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THE IDENTIFICATION OF GENERAL PSEUDO-RECIPROCAL
VECTOR FIELDS. {

Robert Lum AND Leon O. Chua. t{

Abstract
A reciprocal vector field is a vector field for which the linearisation of the vector field
is reciprocal. A vector fleld is called pseudo-reciprocal if it can be written as the
composition of a matrix with a reciprocal vector fleld. The main types of pseudo-
reciprocal vector flelds studied in this paper are those where the matrix is invertible.
Such vector flelds are especially important in the field of electrical engmeenng due to
their representation of non-linear circuits.

In this paper, the identification of such vector fields is completed for the cases
when the matrix is either invertible, invertible symmetric, symmetric positive definite,
diagonal positive definite or diagonal invertible. In the process of such identification, a
decomposition of the original vector field as the composition of a matrix and a reciprocal
vector field will ensue.

From a nonlinear circuit-theorectical point of view, this paper provides a definitive

answer to the following outstanding question:

Given a state equation X = f(x), does there exist a nonlinear circuit made up of
only 2-terminal, and/or reciprocal n-terminal resistors, capacitors and inductors, which
realises this equation?

While pseudo-reciprocal vector fields could exhibit complicated dynamics, including
chaos, a pseudo-gradient vector fleld behaves just like gradient vector flelds and is in
fact the basic building block of electronic neural networks.

1 This work is supported in part by the Office of Naval Research under Grant N00014-89-J-1402.
tt The authors are with the Department of Electrical Engineering and Computer Sciences, Uni-

versity of California, Berkeley, CA 94720, USA.



§0. Introduction.

Pseudo-reciprocal vector fields are of particular importance in nonlinear circuit theory because the
state equation of any nonlinear circuit made up of only 2-terminal, and/or reciprocal n-terminal
resistors, inductors, and capacitors always gives rise to a pseudo-reciprocal vector field. In particular,
if only 2-terminal capacitors or only 2-terminal inductors are present in the circuit, in addition to
reciprocal resistors, then the Jacobian matrix of the associated vector field always assumes the form
of a product of two symmetric matrices. This special case corresponds to a pseudo-gradient veétor )
field[1].

The first section of this paper will present the definition of a reciprocal matrix, reciprocal vector
field and pseudo-reciprocal vector field. It will be shown that gradient vector fields are a subset of
the reciprocal vector fields. From an experimental viewpoint, the more desirable vector fields to
implement are those that are already in the form of a reciprocal vector field or have a coordinate
change such that under the new coordinate system, the vector field assumes the form of a reciprocal
vector field. Section 2 will determine if such a coordinate change exists. If such a coordinate change
is not available, then it would be desirable that there exists a matrix M(x) such that the vector field
may be written as f(x) = M(x)g(x) where the vector field g(x) is a reciprocal vector field. Sections 3
through to 7 discuss algorithms to determine when there exist matrices M(x) with the matrix either
invertible, symmetric invertible, symmetric positive definite, diagonal positive definite or diagonal
invertible. Section 8 is concerned with the analogous identification problem when the decompaosition
desires that g(x) be a gradient vector field. Section 9 is concerned with the identification of pseudo-
reciprocal piecewise-linear vector fields. Because of their structure, solutions for constant matrices
M can be more explicitly stated. Similarly, Section 10 is concerned with the identification of pseudo-
gradient piecewise-linear vector fields. This introduction will conclude with some examples of the
applications of the algorithms. Insight into whether a vector field is pseudo-reciprocal will determine

if a circuit realisation of the vector field using only reciprocal circuit elements is possible.

EXaMPLE 0.1. Let the vector field be given by

([-(G+Gy)/Cy G/C: 0 ] [W] (Ga — Gi)/C1
G/C, -G/C; 1/C| |Va| + ] y <=1
L 0 -1/ 0 ||Is] 0
Vi [-(G+G.)/Cy G/Cy O 141
AR ER G/C; -G/C; 1/C3| | V2], -1<" <1
I L 0 -1/ 0 ||
[-(G+Gy)/C1y G/, 0 141 (Gs = Ga)/Ch
G/C; -G/C; 1/C2| | Vo |+ 0 , 1<W.
ol 0 -1/ o J|lL] | 0

By section 3, a decomposition for constant matrix M and vector field g(x) is given by

1/¢; o 0
M=| 0 1/C; 0

0 o0 1/L]




and .

([-(G+Gy) G 0] [w [G.-G,]
G -G tl{wn|+| o |, <1
l o -1 0] |Is 0
Vi [-(G+Gs) G o] [wi
g|val =+« G -G 1| |wa|, -1<% <1
Iy l o -1 0] |Is
[-G+G) G o][wm] [6-G.
G -G 1| |Va|+ 0 y 1<W.
\ 0 -1 0 I3 | 0

An electronic circuit to in;plement f(x) is give;l in figure 1. In fact, this is the vector field of the
“double scroll” as described in [4].

ExXaMPLE 0.2. Let the vector field be given by
f [-Gy/Ch 0 1/C, 1 [(Go - Gb)/Cg]
0 -G[C; 1/C;3 Va|+ 0 y i<-1
| -1/L -1/L <-R/L}|Is
Vi [ -Ga/C1 0 16,1 [wv
FlVal=1 0

0

—G/c; 1C | |w], ~1gVig1
| -1/L -1/L -R/L. )
[-Gy/C1 0 1/¢1 ] W] (Go - G,)/Cl]
0 -G/C; 1/C; | |Va| + 0 y 1< W
|| -1/  -1/L -R/L||I 0

By section 5, a decomposition for constant matrix M and vector field g(x) is given by

[1/01 0 0 ]
M= 0 1/C; 0
0 o 1/L

and R A
(|-Gy O 1 \ 21 Gq~- Gy

0 -G 1 Val + 0 , i<=1
-1 -1 -R]|L] 0
1) [-Ga 0 1][w
glnal=3] 0 - 1|]|wn], -1<% <1
-1 -1 -R]||Is

-Gy 0 11[W] Gy - Ga

0 -G 1 ||V+ 0 , 1<V

.} -1 -1 -R _Ia_' 0

An electronic circuit to implement f(x) is given in figure 2 using only passive capacitor and inductors.
The circuit equations which give rise to f(x) are given in [4].

EXAMPLE 0.3. Let the vector field be given by (a # 3),

( 1 1 1 - -
TR T Rt B @ zy (e - B)
Hzoaz "ml‘m R,Ti; z2 | + g y T3 < —7
L -— T3
F_ 1 1 RCs ﬁaaz L =9
Zy J “HC l— b 2Yof lm 1 " rzl
Flo = me; Tmeme R |7 |23l < 7
® 1 0 1 s ~merd L3
R l— R,Ch IEZ'T L " z1 ‘7(ﬂ - a)
bi712) TEG WG BRG]t 0 y < 2z3.
0 1 -l z3 0
v p:2yory ey 4 L¥3d



By section 4, a decomposition for a constant symmetric invertible matrix M is given by
M=

~1-0-S-pa - ke 3—‘;‘,:3%‘04 Fo-bRSa 1+ RS+ 28 1
[ 1+ﬁiz-‘-+§ﬂf- o ﬁz& 0

0
and
(T 1
ol C R lm C. RaC.
"R '&!'*a,c,:ggé:'*;m+cm+ngn§ﬁv:
L %o ~ M - 16 ~ whics ~ mRcier
2 b Yoy
R, C. R
g[zz]ﬂ -nlfc; E?E,*+cngé";n§r+nﬁiv:+ﬁ!§5’r
%3 L ®os ~ 8% - # - v~ mRAS
R:;c'
“me B e+ mler+ mEie + mREe
1 C.
L L mes -Het - 13%: R — MRy
RaC R RaC. [21] 0
— et - xg%;' m'fv: TRETs z2 | + 0 , 23 < =7
“'F'C‘*'%S%*"'ﬁ';% m%"fm‘a""rfﬁ%v:. Lz3]  Lr(a—h)
B,C. RyC. [21]
—Ret — ,’és Wa- nz%c’z" z |, |za] < ¥

R RyC. .
B-mier+ BG + i~ m t me mRciTs ] L5
R;!C- -21T 0

o ﬂ%‘a,, RETs ~ MG z2 | + 0 , 7< Za.

a= biyery 1+§2g}+ngé- IEC-+R;U;C;+HH§RCC;U;,_ LT3 ‘y(ﬂ_a)

Notice that the matrix M is not positive definite since the determinant of the minor
-®g 0
0 0

is zero. Applying the algorithm of section 6 for constant matrix M and vector field g(x) one has

that

HE(X) = 211/(R2Ch) + 222/ (R2C3)
na, z3< =7
HiyX) = {&'uﬁ, |23l < v

e, ¥ <z3.
H33(X) = z22/(R3C3) — z33/(R3Cs).
If H(X) = H}3(X) = H}5(X) = 0 then z33 = 223 = z33 = 0. Thus, X is the 0 matrix and is not
invertible, which implies that a decomposition with f(x) = Mg(x) where M is diagonal and g(x) is
reciprocal of order (1,2) does not exist. Similarly,
H}y(X) = 211/(RaC1) ~ 222/ (R2C2)
@ 23 < =7

H}y(X) = {3711ﬂa lzal < v
zna, v <Zz3.

