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Construction of Smooth Curves and Surfaces
from Polyhedral Models

Leon A. Shirman

ABSTRACT

This work is devoted to the problem of constructing geometrically continuous interpolating
curves and surfaces through a given set of points. Geometric continuity is a relaxed measure of
parametric continuity and is defined in terms of continuity of tangent vector for curves and of
tangent plane for surfaces. Various solutions to the above problem have been proposed. How-
ever, the resulting curves and surfaces are often of poor visual quality and contain unnecessary
‘wiggles' and ‘overshoots’. Our method breaks the process of curve or surface construction into
several independent procedural steps and assigns available degrees of freedom based on
geometric reasoning. This greatly improves the resulting visual quality of the object.

Our curve interpolation method builds G! continuous curves from cubic Bézier segments.
A number of heuristic rules for determining vertex normals and curve control points is intro-
duced. Furthermore, this approach is extended to produce curvature continuous (G?2) cubic
splines.

This procedural approach is generalized to the construction of surfaces from a raw
polyhedral model, supplied by the user. This construction proceeds in several steps: first, suitable
normals at each vertex of the original model are computed; they will become the normals of the
final surface at these points. Second, cubic Bézier curves are constructed in place of the edges of
the original model; the final surface will interpolate these curves. Third, surface patches are
defined with these curves as their boundaries; the patches will jointly form an interpolating G!
surface. At each of the above steps, heuristic rules are used that assign reasonable values to avail-
able degrees of freedom, such as vertex normals or tangent directions of boundary curves. How-
ever, the user always has an option of overriding default assignments with prescribed values.

From the mathematical analysis of G! continuity conditions between Gregory and/or Bézier
patches, it follows that the surface can be defined in several ways and still maintain required
locality and interpolating properties. These available degrees of freedom that are intrinsically
present in the system, are utilized to alter the cubic boundaries as well as the shape of the two
patches near their common seam. They are made available to the user in the form of intuitively
understandable shape paramerers.

Simplicity of the surface representation is important for rendering efficiency. Therefore, a
method was developed that replaces the Gregory patches used in the original implementation by
polynomial quadrilateral and triangular Bézier patches.



The described method of surface construction has several important advantages. The
method is modular, i.e. the construction process is split into several separate stages so that a
change of procedural rules at one stage does not affect another. The method is also local, and the
underlying surface representation is simple. The method is flexible because surfaces can be built
for various types of data (e.g. points, points with normals, profile curves). Finally, the method
gives to a user many shape parameters that can be used to alter the final shape; however, an
automatic default solution can always be computed.



Introduction

In the early days of Computer Aided Design and Manufacture (CAD/CAM), it was common
to model objects with linear segments and planar polygonal facets. However, polygonal model-
ing is not well suited for the representation of the intrinsically smooth objects, such as a car hull,
a human face, or an airplane. To deal with object like these, curves and surfaces modeled by
parametric splines have been widely utilized in the computer graphics community. Various
mathematical expressions for smooth surface design have been proposed by Coons [29], Bézier
[11], Gregory [61], and others [10,43,46]. This work describes procedural approaches to creat-
ing smooth objects and surfaces by rounding of polyhedral models and by creating smooth inter-
polations between given profile curves.

A widespread method for constructing smooth surfaces in CAD/CAM assembles many sur-
face patches in such a way that neighboring patches meet smoothly. Smoothness can be defined
in terms of differentiability of the surface across their common boundary. However, very often
only the shape of adjoining patches, not their parametrization, is important. Then, geometric con-
tinuity [3,8,9,32] is sufficient. A key problem in designing a smooth surface is to ensure
smoothness across boundary curves.

There are two major classes of surfaces used in CAD/CAM, those that interpolate the given
vertices or curves and those that approximate them. In this work, we have concentrated our
attention on interpolating surfaces because they arise naturally as a result of procedural surface
construction. Moreover, interpolating surfaces are practical for industrial applications since often
several points, or even a whole profile, of the desired surface are known precisely.

It is typically the case that many different smooth surfaces can be constructed for a given
set of interpolation data. One way to avoid this ambiguity and to develop a method that builds
unique surfaces is to assign reasonable default values for the extra degrees of freedom. Alterna-
tively, these extra degrees of freedom can be made available to the user for controlling and fine-
tuning the shape of the resulting surface. Moreover, additional flexibility can be very useful for
more strongly constrained input, for example, if the given boundary curves or vertices need to be
interpolated with specified tangent directions.

Extra care must be taken when assigning values to the available degrees of freedom. While
perfectly smooth G ! surfaces could be constructed even for poor choices of parameters, the result
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might not be pleasing to the human eye nor be satisfactory for the intended purpose. For exam-
ple, undesired waves on the surface could occur. Interpolation with pleasing splines is an impor-
tant aspect of our approach.

Local control over a surface is yet another desirable property. Often only a small part of a
surface need to be changed and one would then like the rest of it to remain unaffected. Locality
of control is also very important for an interactive system. Finally, simplicity of the underlying
representation is clearly required for an efficient and fast display of potentially complicated
curved objects.

1.1. Procedural Interpolation

Our interpolation scheme addresses all of the above issues. A user is expected to supply at
least a set of points to be interpolated in R>. In addition, the following information may or may
not be supplied:

e A tessellation that connects the given points into triangular or quadrilateral faces, thus
defining explicitly the topology of the surface to be constructed. Each edge in the tessella-
tion will be converted into a boundary line between two patches forming the surface.

e Normals to the surface at the given points. The resulting surface, in addition to interpolat-
ing the points, will be orthogonal to the above normals at each given point.

e Curves between the given points that the final surface will interpolate along with the given
points. The final surface will be made of the patches, joining across these boundary curves.
The curve network must, of course, be compatible with the set of faces and the normals.

o A set of shape parameters that controls the shape of the surface both locally and globally.

This additional information need not be supplied for the whole data set. For example, normals
could be given only at few points.

The construction of the surface proceeds in the following steps:

1. The tessellation into triangular or quadrilateral patches is performed (if it is not already sup-
plied by the user).

2. Nommals at each given point are computed (if they are not already supplied by the user).

3. Each edge in the tessellation is replaced by a boundary curve (if the curves are not already
supplied by the user). Cubic Bézier curves are used for boundary representation.

4. The patches with the boundaries defined in the previous step are constructed. Each pair of
patches will be geometrically continuous across their common boundary, thus making the
whole surface G!. Bicubic quadrilateral and quartic triangular Bézier or Gregory patches
are used.
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5. The shape of the surface is adjusted with local and global shape parameters.

The above approach to surface construction is illustrated in Fig. 1.1.

L3

|
-

Figure 1.1: Procedural approach of surface construction.
a. Original polyhedral frame.
b. Normals are computed at each vertex.
¢. Each edge of the original object is replaced by a curve.
d. G ! continuous patches are filled into the meshes.
e. Shape of the surface is adjusted.

The procedural, step-by-step method of constructing surfaces is easily understood by the
user. A default solution is computed by choosing reasonable values for all parameters not expli-
citly specified by the user, thus allowing minimal input. Then it is possible to fine-tune the solu-
tion to a user’s particular needs by changing several parameters that define the surface. Due to
the locality of the method and the fact that the patches are polynomial, the changes can be
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performed very efficiently.

It tumns out that the problem of selecting surface normals and eventually boundary curves
from a set of data points is difficult in the sense that it is hard to avoid some solutions of poor
quality in a resulting surface for at least some sets of data points. For strongly asymmetric sets of
interpolation points, a naive method of surface construction would typically produce a surface
with creases, spikes, or overshoots. These unsatisfactory results are generally characterized by
large variations of curvature along the surface. To gain insight into ‘smarter’ ways of selecting
normals and boundary curves, we first analyze the interpolation problem for curves.

In this problem, a set of points in R? or R? is given, perhaps with optional normals at
selected points. Our procedural method of constructing interpolating G ! curves through a given
set of points produces curves of high visual quality (typically measured in terms of curvature
variation). The approach is very general and flexible and easily extends to produce curvature
continuous (G2) curves. The study of interpolating curves provides the foundation for the con-
struction of boundary curves for interpolating surfaces.

1.2. Thesis Overview
This presentation is logically divided into 4 parts.

The first part (Chapter 2) is devoted to previous relevant research in spline construction and
surface interpolation. Mathematical formulations of Bézier and B-splines are given. Different
surface patch types are discussed: Coons patches, Hermite patches, and triangular and quadrila-
teral Bézier patches. The need for Gregory patches in an interpolation problem is explained.
Finally, composite surfaces and geometric continuity are discussed.

In the second part (Chapters 3 and 4), we introduce our concept of procedural interpolation
for curves. In Chapter 3, we start by listing useful properties that pleasing splines should have.
Then we present our procedural approach for the case of curves composed of cubic segments.
This process has two stages: first, the tangent direction (or the normal) at each vertex is deter-
mined. Second, Bézier points of cubic segments are chosen on appropriate tangent lines. Vari-
ous rules for choosing these normals and Bézier points are further described that guarantee pleas-
ing shapes for the resulting curves. In Chapter 4, the procedural method is extended to produce
G? curves. In this method, two cubic Bézier segments are used between each pair of adjacent
vertices. A rule to choose default curvatures at interpolation points is also given.

The third part of this work (Chapters 5-7) is devoted to surface interpolation. In Chapter 5,
we extend the procedural approach of Chapter 3 to define surface normals and Bézier points of
boundary curves. Several methods are introduced and compared to each other. In Chapter 6, we
address the next logical step in surface construction: filling in Gregory paiches into a mesh of
boundary curves. Further, we study the G ! continuity constraints across patch boundaries. The
available degrees of freedom can be made available in the form of shape parameters to change the
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shape of two adjoining patches near a common seam without destroying G! continuity. Finally,
in Chapter 7, we introduce a method to fill in several Bézier patches into a given curve mesh
instead of (rational) Gregory patches. The resulting polynomial surface is guaranteed to be G!
across both interior and exterior boundaries.

Finally, in the last part (Chapter 8) we describe UNICUBIX, an experimental modeling sys-
tem which was used to test the above ideas. Concluding remarks are given in Chapter 9.



Overview of Surface Modeling with Patches

In this chapter, an overview of different patch types is presented. Mathematical for-
mulations of Coons, Gordon, B-spline, Bézier, and Gregory patches are given.
Finally, composite surfaces and the notion of geometric continuity are discussed.

2.1. Types of Surface Patches

2.1.1. Parametric and Algebraic Patches

The simplest and the most versatile mathematical element used to model a surface is a
patch. There are two basic types of patches used in Computer Aided Geometric Design:
parametric and implicit. A parametric patch is a curve-bounded collection of points whose coor-
dinates are given by continuous parametric functions of the form

x=x,w), y=ywy), z=zu,v), 2.1
or, in the vector form,
s=su,v). 2.2)
The parametric variables 4 and v are constrained to lie in some interval, usually in [0,1].
An implicitly defined surface, on the other hand, is described by a single implicit equation:
fxy,z)=0. (2.3)
If the function f (x,y,z) is polynomial, the surface is called algebraic.

In some cases, it is advantageous to use an implicit rather than a parametric representation.
Unlike parametric patches, algebraic surfaces do not need the extra parameters # and v, which
decreases the dimension of the space of variables. This may result in simpler expressions for
geometric shapes. For example, an algebraic equation for a sphere x2 +y2 +22—r% =0 cannot
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be expressed in a polynomial form by using a parametric representation. On the other hand, it is
generally hard to define a bounded surface in algebraic terms. Moreover, the parametric form is
usually more intuitive as one has full control over the parameters 4 and v. Their exact domain is
always known; it is easy to identify boundaries and corners of the surface, etc. One can visualize
a parametric patch simply as a mapping of a region in the («,v) plane into (x.y,z) space.

Consequently, most of the research on free form surfaces has focused on the parametric
form. Many elegant techniques exist for modeling with parametric patches [10,43,46]. Con-
versely, algebraic surfaces are rarely used for geometric design and only a few papers
[122, 123, 124] exist on the subject. Moreover, many of the existing solid modeling systems
[26,112,121] do not accommodate algebraic patches. This work will deal with parametric
patches only.

2.1.2. Quadrilateral and Tensor Product Patches

Although theoretically a patch can have any number of boundary curves, mostly quadrila-
teral and triangular patches are used. Quadrilateral patches are especially popular, as they can be
thought of as a mapping of a unit square in the (u, v) plane (Fig. 2.1) and therefore are conceptu-
ally simple.

Figure 2.1: A parametric surface patch.

Among the quadrilateral patches, tensor product patches are widely used. A tensor product
patch is defined by
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nm
suv)=Y Y V;ipiw)q;v), u,vel0l] 2.4)
i=0j=0
Here, V;; is a rectangular grid of control vertices, or just 3-dimensional coefficients, and p; (1)
and g; (v) are scalar functions that can be used for curve construction. Thus, tensor product
patches are extensions of the one-dimensional scheme for curves

cw)=5 Vi piw) @5)
(=)

to two dimensions. One of the reasons that these patches are so common is the fact that the
smoothness of the surface s(u,v) is guaranteed by the smoothness of the curves p; (1) and g;(v)
[32,59]. Hermite, Bézier, and B-spline quadrilateral patches are examples of the tensor product
patches, whereas Coons patches are not.

2.1.3. Triangular Patches and Barycentric Coordinates

Quadrilateral surface patches are well-suited for the modeling of objects that have a rec-
tangular structure, such as a car door or a top of a human head. However, applying quadrilateral
patches to other objects can result in degenerate patches. In these situations, triangular patches,
which do not suffer from these degeneracies, are superior. Triangular patches are also better
suited for the problem of fitting smooth surfaces to scattered data [41]. For these reasons, triangu-
lar patches have become increasingly important in Computer Aided Geometric Design, or CAGD.
A lot of literature exists on the definition and use of triangular patches for surface construction,
for example {2, 15,42, 64,76,93, 106].

Just as a quadrilateral patch is a mapping of a unit square, a triangular patch is a mapping of
an equilateral triangle with a unit side length. Triangular patches are best expressed in barycen-
tric coordinates.

Let T be a triangle in space with vertices T, T, and T; (Fig. 2.2). A point P in the plane of
the triangle can be uniquely expressed as

P=uT +vT+wTs; u+v+w=1 (2.6)

P is said to have barycentric coordinates (u v ,w) with respect to T. The interior of the triangle is
characterized by the additional restriction u ,v,w 2 0.

The patch itself is then expressed as some function of the three variables u, v, and w.
Since only two of them are independent, the function is still bivariate.

2.1.4. Other Patch Types

One does not have to work exclusively with quadrilateral or triangular patches. It is possi-
ble to define a patch with more than 4 boundaries by a suitable mapping of a n-gon in (u,v)
plane. These non-standard patches can be useful in certain design situations. For example, a pen-
tagonal patch will be the natural choice for designing a dome with a pentagonal floor. Several
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T,(0,1,0)

T (0,0,1) v=20 T,(1.00)

Figure 2.2: Barycentric coordinates.

formulations for such patches have been proposed [24, 70, 113].

However, the situations when the patches with large number of boundaries are useful are
relatively rare, and the high cost of incorporating these patches into a practical design systems is
usually not justified. Moreover, as shown in [114], for n > 5 the mathematical expressions for
corresponding patches become very complicated. Recent work on S-patches, or n-sided patches
well suited for inclusion into the network of Bézier curves demonstrated that they are of very
high degree [85].

There are quite a few other mathematical formulations for surface patches. They include
cylindrical and ruled surfaces, surfaces of revolution, etc. However, they are not relevant to this
work and therefore will not be discussed here. The reader is referred to corresponding textbooks
[46,91] for a complete treatment of the subject.

2.2. Coons Patches

Coons patches [29, 30] are completely defined by their boundaries. They are easy to con-
struct and are well-suited for interpolation of the network of curves in space. The most widely
used Coons patches are bilinearly blended, which are defined solely by the boundary curves posi-
tions in space, and bicubically blended, which additionally depend on the derivatives on the
boundaries. In general, Coons patches are not tensor product.



2. SURFACE MODELING OVERVIEW 10

2.2.1. Bilinearly Blended Coons Patches

Given the four patch boundaries, r(,0), r(0,v), r(«,1), r(1,v) (Fig. 2.3), we seek an expres-
sion for a patch that would interpolate these boundaries. It can be shown {43] that r(x,v) can be
conveniently expressed as

r=rp+r;—ry, 2.7
where ry(u,v) is a ruled surface that linearly interpolates the two boundaries r(0,v) and r(1,v):
ryu,v)=QQ-u)rOyv)+u r(lv). (2.8)
Analogously, ro(u ,v) interpolates the other two boundaries:
ryu,v)=Q0-v)rw,0)+v r,l). 2.9

Now the sum r, + I, represents a patch each of whose boundaries is a sum of the desired curve
with the linear interpolant between the endpoints of that curve. The function r,(x,v) compen-
sates for this excess:

rpu,v)=01-u)(1-v) r0,0) +u Q- rd,0)+Q-u)vr@OD+uv r(171). (2.10)

The functions u, 1-u, v, and 1-v are called blending functions, because they are used to blend
together four separate boundary curves to give a well-defined surface.

Figure 2.3: Bilinearly blended Coons patch.

Given a network of curves, it is possible to construct a composite surface made up of
patches of this type. However, this surface will only have positional continuity across the boun-
daries. For derivate continuity, it is necessary to use bicubically blended Coons patches.
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2.2.2. Bicubically Blended Coons Patches
For these types of patches, not only positional data at the boundaries is required, but first

derivative information is necessary as well. Therefore, the given data now consists of
r(u,0), r(0,v), r(u,1), r(1,v) and r, (u,0),r,Oyv), r,@,D,r,(1v ). The mathematical expres-
sion for the patch remains the same as in the previous section:
r=r1 +r2—r12,
but the auxiliary surfaces ry, r,, and r;, are now constructed with cubic, rather than linear, inter-
polation:
r@y)=HE@rOy)+H3@)r,0v)+H3 @)r,(Ay)+H @)r(ly), (21D

ruy)=H3W r@0)+H{ ) r,@w0)+H; 0)r,@)+H;¥)rw,), @212
riate )= B @) B HE @) HE @) x

[r0,0) 1©00) 1,0.1) r0,1) 1 [HSW)]
r,0.0)r, 00 r,ODr, 0Dl [H}O)
r,(1.0r,1,0r,1,Dr,(1,1) H3w|
r(1,0) r, (1,00 r,(1,1) r(1,1) H33(v)

(2.13)

. - -

Here, H(u), i =0,1,2,3 are the Hermite polynomials of order 3 [43]. They provide the solution
to the problem of finding a cubic curve through the two points with the given tangents at these
points:
p©0) = po. P'(0)=my, p'(H=m;, p(1)=p;. 2.14)
The required solution is
P(u) =PoHJ (u) + moH { (u) + mH73 () + p1H3 ). (2.15)

The rwist vectors r,, at the four comers of the patch either have to be supplied as extra parame-
ters or have to be selected by one of the available methods, described in [12,22,43].

With bicubically blended Coons patches it is possible to fill in a given network of C! con-
tinuous curves with a C! surface. At each patch comer, the twist vector is estimated. Then, the
derivatives at the boundaries are defined by the Hermite interpolation:

r,,0)=H3wu)r, 00 +H}u)r, 00 +H3w)r,1.0+H;wr,1,0. (216

The other derivatives are determined analogously. The required surface can then be constructed
according to the above formulas.

2.2.3. Gordon Surfaces

Gordon surfaces[57,58] are a generalization of Coons patches. While a Coons patch inter-
polates just four boundary curves, a Gordon surface interpolates a whole network of prescribed
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curves r(u,v;) and r(y;,v )% i=1,.,n,j=1,.,m (Fig. 2.4). The idea behind the Gordon surface
is the same as for the Coons patch: first, a surface r (u,v) is constructed that interpolates all the
curves in the u direction. Analogously, r,(u,v) interpolates in the v direction. Finally, a neces-
sary correction ry,(#,v) is substructed.

r(uyv)

ruy,)

Figure 2.4: Gordon surface.

Lagrange polynomials [107]

LMu)=-——"—"— .17)

are very convenient for the construction of the auxiliary surfaces. The following expressions for
r;, rp and ry, satisfy the interpolating properties:

r@y)= ir(u.- WVIL (), (2.18)
=0
ryuy)= ir(u VHOLT(V), (2 10)
j=0
rp(u,v)= Z ir(ui VOLMWLIW), (2.20)
i=0j=0

r=ry+r,—rj.
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Gordon surfaces do not have to be based on polynomial interpolation. Any univariate inter-
polation scheme cab be used. For example, spline-based interpolation greatly reduces the degree
of the resulting surface.

2.3. Polynomial and Rational Patches

2.3.1. Cardinal Functions

Coons and Gordon surfaces are well suited for interpolating a network of given curves.
However, it is often the case that only a set of points V;,i =0,...,n that determines the shape of
the surface is known. In this case, the overall surface is usually defined as

suv)= T Vipiv), @221)
i=0

where p; (u,v) are the basis or cardinal functions. If, in addition, the control points V; form a
rectangular grid, and the cardinal functions are separable in 4 and v (i.e. each p; (u ,v) is a pro-
duct of a function of ¥ and a function of v), then the resulting surface becomes tensor product
and all its properties can be derived form the univariate case.

A curve with the n control points V; is defined analogously to the above formula:
n
cu)=3Y V.p;u), (2.22)
i=0

A knot vector ug< - -+ <u, is usually associated with the curve. Although the valid parameter
range of c¢(u) is [uq.u, ], the cardinal functions are defined over the whole real line.

If the curve is required to interpolate its control points, then the cardinal functions must
satisfy

lifi=j
pi(uj)'—'aij =10ifi =) (2.23)

If this condition is not satisfied, the curve is called approximating.

There are many choices for the cardinal functions p;(«). The most common selection suit-
able for many applications is a piecewise cubic curve. This curve is composed of n cubic pieces
defined on [i; ,u4;,;), i =0,...,n—1 in such a way that the prescribed continuity conditions at the
knots are satisfied. Fig. 2.5a shows C? cardinal functions for a natural cubic spline [43,107).

As one can see, the above cardinal functions are non-zero on all the intervals (u;,4; ).
Thus, a change in a position of any vertex V; will affect the whole curve. This property is clearly
undesirable for interactive design and local, rather than global methods are preferable.

Fig. 2.5b shows cardinal functions for a cubic C I Catmull-Rom spline [23]. The fact that
the cardinal functions are non-zero only on 4 intervals means that the curve between V; and V,;
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b

Figure 2.5: Cardinal functions for global and local interpolation schemes.
a. Natural cubic spline. b. Cubic Catmull-Rom spline.

will be affected only by V;_;, V;, Vi, and V;,,. Thus, the method will be local, if the
corresponding cardinal functions have compact support.

Finally, the tensor product surface is defined on the rectangle [uq.u, ] X [vq,v,] by the pro-
ducts of univariate cardinal functions p;(x) and g; (v):

swy)= 3 T Vipig; ). @24)
i=0j=0

2.3.2. B-splines

Non-uniform rational B-splines, or NURBS, have recently gained a great popularity in com-
puter graphics community. This can be explained by their versatility and adaptability to many
CAGD applications. Bézier and Gregory patches, which are primary primitives on which this
work is built, are just particular types of B-splines. Quite a few algorithms have been developed
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for rendering and evaluating B-splines, and a lot of literature exists on the subject [10, 43].

Although triangular B-splines have been developed [32], B-spline patches are usually qua-
drilateral and of the tensor product type. In the univariate case, a rational B-spline curve of order
k is given by

EV.'N."‘(“)
)= u e [Ugln) 2.25)

m
ZWINJ*(“)
j=0

The m+1 points V; are the control points, and the numbers w; are called weights, associated with
the corresponding control point. Each weight can be regarded as a fourth coordinate of the con-
trol points, so that the curve can be thought of as a perspective projection from R* onto R®.
Rational B-splines can be used to exactly describe conic curves and quadric surfaces [43], some-
thing that polynomial splines fail to do. For that reason, they are gaining widespread acceptance.
If, for all i, w; = 1, then the curve becomes polynomial, or non-rational.

The cardinal functions N*(u) are called basis functions in this context. They may be
defined recursively by the Cox/deBoor relation [18]:

u—-u; _ Uiy — U
NKu)= ————NF )+ ———
Ujrk—1 — U Uik —Uiv1

1 w; <u<uy
Ni'w)=

NET ), k> 1, (2.26)

0 otherwise

The basis functions are defined over the knot vector u, . . . , Uy 4. The continuity of the basis
functions and, therefore, of the whole curve, is determined by the order of the basis functions and
by the knot vector. The continuity of the basis function at a knot with multiplicity y is ck+ 1,
An example of a B-spline basis function of order 4 (degree 3) on a uniform knot vector is shown
in Fig. 2.6.

2/3 +

Figure 2.6: B-spline basis function of order 4 on a uniform interval.
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B-spline basis functions have the following properties:

e They form a partition of unity, i.e.

iN,-"(u) =1 Q.27
i=0

e They are non-negative;

e They have local support, i.e. they are non-zero only over the subrange [u; R779 I8
These properties guarantee translation, rotation, and scaling invariance as well as the fact that
curve lies within a convex hull of its control vertices and that it has local control (a perturbation

of a control vertex induces only a local perturbation). Finally, B-splines are in general approxi-
mating; the condition (2.23) is clearly violated.

The (non-rational) tensor product B-spline surface of order (k, /) is given by
nm
su,v)=3 T ViNNIO), u € uoi,l, v € [Voyml. (2.28)
i=0j=0

An expression for the rational B-spline surface is analogous to the univariate case.

2.3.3. Bézier Patches

As stated before, Bézier splines are a special case of B-splines and therefore possess all the
useful properties that B-splines have. Bézier curves of degree n can be defined as B-splines over
two knots at O and 1 with n+1 multiplicity each. An equivalent, but more widespread formula-
ton is

c(u)= iV;B,-"(u), u e [0,1], (2.29)
i=0

where B/*(u) are the Bemstein polynomials of order n:
BMu)= [’ﬂ wi(l-u). (2.30)
Thus, Bézier curves always interpolate the end vertices:

c(0)=Vy c(1)=V,. (2.31)

Each Bézier curve of degree n can also be expressed in terms of Bemstein basis polynomi-
als of degree n+1:

n n+l
S V.BMu)=Y W,B''(u), (2.32)
i=0 i=0

where the new control points W; can be obtained as follows [10]:

n+1-i i

W,- = V" +
n+l n+l

Vi-l' i = 0,...,’1+1. (233)
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We assume V_; =V, =0. This process is called degree elevation.

2.3.3.1. Tensor Product Bézier Patches

A tensor product Bézier patch of degree (n,m), defined over the unit square, is given by
R Mm
suv)=3 ¥ V;BIuB). 2.34)
im0j=0)
Thus, the Bézier patch is completely determined by its control points V;; (Fig. 2.7a).
A polynomial Bézier patch can also be expressed in Hermite form. The Hermite patch uses
the position and partial derivatives at the four comers of the patch, rather than the Bézier control

points. For example, a bicubic Hermite patch is characterized by positions, first derivatives, and
twists at the comers:

3 3
suv)=Y ThyHAWHE), uv e [01], (2.35)
im0j=0
where h;; are given by the matrix from equation (2.13).
The derivative of a Bézier patch in the 4 direction are given by the following expression:

n-1m
sc@v)=n 3 3 (Via, = VB @BJ(v). (2.36)
i=0j=0

Substituting 4 =0 in the above formula gives a cross-boundary u -derivative of the patch:
Sy (O,V ) =n Z (Vl.j - VOJ )Bjm(V ) (237)
j=0
The expression for the derivative in the v direction is analogous.

2.3.3.2. Triangular Bézier Patches

Bézier patches can also be defined over the triangles. The mathematical expression is most
convenient in barycentric coordinates (Section 2.1.3):

swyw)= 3 VuBhiuyw) uy w20, u+v+w =1 (2.38)
i+j+k =n
ijk20
Here
Bl(uyy,w)= i!j!.k! u'viwk i+j+k =n, i,jk20. (2.39)

are bivariate Bernstein polynomials. They are indeed bivariate, because one variable is depen-
dent on the other two: w =1 -u —v. Fig. 2.7b shows the control points for a quartic triangular
patch.

The derivative of the triangular patch in the u direction is [41]:
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Figure 2.7: Quadrilateral bicubic (a) and triangular quartic (b) Bézier patches.

swvw)=n ¥ VEBI@yw), (2.40)
i+j+k =n-1
ijk20
where
V,[J%‘]=V,-J_k+1—V,-J+u, i+j+k =n-1. (241)

The derivatives in the v and w directions can be computed analogously.

Consider now a special case when the boundary u =0 of the triangular patch of degree n is
of degree n—1. Then the border curve s(0,v ,1-v) can be described as
n-1
s(0,v,1-v)= ¥ S;B (). (2.42)
i=0
In Fig. 2.8, quartic triangular Bézier patch with cubic boundaries is shown.

Rather than using derivatives in the coordinate directions, Farin [39] proposed a radial

derivative:
Ds)v)=(1=-v)(s, —s,)+Vv(Sw —8). (2.43)
Then the radial derivative at the border s(0,v,1-v ) can be conveniently expressed as
n-1
Ds)v)=n T (T; =SHB W), (2.44)
i=0

where the T; is the next row of the control points (Fig. 2.8). It is understood that the points Ty
and T are the control points for the corresponding degree n boundary curve. This expression is
very similar to the equation (2.37) for the cross-boundary derivative of a quadrilateral Bézier
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©01D T, (1,0,0)

Figure 2.8: Radial derivative for a quartic triangular patch with cubic boundaries.
Cubic control points of the boundaries are marked by triangles,
while degree-elevated quartic points are marked by squares.

patch. This fact will be useful in constructing composite surfaces.

2.3.4. Gregory Patches

From equation (2.37) it follows that the cross-boundary derivative at the boundary of a
Bézier patch depends on the two rows of control points: the control points on the boundary itself
and the next adjoining row (Fig. 2.9). Conversely, specifying a polynomial cross-boundary
derivative at the border would determine the next row of control points. Consider a bicubic
Bézier patch in Fig. 2.9. If we define the cubic u-derivative at s(0,v) (obviously, it has to agree
with the known derivatives s, (0,0) and s, (0,1)), the control points V; and V', will be defined.
Analogously, a v-derivative at s(z,0) will determine V', and V ;. Thus, the point Vp, is defined
twice from the two nearest boundaries.

These definitions need not be compatible with each other, which means that the cross-
boundary derivatives cannot be specified independently. An analogous twist constraint [61]
problem arises when Coons patches are used. To remedy the situation, Gregory [62] has pro-
posed a modification to the Coons patch by introducing variable twists. The resulting generaliza-
tion of the Coons patch is now known as Gregory’s square. The analogous approach has been
applied to Bézier patches by Chiyokura and Kimura [27]. Although the resulting formulation is
an instance of a more general Gregory’s square, the term ‘Gregory patch’ is often used with
respect to Chiyokura’s generalization of Bézier patches. We will use this term throughout this
work.
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4

=

Figure 2.9: Incompatibility of cross-boundary derivatives.

A Gregory patch of an arbitrary degree can be defined; however, we will consider bicubic
quadrilateral and quartic triangular patches only.

2.3.4.1. Quadrilateral Gregory Patches

A Gregory patch, like a Bézier patch, is defined by its control points Viitwy i =0.0n.
The notation V;; r,,] should become clear from the equations and Fig. 2.10. In the case of a qua-
drilateral Gregory patch (Fig. 2.10a), the equations are as follows [27]:

3 3
suy)=Y ¥ BAw)B2v)Qimy), uyvel0l] (2.45)
i=0 j=0
where the effective inner control points Q;;(u,v), i,j =1,2 are linear combinations of two con-
trol points each:

uVi, +vVy,

Quu )= e : (2.46)
Qo v) = uvmui( 11::)"12'“ ' 2.47)
Quilu )= )‘llilu :vv Yo (2.48)

Quu.v) = (7 )Vlzz_'; 1(11_—: Vo (2.49)

For boundary control points,
Qjuv)=V,;. (2.50)
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For conceptual elegance, a Gregory patch can also be expressed in equivalent recursive
form:

s(u,v) = (1—u+uE)* (1-v+vF )* Qqo(u v), @2.51)
where E and F are the shift operators:
E Q;=Qis,» FQ;j=Qijn (2.52)
and Q;; are defined as above.
A Gregory patch can be described as a Bézier patch, each of whose interior points is split in
two. The influence of these two points is linearly interpolated as a surface point gains more dis-
tance from one border and approaches the other. When the eight inner control points satisfy the

equations V;; , =V, then the Gregory patch degenerates into a bicubic Bézier patch. Thus, a
Gregory patch is indeed a generalization of a Bézier patch.

Unlike a Bézier patch, a Gregory patch is rational. In fact, it can be shown that a Gregory
patch is a NURBS of degree 7.

Figure 2.10: Bicubic quadrilateral (a) and quartic triangular (b) Gregory patch.

The derivatives of a Gregory patch will obviously be more complicated that the derivatives
of a Bézier patch. However, at the borders, the derivatives look very much alike. For example,
the cross-boundary u -derivative of the Gregory patch is

$,0)=3((Vio= Voo)B3 V) + (Vi1 = VoB P (v) + (2.53)
(Vizu = Vo)B3 (V) + (V13— Vop)B3 ().

Note the similarity of this formula to eq. (2.37). This fact will enable us to stitch Bézier and
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Gregory patches together easily.

2.3.4.2. Triangular Gregory Patches

Working again in barycentric coordinates, a triangular Gregory patch (Fig. 2.10b) of degree
4 is determined by the 18 control points:

suyw)= Y Blwyvw)Quuyw) uy w20, u+v+w =1, (2.54)
i+j+k=n
ij k20
or
su,y w)=WE +VF +wG)* Quoou,v.w), uy,w20, u+v+w=1 (2.55)

where E, F, and G are again the shift operators:

E Qi =Qinijxr F Qe =Qijurer G Qijx = Qi jpst’ (2.56)
(A=u)v Vi, +u(1-v)Vyyy,

Qo v W)= o)y +2 (=) , @2.57)

(l—u )WV121 | + u(l"w )Vl2l w

* 1] = - - E) 2.

Qi (@.v.w) (i ow + (=) (2.58)

A=v)wVyy, +v(1-w)Vyyy,,
Qijk wuyw)= Vijk otherwise. (2.60)

Again, if

Viizw =Viizw, Vi2tw = V21w Y2 = Variws (2.61)

the triangular Gregory patch becomes a triangular Bézier patch. Also, just as in the quadrilateral
case, the derivatives of the Gregory patch at the borders (including the radial derivative) are
expressed similarly to the Bézier patch derivatives.

2.4. Composite Surfaces and Geometric Continuity

As mentioned before, surface patches are the building blocks from which the whole surface
is constructed. Obviously, for a continuous surface, it is necessary that the neighboring patches
share the same boundary or, in other words, meet with positional continuity. Very often, how-
ever, the surface is required to be smooth across the patch borders. Smoothness can be defined in
terms of differentiability, i.e. partial derivatives at the boundary points must be identical. Alterna-
tively, one can often be satisfied with geometric continuity (8,9], where only the shape of adjoin-
ing patches is considered, but not their parametrization.
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2.4.1. Parametrically Continuous Surfaces

A method for constructing a C ! surface from a network of C! curves has already been dis-
cussed in Section 2.2. Bicubically blended Coons patches describe the required surface. If, in
addition, the given curves are polynomial, then the Coons patches can also be represented in
Bézier form.

B-spline surfaces (without knots of too high multiplicity) are another example of parametri-
cally continuous surfaces. The order of continuity in this case will be at least k——1, where & is
the order of the basis functions, and y is the highest multiplicity of a knot.

