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THE IDENTIFICATION OF GENERAL PSEUDO-RECIPROCAL

VECTOR FIELDS, f

Robert Lum and Leon O. Chua. ff

Abstract

A reciprocal vector field is a vector field for which the linearisation of the vector field

is reciprocaL A vector field is called pseudo-reciprocal if it can be written as the

composition of a matrix with a reciprocal vector field. The main types of pseudo-

reciprocal vector fields studied in this paper are those where the matrix is invertible.

Such vector fields are especially important in the field of electrical engineering due to

their representation of non-linear circuits.

In this paper, the identification of such vector fields is completed for the cases

when the matrix is either invertible, invertible symmetric, symmetric positive definite,

diagonal positive definite or diagonal invertible. In the process of such identification, a

decomposition ofthe original vector field as the composition ofa matrix and a reciprocal

vector field will ensue.

From a nonlinear circuit-theorectical point of view, this paper provides a definitive

answer to the following outstanding question:

Given a state equation x = f(x), does there exist a nonlinear circuit made up of

only 2-terminal, and/or reciprocal n-terminal resistors, capacitors and inductors, which

realises this equation?

While pseudo-reciprocal vector fields could exhibit complicated dynamics, including

chaos, a pseudo-gradient vector field behaves just like gradient vector fields and is in

fact the basic building block of electronic neural networks.

t This workis supported in part by the Office of NavalResearch under Grant N00014-89-J-1402.
ft The authors are with the Department of Electrical Engineering and Computer Sciences, Uni

versity of California, Berkeley, CA 94720, USA.



§0. Introduction.

Pseudo-reciprocal vector fields are of particular importance in nonlinear circuit theory because the

state equation of any nonlinear circuit made up of only 2-terminal, and/or reciprocal n-terminal

resistors, inductors,and capacitors always gives rise to a pseudo-reciprocal vectorfield. In particular,

if only 2-terminalcapacitors or only 2-terminal inductors are present in the circuit, in addition to

reciprocalresistors, then the Jacobian matrix of the associated vector field alwaysassumes the form

of a product of twosymmetric matrices. This special case corresponds to a pseudo-gradient vector

field[l].

The first section of this paper willpresent the definitionofa reciprocal matrix, reciprocal vector

field and pseudo-reciprocal vector field. It will be shown that gradient vector fields are a subset of

the reciprocal vector fields. From an experimental viewpoint, the more desirable vector fields to

implement are those that are already in the form of a reciprocal vector field or have a coordinate

change such that under the new coordinate system, the vector field assumes the form of a reciprocal

vector field. Section 2 will determine if such a coordinate change exists. If such a coordinate change

is not available, then it would be desirable that there exists a matrix M(x) such that the vector field

may be written as /(x) = M(x)g(x) where the vector field g(x) is a reciprocal vector field. Sections 3

through to 7 discuss algorithms to determine when there exist matrices M(x) with the matrix either

invertible, symmetric invertible, symmetric positive definite, diagonal positive definite or diagonal

invertible. Section 8 is concerned with the analogous identification problem when the decomposition

desires that g(x) be a gradient vector field. Section 9 is concerned with the identification of pseudo-

reciprocal piecewise-linear vector fields. Because of their structure, solutions for constant matrices

M can be more explicitly stated. Similarly, Section 10 is concerned with the identification of pseudo-

gradient piecewise-linear vector fields. This introduction will conclude with some examples of the

applications of the algorithms. Insight into whether a vector field is pseudo-reciprocal will determine

if a circuit realisation of the vector field using only reciprocal circuit elements is possible.

Example 0.1. Let the vector field be given by

~(G + Gb)/d G/d 0 "I \VX
G/C2 -G/C2 1/C2 V2

0 -1/X 0 J [l3
fil f-(<? +<?.)/Ci G/d 0 I fVi
V2 = < G/C2 -G/C2 \JC2 V2
h\ L ° ~l/L ° J LJ3

'-((? +G»)/d G/d 0 1 [Vi
G/d -G/d l/d V2

0 -1/X 0 \[h.
By section 3, a decomposition for constant matrix M and vector field g(x) is given by

\/d 0 0
M= 0 \/d 0

0 0 1/L

(Ga-Gb)/d
0

0

(Gb-Ga)/d
0

0

Vi<-1

-1 < Vi < 1

1< Vi.



and

Vi<-1

-1 < Vi < 1

KVi.

' '-(G + Gb) G 0' "Vi" 1'Ga-Gb
G -G 1 v2 + °
0 -10 .*. L o

"Vil Z-(G + Ga) G 0' 'Vi
v2 = < G -G 1 v2 »

*1 0 -1 0, h
:_(G+G6) G o' vr Gb —Ga

G -G 1 v2 + 0

k
0 -rl 0 Js. 0

An electronic circuit to implement /(x) is given in figure 1. In fact, this is the vector field of the

"double scroll" as described in [4].

Example 0.2. Let the vector field be given by

'Vi
V2

h

-Gb/d
0

L -i/*
-G«/d

0

L -i/L
-G6/d

0

-1/L

0

-G/C2
-1/L

0

-G/C2
-1/L

0

-G/d
-1/L

1/Ci
1/C2
-R/L
1/Ci
1/Cj
-R/L
1/Ci
1/C2
-R/L

Vi
V2

LibJ
Vi
v2

is
Vi
v2
h

{Ga-Gb)/d
0

0

\Gb-Ga)/d
0

0

V!<-1

-1 < Vi < 1

KVi.

By section 5, a decomposition for constant matrix M and vector field y(x) is given by

and

Vi
V2

h

-G»
0

-1

-G0
0

-1

-Gb
0

-1

M =

0

-G

-1

0

-G

-I

0

-G

-1

1/Ci
0

0

0

i/c3
0

1 " 'vi
1 v2

-Rm .h.
1 " 'vi
1 v2

-R h
1 vi
1 v2

-R h

0

0

1/Lj

Ga —Gb
0

0

Gb-Gc
0

0

Vi<-1

-1 < Vi < 1

KVi.

An electroniccircuit to implement /(x) is givenin figure 2 usingonly passivecapacitorand inductors.

The circuit equations which give rise to /(x) are given in [4].

Example 0.3. Let the vector field be given by (a ^ /?),

*i

x2

*3

1 1 1
a

1 1 1 1

R3C2 R2C7 R3C2 •RsCa

0
1 1

1 -^7
R1C1 .KaG'i R2C1

1 1 l 1

•RaCa A3C3 iZsCa J*aCa

0
1 1

1 1

KlC'i tt?C\, TSa^T a

1 1 1 1

R2C2 R2C2 R&C? H3C3

0 1 1

X! 7(a-/3)
*2 + 0 , *3<-

«3.

*l"

0

X2 » l*3| < 1
r3.

*l" 7(0 - a)
*2 + 0 , 7 < *3-

X3 0



By section 4, a decomposition for a constant symmetric invertible matrix M is given by

M =

1 0 OJ

and

x\

x2

Lx3j

", *C R i** C R.C,
"35*77 sfcf"+ EfcT + H7C7T+ JUC\C» + Riddle*

1 RtCi Ro Co R-iCi

~r7CZ Sfef'+ Kffe+ rTCJ + Jlarffls + ilj/ddCa
l Jjaga _fo _ fo_ _ -fcfo_

. AsCs i^C| "* R$Ca ™* AsCiCs ~~ Ai-Rs<7iCs

° ^ c
.TEST ~3S§<?f" —Rj&a~ XaCiCa ~ Rxr\c\cz

1

ilsCa

-^% _ T^T _ n&c, - r,k>c]c,

1

KsTT

~Sfcf"" Sf^T"" «sCiCa —iliiisclcs

l

[/lac/a

•Ha<-'3
0 0

K*gp & £a J&S2-
iRsCii

Notice that the matrix M is not positive definite since the determinant of the minor

xi
x2

.X3.

+

0

0

.7(<*-0).

"*l"
X2 »

.X3.

"*l"
x2

.*3.

+

0

0

.7(0-*).

