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ABSTRACT

A helical resonator plasma source is a resonant, slow wave, plasma-loaded structure consisting of
a cylindrical plasma surrounded by a helical coil which, in turn, is surrounded by a grounded coaxial
cylinder. Such sources can be efficiently matched to an external power source and can operate at low
gas pressures. We employ a developed sheath helix model, in which the cylindrical geometry is
unfolded into a rectangular geometry and the; RF current in the helix wires is replaced by a ‘continuous
current sheet, to obtain the dispersion characteristics (B versus @, where B is the axial wavenumber and
® is the frequency) for the slow waves, their electric and magnetic fields, and the scaling of the disper-
sion and fields with source parameters and geometry. We use a quasistatic approximation to obtain the
fields in a cylindrical structure and including plasma collisions. These results are then used to calculate
the stochastic heating, which dominates at low pressures, and the ohmic heating, which dominates at
high pressures. We determine the resulting plasma density, loaded resonator Q. and source coupling.

The theory is compared to some preliminary experimental resuls.
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I. INTRODUCTION

Plasma discharges are extensively used in the semiconductor industry for etching, sputtering and
deposition processes, and their use has become critical for VLSI production. The current generation of
parallel plate "diode”, triode and downstream etchers is just adequate for present production devices and

may not be suitable for submicron fabrication.

A variety of plasma sources are being investigated for advanced processing applications. We are
studying a promising new plasma source, the helical resonator, which is well suited for advanced etch-
ing and CVD applications, because of its favorable ion bombardment characteristics and its ability to
operate at pressures as low as 107 Torr. Helical resonator plasmas operate at ordinary radio frequen-
cies (3-30 MHz), use simple inexpensive hardware, require no matching network and exhibit high ‘Q
(600-1500 typically without the plasma present) and a high characteristic impedance (Z,). These reso-
nators are a type of slow wave structure. As shown in Fig. 1, the source consists of a coil of prescribed
diameter, pitch and length which is surrounded by a grounded coaxial cylinder. The composite struc-
ture becomes resonant when an integral number of quarter waves of the RF field just fit between the
two ends. When this condition is satisfied, the intense electromagnetic fields within the helix can sus-

tain a plasma with negligible matching loss down to very low background gas pressure.

In recent experiments!~3, a rudimentary helical resonator etching apparatus was operable to as low
a pressure as 1075 Torr. At 0.1 mTorr pressure, a resonator discharge achieved a selectivity of more
than 70:1 over silicon oxide and more than 1.7:1 over trilevel resist while anisotropically etching 0.25 p
undoped polysilicon gates across 100 mm wafers.2 A resonator was also used for downstream deposi-
tion of high quality SiO, and p-SiN (plasma "silicon nitride") using an auxiliary RF supply to maintain
controlled ion energy.2 In another hot wall resonator configuration, diclectric films were deposited on
wafers placed inside the plasma — with a furnace contained within the resonator and with no internal
electrodes.?™ Helical resonators have been used for etching in the past — in this case chemical species
from a high pressure (~1 Torr) discharge were used for downstream (isotropic) stripping.* However the
special properties and versatility of helical resonator plasma sources have only come to light recently,

when it was demonstrated that this structure can operate well at low pressure and generates ion



bombardment with characteristics that are especially effective for selective anisotropic etching of submi-

cron features.

To understand the control parameter space, consisting of pressure, RF power, source length,
plasma, helix, and outer cylinder radii, winding pitch angle, and excitation frequency, we must explore
sourcc operation both experimentally and theoretically and develop predictive models. A first step is to
understand the helical slow wave modes in the source and their interaction with the plasma. We do this
in three parts. First, we obtain the dispersion, B versus , and the relationship among the field quanti-
ties in the approximation of a cold, collisionless plasma and a "developed sheath helix" model, in which
the r.f. current in the helix wires is replaced by a continuous current sheet ("sheath™) and the cylindrical
(r,6,z) geometry is unfolded into a rectangular (x,y,z) geometry ("developed"). This is a standard
analysis technique for treating helical systems® that retains most essential engineering physics. We use
the results to explore the variation of propagation and resonance length with the variation of device
parameters and plasma density. We then apply these results to a cylindrical system to calculate the
electron heating due to bulk ohmic healing and surface stochastic heating and obtain a relationship
between plasma density and power absorbed, for a given resonant device and neutral gas pressure.
These results are used to calculate the coupling to the plasma and show that a matched condition is
easily achieved. Finally, we compare the predictions, qualitatively, with some early experimental

results.

