client must ensure that the arrival process at the input interface obeys the LBAP parameters
M, R and W,,. The resource must ensure that the arrival process at the output interface obeys the
LBAP parameters M, R and W,,. D is an upper bound on the logical delay, between the input
and output interfaces of the resource, of any message associated with the session. A is a lower
bound on the actual delay. U is a lower bound on the actual delay of a message during which it
is not stored in host memory (see Section 3.3).

In general, if a resource does queueing, the outgoing workahead may be larger than the
incoming workahcad. However, it is possible for a resource to scduce its output workahead by
doing regulation, i.e. by delaying outgoing messages that are completed ahead of schedule (see
Section 4.3).

A session is an agreement between the client and the resource. The resource ‘‘guarantees’’
that it will obey the delay bounds and output workahead limit. Like any guarantee, this does not
hold with probability one. For a given session, there is a nonzero probability that a guarantee will
be violated in a given time interval (due, ¢.g., to a hardware failure). In the CM-resource model
we assume that this probability is low enough so that it can be treated as an anomaly. Clients are
not informed of the probability, and we do not specify if or how clients are informed when a
guarantee is violated.

Likewise, the client guarantees that it will not exceed the workload parameters. We do not
specify whether a resource checks for compliance with the LBAP parameters, or how it responds
to violations. The simplest assumption is that the resource trusts the client to obey the parame-
ters, so that no checking is needed.

If the client workload is *‘bursty’’ (due to a variable data rate encoding, silence suppression,
etc.) then the client must make a reservation based on the maximum data rate. A session is a
‘‘reservation’’ of part of a resource in the sense that, if workload is presented according to the
session parameters, it must be handled within the logical delay bound. However, unused resource
capacity can potentially be used for other purposes if the workload does not arrive at the max-
imum rate.

There is no requirement for clock synchronization or a global time source, even if a
resource (such as a network) spans multiple hosts. The workahead function, which determines
local scheduling deadlines, can be computed based on local (unsynchronized) clocks. However,
these local clocks must run at approximately the same rate. If the ratio of clock rates has an
upper bound @, then reservations must be made for a throughput of oR , where R is the underly-
ing data rate.

2.4. Non-Starvation of Qutput Devices

Let us now retum to the video-playback example of Section 1. Suppose that the
audio/video output hardware requires a packet of data every .05 second. If data fails to arrive on
time, the device is momentarily ‘‘starved’’, producing a noticeable pause in the output. This star-
vation may occur even if data is read from the disk at the proper rate, as shown in the following
scenario. Suppose the network session has a delay bound of 1 second, and that a packet is read



from the disk and submitted to the network every .05 second. Suppose packet O is read from the
disk at time ¢ =0, and traverses the network in 0.1 second. The receiver immediately delivers it
to the video device at t =0.1. Packet 1 takes 1 second to traverse the nctwork, arriving at the
receiver at ¢ = 1.05. The device is starved between ¢ =0.1 and ¢ = 1.05.

We will now show that the receiver can eliminate this starvation by delaying the start of
output.

Definition. An arrival process is workahead-positive iff w(¢)> 0 forall 1 € (ay, a,] (recall
that g, is the actual arrival time of message m; ).

Claim 3. If an arrival process is workahead-positive then for any t € (a, a,)

N(ao,t)>RIt—a0I (4)

Proof. Suppose otherwise. Then there is some ¢ > a, such that
N(ao,[)Sth —aol.

Let 1, be the least such . Let 1;€ (@o. t)). Then N(t5¢)) <RIt;~1t;1 since otherwise we
would have N(ag, 15) £R1t; —agl, contradicting the minimality of ¢,. Now from Eq. 2, we
have w (t) = 0, contradicting the assumption that the arrival process is workahead-positive. {J

Definition. Suppose a client obtains data from the output interface of a session with delay
bound D and scnds it to a device that requires data at periodic intervals. The client is said to be
conservative if it waits until time ;= ay+ D to start outputting the data.

Claim 4. Suppose that the arrival process of a session is workahead-positive and that the
receiver is conservative. Then the receiver never starves.

Proof. Assume otherwise. Then there is some time ¢; > ¢ at which starvation occurs, i.e.
N([0,12)<R|t2—t1|. (5)

Let 13 =1, - D (sce Figure 4). Then w(t3) >0, so by Eq. 4, N (1o, 13) > Rlt3—tpl. But all mes-
sages arriving between ¢ and ¢4 must arrive between tg and ¢, and £3 — £y =t — 1y, contradicting
Eq.5. O

Actually, a more general result holds. Suppose the source of data has a variable rate not
exceeding R. If the sender stays ‘‘ahead of schedule’ relative to this variable rate, and the
receiver waits until z, to start displaying, starvation will not occur.

2.5. Delay-Cost Functions

For a given throughput, a session with a smaller dclay bound is more “‘costly’’ to a resource
because it limits the resource’s ability to accommodate other small-delay sessions. In the CM-
resource model this cost is quantified and is used to dctermine delay division between resources.
The establishment of a session consists of three steps:

(1)  The client requests a session, giving the session’s message size and rate.

(2) If it can accept the session, the resource returns the minimum possible logical delay
bound D ,;, for the session, and makes a resource reservation sufficient to provide this
bound. It also retums a ‘‘cost function’’ C (D) whose value at D is the cost per unit time
of maintaining a session with throughput R and delay bound D.

(3) Based on the cost function C, the client decides on a specific delay bound D2 D iny and
tells the resource to ‘‘relax’’ the existing reservation by changing the dclay bound to D.

Cost functions are used in dividing delay among a sequence of resources in a way that
minimizes total cost. To ensure that the cost minimization problem is tractable (sce Section 3.5),
we require that cost functions have the following property:
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Figure 4: Diagram for the proof of Claim 4.

Definition. A cost function C is tractable iff it is 1) piecewise linear with a finite number of
vertices; 2) strictly monotonic decreasing, and 3) convex (i.e.,

Cad|+(1—0)dy caC(d)) +(1-a)C(d,)

forall a e [0,1]) and all d, < d.

A tractable cost function is defined on an interval [d,, d,]. 4 is the smallest delay bound
that the resource can currently provide. Beyond dj, the ‘‘cost’’ of buffering messages over the
delay period exceeds the cost saved by the larger delay.