H§3(X) = 222/(R3C2) + 333/(R303).
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If H,(X) = H3(X) = H33(X) = 0 then 233 = 233 = 33 = 0. Thus, X is the 0 matrix and is not
invertible, which implies that a decomposition with f(x) = Mg(x) where M is diagonal and g(x) is
reciprocal of order (2,1) does not exist. Similarly,

HY(X) = 211/(RaC1) — 232/(R2C3)
o, 3 <=7
Hiy(X) = {Snﬁ, lzsl < v
e, vY<Zzs.

- H}(X) = z232/(R3C;) — z33/(RsCs).
I B3(X) = HH(X) = H3(X) = 0 then z1; = z33 = 233 = 0. Thus, X is the 0 matrix and is
not invertible, which implies that a decomposition with f(x) = Mg(x) where M is diagonal and
g(x) is reciprocal of order (3,0) does not exist. Our algorithm shows that it is impossible to make
M diagonal. Hence, a circuit realisation using only linear 2-terminal capacitors and/or 2-terminal
inductors, and reciprocal resistors does not exist. Indeed, the circuit realisation in figure 3 requires

a controlled source, which is a non-reciprocal resistor. The paper [2] examines the circuit in greater
detail.

ExAMPLE 0.4. Let the vector field be given by

4 (—m(;/cc), mO//CCl- —1401 (} V; (m1 - mo)/cl
mo/Cz2 —mo/C3 -1/C3 | | V3
1/L, 0 R/L, 0 nl|t 0 » a-Ni<-l
L o 1/L, 0 0 I 0
11'11 '—(gzmo - m;}/CC1 (%mo - m;){/Cl —1/01 0 1 21
2| Mg — My 2 —(2mg—m;)/C3 0 -=1/C, Va
flg =) 1/L, 0 R/L, ({ n|w M-his1
L I 0 1/L, 0 0 I
[—=mo/C1 mp/C1 -1/C; 0 L 2] (mo —my)/C,
mo/C; -mo/C2 0 -1/Ci| | V2 0
1/L, 0  R/L, 0 n|t 0 v 1< -
(L o 1/L, 0 0 I 0

By section 6, a decomposition for constant matrix M and vector field g(x) is given by

1/C, 0 0 0

_ 0 1/C; O 0

M= 0 0 1/L, 0
0 0 0 1/L;

and
[[-m0 mo -1 0 \£1 my —mo
mg -mg 0 -1 Ve 0
L 0 1 0 O I 0
11;1 i —((2mo -m) (2mo-m;) -1 0 W
2| 2mo - ml) —(217!0 -my 0 -1 Vs
I L 0 1 0 0 I
[-mop me -1 0 L 2 mo—m
mg -—-m 0 -1 V; 0
. L O 1 0 o I 0



A realisation using only uncoupled passive 2-terminal elements is given in figure 4. The derivation
of f(x) is given in [11]. '

ExaMmpLE 0.5. Let the vector field be the Lorenz system,

Flyl=l—2z24+Rz-y].
z zy— Bz

z -0 o 0
Df [y] = [—z+R -1 —z] .
z y z -B

By the algorithm of theorem 2.5, there does not exist a coordinate change such that the vector field

f(x) is a reciprocal vector field. In applying the algorithm of section 6 for a constant matrix M,
one has

Observe that

H}(X) = 2110 + z22(R - 2)

Hiy(X) = zasy

H}y(X) = —z327 — z33z.
If H}(X) = H}5(X) = H}3(X) = 0 then 233 = z23 = £33 = 0. Thus, X is the 0 matrix and is not
invertible, which implies that a decomposition with f(x) = Mg(x) where M is diagonal and g(x) is
reciprocal of order (1,2) does not exist. Similarly,

H3(X) = 2130 — 222(R - 2)

H{y(X) = zasy

H3,(X) = —z327 + z332.
If H3,(X) = H}3(X) = H35(X) = 0 then 233 = 223 = 33 = 0. Thus, X is the 0 matrix and is not
invertible, which implies that a decomposition with f(x) = Mg(x) where M is diagonal and g(x) is
reciprocal of order (2,1) does not exist. Similarly,

H(X) = 2110 — 222(R ~ 2)

H{y(X) = —z33y

H233(X) = =222% — Z33Z.
If H3(X) = H3(X) = H3(X) = 0 then z33 = 222 = 233 = 0. Thus, X is the 0 matrix and is not
invertible, which implies that a decomposition with f(x) = Mg(x) where M is diagonal and g(x)
is reciprocal of order (3,0) does not exist. Thus, the vector field may not be implemented as an

electronic circuit composed of passive and uncoupled 2-terminal elements. Further information on

the Lorenz system is given in [6].



§1. Definitions. .

This section will prefsent the definition of a reciprocal vector field and a pseudo-reciprocal vector
field. A theorem will be presented detailing a method by which reciprocal vector fields of order (p, q)
may be identified. This theorem forms the crux of the identification algorithms. The definition of a
gradient vector field leads to theorem 1.6, which implies that gradient vector fields are a subset of
the set of reciprocal vector fields. Finally, the set of pseudo-gradient vector fields is defined.

Definition 1.1. A matrix is reciprocal of order (p, g) if and only if it has the form

A C
-Ct D
with A and D symmetric matrices of dimensions p and g respectively.

Remark: The term reciprocal is motivated by electrical circuit theory. Under proper reordering of
the port numbers, a reciprocal n-port resistor has a hybrid matrix which satisfies the properties of
Definition 1.1 [1]. '

Definition 1.2. A vector field f(x) is called a reciprocal vector field of order (p, q) if and only if
D f(x) is a reciprocal matrix function of order (2, 9)-

Definition 1.3. A vector field f(x) is called a pseudo-reciprocal vector field of order (p, g) if and
only if there exists a nonzero matrix M(x) such that f(x) = M(x)g(x) where g(x) is a reciprocal
vector field of order (p, g).

Remark: An RLC circuit is reciprocal (respectively, pseudo-reciprocal) if and only if there exists
some reordering of the capacitors and/or inductors such that the resulting state equations has a

reciprocal (respectively, pseudo-reciprocal) vector field.