II. COLD PLASMA, DEVELOPED SHEATH HELIX MODEL
A. Model Equations

The developed sheath model is shown in Fig. 2. The cylindrical (r,0,z) system is "unfolded” to
give the rectangular (x,y,z) system, with x and y playing the roles of » and 6, respectively. The sys-
tem is uniform along y. The plasma thickness is a, the helix radius is b, and the outer conductor
radius is ¢. The helix is modeled as an anisotropic sheet having infinite conductivity in the ! direction
and zero conductivity in the ¢ dircction, where the ¢ and ! directions make an angle y with respect to

the y and z directions, respectively (sce Fig. 2).
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We assume wave solutions varying as expj(wt —Bz) for all field components. The axial ficlds

satis(y the two dimensional Helmholtz cquation

d’E,ldx? - B?E, + k3E, =0, ¢y

d*H,ldx* - B?H, + k*H, =0, @

where k = w/c, is the free space wavenumber. We seek symmetric solutions in x for the longitudinal
fields in the plasma, corresponding to the symmetric fields in r for the cylindrical system. We also
require that the tangential E-field components vanish at the outer conductor surface. Integrating (1) and

(2) and using these conditions, we obtain

E,, = A coshp,x , (3)
H, =B coshp,x , @
E, = Ccoshp,(x-a) + D sinhp,(x-a), | (5)
H, = E coshp,(x-a) + F sinhp,(x-a) , ©)
E.. =G sinhp,(x-c) , Q)
H, = H coshp,(x—c) . ®)

Here the subscripts a, b, and c refer to the plasma, plasma-helix, and helix-wall regions, and where p,

and p, are the transverse wavenumbers in the plasma and- vacuum regions, respectively:

p2 =B - k%, , ®
pl=B2-k%, (10)
where
2
w
g =1- -w—’; 1)

is the plasma permittivity, w, = (e*n/e,m)" is the electron plasma frequency, e and m are the (posi-

tive) electron charge and mass, n is the clectron density, and €, is the free space permittivity. For slow
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waves, B? > k2 and hence p2 > 0 in both the plasma and the vacuum.

The transverse fields are obtained from the axial fields as:

E, = ﬁ% = 12)
E, = :pL‘;’E %’- , a3)
H, = };2 % . (14)
R as

where p and € are the transverse wavenumber and permittivity appropriate to the particular region (a, b,

or ¢) and u is the free space permeability.

The boundary conditions at the plasma surface x = @ are that the tangential field components E,,

Ey, H, and H, are continuous. Using (3) - (6) along with (13) and (15), we obtain

C = A coshp,a , 16)

Fp, = Bp, sinhp,a, an

E =B coshp,a , 18)
and

Dp,e, = Apy¢, sinhp,a . (19)

At the helix surface x = b, the / and ¢ components of the fields are given in terms of the y and

z components as:

E, =E,cosy +E, siny , (20)

E, =-E,siny + E, cosy , (21)



H; = H,cosy + H, siny , (22)
H, =-H, siny + H, cosy . (23)
The boundary conditions at the helix surface are as follows: Because of the infinite conductivity
of the surface in the ! dircction,
Eyp =E. =0. (24)
Because of the zero conductivity in the ¢ direction,
Ep =E, . (25)

There is no magnetic field discontinuity along the ! direction because the surface current K, = 0.

Hence, we obtain
H = H, le - (26)

Finally, the magnctic ficld discontinuity in the ¢ direction yields a surface current component in the /

direction:
Ky =Hy - H, . @7
Inserting (20) - (23) into (24) - (26), we obtain the four equations:
—joW[E sinhp,(b—a) + F coshp, (b—a)]cosy (28)
+ p, [C coshp, (b-a) + D sinhp, (b—a)lsiny =0,

JouH cosy =p, Gsiny , 29)

JOW[E sinhp, (b-a) + F coshp, (h-a)}siny 30)
+ p, [C coshp,(b—a) + D sinhp, (b-a)lcosy =

JoWH sinhp, (b—c)siny + p, G sinhp, (b-c)cosy ,

Jwe, [C sinhp, (b—a) + D coshp, (b—a)]lcosy 31

+ p, [E coshp,(b—a) + F sinhp, (b—a))siny =

-6-



Jjwe, G coshp,(b—c)cosy + p, H coshp,(b—c)siny .