2.6. The Session Reservation Interface
Each resource has an associated software module that exports the following interface:

reserve ()
input parameters.:
maximum message size and rate
output parameters:
success/failure flag
session ID
delay-cost function
minimum actual delay
minimum unbuffered actual delay
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relax ()
input parameters:
session ID
new maximum logical delay

free ()
input parameter:
session ID
Reserve () requests a session with the given workload parameters and the smallest possible log-
ical delay bound. Relax () increases the delay bound of an existing session. Free () dcletes
an existing session. The details of the interface may vary between resource types. For example,
a CPU resource’s reserve () operation would have a ‘“‘maximum CPU time per message’
parameter instead of the maximum message size, and a network resource would be given the des-
tination host address.

Note that the interfaces do not refer to workahecad limits. We make the simplifying assump-
tion that resources on a host share a common pool of buffer memory, and therefore workahead
limits are relevant only at the interface between hosts (i.e., nectwork resources). This will be
explained further in Section 3.

2.7. Source and Sink Resources

The resources we have considered so far are those that handle CM data, either by process-
ing it or by transporting it. Other types of devices serve as sources or sinks of CM data. These
include file systems (disk drives and their associated software) and transducers (analog/digital
conversion units, video display devices, etc.). We model such devices as providing a single input
or output interface, with associated LBAP parameters. There is no notion of delay, so the inter-
face exported by such resources is a simplified version of the one shown above.

2.8. Assumptions, Rationale, and Refinements

We now give the assumptions and rationale behind the interrclated basic components of the
CM-resource model: arrival rate, delay, and loss. We then describe some possible refinements to
the model.

2.8.1. Arrival Process Model

In discussing distributed CM systems, it is important to distinguish between 1) the model of
the underlying data stream (CM data being produced or consumed by a CM 1/O device) and 2)
the model of the arrival at interfaces within the system. These models may be different if data is
delayed by variable amounts within the system. Several models for the underlying data stream
are relevant to CM:

(1)  The data rate is constant.

(2) The data rate is constant over ‘‘talk bursts’’ of a few seconds, with interspersed
“‘silences’’. This is a good model for voice conversations [9].

(3)  The data rate is dynamically selected from a set of discrete values. For example, if avail-
able bandwidth declines, high-frequency information can be omitted, with a resultant loss
in image or sound quality.

(4)  The data rate varies dynamically. Such ‘‘burstiness’” may be described by the mean-to-
variance ratio or the peak-to-average data rate ratio. Some video compression schemes
result in a variable data rate [28].
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The CM-resource model requ. s that a data stream have a bounded data rate, and it
requires clients to make reservations based on this rate. Hence it can express all four data
models, although in cases 2, 3, and 4 part of the reserved capacity will not be used by the session.
We chose not to model bursty underlying data for several reasons:

. Models that allow resources to be ‘‘overbooked’’ (based on underlying data with random
burstiness) force applications to deal with packet loss and/or unbounded delays.

° Models in which applications must vary their underlying data rates according to changing
system loads (e.g., model (3)) increase the complexity of all system components, and are
justified only when hardware resources are scarce.

. If the CM-resource model is used for a bursty underlying data stream (models (2) and (4)),
the unused resource capacity is not wasted: it is unavailable for other reservations, but can
be used by non-realtime traffic or by workahead rcaltime traffic. If hardware resources are
sufficicnt so that reservations are not normally tumed down, nothing is lost by over-
reservation.

. Some CM data representations are not bursty. These include uncompressed digital music
(in which there are no silences) and video compression schemes such as DVIL

The rationale for using the LBAP model for intra-system interfaces is as follows: Given the
bounded-rate model for underlying data and the goal of eliminating buffer overrun (see below),
the LBAP model is in a sense the least restrictive possible model. Its workahead limit parameter
corresponds to a bound on buffer space, and it makes no other demands (e.g., minimum inter-
message gap) on the workload.

2.8.2. Loss Model

Message loss in a distributed system can occur because of data corruption or buffer overrun.
For CM applications, output data that arrives late or out of order is lost in the sense that it cannot
be used. This type of loss cannot be remedied by transport protocols that do retransmission.

The simplest loss model is the zero-loss model: errors and losses are as improbable as
memory or processor errors. This is the assumption and goal of the CM-resource model. Future
networks, especially those using fiber-optic transmission media, will have a bit error rate as low
as the processors in the end nodes. Therefore, if the system can eliminate losses due to other
sources, the distributed system can be viewed as error-free, greatly simplifying applications.

A contrasting assumption is that CM data is error-tolerant because *‘glitches’’ are transient,
and models bascd on this approach include error-rate parameters. However, the assumption does
not always hold. Data representations such as differentially compressed video are error-
intolerant, glitches in CD-quality audio are often unacceptable, and some applications (such as
archival recording) require near-zero error rate.

2.8.3. Delay Model

The delay introduced by a device or subsystem can be modelled in several ways. Examples
include:

° Probabilistic bounds: A resource might provide an upper bound on the 90th percentile
delay (i.e., 90% of messages are delayed less than X').

° Backlog-avoiding bounds: The delay within a resource is bounded by the message interar-
rival time (this assumes approximately periodic arrivals). This model has been explored in
the context of traditional real-time systems [22].

We rejected probabilistic approaches because they imply a non-zero loss rate for CM output
applications. The CM-resource model requires an upper bound on logical delay, but is more
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flexible than backlog-avoiding models in two ways: 1) the bound can be greater than the average
interarrival time; 2) if the input has worked ahead, the actual delay may be greater than the logi-
cal delay bound. This flexibility can improve the response time of bursty non-realtime traffic, as
shown in Figure 5. Context switching overhead is also lower.

A meta-scheduling model must adopt some criterion for dividing dclay between resources.
One approach, based on work in network congestion control [15], is to explicitly use load
metrics. We chose 1o use cost as a basis because of its universal and absolute nature: commercial
data networks charge rcal money based on quality-of-scrvice parameters. The cost functions of
resources will typically be coupled to their load; for example, the cost function for the CPU of a
personal workstation might reflect the value to the owner of having “‘slack’” in the CPU schedul-

ing.