The expression for the derivatives of Bézier or Gregory patches in eq. (2.37) and (2.53)
readily produces the conditions for the C! continuity between the two patches (Fig. 2.11). In
terms of the control polyhedra of the two patches, the four pairs of polyhedron edges that meet at
the boundary must be collinear and equal in magnitude.

Figure 2.11: Parametrically continuous Bézier patches.

In practice the restrictions imposed by parametric continuity are too severe. Indeed, it is
clearly impossible to fit Bézier patches into a network of curves in space, if these curves are not
C!, but only have the same tangent plane at their intersection points. For this situation, we must
be satisfied with with the more general notion of geometric continuity.

2.4.2. Geometric Continuity

Geometric continuity has been introduced by Barsky {3] and then elegantly generalized in
[7,32]. Geometric continuity is an extension of parametric continuity and is based on the shape
of a curve or a surface, rather than on their parametrizations. It is designed to relax the unneces-
sary restrictions imposed by parametric continuity.
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Consider Fig. 2.12. It shows a pair of planar curves c;(u)=(u 0), u € (=,0] and
c(u)=(Qu 4u 2), u e [0,50). These two curves meet at the parametric value of u =0. Although
the curves appear to meet smoothly, they are not C ! continuous at u =0 since ¢,"(0) = (1,0) and
¢,’(0)=(2,0). However, the second curve can be reparametrized by the substitution 2u — u
yielding c (1) = (u ,u?). Under this parametrization, the two curves become C ) although their
shape has not changed at all!

(2udu 2)

(u,0)

v

Figure 2.12: Two geometrically, but not parametrically continuous curves.

The notion of geometric continuity was introduced to deal with these situations. For many
CAGD applications, the parametrization of a curve or a surface is not important, only their shape
is. Then, geometric continuity is clearly preferable over its parametric counterpart.

2.4.2.1. Characterizations of Geometric Continuity

Three equivalent definitions of geometric continuity of order n for curves have been given
by Barsky and DeRose [8,9]. We briefly summarize these definitions.

Parametrization Independence. Let p(z) and q(u) meet at a common point. They are
said to meet with G” continuity if there exists a reparametrization of q(u ), 4 — 4 such that p(¢)
and q(x ) are C" at the common point.

This definition is not constructive in the sense that it does not show how to check if the two
curves are G". This can be accomplished by using Beta-constraints.

Beta-Constraints. Let p(«) and q(u ) meet at a common point:

p(to) = qug).
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Then they meet with G" continuity at this point, if there exist numbers By, ..., Bn, suchthat
_ i :
ptg)= TCR;;By, ... BV, i=1..n (2.62)
j=1

The notation CR;; refers to chain rule; if p(¢) and q(u) are C" under reparametrization u — i,
then

Bi= %(uo), j=1..n (2.63)
For example, the constraints for G continuity are:
PVt =B qwe). By>0 (2.64)
pP(to) =Bf qP o) + B2 ¢V (o) (2.65)
pPto) = Bf q¥wo) +3 By B2 4P(u0) + B3 ¢V (ko) (2.66)

This definition is very well-suited for deriving geometric continuity constraints for B-spline and
Bézier curves. For example, Beta splines [3, 5] are generalizations of B-splines: continuity at the
knots is geometric, rather than parametric.

Arc Length Parametrization. The last characterization of geometric continuity is based
on arc length parametrization. The two curves meet with G" continuity if and only if their arc
length reparametrizations meet with C”* continuity.

This definition provides a geometric insight into the nature of geometric continuity. Indeed,
two curves will be G! if their unit tangent vectors are continuous, because the unit tangent is the
first derivative with respect to arc length. Analogously, two curves will be G2, if they have a
continuous curvature vector (the second derivative with respect to arc length).

2.4.2.2. Geometrically Continuous Surfaces

The last definition of geometric continuity is especially important as it can be easily
extended to surfaces. Indeed, the two surface patches are said to meet with a G! continuity at
their common boundary, if, for any point on the boundary, the two tangent planes of the two
patches are the same [39, 68, 106, 126]. This can also be expressed as a continuity of a unit nor-
mal vector across the whole surface.

Analogously, the G 2 condition for surfaces is expressed in terms of the osculating para-
boloid, or the continuity of the curvature vector {14, 76]. In this work, however, we will be deal-
ing with G! surfaces only. Various methods of modeling with G' Bézier and Gregory patches
will be discussed in Chapter 6.
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Procedural Interpolation
with
Pleasing Splines

In this chapter, a local interpolation method for curves in R? or R offering G' con-
tinuity is described. A curve is represented as a union of geometrically continuous
cubic Bézier segments between each pair of adjacent vertices. At each interpolation
point our procedure determines a tangent direction and two derivative magnitudes on
either side of the vertex. The method uses an intuitive geometric, rule-based approach
to find a ‘good’ default solution that produces pleasing-looking results even for highly
irregular sets of data. Various spline properties and their relevance to our method are
also discussed.

3.1. Motivation

Much work has been done in the area of interpolating splines, i.e. fitting smooth curves and
surfaces through a given set of points in a plane or in space. Several textbooks deal with these
issues [10, 43, 46], and hundreds of papers have been published on the subject.

From this abundance of available interpolation schemes, it is often very difficult for a
designer to choose a method that will be best suited to his particular needs. In this chapter, we
attempt to confront the problem of interpolation not from a mathematician’s, but from a
designer’s point of view. We start by looking at various spline properties that are desirable in a
practical modeling system. From this set of properties we formulate the mathematical definition
of the spline in a procedural manner.
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The procedural approach is based on geometric rather than algebraic reasoning. The curve
is derived from a sequence of procedural steps [121] that may include special rules that take into
account the special situation of a particular segment. This method is more flexible than a conven-
tional algebraic approach that applies a fixed arithmetic expression to a set of interpolation ver-
tices.

An immediate benefit of this approach is the fact that pleasing curves can be produced even
for irregular sets of interpolation points. Figure 3.1a shows a Catmull-Rom spline [23] through
an asymmetric set of points. Figure 3.1b shows our pleasing spline through the same points.

Figure 3.1: a. Catmull-Rom spline. b. Procedural pleasing spline.
Defining polygon is shown dashed.

3.2. Useful Spline Properties

3.2.1. Geometric Properties

Since the concept of geometric continuity [3,7,32) was first introduced, geometric splines
are becoming increasingly popular. They are very well suited to computer aided geometric
design because only their shape and not their parametrization is important. In other words, only
geometric or visual continuity {40] (usually of first or second order) is required at the joints of a
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spline. This keeps the spline visually smooth and at the same time provides extra degrees of free-
dom since geometric continuity is less restrictive than its parametric counterpart. Modeling with
geometric splines is well described in the literature [6, 17, 68].

Another important geometric property that is clearly necessary in a modeling system is
coordinate system independency. Most of the interpolating and approximating splines have this
property. All such splines are also invariant under rotation, translation, and uniform scaling. In
fact, many interpolation schemes treat the coordinates of the curve completely independently of
each other, which leads to invariance under differential scaling (different scaling ratios for dif-
ferent coordinate axes) as well. As we will see later, this property is actually undesirable for
pleasing splines.

3.2.2. Local Control

One of the pioneering approaches to the interpolation problem was to represent the whole
curve with a single polynomial. For example, Lagrange interpolation [107] could be used result-
ing in a polynomial of relatively high degree. Altemnatively, one could build a continuous spline
with piecewise polynomial pieces of some fixed order. A natural cubic spline minimizes the
square of its second derivative componentwise [1,43]. Altemnatively, physical splines minimize
some physical property of the spline, such as bending energy or curvature [53,80]. All these
methods have the serious disadvantage that they are global. In other words, a change in a posi-
tion of any vertex typically results in a change in the whole curve. Usually, a system of linear
equations has to be solved anew each time a change occurs, which leads to inefficient implemen-
tation.

However, often only a small part of a curve needs to be changed and one would then like
the bulk of it to remain unaffected. Thus, the property of local control is crucial for a modeling
system. Indeed, most of the recent research has concentrated on local splines. The ability to
fine-tune the curve near a certain point is often associated with local control. As mentioned
above, geometric continuity is less restrictive than parametric continuity. Therefore, it is possible
to use shape parameters for additional control of the curve. The use of shape parameters in
Barsky’s Beta-splines [3,4,5, 54, 102] has been widely publicized. Moreover, weights in rational
curves can also be used as shape parameters [6, 63].

It is desirable that these shape parameters have a clear geometrical interpretation. If this is
the case, a designer will be able to correlate the change in the shape of the curve with the change
of a corresponding parameter in an intuitive manner. For example, a tangent direction or a nor-
mal to a curve at a certain point will be a good shape parameter. It is also important that the
shape parameters have good default values that would make the curve look pleasing to a human
eye. Finding the default values will be a crucial part of our spline construction process.
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3.2.3. Simplicity of Representation

Simplicity of representation is obviously important for efficiency and for realtime interac-
tive display. Various mathematical formulations for splines have been proposed. These formula-
tions can be classified into polynomial, rational, and others.

Rational splines have recently gained a lot of attention due to the fact that they can
represent conic curves exactly. Much has been published on modeling with rational curves, start-
ing from simple schemes using just circular arcs and linear segments [72, 104] or rational conics
[36, 60, 103, 108] to higher degree rational curves [6,16,50,74,75,105]. It is also possible to
define a spline that cannot be represented as a ratio of two polynomials. Many tension-controlled
splines [28, 118] are of this form.

However, piecewise polynomial splines usually are appropriate for many applications.
Although quadrics have been used for interpolation {20, 95], it is generally agreed that the piece-
wise cubic form is the simplest yet versatile enough spline representation suited for most applica-
tions. The review [13] has a good survey on the use of cubics in CAGD. In our method, we will
use Bézier cubic segments.

3.2.4. Stability and Consistency

Simplicity is often associated with numerical stability. By stability we mean that the curve
must depend on the set of interpolating vertices in a continuous manner. In other words, a small
change in a vertex position should result in a small change in the curve.

The concept of consistency is closely related to stability. It has been discussed recently by
Ohlin [94]. Loosely speaking, the introduction of an additional interpolating point near the curve
should result in a small change in the curve. In the limit, if the new vertex lies exactly on the
curve, the new resulting curve should be the same as the original one. For example, a piecewise
linear ‘spline’ is consistent. Certain minimal energy splines are also consistent.

This obviously attractive property is hard to attain with practical splines because one
changes an n point interpolation into a n + 1 point problem. Ohlin has solved this problem by
introducing a non-polynomial spline that minimizes a certain function of curvature parametrized
by arclength. However, the resulting spline is also global, and therefore does not satisfy at least
two of the properties listed above. Section 3.6.3 will further discuss the difficulties of modeling
with consistent splines.

3.2.5. Shape Preservation

It is usually desirable for the shape of the spline to resemble in some sense the shape of the
polygon of interpolation points. For example, if the polygon is symmetric with respect 10 some
axis, one would also like the curve to be symmetric. Two basic forms of shape preservation have
been studied in the literature: monotonicity preservation and convexity preservation.
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Monotonicity preservation only makes sense if the data arises from a function. In this case,
usually the x component of the vertices is strictly increasing, and so one can regard the y com-
ponent of a curve as a function of x. A spline is then called monotonicity preserving, if its
behavior on a certain interval is dictated by the corresponding sequence of the y coordinates of
the vertices. For example, the spline should increase, if the y coordinates of the vertices increase.
A precise definition of this property as well as more discussion on monotonity preserving can be
found in the literature [52,97,117]. However, as we will see in Section 3.6.1, this property
implies a dependence on a coordinate system.

A spline is called convexity preserving if it is convex on an interval where the correspond-
ing sequence of vertices is convex [21,37,55,89]. In this case, the number of inflections in the
spline will match the number of inflections in the interpolation set. This property is important for
a practical design system and can be viewed as a requirement for good visual quality of the spline
as discussed below.

3.2.6. Visual Quality

Visual quality, or pleasingness, is fundamentally different from the above properties in the
sense that it cannot be described in precise mathematical terms. Conceptually, a ‘pleasing spline’
is a spline that looks good to the human eye. This ‘definition’ is, of course, very subjective as it
is impossible to construct a curve to everyone’s liking. However, this property is very important
to designers, as they would like to get pleasing forms even for irregular or strongly asymmetric
sets of interpolation vertices.

Some researchers have linked pleasingness to the fairness of curves as defined by naval
architects or car hull designers [44,48,71]. In this context faimess seems to be related to the con-
tinuity of the second and even third derivatives and thus require G2 or even G* continuity. We
give up the strict requirements of the G ? continuity to handle cases with strictly linear curve seg-
ments, but concentrate instead on avoiding large, asymmetric overshoots or inappropriate bulges
in the curve (see Fig. 3.1). Admittedly, the method to be described produces what we consider
good default solutions to many situations. The user, however, will have the freedom to change
one or several of the values that determine curve behavior.

3.3. Determination of Local Shape Parameters

3.3.1. Geometric Parameters

As mentioned above, we have chosen Bézier cubics to represent our splines because of their
simplicity, wide acceptance, and ease of local control. A cubic Bézier segment between two
given endpoints will be completely defined if a derivative is chosen at each point. This process is
often decomposed into two steps: first, a tangent direction is selected at each endpoint, and then
the inner two control points of the Bézier curve are placed on these two tangent lines at a suitable
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distance from the endpoints to give the wanted amount of ‘bulge’ to the curve segment (Fig. 3.2).
G! continuity is ensured as long as the Bézier points on either side of an original vertex lie on the
same tangent line. There are, therefore, three geometric parameters, associated with each given
point that completely determine the curve:

e A normal direction. The curve tangent at the vertex P; will be perpendicular to this normal

n;.

e Two velocities. The velocities at either side of the vertex determine the magnitude of the
two derivatives or, in the other words, the location of the two nearest Bézier points. For a
C! continuous curve, these two velocities must be equal; for G! continuity, their collinear-
ity is sufficient. The velocity magnitudes v, and v;; determine the position of the predeces-
sor C;, and the successor C;, Bézier control points of resulting curves:

C,-p=P,~+-;—v,-p, C‘-,=P,-+%v,;,. 3.1)

Figure 3.2: A chain of Bezier segments.

The construction of the interpolating curves proceeds as follows:

1. Two neighboring vertices are identified; there will be an interpolating curve segment that
has these neighbors as its endpoints. This step is usually performed by the user, either by
supplying a defining polygon Py, ..., P; ,..., P, oran ordered list of points.

2. A suitable tangent direction or a normal is selected at each vertex.

3. Suitable velocities are chosen on either side of the vertex, or, equivalently, the Bézier points
are placed along the tangent line of each vertex.

A G curve can be constructed for an arbitrary choice of a normal and of two velocities at any
given point. Indeed, the fact that these shape parameters can be modified to fine-tune the shape
of the spline is widely known [31,47,79, 88]. However, virtually no literature exists on how 10
choose these shape parameters to guarantee good visual results. The next two sections will con-
centrate on the best default values for normals and velocities. We will first investigate methods
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that depend only on a vertex P; and its two nearest neighbors.

3.3.2. Determination of the Normal

We start by looking at several simple methods of normal determination. Then we discuss
their advantages and shortcomings. Finally, we analyze various extensions and combinations of
these methods with the goal of improving the behavior of the normal.

3.3.2.1. Primitive Methods

Catmull-Rom (Directly Weighted Normals) Method. Catmull and Rom (23] define the
tangent direction of the curve at the point P; to be the direction of the chord between the two
nearest neighbor vertices:

tc=Py—-Pi_ (3.2)

It can be readily verified that the normal direction nc can also be expressed as a direct weighted
average of the two unit normals fi, and 1, (shown dotted in Fig. 3.3) of the underlying edges of
the defining polygon, with the weight factors equal to the length of these edges:

nc =npy =p f, +5 fi,. 3.3)

This method may lead to a lopsided bulge if the two sides of the defining polygon form an acute
angle and are different in length (Fig. 3.3a).

Inversely Weighted Edges. It is possible to achieve similar results by using the weighted
average of the polygon edges themselves, rather than the normals. Since Catmull-Rom turns the
resulting normal away from the shorter side, we choose an indirect weighting:

N =98 f) +p 8. (34)

Here p and § are unit vectors in the directions of the edges of the defining polygon (shown
dashed). However, this method has the problem that when the two edges are collinear, njz will
also be collinear with them. Fig. 3.3b illustrates this on a polygon with an obtuse angle.

Inversely Weighted Normals. One could argue that two closely spaced points on a control
polygon convey strong information about the tangent direction near that location and that the nor-
mal direction should thus be more strongly influenced by the shorter side of the two sides. This
can be easily achieved by inversely weighting the unit normals of the two sides (Fig. 3.3c):

Ny =95 ﬁp +p fl_‘.. (35)
Directly Weighted Edges. Again, similar result can be achieved by using the directly
weighted average of the polygon edges (Fig. 3.3d):

npg =p p+s 8. (3.6)

Similarly to the Inversely Weighted Edges, this method fails for the case of collinear edges.



3. PROCEDURAL SPLINES

Figure 3.3: Primitive methods for normal determination.
a. Direct Normals. b. Inverse Edges.
c. Inverse Normals. d. Direct Edges. e. Angle Bisector.
The edge normals are shown dotted, and the extensions of polygon sides are dashed.

33
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Angle Bisector. A good compromise between the two sets of the approaches above is to
make the normal independent of the length of the underlying side, i.e. to set it to the direction of
the angle bisector at the vertex (Fig. 3.3¢):

Npy +Nyy  Npg + N

ng =hf, +i; = = . 3.7
S p+s p+s 37

Other Methods. Other methods of choosing the normal direction are also possible. For
example, one can define the normal in the direction between the midpoint of the chord between
the two neighbors and the current vertex. Similarly to the methods based on edge averaging (see
above), this method works reasonably well for acute angles, but fails completely if the two edges
are collinear.

Another approach to normal selection may utilize a circle that passes through the current
point and its two neighbors. The vertex normal is then defined to be the nomal to the circle at
the interpolation point. The resulting normal in this case is close to njy because of strong
influence of closely spaced points, but it is computationally more expensive.

3.3.2.2. Pleasing Normals

As we see, the Angle Bisector method is an average of two opposite weighting procedures.
It produces pleasing curves for practically all test cases. Therefore, the Angle Bisector normal is
a good and robust default choice for the normals at all interpolation points.

In Fig. 3.4, the deviation of various normal methods from the Bisector normal is graphed.
The horizontal axis reflects the magnitude of the angle P,_,P;P;.;, while the vertical axis
corresponds to the angle between the Bisector normal and other normals. The four graphs form a
very symmetric figure; indeed, the normals npy and n;y as well as njz and npg are symmetric
with respect to the horizontal axis. Also, npy and n;g as well as njy and npg are symmetric with
respect to the vertical axis through an angle of 90° at P;.

The actual functional dependence of the deviation of a particular normal method from the
Bisector normal can be easily derived from the definitions of normal methods (3.3-3.7). For
example, the angle § between np and npy can be expressed as:

Npy " Np (p+s)\/1+ﬁp~ﬁs

8 = arccos(—————— ) = arccos(

). (3.8)

The angle between ng and the other normals can be easily deduced from symmetry considera-
tions.

The graphs in Fig. 3.4 correspond to the case when the ratio of the two sides s and p is 10.
The larger this ratio is, the further the graphs will deviate from the horizontal axis for intermedi-
ate values of the polygon angle, but they will never extend beyond the straight lines through their
endpoints, as approximated by the curve for r = 100. The intersection point of the deviations of
npy and njg (and ngy and npg) will always correspond to the angle of 90° at P,; the deviation of
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Figure 3.4: Deviation of the Bisector normal from other normals.
The deviation of Catmull-Rom normal is shown for various ratios 1 of the lengths of adjoining sides.
The shaded area corresponds to a pleasing choice of the normal for r = 10.

all the normals from the bisector in this case will never exceed 45°.

The shaded area on both sides of the horizontal axis corresponds to a pleasing range of nor-
mals at any interpolation point. Indeed, in this case, the normal will always lie between the nor-
mals of the two adjoining sides as well as between the extended edges of the defining polygon.
Intuitively, normals from outside of the pleasing range would tilt ‘too much’ to one of the
polygon sides. This explains, for example, why the Catmull-Rom normal is not adequate for
acute angles.

Fig. 3.5 illustrates the usage of various normal methods on two sets of interpolating points.

3.3.2.3. Control of the Normal by the Shape Parameter

Within the shaded area of Fig. 3.4 it is difficult to argue that one choice gives overall better
results than another; this is largely a matter of taste. We thus capture the deviation of the normal
from its default Bisector position by the shape parameter D. Changing D from 1 to -1 would
change the normal from the top to the bottom of the pleasing region in Fig. 3.4. A default value
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Figure 3.5: Comparison of various normal methods.
a. Direct Normals. b. Inverse Normals. ¢. Bisector.

of D =0 will simply result in the Bisector normal.

For a nonzero deviation parameter, the final normal will be computed as a weighted average
of n;z and npg for acute angles, and as a weighted average of npy and nyy for obtuse angles:
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(g +npg)+D (ng —npg) if angle at P; <90°
n= 3.9

(nDN +n,N)+D (npy —n,N) ifangle at P; 2 90°

This global parameter permits one to tune the system’s behavior to the taste of the designer or to
particular needs of an application. After default normals at all vertices have been determined, a
user will have the freedom to modify the normal direction individually at selected points. More-
over, global changes in default normal construction can be provided, e.g. tilting all the normals
towards the shorter polygon side.

3.3.3. Velocity Computation

3.3.3.1. Primitive Methods

Once a nomal, or, equivalently, a tangent direction at each vertex has been determined, the
task remains to choose two suitable velocities at each given point. As in the case of the normals,
we first evaluate the performance of several elementary methods. For the illustrations in this Sec-
tion we have assumed that the normals have been defined with the Angle Bisector method.

Catmull-Rom Method. Since Catmull-Rom splines are C! continuous, the velocities on
either side of the vertex are the same. In this approach, they are defined to be one half of the
length of the chord between the previous and the next vertex:

VP.C = s C =c, (310)
where 2c is the length of the chord between P;_, and P;,; (Fig. 3.6a).

This method has the disadvantage that, if the ratio of two adjoining sides is large, the curve
may ‘overshoot’ or bulge too much on the side of the shorter polygon edge. For example, oblong
shapes or even curves with self-intersections are produced for rectangles with large aspect ratios.

Edge Length Method. In this method, the velocity on either side is just made equal to the
edge length. This corresponds to placing the Bézier control point 1/3 of the edge length away
from the vertex on the established tangent line:

VoL =Py VsL =S (3.11)

However, for very acute angles between the two sides, this method creates strongly bulging
curves (Fig. 3.6b). Furthermore, there is a large discontinuity in velocity and there is no blending
effect from one side to the other.

Projection Methods. This problem can be avoided if, instead of the side length, the
lengths of the orthogonal projection p’ and s’ of the sides onto the tangent direction are used:

Vo p =p’, v p=s". (3.12)

It is also possible to use the length s” or p” between the current vertex and the intersection point
of the tangent direction and the perpendicular to the corresponding side (Fig. 3.7):

vop=p", Vip=s5" (3.13)
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Figure 3.6: Primitive methods for velocities.
a. Catmull-Rom. b. Edge Length. c. Average of Catmull—Rom and Edge Length.

The last two methods may result in extremal velocity values: if the tangent direction is perpendic-
ular to the edge of the defining polygon, the first method would produce unacceptable zero velo-
city, while the second would produce an equally unacceptable ‘infinite’ velocity.

Average Method. A good compromise can be reached if the average between
Catmull-Rom and Edge Length methods for the velocity is used (Fig. 3.7¢):

1 1
VpoL =% @+c) vsoL= ) (s +¢). (3.14)

Certainly, velocities at the interpolation points can be defined in many different ways. We
now attempt to classify the simplest methods and evaluate them for visual quality of the resulting
curves.

33.3.2. A Catalog of Velocity Methods

Consider Fig. 3.7. In this figure, two sides p and s of the defining polygon adjacent to the
vertex P; are shown. The velocity v, always depends on p; however, it may or may not depend
on s. Analogously, v, always depends on s, but it may not depend on p. Thus, all the velocity
methods can be classified into two groups: ones that look only at the underlying side of the
defining polygon, and the ones that look at both adjacent sides.
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Figure 3.7: Constructions for velocity computations.

One-sided Velocities. The velocities in this group depend just on a single underlying side
of the defining polygon. We will consider only three simple methods of this kind that yield rea-
sonable results:

1. Projection Method:

Vpp=p's Vip=5_. (3.15)
2. Edge Length Method:

VoL =P, Voo =S (3.16)
3. Average of Projection and Edge Length Methods:

(s +5"). (3.17)

B |

1
VppL =7 @ +p) vipL =

The fact that the adjoining side is ignored in the computation may lead to a large discrepancy in
the bulges of the curve on the two sides, if the two adjoining polygon sides vary greatly in length.
This fact can be characterized quantitatively in terms of a large jump of curvature value at the
corresponding vertex.

Two-sided Velocities. The above problem can be avoided by eliminating the discontinuity
in the curve derivative and making the curve parametrically (C 1y continuous. This corresponds
to forcing the two velocities to be equal independent of the ratio of the underlying sides.
Catmull-Rom splines are a classical example of this approach; however, other similar methods
are possible: ‘

1. Length Average. One could define the velocity just by averaging the underlying sides:

1
Vosa = S‘M=?(p+s). (3.18)
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2. Projection Average. Altematively, the average of the projections of the sides onto the
tangent direction can be used:

1., .
VoA =VspaA =g @ +s5). (3.19)

3, Catmull-Rom Method. As we have already seen, the velocity on either side is defined by
one half of the length of the chord between the previous and the next vertex:

1
Voo =Vsc =y c. (3.20)

Again, for large ratios of the lengths of adjoining sides, the C ! methods have a common draw-
back that may be loosely described as a ‘sharp turn’ of the curve on the shorter side due to too
large a velocity there. In mathematical terms this means that the curvature of the spline in the
middle of the corresponding segment has a large absolute magnitude.

Reduction of the C! Component. For large aspect ratios of the two adjoining polygon
sides, the Catmull-Rom velocity v and even the average velocity v, can exceed the length of
the shorter side. This may result in loops in the curve. The original Catmull-Rom method usu-
ally does not have this problem because the tangent direction always lies closer to the longer
polygon side, but it creates large asymmetric overshoots (Section 3.3.2.1).

If, however, the user is free to change the tangent direction, additional care must be taken to
restrict the C! component of a particular velocity method. We limit it to the length 5 ” between
the vertex P; and the intersection point of the tangent direction through P; and the perpendicular
to the shorter side s (Fig. 3.7):

ve EMIn(Ve orig, 57, ") (3.21)

and analogously for v;, and vp,4. Thus, the distance between a vertex and the projection of an
interior Bézier point onto the corresponding side will never exceed one third of the side length.

Combination of the Two Groups of Approaches. It seems natural to combine the two
different groups of methods so that the disadvantages of a particular approach are minimized.
We have constructed averages of each method from one group with each method from the other
group, giving a total of 9 combination methods. We have tested all the 15 (9 combination and 6
primary) methods on a large set of defining polygons. Besides subjectively judging the aesthetic
appearance of the resulting curves, we compared maximum curvature jumps at the interpolation
points, the sum of these jumps for all the vertices, the difference of maximum and minimum cur-
vature values for the whole polygon (curvature variation), and, finally, the so-called energy
integral Jv&is [51]. All the evaluations have been carried out for the default vertex normal based
on the angle bisector. Fig. 3.8 illustrates the dependence of interpolating curves on selected velo-
city methods; Fig. 3.9 shows corresponding curvature plots. Finally, Tables 3.1abc compare all
the velocity methods.
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Figure 3.8: Comparison of various velocity methods.
a. Catmull-Rom. b. Edge Length. c. Average of Catmull-Rom and Edge Length.
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Figure 3.9: Curvature plots of the curves from the previous Figure.
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Velocity Maximum Sum of Curvature | Energy

Method Curvature Jump | Curvature Jumps | Variation | Integral

P 4.30 8.20 1540 | 17.81

p’ 11522 121.40 15478 | 301.66

%@ +p9 11.34 16.42 2113 | 2547

¢ 5.19 5.56 13.03 | 28.17

%(p +5) 2.50 3.58 1364 | 2417

%(p' +57) 74.37 75.70 9336 | 483.42

%(p +¢) 322 342 12.20 18.12

—;-(p + %@ +5)) 2.81 3.34 12.93 18.23

-;_-(p + %(p' +57) 4.17 6.73 17.21 2348

%@' +¢) 8.37 11.42 18.61 39.97

-;—(p'+ %(p +5)) 5.26 791 1249 | 2694

—;—(p n é—(p ' +57) 16.40 18.49 5440 | 221.84

%(%(p +p)+¢) 3.19 485 12.47 21.51
1.1 1

T GE 4P+ +9) 277 438 1260 | 1972

%(-;—@ +p)+ %(p' +5%) 5.17 7.58 1919 | 37.07

Table 3.1a: Curvature comparisons for the top polygon from Fig. 3.8.

From the above evaluation, we tend to conclude that the average of Catmull-Rom and Edge
Length methods v¢; produces good results for all test polygons. Although in some cases other
methods produced better results in terms of minimizing curvature jumps or variation, v¢, was
generally very close to those ‘best’ results. We thus have accepted v¢; as a default choice for the
velocities at the interpolation points.
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Velocity Maximum Sum of Curvature | Energy

Method Curvature Jump | Curvature Jumps | Variaton | Integral

p 1.84 7.38 2.09 5.89

' 4.64 18.56 5.67 10.42

2G +p) 2.86 11.43 3.40 725

c 8.65 34.63 9.35 29.94

%(p +5) 8.65 34.63 9.35 29.94

%(pu..s') 3.84 15.39 5.16 29.94

%(p +¢) 0.17 0.70 1.36 6.60

S+ 2@ +5) 0.17 0.70 1.36 6.60

2@+ %(p'+s')) 0.17 0.70 1.36 6.60

%(p' +¢) 0.77 3.09 2.63 9.07

20"+ 5@ +5) 0.77 3.09 2.63 9.07

%(p' + %(p'”s) 0.77 3.0 2.63 9.07

S5 @ +p)+e) 038 1.54 1.87 7.48
1.1 1

TG0 +p)+ 5P +5) 0.38 1.54 1.87 7.48

SG@ 4P+ 50"+ 0.38 1.54 1.87 7.48

Table 3.1b: Curvature comparisons for the bottom polygon from Fig. 3.9.

Note that we are not trying to find a method that would minimize some curvature func-
tional. Doing so would involve a global minimization problem that cannot be solved locally.
Rather, we are trying to find a very simple approach that always produces reasonable results and
can be used as a good starting default choice for possible subsequent fine-tuning or fairing.

We also have carried out the comparisons of various velocities methods for the two extreme
choices of the normal direction, corresponding to the top and the bottom of the ‘diamond’ shape
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Velocity Maximum Sum of Curvature | Energy

Method Curvature Jump | Curvature Jumps | Variation ; Integral

P 2.59 2221 7.64 31.03

p’ 18.24 51.49 4735 | 12146

3@ +p") 4.88 27.33 1137 | 38.09

c 9.64 55.61 5282 | 134.98

%@ +5) 9.52 49.68 18.09 51.48

%(p'»fsq 21.17 51.30 4697 | 164.04

3@+ 2.54 16.20 870 | 3630

2@ 43P +) 3.28 18.08 646 | 3243

-;—(p + -12-@' +57) 225 16.37 876 | 37.30

%(p ‘¥ e) 435 20.08 4301 | 11228

%(p' + %(p +5)) 2.89 20.65 8.80 39.87

—;—(p'+ %(p' +57) 4.63 19.77 4414 | 12482

%(—;—(p +p)+c) 2.23 16.94 15.23 46.01
1,1 1

TG0 +p)+ 50 +5) 2.97 18.44 7.40 3479

-;—(%(p +p)+ -—;—(p ' +57) 2.10 15.41 15.42 48.67

Table 3.1c: Curvature comparisons for a polygon from Fig. 3.10.

in Fig. 3.4. For the top of the diamond, i.e. when the global deviation parameter D =1 (Section
3.3.2.3), v, again produced best results in terms of curvature minimization. For the bottom of
the diamond (D =-1), however, the best results were produced by the Edge Length method (v, ).

This result is not surprising. Indeed, when normals at interpolation points tilt toward
shorter sides, more bulgy curves would tend to minimize curvature variation. For example, for a
rectangle with a large aspect ratio, a near-circular curve would be ‘ideal’ in terms of minimizing
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Figure 3.10: Interpolation of a complex polygon. Default normals and velocities are used.

curvature variation. The application of the default velocity v, in this situation results in a
tighter curve (Fig. 3.5b, bottom).

In a situation when the tangent directions are prescribed beforehand, it becomes increas-
ingly difficult to define what the ‘best’ curve should be. A near-circular curve in the above exam-
ple is probably not what most designers would have in mind. Therefore, we feel that the default
velocity v, should be independent of the normal selection. In practice, the choice of a particular
velocity method would clearly be application-dependent.

3.3.33. Control of Velocities with Shape Parameters

After default velocities at all the vertices have been determined, it will be possible for the
user to modify them locally at individual points. However, the whole process of velocity deter-
mination can be affected in a global manner. We associate two global parameters with velocity
computation. The first parameter, bulge, is a multiplying factor on the calculated velocities. A
bigger factor will produce more bulgy, round shapes, while a small value will lead to shorter seg-
ments that connect the adjacent vertices more directly. Since the distance from the projection of
the interior Bézier point onto the polygon edge to the nearest interpolating point never exceeds
one third of the edge length (see previous Section), it is ‘safe’ to use bulge value up to 1.5. A
larger bulge may produce loops in the curve. The default value for bulge is 1.



3. PROCEDURAL SPLINES 47

Another global shape parameter determines the degree of continuity of the curve. Changing
this parameter from 0 to 1 would generally decrease the ratio of the two velocities at any interpo-
lation point, thus making the curve closer to being C 1. A default value for the (parametric) con-
tinuity measure is 1/2, which means that the arithmetic average of Catmull-Rom and Edge
Length velocities is used.

To summarize, the velocity on either side of any interpolation point is computed according
to the following formula:

v=B (Cvc+(1-C)v.), (3.22)

where B is the bulge parameter, and C is the measure of continuity.

3.4. Pleasing Splines

3.4.1. Procedural Approach

The final default formulations for normals and velocities as described in previous sections
produce very good results for most cases. However, the normal and the two velocities at any
interpolation point depend only on the 2 neighbor vertices. In some situations, this information is
not sufficient to construct a ‘pleasing looking’ spline or to best implement the ‘intent’ of the
designer.

Traditionally, one would solve this problem by developing a more complex mathematical
formulation involving 4 or more nearest neighbors. However, this solution is not efficient
because looking further than a nearest neighbor is usually necessary only in special situations that
occur relatively rarely. Therefore, we introduced a set of patterns of the defining polygon that
triggers the application of certain rules. If a constellation of interpolation points does not match
any of the patterns, the simple 2-neighbor scheme described above is applied. This approach is
somewhat similar to a computer program with if-then-else statements where different procedures
(rules) are called if certain condition (pattemns) are satisfied.

Since the property of stability as described in Section 3.2.3 needs to be maintained, the
rules cannot be just ‘special cases’. A threshold is usually associated with each pattem which
determines ‘how close’ the actual defining polygon is to the pattern. The actual normals and the
velocities then continuously vary from the simple 2-neighbor scheme used up to the threshold
value to the special rule in case of an exact match.