, x3 < -7

l*s| < 7

7<x3.

is zero. Applying the algorithm of section 6 for constant matrix M and vector field g(x) one has

that
JTJ2(X) = xu/(J22Ci) + x22/(R2C2)

xna, x3 < -7

HUX) = i xn0, |x3| < 7
{xna, x3 < -1

«uA l*s|<7
*u<*» 7 < *3.

ff&X) = x22/(R3d) - X33/(R3d).
If J3"J2(X) = -ff}3(X) = fl"j3(X) = 0 then xn = x22 = X33 = 0. Thus, X is the 0 matrix and is not

invertible, which implies that a decomposition with /(x) = Mg(x) where M is diagonal and g(x) is

reciprocal of order (1,2) does not exist. Similarly,

J*2(X) = xn/{R2d) - x22/(R2d)
{JBna, x3 < -7

*llA l«8|<7
xnoc, 7 < x3.

fff3(X) = x22/(R3d) + x33/(R3d)-



If tf?2(X) = JT?3(X) = fi?3(X) = 0 then xn = xw = X33 = 0.Thus, X is the 0 matrix and is not
invertible, which implies that a decomposition with /(x) = Mg(x) where M is diagonal and g(x) is

reciprocalof order (2,1) does not exist. Similarly,

Sf2(X) = xu/{R2d) - x22/(R2C2)
{xna, x3< -7

*nA W<7
*11<*» 7 < *3.

JJ|3(X) = X22/{R3C2) - X33/(H3C3).

If H?2(X) as Hf3(X) = H|3(X) = 0 then xu = *22 = X33 = 0. Thus, X is the 0 matrix and is

not invertible, which implies that a decomposition with /(x) = Mg(x) where M is diagonal and

g(x) is reciprocal of order (3,0) does not exist. Our algorithm showsthat it is impossible to make

M diagonal. Hence, a circuit realisation using only linear 2-terminal capacitors and/or 2-terminal

inductors, and reciprocal resistors does not exist. Indeed, the circuit realisation in figure 3 requires

a controlled source, which is a non-reciprocal resistor. The paper [2] examines the circuit in greater

detail

Example 0.4. Let the vector field be given by

'-mo/Ci mo/Ci -1/Ci 0
mo/C2 —mo/C2 0 —1/C2

- rvii "(mi--mo)/Cil
v2

h
+

0

0

« Li2J 0

-1/Cx 0 1 rvii
0 -1/C2 v2

R/Li 0 h
>

0 0 . Li2J
• rni *(mo —mi)/Ci"

v2

h
+

0

0

. Li2J G «

v2

h
L/2J

1/Li 0
0 1/L2

r-(2mo-mi)/Ci
(2fTlQ —TTl\)/C2

1/Li
0

—mo/Ci nio/Ci
mo/C2 —mo/02
1/Li 0

0 1/L2

R/Li 0
0 0

(2m0 - mi)/d
—(2mo —mi)/C2

0

1/L2
-1/Gi

0

R/Lx
0

0

-1/C2
0

0

V2 - Vx < -1

|V2-Vi|<l

KVt-Vt.

By section 6, a decomposition for constant matrix M and vector field g(x) is given by

and

v2

h
= <

—fUo

TTlQ

1

L 0

M =

mo

—17lo

0

1

n/ci
0

0

L 0

0

1/C2
0

0

0

0

1/Li
0

-1

0

R

0 0 J L/2J
—(2mo —mi) (2mo —mi)
(2mo —mi) —(2mo —mi)

1 0

0 1

—mo mo

mo —mo

1 0

L 0 1

-1

0

R

0

on rv,i

-1

0

v2

h

01 r^ii
-1

0

V2

h
0 J LI2J

-1

0

R

0

0 1

0

0

1/L2J

mi — mo

0

0

0

0 i rm
-1

0

0 J

mo — mi

0

0

0

V2
h

V2 - Vi < -1

|V2-Vi|<l

1< V2 - Vi.



A realisation using only uncoupled passive 2-terminal elements is given in figure 4. The derivation

of f(x) is given in [11].

Example 0.5. Let the vector field be the Lorenz system,

/

Observe that

M I* «(v-x)
\y = -xz + Rx - y .
LZJ L xy —Bz

Tx"] I" -a <r 0
D/ y = -* + # -1 -x .

L*J L V * -B.
By the algorithm of theorem 2.5, there does not exist a coordinate change such that the vector field

/(x) is a reciprocal vector field. In applying the algorithm of section 6 for a constant matrix M,

one has
BitC*) = xn<T + x22{R - z)

H\3(X) = X33y

J723(X) = —x22x —X33X.

If H\2(X) = 2r}3(X) = -ff23(X) = 0 then xu = x22 = X33 = 0. Thus, X is the 0 matrix and is not

invertible, which implies that a decomposition with /(x) = Mg(x) where M is diagonal and g(x) is

reciprocal of order (1,2) does not exist. Similarly,

Hl2(X) = xn<T - x22(R - z)

Sl3(X) = x33y

JTj3(X) = -x22x + X33*.

If J5TJ2(X) = Hi3(X) = J5TJ3(X) = 0 then xn = x22 = X33 = 0. Thus, X is the 0 matrix andis not

invertible, which implies that a decomposition with /(x) = Mj(x) where M is diagonal and g(x) is

reciprocal of order (2,1) does not exist. Similarly,

Sf2(X) = xn<r - x22(R - z)

Hf3(X) - -xssy

F|3(X) = -x22x - X33*.

If J3"?2(X) = Hf3(X) = FJ3(X) = 0 then xn = x22 = X33 = 0. Thus, X is the 0 matrix and is not

invertible, which implies that a decomposition with /(x) = Mg(x) where M is diagonal and g(x)

is reciprocal of order (3,0) does not exist. Thus, the vector field may not be implemented as an

electronic circuit composed of passive and uncoupled 2-terminal elements. Further information on

the Lorenz system is given in [6].



§1. Definitions.

This section will present the definition ofa reciprocal vector field and a pseudo-reciprocal vector
field. Atheorem will bepresented detailing a method by which reciprocal vector fields oforder (p, q)
may be identified. This theorem forms the crux ofthe identification algorithms. The definition ofa
gradient vector field leads to theorem 1.6, which implies that gradient vector fields are a subset of
theset ofreciprocal vector fields. Finally, thesetofpseudo-gradient vector fields isdefined.

Definition 1.1. A matrix is reciprocal of order (p,q) if and only if it has the form

A C

-C' D

with A and D symmetric matrices of dimensions p and q respectively.

Remark; The term reciprocal is motivated by electrical circuit theory. Under proper reordering of

the port numbers, a reciprocal n-port resistor has a hybrid matrix which satisfies the properties of

Definition 1.1 fll.

Definition 1.2. A vector field /(x) is called a reciprocal vector field of order (p,q) if and only if

D/(x) is a reciprocal matrix function of order (p,g).

Definition 1.3. A vector field /(x) is called a pseudo-reciprocal vector field of order (p,q) if and

only if there exists a nonzero matrix M(x) such that f(x) = M(x)g(x) where g(x) is a reciprocal

vector field of order (p, q).

Remark: An RLC circuit is reciprocal (respectively, pseudo-reciprocal) if and only if there exists

some reordering of the capacitors and/or inductors such that the resulting state equations has a

reciprocal (respectively, pseudo-reciprocal) vector field.

Theorem 1.4. Let

be an n x n matrix and

X(x) =

xi

xn(x) ... xi„(x)

,x„i(x) ... xnn(x)m

fi(xi,*..,xn)

-XnJ lfn(xi,...1Xn)m

be a C1 vector valued function. Define the functions

G?.(X(x))(x) =£ (**(x)£~/*(x) +/*(x)^-x,*(x) -xife(x)^-/fc(x) -A(*)^-*i*(x))



for 1 < i < j < p,

Gf,.(X(x))(x) =f; (*«(*)^/*tt +/*w^-*«*w+»i*WK7AW+AWs7*i*w)
for 1 < »< p,p+1 < i < n,

G?,(X(x))(x) =£ (x«(x)^/A(x) +A(x)lxtt(x) -x,*(x)Aa(x) - /*(x)^*;*(x))
for p +1 < i < j < n. Then X(x)/(x) is a reciprocal vector field oforder (p, n —p) ifand only if

G&<X(x))(*) = 0

fcf 1 < t < j < n.