2.8.4. Refinements For Variable Data Rate

The model as described has no notion of data ‘‘timestamps’’, and this can result in subop-
timal scheduling decisions if the underlying data stream is variablc-rate. For cxample, suppose a
session has a maximum rate of 10 messages per second, but in the first 10 seconds the data stream
uses only 1 message per second. If the data source works ahead and generates 10 messages
immediately, the 11th message will be assigned logical armival time 1 and will be scheduled
accordingly. In fact, however, it should be given logical arrival time 10, and therefore given
lower priority.

a) backlog-avoiding
scheduling

b) workahead scheduling [ _ J
s i

¢) workahead w (¢)
at output interface

o 1 2 3 4 5 6 7 8 9 10

Figure 5: A comparison of workahead and backlog-avoiding scheduling. A CPU resource is
handling a stream of CM data (light boxes) that uses 50% of the CPU capacity. A 2-second non-
realtime task (dark boxes) arrives at time 4. Workahecad scheduling is 2 seconds ahead of
schedule at this point (¢) and can handle the new task in in a single uninterrupted CPU burst (b).
With backlog-avoiding scheduling (a), the new task is timesliced and is not finished until time 8.
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This problem can be solved by including timestamps (or time differences, from which
timestamps can be computed) with messages. These timestamps can be used instead of logical
arrival time in determining scheduling priorities.

3. COMPOUND SESSIONS

A meta-scheduler must address, at the minimum, situations in which data traverses a linear
sequence of resources. For example, in the video playback application of Section 1, data ori-
ginates from a disk, traverses a CPU, a network, and another CPU, and is then consumed by a
video decompression chip. In the CM-resource model, such a situation is represented as a *‘com-
pound session’’ consisting of sessions with each of the resources involved. The following issues
must be addressed:

° How can a given bound on end-to-end delay be divided ‘‘fairly’’ among resources? (It may
not be fair, or even possible, to divide it uniformly.)

° How much buffer space must be reserved in each host to avoid packet loss due to buffer
overrun?

° It is desirable to set workahead limits as high as possible, given buffer space limits. How
can this be done?

These issues arc dealt with in the remainder of this section.

3.1. Terminology

Definition. A compound session S is a sequence of sessions Sy - - - S, in which the output
interface of S; is the input interface of S, (see Figure 6).

The resources in a compound session handle a stream of messages in pipeline fashion. All
the sessions must therefore have the same throughput limit. Furthermore, the output workahead
limit of session §; cannot exceed the input workahcad limit of session S;,;. The arrival process
of S is defined as the arrival process of S|, similarly the completion process of § is the comple-

I !
: resource 1 resource 2 resource n :
data source | ,  data sink
! |
I |
3 —>
: session 1 session 2 session 3 t
{
| |
i 1
i
e e e e e e e e e e e e e e et e e e e . e — - — —
compound session

Figure 6: A compound session consists of a sequence of sessions in which output interface of §;
is the input interface of §; ..
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tion process of S,. The logical delay d of a message m in S is the difference in logical amval
time of m at these two interfaces.

Claim 5. Let d and S be as above. Thend =3 d, where d; is the logical delay in §;.

Proof. Let [; be the logical completion time of m in S;, and [, be the logical arrival time in
Sl' Then

d=(l,‘ —lo)
=(1n _ln—1)+([n—l_ln—-2)+ +([1_10)

=d, + - +dg
a

Claim 6. Letd and S be as above. Thend <Y, D;, where D, is the maximum logical delay
t =1
in Si .

Proof. The claim follows from Claim 5. O

3.2. Non-Starvation in Compound Sessions

The non-starvation result of Section 2.4 can be cxtended to compound sessions. Consider a
situation (such as the videco-playback application of Section 1) in which a *‘receiver’’ process
takes data from the output interface of a compound session S and sends it to an output device that
requires periodic arrivals.

Claim 7. Suppose that the arrival process of a compound session is backlog-maintaining
and that the receiver does conservative output (i.e., it delays output until ty+ D, where t is the
arrival time of the first message at S, and D is the logical delay bound of S ). Then the receiver
will never starve.

Proof. The claim follows from Claims 6 and 4. O

To do conservative output, the receiver must delay output of the first message until at least
to+ D . If the compound session spans multiple hosts, it may be difficult for the receiver to know
exactly what time (of its local clock) corresponds to t,. There are several possible approaches
that guarantee conservatism:

(1)  Assume that all clocks are synchronized within €. The sender timestamps the first mes-
sage (i.e., includes ¢ in the message). The recciver then delays output until £+ D +€.

(2)  Assume that the delays of the network links on the path from sender to receiver are
known. The first message has a ‘‘total delay’ ticld D,y ., initially zero. Just prior to
sending the first message, each host adds its local delay, plus the delay of the outgoing
link, to D,,,. The receiving host delays output by D - D, after it receives the first
message.

(3) In the absence of either of the above assumptions, the receiver can delay output by
D — A, where A, is the sum of the minimum actual delays of the component
resources.

The extra buffer space required for conservative output (beyond that needed to accommo-
date incoming workahead and delay, to be discussed in Scction 3.3) is €R in case (1), zero in case
(2),and R(D — A, incase (3).
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3.3. Buffer Space Requirements of a Compound Session

In this section we compute a bound on the buffer space in a given host required to prevent
buffer overrun for a compound session. Consider a compound session S that traverses a host H .
Let R, - R, be the set of resources in S for which messages are buffered in the main memory
of H. If S includes a network resource moving data into H, this resource is not included in the
list R, since the output interface of the network resource is the moment of message arrival in host
memory (see Section 4). R, may be a network (see Figure 7), in which case its minimum unbuf-
fered time U (corresponding to propagation time) is nonzero. Each resource has a logical delay
bound D;; let D =¥ D;. Let W be the incoming workahead limit of R ;.

Claim 8. The maximum number of messages buffered in host H for session S s
W +R(D-U).