In the next sections, we describe such special rules for the collinear points and for dispro-
portionate segments in the defining polygon as well as for the end vertices of an open curve.
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3.4.2. Collinear Segments

The ability to incorporate linear segments is very important in order to capture the intent of
the designer and often also to enhance the visual quality of the spline. Consider Fig. 3.11, where
2 adjacent segments of the topology polygon are collinear. It seems reasonable to infer that the
designer wanted a linear curve between P;_; and P;. Using a 2-neighbor scheme is inadequate in
this case, since it produces a curve with an extra inflection point (shown dotted).

i+2
P, !

Figure 3.11: The rule of collinear segments.
The default curve is shown dotted, and the procedural solution solid.

A non-polynomial spline based on arclength parametrization that can incorporate linear seg-
ments has been proposed in [96]. Usually, however, the fact that the tangent at P; should be col-
linear with the side P;_,P; is associated with convexity preservation. An algorithm proposed by
McLaughlin [89] generates convexity preserving curves comprising parabolic and linear seg-
ments. An approach by Goodman and Unsworth [56] computes the tangent direction at P; as a
weighted average of directions P;_\P; and P;P;,, in which the weights are some functions of
cross products of the defining polygon sides through the points P;_3,....Pi42. A similar approach
by Renner and Pochop [110] starts with the Catmull-Rom tangent and ‘generalizes’ it so that
convexity is preserved.

However, in all cases these solutions require 4 nearest neighbors to generate a normal at a
vertex. Our procedural method makes a simple test that determines if the 2 corresponding sides
of the defining polygon are nearly collinear. If this is not the case, the simple 2-neighbor scheme
is applied. In this way, if two segments are collinear, the desired behavior is guaranteed by the
application of the special rule; otherwise it is produced by the default method.

We assume that the normal at the vertex P; can always be expressed as a linear combination
of the edge normals n,, and n,:

-

np =c, fi, +¢; ;. (3.23)

The subscript D stands for the default scheme from Section 3.3.2. The coefficients ¢, and ¢, are
easily computed as the coordinates of np in fi,, fig basis. Note that this implies that the nomal
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between 2 collinear segments is a priori defined.
We express the corrected normal n as follows:
n=k’, c, fi, +k’; c; fig, (3.24)
where k’, = 0if the angle P; P4 Pis2 = 180° and k', =0 if the angle P; ,P;_,P; = 180°.

A weighting function that measures an angle is required. It is natural to define it in terms of
the cosine of the angle between adjoining sides (which is equivalent to the scalar product of the
unit vectors in the directions of the corresponding polygon edges):

ky

* =min(20 (1 + cos(P; P;1Pis2)), 1), k' =min(20 (1 +cos(P; 2P P;)), ). (3.25)
Essentially, only if the cosine of the corresponding angle lies between -1 and -0.95, or within the
threshold of 2.5% of its range, the special rule is applied. The closer the angle is to 180°, the
smaller the corresponding coefficient, and the closer the normal is to the normal of the other side.
In order to maintain the stability property, the normal has to depend continuously on the angles

and P;_; and P;.,. This can be easily achieved by making coefficients k, and k; sum up to 1:
1 , , 1 ,
kP"'E(l"'kP -k, k,=—2—(1+ks -k, (3.26)

Thus, the normal is well-defined even if both angles P; ,P;_P; and P;P;,, P, are equal to 180°.
Fig. 3.12 illustrates the application of the Collinear Segments rule to a polygonal frame with 4
pairs of collinear segments.

()

O
A4

Figure 3.12: An application of the Collinear Segments rule.
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The formulation (3.23) implies that the normal at the vertex between the 2 collinear sides
must be orthogonal to these sides. This is due to an implicit assumption that the curve does not
cross the defining polygon at interpolation points, but rather between the vertices (see, for exam-
ple, Fig. 3.10). A resulting limitation of the method is illustrated by Fig. 3.13. For a ‘wave’ pat-
tem of interpolation points, extra inflections in the spline are introduced because the normals at
middle vertices have to be perpendicular to the polygon sides. The inflections can be eliminated
by tilting these normals away from their fixed positions. However, at present, we have not yet
found an easy way to detect a similar situation and adjust the normals automatically.

Figure 3.13: A spline with extra inflection points for a ‘wave’ pattern of interpolation points.

3.4.3. Convexity Preservation

The Collinear Segments rule is closely related to the more general problem of convexity
preservation [66,90]. Basically, a curve is called convexity preserving, if the following holds. If
a sequence of vertices P;_y, P;, P;,1, P;z is positively (negatively) convex, then the curve must
be positively (negatively) convex between P; and P;,;. If, on the other hand, P;_;, P;.P;4 IS
positively (negatively) convex, and P;, Py, Piy2 1S negatively (positively) convex, then the
curve must have a single inflection point between P; and P;,,. Essentially, the curve should have
only the inflections imposed by the data and no extra ‘kinks’. The formal definition of convexity
preservation can be found in [55].

This definition becomes very restrictive if a pair of defining polygon segments are collinear,
so that a particular sequence of points can be regarded as convex or as having an inflection point
at the same time. The curve is thereby forced to be linear between a corresponding pair of ver-
tices. This situation has already been addressed in the previous section. In fact, we regard con-
vexity preservation as a natural extension of this rule.

The general formulation (3.24) for the normal direction can still be used:

np =k, c, i, +k ¢ f;.

However, for best results, all 4 nearest neighbors must be considered in the computation. This
can be achieved by letting coefficients k, and k, range from O to 1 as the corresponding angles
P;P; P, and P;_,P;_,P; (see Fig. 3.11) range from 180° to 0.
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k, =

P (1 +cos(P;PinPisd)s k' =

% (1 +cos(P;_oPi_1P}))- (3.27)

The reasonable behavior of the spline will still be assured by the coefficients ¢, and ¢, that come
from the default normal scheme.

=

However, just modifying the normal direction will not prevent the curve from having extra
inflections if the selected velocities are too large. This can typically occur if both angles
P;_,P;_\P; and P;P; P, ., are close to 180° (Fig. 3.14). An extra check on velocities is therefore
required.

Figure 3.14: A curve with extra inflections (solid) and convexity preserving (dotted).

A cubic Bézier segment will be convex between P; and P;,, if its interior control points lie
between the corresponding interpolation point and the intersection / of tangent directions at P;
and P;,, (Fig. 3.15). If the default method would place a Bézier point outside this range, we just
move it exactly to /.

i+2

Figure 3.15: The interior Bezier points must lie on line segments
P;I and IP;,, for segment convexity.

This is similar to the approach taken in [55], where the single control point of a quadratic
Bézier point is always placed at /. In fact, one could always determine velocities by placing
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corresponding control points somewhere on P;/. Usually, however, the interior Bézier points as
determined by default velocities from Section 3.3.3, will already lie between the vertices and the
intersection point of tangent directions, and actual velocity reduction will need to be performed
quite rarely. Reducing the default velocities if necessary is more preferable than just placing
Bézier points between P; and / because the latter approach does not take into consideration the
constellation of neighbor points. Moreover, this approach cannot be used at all in some situa-
tions, e.g. if the defining polygon has an inflection.

No G! convexity preserving spline can be constructed if P;_,P;_; is collinear with P;_;P;
and P, P, ,, is collinear with P, P;,, because of zero velocities at P;. An application can deal in
two ways with this situation: first, no action can be taken and G discontinuity at P; be assumed
intended. Second, a separate rule for this situation may be introduced that does not reduce veloci-
ties further than some fraction of its original length. In this case, G continuity will be preserved
at the cost of introducing two extra inflections in the curve.

3.4.4. Disproportionate Sides

If the ratio of lengths of the two adjoining defining polygon sides is very large, a curve may
‘negotiate a tight turn’. Suppose that the length of the side P;P;,; is much smaller then the
lengths of P;_,P; and P;,,P;,; (Fig. 3.16). Then the normals at P; and P, will be significantly
different from each other, which can lead to an apparent visual discontinuity in the tangent.

Figure 3.16: The case of disproportionate polygon sides.

In this case the normals at P; and P;,; should ‘tilt’ to the shorter side of the defining
polygon. This can be easily achieved by increasing the appropriate coefficient of the default nor-
mal formulation (3.23) in the ﬁp, fn, basis:

n=c

e (3.28)

R

Here r is the ratio of larger and smaller sides, and R is some threshold; the rule is applied only in
the case of r > R. We set R =10. Similar results can be achieved by selecting the default nor-
mal method to be closer to the bottom of the ‘diamond’ in Fig. 3.4, or, equivalently, by choosing
the deviation parameter D (Section 3.3.2.3) to be closer to -1.
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This rule is a good example of the versatility of the procedural approach and its suitability
to various applications. Indeed, some modeling systems may require the ability to have sharp
comers, or discontinuities in tangent direction. This can be achieved by ‘doubling’ the vertices
where the discontinuity is desired. In this case, the designer will just disable the application of
the Disproportionate Sides rule.

3.4.5. Rules for the Endpoints

As described in Sections 3.3.2 and 3.3.3, normals and velocities at a certain point always
depend on the two nearest vertices. If a special rule applies, four neighbor points are needed. A
closed curve always has the required number of neighbors on either side; for an open curve, how-
ever, special constructions are necessary for the first and the last vertices. In addition, if four
neighbors are required for the computation, special constructions will also be needed for P and
P,

Catmull-Rom and B-splines trivially avoid this problem by constructing a spline only on
those intervals where all the required vertices are present. For example, for a sequence of points
Py, ...,P,, a cubic curve would start at P, and end at P,_,. This is clearly unacceptable for
pleasing splines; one naturally expects a spline to pass through all the interpolation points.

In the next sections, we describe possible rules for normals and velocities at P and P ; the
rules for P, and P,_; are analogous.

3.4.5.1. Normal Construction at P,

Perpendicular Method. The easiest way to define a normal at P is just to make it orthog-
onal to the first segment PP, (Fig. 3.17a):

tp =4 (3.29)

Here again 4 is a unit vector in the direction of a. In this case, an inflection point will normally
appear in the first curve segment.

The following three methods attempt to determine the tangent direction at Py by the
geometry of the triangle PP |P,. In these approaches, the tangent direction is some reflection of
the direction of the chord PP, through P, so that the inflection in the first curve segment is
avoided.

Reflection Method. In this method, the tangent direction at P is given by the reflection of
the chord P (P , with respect to PyP (Fig. 3.17b):

tgp=2(c-4)a-c (3.30)
Adjacent Side Vector Difference. A similar result can be achieved at a smaller computa-
tional cost, if a difference of a and b is used (Fig. 3.17¢c):

tp =a-b. (3.31)
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Figure 3.17: Normal determination at P,
a. Side Perpendicular. b. Reflection. c. Side Vector Difference.
d. Unit Side Vector Difference. e. Adjacent Velocity. f. Symmetric.

Unit Side Vector Difference. Alternatively, the tangent can be formulated in terms of unit
vectors 4 and b:

A

ty =4-b. (3.32)
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In this way, the tangent at P depends only on the angle at P, i.e. it is parallel to the angle bisec-
tor at P (Fig. 3.17d).

The last three methods have disadvantages similar to those in the Catmull-Rom method.
That is, large overshoots can result if the geometry of the triangle PP P, is strongly asym-
metric. This is due to the fact that the above schemes do not take into consideration the normal at
P, computed with the default method from Section 3.3.2. Using this information can make the
shape of the curve near P, more pleasing and predictable.

P, Velocity Method. In this method, the tangent direction is determined by a certain point
C on the tangent line at P, (Fig. 3.17e):

ty =C-Po, (3.33)

where
C=P,+k v, (3.34)
Here v, is the velocity at P towards P,. The coefficient k determines how the curve bulges near

Py Fork = —;’— the two interior control points and P will be collinear, and curvature at P will

be equal to 0. Good visual results can be attained for the value k = —;—

Symmetric Method. The first spline segment can be made symmetric with respect to the
perpendicular axis through the midpoint of Py and P, if the angles between P P, and the tangent
directions at these points are made equal (Fig. 3.17f):

tS =2 (_tl : nl) nl + t’l' (335)

Here t, is the tangent direction at P,. If this rule is used, a nice symmetric shape will be pro-
duced if a defining polygon is a part of a regular n -gon.

The best visual results are produced with the last two methods that look at the normal at P ;.
Both of them are implemented in our system; the actual choice of the method is usually applica-
tion dependent.

3.4.5.2. Velocity Determination at P

Since there is no ‘adjoining’ side at P, one could just use the methods that do not depend
on it. Edge Length and Projection methods as well as their average from Section 3.3.3 can all be
utilized. The Average method produces the best results, but requires somewhat more computa-
tion.

If the normal at P is computed with the Symmetric method (3.35) as described above, then
the velocity should also be symmetric:

V0J=V1p. (336)

In this case no extra computation is required for the velocities at the endpoints.
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Our implementation supports Average and Symmetric methods for the velocities at the end
vertices; again, the actual choice of the approach depends on the needs of the application.

3.4.5.3. Normals and Velocities at P,

The normal at P, (and P,_,) needs special attention only when a special rule is invoked that
utilizes four neighbor points, e.g. Collinear Segments. In this case, we set the coefficient k" of
(3.25) that depends on the angle at P to be identically 1. Thus, the normal at P will be orthogo-
nal to the second defining polygon segment if it is collinear with the third segment.

The Disproportionate Sides rule, on the other hand, does not require any special treatment
for normals and velocities at P;. The purpose of this rule is to prevent visual discontinuity; how-
ever, it cannot occur at the beginning or at the end of the curve. Likewise, the velocities at P
can be computed in a standard manner as they never depend on more than two nearest neighbors.

3.5. Global Shape Parameters

Some of the procedures discussed above contain parameters that have been set to some
predetermined default values. The deviation of the default normal from the bisector is one exam-
ple of such a parameter. Its value will affect the general behavior of all tangents at the interpola-
tion points. Bulge, or a multiplication factor for the velocities is another example. The larger
this factor is, the more round and bulgy shapes will be produced; smaller values will result in
shorter segments that connect the two vertices more directly. Finally, the thresholds for Collinear
Segments and Disproportionate Sides rules can also be utilized to control the global shape of the
curve in special situations.

The fact that the normal deviation, as well as bulge and continuitry measure are very useful
for interactive shape control has been previously acknowledged. Many tension-controlled splines
have been described in the literature [31,75,92]. The continuity measure, which has a similar
effect to Barsky’s B1 parameter, is also mentioned in [79]. Analogously, normal deviation is
similar to the bias of the spline {4, 47].

The fact that the procedural method can easily accommodate all these useful shape controls
illustrates its flexibility. Our approach establishes good default values for global shape parame-
ters. Typically, a whole range of possible values for a particular parameter will result in a ‘rea-
sonable’ behavior of the curve. It is possible (but usually does not make sense) to go beyond
some of these ranges and, for example, to make the ratio of the two velocities at a certain vertex
larger than the ratio of the underlying sides. However, forcing this condition would take the con-
tinuity measure parameter out of its range. Analogously, it is not desirable to tilt the normal too
much from its ‘pleasing region’ in Fig. 3.4, or to make the bulge parameter too large (> 1.5) or
too small (< 0.5).
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Clearly, global shape parameters can be utilized to affect the overall shape of the curve in a
uniform manner. These values are therefore a powerful addition to the local parameters (normals,
velocities) and can be viewed as shape parameters for traditional splines that have been carried
over to the procedural method.

3.6. General Curve Properties and Pleasing Splines

The procedural method of constructing interpolating curves, described above, does not
necessarily guarantee that the various spline properties discussed in Section 3.1 will be satisfied.
In this section, we look in more detail at some of these properties, evaluate to what degree our
procedural splines possess these properties, and argue tha some of them may be inconsistent with
the requirements of pleasing splines.

3.6.1. Monotonicity Preservation

Monotonicity preservation is often considered together with convexity preservation as
prerequisites for constructing shape-preserving splines. However, monotonicity preservation has
a more limited application as it concerns only the curves that interpolate functional data points
P;(x;,y;), where the sequence x; is strictly increasing. If the sequence y;_;, Yi:Yi+1,Yis2 is
increasing (decreasing), then the curve is also increasing (decreasing) between P; and P;,;.
Furthermore, if y;_1 £¥; 2 i1 (ic1 2¥; Sy:41) then the curve has a single local maximum
(minimum) between P;_y and P;,,.

The above definition is asymmetric in the sense that the x and y coordinates are treated dif-
ferently. This results in the fact that monotonicity preserving splines are not rotation invariant as
the following example illustrates.

Figure 3.18 shows that the property of monotonicity preservation can be easily lost after a
rotation of the curve. Therefore, the property of monotonicity preservation is incompatible with
pleasing splines since the latter should be rotation invariant.

3.6.2. Differential Scaling Invariance

Invariance under differential scaling, i.e. different scaling ratios in x and y, is another com-
mon property of traditional splines. It states that the scaled image of a curve must be identical to
the curve constructed from the scaled defining polygon. Pleasing splines, however, should not be
invariant under differential scaling. In Fig. 3.19, the solid curve b, which was obtained by scal-
ing the curve a seems to be too oblong for most people’s taste.

3.6.3. Consistency

The consistency property [94] (Section 3.2.4), on the other hand, would be very useful and
natural. However, it is very hard to attain as the following argument shows.
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Figure 3.18: a. A monotonicity preserving spline.
b. The same rotated spline is no longer monotonicity preserving.

We will assume that the spline is at least G!, so that it has a continuous normal at each
point. Since the spline is local, we will also assume that the normal n; at point P; depends only
on P;_,, P;, and P, (the case when n; depends on more vertices is handled analogously). Thus,
a perturbation of the vertices P;_;, P;, P;,; may result in a perturbation in the normal at P;.

Consider Fig. 3.20. The normal at P, of the interpolating spline through Py, ..., Py
dependson P, P,, and P3:

n(Py)=n (P, PPy (3.37)

Now suppose that a new point D has been added on a curve segment between P, and P,.
Clearly, the position of D depends on the normals at P and P,. These normals, in tum, depend
on the points Py, Py, Py, and Py, Py, P3, respectively. Therefore, D is a function of four points:

D=d(P0,P1,P2,P3). (338)
Now, the expression for the normal at P,, computed with the expanded vertex set,
Po,Pl,D,Pz,P3,P4,iS
n(P2)=n(D,P2,P3). (339)
However, since D also depends on P,

Npew (P2)=nnew (PO’ Pl’ P2v PJ)- (340)
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Figure 3.19: A scaled version (b, solid) of the original (a) spline.
A pleasing spline is shown dotted.

Figure 3.20: Local spline cannot be consistent.
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The consistency property requires
n(Py)=n,, P (3.41)

However, this is false because the original n (P) does not depend on P, and we arrive at the
contradiction. This also becomes evident by looking at Fig. 3.20: All positions shown
(D,D’, D" of the predecessor of P, would have to produce the same normal at P.

Thus, one is forced to choose between consistency and being able to modify the curve in an
interactive, local manner. Moreover, consistent splines have a rather complicated mathematical
formulation [94]. Therefore, the consistency property, although desirable, is not practical in an
engineering system.

3.6.4. Relationship of Various Spline Properties to Pleasing Splines

Table 3.2 summarizes various spline properties and indicates whether they are supported in
our implementation of G ! pleasing splines.

Property Supported Comments
Rotation, Translation Invariance Yes
Uniform Scaling Invariance Yes
Differential Scaling Invariance No Not a pleasing property
Local Control Yes
Local Shape Parameters Yes Normal, two velocities at each vertex
Global Shape Parameters Yes Weighting factors for normals, veloci-
ties; thresholds
Simplicity Yes Cubic Bézier
Stability Yes
Consistency No Too hard to attain; not compatible with

locality and simplicity

Convexity Preservation On demand | Special rule

Monotonicity Preservation No Not compatible with rotation invariance

Table 3.2: Various spline properties.
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3.7. Summary

We have presented a local G! interpolation method. A curve is represented as a union of
cubic Bézier segments, constructed between each pair of adjacent vertices.

The Bézier formulation makes it possible to naturally define the curve in terms of some
shape parameters: the normal and the two velocities at each interpolation point. Unlike tradi-
tional splines, our procedure goes through a sequence of procedural steps, or rules, to determine
the best possible values for these shape parameters. The resulting spline is guaranteed to be of
good visual quality even for highly asymmetric defining polygons.

The procedural approach also makes our splines very versatile and easily adjustable to the
application’s particular needs. Besides modifying local shape parameters, the user can affect the
curve in a global manner either by selecting appropriate global shape parameters, or by choosing
a set of rules that apply to certain ‘extreme’ situations.

Furthermore, the procedural method can be easily generalized to construct curvature con-
tinuous, or G2, curves (Chapter 4). Moreover, our approach can be used in R3 as well as in R%:
for space curves, the normals and velocities are determined in the plane of the three neighbor ver-
tices. Finally, an extension to interpolating surfaces is certainly possible. In Chapter 5, we will
use the rules for nommals and velocities as an inspiration to define similar geometric parameters
for Bézier and Gregory patches.
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Curvature Continuous
Cubic Splines

In this chapter, we describe a natural extension of G ! pleasing splines from the previ-
ous Chapter to curvature continuous curves in R%. We present a G? scheme with a
free choice of a tangent direction, two derivatives, and a curvature at each interpola-
tion point. In this scheme, two cubic segments are constructed for each adjacent pair
of vertices. Pleasing behavior is assured by using the G ! procedure to choose direc-
tions and derivatives and by a judicious choice of curvatures. We further discuss the
possibility of extending the method to R? and conclude with a comparison of our
scheme with various other local schemes for curve construction.

4.1. Introduction

In the previous chapter, we have described a method to construct pleasing G! continuous
interpolating splines with local and global shape parameters. However, it is often very important
to have not only tangent direction continuity, but continuity of curvature (G 2y as well. We would
like to build a natural G2 extension of our method and at the same time maintain pleasing
behavior, simple Bézier representation, and freedom of selecting various shape parameters.

Many techniques of constructing curvature continuous splines have been proposed. Minimi-
zation of some physical property usually results in a global non-polynomial solution, sometimes
even with some shape parameters [80, 118]. After Nielson [92] has proposed a global piecewise
polynomial solution to the interpolation problem, local polynomial and rational schemes were
introduced. Earlier solutions [23,75] did not have any shape parameters. In a recent develop-
ment, DeRose and Barsky [34] have combined beta parameters, usually used for approximating
curves [4, 5], with interpolating Catmull-Rom splines. The result is a local interpolating quintic
spline with beta shape parameters. A similar method with quintic Bézier segments is described in
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[69].

Indeed, quintic Bézier curves are well-suited for G? local interpolation because the first and
the last inner control points can be used to define derivatives, while the inner pair of control
points defines (indirectly) the curvatures at the vertices. For cubic Bézier curves, however, the
curvature at the end of the segment depends on both interior control points. Therefore, it is
impossible to achieve G? continuity without sacrificing the freedom of choosing the Bézier
points. An interesting compromise, proposed by de Boor et al [19], allows free choice of the
tangent directions and of the curvatures at the interpolation points. The velocities at each curve
segment are then determined from a system of two quadratic equations resulting from satisfying
certain curvature constraints at the vertices. However, the solution to the above system does not
always exist and the method fails to produce G? curves for some configurations of interpolation
points. An introduction of a breakpoint in some segments overcomes this difficulty [56] at the
price of representing the curve with o cubics instead of one between some pairs of adjacent ver-
tices.

It tumns out that by introducing breakpoints between every pair of adjacent vertices, one can
achieve complete freedom of choosing tangent direction, derivatives, and curvature at every ver-
tex. The default values for the tangent and the derivatives can be taken from our G ! method,
which guarantees that the shape of G2 curve will be similar to the corresponding G! curve.

In the context of this Chapter, it is more convenient to deal with the directions, or the
tangents of the curve at interpolation points, rather than with the normals. Also, here we assume
that the ‘velocity’ magnitude is the distance from a vertex to the corresponding Bézier point,
rather than the derivative value, which is equal to 3 times this distance for cubics.

4.2. Preliminaries

Consider a cubic Bézier segment c(u). Let ty and t; be the unit tangent vectors at end-
points, and v, and v, be the distances from the endpoints to the nearest Bézier point. The curva-
ture at the point corresponding to parametric value u is given by

c’(u)xc”(u)

O D
where
axb=ab,—a,b, 4.2)
is a cross product in 2D. Since for the internal control points
Ci=Cy+vpty
Cy=C3-v,ty,

it is easily verified that the curvatures K, and ¥, at the corresponding endpoints C and C 3 can be
expressed as
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_26x(C=Cy
3vé '
2, % (Cy - Cy)

2
3Vl

4.3)

X

Assuming t, and t, are given, and the curvatures X, and x; are chosen, then equations (4.3) can
be regarded as a system for the 2 unknowns vq and v;. Thus, for the given tangent directions, a
G? continuous curve can be constructed by assigning a curvature value at each joint and solving a
corresponding system of equations for each Bézier segment [19]. Note that this implies that we
have given up control over the velocities vgand v;.

The system (4.3) is quadratic in terms of v, and v,. For certain configurations of vertices
and directions, no positive solution is possible. Suppose that a linear segment joins with a non-
linear segment (Fig. 4.1). Then the curvature at P has to be 0, because an adjoining line seg-
ment PP, has zero curvature everywhere. This means that both Bézier points of the segment
P P, have to lie on the line between P, and P, which is inconsistent with the tangent direction
at P,

Figure 4.1: A linear segment joining non-linear segment.

However, by inserting a new vertex, or a breakpoinz, into the defining polygon between P
and P,, it is possible to preserve curvature continuity. Goodman et al [56] use this technique to
deal with curves having linear segments. Their solution uses a pair of curve segments between
those adjacent vertices for which a breakpoint insertion is necessary to maintain G? continuity
(usually this happens when a linear segment joins a non-linear curve segment). We extend this
approach by using a pair of cubic segments between every pair of interpolation points. As we
will see in this Chapter, the following advantages are then realized:

e The curve is guaranteed to be G%
e The representation is still in terms of cubic Bézier segments;

e Since linear segments don’t require special treatment, the stability property can be easily
achieved;
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e As in the G! method from Chapter 3, the nommals and the velocities can still be chosen
freely;

e In addition, one can choose curvatures at every interpolation point.

Finally, this approach is a natural extension of the G! procedural splines. The rules and default
values for the normals and for the velocities of the G'! method can be applied without any
modification.

4.3. Breakpoint Insertion

Consider the cubic Bézier segment in Fig. 4.2. Assume that the curvatures x; and x; at the
endpoints Cg and C 5 have somehow been chosen (see Section 4.6). We would like to substitute
the original cubic with control points at C;, i =0,1,2,3 by the two cubics, with control points S;
and T;, i =0,1,2,3 in such a way that the curvatures at Sy = C g and 73 =C; are as prescribed, and
the derivatives at these points match the derivatives of the original cubic. Moreover, we need to
guarantee curvature continuity at S3=T.

It is convenient to assume that the parameter in the new cubics varies twice as fast as in the
original cubic. This assumption is similar to the one in the process of midpoint subdivision of
Bézier segments [10]. Then the points S, and T, are readily defined:

S, = % (Co+Cp), (4.4)
T,= % (C, +Cy). 4.5)

Now we need to choose S, and T in such a way that the curvatures at the endpoints match
X, and x, respectively. This choice, however, is not unique. Indeed, it follows immediately from
the definition of curvatures (4.3) that the locus place of the points S, yielding a fixed curvature kg

at Cy is a line parallel to the direction tg at Cg at a distance of % Ko v¢. Analogously, the
geometric place of the points T with the fixed curvature x; at C5 is a line parallel to t; with the

offset of % x, v# (Fig. 4.2). Note that that the actual position of S, and T, on equal curvature

lines can be defined in terms of Barsky’s 2 parameter [5].

Once the positions of S, and T, have been selected (see the next Section), 3 =T, needs to
be determined. Obviously, for G! continuity between the two subsegments, this point has to be
on the line between S, and T. As indicated in [40] for more general situations, the G? con-
tinuity condition at S5 = T can be derived from matching the curvatures at the two sides

2bx (S-S 2bx(T,-Ty)
3v2 3 -v)?

Here b is the direction of S,T, v is the unknown distance from S, to S5, and / is the length of

(4.6)



4. CURVATURE CONTINUOUS SPLINES 66

/
/
S 0 ’
/
/
) equal curvature

lines

AY
N
N
N
N
AS
N\
N
N\

Figure 4.2: Breakpoint insertion in a cubic Bézier segment.

S,T,. Letting
2 2
C1=§bX(Sl-’Sz), C2=§bX(T2—T1) 4.7
we obtain a quadratic equation for v:
(cq—cv2+2lc,v —c1?=0. 4.8)

The solution to this equation is:

_ i\lClCZ—Cl I

Cr—Cy

v

4.9)
If c; =c,, then

1
=—1 4.1
v 21 (4.10)

A positive solution in the range [0,/] always exists if the sequence §,S,T;T; is convex. A neces-
sary (but not sufficient) condition for that is that ¢ and ¢, have the same sign, or, equivalently,
that both S, and T, lie on the same side of the S 7', line.
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A very simple sufficient condition for solvability of (4.8) can be obtained by forcing S,7T';
to be parallel to S,T,. This choice simplifies the solution even further: in this case, the cross pro-
ducts in the numerators of the equation (4.6) will be just the offsets of the points S, and T, from
the line §;T,, and so ¢ =c,. Then,

S3=T0= % (Sz+Tl). 4.11)

Note that this position of the breakpoint makes the two subsegments also parametrically continu-
ous (Ch).

The two cubic G ? subsegments will then be completely defined by the choice of the points
S, and T,. We now look at various methods of choosing these points.

4.4. Choice of the Points S, and T,

4.4.1. Algebraic Methods

C? continuity. As shown above, if the line S,T, is chosen parallel to §,T',, then the result-
ing cubic segments will be C! continuous at the breakpoint. It seems natural to extend this for-
mulation and determine the distance between the two parallel lines so that the curve is made c?
atSs;.

Expressing the second derivatives on the two sides of S; in terms of the corresponding
Bézier points and making them equal results in the condition

2(T]—S2)=T2—Sl. (412)

However, this solution is not acceptable as extra inflections or even loops may be forced if the
intersection point of the equal curvature lines lies near the ST, line.

Curvature Fairing. In recent publications, several researchers argued that the C? curves
can be ‘faired’ by smoothing the derivative of the curvature [78,86]. Farin et al [44,45] formu-
late this condition in terms of C3 continuity. In the context of our construction, however, we will
have to define fairness in terms of the derivative of curvature magnitude (C 3 cannot be forced
because, in general, the curve will not even be cHh.

Looking again at Fig. 4.2, we can see that placing all interior control points of the two seg-
ments on ST, line will force zero curvature at the breakpoint. For this reason, we call S,T, the
zero curvature line. The graph of the curvature magnitude in this case is shown dotted in Fig.
4.3.

In the other extreme case, when S5, S3, and T'; are all placed at the intersection point I of
the equal curvature lines, the curve will have ‘infinite’ curvature there. The corresponding plot is
shown dashed.
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curvature
A

S, S;= T, T,

Figure 4.3: Curvature plots for various offsets of the breakpoint from the zero curvature line.
a. Zero offset. b. Equal curvature lines intersection offset
¢. An offset, corresponding to curvature derivative continuity.

It is clear that there exists a distance from the breakpoint to the equal curvature line that
corresponds to the continuity of curvature derivative (corresponding plot shown solid). However,
finding this distance involves a solution of a polynomial equation of a high degree. Also, it is not
clear that the fairing of the spline at the breakpoint will necessarily result in a better-looking
curve. Finally, the curvature derivatives at the interpolation points will still remain discontinuous
anyway, so no improvement in overall smoothness of the curve will be gained.

Assignment of Curvature at the Breakpoint. From the equation (4.6), the curvature value
x at the breakpoint, the offset 4 of the line S,T, from §,T,, and the distance v from §, 10 §5 are
related as follows:

X= _Zﬁ_ (4.13)

32
Since the relationship between & and v can be deduced from the similarity of the triangles S,T,/
and PQI (Fig. 4.2), h can be found from the above equation, if the curvature x at S3=T is
known. From the discussion above it follows that this equation will always have a solution for
any value of x.

However, the task of selecting a proper curvature at the breakpoint is a very difficult one.
Simple averaging methods of curvature selection are inadequate. For example, a curve segment
with zero curvatures and non-paralle! tangents at the endpoints should clearly have non-zero cur-
vature in the middle (Fig. 3.12). Moreover, inappropriate curvature at S can easily result in
asymmetric shapes, extra inflections, or even loops in the resulting cubic subsegments.
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Minimization of Curvature Variation. Alternatively, one could define the breakpoint in
such a way that the variation of the curvature on both subsegments be minimized. In loose terms,
this would keep the curvature as constant as possible. However, minimization of the correspond-
ing ‘energy integral’ J x? ds [51] again results in a very complex formulation.

For these reasons, we use a procedural method to find the best offset of §,T from the zero
curvature line. This approach is a natural extension of the methods for finding normals and
derivatives for the G ! spline (see Chapter 3).

4.4.2. Procedural Choice of S, and T,

Since we regard G? splines as natural extensions of G! splines, we would like to keep them
similar to each other. In particular, if the G ! spline happens to be also G? continuous (as it would
be if the set of interpolation points formed a regular n-gon), we would expect that our G? con-
struction preserve the already curvature continuous curve. This means that each pair of subseg-
ments of the G2 spline must be a subdivision of the original segment of the G ! spline.

Consider the original cubic with the control points C;. It has some curvature X at C,
and x{"*¢ at C;. If these curvatures coincide with the prescribed curvatures, i.e. x" = x, and
k"€ = x;, we would like to get the original cubic back. In other words, in this case, the two seg-
ments constructed should be a subdivision of the original curve. This useful property can be util-
ized to determine the position of S, and T';.

Depending on whether the original cubic curve does or does not have any inflection points,
we apply one of the two procedures below for finding the necessary control points.

Case 1. The original cubic with control points C; does not have inflections (Fig. 4.4).
Assume that the equal curvature lines intersect the zero curvature line at P and Q. Let PM and
OM be the intersection points of ST, with the equal curvature lines, corresponding to the curva-
tures at C o and C 5 of the original single segment Bézier cubic. Also, let S 5" and T'l" be the inner
Bézier points of the midpoint subdivision of the original cubic:

52M=%(C0+2C1+C2), 4.14)
M_ 1
Tl -_-Z (C1+2 C2+C3). 4.15)

The curvature x{"® can be expressed as follows:

_ 2(8Y -Spxty _ 2PY -S) xt,

orig (4.16)
3vé 3vé
It follows that the position of PM can be expressed as:
3 orig v 2
PM =S+ =0 0 g @17)

2ty xd
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where d is the unit vector in the direction of ;7. Analogously,
(4.18)
It is understood that the velocities v and v, are the velocities of the subsegments: vo= 1CoS,1,

= |T2C3l

equal curvature lines

/ of the original cubic
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C.d / VAN s C,

\
s

" a TM original cubic
2

AS i p ¥
S, ¢ -Sz .

d /pM /P f N N N
/ P ’ . N
/ ’ zero curvature line N \

/
/ N

T, \\!!
C 0@ N
/ / \
S 0o / / / N N . N
’ / equal curvature lines N
) of desired magnitudes NN

Figure 4.4: Determination of the breakpoint offset (no inflection point).
The two shaded trapezoids are similar.

Finally, the offset of the breakpoint from the zero curvature line is defined from similarity
of the trapezoids P SYTHOM and PS,T\Q. The actual construction computes the ratio r of
PQ 10 PM QM. Then the points A and B on the curvature lines of the original cubic are found in
such a way that the ratios PMA 1o PMS¥ and 0¥ B 10 Q¥ TY are all equal to r. The points S,
and T, are then defined by the intersections of the AB line with the equal curvature lines,
corresponding to the desired magnitudes.