Proof. If X(x)/(x) is a reciprocal vector field then its Jacobian is a reciprocal matrix. Note that

"*n(x)/i(x) +... + xi„(x)/„(x)
X(x)/(x) = :

.x„i(x)/i(x) +...+ xnn(x)/„(x) m

has a Jacobian matrix whose tj-th entry is given by

D(X(x)/(x))i7 (x) =it,xik(x)JLMx) +A(x)^-xik(x).
fc=i

$x/KK ' ' JKK 'dxj

Applying the conditions for a matrix to be reciprocal (Def. 1.1) to the entries of the aboveJacobian

matrix, we obtain the above 3 identities <?J^(X)(x) = 0. I

Definition 1.5. A vector field /(x) is called a gradient vector field if and only if there exists a

function F(x) such that /(x) = VF(x).

Theorem 1.6. A vector field /(x) : 8n -» 8" is a gradient vector field if and onlyif D/(x) is a

symmetric matrix.

Proof. Clearly, a gradient vector field has a Jacobian which is symmetric. Conversely, since the

domain $n is simply connected, if the Jacobian is symmetric then it is well known that the function

defined by line integrals from a fixed point gives a function F(x) with /(x) = VF(x). I

Definition 1.7. A vector field /(x) is called a pseudo-gradient vector field if and only if there exists

a nonzero matrix M(x) such that /(x) = M(x)g(x) where g(x) is a gradient vector field.



§2. The identification of reciprocal vector fields under coordinate changes.

Given a vector field /(x), which is not itselfa reciprocal vector field, there remains the possibility

that under a permutation ofcoordinates, the vectorfield in the new coordinate system is a reciprocal

vector field. This section presents an algorithm that willdetermine if a vector field has a permutation

of coordinates to that of a reciprocal vector field. The algorithm is presented as part of a theorem,

whose proof therefore validates the algorithm.

Definition 2.1. Let et- denote the tth-coordinate vector.

Definition 2.2. A coordinate permutation matrix is a matrix of the form

E=[e,-X ... e<J

where (ii,..., t„) is a permutation of the integers (1,..., n).

The definition of a coordinate permutation matrix corresponds to the permutation of the coordinate

axes where the jth-axis is replaced by the tjth-axis.

Definition 2.3. The matrix A is similar to the matrix B via a coordinate permutation matrix E

ifE'AE = B.

Lemma 2.4. The vector field£(x) has a coordinate change via the coordinate permutation matrix

E,

x = EX

such that tj(X) = £(EX) is a reciprocal vector field if and only if E«D£(EX)E = Dt7(X).

Proof. Immediate. |

Theorem 2.5. There exists a coordinate permutation matrix E such that E'AE is reciprocal if
andonlyif the following algorithm terminates successfully,

Step 1: If there exists 2 < i < n suchthat au £ ±an then there is no solution to the similarity

problem and the algorithm terminates unsuccessfully, else let (t'i,...,sp) be those indexes (in any

order) for which au = an and (ip+i,..., »„) be those indexes (inany order) for which au = -an.
Step 2: Let

Esfe,-, ... eip e,p+1 ... e,-J

B = E'AE.

Step 3: If B is not reciprocal then there is no solution to the similarity problem and the

algorithm terminates unsuccessfully, else A is similar to B via the coordinate permutation matrix
E, and the algorithm terminates successfully.



Proof. See appendix. |

Remark: The necessitv of theorem 2.5 is quite remarkable because it asserts that the reciprocity

property of a matrix M can be determined by examining first the entries in the first row and the

first column, and then relabelling the rows and columns by grouping all entries eith au = an. If the

associated electricaln-port is reciprocal then the reorderedhybridmatrix [1] must necessarily satisfy

Definition 1.1. This theorem therefore reduces an otherwise cumbersome combinatorial problem.(if

n is a large number) to a very simple algorithm which can be carried out bv inspection. Note that

one does not have to carry out any matrix multiplications because the reordered matrix is precisely

E'AE.

By the following lemma 2.6, the algorithm will determine A to be similar to one ofp!(n—p)! reciprocal

matrices depending on the permutation (t*i,..., tp), (*p+i»...»*n) of (1,..., p), (p+1,..., n) chosen.

Furthermore, when 1 < p < n, the matrix A is similar to a further p\(n —p)! reciprocal matrices

corresponding to permutations (ji,..., jn-p)» (jn-j>+i» •••»in) of (p+1,..., n), (1,..., p). The total

number of reciprocal matrices to which A is similar via coordinate permutation change matrices is

n! for n = p, and 2p!(n—p)! for 1 < p < n. In particular, when 2 < n, if A is similar to a reciprocal

matrix then there are at least 2 such matrices to which A is similar.

Lemma 2.6. Let A be similar to the reciprocal matrix 3 via a coordinate permutation matrix E.

If B is of order (p,n —p) and(ii,..., «p), (tp+i,..., »«) is a permutation of (1,..., p),(p+ 1,..., n)

then A is similar to the reciprocal matrix

r At i

B[eix ... eip eip+l ... e,-J

via a coordinate permutationmatrix, furthermore, ifl<p<n and (ji,..., in-pMJn-p+i» •••»jn)

is a permutation of (p +1,..., n), (1,..., p) then A is similar to the reciprocal matrix

~}\

B[eh e3»-r ei»-H-i •• eyj

L e
Jn

via a coordinate permutation matrix.



Proof. Coordinate permutation matrices are given by

F = E[ej, ... e,, e^M ... eij

and

GsEfe* ... eiw_F ej—H-i ... e,J

respectively.

Example 2.7. Let the matrix be given by

A =

14 2

-4 6 -5

2 5 3

Here, p = 2,t'i = 1,i2 = ip = 3, and i3 = ip+i = 2. Then a coordinate permutation matrix is given

by

"l 0 0"
E= 0 0 1

0 1 0

to which A is similar to the reciprocal matrix

B =

12 4

2 3 5

-4 -5 6

10



§3. Pseudo-reciprocal vector fields /(x) as M(x)g(x) where M(x) is invertible.

Given a vector field /(x), this section will determine if there exists an invertible matrix M(x) and

reciprocal vector field g(x) such that /(x) = M(x)g(x). If the vector field /(x) is associated with

an electrical circuit and

M(x)=fMp(xp) 0 1

= Mp(xp)0 M„_p(x«-P)

is a block diagonal matrix where Mp(xp) is ap x p matrixdepending onlyon xp = (a?i,x2i..., ip)

and Mn_p(xn_p) is an (n —p) x (n —p) matrix depending only on x„_p = (xp+u Xp+2,...,xn),

then M(x) can be interpreted as the Jacobian matrixassociated witha p-port capacitor Cp and an

(n —p)-port inductor Ln-P respectively [1]. In this case, M~1(xp) is the small-signal capacitance

matrix associated with the p-port capacitor Cp, and M^i;p(x„_p) is the small-signal inductance
matrix associated with the (n —p)-port inductor Ln_p. In the special case where M = Mp©M„_p

is a constant matrix, then Mj1 is the capacitance matrix ofa linear p-port capacitor Cp and M~ip
is the inductance matrix of a linear (n —p)-port inductor Ln_p.

