Copyright © 1990, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

IMPROVING SOFTWARE FAULT TOLERANCE
.IN HIGHLY AVAILABLE DATABASE SYSTEMS

by

Mark Sullivan and Michael Stonebraker

Memorandum No. UCB/ERL M90/11

8 February 1990

IMPROVING SOFTWARE FAULT TOLERANCE
IN HIGHLY AVAILABLE DATABASE SYSTEMS

by

Mark Sullivan and Michael Stonebraker

Memorandum No. UCB/ERL M90/11

8 February 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

IMPROVING SOFTWARE FAULT TOLERANCE
IN HIGHLY AVAILABLE DATABASE SYSTEMS

by

Mark Sullivan and Michael Stonebraker

Memorandum No. UCB/ERL M90/11

8 February 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

1. Il_m'oducﬁon ’

Today, software errors rank with hardware and operator errors as a source of failures in fault tolerant
systems [13]. However, current trends may soon make software errors the most common cause of failures.
Redundancy can greatly limit hardware failures. Better user interface designs should reduce the number of
accidents caused by operators. On the other hand, the demand for increased functionality is making sys-
tems programs like the data manager and operating system larger and more complex. The advent of shared
memory multiprocessors may make concurrency-related errors more common. Even the increased speed
of processors may work against software; more system capacity can allow more concurrent users and more
ambitious demands on the system. This paper considers several ways to reduce the impact of software
errors on reliability and availability.

In order to reduce the loss of reliability due to software errors, we must address the issue of error
latency. Current transaction processing systems (TPS) assume that the errors causing system failure are
fail-stop. When a fail-stop error occurs, it damages transient system state (pages in main memory) and
quickly halts the system. Techniques for repairing the system after these errors are well-understood [15].

The fail-stop error model, however, represents only part of the failure threat facing a real system.
Most hardware and all power failures are fail-stop, but most system software errors damage transient state
without stopping the TPS. The broken system eventually detects its damage and tries to recover, but only
after a delay (the error latency). A latent software error might propagate damage to permanent state, mak-
ing recovery impossible. The delay between error occurrence and damage to permanent state is termed
propagation latency. . A

Traditionally, commercial systems have increased software fault tolerance by improving the quality
and frequency of software error checking [13]). Detecting errors quickly decreases error latency, hence
limits the chance that an error causes permanent damage before it is detected. Unfortunately, adding

software checkers to a system is expensive. Individual checkers must be designed for each data structure
and algorithm, and running them frequently increases processor load.

Another approach to increasing software reliability is to limit the points at which errors can pro-
pagate to permanent storage. Increasing propagation latency can be as effective as decreasing error latency

| Error Latency (D)

P(Latency =T) .
: mwpagaﬁon Latency (G)
I + T (seconds)
€ITOor OCCuUrs
P(D>G) is the probability of disaster

Approach One: add error checking Approach Two: limit propagation
Decrease P(D>G) by decreasingD - Decrease P(D>G) by increasing G

Figure 1: Two Approaches to Increasing Software Fault Tolerance

2

for reducing the chance of disaster (see figure 1). Instead of checking more often, we prevent damaged
data from becoming permanent until existing error checkers have had an opportunity to examine it. Unlike
error checkers, the the techniques used to increase propagation latency are not tied to particular data struc-
tures, so they do not need to be redesigned as the system evolves.

In this paper, we are going to discuss several fault tolerance techniques which help make the existing
error checkers more effective. These techniques include:

(a) Page Guarding: write-protecting data not currently in use (e.g. disk cache) can decrease the
amount of data the checkers need to consider.

(b) Deferred Write: applying updates to copies of data records instead of the real data records can
help keep transactions from propagating errors to one another. Broken transactions have a chance to
detect their errors before writing shared data.

(c) Delayed Commit: preventing a transaction’s effects from becoming permanent for a short time
after the transaction has completed increases propagation delay. The delay gives latent OS errors a
chance to materialize before the transactions they affect are committed.

TPS simulations have been used to estimate the performance impact of these techniques. The simu-
lations indicate that none of these mechanisms reduce throughput by more than seven percent. Assessing
reliability has proved more difficult. In order to analyze reliability, errors are grouped into classes. The
model of errors emphasizes the concurrency management, recovery management, and pointer errors. Field
measurements indicate these three classes cause the most trouble for existing systems. The techniques are
then rated, in part, according to the error classes against which they are effective. Analytic models based
on different assumptions about errors also help determine reliability effects.