Equations (16) - (19) and (28) - (31) are eight linear, homogeneous equations for the eight coefficients

A through H. For a non-zero solution set, the determinant of the coefficient matrix [A] must vanish:
det[A]=0. (32)

This yields the dispersion relation B(w) for the modes. Knowing B for a given w, we arbitrarily choose
a mode amplitude such that A = 1. This normalizes E, =1 at x =0. Next, we evaluate the
coefficients B through H. From these, we obtain the amplitudes of all the electric and magnetic field

components as a function of x. The surface current K| is evaluated using (27).

B. Results and Discussion

The coefficient matrix was verified and (32) was solved to obtain the dispersion relation using the
symbolic algebra computer system MACSYMA. A computer code HELIX was written to evaluate the
dispersion relation, the coefficients, the fields, and the surface current. The standard source parameters

were chosen to correspond approximately to an experimental device:

[ref]
a =3cm,
b=5cm,
¢ =10cm,
L =30cm,
¥ = 0.1 radians,

We consider the propagation at moderate plasma density, n = 10° cm™, at high density, n = 10" cm™

’

as wcll as without plasma.

Figure 3 gives B versus £ = w/2r with n as a parameter. For comparison, the upper and lower

solid lines show a wave following the gecometrical helix pitch,

2
Br = c,_l:lcn‘L\pr , (33)

and a light wave B, = 2rf/c,, respectively. Without a plasma, there is only one mode of propagation,
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with  somewhat smaller than B,; ie, the wave velocity w/B is somewhat larger than ¢, tany. Asn
increases, the wave speeds up, and, as n — oo, W/ —>¢,. We call this the "coax" mode because, as we

will see, for large n the plasma is at a high voltage with respect to the outer cylinder.

A second mode appears when n is such that f pz > f2, where
fp = 00,127 = 9000Vn . (34)

For f,,. =f =20 MHz, we find n, = n =4.8x10° cm™, This is a low density compared to n > 10°
cm™ for typical discharge operation. Hence, both modes coexist during typical operation. The wave
velocity for the second mode is always smaller than the helix velocity ¢, tany. The mode appears as a
resonance f—> oo at n = n,, and the wave slows down as n increascs. We call this the "helix” mode
because, for large n, the plasma and outer cylinder are at nearly the same voltage, and the helix is at a

high voltage with respect to them both.

At high densities, the axial wavenumbers for the two modes are very different. For example, at
n = 10" ¢cm™, B(coax) = 0.5 m™ and P(helix) = 5.5 m™. Since the source length L is chosen to be
roughly a quarter wavelength at the helix geometrical pitch, B,L = /2, the coax mode is not resonantly
excited [B(coax) < B,]. However, this mode does play a role in source operation at start-up; ie, when
n =0, the coax mode is near resonant excitation (see Fig. 3). However, during typical source operation
(n >10° cm™), only the helix mode is resonant, and it dominates the source operation. We concentrate

on the coax mode for n = 0 and the helix mode for n > 0 in the results that follow.

As an example, for L = 30 cm and BL = /2, we obtain § = 5.2 m™'. Then from Fig. 3, we find
the resonant frequencies for source operation: f =34 MHz at n =0, f =18 MHz at n = 10° cm™,
and f =21 MHz at n = 10" cm™. The resonant frequency in the experiments, with the plasma

prescnt, was, in fact, found to be approximately at 20 MHz.

Figure 4 shows the magnitude of the ficld components versus x for the coax mode at start-up
(n = 0) and the helix mode during source operation (7 = 10° cm™ and n = 10'! cm™). Positive ficlds
(+1 or +j) arc indicated as solid lincs through the computed values. We sce that E, is the dominant
clectric field component outside the plasma. Further, E; is ncarly independent of x within both the

plasma-helix and hclix-wall regions. This is true because p,a « 1 and p,c < 1; ie, the ficlds appear
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to be quasistatic. For the helix mode, we also find that
b 3
IE,dx-i-{E,dxr-O. (35)
a

Thus, the plasma surface at @ and the conducting wall surface at ¢ have roughly the same voltage.

Inside the plasma, E, is very small because E, (plasma) ~ E, (vacuum) €, le, and g,/e, < 1.

E, and E, for the helix mode are peaked at the helix, and both fall to zero as x —»c¢. E, within
the plasma is roughly constant, while E, is roughly linear with x. Within the plasma, E, > E, at low
density, but E, > E, near the plasma edge at high density; both fields are larger than E,. From the
ordering of these field components, we conclude that E, is critical for stochastic heating by the oscillat-

ing discharge sheath, while E, and E, play critical roles for ohmic discharge heating.