Since M(x) is invertible, the problem is equivalent to finding an invertible matrix X(x) such

that X(x)/(x) is a reciprocal vector field. Finding matrices X(x) such that X(x)/(x) is a reciprocal

vector field is done by application of theorem 1.4. Application of theorem 1.4 is attempted for

each possible order (p,n —p) for p = 1,..., n. Once a successful determination of the matrix X(x)

is achieved there still remains the problem of determining which, if any of the matrices X(x) are

invertible. Determining whether or not the matrix X(x) is invertible is done by computing the

determinant of the matrix. If no such invertible matrices exist then /(x) may not be written as

M(x)<7(x) with M(x) invertible and g(x) a reciprocal vector field of order (p, n —p). Application of

theorem 1.4 is applied to the remaining untried orders until all possible orders are exhausted. If at

this point an invertible matrix X(x) does not exist then it can be concluded that a decomposition

of the desired form does not exist. If however, an invertible X(x) exists for some order (p, n —p),

then M(x) can beset to X(x)""1. Then /(x) = X(x)-1(X(x)/(x)) isa decomposition ofthe desired

form.

The problem becomes one of solving (for p=l,... ,n)

G?.(X(x))(x) = 0

for 1 < £ < j < n and

detX(x) ?= 0.

The first condition is to ensure that X(x)/(x) is a reciprocal vector field of order (p, n —p) while

the second condition ensures that X(x) is invertible. The following example will demonstrate the

algorithm outlined above when the matrix M is taken to be a constant matrix.

11



Example 3.1. (Figure 5.) Let

fM~l -§*? +2x? +3x2 J'

then (with p = 1 and constantmatrix X),

G}3(X) =*uJLa(x)+x2i^-/i(x)+
o ft

xi26^/2(x)+*225^r/2(x)
= *i(*n —x2\ - 5x») + x2(2xu + x2i + 4xi2)+ «n + 3«i2.

Thus G\2(X) = 0 if and only if
Xn —*2i —5x22 = 0

2xii + x2i + 4xi2 = 0

*ii + 3xi2 = 0.

Thus

X=f %11 —**« 1.
I-|*li 3*11 J

If X is invertible then -l/3x}i ^ 0, Le. xu ^ 0. Let x\\ = 3 anddefine M = X~l, then

_ fl ll fx? +3xix2 +xj 1
~" L2 3J 1*2 "" lXl~ 2*lx2 J

is a desired decomposition for the pseudo-reciprocal vector field fix).
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§4. Pseudo-reciprocal vector fields /(x) = M(x)g(x) where M(x) is symmetric invertible.

Given a vector field /(x), this section willdetermine if there exists a symmetric invertible matrix

M(x) and reciprocal vector field g(x) such that /(x) = M(x)y(x).

Since M(x) is symmetric invertible, the problem is equivalent to finding a symmetric invertible

matrixX(x) suchthat X(x)/(x) is a reciprocal vector field. The method is verysimilar to the case

where the matrix M(x) is invertible. Finding matrices X(x) such that X(x)/(x) is a reciprocal

vector field is done by application of theorem 1.4. Application of theorem 1.4 is attempted for

each possible order (p, n - p) for p = 1,..., n. Once a successful determination ofthe matrix X(x)
is achieved there still remains the problem ofdetermining which, if any of the matrices X(x) are
symmetric and invertible. Of the possible matrices X(x), symmetry conditions on the entries are

first checked for consistency. Of those matrices X(x) which are symmetric, their determinant is

computed to determine which are invertible. If no such symmetric invertible matrices exist then

/(x) may not be written as M(x)$(x) with M(x) symmetric invertible andg(x) a reciprocal vector

field of order (p,n —p). Application oftheorem 1.4 is applied to the remaining untried orders until

all possible orders are exhausted. Ifat this point a symmetric invertible matrix X(x) does not exist

then it can be concluded that a decomposition of the desired form does not exist. If however, a

symmetric invertible X(x) exists for some order (p, n - p), then M(x) can be set to X(x)"1. Then
/(x) = X(x)-1(X(x)/(x)) isa decomposition ofthe desired form.

The problem becomes oneof solving (for p=l,... ,n)

G?(X(x))(x) = 0

for 1 < t < j < n,

X0(X) = Xji(x)

for 1 < i < j < n and

detX(x) 5* 0.

The first condition is to ensure that X(x)/(x) isa reciprocal vector field oforder (p,n-p) while the

second condition ensures that X(x) is symmetric. The last condition restricts the possible matrices

X(x) to those which are symmetric and invertible. The following example will demonstrate the

algorithm outlined above for a constant matrix M.

Example 4.1. (Figure 6.) Let

f [*i 1_ f *i +2*2 +xi - 6x2 ]
1*2 J [2xl + Zx2t + 2x1-9x2\'

13



then (with p = 1 and constant matrix X),

G\2(X) =*n^/i(x)+*2i^/i(x)+
•a &

*12J£-/2to +*22^-/2(x)
ss xi(2x2i + 4x22) + x2(4xu + 6xw) + x2i + 2x22 - 6xu - 9xu.

Thus G\2(X) = 0 if and only if

2x2i + 4x22 = 0

4xii + 6xi2 = 0

x2i + 2x22 —6xii —9x« = 0.

Thus

The additional constraint

results in

x=f*n -f*nl
L*21 -J*2lJ

*12 = *21

x= f x" ~lz"l
L—|*n 3*11 J#

If X is invertible then -l/9xfx ^ 0, Le. xn ^ 0. Let xn = -3 and define M = X"1, then

'[:]•[? -.]"'«? il'M)
_ 1 2]fxf +xi]
"12 3J L*2-3x2J

is a desired decomposition for the pseudo-reciprocal vector field /(x).
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§5. Pseudo-reciprocal vector fields /(x) = M(x)y(x) where M(x) is symmetric positive definite.

Given a vector field /(x), this section will determine if there exists an symmetric positivedefinite

matrix M(x) and a reciprocal vector field g(x) such that f(x) = M(x)g(x). IS /(x) is associated

with an electrical circuit, then a symmetric block diagonal positive definite M(x) = Mp(xp) ©
Mn-P(x„_p) implies that allcapacitors and inductors in the circuit are reciprocal and passivefl].

Since M(x) is symmetric positive definite, the problem is equivalent to finding a symmetric

positivedefinite matrix X(x) such that X(x)/(x) is a reciprocal vector field. The method is very .

similar to the case where the matrixM(x) issymmetric invertible. Finding matrices X(x) suchthat

X(x)/(x) is a reciprocal vector field is done by applicationof theorem 1.4. Application of theorem

1.4 is attempted for each possible order (p, n —p) for p = 1,..., n. Once a successful determination

of the matrix X(x) is achieved there still remains the problem of determining which, if any of the

matrices X(x) are symmetric positivedefinite. Of the possible matrices X(x), symmetry conditions

on the entries are first checked for consistency. Of those matrices X(x) which are symmetric, the

determinants of their minors are computed to determine which matrices have minors that are strictly

positive, thus ensuring that the matrix is positive definite. If no such symmetric positive matrices

exist then /(x) may not be written as M(x)g(x) with M(x) symmetric positive definite and g(x)

a reciprocal vector field of order (p, n —p). Application of theorem 1.4 is applied to the remaining

untried orders until all possible orders are exhausted. If at this point a symmetric positive definite

matrix X(x) does not exist then it can be concluded that a decomposition of the desired form does

not exist. If however, a symmetric positive definite X(x) exists for some order (p, n—p), then M(x)

can be set to X(x)"1. Then /(x) = X(x)_1(X(x)/(x)) isa decomposition ofthe desired form.

The problem becomes one of solving (for p=l,... ,n)

Gfi(X(x))(x) = 0

for 1 < i < j < n,

for 1 < i < j < n and

det

*<;(*) = *;•(*)

xu(x) ... xk(x)

.x,i(x) ... xu(x)
The first condition is to ensure that X(x)/(x) is a reciprocal vector field of order (p,n—p) while the

second condition ensures that X(x) is symmetric. The last condition restricts the possible matrices

X(x) to those which are symmetric positive definite. The following example will demonstrate the

method outlined above for a constant matrix M.

Example 5.1. (Figure 7.) Let

*[*i] _ [ sin(xi +x2) 1
J \x2J [sin(xi + x2) + 4sin(xi)cos(x2)J '

15
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then (with p = 1 and constant matrix X),

G\2(X) =*ii^/i(x)+x21^-/!(x)+
ft ft

= cos(xi)cos(x2)(xn+ x2i+ x« + 5x22) —8in(xi) sin(x2)(xn+ x2i+ 5xi2+ x22).