The second part of the paper addresses availability. When recovery speed increases, the amount of
system downtime after a failure goes down. In order to make recovery fast, we must reexamine the deci-
sion to use disk instead of non-volatile memory for permanent storage. By storing the tail of the transac-
tion log in main memory, the system can avoid going to disk during transaction commit. Non-volatile
memory improves recovery speed by making it unnecessary to reload the disk cache after a failure and
reducing the number of disk accesses required for log processing. However, memory-based permanent
storage faces an increased risk from software errars. In this section, we discuss the software reliability
differences between memory and disk storage. Non-volatile main memory can be protected against
software errors using many of the same techniques we use to decrease the impact of software errors.

The paper has six sections. We describe our model of the TPS and model of errors before introduc-
ing the fault tolerance techniques. An evaluation section discusses simulations, reliability models, and pub-
lished observations about errors in existing systems. The design of a DBMS with a main memory log is
outlined in the fourth section. The fifth section gives related work. We conclude with a summary of
results to date and an outline of several possible research directions.

2. TPS Model: Definitions and Assumptions

The TPS runs on a shared memory multiprocessor such as Spur [16]. It includes three kinds of pro-
grams: applications (front-ends), the database management system (DBMS), and the operating system
(OS). Figure 2 shows the process structure of the TPS. Each application program runs as a single process.
Each application communicates with a single DBMS process over a two-way message channel (UNIX
pipe). DBMS processes share a region of main memory that contains a disk cache (buffer pool) and a lock
table. Assume that the shared memory region in the DBMS is fixed size and cannot be paged out by the
Os.

A transaction is initiated by an application process and runs in one of the DBMS processes. Each
transaction operates on a small set of data records (its operands), some of which will be written. Records
are small (about 100 bytes) and reside in pages (4K or 8K bytes) which are read in from disk on demand by
the buffer manager. Most data records are rarely rereferenced and are removed from main memory after a
few seconds (on an LRU basis). Others are referenced often and rarely if ever leave main memory.

Before completing, the transaction produces a set of log records and copies them to recovery store.
Recovery store, usually an area on magnetic disk, holds all information used to reconstruct the system after
a failure and must be assumed safe from errors. After a system failure, the log records from committed
transactions are used to reproduce the values of operands written by the transactions. .

Improving Software Fault Tolerance
in Highly Available Database Systems

Mark Sullivan
Michael Stonebraker

Computer Science Division
Department of Electrical Engineering and Computer Sciences
University of California
Berkeley, California 94720

February 8, 1990

. Abstract

Software errors often damage the transient state of a transaction processing system (TPS) without
causing the system to fail immediately. We propose several techniques to increase the chance of detecting
latent software errors before disaster occurs. ‘The same techniques can improve recovery speed by making
non-volatile memory a more practical medium for permanent storage. These techniques include:

(1) using hardware write protection to guard data in the database buffer pool from errors,

(2) using a shadow-paging scheme to reduce the chance that an erring transaction propagates errors to
correct pages,

(3) inserting an artificial delay between the time a transaction completes its work and the time it is con-
-sidered committed. Because of the delay, errors may remain undetected for a longer time without
causing irrecoverable damage. :
Simulations show these techniques reduce transaction throughput by as little as one to seven percent. An
analytic model estimates reliability improvements given several possible models of errors. Our proposal

also outlines the software fault tolerance concerns in designing a data manager that writes log records to
non-volatile memory on commit instead of disk.

This work is supported by National Science Foundation grant 87-15235

o

Ol 10

O

DBMS Processes

O

Buffer Pool

Bufier Pool Mcta-Data .
Shared Memory
Lock Tablo

|
| =l
Recovery Store

Figure 2: TPS Process Structure

At various points during the transaction, the TPS programs will check their data for consistency
using standard fault tolerance techniques (array bounds checks, check back pointers in linked lists, etc.).
These consistency checks are referred to collectively as the transaction error checker. Where possible,
the error checker is assumed to run at the end of the transaction, immediately before commit. If the error
checker detects an inconsistency, it will either abort the transaction or cause the entire system to recover.

An error is an event that causes the TPS to write inconsistent values to data records. Error events
include:
(a) processor/device failures,

(b) propagated software errors which damage transient data (e.g. the process stack) and indirectly
damage data records,

(c) software errors in system software (DBMS and OS),
(d) software errors in applications which misdirect the system software.

An error cluster is a collection of error events happening over a short time. The errors in a cluster are
caused by some outside event (hardware error, system load passes certain threshold, user repeatedly
attempts the same bad operation). Error events cause the running transaction to either write an inconsistent
value into a record (wrong value errors) or write to the wrong record (wrong record errors).