H, is roughly constant in both the plasma-helix and helix-wall regions. We observe that the net
axial magnetic flux is roughly zero:

a b c
JH,dx+IH,dx+jH,dx=0. ' (36)
a b

H, has the same general shape as E, [compare (12) and (15)), except that H, within the plasma does
not change sign or suffer a reduction in magnitude due to the discontinuity in permittivity, as did E,.

Finally, H, has exacty the same shape as E, [compare (13) and (14)].

Figure 5 shows E, just outside the helix (x = 5.1 cm) versus f . and Fig. 6 shows the surface
current K; versus f. The characteristic impedance Z, can be determined from these data. If there are

N turns in the coil, then

E; (¢ -b)
Z, NT : 37

[}

For cxample, at n = 10" cm™ and f = 20 MHz, we find E, = 2000 and K, = 15. For N = 48, we
obtain Z, = 1100 Q.

Figure 7 shows the ficlds just outside the helix, the axial wavenumber B. and the surface current
K, as the plasma thickness a varies from 3 to0 4.9 cm (helix position = 5 cm). We see a resonance in B

as a — b; thus, the presence of a gap between the plasma and the helix is essential to source operation.
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Figure 8 shows the ficlds, B and X, as the outer conducting wall position ¢ varies from 5.5 to 10
cm. There is little effect on the dispersion characteristics. The wall is useful for RF shielding but

plays little role in source operation over this range of variation in position.

Figure 9 shows the fields, B and K; versus the plasma density n, with the frequency f as a
parameter. The resonance and subsequent disappearance of the helix mode at f » = f isclearly seenin

the dispersion characteristics.

II. CYLINDRICAL QUASISTATIC MODEL

A. Fields and Dispersion Relation

In the previous section, for the helix mode at typical discharge densities, we observed from the

numerical results that:

(a) The transverse mode structure is quasistatic, ¥ < P, and the transverse dimensions are such that

D, € land p,c « 1,
(b) The net axial magnetic flux is approximately zero.

() The electric ficlds are small within the plasma, and the voltage between the plasma and the outer

wall is approximately zero.

In addition, (12) - (15) correctly yield the transverse fields and (20) - (23) the ! and ¢ field com-
ponents when r and 6 are substituted for x and y respectively. Under these conditions, we can deter-
mine the fields, the dispersion relation, and the characteristic impedance for the helix mode in a cylindr-

ical resonator containing a dissipative plasma (see Fig. 1) as follows:
From (a), H,, = H,, and /,. arc indcpendent of . Using (16), we obtain
Hy - H, =K, (39
and [rom (b), we find that
nb2H,, + n(c2-bHH, =0 . (40)

Solving (39) and (40), we obtain
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c2-p?

Hy = Hy = <=7Kq,
b2

H, =-—3Kpg.
c

Applying Faraday’s law to a circular path r < b,
2mrEg = —jwunr2H, ,

we obtain

. 2_p2
Ega =Eq, = -—‘Lm&—c—-i-b—Kgr .
2 c
Similarly, we obtain

JOW b_2K c2-r2

Eg = 0
2 27

We note from (13) and (14) that
H,- = ——EE 0 -
O

It follows also from (a) and (c) that E, has an inverse 7 in the vacuum regions:

-V

En = rinbla) ’

|4
Ere ‘_ rin(c/b) ’

where V is the helix voltage ampliwde. Integrating (12) then yiclds

g, - _PoVin(ia)
h = T

JjB In(bia) °

P Vin(cir)

Eee == T (eib)

We note from (12) and (15) that

-11-
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The normal component of the displacement vector is continuous across the plasma-vacuum inter-

face:
& En(r=a) =¢,E  (r=a) .

For subsequent use in calculating the power dissipated due to ohmic and stochastic heating, we include

collisional effects in the plasma dielectric, modifying (11) to

=¢, |1 ©p 51)
=% 1T Rev )

where v is the electron momentum transfer frequency. Using (51) and (46) and neglecting the displace-

ment current in the plasma [the "1" in (51)], we obtain

o(w-=jV) Vv
wpz aln(b/a) ’

E(r=a) =

Acuwally, E,, ~ I;(p,7), where I; is the modificd Bessel function. Hence E,, ~ r to first order in p,r.

We then obtain

o(@=jv) Vv __r
o amGa)a’ 62)

E, =

Similarly, E,; ~ Io(p,r) ~ 1+p2r¥4. Using this expansion along with (52) in (12) and integrating, we

obtain

_ 2w(®=jv) |4
e = ihats am@ia) 53)

Equations (41) - (50) and (52) - (53) give the quasistatic ficlds in terms of V and K.