Thus G}2(X) = 0 if and only if

*11 + *21 + *12 + 5x22 = 0

xn + x2i + 5xi2 + x22 = 0.

Thus

The additional constraint

results in

X=[*n ~fXu "" fX21l
L*2i —y*ii —5*2iJ '

*12 = *21

*11 —T*ll

f*ll —7*11-[4
The conditions for a positive definite matrix,

Thus

X =

The additional constraint

results in

X =

*n>0

8

-3* >°
cannot both be simultaneously satisfied. With p = 2,

G?3(X) =*ug^/i(x) - «„±./1(x)+

= cos(xi) cos(x2)(xn —x2i + xJ2 - 5x22) - sin(xi) sin(x2)(xu —x2i + 5xi2 - x22).

Thus G?2(X) = 0 if and only if

*n ~~ *2i + *i2 — 5x22 = 0

*n — *2i + 5xi2 — x22 = 0.

*n

xn + 6xi2
*12 1

-*12J'

*12 = *21

*n —5"*n

~"5"*ll 51*!!

16



The conditions for a positive definite matrix,

xn>0

25*">0
can be simultaneously satisfied with xn = 5/4. Thus

'fc]-l-\ -ft'(l-h 'Mil)
_ Tl ll rcos(xi)8in(x2)l

[l 5J [sm(xi)cos(x2)J

is a desired decomposition for the pseudo-reciprocal vector field f(x).

§6. Pseudo-reciprocal vector fields /(x) = M(x)g(x) where M(x) is diagonal positive definite.

This section will consider the decomposition of a vector field /(x) as M(x)g(x) where the matrix

M(x) is diagonal positive definite and the vector field g(x) is a reciprocal vector field. If f(x) is

associated with an electrical circuit, then a positive definite diagonal M(x) implies that all capacitors

and inductors in the circuit are passive and uncoupled two-terminal elements[l].

The identification problem is the same as finding a diagonal positive definite matrix X(x) =

A(xn(x),...,x„„(x)) such that X(x)/(x) is a reciprocal vector field. Once this is achieved, by

setting M(x) = X(x)-1, a decomposition of the required form is /(x) = M(x)(M(x)_1/(x)). If the

vector field /(x) does not havea decomposition of the required form then the matrix X(x) does not

exist.

The following theorem gives conditions on the diagonal matrix X(x) = A(xn(x),...,xnn(x))

to ensure that X(x)/(x) isa reciprocal vector field. Of thesediagonal matrices, onesearches for those

that are positive definite, this entails the consideration ofthosematrices for whichxn(x),..., xnn(x) >:

0. Thus solutions are sought to the problem(for p = 1,..., n),

JP.(X(x))(x) = 0

for 1 < t < j < n (where 5?(X(x))(x) is defined below) and

xu(x) > 0

for 1 < t < n. The first condition is to ensure that X(x)/(x) is a reciprocal vector field of order

(p,n —p) while the second condition is to ensure that the matrix X(x) is positive definite.

Theorem 6.1. For 1 < t < j < n define the functions

2T?.(X(x))(x) =*«(x)jL/,(x) +/<(x) JU«(x) - xjjix) JL/i(x) - /i(x)^*ii(x)
17



for 1 < i < j < p,

Jf/X(x))(x) =x«(x)^-/i(x)+/<(x) JU«(x) +*ii(x)^/i(x)+/i(*)^T*ii(*)
ibr 1 < t < p,p+1 < j < n,

ff?.(X(x))(x) =*«(x)^-/.(x)+/iW^j*«(x) -*iito^:/;(*) -AM j^ViM
&r p+1 < »< i < n. Then M/(x) is a reciprocal vector field of order (p,n —p) if and onlyif

ir&(x(x))(x) = o

for 1 < s < j < n.

Proof. If X(x)/(x) is a reciprocal vector field then its Jacobian is a reciprocal matrix. Note that

since X is a diagonal matrix then

*n/i(x)
X(x)/(x) =

has Jacobian matrix with tj-th entry being

.*nn/n(x).

D(X(x)/(x))tf (x) =x„(x)A/,.(X)+Mx^xuix).
The conditions for a matrix to be reciprocal are immediately applied to the entries of the Jacobian

matrix. fl

Example 6.2. (Figure 8.) This example will be an illustration where the matrix M is further

required to be a constant matrix. Let

then (with p = 1),

/f*i] = f cos(x2) +sin(xi)
L*2 J L-2*i sin(x2) +2x?. J'

2TJ2(X) =xu j^/k(x)+*2i^/i(x)+
*12£J-/2(X) +X22—/2(x)

Thus Sl2(X) = 0 if and only if

= - sin(x2)(xn + 2x22).

xu + 2x22 = 0.

Thus

-[*n 0
0 -Jxn

18



The additional constraints

*n>0

-|*u >0
cannot both be simultaneously satisfied. With ps 2,

*?2(X) =*"5^/iW-*«^A(*)+
Xl25x7/2(x)~X225xT/2(x)

= —sin(x2)(xii —2x22).

Thus H22(X) = 0 if and only if

Xu — 2x22 ss 0

Thus

_ r*n 0 1

The additional constraints

xu>0

i*u >o

can be simultaneously satisfied with in = 2. Thus

: '[:]•[!'»]-([! }]'[:D
_ 1 Ol rcos(x2) + 8in(xi)l
~~ .0 2J [-xi sin(x2) +x\ J

is a desired decomposition for the pseudo-reciprocal vector field /(x).
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§7. Pseudo-reciprocal vector fields /(x) =M(x)g(x) where M(x) is diagonal invertible.

This section will consider the decomposition of a vector field /(x) as M(x)$(x) where the matrix

M(x) is diagonal invertible and the vector field g(x) is a reciprocal vector field. If/(x) is associated
with an electrical circuit, then a diagonal M(x) implies that a circuit realisation is possible byusing

only 2-terminal (possibly active) capacitors and inductors in addition to resistors.
The problem is the same asfinding a diagonal invertible matrix X(x) = A(xu(x),...,xnn(x))

such that X(x)/(x) is a reciprocal vector field. Once this is achieved, by setting M(x) = X(x)~l, a
decomposition ofthe required form is /(x) = M(x)(M(x)~V(x)). If the vector field /(x) does not
have a decomposition of the required form then the matrix X(x) does not exist.

Thus, solutions are sought to the problem (for p = 1,..., n),

2T?.(X(x))(x) = 0

for 1 < t < j < n and

*«(x) * 0

for 1 < i < n. The first condition is to ensure that X(x)/(x) is a reciprocal vector field of order

(p,n —p) while the second condition is to ensure that the matrixX(x) is invertible.

§8. Identifying pseudo-gradient vector fields[9].

If f(x) is associated with an electrical circuit, then a pseudo-gradient /(x) corresponds to an RC

or RL 2-element type reciprocal circuit; Le, the circuit contains only capacitors, or only inductors,

in addition to reciprocal resistors[l]. In particular, if /(x) has a decomposition as M(x)g(x) where

the matrix M(x) is positive definite and g(x) is a gradient vector field then f(x) does not admit

periodic orbits. This is proved in the following lemma.

Lemma 8.1. Iff(x) = M(x)g(x) where M(x) is positivedefiniteand g(x) is a gradient vectorfield

then there do not exist periodic orbits for f(x).

Proof. Let G(x) be a function such that g(x) = VG(x). Let 4>(x, t) denote the solution to

^(x,t) = /(«Kx,t))

#x,0) = x

and consider the function

Then

f?(x,t) = -G(*(x,t)).

J^(x,t) =-VG(#x,t)).«J'(x,t)
= -VGW(x,t))./(#x,t))

= -VG(^(x,t)).M(x)VC?(0(x,t))

<0.
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Assume that a periodic orbitexists through the point xq with period 0 < to. Then

0 = Gfa(xo,to))-G(#xo,0))

= i?(xo,fo)-^(xo,0)
f*° $

=y0 »*<**•>*
=/°-VG(#x,s)).M(x)VG(#x,s))ds

Jo

<0.