Proof. At a given time ¢, let m be the oldest message in host memory. Let a be its arrival
time at R, and w(a) be the workahead at R,’s input interface at time a. The number of mes-
sages buffered in the host at time ¢ is N (a, 1), the number of arrivals to R in {a, t) (sce Figure
8). From Claim 2 we have

Na,t)<w()-w(@)+Rlt —al (6)
<W -w(a)+RIlt —al
since w(z) < W. Now let b denote the actual completion time of m in R,,.
D 2Il(m)
=(b +wb)R)-(a+w(@)R)

2b—-(a+w(@a)R)

SO

buffer space

. (outgoing
ARy ’ R"i network)

incoming
network

Figure 7: A compound session can involve several resources in a given host. Except for the out-
going network, messages are buffered in host memory while they are being handled by thése
resources. In the outgoing network, messages are buffered only for part of the time.
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arrival exit from exit
atR, host buffers from R,
a

time

S N -t
other messages \
b

Figure 8: Diagram for the proof of Claim 8. The number of messages buffered at time ¢ is
N(a,t), where a is the arrival time of the oldest message in memory at time £,

b-—a<D+w()R (7
Now from the definition of U,

t<b -U. (8)
Combining Eq. 7 and Eq. 8 we have

t—a <D +w(a)R -U (9)

Now combining equations Eq. 6 and Eq. 9 we have
N@,t)sW-w(@)+RO +w(@a)R -U)

SW+R(D-U) (10)
a

The above bound is realized in the case where arrivals consist of an initial group of W simultane-
ous messages followed by one message every 1/R scconds, and each resource uses its full delay
for each message.

The receiving host may also do buffering as a conscquence of conservative output. In this
case the additional buffer space is required, as described in Section 3.2.

3.4. Workahead Limits in Compound Sessions

Resources may do regulation to reduce their outgoing workahead. This may be necessary in
compound sessions, since otherwise buffer space requircments could grow without bound [10].
Under the assumption that resources on a host share buffer space, the total host buffer space
requirement depends only on the workahead into R |, the first resource in the host. Limiting the
workahead between resources within a host does not affect buffer space requirements, so it need
not be considered. Regulation is therefore necessary only in network resources.

The reservation interface of network resources must be augmented as follows. The
reserve () operation retums an outgoing workahcad limit, namely the smallest possible
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workahead limit that the resource can provide. The relax () operation takes a new outgoing
workahead limit, which cannot be less than the existing limit.

3.5. Compound Cost Functions

The cost per unit time of a compound session is the sum of the costs of its component ses-
sions. The division of delay among the component scssions should minimize this cost. This
minimal-cost delay problem can be formulated as follows. Given a set of cost functions
C, - C, and an end-to-end delay bound D, find resource delay bounds D | - - - D, that solve

miniC‘- (D;)

i=]

subject to

n —
> D, <D
i=l

Claim 9. If the C; are arbitrary piecewise-linear functions, then the minimal-cost delay
problem is NP-hard.

Proof. We show this by reducing the NP-complete PARTITION problem [16] to the
minimal-cost delay problem. An instance of thc PARTITION problem is as follows: Given a
finite set A and for each a €A a size s(a)eZ+, is there a subset A" A such that
Y s@)= Y s(a)? Consider the following instance of the minimal-cost delay problem: for
aeA’ aeA-A’
eachae A, let C, be the function

C,(d)=s(a), d<s(a)
=0, d2s(a)

and let D = l( Y s(a)). Letd(a),ae A be asolution 1o this instance of the minimal-cost delay
a€cA
problem. Assume without loss of generality that, for all a € A, either d(a)=s(a) ord(a)=0.

Let C = ¥ C,(d(a)). Then C =D iff there is a solution to the original PARTITION problem.
a€A
a
If cost functions are tractable (Section 2.5) then the optimal delay assignment for a given
total delay can be obtained in an amount of time proporuonal to the number of segments in the
C;.
Definition. Suppose tractable cost functions C, corresponding to resources
R, --R, are given. The compound cost function C . 1 piccewise linear function in which cach
segment is labeled with a resource name, is defined by the following procedure (see Figure 9).

(1)  Sort the segments of C| - - - C, in order of increasing (less negative) slope.

(2)  Position the first (steepest) segment so that it stants at the vector sum of the left endpoints
of the functions.

(3)  Position the remaining segments so that each begins where the previous ends.

Definition. Given a compound cost function C, a resource R, and adelay d,let F(C, R, d)
be the measure of the set

{x £d: <x,C(x)> is labeled with R }
(sce Figure 10).
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0 N

0o 1 2 delay
cost

A ’

delay

Figure 9: The cost functions for several resources can be combined to form a compound cost
function whose segments are labeled with the names of the resources.

.........................................

» delay

Figure 10: The function F(C, R, d) returns the optimal amount by which to relax the rescrva-
tion of resource R given an end-to-end delay 4. In this example, F(C,R,3)=1.

Claim 10. The delay assignment given by D; =F (C, R, D) solves the minimal-cost delay
assignment problem.
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We omit the proof for brevity.

3.6. The Compound Session Establishment Protocol

The CM-resource model defines a protocol for establishing compound sessions. The proto-
col approximates the minimum-cost division of delay subject to host buffer space limits. The
protocol involves an interaction between sending and recciving clients, resources, host resource
managers (HRMs), and buffer space managers on cach host (see Figure 11). We assume that the
memory manager has operations

reserve_memory (n): reserve n bytes of physical memory.

n = reserve extra memory (): reserve additional physical memory for a compound
session. The amount of memory reserved is determined by a host-specific policy.

free memory (n): free an existing reservation of n bytes.

The protocol has two phases. In phase one, a request message traverses the hosts from the
source towards the sink. The request message contains the following items.

e The sequence of hosts and resources involved, and an identifier for the receiving client.

e The message size S and rate R.

e End-to-end logical delay requirements: a target and maximum value, denoted E,,,.,, and
E ... The goal of the algorithm is to establish a compound session with a logical delay
bound as close to E,,,,, as possible, and in no case greater than E ,,; and, given this delay
bound, to minimize the cost of the session.

e The compound cost function C, the sum D of the delay bounds, and the sum A of the
minimum actual delays, of the resources traverscd so far.

¢ A workahead limit W',

A client initiates a compound session establishment by passing a request message to its
local HRM. For the time being, we can assume that C is empty and D is zero (for other cases see
Section 3.7). Each HRM executes the following algorithm. Suppose the local resources involved
in the compound sessionare R - - - R,.

host 1 host 2 host 3
memory memory memory
manager manager manager
sending receiving
lient - —
e HRM [ W HRM S[HRM &7 client
e (al=l s
resources resources resources

Figure 11: The participants in the compound session establishment protocol include clients, host
resource managers (HRMs), memory managers, and resources.
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(1) Dothe reserve () operationon R R, inany order or in parallcl.
(2) Call reserve memory () to get buffer space according to Eq. 10.

(3) If any of the above operations fails, or if the total delay exceeds E 4, free all reservations
and returns a failure message.