The dispersion relation B(w) and the characteristic impedance Z, follow from the boundary condi-

tions (24) and (27). From (24), we obtain
E,p = —Eg, coty
atr = b. Using this, together with (43) and (48), we obtain

2_42
|4 =%{t—l—gc Czb Kgb coty .
[
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From (27), we obtain
Hg. = Hg, =K, = Kgtany . (55)

Using (46) and (47) in (50) and inserting the result into (55), we obtain

Ko

we, [ 1 1 | |
=V [m(c/b) ¥ Tnra) ]°°“"‘ G6)

Inserting (56) into (54) and using (10) for p,,z, we obtain the dispersion relation
B? = g%3cot?y + k2, (57

where

2 2
2_ c°=b 1 1
R YS [ln(c/b) * ln(b/a)]' (58)

We note that this dispersion relation is equivalent to replacing the plasma by a perfect conductor for the
TM part of the mode (E; = 0), but allowing H, (o penetrate the plasma (co/w, = a). For the usual
ordering y « 1, the first term in (57) dominhtes. The quantity g is a correction factor for § of order
unity with respect to a gcometrical helix wave; ie, f = gB,. As an example, fora =3 cm, b = 5 cm,
and ¢ =10 cm, we find g = 1.13. Comparing the result of (57), using the specific g from our exam-
ple, to the exact dispersion characteristics for the developed helix in Fig. 3, we find that the result for B

is close to, but somewhat smaller than, the result for the case n = 10'' cm™, as expected.

For a helix having N turns in length L, we have K¢l = NI, where ] is the helix current ampli-

tude. Using this in (56), we obtain the characteristic impedance

=[P Nb
Z,=¢ A (39
where
= S
&= 1 1 (60)

In@/b) « In(bia)

is a geometrical factor. For a,b and ¢ given previously, we find € =0.33. For our example, with

N = 48 tumns, we obtain Z, = 995 Q.
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The axial structure of the fields is determined by the boundary conditions at the source ends. For
a short circuit at z = 0 and an open circuit at z = L, we superimpose two positive and negative travel-

ing waves of equal amplitudes to obtain

E, = —&M i ©1)

@,
Eg, = ey, 62)
Exa = _ezﬂ(m_-z.&) , (63)

@,

where
Vm r .

= —— T 64
& aln(b/a) a sinfz , 4

eg = —jV, gk-;- sin Bz , (65)

2 Vn

e = Ba mcos Bz, (66)

and V,, is the helix voltage amplitude at the open circuit z = L. In writing (65), we have substituted

(56) into (43) and used the first term in (57) for B2.

The resonance condition is given by
Bw)L = n/2 . ©67)

Given L and using (57), we obtain the resonant frequency @.

B. Ohmic and Stochastic Powcr

The r componcnt of the RF current in the plasma is given by J, = Jwe E,,, or, using (51) and

(61),
J, = jue,e, . (68)

The ohmic power per unit volume due to the E, field is p, = +Re (J/E,), or, using (61) and (68),
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1 w?
Py = 35,? le, 1%v . (69)

(4
Similarly, we obtain
2
=g, —2 (70)
8=E& v+j(z)e° s |
2
_1 W,
Pe =38 53 legl®v, n
J; = jweoe: ’ (72)
. 0
P =38 le 1V, (73)
W,

Integrating (69), (71), and (73) over the plasma volume, we obtain the ohmic power dissipated in

the plasma due to each field component:

2
1 (02 Vm 7ta2L
= =g V—— 74
Py 28°Vu)} [a ln(b/a)] 4 74)
1 @ a? 2 ma’l
Py = =g,V =5 — (kgV, . 75
;] 2 (l): 0)2(0)2+V2) 2 ( 8 ) 4 ( )
2 2
1 o |4L Vim na’l
= =g, Y— |— . 7
P, 2€°vmpz [na] [a ln(b/a)} 2 (76)

We note that P, and P, are inversely proportional to n, while Py is dirccdy proportional to n. For typ-
ical helical resonator parameicrs, P4 is comparable to the other componcnts only at the highest densities

(n 210" cm™3) and lowest pressures (v < ). We also note that

P, 3212
P—r=??>l. an

Therefore, the dominant clectric field component for ohmic heating is £, .