Wrong record errors include operand, pointer, and meta-data errors. In operand errors, erring
software causes the transaction to use the wrong record as an operand. An operand error might cause a
transaction that is supposed to increase all employee's salaries by ten percent to mistake several items from
the inventory for employees and give them a raise too. Pointer errors happen when a transaction writes to
a data record that is not an operand for the current transaction. An uninitialized pointer or a array bounds
overflow fit into this error class. Decision errors, a special case of pointer errors, will be described in the
next section. Meta-data errors happen when the data structures used to find an operand are damaged. For
example, the operating system could damage a DBMS process page table causing the DBMS to use data on
the wrong page.

Wrong value errors happen when the transaction uses correct data but makes inconsistent changes to
records anyway. For example, a numerical error that causes fifty dollars to disappear from a bank balance
would be a wrong value error. Two special cases of wrong value errors are abort errors and

Term Description
Operand (Wrong Record) Application asks for wrong record
Pointer (Wrong Record) Uninitialized pointers
Decision (Wrong Record) Defined in section 3
Meta-data (Wrong Record) Operand name misresolved
Wrong Value Correct record, bad update
Abort (Wrong Value) records not restored after abort
Synchronization (Wrong Value) locking protocol violated

Table 1: Error Classes

Term Description

Log error Log records damaged

Data error Cache data damaged, but not log
Recovery store error __Recovery meta-data damaged

. Table 2: Disaster Causes

synchronization errors. An abort error happens when a transaction aborts without cleaning up any writes
it has made. Synchronization errors happen when the locking protocols or other resource allocation proto-
cols are violated (e.g two writers on a single record, memory leak).

. An error causes disaster if a damaged record cannot be restored to a consistent value during
recovery. There are three ways in which errors can cause disasters. A log error causes disaster by damag-
ing the transaction log. If the error is not detected before transaction commit, the TPS will not have a
correct record to use in recovery. A miscalculation that caused an employee’s salary to become negative
would probably be a log error since the erring transaction would record the illegal value in the log. Data
errors damage data records but are not reflected in the transaction log. For example, an uninitialized
pointer may cause the DBMS to overwrite a record in the cache. These exrors cause disaster only when the
damaged record is flushed out of the main memory cache. A recovery store error is an error that causes
good data in recovery store to be overwritten. Such an error occurs when, for example, the transaction log
for one transaction is written over top of the log for another.

Tables 1 and 2 summarize the six error classes and three kirids of disasters. Errors having to do with
bad output to the terminal are considered log errors (wrong value), since they cause disaster in a way simi-
1ar to log errors.

3. Proposal: Five Software Fault Tolerance Techniques

3.1. Page Guarding

Several factors work to increase the size of a program like the data manager. First, modules with
very different functionality are often combined into a single address space to increase intermodule com-
munication speed. Modules in the same address space can access services provided by one another with an
inexpensive procedure call. If they were in separate address spaces, communication cost would include
context switch overhead. Second, much of the DBMS or OS address space is devoted to disk cache. If
main memories become larger and disk access speeds remain constant, the disk cache can be expected to
grow.

Unfortunately, access to large amounts of data becomes a liability when the program malfunctions.
An uninitialized pointer or array out-of-bounds error ¢an damage data unrelated to the code causing the
error. Worse, reliability concerns can override the need to add functionality or improve performance by
discouraging system designers from adding new modules (e.g. new access methods or network protocols).
Further, much of the address space is rarely referenced. Measurements from a VAX 11/780 show that the
mean interreference time for a byte of the 4.2 BSD UNIX kernel is 45 minutes at peak load (7). The méan
interreference time is four hours during off-peak times.

The page guarding fault tolerance technique uses existing memory management hardware to restrict
access to this unneeded data. In page guarding, the operating system makes some data pages unwritable by
clearing the write-access bit for the page in the (DBMS) process’s page table. Software errors that cause a
transaction to write to these protected pages will be trapped by hardware. The DBMS can change the pro-
tection for the page as needed through guard (write-protect) and unguard (unprotect) system calls. In order
to update a page, the DBMS must unguard the page, modify the data, and guard the page again.

3.1.1. Costs and Benefits

The exact cost of updating a guarded page will depend on the TPS hardware. The guard and unguard
operations must be system calls since they change the access bits in the DBMS process’s page table. Guard
and unguard must update the system’s memory management unit (MMU) to reflect the new page protec-
tion status. Guarding or unguarding several pages at once will have roughly the same cost as guarding or
unguarding only one. The cost is dominated by the cost of the system call and the MMU update - costs
which are unrelated to the number of pages guarded or unguarded. Performance would be best if the
DBMS postponed reguarding the pages written by a single transaction until transaction commit. The tran-
saction would make an unguard call the first time each page is written and a single guard call immediately
before commit. Shifting page protections is particularly expensive in a shared memory multiprocessor,
since updating the MMU usually requires cooperation from all processors. In the Mach “‘shootdown’’
algorithm, the cost is 1 to 3.5 ms for a transaction processing workload on 9 processor Sequent [4].