(4)  Prepare an outgoing request message. D, A, and C are updated according to the results
of the reserve() operations. The new outgoing workahead W is retumed by the
reserve () operation on R, (the network resource). Send this message to the HRM in
the next host or, if this is the last host, to the receiving client.

The receiving client, on recciving the request message, selects an end-to-end delay £,y
for the scssion, perhaps based on C. If it does conscrvative output, the receiver may neced to
reserve additional buffer space (see Section 3.2). The excess logical delay E,,.,; is computed as

E

Phase two then proceeds in the reverse direction. A reply message containing £,,.,,; and a wor-
kahead limit W is passed back towards the source. The receiving client initiates phase two by
passing a reply message to its local ARM. Each HRM executes the following algorithm.

=max (0, Elargel - Eaclual)

EXCESs

(1) Call reserve extra memory() to allocate additional buffer space: say the total
(including the phase-one reservation) is B bylcs.

(2)  Foreach resource R;, let x =F(C,R;, E, .., ). where C is the cost function computed by
this HRM in phase one. Reduce x if nceded so that total buffer space needs (see Eq. 10)
do not exceed B. Do the relax() opcration on R;, increasing its dclay bound by x.
Subtract x from E, ., .

(3) Compute the largest value of W, such that total buffer space needs do not exceed B.
Prepare a new reply message, containing W, and the ncw E, ., . If this is the first host,
pass this message to the sending client. Otherwise, pass it to the previous HRM.

This algorithm minimizes total cost if buffer space is available to accommodate the optimal
delay bounds. A more complex algorithm can minimize total cost given limits on buffer space in
cach host. This algorithm would require propagating information about the scquence of hosts,
their available buffer space, and the locations of resources.

Resources are reserved for the minimum possible delay bound in phase one, then relaxed in
phase two. A session request arriving in the interim could be rejected, even though it might be
accepted after relaxation. To avoid this pathological situation, the following policy can be used.
If a local reservation request fails and there are compound session requests outstanding, the
request is put in a FIFO queue of requests for that resource, and retried whena relax() is done.
If the request still fails when all relaxation is finished, it is rejected.

Suppose a compound session request reserves resources Ry and R, and a second request
reserves the same resources but in a different order. If there is enough capacity for only one of
the two sessions, both sessions could be rejected. This possibility can be eliminated by ordering
the resources on a host, and reserving them in that order.

3.7. Nonlinear Compound Sessions

The notion of compound session can be cxtended to include situations in which data
streams branch or merge. Such ‘‘nonlincar compound sessions’’ can be established using the
mechanisms for linear compound sessions described above. These mechanisms provide two
“‘hooks”’ for this purpose: 1) the sending client request can include information about resources
that *‘precede’’ the new session; 2) the receiving clicnt, after receiving a session request from the
HRM, can do whatever it wants (including establishing more sessions) before it initiates phase
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two.

As an example, consider an application in which a stream of CM data is sent synchronously
to multiple receivers. This can be done efficiently using a multicast tree [11]. By making each
edge of this tree a compound session, it is possible to form a tree-structured compound session,
thus guaranteeing the throughput and delay to each of the recipients (see Figure 12).

The algorithm for establishing a tree-structured session is as follows. A tree of multicast
agents X - - - X, is given (we do not specify how this tree is determined). The root is the data
source and the leaves are sinks. Values E,,,,, and £, are given for the end-to-end delay
bound. The goal of the algorithm is to achieve a delay bound no greater than £, and as close
t0 Ejger as possible, along each branch of the tree, and to minimize cost given these bounds.
Each agent executes the following algorithm.

(1)  Receive a session request message M from the local HRM (the root agent X | rcceives its
rcquest directly from a client).

(2)  For each child X;, asynchronously call HRM, rcquesting a compound scssion traversing
the CPU and network resources to X;. The cumulative cost functions and delays for this
request are taken from M .

(3)  Wait for replies from all children. Let D be the largest of the delays of the children, W
be the minimum of the workahcads from the children, and £ be thc minimum of the
cxcess delays.

(4) Form a reply message containing D, W and E'; pass this reply message to the local HRM.

In a second example, a receiver receives data streams from several sources and uses an
audio DSP to mix the streams. It can do this as follows:

(1)  Wait for session requests to arrive from each of the sources.
(2) Doa reserve () operation on the DSP resource.
(3) Compute the excess delay for each of the component sessions; let £ be the minimum of

these.
/ -
, L /32/
X1 - X2 X4 :
\ K
X5 : ¥
a) data flow b) establishment order

Figure 12: A simple example of a tree-structured session. Multicast agent X | receives CM data
from X |, and forwards it to X4, X4 and X 5. When establishing the session, the order of messages
is shown in b); (2,2°,2'") and (3, 3°, 3"") occur in parallel.
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(4)  For each incoming session i, compute F(C;, R, E) where R is the DSP resource. Let X
be the minimum of these. Call relax() to rctumn this amount of delay to the DSP
resource.

(5)  For each incoming session i, construct a reply message containing the appropriate £,
and retum it to the local HRM.

In both examples, dynamically extending the nonlinear session (e.g., to handle new partici-
pants in a conference or new data streams to be mixed) is possible, but may not give optimal cost
assignment.

3.8. Elaborations of the Compound Session Model
The compound session model might be extended in several ways:

Negotiated message size. The model can be extended so that message size, and its associ-
ated packetization delay, is negotiated by the session establishment algorithm.

Route selection. The scssion establishment algorithm can be extended to sclect between
multiple altcmative routes based on cost minimization.

Changing conditions. The following mechanisms could be added to deal with changing
conditions: 1) Renegotiate a session, dividing the delay differently, when cither resource costs
change (e.g., due to changing load conditions) or more buffer space bccomes available. 2) If a
client request is rejected due to insufficient resources, arrange to notify the client when resources
are available. 3) For CM applications that change data rates, renegotiate the throughput of a ses-
sion (as opposed to deleting the session and creating a new one with a different throughput).

4. IMPLEMENTING THE CM-RESOURCE MODEL

We now discuss how the CM-resource model can be put into practice. First, we describe an
implementation of the compound session establishment algorithm for the DoD Intemet. We then
illustrate how a CPU scheduler, a token-ring network, and a file system might be implemented in
the CM-resource model (i.e., how they can be managed and scheduled in order to support the
interface defined in Section 2.6). These examples are intended only to illustrate representative
techniques, and are not detailed or complete.