Theorem 1.4. Let _
z31(x) ... z1a(x)

_z,.,:(x) z...;(x)

be an n X n matrix and

z3 ] fl(zl""’zﬂ)
)

Tn J Fa(Z1yee ey Zn)
be a C! vector valued function. Define the functions

n

GHLXx)x) =) (::;;,.(x) ‘é%fk(x) + fk(x)%zik(x) - 3jk(x)'a—i7fk(x) - fi(x) ;;-::z,-k(x))

k=1

6



for1<i<j<p
= 8 8
GHEEINR) = 3 (460 32 4(x) + () g a(0)+ () o) + () pcen(x)
fr1<i<pp+1<ism,

RN = 3 (2RI e ulx) + o) 20s(0) = 2400 i) — () pceie())

k=1

for p+1 < i < j £ n. Then X(x)f(x) is a reciprocal vector field of order (p,n — p) if and only if
GH(X(x))(x) = 0

for1<i<j<n.
Proor. If X(x)f(x) is a reciprocal vector field then its Jacobian is a reciprocal matrix. Note that
211(X) f1(x) + .. . + Z1a(x) fa (x)

X(x)f(x) = :
Za1(X)f1(X) + .. . + Zan(X) fa ()

has a Jacobian matrix whose ij-th entry is given by
D (X ()i () = I z(x) g () + ) - zin().
k=1

Applying the conditions for a matrix to be reciprocal (Def. 1.1) to the entries of the above Jacobian
matrix, we obtain the above 3 identities G¥;(X)(x) = 0. |

Definition 1.5. A vector field f(x) is called a gradient vector field if and only if there exists a
function F(x) such that f(x) = VF(x).

Theorem 1.6. A vector field f(x) : R* — R® is a gradient vector field if and only if Df(x) is a
symmetric matrix
PROOF. Clearly, a gradient vector field has a Jacobian which is symmetric. Conversely, since the

domain R" is simply connected, if the Jacobian is symmetric then it is well known that the function
defined by line integrals from a fixed point gives a function F(x) with f(x) = VF(x). |

Definition 1.7. A vector field f(x) is called a pseudo-gradient vector field if and only if there exists
a nonzero matrix M(x) such that f(x) = M(x)g(x) where g(x) is a gradient vector field.



§2. The identification of reciprocal vector flelds under coordinate changes.

Given a vector field f(x), which is not itself a reciprocal vector field, there remains the possibility
that under a permutation of coordinates, the vector field in the new coordinate system is a reciprocal
vector field. This section presents an algorithm that will determine if a vector field has a permutation
of coordinates to that of a reciprocal vector field. The algorithm is presented as part of a theorem,
whose proof therefore validates the algorithm.

Definition 2.1. Let e; denote the ith-coordinate vector.
Definition 2.2. A coordinate permutation matrix is a matrix of the form

E= [e,-‘ veo e;.]

where (i1,...,i4) is @ permutation of the integers (1,...,n).

The definition of a coordinate permutation matrix corresponds to the permutation of the coordinate

axes where the jth-axis is replaced by the i;th-axis.

Definition 2.3. The matrix A is similar to the matrix B via a coordinate permutation matrix E
ifE'AE = B.

Lemma 2.4. The vector field {(x) has a coordinate change via the coordinate permutation matrix
E,
x=EX

such that n(X) = §(EX) is a reciprocal vector field if and only if E‘D¢(EX)E = Dn(X).
ProoFr. Immediate. |

Theorem 2.5. There exists a coordinate permutation matrix E such that E‘AE is reciprocal if

and only if the following algorithm terminates successfully,

Step 1: If there exists 2 < i < n such that ay; # *a;; then there is no solution to the similarity
problem and the algorithm terminates unsuccessfully, else let (i15...,4p) be those indexes (in any
order) for which a1; = ai; and (ip41,...,in) be those indexes (in any order) for which ay; = —a;;.

Step 2: Let

E=(e; ... e, e,, ... e,.]

B = E*'AE.

Step 3: If B is not reciprocal then there is no solution to the similarity problem and the

algorithm terminates unsuccessfully, else A is similar to B via the coordinate permutation matrix

E, and the algorithm terminates successfully.



PROOF. See appendix. B

Remark: The necessity of theorem 2.5 is quite remarkable because it asserts that the reciprocity
property of a matrix M can be determined by examining first the entries in the first row and the
first column, and then relabelling the rows and columns by grouping all entries eith a3; = a;;. If the
associated electrical n-port is reciprocal, then the reordered hybrid matrix [1] must necessarily satisfy
Definition 1.1. This theorem therefore reduces an otherwise cumbersome combinatorial problem (if
n is a large number) to a very simple algorithm which can be carried out by inspection. Note that
one does not have to carry out any matrix multiplications because the reordered matrix is precisely
E'AE.

By the following lemma 2.6, the algorithm will determine A to be similar to one of p!(n—p)! reciprocal
matrices depending on the permutation (i1,...,4p), (ip+1s -+ -1 4n) of (1,...,p), (P+1,...,n) chosen.
Furthermore, when 1 < p < n, the matrix A is similar to a further p!(n — p)! reciprocal matrices
corresponding to permutations (j1,...)ja=p)s (Ja=p+1s+++1Jn) of (P+1,...,n),(1,...,p). The total
number of reciprocal matrices to which A is similar via coordinate permutation change matrices is
n! for n = p, and 2p!(n — p)! for 1 < p < n. In particular, when 2 < n, if A is similar to a reciprocal

matrix then there are at least 2 such matrices to which A is similar.

Lemma 2.6. Let A be similar to the reciprocal matrix B via a coordinate permutation matrix E.
If B is of order (p,n — p) and (i1,...,ip), (ip+1s .+ +1ia) is a permutation of (1,...,p),(p+1,...,n)
then A is similar to the reciprocal matrix

s I3
.” | Bley, ... e, e, ... e.]

via a coordinate permutation matrix. Furthermore, if1 < p < n and (1. .1 Jn—p)s(Jn=p+1s-+-:Jn)

is a permutation of (p +1,...,n),(1,...,p) then A is similar to the reciprocal matrix

]
€5,

]
ey
In=- N . . .
ot Blej, ... ©€ju, ©uppr -+ ©i.]
In=p+1

{4
'ej.'

via a coordinate permutation matrix.



ProoF. Coordinate permutation matrices are given by

F=E[ei‘ see el’, e"qnl e e‘.]

and

G=E[ejl bl ejl-' ejo-rﬂ bl ej-]

respectively. B

EXAMPLE 2.7. Let the matrix be given by

1 4 2
A=|—-4 6 =5].
2 5 3

Here, p= 2,i; = 1,i; = {p = 3, and i3 = §p41 = 2. Then a coordinate permutation matrix is given

by
1 00
E=10 0 1
010

to which A is similar to the reciprocal matrix

1 2 4
B=}|2 3 5}|.
-4 -5 6

10



§3. Pseudo-reciprocal vector flelds f(x) = M(x)g(x) where M(x) is invertible.

Given a vector field f(x), this section will determine if there exists an invertible matrix M(x) and
reciprocal vector field g(x) such that f(x) = M(x)g(x). If the vector field f(x) is associated with

an electrical circuit and

M(x) =_[M’c(f’) M,,_:('x“-p)]

= Mp(x;p) © Ma-p(Xa-p)
is a block diagonal matrix where Mp(x;) is a p X p matrix depending only on x, = (21, 23,...,2p) -
and Mq_p(xp-p) is an (n ~ p) x (n — p) matrix depending only on Xn—p = (Zp+1) Zp+2;-- -1 Za),
then M(x) can be interpreted as the Jacobian matrix associated with a p-port capacitor Cp and an
(n — p)-port inductor La-p respectively [1]. In this case, M;1(x;) is the emall-signal capacitance
matrix associated with the p-port capacitor Cp, and M1 (xn-p) is the small-signal inductance
matrix associated with the (n — p)-port inductor Ly..p. In the special case where M = M, ® M,_,

is a constant matrix, then M;‘ is the capacitance matrix of a linear p-port capacitor C, and M;},

is the inductance matrix of a linear (n — p)-port inductor Ly_p.

Since M(x) is invertible, the problem is equivalent to finding an invertible matrix X(x) such
that X(x)f(x) is a reciprocal vector field. Finding matrices X(x) such that X(x)f(x) is a reciprocal
vector field is done by application of theorem 1.4. Application of theorem 1.4 is attempted for
each possible order (p,n — p) for p = 1,...,n. Once a successful determination of the matrix X(x)
is achieved there still remains the problem of determining which, if any of the matrices X(x) are
invertible. Determining whether or not the matrix X(x) is invertible is done by computing the
determinant of the matrix. If no such invertible matrices exist then f(x) may not be written as
M(x)g(x) with M(x) invertible and g(x) a reciprocal vector field of order (p, n — p). Application of
theorem 1.4 is applied to the remaining untried orders until all possible orders are exhausted. If at
this point an invertible matrix X(x) does not exist then it can be concluded that a decomposition
of the desired form does not exist. If however, an invertible X(x) exists for some order (p,n — p),
then M(x) can be set to X(x)~!. Then f(x) = X(x)™}(X(x)f(x)) is a decomposition of the desired
form.