This choice of S, and T, satisfies the subdivision property outlined at the beginning of this
Section. Indeed, if the prescribed curvatures ¥ and x; coincide with the curvatures of the origi-
nal cubic, then PM = P, O™ = 0, the two trapezoids will be identical, and S, =S4 , T, =T

Unfortunately, this approach cannot be generally used if the original cubic curve has an
inflection point. Although a pair of G 2 subsegments can still be constructed, the resulting
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solution may not be practical. Indeed, if one of the equal curvature lines is nearly parallel to the
zero curvature line, then the solution will be very sensitive to even small changes in prescribed
curvature. This may result in extra inflection points or even loops in the subsegments. Therefore,
a special method is used to deal with this situation.

Case 2. The original cubic has an inflection (Fig. 4.5). Let u be the parametric value,
corresponding to the inflection point, i.e. ¢'(u) X ¢”"(u)=0,0<u < 1. In this case, we choose the
points S, and T, not by the formulas (4.4) and (4.5), but as the Bézier points of the subdivision of
the original cubic at the parametric value u [10]:

Si;=1-u)Cy+u Cy, 4.19)
T2= (1 - u) C2 +u C3. . (420)

This essentially assures that S T, intersects the equal curvature lines (and is not parallel to any of
them).

The points S, and T, are then defined to lie on the ST line at the intersection with the
equal curvature lines; this would force zero curvature for any S; chosen on the ST, line. We
select S5 =T on S,T according to the u -subdivision:

S3=T0=(1—u)Sz+u Tl' @21

\ C.

rigi .
original cubic equal curvature

lines

Figure 4.5: Determination of S, and T, for the inflection case.

Note that the construction process for S, and T for the case without inflection points can
also be used here, if the points S¥ and T4 are replaced by the corresponding Bézier points of the
u -subdivision. Indeed, in this case, both trapezoids will have zero widths and therefore could be
regarded as similar. Finally, again, if prescribed curvatures at C and C 3 coincide with the curva-
tures of the original cubic, the same curve will be constructed (and represented as two u-
subdivision subsegments).
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Stability Considerations. Unfortunately, the fact that two different methods are used to
define the subsegments makes the approach unstable, i.e. the continuity of the spline dependence
on the interpolation points cannot be generally guaranteed. The discontinuity occurs, of course,
at the ‘borderline’ of the two cases. Suppose that the original cubic has an inflection exacty at
one of the endpoints, i.e. at the parametric value of 0 or 1 (this will happen if the original Bézier
points Cq, C, and C, or Cy, C, and C are collinear). This situation can be regarded as a limit-
ing state of either case. However, the resulting G? subsegments will not generally be the same.

Since the same construction process for S, and T, is used in both cases, the reason for insta-
bility is the discontinuity of the dependence of the parametric value of the breakpoint on the
inflection point (Fig. 4.6). Note that the parametric value of the inflection point need not lie
within the [0,1] interval: it is just a solution of the equation ¢’(u) x ¢”’(u) =0.

breakpoint
A
1+ X
N\
N\
N
\
AN
N
N
0.5 N
N
N
N
N
Y
AN
Case 1 N Case 2 Case 1
A —_
0 1 inflection

value

Figure 4.6: Dependence of the parametric value of the breakpoint on the inflection point
if different methods are used for the two cases.
Dashed lines represent required corrections to make the compound method stable.

However, it is quite simple to make the graph continuous. The required corrections are
shown dashed. Essentially, if the parametric value of the inflection point is close to O or 1, the
breakpoint is also made close to 0 or 1. For example, for the inflection value = 1.1, the break-
point is inserted at u = 0.9, rather than 0.5. The points §, and T, are then determined by the for-
mulas (4.19) and (4.20). The points S 3' and T¥ are defined by the corresponding Bézier points
of the u -subdivision; S, and T, are determined as described in the case with no inflection points.
Finally, the breakpoint is inserted according to (4.9).
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4.5. Curves with Large Velocity Magnitudes

The equation ¢’(#) x ¢”(¢) =0 which determines inflection points of a cubic Bézier seg-
ment is of degree 3. However, trivial algebra shows that the coefficient of u? is identically 0, and
this is really a quadratic equation

Au’+Bu +C =0, 4.22)

where
A=a+b-c, B=-2a+c, C=a, 4.23)
a=(C;—Cox(Cy=Cy), b=(C;-C)x(C3-Cy), ¢ =(C;-Cp)x(C3-Cy. (4.24)

Therefore, a single cubic Bézier polynomial with control points C;, i =0,...,3 can have 2
inflection points (Fig. 4.7a). A necessary (but not sufficient) condition for this is the fact that the
line segments C,C, and C,C, intersect [125]. This will never happen if the default velocities
from Section 3.3.3 are used and the value of the bulge parameter does not exceed its limit of 1.5.
We still need to consider this case, because the user is at liberty to choose even ‘unreasonably’
high velocity magnitudes that could result in cusps or loops (Fig. 4.7b,c).

Figure 4.7: A single cubic Bézier segment with large velocities.
a. Two inflection points. b. A cusp. c. A loop.

It seems natural in this case to insert rwo breakpoints exactly at the inflection values u, and
u,. Thus, 3 G? subsegments will be used to represent a single span between two adjacent inter-
polation points. The control points of the subsegments are determined as follows:

Sl=(l—u1)C0+u1Cl, (425)
T2= (1 "'uz) C2+ U, C3. (426)

Let points P and R divide the line segments C,C 43 and CyC, in the ratios corresponding to u,
and u,. Thus, P and R are control points of the corresponding subsegment of the u; or u,-
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subdivision of the original cubic (see below):
P=(1 —ul) C2+u1 C3, 4.27)
R=(1-uy) Cy+u, C. (4.28)

The intersection of lines §,P and T,R will define Q, a double interior control point of the mid-
dle segment. Then, the points S, and T are defined to lie at the intersection of §;Q and T,Q
lines with the corresponding equal curvature lines. Finally,

S3=(1-uypS;+u; Q, (4.29)
To=(1—u7)Q+u2 Tl' (430)
Note that the middle G2 subsegment is completely determined by the other two.

Finally, suppose that the prescribed curvatures at C and C 3 match the curvatures of the ori-
ginal cubic. In this case, the two cubics with control points C, S, S2, S3, and S3, O, P, C3 will
define the u,-subdivision of the original cubic. Analogously, the two segments with the control
points Cq, R, Q, Tg, and T, Ty, T4, C5 will define the u,-subdivision. Therefore, all three sub-
segments will represent the whole curve, and the preservation property outlined in the previous
Section will be fulfilled.

Stability Considerations. The special case of using three G ? subsegments will again result
in instability of the method; more complicated blending functions are required. They are sum-
marized on the diagram in Fig. 4.8, which shows possible parametric values of the two inflection
points. Unless both u, and u, lie between O and 1, a single inflection value will be determined as
indicated on the diagram. The actual breakpoint value will then be adjusted for stability by the
function in Fig. 4.6.

The regions A and B correspond to the case when u; and u, are both close to the [0,1]
interval, but are on the opposite sides (Fig. 4.9). In this case, a more sophisticated blending func-
tion is required. For example, for the region A, the influence of u, on the final inflection value
will decrease if u, is closer to 1 or u, is closer to -0.5. Thus, the following weighting average
could be used:

_ U= 1D U +0.5)+uy (~up)(1.5-uy

(p= 1), +0.5) + (—u) (1.5 —uyp) (4.31)

A similar formulation with u, and u, interchanged is used for the region B.

If the quadratic equation (4.22) has no real roots, the breakpoint is usually inserted at 0.5.
However, to maintain stability, one must detect when the determinant of (4.22) is ‘close’ to 0,
because the case of a double inflection point corresponds to a cusp (Fig. 4.7), and in this case the
breakpoint value should be equal to the parametric value of the cusp. Let

Ug= —% (432)

be the double root of (4.22) if its determinant is 0, and
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Figure 4.8: Actual inflection values for various regions of the (u,u;) plane.

Figure 4.9: Two inflection values corresponding to region A from the previous figure.

V(B%-4AC)
21Al
where A, B, and C are as in (4.23). Then, if d <0.5, the inflection value is computed as an

appropriate weighted average of g and 0.5:

g (0.5-d)+0.5d
U= o 05) , (4.34)

d= , 4.33)

Again, the final breakpoint value is determined by the function in Fig. 4.6.

The fact that 3 segments per span may be required to construct a G? curve in some cases
and the associated blending functions seem to make the method somewhat complicated. How-
ever, it is important to understand that the spline with 2 segments per each span will be sufficient
for almost all practical applications. Three segments per span will be required only if the origi-
nal cubic has 2 inflection points; this only happens if a product of certain ratios of CC; and
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C,C (Fig. 4.7) lies in a finite interval [125].

Nevertheless, a method that always uses 2 G? segments per span would certainly be more
elegant. In this case, the blending functions will also not be needed. At present, we have not yet
succeeded in developing a robust approach that always produces predictable and reasonable solu-
tions for all cases. More research is required on this subject. '

4.6. Default Choice of Curvatures

We have described a way of building G? continuous curves with prescribed directions,
velocities, and curvatures at each vertex. In the previous Chapter, we showed how to select direc-
tions and velocities for good pleasing results. Analogously, we now discuss an automatic way of
choosing default curvatures at every vertex.

This choice of proper curvatures at the interpolation points is very important. Indeed, for
many curvature values, no pleasing solutions can be constructed. This situation can be generally
characterized by the fact that the points Sy, P, @, and T, do not lie on the zero curvature line in
the indicated order (Fig. 4.4).

equal curvature lines
of inappropriate magnitudes

Figure 4.10: Bad choice of curvatures and velocities at the vertices.

Fig. 4.10 shows what happens if the curvatures K, and x; are selected to be too large. The
problem is, of course, that the intersection point / of the two equal curvature lines falls ‘below’
the zero curvature line §,7,. Although a pair of G 2 subsegments can still be constructed, few
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people would call this a pleasing solution due to the self-intersection. A practical system should
notify the user that no pleasing spline can be built for the chosen set of values at the endpoints,
but it should still be able to produce a solution. This solution can be obtained by applying an
appropriate procedure from one of the cases above.

Of course, a ‘bad’ situation like the one above will not happen if the selected curvatures are
equal to the curvatures of the G! spline. Therefore, the selected curvatures should be “as close as
possible’ to the original ones. This will also keep the G2 spline similar to the G ! curve.

From the construction process of the points S, and T it is clear that choosing equal curva-
ture lines between the corresponding interpolating point and the equal curvature line of the origi-
nal cubic will have no adverse effects on the shape of the curve. On the other hand, a large curva-
ture magnitude or the ‘wrong’ sign can cause extra inflections or loops. For a G ! spline, there are
two curvatures at each interpolation point: x, (from the predecessor segment) and X, (from the
successor segment). Therefore, a good choice for the curvature would be a minimum of these
two values if the two curvatures are of the same sign. If the two curvatures are of the opposite
signs, this really means that the curve should have an inflection at the current vertex. In this case,
we assign the curvature to 0. This formulation also agrees well with the case of joining a linear
(with O curvature) and a non-linear segments (Fig. 4.1). To summarize,

{:tmin(hcp Lk 1) ifx, % >0
K=

0 ifx,x, <0 (4.35)

The sign of x corresponds to the sign of x, and ;.

Note that the restriction to the prescribed curvature to lie between 0 and x defined by the
previous formula would leave no freedom to select a curvature value at a particular interpolation
point if x = 0 there. Indeed, one cannot construct a reasonable solution if, for example, a zero and
nonzero curvatures are prescribed at the two ends of a linear segment. However, the given range
of possible curvature values at each point should be sufficient to the designer: the curve can
always be made flatter by decreasing a curvature magnitude at a particular vertex. On the other
hand, decreasing the velocities (or the bulge parameter) would generally yield larger ranges of
permissible curvatures where they are not restricted by the topology of the defining polygon.

4.7. Using Splines of Higher Order

We have presented a local way of constructing interpolating G? splines from cubic Bézier
segments between original vertices and procedurally introduced breakpoints. In this section we
investigate, for purpose of comparison, the implications of using higher order splines, such as
quartics and quintics.

A quartic Bézier curve has 3 interior control points. Two of these control points will be
completely determined by the given velocity values at the endpoints. Now, if we choose the
remaining ‘middle’ control point to be at the intersection of the equal curvature lines (see Fig.
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4.2), the resulting spline will satisfy all the prescribed information. Further discussion of using
quartic planar and space curves can be found in [98].

However, equal curvature lines do not always intersect. Indeed, suppose that the directions
t, and t, are parallel. Then equal curvature lines would also be parallel, and no quartic curve
could satisfy the prescribed curvatures and velocities. If, in addition, curvatures are set to 0, then
for any value of the velocities no interpolating quartic spline exists. The difficulties of using G?
quartic splines are also discussed in [83]. Thus, using a quartic spline is really not an improve-
ment over using a single cubic between interpolation points.

Quintic splines, on the other hand, have enough degrees of freedom for an arbitrary choice
of directions, velocities, and curvatures. Indeed, the two ‘outer’ control points will be determined
by the velocities, and the two ‘inner’ control points can be placed anywhere on the equal curva-
ture lines. The position of these points can then be derived from some similarity conditions with
the control points of the G! cubic spline, degree-elevated to a quintic. Thus, the G2 method dis-
cussed in this Chapter has the following shortcomings compared to quintic splines:

e Two or three segments are required for a single span between adjacent vertices;
e The blending functions that ensure stability of the method are rather complicated;

e Curvature choice at the interpolation points is confined to a range determined by the nor-
mals and velocities of the G! spline. That is, the curvature at each vertex has to lie within
the [0,x] (eq. (4.35)) interval;

e As we will see later (Section 4.9), the method cannot be easily extended to R>.

We believe, however, that the proposed method is nevertheless a good alternative to quintics for
the following reasons:

e Only cubic Bézier curves are used. Although there is a fixed computational overhead
involved in constructing breakpoints for cubic G? splines, this overhead does not depend on
the number of evaluations needed to render the curve. Cubic splines with breakpoints can
be rendered more efficiently than single segment quintics;

e Three segments per span and the associated complicated blending functions are needed only
if the user assigns ‘unreasonably’ high values to the velocities;

e It is often the case that a designer needs to construct a curve through a given set of points
without restrictions on velocities and curvatures. In this case, the method will always pro-
duce a reasonable solution with two cubic segments per each span.
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4.8. Comparison of Various Methods

In this Section, we consider several methods of local interpolation with Bézier curves and
analyze the tradeoffs between them (Table 4.1). The following methods are compared:

1. Natural cubic spline;

2. A combination of methods [19] and [56] that adjusts velocities by solving the correspond-
ing quadratic system of equations for each curve segment and inserts breakpoints when no
solution exists;

3. A procedural G2 method, described in this Chapter;
4. Quartic splines method;

S. Quintic splines method.

Method
Property Natural 1 or 2 segm Procedural 4th order 5th order
splines if needed G? splines Bezier Bezier
Direction choice no yes yes yes yes
Curvature choice no limited limited usually yes yes
Velocity choice no no yes yes yes
Continuity order c? G? G? usually G2 G?
sometimes G
Stability yes no yes yes yes
Efficiency Need to solve | Need 1o solve | Two cubics per High order Even higher
considerations global linear quadratic segment order
systems systems

Table 4.1: Comparison of various local methods.

We can see from this table that procedural G? splines combine efficiency (cubics; no need
to solve numerical systems), flexibility (choice of shape parameters), and stability. We have
shown that for planar curves, the relatively high cost of quintic splines can be reduced by using
pairs of cubics without any loss in the degree of continuity or in the adjustability of the curve.

The following three figures show G? curves and the corresponding curvature plots. In the
first two figures, the normal direction was based on the angle bisector (Section 3.3.2.2), while the
Collinear Segments rule (Section 3.4.2) was applied to the last figure. The velocities and curva-
tures for all three figures were selected according to the appropriate default procedures (Sections
3.3.3.3 and 4.6). The interpolation points correspond to longer ticks on the horizontal axis of the
curvature plots, while the shorter ticks represent the breakpoints.
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Figure 4.11: A G2 curve and a corresponding curvature plot.
gu

Figure 4.12: A G2 curve and a corresponding curvature plot.

4.9. Extensions to R’

The G! spline, discussed in the previous Chapter, can be readily utilized to interpolate a set
of points in space as well as in the plane. Unfortunately, the cubic G? spline cannot be extended
as easily to R*. This is due to the fact that in addition to tangent directions and curvature values
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Figure 4.13: A G? curve and a corresponding curvature plot.
Collinear Segments rule was used for normal selection.

at interpolation points, osculating planes also have to be matched between subsequent segments
(Fig. 4.14). For cubic G? Bézier curves this means that 5 points C;_; 5, Cip.Pi, Cis,and Ciyyp
must be coplanar. This extra constraint is specific to R?: for planar interpolation sets, osculating
planes at every vertex trivially coincide with the plane of the defining polygon.

The problem of selecting a common osculating plane at interpolation points presents a
major difficulty of using a step-by-step approach of constructing planar G? curves in R%. A
straightforward generalization of the R? method could proceed as follows:

e Construct a G ! curve and compute normals and velocities at each interpolation point;

e Compute the two curvatures and the two osculating planes from the predecessor and the
successor segments (Section 4.6);

e Heuristically define a common curvature value and a common osculating plane at each ver-
tex;
e Use a procedure similar to the one discussed in Section 4.4.2 to define the appropriate con-

trol points of the two subsegments.

Fig. 4.15 illustrates this process. Curvature continuity at the breakpoint requires that the points
S1,52,83, Ty, and T, be coplanar.
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Figure 4.14: Two cubic segments in space.

The two osculating planes must coincide for G? continuity.

However, for some ‘unfortunate’ choices of osculating planes no solution at all can be
obtained. For example, if the osculating planes as well as the tangent directions at a pair of adja-
cent vertices are parallel, then for any choice of the plane §;S,5,T T, the curvatures of the two
subsegments at the breakpoint will always be of opposite signs (Fig. 4.16). Thus, no G2 spline
can be constructed.

A possible way to deal with this problem is to try to choose osculating planes in such a way
that a pair of G2 cubic subsegments can always be constructed. Unfortunately, ‘fixing’ an oscu-
lating plane at a certain vertex could trigger a ‘ripple effect’, i.e. osculating planes at the neighbor
vertices would also have to be adjusted, and so on. It seems that only a global scheme could
assign osculating planes to the vertices to guarantee a G 2 cubic solution.

Despite the above problem, a G? cubic spline through a given set of points in R3 can still be
built. A trivial solution could just force zero curvatures at all the interpolation points and at the
breakpoints by doubling the interior control points of each cubic subsegment. However, the
resulting curves are usually of poor visual quality.

A possibly better solution would force zero curvatures at interpolation points only, and
would require each pair of cubic subsegments to be planar. Then a R? procedure for finding con-
trol points of the subsegments could be used. Of course, in this formulation, the freedom of
choosing tangent directions at the vertices will have to be sacrificed; it will be defined by the
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Figure 4.15: Two curvature continuous cubic segments in R3.
The 5 points defining the shaded area are coplanar.

intersection of the planes of the adjacent curve segments.

Representation of G2 curves in R? with cubic Bézier curves is an open research issue at this
point. It may well be the case that the cubic curves do not possess enough degrees of freedom to
construct curvature continuous space curves of good visual quality. Using quintic splines may be
the natural alternative for R3.

4.10. Summary

We have presented a G? method for local interpolation with cubic Bézier curves. This
method is a direct extension of the G' method from the previous Chapter. The extra degree of
geometric continuity is achieved at the cost of using two cubic segments between every pair of
vertices.

At every interpolation point, the user can specify and locally modify the normal, the two
velocities, and the curvature magnitude. However, default values for these shape parameters can
always be determined automatically. The default normals and the velocities come from the G!
method (Chapter 3), which together with the proper curvature selection guarantees that the spline
will be of good visual quality.
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Figure 4.16: Two subsegments cannot be G? at the breakpoint due to the choice of osculating planes.

A local cubic G? interpolating spline with shape parameters is new to the CAGD. Previous
approaches either were global (1,28, 92], had no shape parameters [23], or were of a higher order
[34, 65, 69].
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Procedural Construction
of
Boundary Curves

This chapter describes a natural extension of procedural curve interpolation (Chapter
3) to the generation of boundary curves that define interpolating surfaces. Given a set
of interpolation points in R> connected by edges into a network of quadrilateral and/or
triangular faces, we replace each original edge with a cubic boundary curve. Our pro-
cedure determines surface nomals at each interpolation point, tangent directions for
cubic boundaries, and, finally, the derivative magnitudes of all curves meeting at the
vertex. Various rules for curve construction are generalized, and new rules that apply
to surfaces only are introduced. As a result, the method produces surfaces of high
visual quality for most situations.

5.1. Introduction

In this Chapter, we extend the procedural method of curve interpolation to surfaces, i.e. to
the construction of smooth surfaces through a given set of points in R3. The basic goals we are
trying to achieve in both cases are very similar. The surface is constructed from a sequence of
procedural steps that may take special situations into account. Asa result, the final surfaces pro-
duced with this method are closer to what a designer would expect than the ones generated by
traditional techniques.

As in the case of curves, we require that the procedural surfaces satisfy some desirable pro-
perties. These properties include coordinate system independence, local control, simplicity of
representation, stability, and visual quality. Please refer to Section 3.2.1 for a detailed discussion
of these properties.
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The problem of constructing a smooth surface through a set of points can be conceptually
split into 3 separate stages.

1. The topology of underlying vertex set is defined by connecting the vertices by edges and
arranging edge-bounded regions into faces (not necessarily planar). The topological struc-
ture is usually known a priori by the application or is given explicitly by the user. How-
ever, this step could also be performed by Delaunay triangulation or similar algorithms
[109].

2. The edges defined in the previous step are substituted by curves. At each interpolation
point, these curves must share a common tangent plane to permit the final surface to be G L
This step can be split further into 3 substeps: first, a vertex normal is defined at each inter-
polation point; these will also be the normals of the final surface at the interpolation points.
Second, suitable directions for each edge are determined on the tangent plane defined by the
vertex normal. Third, the final shapes of the boundary curves are defined by placing Bézier
points on the corresponding tangent lines. Each of these steps will be described in detail in
this Chapter.

3. The curve mesh, produced at the previous step, defines surface patches that must be filled
in. Each curve in the mesh is a boundary of 2 neighbor patches. The surface patches must
be defined so that G ! continuity is maintained across these boundary curves. This step will
be discussed in Chapter 6.

This conceptual pipeline of surface construction provides a high degree of modularity and flexi-
bility to a modeling system, because changes can be made at any step in the design process. This
approach is clearly preferable over schemes that produce a surface directly from a set of interpo-
lation points or from a topological mesh. In these latter methods, construction of the boundary
curves and surface patches is typically performed simultaneously {81, 106, 116].

5.2. Geometric Parameters

In Chapter 3, we have chosen Bézier cubics for representation of interpolating curves
because of their simplicity, wide acceptance, and ease of local control. For the same reasons, we
use Bézier cubics to represent boundary curves in interpolating surfaces. Thus, the vertex nor-
mals and velocities of the boundary curves at a shared interpolation point will be the natural ana-
logs of the geometric parameters of the interpolating curve discussed in Chapter 3. In addition,
however, tangent directions for each boundary are required. Since the surface normal only deter-
mines the plane that contains the tangent directions, they must also be regarded as geometric
parameters (that have no counterpart in a univariate case).

For each vertex, the construction of boundary curves proceeds as follows (Fig. 5.1):

1. Vertex neighbors are identified using the topological structure of the mesh. A vertex can
have an unlimited number of neighbors.
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2. A vertex normal is chosen. This normmal defines a tangent plane at the current interpolation
point.
3. Suitable tangent directions for each boundary curve meeting at the current vertex are

selected. These directions are constrained to lie in the tangent plane defined by the vertex
normal.

4. Suitable velocities are chosen for all relevant boundary curves. Equivalently, the Bézier
points are placed along the tangent lines defined in the previous step. For a particular curve,
the position of the Bézier point C, is determined by the velocity magnitude v, :

Ck =P0+%vk. (51)

Figure 5.1: Geometric parameters of boundary curves:

vertex normal, tangent directions, and velocities.

Clearly, modifying any of the above geometric parameters will alter the shape of the resulting
curve mesh, and thus the resulting surface. This fact has been mentioned in the literature
[31,99,116]. However, the default choice of these parameters is not an easy one. In the follow-
ing Sections, we will study and compare various methods of selecting vertex normals, tangent
directions, and velocity magnitudes with the goal of producing surfaces of high visual quality.



5. PROCEDURAL CONSTRUCTION OF BOUNDARIES 88

5.3. Determination of the Normal

As mentioned above, determination of suitable vertex normals is the first step in the surface
construction process. In this Section, we review several approaches to normal determination,
based on the normals of the faces of the defining mesh, on the edge directions of the mesh, and on
some least squares methods.

5.3.1. Methods Based on Face Normals

For the case of interpolating curves, the normal can be defined as a weighted average of the
normals of adjacent defining polygon sides (Section 3.3.2). An obvious generalization to surfaces
is to represent the normal as a weighted average of the normals to the faces joining at the given
vertex. Thus, if m edges meet at a vertex, m normals defined by pairs of adjacent edges must be
computed. We now look at several natural choices for the weighting factors.

Arithmetic Mean. The easiest way to define a normal is to use an arithmetic mean of all
face normals:

nyn = Z ﬁit (5.2)
i=l
where ft; are unit face normals. This method may produce a lopsided bulge in the surface if there
are several adjacent faces with small angles at the vertex (Fig. 5.2).

Figure 5.2: Face based normal methods.
a. Face normals. b. Arithmetic Mean and Angle Average normals.

Angle Average. The drawback of the previous method can be avoided if the face normals
are weighted with the angle o; between the corresponding two edges:

Ny = Z a; fli, (53)
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Additionally, this method is tessellation-independent. Indeed, if an extra edge is added on one of
the faces, the total combined influence on the normal of the two split subfaces will remain the
same due to angle weighting. Finally, the Angle Average method can be regarded as a generali-
zation of the Bisector normal (Section 3.3.2.1), because n4y is independent of the lengths of the
polygon edges and generally lies within the pyramid of extended edges (see Section 5.3.2).

Directly Weighted Normals. This is a direct generalization of Catmull-Rom method for
curves. Again, the final normal is a weighted average of face normals, this time with the weight
factor being the area defined by the pair of adjacent edges:

m
npy = 3 A; fi;, (5.4)
i=l
Note that areas A; depend only on the two edges joining at the vertex; it is not the area of the
whole face in the mesh which can have many sides that need not be planar.

This method has problems similar to the ones that Catmull-Rom method has for curves, ie.
it leads to asymmetric surfaces if the areas of any two faces at the current vertex differ by a
significant amount (cf. Fig. 3.3a).

Inversely Weighted Normals. It can be argued that a small facet in the topological mesh
conveys strong information about the normal direction. Then smaller face areas should be more
important in determining the normal. In this case, the weight factor is the inverse of the
corresponding face area:

m
ny =3

i=1

1
— R » ’ 5-5
4 ; n; ( )

This method is also a generalization of the corresponding approach for interpolating curves.

5.3.2. Duality between Face Normals and Extended Edges

Consider a vertex that has m neighbors in the input polyhedral mesh. Then there are m
edges meeting at the vertex naturally forming a pyramid (Fig. 5.3). This pyramid can be
extended symmetrically through the vertex, resulting in the pyramid of extended edges. Let the
unit directions of the extended edges be be i,-, and angles between pairs of adjacent edges be
@; ;41 Finally, let the dihedral angles between adjacent faces be B;.

There always exists a dual of this pyramid: a pyramid of face normals. 1t is formed by the
unit normals fi; ;,, to the faces of the pyramid of the original edges of the mesh. It can be easily
seen that the angles between the adjacent normals fi;_; ; and fi, ;,, are = — B; and that the dihedral
angles in the pyramid of face normals are ©— ¢; ;..

This duality suggests that all methods that are based on weight averaging of face normals
have their analogs for extended edges, and vice versa (see Section 5.3.3). The next logical step
would be to unite the two approaches with a goal of producing a method that always gives a ver-
tex normal that lies within both pyramids. Such a method would be a generalization of the same
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\

Figure 5.3: Pyramids of extended edges and face normals.
Face normals are shown dotted, and extended edges dashed.

basic approach that was used for interpolating curves in Section 3.3.2.2.

Unfortunately, this unification may not be possible for surfaces. For curves, the angle
bisector of the defining polygon could be formed by averaging either the two side normals or the
two edge extensions. This is no longer true for the pyramids of the extended edges or of the face
normals which can be concave and have arbitrarily many edges. The two approaches can only be
combined if constants a; and b; ;,, are found such that

> aq ;= PIZFIE THNE (5.6)

These constants must not depend on i; and fi; ;4. It may well be that g; and b; ;4 do not exist
for a general case. An alternative approach would to be to form the intersection of the two
pyramids, and define the vertex normal in the direction from the vertex to the center of gravity of
their intersection. Although this method will clearly generate a desired normal, it is computation-
ally very expensive and therefore may not be practical.

5.3.3. Edge Based Normal Methods

We now list normal methods based on extended edges that are the duals of the face based
methods of the previous Section. Again, these methods are generalizations of the corresponding
methods for curves. They can only be used when the 3D angle at the tip of the vertex is ‘acute’.
Indeed, when the mesh edges are nearly planar or form a saddle surface (i.e. intersection of the
pyramid of extended edges with any half-space with the current vertex on its bounding plane is
not empty), a weighted average of extended edges can be zero.
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Arithmetic Mean. In this approach, the average of all edge directions is used:

m -~
nyg =3 i (5.7)
i=1
Dihedral Angle Average. Since the dual of the angle o ;,; between the two edges is
n — B;, where B; is the dihedral angle between the two faces, we have:

ne=Y (x-Boi. (5.8)
i=1
Like its dual nyy, this method is tessellation-independent in the sense that adding an extra edge

to an already existing face will not change the resulting normal. Indeed, the dihedral angle at the
newly added edge will be equal to « so that this edge will have no influence on the final normal.

Directly Weighted Edges. In this case, the weight factor is just the length [; of the

corresponding edge:

m ~
npg =3 L 1. (5.9)

i=1

Inversely Weighted Edges. Finally, one can also use inverse edge lengths as a weight fac-
tor:

ng = %i,-. (5.10)
1 %

5.3.4. Methods Based on Least Squares Approximation

Rather than representing a normal as a weighted average of face normals or extended edges,
other means can be used. For example, one can interpolate the current vertex and approximate its
nearest neighbors with a simple known surface, such as a sphere, an ellipsoid, or a quadric sur-
face. This surface can be found by the well-known least squares minimization technique. The
vertex normal is then defined to be the normal of this approximation surface at the vertex.

5.3.4.1. Best Spherical Fit

As mentioned above, one of the choices for an approximating surface is a sphere that passes
through the current vertex [99]. The best-fitting sphere can be computed using least squares
method. The resulting nomal in this case is very close to the Inversely Weighted normal n;y
(Section 5.3.1), because of the strong influence of closely spaced points (Fig. 5.4). However, the
least squares method is computationally more expensive than n;y. More importantly, the method
fails if the nearest neighbors form a saddle surface.
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Figure 5.4: Normal computed with best-fitting sphere method.

5.3.4.2. Best Fitting Quadric Surfaces

A less restrictive approach of the same general idea is to use best-fitting quadratic surfaces
instead of spheres. Assuming that a coordinate system has been defined with the current vertex at
the origin, its neighbors can be approximated with a quadric surface of the type

fxy)=Ax*+Bxy +Cy?>+D x +E y. (5.11)
The coefficients A, B, C, D, E are then determined by the least squares method.

Although the best-fitting surface will always exist, this approach has an obvious disadvan-
tage. Indeed, if the vertex has less than 5 neighbors, it is generally possible to construct several
different quadric surfaces that actually interpolate the neighbors. One possible solution to that is
to set some of the coefficients (for example, D and E) to 0. This may not be enough, however.
For example, vertex neighbors may lie on intersections of an ellipsoid and a hyperboloid.

Another possible way to deal with non-uniqueness of the best-fitting surface is to take
second nearest neighbors (i.e. neighbors of neighbors) into account, so that the quadric surface
approximates them as well. While this approach is feasible, it is even more computationally
intensive than the best-fitting sphere method. Moreover, it is still possible to have vertex constel-
lations that permit non-unique interpolating quadrics.

5.3.5. Discussion

In this Section, we have presented various approaches to the normal selection. These
approaches can be split into 3 groups: methods based on face normals (Section 5.3.1), edge based
methods (Section 5.3.3), and methods based on least squares techniques (Section 5.3.4). The last
2 groups have serious drawbacks: the edge based methods can’t handle saddle surfaces, while the
least squares approaches may have the same problem in addition to being computationally expen-
sive.

Methods based on the face normals also have several problems, as discussed in Section
5.3.1, but at least they are robust enough to be used in most configurations of interpolation points.
Rather than discussing their tradeoffs against each other, we proceed directly to the problem of
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the selection of the tangent directions. We will show that for best results, the normals and the
tangent directions need to be chosen in concert, as in the Opposite Edge method. In Section
5.6.2, formal evaluations will show that this method is indeed preferable over the others.

5.4. Determination of Tangent Directions

Once the normal at a vertex has been determined, the next step is to define tangent direc-
tions for each boundary curve meeting at that vertex. Obviously, these tangent directions must lie
in the tangent plane defined by the normal. As mentioned above, this step has no counterpart in
the construction of interpolating curves.

5.4.1. Projection Method

The most obvious way to define the tangent directions is to project the mesh edges onto the
tangent plane (Fig. 5.5a). Thus, a tangent direction corresponding to a particular mesh edge will
depend only on the vertex normal and this edge. Therefore, this method is tessellation-
independent because adding an extra edge does not change tangent directions corresponding to
other edges.

For this method, however, the normal has to lie within the pyramid of extended edges.
Indeed, when the normal is collinear with one of the edges, the tangent direction of this edge
becomes undefined. Moreover, if the normal is perturbed slightly near this position, the tangent
direction will exhibit wildly unstable behavior.

Figure 5.5: Methods for tangent directions.
a. Projection. b. Planar boundary.
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5.4.2. Planar Boundary Method

One could argue that boundary curves should be made as simple as possible. With respect
to defining tangent direction, simplicity can be translated to the goal of producing planar boun-
dary curves. Suppose we need to construct a boundary curve between vertices P, and P, (Fig.
5.5b). We compute the average n of vertex normals ny and n, and define the plane of the boun-
dary curve by n and P P,. The tangent directions are then given by the intersection of this plane
with the respective tangent planes. The Planar Boundary method is also tessellation-independent.

Similarly to the Projection Method, this method can fail for extreme situations when n; and
n, differ strongly. Even if we disregard the case when n; = -, tangent directions may lie in the
‘wrong’ order on the tangent plane. This means that the circular order of the projections of the
vertex neighbors onto the tangent plane may not be the same as the circular order of correspond-
ing tangent directions. In the final surface a wrap-around cusp may then result and the G ! con-
tinuity condition may be violated.

5.4.3. Opposite Edge Method for Normal and Tangents

The fact that both methods for tangent directions may fail for certain constellations of inter-
polation points can be explained by the use of rather simplistic approaches. Indeed, in either
case, a tangent direction depends only on the vertex normals and on the underlying edge and not
on other vertex neighbors. A more sophisticated approach should take the neighbor information
into account. Of course, as a result, the property of tessellation independence may be lost.

Projection and Planar methods not only fail for strongly asymmetric meshes, but they can
also produce clearly undesirable boundary curves. As an example, consider a torus that is sam-
pled at 4 uniformly spaced points on each of 4 small circles placed at 4 uniformly spaced cuts of
the big circle. The resulting quadrilateral mesh is shown in Fig. 5.6a. Assume that the normals at
all 16 points are set to coincide with the torus normals at these points.