The stochastic heating power per unit length is given byS™”’



2
s mu
Suoe = Kioe [——x° ] ==, 12ma 78)
D e‘n
where
jwe, V,,
= sin Bz 9

Io ==7 In(b/a)

is obtained from (68), so is the self-consistent ion sheath thickness, Ap = (g, T,/en,)"? and n, are the
electron Debye length and the density, respectively, at the plasma-sheath edge, and u, = (8¢T,/mm)"?

is the mean electron speed. The sheath thickness is found from the ion flux equation

12 =
enup = Kie, [%J =, (80)
0o

where ug = (eT./M)V? is the Bohm (ion sound) velocity and V is the DC self-bias voltage across the
sheath, given by

V = Kda V,f ) (81)
where V,, is the RF voltage amplitude across the sheath. V,; is related 1o the maximum RF helix vol-
tage amplitude by continuity of J,:

KyVg = Vn
so  aln(bla)

sinfz . 82)
The dimensionless K factors for a sclf-consistent collisionless sheath arc®’ K,,, = 0.34, K; = 0.82,
K,f = 1.2, and K. = 0.83.
Solving (80) - (82) for V,, and so, with n, taken (o be constant in z, we obtain
Vs =V, sinpz , (83)

where

Vitm =

2K %2 K.V 4
€, [ dcVm ] (8 4)

Kie*n 2T, {Kyaln(b/a)

is the maximum RF voliage amplitude across the sheath, and
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23 172
[i] = Queg [Ki‘i’-‘-] : @®5)

Inserting (85) and (86) into (79) to eliminate so/Ap and V,/n?2, we find Spoe o< Vip, cos*Bz. Integrat-

ing this over z, we obtain the stochastic power

0%
Psye = Cypor eom U, Vrjm 2mal , 86)
where
3 K,,,,,,.K,,% -
Csioe = -s-m =0.20. (X))

We also note from (82) and (83) that
S0 = Som Sin* Bz , (88)
where

Vrf m

m

Som = 2 =Kyyaln 2 ' (89)

We compare the ohmic power P,,, = P, to the stochastic power by letting n = ng(n/n,) in (76)
and using (84) in (76) to eliminate V,2/n,:

2

€,m n, 2
Potm = Corm ==V (VyynT.)'*—- =5 2mal. , 90)
where
g2 K2 '
Cotm = ?%T{E' =033, ©1)
de i

From (86) and (91), we obtain

©2)

We note the incqualitics (7,/V,n)"2 « 1 and L%a? > 1, which tend to cancel in (92). At low gas

pressures, va/u, <<1, and stochaslic hcating dominates, while the converse holds at high pressures.
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IV. POWER ABSORPTION AND COUPLING

The unloaded helical resonator is a naturally high-Q structure. If the resonator is matched
through a coupling to an external power source the fields build up until the internal dissipation is equal
to the supplied power. The coupling of energy to a plasma is relatively efficient both at low neutral
pressure through the process of stochastic heating in the sheath, and at high pressure through ohmic
heating in the bulk (glow) plasma. Because the resulting unloaded Q is relatively low, almost all of the
power is deposited in the plasma when matched to the external source. Furthermore, the matching con-

dition is easily achieved for the loaded Q.

For a given coupling that matches the Q with the plasma present, the resonator without the
plasma is stronély overcoupled. Furthermore, as seen in Sec. II, the resonant frequency of the device
shifts significantly with the plasma present. Thus, during startup, most of the power is reflected.
Experimentally, this is not found to be a problem, as the normal operating power levels generate

sufficient fields to create a plasma which builds up to the resonant, matched condition.

In this section, we treat separately both the low pressure case, in which stochastic heating dom-
inates, and the higher pressure case where ohmic heating dominates. Actually, the two energy transfer
mcchanisms combine to determine the overall heating rate in a discharge. In its relation to the external
driving field E,, the stochastic sheath heating is similar to the hcating in a capacitive RF discharge.
The ohmic heating in the helical resonator is much stronger than in a capacitive discharge, because it is
driven by a different and larger clectric field component E,, and thercfore it becomes important at

lower pressures.