The problem becomes one of solving (for p=1,...,n)
GHL(X(x))(x) =0
for1<i<j<nand
detX(x) # 0.

The first condition is to ensure that X(x)f(x) is a reciprocal vector field of order (p,n — p) while
the second condition ensures that X(x) is invertible. The following example will demonstrate the

algorithm outlined above when the matrix M is taken to be a constant matrix.

11



_ExampLE 3.1. (Figure 5.) Let

(2] et

—3z}+ 223+ 322

then (with p= 1 and constant matrix X),

F] ]
GL(X) = z11 -5;;1'1(!) +z31 -az—lfx(X)+

zn-oi—zfz(x) + 222 ':Tlfz(x)

= 23(z11 — Z31 — 5223) + 22(2211 + 221 + 4212) + z11 + 3213.
Thus G},(X) = 0 if and only if
z1y =231 — 5223 =0
2211 + 231+ 4712 =0
211+ 3212 =0.

Thus

X=[ zu —§=u].

-3Z11 ézu

If X is invertible then —1/3z3, # 0, i.e. ;1 # 0. Let z;; = 3 and define M = X~1, then

A2)=15 3 30D
|11 z} + 32123 + z3
[2 3] [32 - $z3 - 2212,

is a desired decomposition for the pseudo-reciprocal vector field f(x).

12



§4. Pseudo-reciprocal vector flelds f(x) = M(x)g(x) where M(x) is symmetric invertible.

Given a vector field f(x), this section will determine if there exists a symmetric invertible matrix
M(x) and reciprocal vector field g(x) such that f(x) = M(x)g(x).

Since M(x) is symmetric invertible, the problem is equivalent to finding a symmetric invertible
matrix X(x) such that X(x)f(x) is a reciprocal vector field. The method is very similar to the case
where the matrix M(x) is invertible. Finding matrices X(x) such that X(x)f(x) is a reciprocal
vector field is done by application of theorem 1.4. Application of theorem 1.4 is attempted'for :
each possible order (p,n — p) for p = 1,...,n. Once a successful determination of the matrix X(x)
is achieved there still remains the problem of determining which, if any of the matrices X(x) are
symmetric and invertible. Of the possible matrices X(x), symmetry conditions on the entries are
first checked for consistency. Of those matrices X(x) which are symmetric, their determinant is
computed to determine which are invertible. If no such symmetric invertible matrices exist then
f(x) may not be written as M(x)g(x) with M(x) symmetric invertible and g(x) a reciprocal vector
field of order (p,n — p). Application of theorem 1.4 is applied to the remaining untried orders until
all possible orders are exhausted. If at this point a symmetric invertible matrix X(x) does not exist
then it can be concluded that a decomposition of the desired form does not exist. If however, a
symmetric invertible X(x) exists for some order (p,n ~ p), then M(x) can be set to X(x)~1. Then
f(x) = X(x)"1(X(x)f(x)) is a decomposition of the desired form.

The problem becomes one of solving (for p=1,...,n)
GH(X(x))(x) =0

forl<i< j<n,
2ij(x) = zji(x)
for1<i<j<nand
detX(x) # 0.
The first condition is to ensure that X(x)f(x) is a reciprocal vector field of order (p, n— p) while the
second condition ensures that X(x) is symmetric. The last condition restricts the possible matrices

X(x) to those which are symmetric and invertible. The following example will demonstrate the

algorithm outlined above for a constant matrix M.

ExampLE 4.1. (Figure 6.) Let

2] = z} + 223 + z1 — 62,
z2| 23%-{-3.’33-}-231—932 !
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then (with p =1 and constant matrix X),

a 8
G1a(X) = zn Efl(x) + 3213;;f1(x)+
8 ]
z13 3;;.&(3) + 233 5—;.&(:)
= £1(2221 + 4233) + z2(4211 + 6213) + z21 + 2223 — 6211 — 9Z13-
Thus G},(X) = 0 if and only if

2231 + 4223 =0
4211+ 6212=0

291 + 2222 — 6211 — 9212 = 0.
Thus
X= [zu —2311] .
21 -;8'21
The additional constraint
T3 =221
results in

2
z11 —~xZ11
x= [_2 13 ] .
3311 3’311

If X is invertible then —1/9z2, # 0, i.e. 213 # 0. Let z3; = —3 and define M = X", then

al=13 A (5 AlzED
g | et

is a desired decomposition for the pseudo-reciprocal vector field f(x).
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§8. Pseudo-reciprocal vector flelds f(x) = M(x)g(x) where M(x) is symmetric positive definjte.
Given a vector field f(x), this section will determine if there exists an symmetric positive definite
matrix M(x) and a reciprocal vector field g(x) such that f(x) = M(x)g(x). If f(x) is associated
with an electrical circuit, then a symmetric block diagonal positive definite M(x) = M,(x,) ®
Ma-p(xn-p) implies that all capacitors and inductors in the circuit are reciprocal and passive(1].

Since M(x) is symmetric positive definite, the problem is equivalent to finding a symmetric
positive definite matrix X(x) such that X(x)f(x) is a reciprocal vector field. The method is very .
similar to the case where the matrix M(x) is symmetric invertible. Finding matrices X(x) such that
X(x)f(x) is a reciprocal vector field is done by application of theorem 1.4. Application of theorem
1.4 is attempted for each possible order (p,n — p) for p= 1,...,n. Once a successful determination
of the matrix X(x) is achieved there still remains the problem of determining which, if any of the
matrices X(x) are symmetric positive definite. Of the possible matrices X(x), symmetry conditions
on the entries are first checked for consistency. Of those matrices X(x) which are symmetric, the
determinants of their minors are computed to determine which matrices have minors that are strictly
positive, thus ensuring that the matrix is positive definite. If no such symmetric positive matrices
exist then f(x) may not be written as M(x)g(x) with M(x) symmetric positive definite and g(x)
a reciprocal vector field of order (p,n — p). Application of theorem 1.4 is applied to the remaining
untried orders until all possible orders are exhausted. If at this point a symmetric positive definite
matrix X(x) does not exist then it can be concluded that a decomposition of the desired form does
not exist. If however, a symmetric positive definite X(x) exists for some order (p, n — p), then M(x)
can be set to X(x)~1. Then f(x) = X(x)™}(X(x)f(x)) is a decomposition of the desired form.

The problem becomes one of solving (for p=1,...,n)

GE(X(x))(x) =0
for1<i<j<n,
2ij(x) = zji(x)

for1<i<j<nand

zn(x) o 31.’(3()

det > 0.

z.';(x) vee z.-.-.(x)
The first condition is to ensure that X(x)f(x) is a reciprocal vector field of order (p, n — p) while the
second condition ensures that X(x) is symmetric. The last condition restricts the possible matrices
X(x) to those which are symmetric positive definite. The following example will demonstrate the

method outlined above for a constant matrix M.
ExampLE 5.1. (Figure 7.) Let
f z1| _ sin(z; + z2)
z3| = |sin(zy + z3) + 4sin(z;) cos(z2) |’
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then (with p =1 and constant matrix X),
Gla(X)=zn :—fx(x) +zn ifl(x)-i-
Ty~ fz(x) + zzza—fz(x)
= cos(z1) cos(z2)(Z11 + z21 + 213 + 5z23) — sin(z1) sin(z2)(z11 + 221 + 5212 + z32).
Thus G},(X) = 0 if and only if

zu+zn+z13+5233=0

zu+zn+5z12+222=0.

Thus
= [zn —%zu - 5321]
21 —=¥Tu - g¥n
The additional constraint
T12=221
results in

1
-1 fu  —¥In
X= [_l _I ]
7Z11 »Z11

The conditions for a positive definite matrix,
211 >0

8
T 49

cannot both be simultaneously satisfied. With p = 2,

811>0

r] ]
Gi(X)=zn %;fl (x) =z %fx(x)-i-

a8 /]
z12 mfz(x) - z32 Efz(x)
= cos(z1) cos(22)(211 = 221 + 213 — 5223) — sin(zy) sin(z3)(z11 — 221 + 5212 — Z22).