At the points on the outer and the inner big circles, proper tangent directions will clearly be
produced due to symmetry. However, both Projection and Planar methods will generate a
straight boundary line between points P and P, whereas it is clear that this boundary should be
close to a circular arc. Therefore, the resulting surface will have undesirable bulges on the inner
side (Fig. 5.6b). A surface with better boundary curves is produced by the Opposite Edge method
discussed below (Fig. 5.6¢).

This points out the general problem — neither the choice of the vertex normal nor of the
tangent directions can be very successful if they are carried out in a myopic way that only looks
at minimal information and ignores any additional evidence that could reveal more clearly the
overall geometrical context. The Opposite Edge method is an improvement in that it at least
integrates the selection of the vertex normals with the tangent directions resulting in smooth
boundary curves through the given interpolation point.
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Figure 5.6: Interpolation of a torus. a. Polyhedral mesh.
b. Surface produced with Projection method for tangent directions.
c. Surface produced with Opposite Edges method for tangent directions.

5.4.3.1. Case of Quadrilateral Meshes

For the particular case of a toroidal frame, opposite tangent directions had to be ‘smoothed’
to generate a more realistic toroidal surface. This process of ‘smoothing’ opposite tangent direc-
tions can be easily applied to the meshes in which each vertex has exactly 4 neighbors.

Suppose that vertex P has 4 neighbors Py, P,, P{?, and PP (Fig. 5.7a). Assuming that P,
is topologically opposite to P{¥, and P, to P%?, the tangent directions are determined simply by
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constructing procedural curves (with Bisector normal) through vertices Py, P,P{ and then
through P, P, P%. Thus, opposite boundary curves will join with G! continuity at P. The
resulting curve mesh will consist of two sets of G! curves that are very similar to isoparametric
curves on a predefined surface.

In this case there is actually no need to compute the normal, because it is implicitly defined
by the cross product of the two tangent directions at the vertex. Furthermore, it is clear that this
combined method of normal and tangent directions determination is guaranteed not to fail for any
non-degenerate constellation of interpolation points. Testing of several asymmetrical meshes
with concave angles and saddle points confirmed that the Opposite Edge method is robust even in
these situations (Section 5.6.2).

Also, it is still possible to predefine normals at the vertices. In this case, the G! tangent
directions could be just projected onto the tangent plane. Alternatively, the tangent directions
could be forced to follow any change in the normal, so that the geometric constellation of the nor-
mal, the tangent plane and the tangent directions on that plane is rigid and can only change its
orientation, but not the shape. This situation is very similar to the one in interpolating curves,
where the tangent direction has to always follow the normal in order to be orthogonal to it. This
approach is superior to projecting the tangent directions onto the tangent plane, because there are
no restrictions in choosing the normal. For example, one can select a normal collinear with one
of the G ! tangent directions.

§.4.3.2. Case of Arbitrary Meshes

The opposite edge method can be easily extended to meshes with arbitrary topological
structure. Two cases must be considered.

Case 1. The number of neighbors m of the current vertex P is even. In this case, for each
neighbor vertex P;, we identify its topological opposite P/ and construct a procedural curve
through the points P; P, PfP. Therefore, there will be a total of m/2 G ! boundary curves meet-
ing at current vertex (Fig. 5.7a).

Case 2. The number of neighbors m of the current vertex P is odd. In this case, for each
neighbor vertex P;, we identify its topologically opposite sector PP 'PP{P2 and define its virtual
opposite PP 10 be the midpoint of PP 'and P?P2. Then a procedural curve through P; P, P is
constructed and its tangent is used to define the tangent direction of the edge P; P (Fig. 5.7b).

In both above cases, several different tangent directions will be generated that need not lie
in the same plane (unless m =4). Therefore, a normal has to be defined at the current vertex.
The tangent directions will then be simply projected onto the tangent plane. The normal can be
defined by one of the normal methods from Section 5.3.1. However, a more natural choice for
the normal should be based on the computed tangent directions. At the current vertex, the m
tangent directions form a pyramid with m faces. The Opposite Edge normal ngg is then com-
puted simply as an arithmetic average of the m face normals of this pyramid. This approach also
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Figure 5.7: Opposite Edge method. a. Even number of neighbors. b. Odd number of neighbors.

agrees well with the case of exactly 4 neighbors.

Similarly to the Angle Average normal nyy, one could try to weight average face normals
of the pyramid of the tangent directions by the angles between the adjacent directions. However,
since the faces of the pyramid of the tangent direction are nearly coplanar, the difference between
the resulting normal and nog can be expected to be quite small. Testing showed that this is
indeed the case. Therefore, plain arithmetic averaging is preferable for efficiency reasons.

The Opposite Edge method is very robust in the sense that it can handle arbitrary constella-
tions of points. This can be seen, for example, on a polyhedral model for a saddle surface. While
edge-based and least squares normal methods fail for this surface altogether, the Opposite Edge
method produces a surface with less curvature variation compared to all the other methods (Sec-
tion 5.6.2).

5.5. Determination of Velocities

Computation of the actual position of Bézier points of each boundary curve is the last step
in their construction. At this stage, the tangent directions of the boundaries at each vertex are
known, and only their velocities, or derivative magnitudes, remain to be determined. Since the
boundary curves are cubics, Bézier points will be located at distances of one third of these magni-
tudes from the corresponding vertices. Again, we will utilize the knowledge we gained from
studying the analogous problem of velocity determination for interpolating curves (Section
3.3.3).
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5.5.1. Generalizations of Curve Interpolation Schemes

Consider Fig. 5.8. In this figure, edges of the mesh adjacent to the vertex P are shown.
The velocity v; in the direction from P to P; will always depend on the corresponding edge
length /;, but it may or may not depend on /;, j#i. Thus, similarly to the univariate case, the
velocity methods can be classified into 2 groups: ones that depend only on the underlying side of
the mesh, and ones that look at some or all neighbors of the current vertex.

Figure 5.8: Constructions for velocity determination.

For both groups, velocity methods are rather straightforward generalizations of the
corresponding approaches for interpolating curves (Section 3.3.3.2). Listed below are the exten-
sions of some curve interpolation methods that produced reasonable results for the case of patch
boundaries.

Edge Length Method. In this method, the velocity corresponding to a certain edge in the
mesh is just made equal to the length of this edge:

V"’L =l". (512)

Similarly to Projection and Planar Boundary methods for tangent directions, this approach
doesn’t depend on other neighbor vertices and therefore is tessellation-independent.

Weighted Edge Length. A more sophisticated version of the above approach would take
all the lengths /; into account:

(5.13)

Here k;; are the weight factors. One possible way to define k;; is to make all of them equal. A
better choice would be to define k; =1 and for j # 1,
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lcos(P; PP;)| if cos(P;PP;)<0

kij ={0 otherwise (.14)

Thus, v; will be influenced only by the edges that form obtuse angles with PP;. This would
allow surfaces with strongly varying principal curvatures (i.e. a cylinder) to be constructed,
because velocities in nearly perpendicular tangent directions will not affect each other.

Weighted Catmull-Rom and Edge Length Average. This method corresponds to the
default velocity v, used for interpolating curves. It was computed as an average of the edge
length and half chord length between the previous and the next vertex (Section 3.3.3.3). For sur-
faces, the natural extension of this method should utilize some measure of chord lengths c;;
between some vertex neighbors.

However, some of the ¢;; seem to be rather irrelevant to the velocities at P. Rather than
using chord length between vertex neighbors, a measure of ‘stepping across’ for each tangent
direction is needed. This measure can be provided by the Opposite Edge method.

5.5.2. Opposite Edge Method

The idea of the Opposite Edge method for normal and tangent directions is to construct
these geometric parameters from procedural curves (Section 5.4.3). These curves have topologi-
cally opposite vertices as their endpoints and pass through the current vertex. It is therefore
natural to use this same curve information to define the last geometric parameter, the velocity as
well. In other words, v; is determined as follows:

1. Given P;, identify the topologically opposite vertex P? for even number of edges, or con-
struct the virtual opposite vertex as the midpoint between the endpoints of the topologically
opposite sector for odd number of edges.

2. Construct a procedural curve through P;, P, and PP (with the Bisector normal np and
Catmull-Rom and Edge Length average velocities v¢y ). Define v; as the velocity at Py
towards P;.

Since the construction of procedural curves was required by the Opposite Edge method for the
determination of tangent directions (Section 5.5.1), no additional computational effort is required.

5.6. Comparison of Methods for Geometric Parameters

We have tested various methods for determining normal, tangent directions, and velocities
on a set of polyhedral meshes. This set included strictly quadrilateral meshes where each point
has exactly 4 neighbors as well as arbitrary meshes with no restrictions. For some of the meshes,
interpolation points were sampled from an a priori known surface, such as a sphere or a torus, and
for the others, vertices were placed at random.
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5.6.1. Testing Tools

As in the case of interpolating curves, we measured the quality of the resulting surface in
terms of a minimization of certain curvature characteristics. Three types of curvature were meas-
ured: Gaussian curvature X , mean curvature H, and absolute curvature A. The latter is defined
as the sum of the absolute values of principal curvatures k; and & [43]:

A =lkgl + lksl. (5.15)

Absolute curvature will always recognize curvature in the surface even if K =0 (cylinder) or
H =0 (hyperboloid) and may be the most reliable measure of the three.

For each boundary curve, the values at several sample points for all 3 types of curvature
were computed on both sides of the boundary. As the resulting surface is not necessarily G2,
these values are generally different. Since it is relatively hard to compute the curvature of Gre-
gory patches, a subdivision technique (Chapter 7) was used to represent the surface with Bézier
patches. Furthermore, for each boundary curve, the integral _[I X; — X, | ds of curvature differ-
ences was computed. Here x; and x; are curvature values (Gaussian, mean, or absolute) on either
side of the boundary. Four different measures were used in comparison tests:

1. Maximum curvature value on all boundaries.

2. Maximum difference between two curvature values on either side of a common boundary.
3. Maximum integral of the difference of curvature values.

4. The sum of these integrals for all boundaries.

The measurements were performed on many polyhedral models; however, here we present the
results for only nine of them:

1. A triangular mesh for a sphere (Fig. 5.11a). This mesh was generated by sampling the
sphere at uniformly spaced values of the (u,v) parameter space.

2. In the above mesh, the points were shifted by a random amount in the (u,v) space (small
enough not to change the topological structure) and then resampled.

3. A quadrilateral mesh for a rotational solid in Fig. 5.12a. It was generated by rotating a sine
wave around a line that does not intersect it.

4. Again, the mesh points were shifted by a random amount in the parameter space and then
the surface was resampled.

5. A quadrilateral mesh for a torus (Fig. 5.6a).

6. A quadrilateral mesh for a surface, used by Franke [49] for comparison of scattered data
interpolation methods (Fig. 5.9).

7. A random triangular mesh in Fig. 5.10.
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8. A mesh where vertices were placed at random heights over a regular quadrilateral domain.
9. A saddle surface, formed by 7 vertices and 6 triangular faces (Fig. 5.11).

The results are listed in Tables 5.1, 5.2, and 5.3. The 4 numbers that appear in each square of the
table correspond to the 4 different measures of curvature listed above. Although all 3 types of
curvature were measured, we believe that it is sufficient to list only the absolute curvature A.
Indeed, the variation of values for one type of curvature between different methods was very
similar to another.

For the comparison of the effect of various approaches on a particular geometric parameter,
the same methods were used for all other parameters. For comparison of the normal methods, the
Opposite Edge method was used for the tangent directions, and the Edge Length method for the
velocities. For comparison of the tangent direction methods, the Opposite Edge method was used
for the normals and the Edge Length method for the velocities. Finally, the Opposite Edge
method for both normals and tangent directions was used for comparison of the velocity methods.

Figure 5.9: A test quadrilateral mesh.
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Figure 5.10: A test triangular mesh.

a b

Figure 5.11: a. A polyhedral model for a saddle surface.
b. The interpolating surface, obtained with the Opposite Edge method.
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Normal Method

Face Angle Face area Inverse Opposite
Polyhedron || normal | weighted | weighted face area Edge
average | average average | weighted average | nommal
i DyN Dy Npy N Rog
1 5.7 54 55 58 58
35 36 31 39 38
sphere 1.6 1.8 1.1 22 1.8
46.8 73.1 422 59.6 65.8
2 14.8 153 20.6 19.7 12.6
resampled 9.8 114 172 12.7 10.6
h 7.5 58 134 8.0 7.8
sphere 1372 | 1280 1563 153.6 124.6
3 34 33 33 35 34
rotational 0.9 1.0 0.7 1.0 0.9
solid 1.8 23 14 22 1.9
! 26.7 30.6 20.0 33.1 28.4
4 89 7.8 103 75 6.9
resampled 73 6.6 8.0 6.6 58
rotational 4.0 4.6 N 48 3.8
solid 73.1 75.9 81.1 753 66.4
5 1.8 2.7 1.8 1.8 1.8
1.8 2.5 1.8 1.8 1.8
torus 16.5 28.7 16.5 16.5 16.5
131.8 229.7 131.8 131.8 131.8
6 364 29.9 41.7 31.0 253
Franke 203 19.6 24.8 159 14.7
surf 49 4.7 6.5 35 42
ace 633 64.0 66.0 602 54.6
7 54 4.8 6.2 5.7 49
random 38 3.8 51 42 36
triangular 85 8.0 7.0 11.1 64
mesh 73.8 68.5 79.0 76.5 739
8 434 43.1 443 429 389
random 172 17.6 171 174 144
quadrilateral 1.5 1.5 1.7 1.5 1.6
mesh 4.7 44.0 46.1 4.5 425
9 2.0 21 2.7 2.3 23
saddle 1.1 1.2 19 1.0 12
2.8 2.8 39 29 2.6
surface 83 8.4 122 7.6 8.0

Table 5.1: Curvature comparison of methods for the normal determination.

The Opposite Edge method was used for the tangent directions,

and the Edge Length method for the velocities.

103
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Tangent Direction Method
Polyhedron il Projection | Planar | Opposite Edge
method method method
= |

1 3.1 3.0 58

09 0.8 3.8

sphere 0.6 0.6 1.8
23.7 23.6 65.8

2 414 339 12.6
resampled 36.8 28.7 10.6
36.8 28.6 78

sphere 193.4 167.4 124.6

3 35 35 34
rotational 0.6 0.6 09
solid 0.9 0.9 1.9

! 176 17.6 28.4

4 278.1 99.9 6.9
resampled 2764 98.4 5.8
rotational 249 10.8 38
solid 129.8 82.6 66.4

5 4.0 4.0 1.8

2.1 2.1 1.8

torus 29.8 29.8 16.5
2383 238.3 131.8

6 25.5 259 253
Franke 171 18.8 14.7
59 6.3 42

surface 57.8 59.7 54.6
7 72 75 49
random 5.6 6.3 36
triangular 13.1 16.0 64
mesh 1104 115.8 739

8 39.1 40.0 389
random 174 154 144
quadrilateral 20 2.6 1.6
mesh 524 48.7 425

9 8.3 24 23
saddle 7.2 2.0 1.2
247 10.1 2.6

surface 483 3.8 8.0

Table 5.2: Curvature comparison of methods for determination of the tangent directions.
The Opposite Edge method was used for the normals, and the Edge Length method for the velocities.
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Velocity Method

Polyhedron Edge Weighted Opposite
Length | Edge Length Edge

ﬁ==—‘—
1 5.8 9.2 75
38 7.2 52
sphere 1.8 2.7 22
65.8 100.3 76.2
2 12.6 28.3 26.9
resampled 10.6 25.8 24.6
here 78 10.0 111
*P 124.6 1772 178.0
3 34 42 4.1
rotational 09 1.2 1.2
. 19 2.7 2.6
solid 284 39.4 38.7
4 6.9 8.4 8.8
resampled 58 7.1 75
rotational 38 4.7 48
solid 66.4 754 754
5 1.8 2.5 25
1.8 23 23
torus 16.5 209 209
131.8 167.0 167.0
6 253 38.1 38.1
Franke 14.7 13.6 14.0
42 2.7 28
surface 54.6 54.8 54.7
7 49 7.0 72
random 3.6 5.0 51
triangular 64 10.0 10.0
mesh 739 96.4 96.5
8 389 583 55.6
random 144 19.3 20.7
quadrilateral 1.6 1.8 1.9
mesh 425 53.5 54.5
9 23 2.4 2.2
sadlle 1.2 14 1.3
2.6 38 36
surface 8.0 8.8 9.4

Table 5.3: Curvature comparison of methods for the velocities.
The Opposite Edge method was used for the normals and the tangent directions.
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5.6.2. Evaluation of the Results

5.6.2.1. Normals and Tangent Directions

For the meshes of irregular topological structure (#7 in the list above) or for the meshes
with scattered vertex locations (#2, #4, #6, #8), the Opposite Edge method for normals and
tangent directions is generally preferable over other methods. The case of a 6-patch surface with
a single saddle point (#9) also shows that the Opposite Edge method is better equipped to handle
saddle surfaces. We also observe that the difference in curvature variation between the normal
methods is not as significant as the difference between the methods for tangent directions. This
once again confimms the importance of having boundary curves join smoothly at the vertices.

In some cases, it was actually necessary to default to the Opposite Edge method for tangent
directions at several vertices when other methods were tested because no G! surface could be
produced. This situation usually arose when the normal method used was different from the
Opposite Edge method. However, if the input mesh was sampled from some known surface (#1,
#3), the results were not so conclusive, and in several cases the Projection method produced
better results in terms of curvature minimization. There are two possible reasons for that.

First, the Opposite Edge method may not work very well if the input mesh does not reflect
the symmetry of the underlying surface. For example, consider a sphere with a natural mesh
structure of parallels and meridians. Suppose that only triangular faces are allowed in the mesh;
then each of quadrilateral faces has to be split diagonally (Fig. 5.12a). Since there are 5 edges
meeting at vertices that are the neighbors of a pole, application of the Opposite Edge method will
slightly distort the directions of the meridians there (Fig. 5.12b).

The second reason is the fact that our curvature tests serve not as the absolute criteria of the
quality of the surface, but only as one possible indicator. Consider again an example of a sphere
or a general surface of revolution with a quadrilateral mesh of parallels and meridians. The
Opposite Edge method in this case will reproduce parallels and meridians as boundaries of the
surface; that’s what one would expect of a good method in this case (Fig. 5.13b). The Projection
method will also reproduce the meridians, but the boundary curves in the other direction will be
slanted (Fig. 5.13c). In this case, worse results in terms of curvature minimization for the Oppo-
site Edge method can be explained by the fact that G! continuous parallels in areas of rapidly
varying radius (i.e., near poles of the sphere) have larger curvatures than the more direct connec-
tions of, say, the Projection Method. Therefore, the difference of curvatures of interpolating
polynomial patches at these boundaries can also be expected to be high (see Tables 5.1and 5.2
for polyhedrons #1 and #3).

However, if the interpolation points are shifted by a random amount in the parameter space
of the surface and then resampled, the Opposite Edge method gives again better results (compare
meshes #1 1o #2 and #3 to #4 from Tables 5.1 and 5.2). This shows once more that the Opposite
Edge method is more robust for irregular situations.
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Figure 5.12: a. A triangular mesh for a sphere.
b. Surface, resuliting from application of Opposite Edge method.
Meridians and parallels are distorted near poles.

Figure 5.13: a. A mesh for a surface of revolution.
b. Surface produced by the Opposite Edge method.
c. Surface produced by the Projection method.
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From the above evaluation, we draw the following conclusions. If the interpolation points
come from some experiment and are not expected to lie on some a priori known surface, then the
Opposite Edge method is clearly the one to be used. The Opposite Edge method also produces
very good results if the input mesh is in some sense symmetric (for example, points sampled in a
regular way from a surface of revolution).

On the other hand, if the surface to be reproduced is known to possess certain symmetries,
and the input mesh does not have these symmetries, Projection or Planar Boundary methods may
be preferable. None of these methods, though, will be able to reproduce a symmetric surface,
because they only work with the mesh and have no knowledge of the underlying symmetries.
However, if the shape of the desired surface is known, a designer will most likely know what the
boundary curves should look like. He then can directly feed this information to the system.

So, from practical point of view, one should use the Opposite Edge method for irregular
meshes. The Opposite Edge method also produces good results if the vertices lie on a predefined
surface and the mesh reflects the symmetries (if any) of the interpolation points. Usually, how-
ever, for regular meshes generated from an a priori known surface, boundary curves are also
known. In this case, the step of constructing them may be omitted altogether.

5.6.2.2. Evaluation of Velocity Methods

We have utilized the curvature comparison tools used for normal and tangent directions
evaluations. For all test cases, the Edge Length velocity v; produced the best results in terms of
curvature minimization. This result is somewhat surprising, because for interpolating curves, an
average of Catmull-Rom and Edge Length v is superior. However, for surfaces, interpolation
points are usually spaced more regularly than they are for curves in our test examples in Chapter
3. Thus, situations with greatly varying adjacent edge lengths and acute angles for which velo-
city ve, gives better results arise quite seldomly. Simplicity is an additional obvious advantage
of the Edge Length method.

5.7. -Procedural Rules

In this Section, we extend the notion of procedural rules used for curve interpolation to the
case of surfaces. The basic idea remains the same: a set of patrterns of the defining mesh is intro-
duced that triggers the application of certain rules. These rules may depend not only on the
immediate vertex neighbors, but also on its second neighbors, etc. A threshold is usually associ-
ated with each rule that determines how close the actual mesh is to the pattern. Please refer to
Section 3.4.1 for more details.
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5.7.1. Coplanar Faces

This situation corresponds to the case of collinear segments for curves (Section 3.4.2). If
several adjacent faces in the mesh are coplanar, this may signal that all the vertices in these faces
should have the same normal (Fig. 5.14). A similar situation may arise, for example, at the boun-
dary curve between a circular cylinder and a hemisphere of the same radii. In this case, normals
at the boundary should preferably coincide with those of the cylinder.

\.

Figure 5.14: The case of coplanar faces. Marked vertices should have the same normal n.

Suppose that the normal at vertex P need to be determined (Fig. 5.14). We represent it as
follows in analogy with Section 3.4.2:

n=(1 —max;)) fip + 3 k; fi;. (5.16)

Here fip the default normal that is computed without application of any special rules, fi; are face
normals of the faces that contain P, and k; are weight factors, defined as follows. For each face,
containing P, we find the maximum dihedral angle ; between this face and its adjacent faces.
Then k; are defined as follows:
{ 0 if cos(B;) >t
k -—

(¢ —cos(B;))/ (1 +¢) if =1 <cos(B;) <t (5.17)

Thus, if none of the dihedral angles is close to 180° (cos(B;) > t), then the normal is defined by
the default method, i.e. n =hp. Otherwise, the closer f; is to 180° (and cos(B;) to —1), the closer
the corresponding k; will be to 1, and the bigger the influence of the corresponding fi; will be on
the final nomal. In the limiting case, k; will be 1, if the current face has at least one adjacent
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coplanar face, in which case the default normal fi, will have no influence. The threshold ¢ is
needed for stability of the approach and can be set, for example, to 0.95 (cf. Section 3.4.2).

The surface, resulting from the application of this rule to the mesh in Fig. 5.14, is shown in
Fig. 5.15.
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Figure 5.15: Surface, constructed with an application of the
Coplanar Faces rule to the mesh from the previous Figure.

5.7.2. Disproportionate Areas

As mentioned earlier, it may be desirable to assign greater weights to faces of smaller areas
because they may convey strong information about the normal direction. One possible way to
achieve this goal is to use Inversely Weighted normals n;y (Section 5.3.1) as the default rule. An
alternative approach would be to form a weighted average between the default normal fip and the
normals fi; of the smaller face.

Suppose that m faces F; with normals fi; meet at a certain interpolation point. For each
face F;, we compute the ratio r; of the largest area of all other faces to the area of F;. Then the
final normal n is determined as a weighted average:

r;
n=fp + Y (-k-_l)ﬁ" (5.18)

f.‘>R

Here R is a threshold that can be set, for example, to 10.
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As an example, consider Fig. 5.16. In this figure, the area of the face P P,P; is small com-
pared to the areas of adjacent faces. Therefore, normals at Py, P, and P 5 should be close to the
nommal of the face PP P 5.

Figure 5.16: The case of disproportionate areas.
Normals at P |, P ,, P 5 should be close to the normal of the face P P yP 5.

5.7.3. Rules for Boundary Points

Similarly to the endpoints of a defining polygon for curves, the boundary points of a
defining mesh for surface have to be treated differently. We now describe several possible rules
for determination of normals, tangent directions, and velocities at the boundaries of surfaces.

5.7.3.1. Normal Construction at Boundary Points

Face Average. The simplest possible rule for normal construction at a boundary is to have
- no special rules at all. Indeed, it is possible just to utilize the usual face averaging at boundary
points as well (Section 5.3.1). However, the resulting surfaces will usually change sign of Gaus-
sian curvature near the boundary which may be undesirable. This effect is similar to an extra
inflection in the curve near its endpoint if the Perpendicular method for normals is used (Section
34.5.1).
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Symmetric Method. To avoid inflections, normals of the neighbor vertices of boundary
points can be used to define the required normal. Two cases must be considered. In the first case,
the current boundary vertex P, has at least one neighbor that does not lie on the boundary (Fig.
5.17a). Suppose that P; are P y’s neighbors that lie inside the defining mesh. Then the normals at
P; can be defined in a usual manner, call them fi;. For each fi;, we find its symmetric image i}
with respect to the plane passing through the midpoint of PoP; and perpendicular to it. The
required normal at P is then computed as an arithmetic average of all fi;".

Figure 5.17: Normal determination at boundary points.
a. Non-corner point. b. Corner point.

In the second case, the only two neighbors P; and P, of the current vertex P are also
boundary points. In this case, Py can be regarded as a corner point (Fig. 5.17b). The normals fi,
and f, of P’s neighbors can be computed as in the previous case. Finally, the normal ng at P is
computed as an average of symmetric images of fij and fi; with respect to the midpoints of the
corresponding edges PP, and PP ,.

Different procedures for boundary and corner points need to be used to avoid the ordering
problem. Indeed, the normals and tangent directions are first computed for the interior points of
the mesh. Then this information is used for determination of geometric parameters at the boun-
dary non-comer points. Finally, the normals and the tangent directions at the comer points are
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computed using already computed geometric parameters at the other boundary points.

An additional advantage of this method is the fact that proper normals are generated for
symmetric meshes. For example, if the defining mesh is an octahedron or an icosahedron with
one or several faces removed, then the normals at boundary points, as well as the normals at inte-
rior points, will coincide with the normals to the enclosing sphere.

§.7.3.2. Construction of Tangent Directions at Boundary Points

Projection and Planar Boundary Methods. Clearly, these methods require no special
treatment at the boundary points.

Symmetric Method for Opposite Edges. The idea of the Symmetric method for normals
at boundary points can also be used to define tangent directions. Again, we consider two cases
that correspond to the current vertex P being a non-comer or a comer point. In the first case
(Fig. 5.18a), the tangent directions at P, towards inner points P; are determined by computing
symmetric images t; of the corresponding directions t; at P;. The symmetry plane again passes
through the midpoint of P P; and is perpendicular to it. Finally, the directions at P towards its
two neighbor boundary points P and P are taken from the procedural curve through P PP .

Figure 5.18: Determination of tangent directions at boundary points.

a. Non-corner point. b. Corner point.
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In the case of the comer point (Fig. 5.18b), the tangent directions at P are just symmetric
images of the corresponding directions at P and P.

§.7.3.3. Velocity Determination at Boundary Points

Since the Edge Length method (Section 5.5.1) is used for velocity determination, no special
rules are required for the points on the mesh boundary.

5.8. Summary

In this Chapter, we have described the first step of building a smooth surface from an initial
polyhedral mesh: the construction of boundary curves. Each edge of the polyhedral mesh is
replaced by a cubic Bézier curve in such a way that all the curves sharing a certain vertex have a
common tangent plane. It is then possible to define G! continuous patches with the constructed
curves as their boundaries (Chapter 6). The union of these patched defines the final interpolating
surface.

We use the same approach that we have used for the construction of interpolating curves
(Chapter 3). In this approach, construction proceeds in separate procedural stages. At each stage,
a certain geometric parameter associated with a curve is determined. There are 3 such parame-
ters: vertex normals, tangent directions, and velocities.

At each procedural step, default values are assigned to the geometric parameters. These
values are usually determined from a geometric, rather than an algebraic, point of view. The
geometric reasoning generally produces surfaces that are close to what a designer expects. How-
ever, default values can always be manually overridden to suit application’s particular need.

Besides determination of geometric parameters, our procedure may invoke special rules,
associated with the shape of the defining polyhedral mesh. An application of a special rules usu-
ally improves the shape of the resulting surface.

The procedural approach is very robust in the sense that surfaces of good visual quality are
produced even for irregular data sets. Moreover, the approach is very flexible in the sense that
several geometric parameters may be preset by the user. The system then determines the remain-
ing ones automatically.



115

Filling in Patches
with
Shape Parameters

In this chapter, a procedure for filling quadrilateral and/or triangular Gregory patches
in a mesh of cubic Bézier curves is described. Along any boundary curve the shape of
the two adjoining patches can be locally controlled with shape parameters, such as
tilt, bulge and shear. The procedure is a simple extension of Chiyokura’s method [27]
that gives extra control to the user while preserving first order geometric continuity
between the patches.

6.1. Introduction

In this Chapter, we address the problem of fitting surface patches into a network of cubic
Bézier boundary curves, produced by the procedural method, discussed in Chapter 5. All the
curves meeting at a network joint share a common tangent plane. This condition is necessary for
constructing a G ! interpolating surface. The curve mesh is otherwise unrestricted.

Many different approaches to interpolating a curve network have been published. However,
the majority of them can not deal with completely unrestricted meshes; the curves have to satisfy
some additional requirements. One of the pioneering approaches [41] describes a way to fit
Bézier patches into a network of cubic curves, provided that their control points satisfy an area
ratio constraint (Section 6.2.2). In Sarraga’s method [115] quadrilateral Bézier patches of high
order (up to 6) are blended into meshes of unrestricted cubic Bézier curves. However, no more
than 5 curves may meet in an interior network point. A similar approach is discussed in [111]. In
a recent development, Peters [100] published a method of interpolating with one polynomial
piece per facet, provided that each interpolation point satisfies a vertex enclosure constraint.



6. SHAPE PARAMETERS 116

The methods that do interpolate unrestricted meshes are admittedly more complicated. The
split-domain approaches use several subpatches per facet; the subpatches also have to be G!
across intenal boundaries [39,73,100]. Alternatively, quadrilateral and triangular interpolants
that typically require transversal derivative data on the boundaries have been proposed
[61,64,67,93]. A classification by Peters [101] compares various methods and resulting sur-
faces.

As already mentioned in previous Chapters, the ability to interpolate unrestricted boundary
curves is very important for the flexibility of an interactive design system. In the following Sec-
tions, we look in greater details at some of the interpolation methods, and conclude that extension
of Chiyokura’s interpolation with Gregory patches is most suitable for our needs. Furthermore,
the available degrees of freedom along boundary curves allows us to modify cross-boundary
derivative vectors independently of each other; this adds more flexibility to our design system.

6.2. Conditions for G' Continuity between Neighbor Patches

6.2.1. General Formulation

A lot of research is being conducted now on the general geometric continuity conditions
between two adjacent patches. Recent publications describe G! conditions between polynomial
and rational patches of an arbitrary order [33, 82] and even conditions for G 2 continuity [35].
However, in this Chapter, we will only need to use G! continuity conditions between bicubic
quadrilateral and/or quartic triangular Bézier or Gregory patches. We now proceed to describe
them.

Suppose that two patches, ® and ¥, meet along the boundary I' (Fig. 6.1). Then, for any
point v on I', we can find D ®(v), a cross-boundary derivative of ® at I'(v), and D ‘¥(v), a cross-
bound derivative of ¥ at the same point. Let DI'(v) be the tangent vector at T'(v). Then the
necessary and sufficient conditions for patch continuity is coplanarity of all three vectors:

det D®(v),D¥(v),DT(v))=0, v e [0,1]. 6.1

Patches ® and ¥ can either be bicubic quadrilateral or quartic triangular Bézier or Gregory
patches. Consider the case when the quadrilateral and the triangular Gregory patches join across
the common cubic boundary. For the quadrilateral patch, D &(v) is just the usual partial deriva-
tive @, (0,v). For the triangular patch, D \¥(v) is the radial derivative (2.44).

Both bicubic quadrilateral and quartic triangular patches have two internal control points
along each edge, and the same procedure for finding these control points can be used.

The common cubic boundary of the two patches is used as a cubic for the evaluation of the
bicubic quadrilateral patch, but has to be degree-elevated to the fourth degree for the evaluation
of the quartic triangular patch.
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Figure 6.1: A pair of patches, joining across a common boundary.

D ®(v) and D W(v) are polynomials of third degree in v, while DI'(v) is a polynomial of
second degree. They can be expressed in terms of Bemstein polynomials and control points:

2 3 3
DT()=3 Y s; Bv), DO®¥)=3Y a, BXv), DPW)=3 3 b; B ). (6.2)
i=0 i=0 i=0
The above expressions for cross-boundary derivatives are valid for bicubic quadrilateral patches
only; for quartic triangular patches, the coefficient 3 is changed to 4 [38]. Also, for triangular
patches, the vectors ty and t; point to the quartic points of a degree-elevated cubic boundary.

If we evaluate the determinant equation for v =0 and for v = 1, that is, for the endpoints of
the boundary curve, we can see that the vectors ag, by, o must be coplanar;, analogously, vectors
a3, b3, 5, must also lie in the same plane. These conditions are called endpoint conditions for the
boundary curve or vertex planarity conditions for the two neighbor patches.

The determinant equation is a polynomial of degree 8 in v, which yields 9 equations for the
coefficients of the various degrees of v. Two of these equations represent endpoint conditions.
The remaining 7 equations for the 4 unknown vectors a,, a,, b;, and b, proved to be very compli-
cated and impractical to solve [84].

The fact that there are 7 constraints across each boundary (and, therefore, S degrees of free-
dom) implies that it is impossible to fit quartic triangular and/or bicubic quadrilateral Bézier
patches into already defined cubic boundaries. Indeed, for triangular patches, there 3 inside con-
trol points, or 9 degrees of freedom; however, each boundary contributes on the average 7/2 = 3.5
constraints, which gives a deficit of 1.5 unfulfilled constraints for each triangle, and, analogously,
of 2 unfulfilled constraints for each quadrilateral.
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There are several possible way to deal with this lack of degrees of freedom. First, one can
raise the degree of the patches. Generally, this approach leads to solving linear systems of equa-
tions for each interpolation point. These systems depend on the number of neighbors of the
current vertex and may have non-unique solutions [106,115]. Furthermore, this approach is
somewhat complicated by the fact that vertices having even and odd number of vertices have to
be treated differently. Indeed, a certain matrix is invertible at odd-points, but rank-deficient at
even-points {100].

Another possible approach is to use several subpatches to fill each facet. One of the
pioneering methods of this type has been suggested in [41]. In this method, quartic Bézier trian-
gles in a triangular mesh are constructed. Then these triangles are subdivided into 3 subpatches
that are adjusted to meet smoothly along their boundaries. A similar approach is discussed in
[73] and generalized in [99). However, the latter method is rather complicated and could also
lead to solutions of large systems of equations. In Chapter 7, we will present a very simple
closed-form solution to represent quadrilateral facets with 5 bicubic Bézier patches, and triangu-
lar facets with 3 quartic Bézier patches.

Finally, Gregory patches can be used to define the surface. Unlike Bézier patches, Gregory
patches have no twist constraints (Section 2.3.4), and therefore have twice as many interior con-
trol points. These control points can be readily derived from boundary curve information.