Thus, VG(^(xo,«)) = 0 for 0 < s < <o from which it follows that

/(xo) = M(xo)fl(xo)

= M(xo)VG(^(xo,0))

= 0.

Thus, the point xq is a fixed point of /(x) which is in contradiction to being on a periodic orbit.

Thus, periodic orbits do not exist for the vector field /(x). |

It is immediate that a pseudo-gradient vector field cannot admit Smale horseshoes. Such horseshoes

contain infinitely many periodic orbits while lemma 8.1 rules out the possibility of periodic orbits

occuring in pseudo-gradient vector fields.

Corollary 8.2. Pseudo-gradient vector fields f(x) = M(x)g(x) with positive definite M(x) do not

admit periodic orbits.

Proof. Immediate from lemma 8.1. |

Example 8.3. The condition that M be positive definite cannot be weakened to invertible. Consider

the vector field

'fc]-[i jltd m
=[-I oj [O lj [x2J

-[-. S]'[S]-
The vector field /(x) admits the periodic orbits given by (r sin(t), r cos(t)) for 0 < r.

Example 8.4. The condition that M be positive definite cannot be substituted by symmetric.

Consider the vector field

of1 ° [! s] fc]
•[i !]•[:]•
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The vector field /(x) admits the periodic orbits givenby (r sin(f), rcos(t)) for 0 < r.

By theorem 1.6, the identification of a pseudo-gradient vector field is the same as the identification

of pseudo-reciprocal vector fields where the Jacobian matrix is a reciprocal matrix of order (n, 0).

The identification of matrices M(x) which are invertible, symmetric invertible, symmetric positive

definite, diagonal positive definite and diagonal invertible such that M(x)/(x) is a gradient vector

field is achieved by the following algorithms which are the restrictions of the corresponding algorithms

for the pseudo-reciprocal case.

To search for invertible matrices M(x), the problem becomes one of solving for the matrix X(x)

where

G*.(X(x))(x) = 0

for 1 < t < j < n and

detX(x) ^ 0.

The first condition is to ensure that X(x)/(x) is a gradient vector field, while the second condition

ensures that X(x) is invertible. Thus the vector field /(x) may be written as M(x)g(x) where

M(x) = X(x)"1 is invertible and g(x) = X(x)/(x) is a gradient vector field.

To search for symmetric invertible matrices M(x), the problem becomes one of solving for the matrix

X(x) where

GJ(X(x))(x) = 0

for 1 < t < j < n,

*<;(*) = *i.'(x)

for 1 < t < j < n and

detX(x) ^ 0.

The first condition is to ensure that X(x)/(x) is a gradient vector field, while the second condition

ensures that X(x) is symmetric. The last condition restricts the possible matrices X(x) to those

which are symmetric and invertible. Thus the vector field /(x) maybe written as M(x)g(x) where

M(x) = X(x)-1 is symmetric invertible and g(x) = X(x)/(x) is a gradient vector field.

To search for symmetric positive definite matrices M(x), the problem becomes one of solving for

the matrix X(x) where

G*-(X(x))(x) = 0

for 1 < t < j < n,

Xij(x) = xit(x)
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for 1 < * < j < n and
xii(x) ... xM(x)

det >0.

Xii(x) ... *«(x).

The first condition is to ensure that X(x)/(x) is a gradient vector field, while the second condition

ensures that X(x) is symmetric The last condition restricts the possible matrices X(x) to those

which are symmetric positive definite. Thus the vector field /(x) may be written as M(x)g(x) where

M(x) = X(x)-1 is symmetric positivedefinite and g(x) = X(x)/(x) is a gradient vector field.

To search for diagonal positive definite matrices M(x), the problem becomes one of solving for the

diagonal matrix X(x) where

*3(X(x))(x) = 0

for 1 < i < j < n and

*«(x) > 0

for 1 < t < n. The first condition is to ensure that X(x)/(x) is a gradient vector field, while the

second condition is to ensure that the matrix X(x) is positive definite.

To search for diagonal invertible matrices M(x), the problem becomes one of solving for the diagonal

matrix X(x) where

*8(X(x))(x) = 0

for 1 < i < j < n and

xu(x) ± 0

for 1 < i < n. The first condition is to ensure that X(x)/(x) is a gradient vector field, while the

second condition is to ensure that the matrix X(x) is invertible.
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§9. Identifying pseudo-reciprocal piecewise linear vector fields[10].

In the case of piecewise-linear vector fields, an explicit computation of the functions G?(X(x))(x)

for constant matrices X(x) is possible. Thisallows a more efficient algorithm to determine pseudo-

reciprocity of piecewise linear vector functions. First a definition and a lemma are needed before

the presentation ofthe algorithms. Thealgorithms will determine the existence ofmatrices Y such

that Y£ is a reciprocal vector field in the cases that Y is invertible, symmetric invertible, symmetric

positive definite, diagonal positivedefinite and diagonal invertible.

Definition 9.1. Given a matrix A, define the set

x(A,p) = {X: XA is reciprocal of order (p,dimA - p)}.

The matrix X is such that XA is a reciprocal matrix of order (p, dim A —p).

Lemma [10] 2.3. Considering a matrix X written in the form of a n x n-tupie

*ii

*ln

*n 1

.*n n.

there exists a finite set of vectors vi,..., v, € Snxn such that

x(A,p) = {tiv1 + ... + t,v, :<!,...,<, 6 »}.

An algorithm to implement the lemma is immediate by solving a set of linear equalities that a matrix

must satisfy if it is to be in the set x(A,p). Let the vector field £ be given by

*1 <*i •6

• =
• +

Lx». La„J L&

11

nl

... &ln" "*r m "<*ii" "/%r
t

**r
•

J +£ : i i
-Ti

... &nn- .*». i=i .ajn. .#/». -Xn.

then an algorithm to determine the existence of invertible matrices Y with Y o £ a reciprocal vector

field is given by the following sequence of steps:

Step 1: Let s = 1.

Step 2: Let 5 = {wj,..., wj0} where the vectors {wj,..., wJJ form a basis for

"&n ... bin'

.&nl ••• &nn-
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Step 3: For i=l to m repeat the steps3.1 through to 3.3.

Step 3.1: Let T = {v(,..., v*J where the vectors {vj,..., v*.} form a basis for

<*ii#fi ••• <*jl0jn

Step 3.2: Let R= {wj,...,wjj where the vectors {w{,...,wjj form a basis for span(S) n
span(T).

Step 3.3: Let 5 = R.

Step 4: Form the matrix

Y(*i,...,*,m) =53x<w<m
•=i

and let /(xi,..., x9m) be the polynomial givenby

t*

/(xi,..., xqm) = detY(xi,..., x,m).

Step 5: Determine if /(xi,.. .,x9m) is identical to the zero function. If it is then go to step 6 else

choose values for xlt..., x,m such that /(xi,..., xqm) £ 0 and go to step 7.

Step 6: In this case, allmatrices Y suchthat Yo{ is a reciprocal vector field of order (s, n —s) are

non-invertible. If s < n then let s = s +1 and go to step 2, otherwise there do not exist invertible

matrices Y such that Y o £ is a reciprocal vector field of any order. The vector field £ cannot be

written in the form { = Xo( where X is invertible and C is a reciprocal vector field.

Step 7: In this case, there exists a set of values xi,..., x9m such that the matrix

9m

Y(x1,...,x?J =^x,-w<n
t=i

is invertible and Y o £ is a reciprocal vector field of order (s, n —s). Thus £ can be written in the

form { = Y-1o(Yo{) with Y"1 invertible and Y o£ a reciprocal vector field.

An algorithm to determine the existence of invertible symmetric matrices Y with Y o £ reciprocal

vector fields is given by the following sequence of steps:

Step 1: Let s = 1.