Thus G%,(X) = 0 if and only if

T — 221+ Z12—5222=0

Zy1 — 221+ 52123 —-232=0.
Thus

- [ Z11 12 ]
z11+ 6212 —z12]°
The additional constraint
12 =221

results in

X=[ 11 —ézn .
—;1;3’11 éxn

16



The conditions for a positive definite matrix,

z11>0

4
55-331 >0

can be simultaneously satisfied with 24y = 5/4. Thus

rlal=14 3 (4 =D
= [1 1] [0?8(31)8in(23)
15 sm(zl)cos('zz)

is a desired decomposition for the pseudo-reciprocal vector field f(x).

§6. Pseudo-reciprocal vector fields f(x) = M(x)g(x) where M(x) is diagonal positive definite.
This section will consider the decomposition of a vector field f(x) as M(x)g(x) where the matrix
M(x) is diagonal positive definite and the vector field g(x) is a reciprocal vector field. If f(x) is
associated with an electrical circuit, then a positive definite diagonal M(x) implies that all capacitors

and inductors in the circuit are passive and uncoupled two-terminal elements{1].

The identification problem is the same as finding a diagonal positive definite matrix X(x) =
A(211(X)y- ..+ Zna(x)) such that X(x)f(x) is a reciprocal vector field. Once this is achieved, by
setting M(x) = X(x)~1, a decomposition of the required form is f(x) = M(x)(M(x)~? f(x)). If the
vector field f(x) does not have a decomposition of the required form then the matrix X(x) does not
exist.

The following theorem gives conditions on the diagonal matrix X(x) = A(z11(x),...) Znn(xX))
to ensure that X(x)f(x) is a reciprocal vector field. Of these diagonal matrices, one searches for those
that are positive definite, this entails the consideration of those matrices for which 211(x), ..., Zan(X) > -

0. Thus solutions are sought to the problem (for p=1,...,n),
B(X()(x) = 0
for 1 < i < j < n (where HY(X(x))(x) is defined below) and
| zii(x) > 0

for 1 < i < n. The first condition is to ensure that X(x)f(x) is a reciprocal vector field of order

(p,n — p) while the second condition is to ensure that the matrix X(x) is positive definite.
Theorem 6.1. For 1 < i < j < n define the functions
BEX()() = 23x) o i) + Fi(x) o) = £55(0) o (%) = F5() ()
" " dz; * ! dz; ' A T N gz,
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for1<i<j<p

HY(X(x))(x) = zii(x) —f i(x) + f;(x) 3»(") + z;5(x) —"fJ (x)+ 15 (x) "'.fj(x)

for1<i<pp+1<j<nm,

(X(x))(x) = Zii(x) 75— dz; f-(x) + f.(x)-o-—z“(x) z”(x) fi(x) f,(x) z,,(x)

for p+1 < i < j < n. Then Mf(x) is a reciprocal vector field of order (p,n — p) if and only if

HE(X(x))(x) = 0

forl<i<j<n
Proor. If X(x)f(x) is a reciprocal vector field then its Jacobian is a reciprocal matrix. Note that

since X is a diagonal matrix then

z11f1(x)
X(x)f(x) = :
Zanfa (x)

has Jacobian matrix with ij-th entry being

D (X(x)F(x));; (%) = 2a(x) %fs(X) + (%) %jz.«x).

The conditions for a matrix to be reciprocal are immediately applied to the entries of the Jacobian
matrix. | |

ExamMpLE 6.2. (Figure 8.) This example will be an illustration where the matrix M is further
required to be a constant matrix. Let

f [:;] - [ cos(z3) + sin(z1) ]

—2z, sin(z3) + 222 |’
then (with p = 1),
é o
Hi)(X)=zn Efl(x) + zzlafx(")"'

8 ]
z12 8—:2-1'2(*) + zzza;-;fz(x)

= - 81!1(22)(311 + 2322).
Thus H},(X) = 0 if and only if

z11 + 2222 =0.
Thus
X= 11 0 .
0 —%311 ’
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The additional constraints
z11>0

-%zn >0

cannot both be simultaneously satisfied. With p = 2,

. H, gz(X) =211 8—2;,& (x) -z ;ﬁf 1(X)+

212 %fz(x) -2 52—1f 2(x)

= - sin(zg)(zu - 2:23).

Thus H3;(X) = 0 if and only if

211 —2z92=0

Thus

211 0
X= .
[ 0 %zlx]

The additional constraints
211 >0

1

5331 >0

can be simultaneously satisfied with 2,1 = 2. Thus

RN E)
= [(1) g] [cos(xz.)-i-sin(zlz)
-z, sin(z3) + 23

is a desired decomposition for the pseudo-reciprocal vector field f(x).
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§7. Pseudo-reciprocal vector flelds f(x) = M(x)g(x) where M(x) is diagonal invertible.
This section will consider the decomposition of a vector field f(x) as M(x)g(x) where the matrix
M(x) is diagonal invertible and the vector field g(x) is a reciprocal vector field. If f(x) is associated
with an electrical circuit, then a diagonal M(x) implies that a circuit realisation is possible by using
only 2-terminal (possibly active) capacitors and inductors in addition to resistors.

The problem is the same as finding a diagonal invertible matrix X(x) = A(z11(x), . .-) Zan(x))
such that X(x) f(x) is a reciprocal vector field. Once this is achieved, by setting M(x) = X(x)~ La
decomposition of the required form is f(x) = M(x)(M(x)~*f(x)). If the vector field f(x) does not
have a decomposition of the required form then the matrix X(x) does not exist.

Thus, solutions are sought to the problem (for p% ,..0n)y,

H{(X(x))(x) =0
forl<i<j<nand ‘
zii(x) #0
for 1 < i < n. The first condition is to ensure that X(x)f(x) is a reciprocal vector field of order

(p; n — p) while the second condition is to ensure that the matrix X(x) is invertible.

§8. Identifying pseudo-gradient vector fields[9].
If f(x) is associated with an electrical circuit, then a pseudo-gradient f(x) corresponds to an RC
or RL 2-element type reciprocal circuit; i.e, the circuit contains only capacitors, or only inductors,
in addition to reciprocal resistors[1). In particular, if f(x) has a decomposition as M(x)g(x) where
the matrix M(x) is positive definite and g(x) is a gradient vector field then f(x) does not admit
periodic orbits. This is proved in the following lemma.

Lemma 8.1. If f(x) = M(x)g(x) where M(x) is positive definite and g(x) is a gradient vector field
then there do not exist periodic orbits for f(x).

ProoF. Let G(x) be a function such that g(x) = VG(x). Let ¢(x,t) denote the solution to
¢'(x,t) = f(é(x,1))

#(x,0) = x
and consider the function

B(x,) = —G($(x, 1)).
Then
2 Bxt) = ~VG(#(x, 1) 4'x. 1)
= ~VG($(x )).F($(x:1))
= —VG(4(x, 1) M(x)VC($(x:1))

<o.
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Assume that a periodic orbit exists through the point xo with period 0 < ¢o. Then
0 = G(é(x0, t0)) — G(¢(x019))
= E(xo, io) - E(xo’ 0)
to a
= /o 5o E(x018) do

= [*-v6tétx N MEvEsx o) do
<o.
Thus, VG(¢(x9, 8)) = 0 for 0 < s < o from which it follows that
£(x0) = M(xo0)g(xo0)
= M(x0) VG(¢(x0,0))
=0.
Thus, the point xp is a fixed point of f(x) which is in contradiction to being on a periodic orbit.
Thus, periodic orbits do not exist for the vector field f(x). |

It is immediate that a pseudo-gradient vector field cannot admit Smale horseshoes. Such horseshoes
contain infinitely many periodic orbits while lemma 8.1 rules out the possibility of periodic orbits
occuring in pseudo-gradient vector fields.