We now look at several methods of positioning the interior control points of adjacent
patches so that w can guarantee G! continuity between them.

6.2.2. Farin’s Method

Rather than trying to solve the above determinant equation, one can premultiply each
derivative by an unknown polynomial, and then equate the resulting linear combination to zero:

a(v) DOW)+pu(v) DY)+ AMv)DT(v)=0. (6.3)
Since D ®(v) and D W(v) are of degree 3, while DI'(v) is of degree 2, it is clear that
deg (a(v)) = deg (W(v)) =deg (A(v)) - 1. 6.4)

In this case, a system of vector equations, i.e. three identical scalar systems, one for each coordi-
nate, will have to be solved. This is simpler than solving the determinant equation which mixes
the components along the different axes. A discussion of various degrees that polynomials o(v),
u(v), and A(v) can be assigned, is given by Peters [100]. The simplest solution, however, is 10
premultiply D ® and D ¥ by a constant, and D I by a linear polynomial.

This is the approach, taken by Farin [41]. Since one of the coefficients can always be set to
1, this leaves 3 coefficients to be determined. However, planarity conditions on either end of the
boundary give 4 constraints. This means that the original control points of the cubic boundaries
have to satisfy an additional constraint. Farin formulates this as a constraint on the areas of the
triangles in Fig. 6.2 (n = 3):
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area(RoSoS;) _ area(R,_i5,-15,)

6.5)

area(S oTQS 1) - area(sn Su —lTn) ‘

Figure 6.2: The ratios of the areas of darkly and lightly shaded triangles must be equal.

Since TS5 and R are in the same plane, T'q can be expressed as follows in barycentric
coordinates:

To=0y Sg+ S +aRy, oy+op+a=1 (6.6)
Analogously,
T,=03S,1+a4S, +aR,, og+oy+a=1 6.7
Then the geometric continuity is guaranteed by
T, =2 (@, 8 + 0 Sy + o)+ L Sii+oS;i+aR), i=lon-1. 68
Note that o + 0, = 03 + 0y. This condition is the algebraic equivalent of the area ratio con-
straint.

Thus, Farin’s method allows the computation of interior Bézier control points on either side
of the boundary, provided that the boundary control points satisfy the area ratio constraint.
Therefore, the cubic boundaries cannot be chosen completely freely, which is the main drawback
of the method.

6.2.3. Premultiplication with Higher Order Polynomials

It is possible to raise the degree of the polynomials a(v), u(v), and A(v) and premultiply
D ® and DY by linear, and DT by quadratic polynomials. Now there are 4 constraints at either
end and 7 coefficients of polynomials, one of which can be set to 1. This leaves 2 coefficients to
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be chosen freely. Our vector polynomial is of degree 4, so one can expect 5 equations for the
various degrees of v. Two of these equations, however, are fulfilled automatically at the ends of
the boundary, leaving just three vector equations. Thus, if R, (Fig. 6.2) is set, and the 2 extra
coefficients are chosen (note that again there are 5 degrees of freedom), then R,, Ty and 7', can
be determined. Thus one can find all four control points with just one computational pass across
each boundary. However, it’s not clear how to choose R, to ensure a ‘symmetric’ choice of con-
trol points.

We can go even further and premultiply the derivatives by two quadratic and one cubic
polynomial, giving a total of 10 coefficients. One of them again can be set to 1, 4 will be deter-
mined from planarity conditions, leaving a free choice of the remaining 5 coefficients. Now there
are three more free constants than in the approach described in the previous paragraph. However,
there is a very important advantage: our polynomial is now of degree 5, two conditions at the
ends are satisfied, and so there are four vector equations for four points Ry, R,, T, T;! No
guesswork is needed here in terms of control points and there is some hope for a ‘symmetric’
solution, as soon as the 5 coefficients, representing all the degrees of freedom that exist, are
picked.

We have succeeded in obtaining a closed-form solution in terms of the unknown
coefficients. However, the resulting equations are too cumbersome for practical use, and it is not
yet clear how to choose these unknown coefficients. A general discussion of this general
approach with derivation of bounds on the degrees of premultiplying factors is given in [100].

6.2.4. Chiyokura’s Method

The main idea of Chiyokura’s method [27] is to construct two special C ! continuous basis
patches, ¥’ and @', on either side of the seam and then to determine internal control points for the
real patches so that each is G! continuous with the basis patch on the other side of the seam.
Thus, in our example, the real patch ® will be fit to the basis patch ¥ and the real patch ¥ will
be fit to the basis patch @’. Because of the transitivity of geometric continuity, the two real
patches are guaranteed to meet with G ! continuity as well (Fig. 6.3).

To avoid Farin’s area ratio constraint, Chiyokura restricts the basis patches to have only
quadratic cross-boundary derivatives. This makes it easier to solve the determinant equation for
each pair of a real and a basis patch, and the degree of this equation will be only 7, leading to
exactly 6 constraints in the determination of the two interior control points of the real patch.

Consider the case of joining the real patch ® and a basis patch ‘¥ (Fig. 6.4). G! continuity
would be guaranteed if D & can be expressed as a linear combination of D'V’ and D T', multiplied
by some linear scalar functions in v :

3 2 2
3 a; BAW) = (k(1=v) +kv) T b BI) +(ho(1-v) +hv) 3 s; BAV).  (6.9)
i=0 i=0 i=0

The coefficients of this equation for (1-v)* and v result in the planarity constraints at the mesh
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Figure 6.3: The relationship of the two real patches and the two basis patches.

vertices:
ao=kob’0+hoso, 33=k1b’2+h152. (6.10)

The interior control points of the real patch @ can then be determined from:

a = % Qkob'y +k Do+ 2ot +his)  By= -;- (kob'y + 2k b’y + hos + 20 5sy). (6.11)

Figure 6.4: Control points of the real patch ® and the basis patch 8

Chiyokura originally defined b’y to be a unit vector in the plane of (ag, g), orthogonal to s,
and b’, to be a unit vector in the plane of (a3, sp), orthogonal to s,. However, for some highly
warped boundary meshes, this choice led to some unsatisfactory ‘wiggles’ in the patches, and
thus different default values that are more naturally derived from the given geometry of the boun-
dary curves are more preferable [25]:

bo—ao b3-a3
by=—, b=———. 12
%7 by - ag! 27 by —as! 6.12)
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Chiyokura’s default value for the middle control vector is:

’ 1 ’ ’
by = (o +Db7). (6.13)

Chiyokura’s method has several desirable features. All the patch information is derived
exclusively from boundary curves. It is local, so that a change in a cubic boundary results in
changes on only the two patches adjoining this boundary. The computation is done indepen-
dently for each patch and it is very simple. A smooth pleasing-looking surface is produced for
‘reasonable’ meshes of cubic boundary curves. For these reasons, Chiyokura’s method is
currently used in our implementation.

6.3. Shape Parameters between Adjoining Patches

In this approach, all the patch information is derived exclusively from boundary curves.
The method provides some good default placement of interior control points of Gregory patches
to assure geometric continuity between the patches. However, there are 5 unused degrees of free-
dom available on each boundary (Section 6.2.1). By using some of these degrees of freedom, our
approach preserves the geometric continuity and the interpolating property but offers the user the
opportunity to modify local behavior of the patches near the common boundary. This is achieved
by varying some shape parameters associated with the seam between the two patches, which, in
turn, alter the position of the interior control points. The default shape parameters correspond to
the default shape produced by Chiyokura’s revised method [25].

We start by analyzing Chiyokura’s method in greater detail and identifying several implicit
assumptions made during the construction of the control points. We then look in detail at all the
available degrees of freedom present in the system with the purpose of utilizing as many of them
as possible to alter the shape of the surface. Finally, we present a set of practical shape parame-
ters that is used in our actual implementation.

6.3.1. Construction of Geometrically Continuous Patches

6.3.1.1. Degrees of Freedom

Chiyokura's method results in a unique default solution for a given mesh. This uniqueness
is a consequence of several assumptions implicitly made during the construction of the basis
patches which throw away several additional degrees of freedom (Fig. 6.4):

1. The basis patches are constructed to be C! continuous, when simple G continuity would be
sufficient.

2. The vectors b’y and b’; are chosen in a very special manner determined by the geometry of
the cubic boundary curves at their end vertices. In general, both of these vectors have two
degrees of freedom; it is only necessary that they each lie in the given tangent plane at the
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vertex.

3. The central vector b’; is chosen as the arithmetic mean between b’y and b, thus forcing a
linear cross-boundary derivative for the basis patches. This vector can be chosen without
any constraints and thus can add three more degrees of freedom.

Considering just a single basis patch and the conditions that guarantee its G! continuity with a
real patch, one can see that the vectors a; and a, depend on the 9 coordinates of the b’;’s. How-
ever, since b’y and b’, are restricted by planarity constraints and since proportional scaling of the
b’;’s does not change the vectors a;, there are only 6 free parameters. We thus seem to have as
many free parameters that can affect the shape of the final patch as there are coordinates to be
determined.

It is thus conceivable to give the user control over these 6 degrees of freedom to fine-tune
the shape of the surface in the neighborhood of the seam. However several practical issues need
to be considered.

1. First of all, we know that the overall system of two Gregory patches joining with G! con-
tinuity on a cubic boundary curve has only 5 degrees of freedom (Section 6.2.1). From this
we can infer that there is some redundancy in the set of parameters b’;, and that they may
be strongly coupled in their effects on the shape of the final surface.

2. We need to be concemned whether all the parameters have some useful influence on the final
shape. It tumns out that the lengths and directions of the two outer vectors b’y and b’, have
very little influence on the surface shape since, when the real patch is formed, they get ‘nor-
malized’ to the cross boundary derivative vectors that are implicitly given by the Bézier
points of the cubic boundary curves. In some cases, when these two vectors are chosen to
deviate strongly from the ‘natural’ directions of the cross boundary derivative, some
unpleasant ‘wiggles’ may be produced in the Gregory patches.

3. Controlling the 6 degrees of freedom in the b’; s and then using these three vectors to define
C! continuous basis patches couples the shape of the two final Gregory patches more
strongly than they need to be coupled. It secems worthwhile to investigate how much
independent control of the two patches can be gained if we generalize the continuity of the
two basis patches from C! to G'.

The control points of the real patch are completely determined by the control points of the basis
patches, or, equivalently, the vectors b’;. A detailed analysis of the constraints imposed by G!
continuity on these vectors is therefore necessary.

6.3.1.2. Geometric Continuity Between a Pair of Basis Patches

Consider a pair of (basis) patches with quadratic cross-boundary derivatives (Fig. 6.5) Then
the tangent and cross-boundary derivatives can be expressed as (we omit the primes on a’and b’
in this Section):
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2 2 2
DT()=3Y s; B3v), D&))=Y a; B2 v), D¥ ()= T b; BA(v). (6.14)
i=0 =0 im0

Figure 6.5: G ! continuity conditions between two basis patches.

The determinant equation in this case will be of degree 6, giving 7 constraints for the 18
coordinates of a; and b;, i =1,2,3. Keeping the outer vectors in the two planes defined at the two
vertices automatically satisfies two equations, leaving 5 constraints for the 14 free coordinates.
Thus we seem to have 9 degrees of freedom. However, manipulating the outer vectors is not very
effective and may result in unpredictable distortions in the patches. It is preferable to set them to
some reasonable default positions, thus reducing to only 6 the degrees of freedom in the set of
control vectors (the coordinates of a, and b;). On the other hand, it appears promising to try to
manipulate the two central control vectors a; and b, individually, resulting in non-collinearity
and/or different magnitudes of these vectors, with the goal to be able to modify the shape of one
patch independently of the other.

Assuming that by = —ay and b, = —a,, expanding the determinant equation, and equating its
coefficients of vi (1-v)®, i =0....,6 leads to the following system:

det( ag, by, 59) =0,
det( ag, a;+by, 59) =0,
det( a;, by, ¢ ) + det( ag, ay+by, 5, ) =0,
4 det( a;, by, s; ) + det( ag, a,+by, ;) +det( ay, ay+by, 50) =0, (6.15)
det( a;, by, s, ) + det( a5, ay+by, 5,) =0,
det( a,, a;+by, 5, ) =0,
det( a,, by, 5, ) =0.

The first and the last equations are the planarity conditions, which are satisfied if we keep the
outer vectors in the planes given at the vertices. The remaining 5 equations can be viewed as
constraints to determine the 6 coordinates of a; and b;. Thus, in the most general case, if we
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predefine a, @, by, and by, there is only 1 degree of freedom left.

However, if we set b, =—a,, all five equations will be trivially satisfied, and we will have 3
degrees of freedom left. This special case corresponds to enforcing parametric continuity
between the basis patches. It turns out that making the basis patches to be C rather than G ' con-
tinuous, is not actually restrictive, but gives us the freedom to choose a, freely! This is a conse-
quence of the special way we have chosen the outer control vectors.

6.3.1.3. Trying to Solve the Determinant Equation by Premultiplication

Rather than trying to solve a complicated determinant equation as the one above, one can
premultiply each derivative by an unknown polynomial, and then equate the resulting linear com-
bination to zero:

o) DOW)+u(v) DY)+ Mv)DT(v)=0. (6.16)

In this case, a system of vector equations, i.e. three independent scalar systems, one for each
coordinate, will have to be solved. This is simpler than trying to solve the determinant equation
which mixes the components along different axes. Moreover, the systems will be linear in terms
of the coordinates of the control vectors a; and b;. In this Section we investigate how much free-
dom we lose through such methods.

Consider a pair of basis patches in which the 3 derivatives are quadratic. The determinant
equation will be of degree 6 leading to 7 constraints (including the planarity conditions). If we
premultiply each derivative with a constant, we will have 3 vector equations (for orders 0 through
2), and hence 9 constraints. However, given the extra two premultipliers (the third can always be
assumed to be 1), there are again 7 net constraints on the basic degrees of freedom.

Raising the degree of the premultiplying polynomials by 1, introduces an additional vector
equation with 3 more constraints, but at the same time yields 3 more premultiplication
coefficients. Thus the number of actual constraints is unchanged, and it appears that the order of
the premultiplication polynomial is not important.

However, the degree of the premultiplier does change the amount of ‘coupling’ between the
different vector equations and affects the generality of the solution. Premultiplying by a constant
or a low-order polynomial may introduce additional constraints or remove redundancies already
present in the system. On the other hand, if the premultiplier is high enough, so that the degree of
the resulting equation is the same as the degree of the determinant equation, premultiplication
will be equivalent to solving the determinant equation directly.

Premultiplication with low-order factors is often appropriate for practical applications. It
gives perfectly valid solutions. The disadvantage is, of course, that the resulting solutions do not
have the full generality of the determinant equation. The limitations on the solutions found by
low order premultiplication can easily be seen on some special degenerate cases. In our example,
if ag, a;, a5, by, by, and b, are all parallel but not necessarily equal in magnitude, then the patches
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will be G ! continuous — but this solution will be overlooked if premultiplication with constants
were used.

There is another problem: low order premultiplication may not be effective. The deter-
minant equation will be satisfied if some constants & and § can be found such that

8= abo+Bso, 81=ab1+ﬁ51, 82=Q«b2+BSZ. (617)

We could define one of the basis patches by choosing the six free parameters of the b;’s (Section
6.2.1). We then still can pick freely the two parameters o and B. The obvious way to0 use these
two parameters is to produce a non-collinearity and a difference in magnitude between the central
vectors @, and b, so that the ‘bulges’ of the two patches can be controlled in position and size
independently for the two adjoining patches. The problem is again one of ‘renormalization’. A
particular choice of o and f§ will also determine 2, and a,, not just a;. When the final Gregory
patch gets derived from the basis patch on the other side of the seam, an inherent scaling and
realignment of the cross-boundary derivative vectors takes place, so that the outer vectors a, and
a, fall onto the vectors implied by the first Bézier points on the transversal boundary curves of
this patch. This operation may diminish or completely wipe out the desired effect near the mid-
dle of the seam.

Premultiplication of each derivative with a linear polynomial rather than with a constant
leads to a set of 10 (2 + 3 + 3 + 2, for various degrees of the polynomial) equations for 19 vari-
ables: two coordinates for each of a;, b;, i =0, 2; three coordinates each for a, and by, and 5
coefficients of premultiplying polynomials. This leaves us with 9 degrees of freedom for this sys-
tem. This number agrees with the number of freedoms derived earlier from the determinant equa-
tion (Section 6.2.2). However, a linear function still does not give us the necessary independent
control over the middle control vectors a; and b,.

It would be preferable to produce the non-collinearity of the central vectors while leaving
the outer vectors oriented in their ‘natural’ directions given by the geometry of the transversal
boundary curves. This requires premultiplication of the individual derivative expressions by a
function that is at least of degree two — we need to be able to affect the center of the function
while keeping the ends clamped.

However, the resulting system of 5 nonlinear vector equations for the various degrees of the
Bemstein polynomial is too complicated to yield to a general solution. If a,, bg. a5, b, are
assumed to be predetermined, a single solution for a; and b, could be expected in general. The
only special assumption for the outer vectors that we could find that would yield more flexibility,
was the same condition used in the case of linear premultiplication:

2= -by and a; = =b,. (6.18)
Again this results in the constraint a; =-by, i.e. C! continuity between the two basis patches.

The same analysis was also carried out for the more general case of a cubic cross-boundary
derivative function. We did succeed in expressing the internal control points as (very involved)
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functions of the premultiplication coefficients (see Appendix 1). However, this solution is
without any practical merit. First, is too complicated; but more importantly, the effect of the
values of the premultiplication coefficients has no intuitively understandable correlation with any
desirable shape modifications (Section 6.3.2.1).

6.3.2. Introducing Shape Parameters

It clearly seems preferable to extract from the given set of dependencies and constraints a
small but useful set of user friendly handles, that influence the shape of the surface near the seam
in a robust and predictable manner. We first consider what types of shape control might be most
desirable from a user’s point of view, then discuss the controls that we have been able to realize.

6.3.2.1. Desirable Shape Controls Along a Given Seam

In the context of this work, the following features are considered unalterable geometrical
constraints:

1. The shape of the cubic seam,
2. the tangent planes at the vertices at either end of the seam,

3. and the condition that the two patches interpolate the seam with G! continuity at all points
of the common boundary.

From our earlier analysis (Section 6.2.1) we know that this system of two Gregory patches still
has 5 degrees of freedom. Here are our goals how we would like to use these 5 freedoms to affect
the shape of the surface in the neighborhood of the seam to the extent that the mathematical con-
straints allow us to do so.

1. Tilt controls the surface normal near the midpoint of the seam, by swiveling the surface
around an axis collinear to the tangent vector in the middle of the seam. Of course the
effect of this swivel operation will diminish towards the ends of the seam where the surface
must smoothly match up with the tangent planes at the vertices.

2. Buige controls the ‘roundness’—‘tension’ of the patches near the middle of the seam by
adjusting the magnitude of the cross-boundary derivative control vectors a, and b;. If pos-
sible, we would like to adjust the bulge of patch & and of patch ¥ individually so as to be
able to generate an asymmetric bulge with respect to the seam, or, conversely, correct for an
asymmetric bulge produced by two meshes of unequal size or shape. It may be desirable to
form symmetrical and anti-symmetrical combinations of these two parameters — if indeed
they can be controlled independently. This would give the user the option to first control
the ‘general’ (or ‘global’) bulge and then to fine-tune the bulging for any asymmetric bias.

3. Shear controls the shifting of the ‘peaks of the bulges’ in a direction parallel to the seam.
Again, we hope that there is enough freedom in the system of equations to give us some
independent control to do such a shifting of the bulge individually on the two patches. And
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again, we might consider forming symmetrical and anti-symmetrical combinations of these
two operations to shift the peaks symmetrically towards one end of the seam or to shear
them antisymmetrically in opposite directions.

These operations are shown conceptually in Fig. 6.6. A detailed analysis, summarized in Sec-
tions 6.3, has shown that it is not possible to extract all five desirable individual controls from the
system of equations.

&
<

tilt

-
-

Figure 6.6: Desirable shape parameters on a seam between two patches.

6.3.2.2. Practical Shape Parameters

Using the special case of a’y =-b’;, we have extracted a subset of shape parameters that
best realize the desired controls discussed in Section 6.3.2.1. The outer control vectors for the c!
continuous basis patches, a’g=-b’g and a’, =—b’;, are determined according to equation (6.12).
The middle control vector a’y =-b’, starts out from Chiyokura’s default position, but can be
modified with 3 degrees of freedom leading to the three shape parameters described below.

Tilt. The tilt parameter controls the component of the b’; vector parallel to the cross pro-
duct of the bulge and shear directions (see below). A non-zero tilt will result in one patch being
‘lifted’ locally near the seam, while the other patch is ‘lowered’. The default value for tilt is 0,
resulting in a surface that has the same tangent planes as Chiyokura’s default solution.

Bulge. The bulge parameter defines the length of b’; (in units of %(b’o +b’y)). The default

value is 1, which corresponds to Chiyokura’s linear interpolation. A large positive bulge would
result in flattening of the surface near the seam, while a small bulge will cause the surface to look
like tightly stretched skin between the boundary curves. Large negative values will cause cusps
and self-intersection of the resulting surface.
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Shear. The shear parameter affects the component of b’; parallel to the vector connecting
the two endpoints of the shared boundary curve; it basically moves the control points of the Gre-
gory patches parallel to the seam. A non-zero shear would cause the patches on either side of the
boundary to move ‘sideways’ in different directions. The default value for shear is zero.

6.3.3. Results

The shape parameters have been systematically tested for their robustness and predictability
on a set of eight different pairs of quadrilateral meshes ranging from completely flat to severely
warped in both directions. Some of the more interesting cases are shown below (Fig. 6.3 — 6.7).
The shape parameters are expressed in terms of the control vector (bulge, tilt, shear), with the
default being (1,0,0). The common seam between the two patches is marked by bold dots at the
end of the shared boundary curve.

Figure 6.3: Various test patches. Side and top views are also shown.
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Figure 6.4: Effects of the two values of the bulge parameter on the patches from Fig. 6.3
The control vector is (-1,0,0) for the top, and (5,0,0) for the bottom patches.
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Figure 6.5: Effects of the two values of the tilt parameter on the patches from Fig. 6.3.
The control vector is (1,5,0) for the top, and (1,10,0) for the bottom patches.
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Figure 6.6: Effects of the two values of the shear parameter on the patches from Fig. 6.3
The control vector is (1,0,5) for the top, and (1,0,10) for the bottom patches.
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Figure 6.7: A quadrilateral and a triangular patch with default (left)
and non-default (right) values for tilt, bulge, and shear.
The control vector for the patch on the right is (5.5,5).

In addition, a random sampling of triangular and quadrilateral patches with strongly curved
boundaries has also been used for testing. Of course, for all three shape parameters, values can be
found that will produce a self-intersecting surface, but for reasonable values, the resulting patch
shapes look pleasing and seem to be of practical use. Fig. 6.7 shows a strongly warped case
involving a triangular and a quadrilateral patch.

In Fig. 6.4, the pair of patches b with the control vector (-1,0,0) appears to have a crease.
For small bulge values the control points of the two patches lie very close to their common boun-
dary. However, these patches are still G! continuous, and the seeming discontinuity in the
tangent plane is due to the relatively small number of isoparametric curves used for rendering.
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6.4. Summary

The described procedure for changing the local behavior of a surface composed of Gregory
patches is a simple extension of Chiyokura’s method. The discussed shape parameters are imple-
mented in the UNICUBIX system.

As discussed in Section 6.2.1, there are 5 degrees of freedom across each boundary for the
12 unknown coordinates of the 2 pairs of the interior control points. The simple approach
described in this paper utilizes 3 out these 5 degrees of freedom to provide 3 inwitively under-
standable, easy to use shape parameters: bulge, tilt, and shear. These parameters affect the shape
of both adjoining patches. We have not succeeded in extracting additional degrees of freedom to
control the shape of the individual patches. It appears that this is made impossible by the con-
straint that we demand G! continuity along the entire boundary curve. As a matter of fact, it
appears that the special case

a0’=—bo" al’=—bl,, a2’=—b2’

is a *‘lucky break’’ yielding 3 separate and independent shape parameters in a strongly coupled
and highly constrained system of equations.

The shape parameters can be viewed as high-level controls that either affect the overall
appearance of an object, or the local shape of some patches. The surface produced by
Chiyokura’s method is the default solution which the user can change to satisfy particular needs.
Several shape parameters can have non-default values at the same time. They can be changed
globally, or individually for some of the boundaries. Moreover, each cubic boundary curve could
have additional shape parameters that control the shape of the curve itself. These features pro-
vide a rich set of tools for fine-tuning the shape of an object.

Although the method has been tailored to quadrilateral and triangular Gregory patches, a
subdivision procedure can be used to convert the surface into a union of Bézier patches (Chapter
.



135

Representation with Bézier Patches

In this chapter, a procedure for representation of the surface with Bézier, rather than
with Gregory patches is described. A single Gregory patch is substituted by several
Bézier patches. Simple efficient ways to construct the patches for triangular, regular
n-gon, and quadrilateral faces are presented. The resulting surface is guaranteed to be
geometrically continuous across all interior and exterior boundaries of the Bézier
patches.

7.1. Introduction

Chiyokura’s method, used for surface construction in Chapter 5, works exclusively with
Gregory patches. The two interior control points of the Gregory patch associated with each boun-
dary are computed independently of the other interior control points. In Bézier patches, each
interior control point is ‘shared’ by the two ‘adjacent’ boundaries, and, therefore, the above
method will not work for blending Bézier patches across given cubic boundaries (Section 2.3.4).

As mentioned in Section 2.3.4, Gregory patches are rational and their parametric degree (7)
is quite high. It would be preferable to use polynomial Bézier patches of lower degree, because
many existing highly efficient algorithms for subdivision, intersection, etc. could then be used.
This Chapter describes the process of substituting a Gregory patch by a union of several Bézier
patches in such a way, that overall G! continuity is maintained. This is almost a subdivision of
one patch into several, except that the original patch is actually never defined.

We start by looking at many potential ways of subdividing a triangle, quadrilateral, or a
general polygonal mesh into triangular and/or quadrilateral Bézier patches. Since the cubic boun-
daries are predetermined, Chiyokura’s method will produce a pair of Gregory interior control
points for each vertex of the polygon. These pairs of vertices will not necessarily merge into a
single vertex to produce a Bézier patch. Thus, an extra interior boundary is needed that passes
through each vertex of the initial polygon, and thereby produces two separate interior control
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points associated with each vertex even for the case of Bézier patches.

The general approach of using several non-overlapping patches to represent a single facet in
a defining topological mesh is usually referred to as spliting approach. Several methods of this
type have been proposed [39, 73, 100]. However, in these methods, large systems of linear equa-
tions typically have to solved for each patch. In our approach, expressions for control points of
the patches are given in a closed form, making the process of splitting very simple and efficient.

7.2. Filling the Mesh with Triangular Bézier Patches

7.2.1. Triangular Mesh Subdivision

In the simplest case, if we want to fill a triangular mesh with Bézier patches, the subdivision
has to look as shown in Fig. 7.1. We construct three Bézier patches and ensure geometric con-
tinuity (G 1y between them. B;,C;,D;, i =1,2 are control points on the cubic curves, which are
considered predetermined as far as this subdivision task is concemed. S;, P;, i =1,2 are the con-
trol points of the cubic boundaries between the subpatches and are yet to be determined, as well
as the three control points inside each subpatch.

Assume for the moment that S, S, and S are known. Points L3, M 13, L3, K12, K3, M3
can then be determined without much difficulty using Chiyokura’s method [25]. They ensure
smoothness across the given external boundaries of the patch.

Clearly, S, must lie in the plane of T,B,C , and analogously, S, in the plane of T,C,D,,
S5 in the plane of T3B,D, and, finally, Z in the plane of PP ,P 3. Thus, there are 3 degrees of
freedom each for points Py, Py, P3,N13, Ny3, No3 and 2 degrees of freedom each for points
S1. 55,83, Z. This gives a total of 26 degrees of freedom.

We use Farin’s method [39] of ensuring G' continuity between the subpatches. For sub-
patches T,ZT 5 and TZT, to be continuous, it is necessary that the following ratios of triangle
areas match:

area (T,S,C{) area(P,ZP%)
area (T,S,B]) area (P,ZP§)

(7.1

The superscript ¢ indicates that the corresponding points are the degree-elevated quartic control
points of the cubic boundaries {41]. For example,

1

3 3
C?=‘4—C1+ZT1, qu=‘—

=P+ 1z (1.2)

4
The area ratio constraint can be equivalently expressed in terms of the cubic control points:

area (T,5,C)  area (P,ZP))
area (TISIB 1) - area (PlzP'j) ‘

(7.3)

Furthermore, to guarantee G ! continuity across the internal boundary, two additional vector (six
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Figure 7.1: Triangular patch subdivision.

scalar) equations must be satisfied, involving points Ty, Sy, Py, Z, L3, L 13, N2, N13. Therefore,
there are 7 constraints across each boundary, which gives a total of 21 for the whole subdivision.
So there are 5 extra degrees of freedom left for the whole triangle.

We make use of these extra degrees of freedom as follows. First, we use 2 degrees of free-
dom and choose Z to be in the center of gravity of the triangle P PP, that is,

1 1 1
Z=—P,+—P,+—=—Ps. 7.4
3 it g Rt s 714)

Therefore, the areas of triangles P {ZP,, P ZP 3, and P ,ZP 5 are all equal.

Now, to satisfy the above area ratio condition, areas T,S,C{ and T,S{B{ must be equal,
and analogously for the other two interior boundaries. It’s sufficient that S, lies anywhere on the
median through T, of the triangle T,C{B{ (or of the triangle T,C ;B ). The exact position of the
points S; will be determined by three chosable parameters. Now, the number of the remaining
degrees of freedom is 18 and matches exactly the number of constraints.

There is another way to express the area ratio condition, which we actually used in solving
the remaining 6 vector equations. The relevant points can be expressed in barycentric
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coordinates, using the corresponding points on the other side of the respective interior boun-

daries:

Boundary (T',2Z):

Ci=0y T+, S, +aBf, o+ +a=1,

P{=o3 P +0o4Z+aPf, oz+as+a=1,

Boundary (T'xZ):

Di=B; T,+B;S;+BCS, Bi+B+B=1,

(7.5)

P{=P;P,+BsZ+PBPf, Ps+Ps+B=1,

Boundary (T»Z):

Bi=v, T3+ % S:+YDf, n+r+y=1,

Pi=vP3+Y Z+YP{, "3 +Ys+Y=1

The area ratio constraints for all three boundaries are equivalent to the equations

Q) + 0y =03+ 04,

By + B2 = B3 + Ba

(7.6)

N+N=Y+"%

When we choose S; on the median of the corresponding triangle, and Z in the center of

gravity of P P ,P 5, we actually set

a=-1, m=2-0,

SN R 1
3 4’ 4 41
3 11
=2, By=—, 7.
2 4= .7
'Y—_i 'Y=_l_l_.
3ITT4 BT a4

The parameter o can be thought of as the negative ratio of the areas of the triangles T15,C,
and T,S B, or, which is the same, as the negative ratio of the areas of P,ZP, and P,ZP4. The
parameters f§ and Y have the analogous geometric interpretation.

The six vector equations that we need to solve are listed below:

L= % (04S; + 2 =) P + % -
N = % (4P, +Q2-a)Z)+
Kn=2 (B:S:+ @~ B) P+
Ny = % BP,+2-PBNZ)+

2
M3 = 3 NS;+Q2-v) P+

%T1+1—41" S -Lis
% (—% S, + —14l P)-Np.
% (-% T,+ % Sy - Ky, (7.8)
% (—% S, + —1;1— P,)— Np,
% (-% T, + 14—1 $5) — My,



7. REPRESENTATION WITH BEZIER PATCHES 139

1 2.3 11
Ni=7 WP+ Q-W2)+ 3 7 S3+ 4 Py —Nos.
With this, points P, P, P3 can be determined directly from just one equation each. The remain-
ing 3 equations form a simple linear system, from which N3, N3, N3 can be found. Solutions
to these equations are:

1

P,= 735_1—_@ (3T, 8B, +11) S, + 12 K3 + 12 Kyp), (7.9)

N12=-3% (-98,=9'S, +9 S, + (4o — 2B, + 27, + 37) P, + (=20, + 4B, +
2y, + 37) Py + (<20, — 2B, — 4y, - 29) Py),

Np= % (9§, +98,—9 83+ (4, + 2B, -2y, + 3T P + (204 = 4B, = (7.10)
27, —29) Py + (204 + 2By + 4y, + 37) Py),

Ny = -é% (9, -9, -9 S; +(~day — 2B — 2y, — 29) P, + 20, + 4B, -
2y, +37) P, + 2y — 2B, + 47, + 37) Py),

As we can see, the interior control points depend on the arbitrary parameters ¢, $;, and ;.
Therefore, the shape of the final surface will also depend on them. This fact will be used in qua-
drilateral subdivision in Section 7.3.2, where the shape of the patches will be adjusted by the judi-
cial choice of the parameters.

Just as we picked Z in the center of the triangle P,P,P 3, we can choose S to be in the
center of gravity of T,C B (the center of gravity of a triangle is at the intersection of its medi-
ans), and analogously for S, and S.

The choice of placing the points Z and S; at the center of gravity of the corresponding trian-
gle is inspired by looking at the completely regular case of the equilateral triangle. In this case Z
would be in the center of gravity of the (big) triangle, and S; and P; would divide the lines join-
ing each vertex with Z into 3 equal parts. Cubics control points would also divide each triangle
side into three equal parts. But this situation corresponds to our initial choice of picking S; and Z
in the centers of gravity of the corresponding triangles.

In this case, in addition to (7.7),

1 9
0‘1=f31=71="zv 0‘2=Bz=72=2» (7.11)
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With these simplifications, the control points are expressed as follows:

P1=%('1"1—3SI+4L13+4L12),
Py=¢ (T,-35;+4Ky +4Kp), (7.12)

1
P3=€(T3—3S3+4M23+4M13),

Nu._.% (-8, -8, +S;+4 P +4P, -3 Py),
le:%(_sl+sz-s3+4pl-3pz+4p3), (7.13)
Np= §1-S2-S3 =3P +4Pr+4Py).

For triangular subdivision, extensive testing has shown that placing all the four control
points S; and Z in the centers of gravity of the corresponding triangles produces good-looking
surfaces. Therefore, the simpler equations (7.12) and (7.13) are used in the actual implementa-
tion.

7.2.2. Subdivision of the Patch over an Arbitrary Face

Let us now generalize the problem of the surface subdivision to the case of an arbitrary con-
vex face with n edges. We would like to represent the surface over this face as a union of n
Bézier patches, so that every pair of adjoining patches is G ! continuous.

We use the notation and the approach of the previous section. Again, we know that the con-
trol points L; ;,; and M, ;,, i =1...n (Fig. 7.2) can readily be calculated once the points S;
have been chosen. Our task is, then, to determine points S;, P;, N; ;41, i =1,....,n, and Z. There
are 3 degrees of freedom each for the points P; and N; ;4,, and two degrees of freedom each for
the points S; and Z. Therefore, there are 8n + 2 degrees of freedom. On the other hand, there are
7 constraints across each interior boundary. Furthermore, a planarity constraint at Z must be
satisfied: all the points P; (and, of course, Z) must lie in the same plane. This introduces n —3
more constraints. Thus, there are 81 — 3 constraints. We can see that there are always 5 degrees
of freedom more than there are constraints. Therefore, in theory, a surface over an arbitrary con-
vex face with n sides can be represented as a union of n geometrically continuous triangular
Bezier patches of degree 4.