Step 2: Let 5 = {wj,..., wj0} where the vectors {wj,..., wj0} form a basis for

r&li *i»l

.6„i ... bnn.

Step 3: For i=l to m repeat the steps 3.1 through to 3.3.
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Step 3.1: Let T ={vj,..., v£.} where the vectors {vj,..., vjj form abasis for

Step 3.2: Let Ji = {w[,...,wjj where the vectors {w{,...,wj4} form a basis for span(5) n
span(T).

Step 3.3: Let 5 = it

Step 4: From the equation

£*.-(wr-(wn')=o
isl

determine a set of independent variables xi,...,x* and dependent variables xj+i,...,xgm. Form

the matrix
9m

Y(xi,..., xk) =^ x.-wj"
j=i

and let /(xi,..., xt) be the polynomial given by

/(xi,...,Xfc) = detY(xi,...,xt).

Step 5: Determine if /(xi,...,x*) is identically the zero function. If it is then go to step 6 else

choose values for xi,..., x* such that /(xi,..., x*) 56 0 and go to step 7.

Step 6: In this case, all symmetric matrices Y such that Y o £ is a reciprocal vector field of order

(s, n — s) are non-invertible. If s < n then let s = a + 1 and go to step 2, otherwise there do not

exist invertible symmetric matrices Y such that Y o £ is a reciprocal vector field. The vector field £

cannot be written in the form £ = Xo£ where X is invertible symmetric and C is a reciprocal vector

field.

Step 7: In this case, there exists a set of values xi,..., x* such that the matrix

9n

Y(xl,...,x,m) =2*»wr
tsl

is invertible symmetric and Yo£ is a reciprocal vector field oforeder (s, n—s). Thus £ can be written

in the form £ = Y"1 o(Yo{) with Y""1 invertible symmetric and Yo£ a reciprocal vector field.

An algorithm to determine the existence of symmetric positive definite matrices Y with Y o £

reciprocal vector fields is given by the following sequence of steps:

Step 1: Let s = 1.

Step 2: Let 5 = {wf,..., wj0} where the vectors {wj,..., w°J form a basis for

"&ii ... &i„1

.bni ... bnn.
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Step 3: For i=l to m repeat the steps 3.1 through to 3.3.

Step 3.1: LetT = {v{,..., v^ } where the vectors {vj,..., v£.} form a basis for

«ii/%i ... <*il#Jn
• • • s

Step 3.2: Let R = {wj,..., wjj where the vectors {wj,...,wj.} form a basis for span(5) n
span(T).

Step 3.3: Let 5 = iL

Step 4; From the equation

X)x,(wr-(w?»)')=o
.=i

determine a set of independent variables xi, ...,x* and dependent variables x*+i,...,x?m. Form

the matrix
9m

Y„(xi,..., xfc) =^2x<wj".

Define the matrices

Yi(xi,...,Xfc) =

Yn(xi,...,xt)n ... Yn(xi,...,x*)i<

>Yn(xi,...,Xfc)ii ... Yn(xi,...,xi.)«>

and let /,(xi,..., x*) be the polynomial given by

/,(xi,..., xik) = detY,(xi,..., xjb)

for 1 < i < n.

Step 5: Determine if there exist values xi,...,x* such that the following set of inequalities hold

simultaneously,
/i(xi,...,x*)>0

/n(xi,...,xfc)>0.

If such values do not exist then go to step 6 else go to step 7.

Step 6: In this case, all symmetric matrices Y such that Y o £ is a reciprocal vector field of order

(s, n —s) are either non-invertible or invertible and not positive definite. If s < n then let s = s +1

and go to step 2, otherwise there do not exist symmetric positive definite matrices Y such that Yo£

is a reciprocal vector field. The vector field £ cannot be written in the form( = Xo( where X is

symmetric positive definite and £ is a reciprocal vector field.

Step 7: In this case, there exists a set of values xi,..., xt such that the matrix

9m

Y„(x1,...,x,m) =53x,wp
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is symmetric positive definite andYno(is a reciprocal vector field oforder (s,n —s). Thus£ canbe

written in the form£ = Y"1 o(Y„ o£) with Y~l symmetric positive definite and Y„ o£ a reciprocal

vector field.

In the case that the matrix Y is diagonal positive definite, a number of definitions and lemmas

are necessary before allowing presentation of the algorithm. The matrix Y is denoted as a vector

[di ... dn]' in the following.

Definition [10] 7.1. Define the set

r dt i

<*i

r di^i 1

dpOCp
dp+i<*P+i

. dnCln J

r A i

-0JH-1

- —Pn •

E

ft

A J
p \ = \

dp
dp+i :3A€&3 = A >.

La„J

I d« J

Lemma [10] 7.2. There exists vectors such that

«i

La. J .!]"Hs"[!]'*4
Definition [10] 7.3. Define the set

/pn ... &m"| \ (Tdim

\L6nl ••• &nnJ / VLdn-

"di&n ... dl^ln "
. .

-dnbnl ... dn6nn.

Lemma [10] 7.4. There exists vectorssuch that

F

reciprocal of order (p, n —p)>

Implementing algorithms for lemmas[10] 7.2, 7.4, are exercises in linear algebra. With the lemmas

presented, the stage is set for the algorithm. An algorithm to determine the existence of diagonal

positive definite matrices Y with Yo( reciprocal vector fields is given by the following sequence of

steps:

Step 1: Let s = 1.

Step 2: Let 5 = {wj,..., w°0} where the vectors {wj,..., wj0} form a basis for

"&n ... bin

.&„i ... 6nn.
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Step 3: For i=l to m repeat the steps 3.1 through to 3.3.

Step 3.1: Let T ={vj,..., vpi} where the vectors {vj,..., v£.} form abasis for

«ji Ai'
i*

.°i«J LA«.
Step 3.2: Let R = {w'lt...,wJ.} where the vectors {wj,...,wj.} form a basis for span(5) n

span(T).

Step 3.3: Let 5 = it

Step 4: Determine if there exist values xi,...,x9m such that the following set of inequalities hold

simultaneously,
*i(wni + ... +*9«Km)i>0

*i(wr)» + ... + *,m(w« )n >0.

If such values do not exist then go to step 5 else go to step 6.

Step 5: In this case, all diagonal matrices Y such that Y o £ is a reciprocal vector field of order

(s, n —s) are either non-invertibleor invertibleand not positive definite. If s < n then let s = s +1

and go to step 2, otherwise there do not exist diagonal positive definite matrices Y such that Yof

is a reciprocal vector field. The vector field £ cannot be written in the form £ = X o £ where X is

diagonal positive definite and £ is a reciprocal vector field.

Step 6: In this case, there exists a set of values xi,..., x* such that the matrix

with

A(yi,...,y„)

9m

yj =E*.(wDi
1=1

is diagonal positive definite and A(yi,..., yn)o£ is a reciprocal vector field of order (s, n —s). Thus

£ can be written in the form £ = A(yi,..., yn)"1 o(A(yi,..., y„)o£) with A(yi,..., y„)_1 diagonal

positive definite and A(yi,..., yn) o £ a reciprocal vector field.

Note that if there exists a solution j/i,..., yqm to

*i(wDi + •••+ *9m(w£)i = <?! >0

*i(wr)« + ...+ *9m(w™)„ = *„>0

then there exists a solution $4,..., yqm to

*i(wDi + --- + *9m(w™)i>l

*l(wD»+... + *9m«J»>1
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by scaling the original values yi,..., yqm with a sufficiently large constant. Decompose the variables

xi,...,x,m as x< = x} - x? for t = l,...,«m. It then follows that y\ = !/!»...,yjm = yjm»yi =
0,..., yjm = 0 is an optimal solution to the linear programming problem of

subject to

minimise /]v%
t=i

*l(wDi - *K)i +•••+*}mKL)i - *L(wim)i +tn- m =i

*l(wD» - *!(wr)» +•••+*J„(W9m)» - *9m(W9m)l +* ~ «• =1

t*it...»"n»t>i,...,t;n >0.