Guarding presents a model for large system programs that is between the multiple disjoint address
spaces model and the single address space model in cost, reliability, and ease of use. For one module to
access data owned by another, it makes a procedure call and unguards the data. Shifting protection boun-
daries with guardfunguard calls is cheaper than making the full context switch required in the multiple
address space model. Once the data has been unguarded, access cost is that of normal data in a single
address space. The guarding model makes system design easier because data belonging to different system
modules can be grouped together in a single protection region when needed. A system program partitioned
into multiple address spaces is obviously much less flexible.

Because guarding is a passive method of error detection, it will be particularly cost effective for pro-
tecting large disk caches. The error latency for pointer errors that damage cache data is reduced to zero.
Furthermore, any errors detected would probably not be detected at all in a system without guarding. The
transaction error checker could not possibly examine all data in the cache for errors.

3.1.2. Limits to the Effectiveness of Guarding

Unfortunately, guarding only protects against pointer errors. Even then, at any given time, some data
records have to be unguarded so they can be updated. These records can still be damaged by pointer
errors. Not only is a record being updated at risk, but so are many of the records near it. The unit of pro-
tection must be at least as large as the page size imposed by the system hardware. Updating one record
requires unguarding all of the records on the page.

System designers face a performance/reliability tradeoff regarding the length of time pages are
unguarded and the cost of guarding. Reguarding a page immediately after it is written decreases the oppor-
tunity for erring software to write the page. On the other hand, leaving the page unguarded until commit
time can decrease the number of guard system calls a transaction makes.

3.1.3. Unguard Keys: Restricting the Right to Unguard Data

A second reliability problem concerning guarding is that bad software can unguard pages just as
easily as good software. In the simple guarding model, writing to data at a particular address involves two
decisions: the decision to unguard the data, and the decision to write to it. If an error affects the software
making both decisions, guarding is useless. We are going to call errors that make both decisions
incorrectly decision errors.

The problem of decision errors can be illustrated with this rather extreme example: Suppose the
system designer wanted to reduce the number of unguarded pages in the system to one per processor. The
designer changes the compiler so that every store instruction it produces is surrounded by unguard() and
guard() system calls so that only the page being written is ever unguarded. As intended, no software errors
will ever be able to damage pages other than the current one. Sadly, though, all pointer errors are now

decision errors. No software errors can affect the decisions to unguard and to write a page independently.

Part of the concern about decision errors is the any part of the DBMS can make an unguard call.
Even if the program makes careful checks before unguarding, out of date or broken code can avoid the
checks. Associating unguard keys with regions of guarded memory can limit the places at which decision
errors might occur.

An unguard key is essentially a capability [11] for making unguard calls. In the DBMS, an unguard
key works as follows: during initialization, the DBMS guards one or more contiguous region of virtual
memory with a system call (GuardRegion(high,low)). GuardRegion() returns an unguard key, a capability
that gives its holder the right to unguard pages in the region. Subsequent calls to unguard() fail if the caller
does not pass the correct key as a parameter.)

In the DBMS, the buffer pool would have several unguard keys - one for the data region, one for the
pinned catalogs, onc for each type of pinned index. If a transaction wanted to unguard a data page, for
example, it would have to go through the buffer manager, since only the buffer manager would have the
key. If a caller tried to unguard buffer manager meta-data or cne of the system catalogs, the buffer
manager would refuse. If another part of the DBMS tried to unguard data, the call would fail since it can-
not produce the buffer pool key. The increase in cost is negligible. The OS can verify that a key is correct
in a few instructions.

3.2. Deferred Write: Shadow Copy Limits Propagation

Guarding helps protect unused or read-only data from current transactions. It is no help in protecting
one transaction’s unguarded pages from another transaction’s errors. If the DBMS is broken enough to
ignore the locking protocol, one transaction can overwrite pages unguarded by another.

The deferred write fault tolerance technique helps address these concerns. As in the last technique,
all pages are write protected when not in use. Instead of unprotecting a record to be written, however, the
transaction makes a scratch copy of the record in writable virtual memory. At commit, the transaction uses
the restore system call to copy the updated scratch record onto the original. During restore, the OS
unguards the page containing the original, performs the copy, and reguards it.