However, it turns out that the planarity condition complicates the system of equations to
such an extent, that so far we were not able to find a closed-form solution. For the triangular
case, the planarity is always satisfied (three points are always on the same plane!), which leads to
the system of vector equations discussed above. The planarity constraint, on the other hand,
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Figure 7.2: Subdivision of the surface over an arbitrary face.

mixes all the coordinates, so that the equations can no longer be broken into three separate sub-
systems. The area ratio constraint also becomes more complicated. Even for the quadrilateral
case it is not, in general, possible to pick the center point Z, so that all the areas of triangles
P,ZP;, can be made equal.

A special case arises, when symmetry constraints can be used to fulfill the planarity condi-
tions automatically.

7.2.3. Subdivision of a Regular Polygon

Although we were not able to subdivide an arbitrary n -gon into n geometrically continuous
triangular Bézier patches, it is not hard to perform such subdivision for a perfectly symmetrical
situation. There are many practical applications of this particular case, such as the representation
of a sphere starting with a dodecahedron as the initial object, or the representation of the top of a
rocket with a *‘smoothed’’ cone.

In this case, one can assume that the control points B; ;,; and C; ;. are symmetric with
respect to the symmetry plane between points T; and 7T, (Fig. 7.2). Points S; will then be
chosen to lie in the plane, defined by T; and the rotational symmetry axis through Z. This will
ensure that the control points L; ;,, and M, ;,, are also symmetric with respect to the above plane
and the above four control points are located in the same position with respect to each triangle. In
other words, the n-gon with its vertices and control points B; ;,1, C; i+1» Li j41, M jo1, a0d N; ;4
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is invariant under the symmetry group D, of the regular n-gon.

Due to the symmetry of the polygon, the complexity of the system of equations for this case
is reduced dramatically, and all the control points can be constructed solely considering a pair of
adjacent triangles (Fig. 7.3a).

Let T be the center of the original regular polygon:

=131, (7.14)

Consider a pair of isosceles triangles T;_,T T; and T;T T;,,. The angle ¢ at T is 2;:2 for both

these triangles. The point T can be expressed as follows in barycentric coordinates of T;_,, T;,
and T"+1:

T= O.T‘-_l + Q.Ti+1 + (1 - 20.) Ti (715)

for some number o Let K be the midpoint of T;_, and T;,, (Fig. 7.3b). Then the previous equa-
tion can be rewritten as

T=20K+(1-20)T,. (7.16)
Since
T; T cos(d)
R =~ = cos(@),
then
L ;ja = cos(¢)
and
a=—1 (7.17)
2 (1-cos(9)) ‘
If we set
B =2 cos(¢), (718)
then
1
T=—2——B'(Ti_1+T"+1—BTi). (7.19)
Analogously,
1
Z= _2_—_B (Pi—l + Pi+l - B P"), (720)

where, as usual, Z is the center of P;’s:
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Note that the picture in Fig. 7.3 is a projection to the plane of the original polygon and thus point
Z is projected onto T.

As in Section 7.2.1 we try to make a reasonable choice for S;; because of the symmetry of
the situation it is natural to make the triangles T;T T, and T;S;C; ;4 similar:

1
2-B

S; = By, +Cij1 =BT (7.22)

Figure 7.3:
a. Control points for the regular polygon. b. Some auxiliary constructions.

The above equations can be rewritten as follows:
Ciin=BT,+2-P)S; -B,_y,, (7.23)
Pi.=PpP;+2-B)Z-P;,. (7.24)

In the spirit of equations (7.5) from Section 7.2.1,
Clin=BT.+2-B)S:-BL,,, (7.25)
PL1=B, P +2-BYZ-PL,, (7.26)

where again the superscript ¢ refers to quartic control points on the boundaries, and coefficients
B and B, are related to B as follows:

1,3
Bi=5+5B (7.27)

2=

3
Now we are ready to use Farin’s equations (7.8) from Section 7.2.1:

Lijn= % BiSi+Q2-BpP)+ ';— BT +2-BS)-M_y,, (7.29)
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Nu=t B +2-B0 D+ 2 B8+~ B) P)-Niows (730
The points P; can therefore be expressed as follows:
1
P;= 32-P @M;; +L;;,)~-@+B)S; -BT). (7.31)

Notice that we can rewrite the equation for N, ;,; as
Ni,i+l =2 Ri - Ni—l,i’ i= l,...,n N (732)
introducing auxiliary points R;:
1
R; = 3 (6-B)P; +2BS; +2-P) 2). (7.33)

We are now at the stage where in Section 7.2.1 we had to solve a system of » linear equations to
determine the n control points N; ;.. However, because of the symmetry of the regular n-gon,
these points can be found more easily. First, they lie in a common plane parallel to the plane of
the T;’s. Second, each N, ;,; lies symmetrically with respect to the symmetry plane between T;
and T;,,. Using the auxiliary points R;, which are the midpoints between two adjacent N;_;; and
N; ;.1, we can readily find an expression for the control points.

We wish to express the point N, ;,; in barycentric coordinates of R;, R;,; and R, where R is
the center of all R;’s:

R=1 TR, (7.34)
R iz

So,
Niis=YR; +YR;,; +(1-2YR). (7.35)
Let Q be the midpoint of R; and R, (Fig. 7.3b). Then

N; ;i@  NiinR; sin(¢/2)

)
= = /2
N; ;R N;;yR;/sin(¢/2) Sin“(9/2)

and therefore

1=2Y __ Gv2en).

2y
It follows that
1
= 7.36
Y 1 + cos(¢) (7.36)
or, in terms of eq. (7.17),
2
= . 7.3
=35 B (7.37)

Now, from equations (7.35) we can finally obtain an expression for the control points N; ;,;:
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Nija= WLT) ((6-B) (P; + P ) +2B (S; +S,41) — (B*4B+4) Z + (B?-2B) S), (7.38)

where S is the center of the S;’s:

s=1 %5, (7.39)

-
]
—

7.3. Quadrilateral Patch Subdivision

7.3.1. Preliminaries

As we have seen before, for the most general case, an alternative way of subdivision must
be found. Since the planarity constraint is the main obstacle in obtaining an easy subdivision, it
should be avoided. This can be achieved if no more than three interior boundaries meet at any

point,

We have arrived at two subdivision schemes for the quadrilateral case (Fig. 7.4). Subdivi-
sion ‘a’ produces the fewest number of patches, while subdivision ‘b’ produces one extra patch
and requires somewhat more computation. However, it is more ‘symmetric’ and treats all the
vertices and sides of the quadrilateral in the same way.

We use an approach equivalent to that of the triangular patch subdivision to obtain all the
necessary control points of the interior boundaries and subpatches. Again, the interior control
points L; ;1 and M, ;,; of the subpatches, closest to the boundary of the original patch can readily
be found by Chiyokura’s method once the control points S; of the interior boundaries have been
chosen. The second control points of these boundaries, P;, can then be determined by Farin’s
formulas if the area constraint is taken care of. The two control points, Q;; and V;;, on the one
innermost boundary of subdivision ‘a’ or on the four boundaries in subdivision ‘b’, as well as the
central points Z; of the triangles formed by the control points of the interior boundaries are then
chosen in such a way, that the area ratio constraints are satisfied. Then the remaining control
points of the subpatches N, ;,; can be found from two (subdivision ‘a’) or four separate systems

(subdivision ‘b") of three vector equations.

Just as we did for the triangular subdivision, we are now analyzing the number of available
degrees of freedom that the two subdivision schemes have.

For the scheme ‘a’, the points P;, N;;, and Q; have 3, and S; and Z; have 2 degrees of free-
dom each. This gives a total of 48. On the other hand, there are 5 interior boundaries and there-
fore 35 constraints. Thus, there are 13 degrees of freedom available for this method.

For the scheme ‘b’, again the points P;, N;;, OQ;;, and V;; have 3 degrees of freedom each,
while S; and Z; have only 2 for the total of 88. Eight interior boundaries give 56 constrains,
which leaves 32 degrees of freedom in the system.
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Figure 7.4: Two ways of quadrilateral patch subdivision.

The above analysis shows that in both schemes many control points can be chosen freely.
However, a reasonable choice should be made. As we did with the triangular subdivision, we
consider the case of the symmetrical square patch and make our selections based on this special
case. Again, we assume that the control points of the outer boundaries divide them into three
equal parts. For the subdivision ‘a’ we assume the line segment Z,Z, to pass through the center
of the square, to be of one third of the side length, and to be parallel to two sides of the square.
For the subdivision ‘b’, Z,Z,Z4Z 4 is a square with the side length equal to one third of the side
length of the big square. The control points S; divide the corresponding boundary in the ratio
1:2, if the corresponding control points on the exterior boundary divide it into three equal parts.
Furthermore, in this symmetric case, Q;; and V;; should also divide the corresponding boundary
into three equal parts (Fig. 7.5).
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Figure 7.5: Location of the control points for the regular square.
7.3.2. Determination of the Control Points

7.3.2.1. Subdivision ‘a’
From the discussion about the regular square it follows that the ratio of influences of the
points C; and B 14t0 S, should be 2:3, i.e.

_3Cp+2By-3nT,
= 5-371

(7.40)

or
5 2
C12=71T1+(§‘71) SI—E B4 (7.41)

for some number ¥;.

Since quartic control points have to be used for the boundary of the triangle T,T,Z and
cubic control points for the boundary of the quadrilateral TZ,Z,T 4, then the above equation can
be rewritten as follows in the spirit of (7.5):

1

3
Cf{z=alT1+(-§-—a1)Sl— 2

By (7.42)
where
1 3
o= 2 + y Y- (7.43)

Analogous equations hold for the other §;; therefore, each point S; has one degree of free-
dom. This reduces the total number of degrees of freedom for this scheme from 13 t0 9.
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Now, the point P§ has to be expressed in terms of Py, Z;, and Q;. To satisfy the area ratio
requirement, the coefficient of @, should be equal to 1/2 (which is the coefficient of B4 in the
previous equation, see Section 7.2.1):

3 1
Pf=0’3pl+("2'—a1) Zl-EQL (7.44)
Since Z, should be symmetric with respect to P, and P, then 0, must be equal to —3/4, so that
3 3 2
ZI=EP1+'§‘ P2+'8—Q1. (7.45)

This choice of Z, and Z reduces the number of degrees of freedom by 4 to 5. However, at the
same time, the area ratio constraint across all the S interior boundaries will be automatically
satisfied, and in fact 10 degrees of freedom remain. Out of these, 6 can be used to pick the points
Q, and Q, (Section 7.3.1); the remaining degrees of freedom can be used to select o for the 4
inner boundaries starting at the T;’s.

Solving Farin’s equations across the 3 interior boundaries T,Z, 7»Z, and Z,Z, results in
the following expressions:

1

Pj=——
17 43-20y)

(12 L12+6M14—(8 a1+9) Sl +3 Tl)’ (746)

Np = -4;—2 (~108 S, — 108 S, + (48at; — 32B; + 417) Py + (=320, + 48, + 417) P, —

(160 + 16B; +234) Q; +48 Qy),

N14 = —21—6 (-108 Sl + 108 Sz + (480.1 + 32B1 + 303) Pl - (32&1 + 48&1 + 321) P2 + (747)

(160, + 16[31 +282) Ql —48 Qz),

Ny = 51—6 (108 S, — 108 S, — (48at, + 32B; + 321) P, + (320, + 48P, + 303) P, +

(160.1 - 16‘31 + 282) Ql -48 Qz)

and analogously for the other control points. Note that o refers to the boundary T,Z, and By to
the boundary 7,Z,.

Just as we chose the control points in the centers of gravity of the corresponding triangles in
the triangular subdivision, we can pursue the regular square analogy further and set o, and B, to
0. In this case, the equations are simplified:

P1=% (4 Ll2+2M14— 3 SI+T1), (748)

Nip= - (365,236 5,+ 16 Q, + 139 P + 139 P, - T8 Q).
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Nig= 7/15 (=36 S, +36 S, — 16 Q, + 101 P, = 107 P, + 94 Q)), (7.49)

N23=7i2(3ss,—36 S, - 16 Q; - 107 P, + 101 P, +94 Q)),

and analogously for the other control points.

7.3.2.2. Subdivision ‘b’

This subdivision scheme is symmetric in the sense that it treats all the vertices of the origi-
nal face in the same way. It is natural to assume that the interior control points are also sym-
metric with respect to other control points. Therefore, S; and Z; should be on the medians of the
corresponding triangles. For §; and Z, these conditions can be expressed as follows:

Cia=oyT;+(2-0a;) S;—By,, (7.50)
Vip=0aP1+(2-03) Z; - Q4 (7.51)

While o; can be chosen independently for each interior boundary 7;Z;, a5 should be the same for
all 4 interior triangles to enforce area ratio constraint. Therefore, the total number of degrees of
freedom should be reduced by 4+1+2+2+2 =11 to 21. However, all 8 ratio constraints will be
satisfied, raising the total number of degrees of freedom to 29. Out of these, 24 will be used to0
choose the remaining 8 control points Q;; and V;; (Section 7.3.1). The remaining 5 are deter-
mined by 4 o,'s and a a.

Solving Farin’s equations across the boundaries 7,Z,, Z,Z,, and Z,Z , yields:

1

Pl=m(3 L12+3M14+(a{;‘-2 al_z) SI—GGTI)’ (7.52)

1

Ni2= Gor sy 208 —409) 81 - 20~ 4) Qi+ Qo = 4) Vi +
(205 — 100 + 2oy + 8) 03) Py = (302 + (0 — 14) 03 + 12) Vi + (30t = (o + 10) 03 + 12) Qq4),

1

Nu= m (—(2(1; - 40.32) $1+Qu -4 Q- Qa3 —-4) V4 + (7.53)
(205 — 100 + 2oy + 8) a3) Py + (30 — (0 + 10) a3 + 12) Vi — (3a? + (0 — 10) 03 + 12) Q14),

1

Ny= ———
5 12—6(13

(~203 - 40}) S; + (205 = 4) Q2+ (203 — 4) V4 +
(o3 — 100 + 20y + 10) o3) Py + (3ad — (0 + 10) 05 + 10) V5 + (30 — (o + 10) 03 + 10) Q).

Finally, if each §; and Z; is chosen in the center of the corresponding triangle, then the
parameters o, and o4 are set to —1 and

Pl = % 3 le +3 M14— Sl + T]), (7.54)
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1

1
Nl4=? (—Sl+Q12"'V14+3Pl-4 V12+5Q14)v (7-55)

Ns=-;— (38;-3Qu-3Vy—10P,+11 Vi3 +11Qua),

and analogously for the other control points.

7.3.3. Selection of Control Points on Interior Boundaries

An analysis of the number of degrees of freedom, made in the previous Section, shows that
the points Q; and Q, for the subdivision ‘a’, and the points Q,; and V;; for the subdivision ‘b’
can be chosen freely without destroying G! continuity across interior boundaries. However, a
reasonable choice must be made. Improper selection of these points can easily result in waves or
spikes on the surface.

In this Section, we describe a way to choose the control points so that the undesired effects
are avoided. The main idea is to construct Bézier patches so that they would closely approximate
a Gregory patch that would have been constructed as described in Chapter 6. The justification for
this is the fact that interpolation with Gregory patches generally gives good results; one would
like to combine the smoothness it produces with the piecewise polynomial surface given by
Bézier patches.

We have tested two general approaches to the problem on the subdivision ‘b’. In the first
approach, available degrees of freedom were used to ensure that interior network joints (points
Z;) lie on the surface of the Gregory patch. In the second approach, normals at Z;’s were required
to coincide with corresponding normals of the Gregory patch. Thus, interpolation of points and
normals at 4 joints and 4 patch corners were compared. As a number of test cases clearly indi-
cated, interpolation of the normals consistently produced more pleasing, smooth surfaces com-
pared to point interpolation.

We now describe in detail the process of selection of the 4 interior joints Z; and 8 control
points Q;; and V;;. At present, this method is also implemented with good results in Ricoh
Corp.’s DESIGNBASE modeling system [26].

In this scheme, the normals at Z; are required to coincide with the normals n; of the Gre-
gory patch at parametric values (1/3,1/3), (1/3,2/3), (2/3.2/3), and (2/3,1/3) respectively. The
computation proceeds as follows:

1. Compute the Gregory patch as described in Chapter 6. Evaluate it at 4 center points (with
above parametric values) and compute its normals there, yielding 4 points Z and 4 normals
n;.

2. Compute the points P; according to (7.52) or (7.54).
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3. Select the joints Z; on a line parallel to n; through Z.°, so that the line segment P; Z; lies in
a plane with the normal n; (Fig. 7.6):

Z,=2°—(P; -2 n,)n;. (7.56)

Figure 7.6: Computation of interior control points.

4. At this stage, the 4 center points Z; can be viewed as additional vertices with prescribed
normals n; that need to be interpolated. Thus, any of the procedures from Chapter 5 to
determine boundary curves can be applied here. Assume that the resulting control points of
interior boundaries are Q,) and V2.

5. To guarantee G! continuity across interior boundaries, equations (7.50) and (7.51) need to
be satisfied. Therefore, the control points are adjusted as follows:

1
4= (@-03)Z,+03 P+ QP -V, (7.57)
1
Vo= (@-0) Z1+ o3Py - Qs+ VD).
If Z; are chosen in the center of gravity of corresponding triangles, then o3 =—1 and
1
QM:E (3Z;- Pi+QY-VD), (7.58)

1
Viz=5 GZi- Pi=Qis+ Vi),
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6. Finally, the remaining interior control points of the Bézier patches are computed according
to formulas (7.53) or (7.55).

The same idea of ‘closeness’ to the Gregory patch can be applied to the subdivision ‘a’. In
this case, 2 points Z{ and Z2 and 2 normals n, and n, will correspond to the points and normals
of the Gregory patch evaluated at the parametric values (1/2, 1/3) and (1/2, 2/3). Z, will then be
located on a line parallel to n; through Zf) so that the angle between n; and the normal to
P ,P,Z, is minimized; analogously for Z,. To satisfy the area ratio constraint, {; can be deter-
mined from (7.45). Finally, the interior control points of the Bézier patches can be found from
(7.47) or (7.49).

We believe, however, that subdivision ‘b’ is more practical. Unlike subdivision ‘a’, it does
not mix triangular and quadrilateral patches. More importantly, it is symmetric in the sense that
the application does not have to make arbitrary guesses in which direction to split a patch.

7.4. Results

The described subdivision schemes for triangular and quadrilateral patches have been tested
on a number of examples. These examples include the test polyhedrons and meshes used for con-
structing boundary curves (Chapter 5), as well as pairs of quadrilateral and triangular patches
used for illustrating the shape parameters (Chapter 6). Fig. 7.7 shows a pair of warped triangular
and quadrilateral patches with the interior boundaries between the Bézier patches. Fig. 7.8 shows
an interpolated icosahedron (a) and interpolated cube (b) with the net of isoparametric lines or
each constructed Bézier patch.

<> X

Figure 7.7: A pair of warped triangular and quadrilateral patches with interior boundaries.

The union of 3 or 5 Bézier patches interpolates the boundaries and the tangent planes at the
vertices of the original triangular or quadrilateral Gregory patch. It is clear, however, that the sur-
face composed of Bézier patches will differ from the surface composed of Gregory patches. This
difference turns out to be quite small. For example, for the interpolated cube (Fig. 7.8b), the
newly generated vertices lie 0.8% below the surface of the original Gregory patch. For the case
of the interpolated icosahedron (Fig. 7.8a), the new vertices actually lie on the surface of the
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Gregory patch.
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Figure 7.8: a. Interpolated icosahedron. b. Interpolated cube.

In general, it is difficult to calculate the deviation between the Bézier and Gregory patches
due to the differences in their parametrizations. However, for the measure of smoothness of the
Bézier surface, this deviation is not as important as the curvature variation across the intemnal
boundaries. We use the tools from Chapter 5 to estimate the curvature variation between the
adjacent Bézier subpatches.

Table 7.1 summarizes the difference in curvature variations between exterior and interior
boundaries of the Bézier patches for the interpolated icosahedron and cube, as well as for several
polyhedral models from Section 5.6.1. The four different measures used in the comparison are
the same as in Section 5.6.1: maximum curvature value on all boundaries, maximum difference
between these values on either boundary side, maximum integral _[IK, —x;lds of the above
differences, and, finally, the sum of these integrals.

As we see from this table, curvature variation across the internal boundaries is small com-
pared to the variation across the external boundaries. The only exception to that is the interpo-
lated cube, which is G2 across external boundaries due to the symmetry. The interpolated
icosahedron is G2 across all boundaries also because of its symmetry. Thus, there is no penalty
in overall surface smoothness for using the Bézier representation.
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Boundary Polyhedron
Type || Icosahedron | Cube | Sphere | Torus | [roke | Random
surface | triang. mesh
— =

22 24 58 1.8 253 49

Exeri 0.0 0.0 38 1.8 14.7 3.6

xienor 0.0 0.0 18 16.5 4.2 6.4

0.0 00 | 658 | 1318 | 546 739

22 1.7 58 07 38.9 8.6

Iteri 0.0 02 2.1 0.4 15.6 35

or 0.0 0.1 04 1.7 1.0 43

0.0 08 82 13.9 37 153

Table 7.1: Curvature variation across different exterior and interior boundaries.

7.5. Summary

The described procedure for filling a given mesh of cubic boundaries with Bézier patches is
simple and efficient. It combines the advantages of the polynomial Bézier patches used in Farin’s
method with the locality of Chiyokura’s approach. The triangular patch subdivision and the sub-
division of a quadrilateral face into five quadrilateral patches (Fig. 7.4b) have been implemented
in UNICUBIX and produce satisfactory results.

The system of Bézier patches that fit with G ! continuity into a given frame of 3 or 4 cubic
curves has several degrees of freedom. We have made some plausible assumptions how to use
these degrees of freedom to come up with a simple sequence of computations to determine all the
necessary control points. As a result, all control points of the subdivision boundaries become
linear combinations of the originally given vertices and the control points of the cubic boundaries
between them.
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UniCubix:
an Experimental Modeling System

In this chapter, an overview of an experimental modeling system UNICUBIX is given.
This system was used for testing the methods for curve and surface construction
described in the previous Chapters. First, a conceptual view of the system is given
and each of the procedural steps is described. Second, a brief user guide is presented.
Third, implementation details are discussed. Finally, hints for future enhancements of
the system are suggested.

8.1. Conceptual Overview of UniCubix

In order to test various methods for generation of curves and surfaces, an experimental
modeling system, UNICUBIX, was developed. It is a direct extension of Berkeley UNIGRAFIX
modeling and rendering system [119]. In UNIGRAFIX, polyhedral objects are described by ver-
tices positioned in space and by linear edges and polyhedral faces joining these vertices. UNICU-
BIX generalizes this paradigm by selectively replacing edges by boundary curves and faces by
surface patches. The paradigm of the procedural, rule-based process of surface construction has
been incorporated into the UNICUBIX system. As a result, although UNICUBIX is still an experi-
mental system with rather limited capabilities, it has several unique features that are not available
in traditional modeling systems.

The minimal information that must be provided to the system is a polyhedral approximation
of the object. Rather than providing local rounding operations for individual edges [26,77], UNI-
CUBIX globally rounds the whole object, except for specifically marked edges or faces, eliminat-
ing the necessity of manually picking edges to be smoothed.
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Another advantage of UNICUBIX is its flexibility. Many modeling systems can work
exclusively with interpolating points, or with a curve mesh. There are no such restrictions in UNI-
CUBIX; in fact, vertex normals and/or boundary curves can be added in a selective manner among
the data points. If possible, the system will then adjust automatically to these constraints.

Finally, the available degrees of freedom are made available to the user in the form of shape
parameters that have a clear interpretation of their effect on the shape of the surface. Thus, a
designer can work with geometrically intuitive user-friendly handles rather than twiddling indivi-
dual control points of surface patches [112].

UNICUBIX consists of two separate parts. The smaller part of the system is devoted to con-
structing G ! and G2 interpolating curves, while the bulk of UNICUBIX deals with G ! interpolating
surfaces.

8.1.1. Construction of Interpolating Curves

The starting point is a user-defined sequence of vertices to be interpolated. The system then
computes vertex normals according to one of the methods in Chapter 3. Then, Bézier points are
selected on defined tangent lines according to a specified velocity method. Finally, if G2 curves
are desired, each Bézier segment is split into two, and the corresponding control points are
adjusted for curvature continuity (Chapter 4).

Below is an example specification of a rectangle in UNIGRAFIX / UNICUBIX format {120]:

v A 000
v B 010;
v C 510
v D 500
w (ABCDA);

The order of the points is defined by the above wire specification. The vertex A is present twice
in it because a rectange is a closed polygon.

From the above description, UNICUBIX derives the G interpolating curve by substituting
each polygon edge with a cubic Bézier segment. This is achieved by selecting a normal direction
and two velocities at each vertex of the defining polygon (Chapter 3). The actual method for
choosing normals and velocities is specified by the user. Curvature continuous (G?) curves can
also be constructed by using two cubic segments per each polygon edge (Chapter 4).

8.1.2. Global Smoothing Procedures for Polyhedral Objects

The major part of UNICUBIX constructs interpolating surfaces through the vertices of sup-
plied polyhedral objects. The starting point is a rough polyhedral approximation to the desired
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curved surface consisting of vertices arranged into faces that determine its topology. Since tri-
angular and quadrilateral patches are used, all faces in the defining mesh must have either 3 or 4
vertices. From this input the system derives the first smooth approximation by progressing
through a sequence of procedural steps.

Defining Vertex Normals. A smooth surface interpolating a given set of points will have a
certain tangent plane at each vertex. To define this tangent plane, a normal must be assigned to
each vertex. UNICUBIX determines these normals by one of the methods described in Chapter 5.
The actual method to be used is specified by the user.

It is also possible to predefine normals at several selected vertices. In this case, the system
will not compute normals at these vertices, but will use the prescribed ones.

Since it is possible for a user to predefine whole boundary curves, some care must be taken
to ensure that the computed normals and predefined curves are compatible to each other. Four
cases must be considered:

1. Suppose that one boundary curve or two curves with the same tangent direction at a certain
vertex are predefined. Any computed vertex normal will have to be orthogonal to this sin-
gle tangent direction. If this is not the case, the vertex normal will be adjusted by projecting
it onto the plane, perpendicular to the tangent direction.

2. If several boundary curves at a vertex are predefined that share the same tangent plane, this
tangent plane will effectively define the vertex normal. Thus, the step of normal determina-
tion can be skipped in this case.

3. If predefined curves at a vertex do not share the same tangent plane, then no G! surface can
be constructed. In this case, a warning will be issued and the default method for normal
generation will be used. The tangent directions will be projected onto the tangent plane
defined by the normal.

4. Similarly to the previous case, a warning will be issued if a predefined normal is not compa-
tible to one or several predefined curves. Again, tangent directions will be projected onto
the tangent plane defined by the prescribed normal.

Defining Curved Edges. With the vertex normals, and, therefore, tangent planes at all ver-
tices defined, the original straight edges of the defining mesh are replaced by curved cubic edges
by computing their Bézier points. The user specifies which of the methods for determination of
tangent directions and velocities are to be used. Again, no computation will take place for those
edges that are assigned predefined boundaries.

Defining Gregory or Bézier Patches. Next, UNICUBIX computes a single Gregory patch
for each original face, using Chiyokura’s method (Chapter 6) or several G! Bézier patches
(Chapter 7). The user can also set shape parameters that would affect the shape of the surface
near one or several boundaries.
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8.1.3. Selective Smoothing

Since many objects are not overall smooth, UNICUBIX has to be able to specify edges that
will remain straight, or that will show discontinuity of tangent planes, or faces that will remain
flat after the global smoothing process. In UNICUBLX, this issue is addressed by having 4 different
types of edges and 2 types of faces.

Edge Types. The following edge types are available in UNICUBIX:

1. Curved Borders and Edges. Unless explicitly defined, edges of this type will be replaced by
system-generated Bézier curves.

2. Straight Borders or Edges. Edges of this type will remain straight lines between the two
endpoints. The Bézier points will lie on the edge at a distance of 1/3 and 2/3 of the length
of the edge from any of its endpoints.

The difference between borders and edges is that the G! continuity is enforced across borders
only. Unlike borders, edges are visible as geometric features of the final object. The default
edges type is curved border.

Face Types. There are 2 face types in UNICUBIX: flat faces and patches. 1If the face is
flagged to be flat, it will remain flat even after the application of smoothing operations. Flat faces
are treated as polygons: no interior control points are computed for them and no subdivision is
necessary. Although flat faces may have curved edges, all the control points of these edges will
be projected onto the plane of the face. The other type, patch, is the default; such faces will be
replaced by Gregory or Bézier patches.

8.2. A Brief User Guide to UniCubix

An ideal setting for the modeling system would consist of an interactive editor, with which
the user can manipulate the basic elements of the picture (vertices, normals, boundaries, etc).
The designer would work with a mouse and a keyboard to specify and/or change various
geometric parameters that define the surface. At present time, however, the implemented proto-
type for UNICUBIX, uci, has no mouse support and allows interaction through type-in commands
only. A typical session, then, would consist of reading in a polyhedral description of the object,
smoothing and viewing it and then possibly modifying its shape. We start with describing the
format for the object description.

8.2.1. Description of Smooth Objects

Whether the curved object is created with a text editor or by an automated process, a format
to capture and store the result is required [120]. For that purpose, the UNIGRAFIX descriptive
language has been extended to include different types of edges and faces. Below are the added
UNICUBIX statements for edge specifications:



curved border: be
curved edge: ec
straight border: bl
straight edge: be
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(D] (viva by byy bys boy by b2,):
UD1(vyvybys byy by, boy by b2,
D] (v, vy
UD](vyvo;

These statements are optional. Unless explicitly defined, an edge is assumed to be of the
type curved border and its Bézier points are computed automatically by the system.

The UNIGRAFIX description of the faces remains essentially unchanged:

D] (vivy = Va)i

In this case, the face will be replaced by a surface patch. If, however, the identifier is replaced

by F, then this face will remain flat.

Below is an example of a four-sided pyramid in UNICUBIX format:

T T T T T I . S

Tip 004,

A 010;

B 100;

C 0-10;

D -100;

Bot (ABCD)
a (B A Tip)
b (C B Tip)
c @ C Tip)
d (ADTip)

Since there are no special conditions on edges and faces, this description is also valid in
UNIGRAFIX. All edges will be replaced by curved borders and all faces by patches after a smooth-
ing operation is performed. This would produce an egg-shaped surface.

If, however, a cone is to be produced from the above description, then the face Bot has to be
flagged flat, and edges connecting the base of the pyramid with its tip have be declared straight:
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F Bot (ABCD)

bl (A Tip);
bl (B Tip);
bl (C Tip);
bl ( Tip);

8.2.2. Reading in an Object Description

The above UNICUBIX specification of an object to be smoothed is usually contained in a file.
So, the first action in uci after the system prompt uc> is displayed is to read in the file:

uc> smooth [-b <real>] [-n <int>] [t <int>] [-v <int>] <filename> [xform options]

The -b option specifies the global bulge to be applied to all boundary curves. The options -n, -t,
and -v select the normal, tangent, and velocity method respectively used for generating boundary
curves that are not explicitly given. For valid numbers corresponding to various methods, and for
description of transformation options, look at the xform command of the UNICUBIX manual
(Appendix 2).

An altemnative to smooth is read command, which only reads in polyhedral descriptions
and does not create boundary curves. However, boundary curves can be specified explicitly in
the UNICUBIX format.

8.2.3. Creating Interpolating Curves

We now describe the smaller part of the system that constructs an interpolating curve from
a wire specification. This is achieved with the command gcurve:

uc> geurve [-m <int> <int>] [-e <int> <int>] [-b <real>] {-k]

The actual procedural method to be used for normals and velocities is specified by the -m option.
The -e option controls the rules for normals and velocities and the endpoints (for open curves
only). Bulge can be altered with the -b option. Finally, G? curves will be constructed if the -k
option is selected.

The resulting curve can then be displayed with the curvedge command (see below). For
interpolating curves only (and not surfaces), the -c <inr> option must be selected. The integer
value (0 or 1) controls whether the defining polygon will not or will be displayed together with
the curve itself. If the -k option of the curvedge command is selected, a curvature plot, rather
then the curve itself, is constructed.
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We now proceed to describe UNICUBIX commands that control the construction of interpo-
lating surfaces.

8.2.4. Displaying and Modifying Boundary Curves

Boundary curves can be displayed by the curvedge command:
uc> curvedge [-s <int>] [-n] [-i] [-¢ <int>] [-K]

The number of linear segments used for display can be selected by the -s option; the default is 10
segments per edge. If the -n option is specified, the control net of Bézier points is attached to the
curve. Finally, the -i option is used if interior boundaries of Bézier subdivision are to be
displayed; in this case, the patch -b command has to be executed previously (see the next Sec-
tion).

Vertex normals can be displayed by the normals command:

uc> normals [-| <real>] {-c]

The default length of normals is 1.0, unless specified by the -1 option. Normals can be cleared
from the scene by the -c option.

The construction of boundary curves is affected by the following commands:

uc> geometry [-n <int>] [-t <int>] [-v <int>]

uc> bulge <real>
uc> vnormal <vid> [<real> <real> <real>]

The geometry command selects methods for normal, tangent, and velocity determination. The
bulge command sets the global bulge value for all curves. Finally, the vnormal command prints
out or sets the normal at a specified vertex. In this case, all previously computed tangent direc-
tions at selected vertex will be projected onto the newly defined tangent plane. Velocities will
remain unaffected.

8.2.5. Creating and Modifying Surface Patches

Once the boundary curves have been computed, surface patches need to be defined. The
command patch computes and attaches suitable control points to each non-flat face:

uc> patch [-b] [-B] [-p]

By default, Gregory patches are created. If the -b option is specified, 3 Bézier patches for each
original triangular face and 5 Bézier patches for each original quadrilateral face are created
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instead. The -B option actually adds junction vertices and interior curves of Bézier subdivision to
the polyhedral description of the object. Finally, the -p option creates a net of control points that
is attached to the face.

Gregory and Bézier patches can be modified locally by setting shape parameters (bulge, tilt,
shear):

uc> shape [-e <vid> <vid>] <real> <real> <real>

The -e options selects an edge on which the selected shape parameters are set. If this option is
not specified, shape parameters are set on all boundary curves.

Finally, the net command evaluates all patches at parametric values @/n,jin),0<i,j<n
for quadrilateral patches, and at (i/n,j/n,k/n), 0Si,jk<n, i+j +k =n for triangular
patches, where n is the evaluation granularity:

uc> net [-s <int>] [-4] [-f]

The default granularity is 5, unless specified otherwise by the -s option. By default, triangular
facets are created for triangular faces, and quadrilateral facets for quadrilateral faces. If the -t
option is selected, triangular facets are created for all faces; this is useful for shading programs
that can deal only with planar facets. The -f option creates a net on the original faces, rather then
on the interpolating patches. Note that the net command destroys the control point information.
Thus, if a different granularity is desired, the patch command has to be executed again before the
net command.

Once the smooth object has been created, it is possible that some changes to it will have to
be performed. This can be achieved by the modification commands, such as geometry or shape.
However, these commands do not compute interior control points of the patches. Thus, the patch
command needs to be rerun before any geometry or shape commands show the resulting effects.

8.2.6. Other Commands

There is a number of uci commands that can be useful for debugging purposes. For exam-
ple, the kurvature command prints out curvature information of the patches. The source com-
mand can be used to read in the UNICUBIX command file and to execute statements from it (batch
mode). Thus, the desired modifications to the original UNIGRAFIX object can be stored in the
command file. The copy command copies the backup data structure into the current structure
(see the next Section). Usually, this operation is performed automatically if the current structure
was changed by, for example, curvedge or net commands.