Conversely, given an optimal solution to the above linear programming problem, if 0 < ti,- —v,- for

t = 1,..., n then x,- =s x\ —xj is a solution to the original problem

*i(wr)i + --- + *9m(w~)i>0

*l(wD» + ... + *9m(w™)„>0.

An algorithm to determine the existence of diagonal invertible matrices Y with Y o £ reciprocal

vector fields is given by the following sequence of steps:

Step 1: Let s = 1.

Step 2: Let S= {wj,..., wj,} where the vectors {wj,..., wJJ form a basis for

*6ii ... bin'('bn ... bin! \

•&nl ... bnn-1 '

Step 3: For i=l to m repeat the steps 3.1 through to 3.3.

Step 3.1: Let T = {vj,..., vj.} where the vectors {vj,..., vj.} form a basis for

<*ii Ai
E 8 .

.<*jn] U'J*»

Step 3.2: Let R = {wj,...,wj.} where the vectors {wj,...,wj.} form a basis for span(S) n
span(T).

Step 3.3: Let 5 = R.
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Step 4: Determine if there exist values xi,..., x9m such that the following set of inequalities hold

simultaneously,

*i(wD»+...+*9m(wjL)» #0.

If such values do not exist then go to step 5 else go to step 6.

Step 5: In this case, all diagonal matrices Y such that Y o £ is a reciprocal vector field of order

(s, n —s) are non-invertible. If s < n then let s = s +1 and go to step 2, otherwise there do not

exist diagonal invertible matrices Y such that Y o £ is a reciprocal vector field. The vector field £

cannot be written in the form { = Xo( where X is diagonal invertible and £ is a reciprocal vector

field.

Step 6: In this case, there exists a set of values xi,..., xk such that the matrix

A(yi,...,y»)

with
9m

«=E*'W)i
tsl

is diagonal invertible and A(yi,..., yn) o £ is a reciprocal vector field of order (s, n —s). Thus £

can be written in the form £ = A(yi,...,yn)""1 o(A(yi,...,yn)oO with A(yi,...,yn)"1 diagonal

invertible and A(yi,...,yn) ° £ a reciprocal vector field.

§10. Identifying pseudo-gradient piecewise linear vector fields[10].

In the case of piecewise linear vector fields, a more explicitcomputation of the functions G?(X(x))

is possible. This allows a more efficient algorithm to determine pseudo-gradiency of piecewise linear

vector functions. As pseudo-gradient piecewise linear vector fields are a proper subset of pseudo-

reciprocal piecewise linear vector fields, is suffices to note that algorithms for the identification

of pseudo-gradient piecewise linear vector fields are immediately obtained from the algorithms for

pseudo-reciprocal piecewise linear vector fields by restricting the pseudo-reciprocal piecewise linear

vector fields of interest to those which are of order (n, 0).
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Appendix: Proof of theorem 2.5.

Clearly, if the algorithm terminates successfully then a co-ordinate permutation matrix E is con

structed such that E'AE is reciprocaL Conversly, assume there exists a coordinate permutation

matrix E such that B = E'AE is reciprocaL It may be taken that

and

B =

E —[ejt ... e<m J

bn • • • &i p 61 p+i •
• •

&1 n

*i'p • •• bp p h p+i . • Op n

-&ip+i • • • —bp p+i &p+i p+i ••• &p+l n

. —frl n ... —bp n 0p+\ n ••• &i» n J
Note that E_1 is also a coordinate permutation matrix. Thue E-1 = F where

T = [eh ... ejm]

with 0'i,..., in) the inverse permutation to (t'i...., in). The matrix

A = (E-^'BE"1 = F'BF

has first row

[*>hh ••• bJii»]

and first column

Since 6_,lt = ±&tj,, the first step of the algorithm is successfully completed.

K1 < h < P» there exist (ibi,..., Jbp, fcp+i,..., kn) such that

6ixik, = ai*i

= a*ii

for 1 < / < p and

= 6 jhtji

— <^k,l

forp+1 < t < n. Thus (ifclf...ii*F) = (mi,...,mp) and (i^n»• ••»iO = (mP+i,...,mll) where

(mi,..., mp) and (mp+i,..., m„) are permutations of the integers (1,...,p) and (p + 1,..., n)

respectively. Define

G = [e4l ... e*F e*F+l ...,efcn].
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This is the second step of the algorithm, then

= l®n»i ... Qm9 ©tn^fi •»• em» J»
or,

G — El ©mi ... ^mp ^niH-i •' * ®TO» J*

Thus
P AC

-mx

G'AG =
*«»H-i

E'AE^ ©mF ©m;r+» •• cro„ ]

"raj mi

L e

'mi nip 'n»i "»f+i 'mi mm

-6,
'All flip

'mp+i m*

-6,mi m* ••• "~*mF m, "*m»+i m» '' * *
is a reciprocal matrix, the final step of the algorithm is successfully completed and the algorithm

terminates successfully.

If p + 1 < ii < n, there exist (&i,..., Jb„.p, kn-P+u •••» &n) such that

= a*ii

= 6jk,ji

for 1 < / < n —p and

hJi3k, = °i*i

— ok,i

for n - p+ 1 < i < n. Thus (jkl,..., jkf) = (mi,..., mn_p), (j*,.,*!,..., jkn) = (m„-p+i,..., m„)

where (mi,...,m„_p) and (m„_p+i,...,m„) are permutations of the integers (l,...,n —p) and

(n —p+ 1,..., n) respectively. Define

G = [efcl ... ekn_, e*...^ ...,efcm].

This is the second step of the algorithm, then

FG = [eil ... eSm][ekl ... e*.., e*...^ ...,efcn]

= [ei*t ••• eifc»_, ei*»-,+i ei«»»]

= Len»i ••• emn_p em,,.,+i ••• emn Jj
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or,

Thus

G*AG =

G = E[efm ••• ©m»-F ^ffls-H-i ••• e*»»J*

-mi

"m»_,

-m.-H-x

L e

'mi mi

E AE[emi ... em»«- ^..^i ••• em»J

'mi ms_• -*m»-F+i "»i

0m»_. m*.. ""»'m«,_«+i ma.r

Om....+i »»»-• *>mm-.F+i m*_.+i

-6•»» n»i

"*»m» m«_.

L **m» mi ... »'m» m»_. vmM.p+1 nu ... »m» m»

is a reciprocal matrix, the final step of the algorithm is successfully completed and the algorithm

terminates successfully. I
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Figure captions.

Figure 1. An electronic realisation of the vector field in example 0.1. Note that this is a circuit

corresponding to a third order system.

Figure 2. An electronic realisation of the vector field in example 0.2.

Figure 3. An electronic realisation of the vector field in example 0.3.

Figure 4. An electronic realisation of the vector field in example 0.4. Note that this is a circuit

corresponding to a fourth order system.

Figure 5. This is the phase portrait corresponding to the vector field given by

7 I*.J L -|xf +2xl +3*2 J*

This vector field may be written as the product of an invertible matrix M and a reciprocal vector

field g(x) as /(x) = Mg(x).

Figure 6. This is the phase portrait corresponding to the vector field given by

/[*il_r *i+2*2 +xi- 6x2 1
1*2 J ~ L2xi +3a?3 +2*i ~ 9*2 J'

This vectorfield maybe written as the productofan invertible symmetric matrix M and a reciprocal

vector field g(x) as /(x) = Mg(x).

Figure 7. This is the phase portrait corresponding to the vector field given by

[*i] = [ sin(xi +x2) ]
[x2 J [sin(xi + x2) + 4sin(xi) cos(x2) J *

This vector field may be written as the product of a symmetric positive definite matrix M and a

reciprocal vector field g(x) as /(x) = Mg(x).

Figure 8. This is the phase portrait corresponding to the vector field given by

cos(x2) + sin(xi)
2xi sin(x2)+ 1x\[:;]-[-

This vector field may be written as the product of a diagonal positive definite matrix M and a

reciprocal vector field g(x) as f(x) = M<7(x).
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