Shared Memory Guarded
Figure 3: TPS Process Structure

7

The cost of deferred write will differ from simple page guarding in several respects. First, one sys-
tem call is required to replace the old record with the new instead of two (there are still two TLB flushes).
Second, deferred write must copy the record twice: once to make the scratch copy and once during restore.
Third, extra memory is required to store the scratch copies. Added memory use may increase the system’s
page fault rate. Again,thesystemcalloostscanbereducedifallofmemodiﬁedrecordsarerestoredat
once. In deferred write, all pages written can be unguarded and guarded in a single system call. For the
pageguardhgtechnique,eachpagehadwbeung\mdedwhhsepamsysmm. .

3.2.1. Costs and Benefits

If we look again at the process model for the DBMS (figure 3), we can see how deferred write helps
insulate transactions from one another. The DBMS processes share the write protected data in the shared
memory buffer pool. Writable scratch copies of records are in individual DBMS address spaces. Thus, if
one DBMS process makes an error, it normally cannot hurt data belonging to another process. One transac-
tion can only propagate errors to another transaction by:

(a) committing without detecting the error,

(b) damaging the write-shared lock table,

(c) damaging the buffer pool meta-data (e.g. reallocating buffers incorrectly),

(d) damaging disk files,

(e) violating the two phase locking protocol (e.g. copy before acquiring a lock).

So, for example, if the transaction writes to the wrong record, the entire transaction has to complete suc-
cessfully before the error propagates. This will help ensure that existing esror checkers have a chance to
detect an error before any damage either propagates or is committed. With page guarding, the erring tran-
saction would unguard the wrong page and propagate the error immediately.

Deferred write will also make unguard keys more effective. Since data is only unguarded after the
modifications are ready, the buffer manager can check over the proposed update before allowing it to
proceed. If the buffer manager has semantic information about the data to be modified, it can examine the
before and after image of the record and decide if the update makes sense. It can, for example, check thata
modiﬁcaﬁonwthesystemcatalogmakesense,orcheckthatadamrecordupdatehasn’tchanged the
record’s unique object identifier. When restore only happens at the end of a transaction, the buffer
manager can check that the transaction has produced correct log records before allowing the updated data
to be installed.

Deferred write has several other advantages over page guarding:

(1) The TLB consistency problem in shared memory multiprocessors may be simplified. Pages are
unguarded only during restore and only one processor's MMU need reflect the change.

(2) The DBMS does not have to know the page size of the underlying hardware. It copies and restores ;
records of whatever size is convenient.

(3) The page-level granularity of write protection causes less trouble for deferred write than simple
page guarding. Because scratch records are kept on a separate page from the one containing the
original data, other records in the original page are only unguarded during the restore system call.

(4) Deferred write helps ensure that each unguard is followed by a guard. In page guarding, the tran-
saction might forget to reguard the pages it has unguarded.

(5) Aborting transactions may be less likely to result in error. Since transactions never modify real
data until commit, there is little to undo when the transactions abort.

Deferred write does have the disadvantage that pointers to the original record must be thrown away after a
writelock is obtained. All software must have enough indirection that the scratch copy is always used in
place of the original.

3.2.2. Synchronized Write: Using Deferred Write to Check Synchronization

Deferred write introduces several potential errors not present in simple page guarding. The transac-
tion must now ensure that: .

(1) updated data is returned to the same place it came from,
(2) all scratch records modified by a transaction are mtored, and ‘
(3) the granularity of the copy is no larger than the granularity of locking.

Deferred write also changes the nature of synchronization errors. The restore system call serializes all
updates to a given record, even illegal ones. If a locking protocol error causes two transactions to write
same record, one update will be lost, but the two transactions cannot intermingle writes.

Because of the enforced serialization in restore, a technique called synchronized write can help
detect synchronization errors. In synchronized write, the writer takes a checksum of its scratch record
before the record is modified. Here, checksum could simply be a parity calculation. At restore, a checksum
of the original record is taken. If the new checksum is not the same as the stored checksum, either we are
not restoring the record to the place it came from or someone else has written the data since the writer
copied it. The cpu overhead for synchronized write can be less than twice that of deferred write since the
parity calculation will be cheaper than copy. ‘

33. Delayed Commit: Trade Response Time for Reliability

Most software fault tolerance measures, including the ones we have discussed so far, are designed to
help detect errors quickly. Deferred write is an exception. It ensures that an error in one transaction can-
not propagate before the transactions error checker has a chance to run. Our last fault tolerance technique,
delayed commit, is another means of increasing the opportunity to detect errors.