Corollary 8.2. Pseudo-gradient vector fields f(x) = M(x)g(x) with positive definite M(x) do not
admit periodic orbits.

Proor. Immediate from lemma 8.1. [ |

ExampLE 8.3. The condition that M be positive definite cannot be weakened to invertible. Consider
the vector field | .
f 21| 0 1 1
2| =1 0|z
0 1][1 o] [=
-1 0|0 1]z
_[o 1] [=
- -1 0] 9 22|

The vector field f(x) admits the periodic orbits given by (r sin(t), r cos(t)) for 0 < r.

ExaMpPLE 8.4. The condition that M be positive definite cannot be substituted by symmetric.

Consider the vector field )
f | _{0 1 ] z
z2 | -1 0] [z

(1 010 1][=
_0 —1_ 10 T2
[0 1] [z

-1 0]9]|z2,
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The vector field f(x) admits the periodic orbits given by (r sin(t), r cos(t)) for 0 <r

By theorem 1.6, the identification of a pseudo-gradient vector field is the same as the identification
of pseudo-reciprocal vector fields where the Jacobian matrix is a reciprocal matrix of order (n,0).
The identification of matrices M(x) which are invertible, symmetric invertible, symmetric positive
definite, diagonal positive definite and diagonal invertible such that M(x)f(x) is a gradient vector
field is achieved by the following algorithms which are the restrictions of the corresponding algorithms
for the pseudo-reciprocal case. ‘

To search for invertible matrices M(x), the problem becomes one of solving for the matrix X(x)

where
GHX(x)(x) =0
for1<i< j<mnand
detX(x) # 0.
The first condition is to ensure that X(x)f(x) is a gradient vector field, while the second condition

ensures that X(x) is invertible. Thus the vector field f(x) may be written as M(x)g(x) where
M(x) = X(x)"! is invertible and g(x) = X(x)f(x) is a gradient vector field.

To search for symmetric invertible matrices M(x), the problem becomes one of solving for the matrix
X(x) where

GH(X(x))(x) =0
for1<i<j<n,
2ij(x) = z;i(x)
for1<i< j<nand
detX(x) # 0.
The first condition is to ensure that X(;:)f(x) is a gradient vector field, while the second condition
ensures that X(x) is symmetric. The last condition restricts the possible matrices X(x) to those

which are symmetric and invertible. Thus the vector field f(x) may be written as M(x)g(x) where
M(x) = X(x)~! is symmetric invertible and g(x) = X(x)f(x) is a gradient vector field.

To search for symmetric positive definite matrices M(x), the problem becomes one of solving for

the matrix X(x) where
GHX(x))(x) = 0
for1<i<j<nm,
zij(x) = zji(x)
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forl<i<j<nand

z1(x) ... z1(x)

det : > 0.

za(x) ese z;g(x)
The first condition is to ensure that X(x)f(x) is a gradient vector field, while the second condition
ensures that X(x) is symmetric. The last condition restricts the possible matrices X(x) to those
which are symmetric positive definite. Thus the vector field f(x) may be written as M(x)g(x) where
M(x) = X(x)~? is symmetric positive definite and g(x) = X(x)f(x) is a gradient vector field.

To search for diagonal positive definite matrices M(x), the problem becomes one of solving for the
diagonal matrix X(x) where

H(X(x))(x) =0
for1<i<j<mnand
zii(x) >0

for 1 < i < n. The first condition is to ensure that X(x)f(x) is a gradient vector field, while the

second condition is to ensure that the matrix X(x) is positive definite.

To search for diagonal invertible matrices M(x), the problem becomes one of solving for the diagonal
matrix X(x) where

H(X(x))(x) =0

for1<i<j<nand
z.-.-(x);éo

for 1 < i < n. The first condition is to ensure that X(x)f(x) is a gradient vector field, while the

second condition is to ensure that the matrix X(x) is invertible.
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§9. Identifying pseudo-reciprocal piecewise linear vector fields[10].

In the case of piecewise-linear vector fields, an explicit computation of the functions G¥;(X(x))(x)
for constant matrices X(x) is possible. This allows a more efficient algorithm to determine pseudo-
reciprocity of piecewise linear vector functions. First a definition and a lemma are needed before
the presentation of the algorithms. The algorithms will determine the existence of matrices Y such
that Y¢ is a reciprocal vector field in the cases that Y is invertible, symmetric invertible, symmetric
positive definite, diagonal positive definite and diagonal invertible.
Definition 9.1. Given a matrix A, define the set

x(A,p) = {X : XA is reciprocal of order (p,dim A - p)}.
The matrix X is such that XA is a reciprocal matrix of order (p, dim A — p).
Lemma [10] 2.3. Considering a matrix X written in the form of a n x n-tuple
[ 211 ]
Zian

.
.

Zn 1

LZn n

there exists a finite set of vectors vy,...,v, € R**® such that

x(A,p) = {tivi+...+t,v, : t1,...,t, ER}.

An algorithm to implement the lemma is immediate by solving a set of linear equalities that a matrix
must satisfy if it is to be in the set x(A, p). Let the vector field £ be given by

z a biu ... ][22 m | %1 81’ 1=
el if=]:]+]: SRR ED I I I I R
Zn Cn bar .. band Lza =1 | ajn Bin Zn
then an algorithm to determine the existence of invertible matrices Y with Y o £ a reciprocal vector

field is given by the following sequence of steps:
Step 1: Let s = 1.

Step 2: Let S = {w{,..., w2 } where the vectors {wf,..., w$, } form a basis for

bll ese bln
X : .8},
bnl ese bnn
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Step 3: For i=1 to m repeat the steps 3.1 through to 3.3.
Step 3.1: Let T = {v{,..., v}, } where the vectors {vi,.. -y v5,} form a basis for

aj1fpn ... @j1fin
X . . 81 .

@jafij1 ... ajuﬁjn

Step 3.2: Let R = {wj,...,w{,} where the vectors {wi,...,w},} form a basis for span(S) N
span(T).

Step 3.3: Let S= R.
Step 4: Form the matrix

T
Y(219eee12g,) = Zz;w}"

i=1

and let f(z1,...,24,) be the polynomial given by
f(&'l, csey 39,.) = detY(zl’ eeoy zq")o

Step 5: Determine if f(z1,...,2,,) is identical to the zero function. ¥ it is then go to step 6 else
choose values for zy,...,2g, such that f(zi,...,24,.) # 0 and go to step 7.

Step 6: In this case, all matrices Y such that Y o§ is a reciprocal vector field of order (s,n — s) are
non-invertible. If s < n then let s = s + 1 and go to step 2, otherwise there do not exist invertible
matrices Y such that Y o £ is a reciprocal vector field of any order. The vector field ¢ cannot be
written in the form § = X o { where X is invertible and ¢ is a reciprocal vector field.

Step 7: In this case, there exists a set of values z,,...,z,,, such that the matrix
[ Y
Y(zl, ...,zq,') = Zz;w?
=1

is invertible and Y o £ is a reciprocal vector field of order (s,n — s). Thus £ can be written in the
form £ = Y=o (Y 0 €) with Y~! invertible and Y o £ a reciprocal vector field.

An algorithm to determine the existence of invertible symmetric matrices Y with Y o £ reciprocal
vector fields is given by the following sequence of steps:
Step 1: Let s = 1.

Step 2: Let S = {wY,..., wgo where the vectors {w),..., w‘q’o} form a basis for

bll soe bln
X l.8].
bul ces bn“

Step 3: For i=1 to m repeat the steps 3.1 through to 3.3.
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Step 3.1: Let T = {vi,...,v},} where the vectors {v{,...,v},} form a basis for

aj1fj1 ... @j1Bjn

X : E K12
ajafjn ... Qjnfin
Step 3.2: Let B = {wi,...,w} } where the vectors {wi,..., w(,} form a basis for span(S) N
span(T).
Step 3.3: Let S= R.

Step 4: From the equation .
Yzi(wl = (wl)) =0
i=1

determine a set of independent variables 2,,...,2; and dependent variables z341,...,24,. Form

the matrix

[ (Y
Y(z1)..0022) = Zc;w}"
f=1

and let f(z1,...,z%) be the polynomial given by
f(21y...y22) = detY(z1,...,22).