4.1. SRP: An Internet Protocol for Session Establishment

The Session Reservation Protocol (SRP) is a realization of the compound session establish-
ment protocol for IP networks {2]. Using SRP, a compound session can be created and associated
with a connection of TCP or any other upper-level protocol. The performance guarantecs of the
compound session apply to the data traffic from the sending to the receiving client on the associ-
ated connection. No modifications to the format of transport- or [P-level messages, or to the tran-
sport protocols themselves, is required. A prototype of SRP has been implemented under Mach.
It runs as a user-level server process that communicates with clients via local IPC, with other
SRP servers via Sun RPC, and with kemel-level resources via special system calls (sce Figure
13).

SRP acts as a host resource manager (HRM), but only for certain resources. On the sending
host, SRP reserves the outgoing network resource. On a gateway, SRP all resources (CPU and
outgoing network). On the receiving host, SRP makes no reservations, and simply conveys the
session request to the receiving client. The clients of SRP are responsible for reserving all other
resources that handle the CM data, such as input and output devices and CPU on the end nodes.
Thus, on the sending and receiving hosts the HRM function is divided between the sending client
and SRP.
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. RPC
client SRP € SRP
uscr
kemnel
rescrve,
register relax
session
[P module CprU nctwork
resource resource

Figure 13: The Session Reservation Protocol (SRP) is implemented by a sct of user-level servers
that communicate with clients and with cach other, and that make system calls to reserve local
resources.

SRP requires that the connection follow a static route through the network, so that the set of
resources is fixed. This requires modifying IP implementations to do static routing for packets
that are part of a session. In addition, the kernel on a receiving host must associate packets with
sessions (typically at the IP level) in order to correctly prioritize the handling of packets by the
CPU {4].

4.2. Uniprocessor as Resource

We assume that for each session S there is a process Pg that does all the work for §, and no
other work. P handles a sequence of messages arriving asynchronously (say, on a nctwork con-
nection), and sleeps whenever no messages are available. The input interface for § is defined by
message arrivals; in the case of a network connection, this is the moment the network interface
requests a receive interrupt. Message completion occurs when P makes a call indicating that it
has handled the packet; this call either changes the priority of P or puts it to sleep if there are no
more messages.

We propose a CPU scheduling policy called deadline-workahead scheduling in which
processes are (dynamically) classified as follows. A realtime process is one that is associated
with a session. At a given time ¢, a realtime process is called critical if it has an unprocessed
message m with [(m) <t (i.e, m’s logical arrival time has passed). Realtime processes that have
pending work but are not critical are called workahead processes. There are two classes of non-
realtime processes: interactive (for which fast responsc time is important) and background.

The deadline-workahead policy can be summarized as follows. Critical processes have
priority over all others, and are preemptively scheduled according to earliest deadline (the dead-
line of a process is the logical arrival time of its first unprocessed message plus its delay bound).
For each workahead process, the scheduler uses a timer to make the process critical at the
appropriate time. Interactive processes have priority over workahcad processes, but are
preempted when those processes become critical. Non-realtime processcs are scheduled accord-
ing to an unspecified policy, such as the UNIX time-slicing policy. This policy may also move a
process between interactive and background.



When there no runnable critical or interactive processes and a workahead process is runn-
able, the scheduler chooses a workahead process P (perhaps the process with the earliest deadline
or the most work available). P is then run for a full quantum (say, 100 times the system call plus
context switch time) even if its deadline advances beyond that of another workahcad process.
This reduces the context switch overhead during workahead.

The reserve() operation exported by our CPU scheduler takes two additional input
parameters: minimum and maximum CPU time per message. The scheduler maintains a list of
existing sessions and their parameters. Suppose that a new session § has becn requested, and that
sessions S, - - - S, already exist. The smallest possible delay bound D for § is determined by
iterated simulation (see [7}). Initially, D is set to the minimum CPU time per message of S.
Then the following steps are done.

(1)  Simulate the operation of the CPU under a ‘**worst-case’’ workload: all sessions generate
maximum periodic workload starting at the same time. If this case can be handled
without missing a deadline, so can any other [22].

(2)  If the simulation reaches a point where the run qucue is empty, terminate; D is the delay
bound of .

(3) If a message completion at time ¢ for a session other than § violates its delay bound,
increase D to t—tq, where ¢ is the last arrival of a message for S, and go to step (1). (By
increasing D by this amount, the deadline will not be missed on the next simulation.)

(4)  If a message completion for S violates its dcadline by an amount X, add X to D and go
to step (1).

In order for the scheduler to work correctly, CPU execution must be matched with the
correct session and message. System software must be structured in a way that makes this possi-
ble. For example, incoming protocol handling must be done by processes, rather than by a
software interrupt routine as in current BSD UNIX-bascd systems. When realtime processcs run
at the user level, they must correctly report deadline changes to the kemel. There are several pos-
sible sources of ‘‘priority inversion'’ in CPU scheduling: interrupt-handling overhead,
interrupts-masked periods, priority inversion during locking (including kemel non-preemption),
etc. Methods for bounding these, and taking them into account during reservation, exist (35], but
are beyond the scope of this paper.

4.3. FDDI Network as Resource

FDDI is a 100 Mbps local-area network that uses a timed token media access protocol
[39,46]. The FDDI protocol has two data prioritics. Asynchronous data uses a conventional
token-passing protocol: each station waits for the token, transmits for a bounded time, and regen-
erates the token. Synchronous data has higher priority. A Target Token Rotation Time (TTRT)
is fixed!. If a given station has not seen the token within the TTRT then it may not send asyn-
chronous data. Each station i has an allotment S, for synchronous data; it may only send that
many bytes each time it gets the token. The allotments are initially zero, and can be adjusted by
making requests to a network manager using a Station Management (SMT) protocol [45]. The
network manager ensures that

P+( Y S;)B <TIRT
hosts i

where B is the data rate of the network and P is the propagation time around the ring. If this
holds, then the maximum token rotation time is 2(TTRT), the average token rotation time is

! The TTRT can be a critical factor in determining the range of scssions that the network can handle. Valenzano et al. [40}
analyze the effect of TTRT on network performance.



TTRT [34], and each station { is guaranteed a minimum throughput of
_1_
TTRT

bytes per second for synchronous data.