In delayed commit, an artificial delay D is inserted between the time a transaction completes and the
time it is considered committed. When a transaction commits, it puts a timestamp in its log records, writes
the log records to disk, releases its locks, and goes to sleep. After D seconds, the system writes a second
timestamp to the log and the transaction commits. During recovery, the system reads the log to findL, the
latest timestamp before the failure. Only transactions with timestamps less than L-D are recovered, effec-
tively increasing the propagation latency by D. If another transaction’s log records are ready to go to the
disk, the second timestamp will be unnecessary. '

Delayed commit allows the delayed transaction to take advantage of error checking in other transac-
tions and in the OS. It helps when ,

(a) an error strikes the transaction’s data after the transaction has finished error checking it (e.g. the
checker itself might have bugs),

(b) an OS error damages the transaction’s data in a way the transaction alone éould not detect (e.g.
synchronized write detects errors after the offending transaction has committed),

(c) one transaction using a shared data structure has less thorough error checking than others,

(d) errors occur in clusters. Several errors might be propagateii from the same source. If any error
from the cluster causes system failure, none of the errors cause disaster.

Delayed commit can also decrease error checking overhead by allowing many independent transactions to
be error checked together. Suppose the DBMS checks system catalog pages for structural integrity. These
checks can happen in the background rather than as part of every transaction.

Delayed commit will obviously increase the response time of transactions by D seconds. In most
applications, response time is crucial, however, even very small D (one percent of response time) can give
a lot of time for error checking. If D is small relative to the variation in response time, the delay will prob-
ably not be noticed by end users. .

Delayed commit will only affect throughput when the need to write extra timestamps to the disk
affects throughput. If the throughput rate is high, no extra timestamps are needed. The timestamp written
by the transaction at time I+D commits the transaction finishing at time I. If some bottleneck other than the
disk is causing throughput to be low, writing extra timestamps to the disk won’t affect throughput. How-
ever, if the workload is disk-bound because transactions go to disk for data so often, delayed commit will
worsen throughput. Finally, delayed commit causes more work to be lost on failures than would be lost in
the crash of a normal system. All of the delayed transactions must be redone.

3.3.1. Artificial Delay in Meta-Data Management

A technique similar to delayed commit may be used to reduce the opportunity for meta-data errors to
cause disaster. In existing systems, meta-data is often used immediately after it is changed. For example,
file system meta-data is changed when a file is extended. Usually a file is extended only when the DBMS
has to write to the end of the file. Thus, immediately after modifying the meta-data for the file, the meta-
data is used. If an error caused the file to be extended incorrectly, there is no delay before a disaster
occurs. Simple tricks, like extending the DBMS log file before it needs to be written, can permit a delay
period after meta-data errors in which disaster might be prevented.

4. Evaluation: Performance and Reliability

In the previous sections, we have sketched some of the performance and reliability effects of several
fault tolerance techniques. In order for the techniques to be useful, system managers must be able to weigh
the techniques’ performance costs against their reliability benefits. Therefore, a more quantitative analysis
of costs and benefits is required to complete our evaluation of these techniques.

The performance evaluation is relatively straightforward. The next section presents simulation
results for transaction processing systems which use page guarding and deferred write. Ultimately, we will
build and measure implementations of these techniques for the POSTGRES [28] data manager and Sprite
[26] operating system.

Quantitative reliability evaluation is considerably more difficult. We would like to project the
number of disasters that would occur in a target system with and without a given combination of fault toler-
ance techniques. An implementation alone will not give us enough information. In general, it takes years
of operation to acquire sufficient data to generalize about system failures. Even then, observations would
not necessarily be generalizable if only a few programmers developed the program, or if it was not widely
used.

A more practical way of quantifying the fault tolerance increase provided by these techniques is to
derive reliability measurements using observed errors from existing systems. The error data is broken into
classes according to the fault tolerance techniques that prevent them. In the second section that follows, we
take that approach and describe some of the difficulties with it.

A third method for reliability evaluation is called error seeding. In error seeding, known errors are
inserted into either the program code [12] or into both code and data [8] according to some fixed distribu-
tion. By counting the number of times the seeded system fails (or has a disaster) during a test run, we can
measure its reliability. Reseeding and rerunning the test program many times increases the stability of the
measurements. By using the same error distribution to seed systems which use each fault tolerance tech-
nique, we can compare the effectiveness of different techniques. We discuss some analytic models based
on error seeding and some of the methods’ weaknesses in the last subsection.

4.1. Simulation Study for Performance Analysis

To estimate the performance impact of page guarding and deferred write, we have simulated a shared
memory multiprocessor TPS. The simulator uses the TPS model described in the first section. Transactions
read and write pages, produce a transaction log, and commit. The program simulates lock activity, memory
management, and queueing behavior at disk and cpu. It uses an artificial workload generated using the fol-
lowing parameters: .