Other uci commands are taken directly from ugi [120], an interactive display tool for UNI-
GRAFIX scenes. Useful commands include clear for clearing current scene, and write for writing
the current scene into a file. The write command can also be used to output patch information in
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a format suitable for other programs. These programs include a contouring tool for Gregory
patches, used in Ricoh Corp. DESIGNBASE [26], and a surface evaluation package, developed at
the University of Washington, Seattle [87). The reader is referred to the UNICUBIX manual for
more information.

8.3. Implementation Details

8.3.1. Data Structure

The core UNICUBIX data structure is inherited from UNIGRAFIX. However, to store informa-
tion about curved objects (such as vertex normals and Bézier or Gregory control points), extra
fields were added to the appropriate structures. The major structures in UNICUBIX are VERTEX,
EDGE, and FACE.

8.3.1.1. Major Data Structures

The VERTEX structure contains vertex coordinates, a pointer to the list of edges (ELIST)
meeting at this vertex, and a pointer to the list of faces (FLIST) using the vertex. In addition,
there is a pointer to a VECT structure that holds the 3 coordinates of the normal.

The EDGE structure points to its 2 endpoint VERTEX structures, and to the list of faces
(FLIST) using it. Two VECT pointers are provided for the two interior Bézier points of the
curved boundary, as well as the pointer to the SHPAR structure that contains 3 shape parameters
(bulge, tilt, and shear). The flag field of the structure contains information about the edge type
(STREDGE, CUREDGE, STRBORDER, CURBORDER).

The FACE structure points to its contour list (in UNICUBIX, this list can have only one ele-
ment, as no holes are allowed). The contour list (FCONTLIST) points to the contour structure
(CONTOUR) that, in tum, points to the ELIST of edges of the current face. In addition, the
FACE structure contains an array of 20 pointers to the control points of a Gregory patch, and 5
arrays of pointers to the control points of Bézier subdivision patches. There is also an array of 4
VERTEX pointers to the face comers, and an array of 4 SHPAR pointers to the shape parameters
of the face edges. Finally, the flag field of the structure differentiates between face types
(PLANAR or CURPATCH).

The other data structures for transformations, color, illumination, etc. were taken directly
from UNIGRAFIX without any changes. The reader is referred to the appropriate UNIGRAFIX docu-
mentation [120] for their description.

8.3.1.2. Data Structure Modification

At any stage of the program execution, two independent data structures are always main-
tained: a current structure, and its backup copy. When an object is first read in, both data
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structures are initialized to contain this object. However, all the modifications are performed on
the current structure only. Thus, it is always possible to restore the original object by copying the
backup structure into the current structure. The copy command does exactly that. This avoids
the necessity to read in the file description after a change has been made.

However, the restoration of the original object is performed automatically if the current
structure has been changed so that no further modification of it is possible. For example, the net
command deletes the original object and replaces it with the polyhedral representation of the
evaluated surface. Similarly, the curvedge command replaces the original object with a
wireframe representing the curved edges. So, if, for example, a patch command is issued after
curvedge, the original structure is first implicitly restored, and then the patch command itself is
executed on the restored structure.

Other UNICUBIX commands that modify the structure are: .
e patch -p adds a wireframe that connects the control points of the face to its vertices;
o patch -B deletes the original faces and replaces them with Bézier subdivision subfaces;
e normals adds a wire representing the vertex normal to each vertex of the object.

The remaining boundary and patch modification commands just operate on certain fields of the
structure, such as pointers to control points. If the structure has been previously modified by one
of the above commands, the original structure is restored.

e gcurve computes two control points for each edge and adds the proper pointers to the struc-
ture;

e geometry sets global variables corresponding to a chosen method of boundary curve con-
struction;

e bulge recomputes control points on boundary curves using the provided bulge coefficient;

e vnormal changes the normal at the specified vertex and recomputes the Bézier points of the
edges meeting at this vertex;

e patch [-b] computes interior control points of Gregory or Bézier patches;

e shape sets the specified shape parameters on one or all edges.

8.3.2. Representation of Gregory and Bézier patches

As mentioned above, a curved object can be represented as union of Gregory or Bézier
patches. If the Bézier option is specified, each triangular face is represented with 3 triangular
patches, while quadrilateral faces are represented with 5 quadrilateral patches. Fig. 8.1 shows
relative positions of Gregory control points in triangular and quadrilateral patches. The numbers
near control points correspond to the indices in the VECT array of control points that is associ-
ated with each face.
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Figure 8.1: Relative positions of Gregory control points.

Fig. 8.2 shows Bézier subpatches that represent an original face. Again, the numbers near
control points are the indices of the corresponding VECT array; the subpatch number is indicated
by roman numerals.
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Figure 8.2: Relative positions of Bézier control points.

8.3.3. Surface Evaluation

In order to be able to view the final constructed surface, each surface patch has to be
evaluated on a certain grid of points in the parameter space of the patch. In the current impie-
mentation of UNICUBIX, this is done by direct evaluation. Triangular Gregory patches are
evaluated by the formula (2.54) at parametric values (i/n,j/n,k/n), 0<i,j k<n,
i +j +k =n, where n is the evaluation of granularity (as specified in the net command). Analo-
gously, quadrilateral Gregory patches are evaluated by (2.45) at parametric values
@/m,jin), 0<i,j<n).
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Similarly, each Bézier subpatch can also be evaluated separately of the other subpatches
that correspond to a face. However, the resulting net representation creates an illusion of one
extra vertex in the middle of the face in the case of triangular subdivision, and 4 extra vertices in
the case of quadrilateral subdivision. To get rid of this unpleasant (purely visual) effect, we con-
struct the grid of parameter values of the enclosing face, and then map each grid point to the
parameter space of the subface. Then the Bézier patch is evaluated. We illustrate this process for
triangular and quadrilateral subdivisions.

Triangular Subdivision. Supposc that some point P has the barycentric coordinates
(r 5 ,¢) in the parameter space of the big triangle and the barycentric coordinates (u,v,w)in the
parameter space of the subtriangle it lies in (Fig. 8.3a). Assuming that the center vertex has coor-
dinates (1/3, 1/3, 1/3), it easily follows that P has the following representations in the parameter
space of the subtriangle it is in:

I =r—-s,v=3s,w=t-s5, [s<r,s<t]
O u=3r,v=s-r,w=t—-r, [r<s,r<t];
. u=r-t,v=s—t,w=3, [t<r,t<s]

So, for each triple (7,5 ,¢) of the original grid, parameter values of the proper subtriangle are com-
puted and the corresponding Bézier patch evaluated at (u,v,w) by the formula (2.38).

0,1,0) .1 y=1 (L1
II
r=0 t=0 x=0 I ¥ III x=1
I IV
(0,0,1) s=0 (1,0,0) (0,0) y=0 (1,0)
a b

Figure 8.3: Parameter space regions for triangles (a) and for quadrilaterals (b).

Quadrilateral Subdivision. Analogously, suppose that some point P has the coordinates
(x,y) in the parameter space of the big quadrilateral. We assume that the coordinates of the 4
center points in Fig. 8.3b are (1/3,1/3), (1/3,2/3), (2/3,1/3), and (2/3,2/3). Some computation
shows that P can be represented as follows in the parameter space (4 ,v) of the subquadrilateral it
isin:

I. u =3x, v=-1L__%, [x<y,x+y<1,x<%];
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II. u=x—2';l_——i—1—. v=3y-2, [x <y.x+y>1.y>%];

m. u=3x-2, v=£"-L-'-i

w1 [x>y,x+y>1,x>-2—];

3

Iv. u=—;—_:—2%, v =13y, [x>y,x+y<1,y<%];

V. u=3x-1,v=3 -1, [-;—<x.y <%].

The proper Bézier patch is then evaluated at (u,v) according to the formula (2.34).

8.4. Discussion

The implemented prototype for UNICUBIX, uci, is a modeling system that allows to describe
curved objects defined by cubic boundary curves. The system is still in an experimental stage,
and, consequently, has rather restricted capabilities. The greatest drawback of the system is the
fact that it has a very limited user interface (type-in commands only). An interactive editor with
a mouse support is a must. Such an editor would introduce real time interaction to the system.

Another disadvantage of the system is the fact that it is computationally unefficient because
of time-consuming direct evaluations of the points on curve segments and surface patches. There
are two possible approaches to improve efficiency. First, one could use a fast evaluation algo-
rithm, such as forward differencing. However, a possibly better approach would be to eliminate
the step of curve/surface evaluation altogether from the system. This should be possible if uci is
run on a modemn workstation with a graphics library that supports Bézier patches and general
NURBS. Then, control points of a curve or a patch would be directly passed to the library for
rendering.

In spite of the above disadvantages, UNICUBIX is the foundation for a needed addition to the
UNIGRAFIX system that would bring it closer to a useful CAD modeler. In our research it has
proved to be a good tool to understand the relationship between various geometric parameters
that define the construction process and the shape of the final interpolating surface.
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Conclusions

In this work, we have described local methods to construct tangent continuous (G1) and
curvature continuous (G2) curves, and tangent continuous surfaces that interpolate given data
points. The curves are built of cubic Bézier segments, joined together with the required degree of
geometric continuity, while surfaces are represented as a union of quadrilateral bicubic and/or
quartic triangular Bézier or Gregory patches.

The procedural approach was used in both curve and surface construction. This approach is
‘smarter’ than traditional algebraic ones in the sense that it is based on geometric reasoning.
Thus, a curve or a surface is derived from a sequence of procedural steps that may include special
rules. These rules generally take into account a special situation of a particular piece of a curve
or a surface which can greatly improve the visual quality of a resulting object.

The system of curve segments or surface patches that produces overall G! continuity has
several degrees of freedom. It is our belief that in a practical modeling system these degrees of
freedom should be represented not as control points or weights of a particular patch, but as high-
level user-friendly handles, or shape parameters. Shape parameters affect the shape of a curve or
a surface in an intuitive manner that does not depend on the underlying functional representation
and are transparent even to a nonmathematical user.

The procedural approach also makes the system very flexible in the sense that a variety of
input data can be processed. For example, smooth G ! surfaces can be constructed just from a set
of points in R3, or from a fully-defined mesh of boundary curves. If certain shape parameters are
not available from the input, our procedural method assigns default values to these parameters.
The proper assignment of default values is of great importance to the visual quality of the final
curve or surface. The user, however, has an option to change them for the application’s particular
needs.

9.1. Relationship to Other Data Interpolation Methods

The problem of interpolating a set of points with a smooth curve or a surface is a classical
problem of approximation theory. Traditional approaches often use a single function, such as a
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polynomial, to interpolate all the points. The resulting solution, while being C ™ continuous, may
exhibit undesirable oscillations between the data points.

Altematively, the spline-based methods represent the interpolant as a union of continuous
(typically polynomial) non-overlapping pieces that connect at the interpolation points. In order to
define these spline pieces unambiguously, the topological structure of the desired interpolating
surface must be specified. We assume that it is either explicitly given in the form of a topology
polyhedron on the points to be interpolated or that a suitable polyhedron can readily be found by
some straightforward triangulation procedure on the data points [109]. As a result of using a
spline representation, the oscillations between the data points are reduced at the cost of decreas-
ing the degree of continuity of the interpolant.

In CAGD, the parametrization of the interpolating curve or a surface is not important. Thus,
the continuity requirements can be relaxed even further by enforcing geometric, rather that
parametric continuity at the data points. This relaxation of continuity requirements leads to the
availability of several parameters that need to be assigned certain values in order to construct a
particular solution. The choice of these parameters is of crucial importance. Most current inter-
polation schemes either assign some ad hoc values to these parameters or leave them to be
defined by the user. As a result, undesirable ‘overshoots’ or ‘bulges’ may occur between the data
points, decreasing overall visual quality of the interpolant.

In this work, we have attempted to conduct a thorough study of how these parameters
should be defined. We have proposed several procedural rules that assign default values to the
available degrees of freedom with the goal to improve certain qualities of the resulting curves or
surfaces. The same approach also allowed us to represent G? interpolating curves with 2 cubics
per segment (Chapter 4), and G ! surfaces with 3 or 5 Bézier patches per face (Chapter 7).

We have also studied ways to make the available degrees of freedom user-friendly. We
have extracted a set of shape parameters that can be used to modify the curve or surface. The
shape parameters have a very intuitive effect on the shape of the primitive and are clearly supe-
rior to ‘twiddling’ control points or assigning values to some obscure coefficients.

We believe that the procedural approach is a very powerful tool in constructing smooth
interpolants. It offers good visual quality, user-friendly local and global shape parameters, and a
simple representation of the underlying splines.

9.2. Major Contributions
The following major contributions have been presented in this thesis:

1. We have studied the problem of interpolating a set of points in R? or R® with G! Bézier
curves. We have established default rules for finding curve normals at interpolation points,
and velocities that determine positions of interior Bézier control points on tangent lines.
These rules consistently produce curves of high visual quality (measured in terms of
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curvature variation) even for highly irregularly spaced data points. Moreover, special rules,
such as those conceming collinear segments, have been developed.

2. We have presented a local method to construct interpolating curvature continuous (G %)
planar curves represented as a union of cubic Bézier segments, with two segments per span
between adjacent vertices. In addition to data points, curve normals, velocities, and curva-
ture values at interpolation points may be specified.

3. We have experimented with several approaches to construct cubic boundary curves from a
given polyhedral model. The boundaries are completely defined by three types of
geometric parameters: vertex normals, tangent directions, and velocities. We found that
naive methods for determining these parameters not only produce surfaces of poor visual
quality, but sometimes fail to produce a G ! surface at all. Therefore, we have developed a
method that is based on constructing several G! curves through the interpolation point. The
geometric parameters are then derived from these curves. The resulting Opposite Edge
method proves to be very robust; moreover, a substantial improvement in surface quality
(again measured in terms of curvature variation) has been realized.

4. We have studied the conditions for G! continuity between adjacent Bézier or Gregory
patches, and derived 3 shape parameters, buige, tilt, and shear that control the shape of the
patches near their common boundary without changing this boundary or destroying G ! con-
tinuity.

5. We have described a process of interpolating a single Gregory patch with several Bézier
patches so that patch boundaries and cross-boundary derivatives are interpolated exacty.
This is important for efficiency and compatibility purposes. A quartic triangular Gregory
patch is replaced by 3 quartic triangular Bézier patches, while a bicubic quadrilateral Gre-
gory patch can be replaced with either 2 quadrilateral and 2 triangular Bézier patches, or
with 5 quadrilateral Bézier patches.

9.3. Open Problems
The following issues require more research:

1. The current rules for determination of normals and velocities for interpolating curves
depend only on the nearest neighbors of the current vertex. However, in order to check if a
special rule needs to be applied, second nearest neighbors have to be examined. Given that
we have to look at the second nearest neighbors anyhow, this additional information could
be used to formulate better default rules for normals and velocities. The tradeoffs between
these more sophisticated rules and their increased computational cost should be studied.

2. Our G2 curve interpolation method does not extend naturally to R? due to an additional
constraint imposed by osculating planes. The next logical step is to research whether the
osculating planes can always be chosen locally so that pairs of G? cubics can be
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constructed. If the answer is negative (and we believe that it is), interpolation with quintic
splines should be studied. In particular, default rules need to be developed for choosing the
two ‘innermost’ control points of a quintic segment.

. At present, our surface interpolation scheme can only deal with triangular and/or quadrila-
teral topology of underlying faces. In Chapter 7, we presented a method to construct a G
surface over a regular n-gon. An extension to arbitrary faces would certainly be desirable.
The major difficulty here is the fact that n-sided patches suitable for inclusion into a net-
work of Bézier patches are of very high degree [85].

. It would be interesting to study whether the basic idea of Chiyokura’s G ! blending could be
extended to form G2 surfaces. To preserve local control, quintic Gregory patches would
have to be defined. These patches should allow independent specifications of the first and
second cross-boundary derivatives at the patch borders and should be derivable from quintic
Bézier patches by splitting each interior control point.
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Appendix1:
Control Points and
Premultiplication Coefficients

As discussed in Sections 6.2.3 and 6.3.1.3, it is possible to express the internal control
points of the adjacent Gregory of Bézier patches in terms of the coefficients of the premultiplying
scalar functions. The expressions for the tangent vector and the two cross-boundary derivatives
are (Section 6.2.1):

2 3 3
DT()=3 Y s BAv), DOv)=3Y a; B’ v), D¥¥)=33 b; B ).
i=0 i=0 i=0
3
We premultiply D I'(v) with a cubic polynomial Y’ ¥; B>(v), and D ®(v) and D ¥(v) with qua-
i=0
2 2
dratic polynomials ¥ o B2(v) and 3, B; B;2(v). The resulting sum is a polynomial of degree 5
i=0 i=0
in v that should be identically O for all values of v. This yields 6 equations for various degrees of
V.

Two of the above equations would represent planarity constraints at the endpoints:
0o a9+ Bobo+Y S0 =0,
a3+ B by +135,=0.
Assuming that the coefficients 0, 0. Bo, B2, Yo, and v satisfy the above constraints, the internal

Veclors a,, a,, by, and b, are expressed as follows:

1
- X
303B2 — 120001 B2 — 1204505808, + 1202BoBs + 1200087 — 601002B0B, + 30385

a8, =

[(GooB2-1204B:B; - 30BoBa+ 120:82)m; + Bo{6:B = 6aaPr) + (@2BE — coBoBzV1s)so
+ (0B — 801B1B2 — 20808, + 8B F)Yo + Bo(1201,B3 — 1200By )1 + (60E — 600BoB2)Y: + (40iaBoBy — 40uBENYs)s:
+ (Bo(20B2 ~ 2001 Yo + (302B¢ — 30oBoB2)Y: + (600BoB; — 601B3)a)s:
+ (2000, B3 - 8a2B,B; + 8o, PP — 203BoB, )ag + (Bo(20,BF - 40,B,By) + 200B,BF — 8 BB, + BB )bo

+ (0040 BoPy + 0B — 0dBoPz — 4a2BE)as + (0o(4BoB — B3B2) — 40 B3Py + @B)bs],
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o 1
Y = S ZRT - 12000, Ba — 120000B, + 1207BaPs + 1200057 — 60g0aBobs + 30788

[(GasB2-120,8:8, - 30183, + 120, B2, + By(60B, — 604Bm: + (B3 — 0B3B)Yo)ss
+ (20587 — 80,88, — 20,83, + 8B + Ba(120,, — 1204 By + (6B — 6sB3BuM: + (4sBsBz — 4B o)s,
+ (B5(2048, — 20, 8,07 + (30, B3 = 30383B,)7; + (6032 — 60283m)s:
+ (205,82 — 802B,B, + 80,0087 — 20.7B5B2)as + (B3(2087 - 401 B,B1) + 208,87 — 801,B3P; + 8,B2)bs

+ (03(40,B3B2 + 0, B2) — #BsB, — 402BF)ao + (a3(4BsBZ — BB1) - 40,838, + a:ﬁ?)bo] .

1
302B2 - 12000481 B — 1201058081 + 1207BoB2 + 1200027 — 6000:0B2 + 3aiBd 8

b‘=—

[(3Boad=12B 101002 — 3800 + 1282020y + o(6B102 = 68202 + (B2aG — Boioz)s)so
+ ((2Boa — 8B1010tz — 2B 08000y + 8PN + 0ol 12B10tz = 12B,00 )y + (6B204 — 6Botielta) s + (4Bodiotts — 4B108)s)s:
+ (0io(2B102 — 2820, )0 + (3B20E - 3Botto0aMs + (6Boltolt; — 6B10))s2
+ (2BoB10? — 8B70,0t, + 88,07 — 2B0igcm Yo + (028,07 — 4B,0,00) + 2Bocnif - 8Byt + 88,078

+ (Bo(dBrotocts + Br0d) — Blctacts — 4BZad)bs + (Botdorge? — o) — 4Byader, + Bad)as).

1
by =— x
308P2 — 12000481 B2 — 120,080 + 1203B0B; + 120008 — 60002BoB; + 30.7B¢

[((3 B30 2—128,0504 — 381050 + 12B,0f)Ys + 0a(6B20; — 6B1002)Y: + (B10F ~ Bs0ts0 Yo)s3
+ ((2B50.f - 8B,0004 — 2B1030t; + 8B1af)Ys + 03(12B204 — 12B100)Y2 + (6B102 — 63030 y: + (4B3atsaz — 4B20$)Y0)s:
+ (03(2B 201 — 28,0201 + (3B10F — 3300y )Y + (6Bt ~ 6B )s1

+ (283807 - 8B, + 8B,B10F — 2B2005)bs + (013(2Bo0 — 4B10) + 283007 — 8Bfen + 88,0 )as

+ (B3(dB 30, + B102) — B0 — 4BFod)bo + (Ba(dasaf — oo — 4Bafas + B10)ao ).
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Appendix 2: Uci Manual

NAME

uci — interactive UNICUBIX environment

SYNOPSIS

uci [ arguments, options ]

DESCRIPTION
Uci is an editing, viewing, and designing tool for UNICUBIX objects. It provides most of
the ugi capabilities for objects with curved edges and curved surface patches.
The term current scene in this manual refers to all UNICUBIX objects that were either read in
or created by one of the modifiers since the beginning of the session or since the last clear
command.
The following options can be used:

-fi filename
Use file filename to find uci commands. Each command with its arguments must
appear on a single line. This enables setting initial parameters, Or even running a
whole session as a batch job. Lines beginning with a '#’ are ignored.

.e Echo the commands from the command-file. Comment lines are echoed t00.

After processing the commands from the input file, uci will prompt you with uc>.

You may now enter commands. Command names are single words, which may be abbrevi-
ated to any unique prefix. The commands can be divided into seven logical groups: /O,
Display, Scene, Curve Construction, Patch Boundary Construction, Patch Construction, and
Miscellaneous. The following sections describe each group.

Uci records the session in a log file called uci.log in the current directory.

I/O Commands

eread filenamel [xform-options1] filename2 [xform-options2] ...

Read is used to read in UNICUBIX scenes from files, optionally transforming them, and
adding them to the current scene. Each set of transformations applies only to the filename
preceding it, i.e. transformations do not accumulate. See description of xform for details of
the options. Since everything becomes part of the same scene, name conflicts may occur
between two objects of the same type and same name from different files. Uci handles those
conflicts correctly in most cases. When writing such a scene to a file use the newlabels
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command first.
If the filename is missing, standard input is read. Type your UNICUBIX statements in, and

end input by typing q.
Similarly, the special filename << tells uci to read the next lines as UNICUBIX statements,
until the q statement. This is useful in writing uci command files (following the spirit of

csh scripts).
EXAMPLE: read cube -rx 20 -X 3 cube -rx -20 -tx -3

 smooth [options] filenamel {options1] filename2 [options2] ...

Reads in a scene from a file in UNIGRAFIX Or UNICUBIX format and replaces edges by cubic
curves and faces by curved patches unless specified otherwise.

Smooth computes unspecified control points of curved borders or edges. All faces are con-
verted into patches, except for specified flat faces F. Edges ar¢ replaced by curved borders,
unless specified otherwise.

-b factor
Change the bulge of edges (and thus patches) 10 factor.

-n normethod -t tanmethod -V velmethod
Use the specified method for determining normals, tangent directons, and velocities.
Refer to command geometry fora list of available methods.

remaining options
as in read.

EXAMPLE: smooth b05-n2-tlcube-1y 5-x 20 -sy 2

o write [options] filename

Writes the current scene 10 the named file in UNICUBIX format. If filename is not specified,
standard output is used.

.h  Writes the scene in a hierarchical format. This is the default option.

.f  Writes a flattened scene (no hierarchy).

.C Writes a compact scene: vertices are written only if actually used by a face ora wire.
4  Writes illumination sources 10 filename il .

v Writes viewing parameters 10 filename.Vp .

.d Prints the names of loaded definitions.

.ae Attach plane equations to top level faces.
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-ai Attach illumination values to top level faces.

.5  Writes all previous commands to a uci command file. This file can then be used with
the -fi option to uci to reproduce the current session. (In effect, the logfile is copied to
the specified filename, with a time stamp).

-g  Write out Gregory patches for Ricoh Corp. contouring program. Only quadrilateral
patches are written out. The program gc can then be used to produce the object con-
tours, perpendicular to one of the coordinate axes in the UNIGRAFIX wireframe format.
The format of the gc command is:

gc [-a axis] [-d dh] {-1 length] Sfilename

where axis can be 1 (X), 2 (Y), or 3 (Z). The contours will be perpendicular to this
axis. Default: 3 (Z axis). The distance between the contours is controlled by dh.
Default: 0.5. Finally, length is the maximum length of a line segment in a contour.
Default: 1.0. The file filename (produced by uci write -g command) contains the
coordinates of the control points of the Gregory or Bézier patches. This is a sample
dialog to obtain a wireframe:

% uci

uc> smooth file]

uc> patch

uc> write -g file2

uc> quit

% gc -dh 0.1 -10.2 file2 > file3
% ugplot < file3

Here filel is an input uci file, file2 contains the coordinates of the control points of
Gregory or Bézier patches, and file3 is a UNIGRAFIX wireframe file.

b  Write out Bézier patches for UW Seattle Tess program. Triangular Bézier patches
only are written. The output of this command can then be used by the Tess program:

% uci

uc> smooth filel
uc> patch -b
uc> write -b file2
uc> quit

% Tess < file2

Here file! is an input uci file, and file2 contains the coordinates of the control points of
the triangular Bézier patches.

Only one output format (either scene description or set of commands) can be written to
filename, so only the last one specified will have effect. (To write out the scene both as a
scene file and as a uci command file, use the write command twice).
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EXAMPLE: write -i -f sceneOut

e source [options] filename

Reads in uci commands from the named file and executes them in a batch manner. This
command is very useful for storing the modifications of the original object.

- Echo each command before execution.

EXAMPLE: source uciCmdlLog

Display Commands
e view [options]

Sets the viewing parameters for the current scene. Once set, the parameters remain in effect
for the rest of the session, unless reset by another view command. They can be temporarily
overridden by display options (see below) for a certain scene display. If you change from a
perspective view (-ep) to an orthogonal view (-ed) or vice-versa, all parameters that are not
relevant to the current view are saved but ignored.

All display options can be specified. An additional option is:

-p Prints the current viewing parameters. (Note that the set of viewing parameters is
updated only after the view command, so -p will not reflect any new parameters set in
the current view).

EXAMPLE: view -v -sa-ab-ed 32 -7 -vr22

e display [options]

Displays the current scene on the requested device. All ugdisp options can be used, except
for -fi for input file, since input is the current scene. Viewing parameters are added to the
parameters that were set by view (see above), and override them in case of conflict. They
take effect only for this one display. See Ugdisp (UG) man page for option details.

EXAMPLE: display -sg -st

eilluminate [options]

Modifies the set of illum sources and the illumination of the current scene. Two shading
models can be used: uniform shading for each face, or smooth shading of the whole scene
(using Gouraud shading). In addition, fog options can be specified to fade to a white or
black background.
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Options to modify the set of illum sources:

-a id intensity [x y ]
Add an illumination source. The new source may be directional or ambient in which
case the direction vector is not specified. intensity should be in the range (0,1].

-r id Remove the specified source.

-p  Print the list of current illum sources.

Options to modify illumination of the scene:
-i  Iuminate the scene with uniform face shading.
-g  Iluminate the scene with Gouraud shading.

-fw x y z radius] radius2
Fade against white background in the interval radiusl -radius? from the fog point
Xyz

-fb x y z radius] radius2
Fade against black background in the interval radiusl-radius2 from the fog point
Xyz

The two shading models can coexist in the data structure since uniform data is kept in
faces, and smooth data is kept in vertices. Thus, once any shading model was calculated -
(either implicitly by a display command, or explicitly by an illuminate command) it
remains and can be used. To update any model after an illum source was added/removed, -i
or -g should be called.

EXAMPLE: illuminate -a moon 0.4 -310-15 -p -i

Scene commands
o xform [options]

Transforms the whole scene. (with optional transformation of illum sources). Hierarchical
structure is retained, and if the scene is written with the -h option (see write) these transfor-
mations are appended to the end of the xform-lists of top-level instances and arrays.

-tx, -ty, -tz amount
Translate scene by amount in the specified direction.

-rx, -ry, -rz angle
Rotate scene around specified axis by angle (in degrees).
(positive angles cause counter-clockwise rotation when viewed in direction of positive
axis).
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-SX, -SY, -Sz factor
Scale the scene by factor in the appropriate dimension.

-sa factor
Scale the scene by factor in all three dimensions.

-mXx, -my, -mz
Mirror specified coordinates about the origin.

-ma Mirror all coordinates about the origin.

-M3 3x3 matrix
Use one to nine numbers as transformation matrix.

-M4 4x4 matrix
Use one to sixteen numbers as transformation matrix.

-xI Transform coordinates of light sources as well.
-px Print the list of specified transformations.

-pm Print the total transformation matrix.

EXAMPLE: xform-sa.7-ry23-tx10-M3102-191-xl-pm

e newlabels [options]

Gives new sequential labels to scene objects. Used mainly to convert very long names to
short ones, and to avoid naming conflicts before writing a scene to a file.

-h  Keep hierarchical structure. Objects in definitions retain their original labels, while
top-level objects get new labels. This is the default option. As in write, -h is not
allowed if a modifier like curvedge or patch -p was called.

-f  Scene is flattened, and hierarchy is lost. All objects get new labels.

o clear [options]
Clears the current scene, and allows you to start a new scene.
-s  Clear only scene description.

.t Like -s but only top level objects are cleared. All loaded definitions remain, and can
be referenced and instantiated by future read commands.

-i  Clear only illumination sources.

-v  Clear only viewing parameters.
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If no options were specified, the default is to clear everything. Your verification is then
requested.

Curve Construction Commands
e gcurve [options]

Constructs interpolating curves from a single specified wire. Expects that every vertex
(except for the endpoints) has exactly two neighbors.

-m number number
Select a procedural method for normals and velocities. Available normal methods
are:

1.  Angle bisector (default)

2. Angle bisector with special rule for collinear segments
3.  Catmull-Rom method (directly weighted normals)

4. Inversely weighted normals

5. Inversely weighted edges

6. Directly weighted edges

7.

Directly weighted normals for small angles and inversely weighted edges for large
angles (top of the diamond)

8. Inversely weighted normals for small angles and directly weighted edges for large
angles (bottom of the diamond)

Available velocity methods are:

1. Edge length

Edge projection

Average of edge length and projection

> v b

Catmull-Rom method (half chord length)
Average of side lengths

Average of edge projections

N W»

Average of methods 1 and 4 (default)
8. Average of methods 1 and 5

9.  Average of methods 1 and 6



APPENDIX 2 190

10. Average of methods 2 and 4
11. Average of methods 2 and 5
12. Average of methods 2 and 6
13. Average of methods 3 and 4
14. Average of methods 3 and §
15. Average of methods 3 and 6
-e number number

Select a method for normals and velocities at the endpoints (for open curves only).
Available endpoint normal methods are:

1.  Symmetric method (default)
2.  Extension of previous Bézier control point

3.  Side difference method

Available velocity endpoint methods are:
1. Symmetric method (default)
2.  Average of edge length and projection
-b factor
Set global bulge to specified factor.

-k Construct curvature continuous curve.

EXAMPLE: gcurve-m34-e32-k

Commands for Construction of Boundaries of Surface Patches

e bulge factor

Change the bulge of cubic curves to the given factor. Default is 1.0; factor outside of [0,1]
may produce loops and self-intersections.

EXAMPLE: bulge 1.2

e vnormal vertexid [x y z]

Print the normal at selected vertex or, if the vector is supplied, set the normal to it. All the
tangent directions at selected vertex are projected onto newly defined tangent plane.
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Velocities remain unaffected.

EXAMPLE: vnormal A 00.5-0.5

e geometry [options]

Sets the methods for determination of normals, tangent directions, and velocities of the
boundary curves of interpolating patches.

-n number
Select a method for vertex normal determination.

-t number
Select a method for determination of tangent directions.

-v number
Select a method for determination of velocities.
Available methods for vertex normals are:
1.  Opposite edge method, based on G1 curves (default)
2. Average of face normals, weighted by face angle at the vertex
3. Average of face normals, weighted by face area
4.  Average of face normals
5.  Average of face normals, weighted by inverse face area
6.  Average of face normals, weighted by product of face angle and face area

7. Average of face normals, weighted by product of face angle and inverse face area

Available methods for tangent directions are:
1.  Opposite edge method, based on G1 curves (default)
2.  Projection method

3.  Planar boundaries

Available methods for velocity are:
1.  Edge length velocity (default)
2.  Opposite edge method, based on G1 curves

3.  Generalized average of Catmull-Rom and edge length methods
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EXAMPLE: geometry-n2-t2

e curvedge [options]

Approximates the cubic curves in the current scene with piecewise linear wires trains. Faces
are deleted.

-s number
Number of linear segments to represent each edge. Default: 10

-p  Add representation of Bézier points of edges linked to their vertices.

-i Create interior curves if Bézier subdivision was used (command patch -b has to be
executed before).

-c number
This option must be specified if an interpolating curve is to be constructed. If number
is 0, then the original wire will be deleted; otherwise, the defining polygon will
remain in the structure together with the curve.

-k This option is valid for interpolating curves only (gcurve command has to be exe-
cuted before; -c must also be specified). Constructs curvature plot of the curve rather
than the curve itself.

EXAMPLE: curvedge -s 6 -p

e normals [options]
To each vertex it adds a wire representation of a normal assigned to the vertex.

-1 number
Length of wires representing the normals. Default: 1.0.

-¢  Clear previously displayed normals.

-i  This option must be specified for interpolating curves (constructed with the gcurve
command).

EXAMPLE: normals -1.7

Patch Construction Commands
e patch [options]

Computes and stores control points of Gregory or Bézier patches for non-planar faces.
Default is to compute Gregory patches.
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-b Creates 5 Bézier patches for each quadrilateral face, and 3 patches for each triangular
face.

B Adds new vertices and curved borders corresponding to interior joints and boundaries
of Bézier subdivision.

-p Creates a wire representation of control points linked to their edges.

EXAMPLE: patch -b

e shape [options] bulge tilt shear

Sets shape parameters on all edges or on a selected edge by specifying bulge, tilt, and shear
coefficients.

-e vertl vert2
Set shape parameters on the edge between vert/ and verz2 only.

EXAMPLE: shape-e AB150

e net [options]

Create a faceted face representation of non-planar patches in UNIGRAFIX format. By
default, quadrilateral facets are created for quadrilateral faces, and triangular facets for tri-
angular faces.

-s number
Number of segments each edge is subdivided into for rendering. Default: 5. Thus,
quadrilateral and triangular patches will be represented with 52 facets.

-t  Create triangular facets even for quadrilateral faces. This is useful for rendering rou-
tines that can deal with planar facets only.

-f  Construct a net on the original faces of the polyhedron, rather than on the interpolat-
ing patches.

EXAMPLE: net-s4 -t

Miscellaneous Commands
e kurvature [options]

Print out curvature variation along patch boundaries. Patches have to be Bézier. This is
useful for comparison of various methods for boundary curve construction.
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-s number
Number of equally spaced sample points along the boundary to evaluate the curvature.
Default: 10.

-b number
Select boundary type. The following types are available (default is 1):

1.  Exterior boundaries only
2. Interior boundaries only

3. Both exterior and interior boundaries

EXAMPLE: kurvature -b2

o help command-name

Command-name is a unique substring of one of the commands. Description of the command
and its options is printed. Without any argument it prints the menu of commands.

EXAMPLE: help help

e quit

Ends the session.

o ! string

C-shell escape. String contains a csh command.

FILES
“ug/ug2/mew/uci
“ugfug?/src/uci

SEE ALSO

ugi (UG), ugdisp (UG)

DIAGNOSTICS

Checks input files for syntax errors.
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BUGS
Yet to be reported.

AUTHORS
Lucia Longhi, Nachshon Gal, Leon Shirman
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