S; (1)

Let us consider how to provide CM-resource scssions in an FDDI network. A session in
this case consists of a point-to-point connection between two hosts. Message arrival into a ses-
sion is the moment of a call 10 a network_send () routine in the sender. Completion occurs
when a receive interrupt request is gencrated in the receiver. Two issues must be addressed: how
to provide delay bounds, and how to limit workahead. We discuss these separately.

4.3.1. Scheduling and Reservation

The crucial hardware resource here is the network medium?, for which there are two levels
of scheduling: 1) contention by hosts for the medium and 2) scheduling of outgoing packets
within a particular host. The policy for 1) is specified by the FDDI protocol; we proposc the fol-
lowing policy for 2). Network_send () computes the workahead of the packet and, based on
this, the deadline by which it must be transmitted. The send queue is deadline-sorted. On each
send-completed interrupt, the queued packet with the carliest deadline is sent.

The reserve () operation, like that for the CPU, uses simulation. In this case the parame-
ters of a simulation are 1) the delay bounds of the sessions and 2) the host’s synchronous-data
allotment A. Each simulation models the system under worst-case conditions (all sessions begin
simultancously, 2TTRT elapses before the token arrives initially, and TTRT elapses between sub-
sequent token arrivals). The simulator is used iteratively to solve two problems:

Delay minimization. The goal here is to find the smallest possible delay bound for a new
session, and a corresponding allotment A, given an upper bound A on A. An initial delay
bound D and allotment A are given. The simulation is run. If a deadline is missed during
the simulation, 4 is increased by the smallest amount that allows a packet to be transmitted
in an earlier token round, and the simulation is restarted. If such an allotment would exceed
A, then A is set to A, the delay bound D is incrcased by the smallest amount that would
result in a different transmission order, and the simulation is restarted.

Allotment Minimization. The goal here is to find the smallest possible allotment given
fixed delay bounds. An initial allotment A is given. On each iteration, if a deadline is
missed, A is increased by the smallest amount that allows a packet to be transmitied in an
earlier round, and the simulation is rc-tarted.

The goal of reserve () is to make a reservation for the smallest possible delay; it can
make as large an allotment as it needs (and is able) to. The algorithm is as follows: The host con-
tacts the network manager, requesting the largest possible allotment A. If this is not sufficient to
support the aggregate throughput of this host’s sessions by Eq. 11, the allotment is retumned to its
previous level and the new session is rejected. Otherwise, the simulator is used to solve the
Delay Minimization problem described above. The initial delay bound for the new session is
2(TTRT) (the simulator computes only media-access delays; the actual delay bound returned by
reserve () includes transmission time and propagation time also). The minimum unbuffered
delay rctumned by reserve () is the propagation time to the destination host. The workahead
limit is RD, where D is the maximum queueing delay within this host (computed as above); this
is the smallest workahead limit that can be guaraniced, given the regulation scheme described
below.

* We ignore the small amounts of CPU time needed to do queueing operations and interrupt handling on both hosts. CPU time
for time-consuming activities such as data checksumming is assumed 1o have been reserved (with the CPU resource) by higher levels.



The goal of the relax () operation is to reduce the allotment as much as possible, given a
new delay bound. This is done by using the simulator to solve the Allotment Minimization prob-
lem described above, using the delay bound supplied as an argument to relax (). The resulting
allotment is communicated to the network manager. Likewise, free () computes the minimum
allotment for the new set of sessions, and communicatcs it to the network manager.

4.3.2. Regulation of Packet Transmission

The transmission of network packets must be ‘‘regulated’’ to prevent receive buffer
overflow. This regulation can be accomplished as follows. When a packet is passcd to
network_send (), the workahead of the session is computed according to Eq. 3. If the result
exceeds the workahead limit for this scssion, the packet is enqueued in a scparate delayed-send
queue, and a per-session delayed-send timer is started if it is not alrcady active. The delayed-
send timer is set for a time when the workahead will be below the session’s limit. When the
delayed-send timer for a given session expires, one or more packets from that session are sent on
the relevant network interface, or arc enqueucd for sending.

To reduce the timer overhead, it may be desirable to use hysteresis, setting the timer so that
the workahead will be below a fraction (say S0%) of the workahead limit. This avoids setting a
timer for every packet sent during workahead.

4.4. The File System as Resource

We now sketch the design of CMFS, a file systcm that can serve as a source or sink of both
CM data and non-realtime data. For simplicity, we assume that data is stored on a single disk
drive, and we consider only rcading. We also assume that the CPU time of interrupt handling and
disk scheduling decisions is negligible.

CMFS provides a conventional interface for file creation and access. In addition, it allows
clients to create realtime files, and exports an operation
read RT file(
int R,
void* buffer,
int buffer length);

that causes a realtime file to be read at a specified rate R (bytes/second) into a circular memory
buffer, without explicit read calls by the client. Read RT_file() retumns failure if it is not
possible to read the file at the given rate. Otherwisc, the client is notified when playback has
begun. The arrival process at the buffer is guarantecd to be workahead-positive relative to this
start ume.

We assume that the only available buffer space is that supplied by clients. The reservation
and scheduling algorithms used by CMFS must ensure that the rate guarantees of all sessions are
honored given this limit on buffer space.

We assume that the disk is laid out so that for a given file F, there is a fixed block size Bg
(in bytes) and a maximum seek/rotation time Tx betwcen adjacent blocks®. There are two global
parameters: maximum seek/rotation time T; between any two blocks, and data transfer rate Rg .

Suppose that CMFS has active sessions S - - - S, reading files £y -~ F, atrates Ry - - R,.

Definition. An operation on a file is a seek/rotation followed by a read of some number M;
blocks of the file. An operation sequence is a sequence of n operations, one per session. An
upper bound 14! on the duration of an operation scquence ¢ can be computed based on the

3 “These are functions of the disk layout policy, which we do not discuss here.
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session and system parameters. A workahead-augmenting sequence is an opcration scquence ¢
satisfying

M“B“ >R" |¢|

for all i, where B, is the block size of the file read by session S; (see Figure 14). A set of scssions
can be accommodated by CMFS if there is a workahead-augmenting sequence ¢ such that

N‘B" SC‘ ’ (12)

where C; is the size of the circular buffer used by S,. The existence of such a sequence is decid-
able since only finitely many sequence satisfy the above criterion.

For a given workahead-augmenting sequence ¢ and a session S, let D (S, ¢) denote the time
after the start of ¢ when S 's read is completed. Let 7; denote w; (¢)/R; (T is the workahead of §;,
expressed in units of ime instcad of messages). The file system szate at a given time ¢ is the vec-
torT=<T - T,>.