Step 5: Determine if f(zy,...,23) is identically the zero function. If it is then go to step 6 else
choose values for 2,,...,2 such that f(z1,...,2:) # 0 and go to step 7.

Step 6: In this case, all symmetric matrices Y such that Y o £ is a reciprocal vector field of order
(syn — 8) are non-invertible. If 8 < n then let s = s + 1 and go to step 2, otherwise there do not
exist invertible symmetric matrices Y such that Y o £ is a reciprocal vector field. The vector field £

cannot be written in the form £ = X o{ where X is invertible symmetric and ¢ is a reciprocal vector
field.

Step 7: In this case, there exists a set of values z;,..., 2% such that the matrix
qm
Y(z19.ee1Zgn) = Ez.-w,!"
=1

is invertible symmetric and Y o{ is a reciprocal vector field of oreder (s, n—s). Thus £ can be written

in the form £ = Y~! o (Y 0 ) with Y—! invertible symmetric and Y o £ a reciprocal vector field.

An algorithm to determine the existence of symmetric positive definite matrices Y with Y o £
reciprocal vector fields is given by the following sequence of steps:
Step 1: Let s = 1.

Step 2: Let S = {w{,..., w3} where the vectors {w{,..., w2 } form a basis for

bll oo blu
X : :],8).
bar -.. Dan
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Step 3: For i=1 to m repeat the steps 3.1 through to 3.3.
Step 3.1: Let T = {v{,..., vi,} where the vectors {vi,..., v} } form a basis for

1By ... @jfin
x|| P {oe]-
@Bt .+ @inPin
Step 3.2: Let R = {w},..., w},} where the vectars {wi,..., w } form a basis for span(S) N
span(T).
Step 3.3: Let S= R.
Step 4: From the equation
qm
Do zi(wp = (wP)) =0
=1
determine a set of independent variables 2y,...,2; and dependent variables zz41,...,2q,. Form

the matrix .
Ya(Z1y.c0022) = Ez.-w,'-“.

=1

Define the matrices

Ya(z1yee00Z6)11 -o0 Ya(®1yeeohZa)1i
Yi(z1y..0yzi) = : :

Ya(Z1yeeor2)in - Ya(Z1yeeos Zk)ii

and let fi(z1,..., zx) be the polynomial given by

fi(z1y ... 28) = detYi(zy,...,zs)

for1< i.s n.
Step 5: Determine if there exist values z,...,2; such that the following set of inequalities hold
simultaneously,

fi(z1y...,zk) >0

fa(z1y...,2) >0.
If such values do not exist then go to step 6 else go to step 7.
Step 6: In this case, all symmetric matrices Y such that Y o ¢ is a reciprocal vector field of order
(8,n — s) are either non-invertible or invertible and not positive definite. If s < n thenlet s=s+1
and go to step 2, otherwise there do not exist symmetric positive definite matrices Y such that Yo¢
is a reciprocal vector field. The vector field £ cannot be written in the form £ = X o ¢ where X is
symmetric positive definite and ( is a reciprocal vector field.

Step 7: In this case, there exists a set of values z;,...,2; such that the matrix

9m
Ya(z1,.00y2g,) = E‘”"w?

=1
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is symmetric positive definite and Yoo is a teciprocﬁ vector field of order (s,n — 8). Thus £ can be
written in the form £ = Y;10( Y, 08) with Y7 ! symmetric positive definite and Y, 0§ a reciprocal
vector field.

In the case that the matrix Y is diagonal positive definite, a number of definitions and lemmas
are necessary before allowing presentation of the algorithm. The matrix Y is denoted as a vector

Definition [10] 7.1. Define the set

r-dlll " d1a1 h i ﬂl N
ay B : : ;
I el A I R " dop | 5| P
E [] ﬁ:“ 2| = dpa | P ERI | g Jar i | =2 - > .
a“ . M .
.d.“a - dn.aﬂ - '—.p“-‘

Lemma [10] 7.2. There exists vectors such that

ay B k Ci1
E {E}, : |2 ={Zt;[§]:t.‘€ﬁ}.
Qn ﬂ“ i=1 Cin

Definition [10] 7.3. Define the set

bu cee bln d1 dlbu oo d;bn;
F : 2 lp) = i : : reciprocal of order (p,n—p) 7.
bul soe bnn d“ d“bﬂl vee dnbnn

Lemma [10] 7.4. There exists vectors such that

buu ... b k da
F([‘ E],P)={Zta|:§]:tieﬁ}.
bp1 ... ban =1 | d;,
Implementing algorithms for lemmas[10] 7.2, 7.4, are exercises in linear algebra. With the lemmas
presented, the stage is set for the algorithm. An algorithm to determine the existence of diagonal
positive definite matrices Y with Y o £ reciprocal vector fields is given by the following sequence of
steps:

Step 1: Let s = 1.

Step 2: Let S = {w{,..., w2} where the vectors {w{,...,wg } form a basis for

bll X bln
F N YR
bnl see b"“
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Step 3: For i=1 to m repeat the steps 3.1 through to 3.3.
Step 3.1: Let T = {vi,..., vi,} where the vectors {v{,..., v$.} form a basis for

aj1 Bix
E R AD
Qja ﬁja

Step 3.2: Let R = {w{,...,w} } where the vectors {w{,...,w} } form a basis for span(S) N
span(T).

Step 3.3: Let S= R.
Step 4: Determine if there exist values zy,...,2z4, such that the following set of inequalities hold

simultaneously,
zi(wPh +...+ z,,.(w;';)l >0

.

21 (WP )n + oo+ Zgn (W )n >0.
If such values do not exist then go to step 5 else go to step 6.

Step 5: In this case, all diagonal matrices Y such that Y o £ is a reciprocal vector field of order
(s,n — 8) are either non-invertible or invertible and not positive definite. If s < n thenlet s =s+1
and go to step 2,' otherwise there do not exist diagonal positive definite matrices Y such that Y o
is a reciprocal vector field. The vector field £ cannot be written in the form § = X o { where X is
diagonal positive definite and { is a reciprocal vector field.

Step 6: In this case, there exists a set of values z3,...,2z such that the matrix

A(yls seey yu)
with

I
=Y zi(wP);
i=l
is diagonal positive definite and A(y1,...,¥n) o€ is a reciprocal vector field of order (s, n — 5). Thus
£ can be written in the form £ = A(%1,..+y¥n) "2 0 (A(¥1+.- s Yn) 0 &) With A(y1,...,yn)~! diagonal

positive definite and A(y1,...,¥n) © § a reciprocal vector field.

Note that if there exists a solution y1,...,¥q, to

2i(Wi'h + ...+ 2g. (W 1 = &1 >0

zl(w;.n)“ + ooc+ ZQm(w::‘)n - en >0

then there exists a solution #,..., y,’,_ to

(Wi + ...+ Zg (Weo 1 21

21 (WD )n + .o+ Zg (W, Ja 21
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by scaling the original values y1,...,Yq, With a sufficiently large constant. Decompose the variables
TlyeeeyTqm 88 Ti =iz} — 22 for i = 1,...,gm. It then follows that y} = #1,...,4}. = Yor V3 =

0,...,y3, =0isan bptima.l solution to the linear programming problem of

minimise gv,-

subject to
Z(wWwPh —2}(WPh +.o 2k (WR -2 (Wi +n—u =1

.

2} (W) — 23 (WP)a + .o+ 2L (W )n — 23 (Wi )1 + ¥a — ttq =1

,Z3_ >0

21,250 2],
ul,ooo, ““, 01, ce ey ”“ 20-
Conversely, given an optimal solution to the above linear programming problem, if 0 < u; — v; for

i=1,...,n then z; = 2} — z? is a solution to the original problem

21(WI'h + ..+ Zg0 (Wg )1 >0

Z1(W)n + oo+ Zgn (WG )n >0.

An algorithm to determine the existence of diagonal invertible matrices Y with Y o € reciprocal
vector fields is given by the following sequence of steps:
Step 1: Let s = 1.