10

Processors 10, 6-10 MIPS each

Disks 30-120, 28 ms per I/O

Database 500MB, 50-350 users

Memory SOMB, 4KB pages, 128 byte records
Transactions mean size 8 records, 20% writes

Hot Spots 80% of references to 20% of database
System Call 500 instructions

TLB Shootdown 4000 instructions

Copy Cost 4 instr/byte, 512 instr/record

DBMS processing 20,000 instr/page

- The parameters were chosen to emphasize the differences between page guarding, deferred write,
and a traditional system under varying degrees of resource contention. For each fault tolerance technique,
the parameters were adjusted to create disk-bound and cpu-bound runs. The cases were constructed by
modifying the cpu speed and number of disks until the desired resource became the bottleneck.

For our evaluation of page guarding, the TPS unguards a page when a transaction locks it for writing.
Similarly, deferred write copies the record when a write lock is acquired. In both cases, the transaction
makes a single system call at commit time to reguard pages and/or install the writes. Each guard, unguard,
orrestoreoperaﬁonpaidmecostforasystemeallmddefaredwﬁtepaidmecpucostfortwocopies. In
our initial simulations of page guarding, we did not consider the cost of MMU operations in a shared
memory multiprocessor. We consider guarding both in the case when MMU consistency is slow (shared
memory multiprocessor, TLB Shootdown algorithm) and fast (uniprocessor, single system call).

4.1.1. Simulation Resuits: Throughput and Response Time

Graph 1 compares the throughput of the deferred write and the guarding TPS to that of an
unmodified system. The results are normalized so that the throughput for each modified TPS is expressed
as a percent of the normal system’s throughput. The curves have been smoothed slightly. Any time the
difference between normal and modified system throughput was. less than the standard deviation of the

10250 g 10
% of Nocnel Throughpat
100009 - —rs — 10000 SgmmrB——@rm—o — -
S of Nozaal Throaghpss: ———
9750 - 9750 \
P - A\
et SPce cCp) \
ot M:: o
CGumdiog (Dek) MG © 0
&—a Detarsd Wrkts (D)
[]
9000 Deforrad Wiks (Cp) 9000
0 1% 2% 3% 50 1% 0 kL
mdm&n . "Namber of Concazocs Usas
Graph 1: Normalized Throughput Rate ~ Graph 2: Guarding Throughput with TLB

Shootdown

11

0324 103
Baffor Prgo b
HitRsw 0318 % of Noxnsl Respcons 9 — ;
’ 100 ¢ M|
0312 | .g""s ”
SR .
2 o
o S Bt ok
o) N g
Gusrding (Cpo) o
Cusading (Dek)
O'-—om 50 150 2% 30 o) 150 2% 350
Dofozod Writs (Cpa)
00— Necaber of Coocassect Usoes Nusber of Concarre Uses
Graph 3: Buffer Hit Rate Graph 4: Normalized Response Time

simulation runs, they were recorded in the graph as equal (100%).

In graph 1, throughput degradation never exceeds two percent. Not surprisingly, the techniques have
no impact at all in the disk-bound case. Deferred write and guarding only increase cpu demand so do not
affect throughput when the cpu is not heavily utilized. Even in the cpu-bound case, the throughput effects
of the algorithms are not significant. The normal processing cost in the DBMS dominates the cost of the
extra copies and system calls. In general, guarding fares slightly better than deferred write when the MMU
update costs are not taken into consideration. The TLB shootdown algorithm (graph 2) dramatically
increases the cost of guarding but reduces throughput (over the normal system) only by seven percent. -

Finally, we had expected that deferred write might worsen the page fault rate, hence worsen perfor-
mance. Although the page fault is higher in deferred write, the difference did not have much effect on per-
formance. Graph 3 shows how buffer hit rate changes as the degree of multiprogramming. The amount of
scratch space required by deferred write increases linearly with multiprogramming level.

Graph 4 shows the response time differences in the algorithms, normalized in the same way as .
throughput. The response time difference between the three systems almost negligible. Even in the cpu-
bound case, the response time is dominated by disk latency. For these parameters, a one percent delay
added by delayed commit provides 100,000 to 400,000 instructions per processor during which an error
might be detected (4 MIP processor, cpu bound).