Definition. Let @ be a set of workahead-augmenting sequences. A state T is safe (relative
to ®) iff there exists a workahead-augmenting sequence ¢e ® such that T; 2 D (§;, ¢) forall i.

Intuitively, a safe state is one in which the file system can be assurcd of rcmaining
workahead-positive for all sessions, since it can simply repeat the sequence ¢ over and over.

We now describe the scheduling algorithm used in CMFS. As with CPU scheduling, there
are interactive and background disk requests as well as realtime operations. Let T denote the
current state of the system. Let L; denote the *‘workahcad limit"’ for §;, measured in time units
(this is determined by the buffer space allocated to S;). These limits must be high enough so that
the vector <L; — X > is safe, where X is the duration (including seek) of the longcst possible
non-realtime operation; otherwise such an operation could never be handled. Let © be a
nonempty set of workahead-augmenting sequences, and assume the initial state is safe (rclative to
®). The following procedure is called every time a disk operation finishes:

() IfT, 2L, forall i: start an interactive request if there is one; otherwise start a background
request if there is one.

(2)  If there is an interactive request of duration X, and the state with components 7, — X is
safe, start the interactive request.

A4
O
to

» D,

Figure 14: A workahead-augmenting sequence is a scquence of disk reads that increascs the wor-
kahead of all sessions.
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(3)  If the system just finished a read for session S; and T; < L; (i.e., the scssion is not too far
ahead), then read the next block of §;’s file. (This policy reduces secks; it could be
modified to switch between files periodically.)

(4)  Pick a workahead-augmenting sequence ¢ and perform it. During the sequence, a read for
scssion i is skipped if T;>L;.
Whenever a read completes, if all sessions satisfy T; > L, and there are not non-realtime
requests, a timer is started for the carliest time when some session S; will satisfy T, < L. [f the
disk is idle when this timer expires, an operation for the corresponding session is started.

The above algorithm describes the steady-state mode of CMFS. The reserve () algo-
rithm for a new session S, generates one or more workahead-augmenting scquences satisfying
Eq. 12, rcjecting S, if there are none. The system then goes into a startup mode in which it main-
tains a state that is safe relative to S, - S,_;, and schedules reads for S, when possible (in
preference to non-realtime requests). When the system state is safe relative 10 Sy - - S,,, the new
client is notificd, and the system rcsumes stcady-statc mode.

The above design could be gencralized to handle variable data-rate files by computing wor-
kahecad based on timestamps in the file data.

5. RELATED WORK

The notion of a *‘linear bounded arrival process’ and its associated workahcad function
w(t) were proposed by Rene Cruz [10} in the context of multiprocessor interconnection net-
works. Cruz defines a variety of modules for (de)multiplexing, processing, regulating and gen-
erating LBAPs, and develops a calculus for computing delay in networks of these modules.
Becausc of the different domain, Cruz’s assumptions are different than ours: devices work at a
constant rate, and with fixed scheduling algorithms. Also. there is no notion of logical dclay; the
goal is to evaluate and control actual delay.

Much work has been devoted to the design of system components (nctworks, processing,
storage) with real-time semantics. For the most part, the resulting systems are compatible with
the CM-resource model.

. CPU scheduling: An optimal guarantece algorithm for rate-monotonic scheduling on a
uniprocessor is known [22]. Various heuristic algorithms for more complex situations
(multiple processors, resource contention, etc.) have been proposed (20,44]. An integrated
compiler/scheduler (in which the compiler computes code segment execution times) is
described by Stoyenko [37].

° Network communication. Real-time LAN mcdia access protocols arc surveyed in [19].
The goal of end-to-end internetwork connections with meaningful *‘quality of service™
parameters is discussed in [29]. The idea of ‘'logical arrival time’" was indcpendently
developed by Zhang [43], who describes it in terms of *‘logical clocks’’. These clocks are
uscd to provide fair queueing of data streams in nctwork gateways.

° File systems. Abstractions for multi-media filcs, including realtime filcs, are explored in
(30, 36]. Issues of disk layout and scheduling are discussed in [1,42].

Economic approaches have been used for such resource allocation problems as load-
balancing [25], network access [17] and file placement {18]. More recently, research has been
directed towards *‘microeconomic’’ approaches in which system agents are sclfish and competi-
tive, and prices vary on demand. This approach has also been used for problems such as routing
and load-balancing [12,26,41]. It is often possible to show that such systems converge 1o a glo-
bally ‘‘optimal’’ resource assignment.



Finally, the idea of meta-scheduling is present in the design and analysis of some distri-
buted real-time systems [27,44]. This work differs from ours because it focuses on the end-to-
end latency of request/reply operations, rather than on the throughput and delay of data streams.

6. CONCLUSION

The CM-resource model provides a basis for a meta-scheduler for a distributed system sup-
porting integrated digital continuous media. The model includes a workload model (linear
bounded arrival processes), a model of reservable delay-producing devices (resources), and a pro-
tocol that allows a group of resources to negotiate the parameters of end-to-cnd configurations, in
both lincar and nonlinear topologies. The resource model allows clients to cnsure starvation-free
output, and to obtain bounds on end-to-end delay. The amount of buffer space nceded on a given
host can be computed, eliminating packet loss due to buffer overrun. The combination of these
factors greatly simplifies the task of writing CM applications.

Let us retumn to the goals set forth in Section 1. The CM-resource model fulfills these goals
as follows:
Abstraction: The model defines an abstract interface that can be implemented for a range of sys-
tem components (CPU, network, file system). Many existing scheduling policies (FIFO, FDDI
timed-token protocol, ezc.) can be encapsulated by this interface.

Coexistence: By allowing system components to work ahead, response for bursty non-realtime
clients can be improved. Furthermore, any unused portion of a reservation can be used by non-
realtime traffic.

End-to-end guarantees: The model allows true end-to-end performance guarantees. The com-
pound scssion establishment protocol allows negotiation of parameters (workahead, delay
bounds) among all the components of an end-to-cnd scssion.

The CM-resource model is therefore a viable basis for the development of distributed com-
puter systems offering integrated digital continuous media. Considerable work remains to be
done, however, in investigating the use of the CM-resource model in the design of operating sys-
tems, file systems, network design and protocols, and in application programming.
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