The electron temperature and plasma density profile are determined by the balance between ion
generation and loss to the plasma container wall. For low pressures, the electron temperature is uni-
form and the volume ionization rate in the bulk plasma is v;;n, where v;; = K;,p is the electron-neutral
ionization frequency, K, is the rate constant and is a function of T, alone, p is the ncutral pressure,
and n is the average bulk plasma density. Ions are lost radially to the wall, by frce flow at the lowest
pressures, A; > a, and by ambipolar diffusion at higher pressurcs, A; < a, where A; is the ion-ncutral

mean free path. For A; a conswant, indcpendent of ion cnergy, and for an ion thermal velocity
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ur; < up;, the ion drift velocity, the diffusion coefficient is not a constant but is inversely proportional
to up;. Godyak and Maximov® have determined the ion transport for a cylindrical plasma column under

thesc assumptions, obtaining the approximate results

2.2 Ug
. 22up 93
Vil = an)® ©3)

and

n 08

T ——— 4
no (@d+a/d)?’ ©4)

where n is the on-axis plasma density. Equation (93) determines T, given the pressure p. The density
profile n(r) is found to be relatively flat near the axis and to drop sharply near the plasma-sheath edge.

Thus we take ngy = n, the average bulk density. Hence, (94) determines the ratio n./n.

Equation (93) is easily solved numerically for T,, which we illustratc for argon in Fig. 10. How-
ever, here we take a simpler analytic approach in which we assume that the electron temperature is
known, and use electron power balance to oinain the plasma density. This procedure gives reasonable
results, because the exponential rate of ionization with electron temperature tends to freeze the tempera-
ture in a narrow range, within which the electron power balance is quite insensitive. For the case in
which the stochastic sheath heating is dominant, the electron power balance depends only on the edge
density, and thercfore we do not require the solution (94) for the density ratio. In the ohmic heating
case, both the average density and the cdge density are required, so that (94) is required to obtain an

complete solution.

A. Stochastic Heating

As in a capacitlive RF discharge, the density at the plasma-sheath edge (beginning of the ion
sheath) and the ion sheath thickness are found by solving the clectron encrgy balance. The electron

power leaving the discharge is
P, = engug €, 2mal 95)

which when equated to the stochastic power (86) yiclds ng. Using n; in (84) and (89), we then can
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evaluate 5o, and V,, respectively. For example, assuming a rcasonable valuc of T, = 4 eV, we obtain

ng = 1.00x 10’ Vitm cm™3
V= 118V, 32 volts 96)

Som =0.156 V.4 cm .

Consider the device dimensions used in the analysis of the propagation and fields of our previous
sections. Using the value of a typical Vs, that might exist, V,;,, = 700 V, we obtain from (96)
ny, = 7.0x10° ecm™3, V,, = 1610 V, and sq, = 0.80 cm. The total power absorbed by the electrons is
then obtained from (95) to be P, = 8.4 W. The power P; delivered to the ions is generated from the
same flux, but multiplied by (V), = K {Vir):, rather than €. Averaging (83) over z yields

V), = %ch Vitm- The total power absorbed by the plasma is then P, = P, + P; =51 W,

From the field solutions we can obtain the energy stored in the helical resonator and therefore the
resonator Q. The dominant field is the vacuum radial field, both between the helix and the plasma and

between the helix and the outer conducting wail. The time-averaged stored energy is
L b ¢
1 2 2
Wr =2Wg = ¢, 2n£dz [jrdr |E,, | +J;rdrlE,cl ] .

Using (46) and (47) with V =V, sinf3z gives

21 L |L
Wr = eV [ln(b/a) * ln(c/b)] 2 oD

Using the value of V,, = 1610 V for our example in (97), we obtin W =3.7x107% J. For a resonance

frequency of f, =20 MHz and P,, = 51 W, we then have the unloaded @,

_ 27tfo lVT

=
P, 90 . (98)

U

At match the loaded resonator Q, including the cxternal loading, is half this value, Q; = 45. The half
power bandwidth is f,/Q, = 0.44 MHz. This valuc is consistent with the cxperimental obscrvation that
at a power level of 50 watts, a source frequency shift of 0.5 MHz produced a significant change in

plasma parameters'™. We notc that the @ is sufficiently high 1o have a clcar rcsonance, but the system



is not overly sensitive to small frequency shifts in the resonance.

The pressure regime for which stochastic heating dominates is found using (92). For n,/n = 0.4,
which is the low pressure limit of (94), we find for our example with argon gas [A; = (300p)™"] that

v =4x10°p and, hence, P,,,, > P, for p < 2.3 mTorr.

B. Ohmic Heating

Calculation of the energy deposited by ohmic heating is similar to that for stochastic heating,
once the average density n is known. However, there is an additional complication in the energy bal-
ance in that the energy loss depends on the edge density a,, thus requiring the use of (94) to relate n to
ns. In fact, this problem is also hidden in the previous solution in determining the resonant frequency.