Step 2: Let S = {w},...,wQ } where the vectors {w},...,w}} form a basis for

bu ves bln
F : Y B
bnl XY bn"

Step 3: For i=1 to m repeat the steps 3.1 through to 3.3.
Step 3.1: Let T = {vi,..., v},} where the vectors {vi,..., vi } form a basis for

aj1 Bir
E S B B Y
Qjn ﬁjn

Step 3.2: Let R = {wj,...,w} } where the vectors {wi,..., w? } form a basis for span(5) n
span(T).
Step 3.3: Let S= R.
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Step 4: Determine if there exist values z),...,24, such that the following set of inequalities hold .

simultaneously,
(Wl +...+ z,_(w;'_‘.)l #0

z1(Wi)a +... + 2. (Wg )a #0.
If such values do not exist then go to step 5 else go to step 6.
Step 5: In this case, all diagonal matrices Y such that Y o £ is a reciprocal vector field of order
(s,n — 8) are non-invertible. If s < n then let s = 8 + 1 and go to step 2, otherwise there do not
exist diagonal invertible matrices Y such that Y o £ is a reciprocal vector field. The vector field £
cannot be written in the form £ = X o { where X is diagonal invertible and ( is a reciprocal vector

field.
Step 6: In this case, there exists a set of values z;,...,2; such that the matrix

A(yl’ veey yu)

with

Im
b= Y nwh);

i=1
is diagonal invertible and A(y1,..-,¥n) 0 £ is a reciprocal vector field of order (s,n — s). Thus £
can be written in the form € = A(¥1,...,¥n)~ 0 (A(¥1,:-+s¥a) 0 §) With A(y1,...,yn)"! diagonal
invertible and A(y1,...,¥n) © € a reciprocal vector field.

§10. Identifying pseudo-gradient piecewise linear vector fields[10].

In the case of piecewise linear vector fields, a more explicit computation of the functions G7;(X(x))
is possible. This allows a more efficient algorithm to determine pseudo-gradiency of piecewise linear
vector functions. As pseudo-gradient piecewise linear vector fields are a proper subset of pseudo-
reciprocal piecewise linear vector fields, is suffices to mote that algorithms for the identification
of pseudo-gradient piecewise linear vector fields are immediately obtained from the algorithms for
pseudo-reciprocal piecewise linear vector fields by restricting the pseudo-reciprocal piecewise linear

vector fields of interest to those which are of order (n,0).
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Appendix: Proof of theorem 2.5.

Clearly, if the algorithm terminates successfully then a co-ordinate permutation matrix E is con-
structed such that E‘AE is reciprocal. Conversly, assume there exists a coordinate permutation
matrix E such that B = E*AE is reciprocal. It may be taken that

E=[e, ... €,]

and _ i
bll X bl, bl”l see bln

. . . .
. . . .
. . . .

B: blp vee bp, b”-‘-l see 'bp"
‘blp-l-l eee —6”,44 bp+1’+1 . b,...;..

. . . .
. . . .
. .

L "'bln cee -bpn bp+1” s0e b“n o
Note that E1 is also a coordinate permutation matrix. Thue E-! = F where

F=[ej, ... e;]
with (j1,...,Jn) the inverse permutation to (4;....,4s). The matrix
A = (E"!)'BE"! = F'BF
has first row

By« bjrjal

and first column
bjx,it
. b.i.j;
Since bj,; = =+b;j,, the first step of the algorithm is successfully completed.
If 1 < j1 < p, there exist (k1,...,kpy kps1y..., kn) such that
bjrin, = G1ky
= ap
= bjlgjl

for1<I<pand
bJ'xJ'A., = 61k

= aK1

= —bjkgjl
for p+1 < i < n. Thus (Ji,y-. -y Jk,) = (M1y...,mp) and (Ji,yyr---1Jka) = (Mpt1,...,Mmp) where
(m1,...,mp) and (mp41,...,m,) are permutations of the integers (1,...,p) and (p + 1,...,n)

respectively. Define

G=[ex ... e, e, ....ex]
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This is the second step of the algorithm, then
FG=[ej, ... e ]les, ... e, e, ...,ex]
=[ej, - €iry Ciryy, Cira ]

=[em; - €m, €m., -.- en.],

or,
G=Elen, ... em, €nm,,, ... en.]
Thus .
e"l; T
et
G'AG= e""’ E‘AE[(em;, ... em, ©€m,; - ©€m,]
Mepl
L ef,, -
i bm; my XX} bm; my bm, Mpyt1 cve bm‘ Ma N
= bm‘ my eee bm’ m, bm, Myg1 sen bm' My
-bm; M1 *** “Vm, my4s Myp1 Mpp1  °°° bm’_'.‘ Ma
L -bm‘ me ecse "bm’ My bm”; Ma cne bm‘ Ma J

is a reciprocal matrix, the final step of the algorithm is successfully completed and the algorithm
terminates successfully.
If p+ 1< j1 < n, there exist (ky,...,kn—p)kn—pt1s...) ka) such that
bjviny = G1ky
= ap
= bju,jn

for1<I<n-pand
bjyir, = G2k

= a5
= —b’.lljl
for n—p+1< i< n Thus (Jrysee 1 Jk,) = (M1yeeoy Macp)y (Fhapirs <o o1 Jka) = (Macpt1see .y Ma)
where (my,...,mq_p) and (Mp_ps1,...,My) are permutations of the integers (1,...,n — p) and
(rn - p+1,...,n) respectively. Define
G=[er, ... €,_, €k, ---1€k]
This is the second step of the algorithm, then
FG=[ej ... ejllex, ... €ku, ©€kuopyy ---1€k,]
=[ej, --- €irn_, Cika_ppr  Cire ]
=[em; -+ €mn_, ©ma_ppr -+ ©m. )
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or,

G=Elem -.- €ma, Cmapp -+ ©m.)

Thus
et T
‘ L]
G'AG = e‘:"“" E'AE[em, .- ©m.., ©ma_pyr - em, ]
Ma=ptl
- S
bm, my e bm; Maey -bm,-,“ my oo —bm“ my
= bm‘ Mawy see bm._’ Mpwp -bm‘_'..,‘ Mawp cee —bm. Macy
bmﬂ—ﬂl my e bm‘_”‘ Mu=p Mmeptl Ma—ptl ese bm‘_”l Mp
. bm‘ ml. Xy bm‘ m‘_, bm'_”‘ Me see bm- My o

is a reciprocal matrix, the final step of the algorithm is successfully completed and the algorithm
terminates successfully. ' |
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Figure captions.
Figure 1. An electronic realisation of the vector field in example 0.1. Note that this is a circuit
corresponding to a third order system.

Figure 2. An electronic realisation of the vector field in example 0.2.
Figure 3. An electronic realisation of the vector field in example 0.3.

Figure 4. An electronic realisation of the vector field in example 0.4. Note that this is a circuit
corresponding to a fourth order system.

Figure 5. This is the phase portrait corresponding to the vector field given by

7l = ~3z}+ 2+ 2122+ 25
z3) " | ~323+223+32; |°

This vector field may be written as the product of an invertible matrix M and a reciprocal vector
field g(x) as f(x) = Mg(x).

Figure 6. This is the phase portrait corresponding to the vector field given by

il2] = z} + 223 + 2, — 6z,
z3 2z} + 323 + 22, - 922 | °

This vector field may be written as the product of an invertible symmetric matrix M and a reciprocal
vector field g(x) as f(x) = Mg(x). '

Figure 7. This is the phase portrait corresponding to the vector field given by

f [31] = [ sin(zy + 22)
z3 sin(z; + 23) + 4sin(z;) cos(zz) | *

This vector field may be written as the product of a symmetric positive definite matrix M and a
reciprocal vector field g(x) as f(x) = Mg(x).

Figure 8. This is the phase portrait corresponding to the vector field given by

f [:1] = [ cos(z2) + sin(z,)
2

-2z sin(z2) + 223 |°

This vector field may be written as the product of a diagonal positive definite matrix M and a
reciprocal vector field g(x) as f(x) = Mg(x).

36



Figure 1




Figure 2




figure

3



2

Figure 4




Figure 5



0




NI
/U




0

N