This latter effect is rather small, and we have neglected it.

For the electron energy balance, we equate (90) to (95), which yields an expression for n as a

function of V,7,, and p:
n=29%x10"p V}2 cm™ .
Inserting n = ng in (94) yields ,. In the high pressure limit a/A; > 1 and for argon, we obtain
n, = 78x10°p12V, 12 cm=>
which is valid for p > 4 mTorr. Using this in (84) yiclds
Vm =330p"V,}2 volis,
and using (89), we obtain
Som = 5.6x1072p714Y 12 ¢ |
For example, choosing p =0.1 Torr and V,, =100 V, we obtain n =2.9x10"" cm=,

ng =2.5x%10' cm™, v,, = 1860 V, and sq,, = 0.10 cm. The electron power from (95) is P, =30 W,

the ion power is P; = (3K Vyn/Ec) P, or P; =22 W, and hence P,y = 52 W.
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C. Coupling

Power can be very simply coupled from an external circuit to the resonator, and the condition for
a match (critical coupling) can be obtained approximately from a perturbation analysis. Consider the
RF generator and its transmission line to have characteristic impedances Zg, with one side of the
transmission line connected to the helix at the tap position z; and the other side connected to the outer
shield, as shown schematically in Fig. 1. Since the helix characteristic impedance Z, given in (59) is
typically large compared to Zg, we expect a match to occur with the tap made near the shorted end of

the helical resonator, where the voltage is small and the current is large.

From perturbation theory, the conductance seen at the position of the tap is

Gy = 22 | | (99)
TR

where P, is the total RF power dissipated and

Vr =V, sinfz (100)
is the helix voltage at the tap. For a match we require Gy = Z'. Substituting (100) in (99) and
expanding for Bzr <« 1, we obtain

ViB%f = 2P, Z . (101)
For our stochastic heating example with B = m/(2L) = 0.052 c¢m™, Py =51 W,V, =1610 V and

choosing Zs = 50 Q, we obtain zr = 0.85 cm, corresponding to a tap between one and two turns, which

was, in fact the approximate position found experimentally for efficicnt power transfer!3,
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Fig. 1.
Fig.

Fig.
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Fig. 6.

Fig.

Fig.

Fig.

Fig.

FIGURE CAPTIONS
Schematic of a helical resonator plasma source.
Developed sheath model of helical resonator source.

Axial wavenumber B versus frequency f for the coax and helix modes, with density # as a
parameter. (O) helix mode, n = 10° cm™; (@) helix mode, n = 10'! cm™; (+) coax mode,

n = 0; (A)coax mode, n = 10° cm™; () coax mode, n = 10!! cm™3.

Magnitude of the field components versus position x. The solid lines denote a phase of +1
for E,, E, and H, and a phase of +; for E,, H, and H,. (O) helix mode, » = 10° cm™; @)
helix mode, n = 10! cm™3; (+) coax mode, n = 0.

Magnitude of E, just outside the helix (x = 5.1 cm) versus frequency f. The phase of E, is
+j. (O) helix mode, n = 10° cm™3; @) helix mode, n = 10" cm™; (+) coax mode, n = 0;

(A) coax mode, n = 10° cm™3; (X) coax mode, n = 10! cm™2,

Magnitude of surface current K; versus frequency f. The phase of K is +j. (O) helix mode,
n =10° cm™; (@) helix mode, n = 10" ¢cm™; (+) coax mode, n = 0; (A) coax mode,
n =10’ cm™; (x) coax mode, n = 10" cm™3.

Magnitude of the fields just outside the helix (x = 5.1 cm), the axial wavenumber B, and the
surface current K; versus the plasma thickness a. (O) helix mode, n = 10° cm™; (@) helix

mode, n = 10" cm™; (+) coax mode, n = 0.

Magnitde of the fields just outside the helix (x = 5.1 cm), the axial wavenumber B, and the
surface current X, versus the outer conducting wall position ¢. (O) helix mode, n = 10°

em™3; @) helix mode, n = 10" cm™¥;, (+) coax mode, n = 0.

Magnitude of the fields just outside the helix (x = 5.1 cm), the axial wavenumber B, and the
surface current K; versus the density n, for the helix mode with the frequency f as a parame-

ter. (O)f =5MHz; @) f =10 MHz; (+) f =20 MHz; (X) f = 40 MHz.

10.  Electron temperature T, versus pressure p for an argon plasma with plasma radius a = 3 cm.
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