4.2. Reliability Analysis Through Error Studies

There are two sources of existing system failure data: (unpublished) bug report databases and pub-
lished error studies. In general, neither source provides enough information to evaluate our techniques. A
bug report might describe the immediate cause of a failure (segmentation fault), the original cause (race
condition in network driver), or describe symptoms (garbage characters appeared on the screen). Often,
specifics about system behavior after the error are missing (e.g "then the system eventually crashed”). It is
this post-error behavior which both causes disaster and determines which fault tolerance techniques are
successful. Published studies summarize and categorize error data, hence provide less detailed information
than bug reports. The researchers conducting a study group errors into classes that may not have much
relation to our techniques. In spite of these concerns, some useful information can be gamnered from pub-
lished and unpublished error studies.

12

Reey it
e

DOS/V! MVS I Unpubl |
MVS1 MVS Unpubl I

B 8 5 8 8 38 8 8 8

-
=]

Table 3: Summary of Error Study Data

Several published studies examine the frequency of error clusters. The existence of small error clus-
ters increases the effectiveness of delayed commit. Unfortunately, the interval between errors in the cluster
must be extremely short (a small fraction of average transaction response time) for delayed commit to be
useful. In two MVS studies ([32][24]), error clusters. were observed in 60% and 20% of all failures,
respectively. In the first study, 35% of these clusters were less than a minute apart on an IBM 3081 (finest
grain reported was one minute). Two sources for clustered errors were (a) error handlers failed (making the
original and the error spawned by the bad handler into an error cluster) (b) several transient hardware
errors occurred together. As far as delayed commit is concerned, the results are inconclusive.

Other observations from the studies confirm that software errors correlate with high system load,
hardware errors, and highly interactive workload [18][32]. Also, Gray reports 99.25% of all software
errors are handled successfully by retry [13]. In an MVS retry study [24], retry was much less effective
(0-70%) but these retries were operating system recovery routines instead of full system rollbacks.

Table 3 matches the error classifications from six operating system error studies to our error classes.
In some cases, the match is crude. For example, all bad address trap errors are assumed to fit into our
pointer error class. Some of our error classes (value and operand) could not be discerned from the pub-
lished information. The published studies in the table are from MVS ([32] [24], [24], and DOS/VS [10].

While not enough to compare the mechanisms fully, the studies indicate that some of the error
classes handled best by our mechanisms are, in practice, important error classes (pointer, synchronization,
and abort). Of course, the errors observed the most often in these studies are not necessarily the ones that
have long error latencies. The failure information does not indicate how often disasters occurred as a result
of these errors or how long the error latency was. So, this information, in and of itself, does not indicate
that our mechanisms are necessary.

4.3. Error Seeding Analysis

In this section, we make a partial evaluation of page guarding using a family of analytic models
based on the error seeding idea. Guarding will detect pointer errors only if the page struck by the error
happens to be guarded. If we use error seeding to simulate pointer errors, a location is chosen from the
database buffer pool according to some error distribution. The chosen location is either in a guarded page
(and is detected immediately) or in an unguarded page (and may be detected if examined by a transaction

13

error checker). Only permanent (buffer pool) pages are considered because pointer errors which hit tran-
sient data pages can only contribute to disaster indirectly (through error propagation). Error propagation is
assumed to be represented in the seeded error distributions.

By considering the likelihood that the error distribution will select guarded pages, we can get much
of the same information that would have come from the error seeding study. We will not, however, know
whether the seeded error would have caused a disaster. The models will also give us no new information
about the relative likelihood of pointer errors and decision errors. Also, only single errors are considered.
Multiple (independent) errors would increase guarding’s effectiveness since recovering from any of the
errors would cause all to be repaired.

Different error distributions will make different pages candidates for error insertion. Some reason-
able error distributions are:

(1) Uniform: every page is equally likely to be hit by an error. This is the best case for guarding since
a large fraction of the buffer pool is guarded at any time. '

(2) Locality-biased: the error will only affect one of the last K pages the system has used. The
assumption here is that pointer errors damage the buffer pool when a recently used pointer is
reused in an incorrect way. For example, an uninitialized pointer variable on the stack is probably
most likely to contain a small integer, and to crash immediately when the pointer is used. Disasters
are more likely if the uninitialized pointer reuses another pointer value. These pointer values are
most likely to point to recently-used data.

(3) Write-locality-biased: As above, but read-only data is never chosen. Pointer errors only occur
when the erring program writes to a bad pointer location. This mode! assumes that data that is nor-
. mally never written is less at risk of accidentally overwrite.

(&) 1O-biased: errors affect pages only as they are being read in or written out (or soon after). DiskIO .
has synchronization and buffer management (page replacement) associated with it and may be a
source of errors. Sometimes transient hardware failures cause software errors, as well.

(5) Point-of-control: only the page currently being written is ever affected. This is a lower ‘bound
~ since, here, guarding gives no increase in reliability. .
Each error distribution implies a probability P, that errors strike guarded pages. There is also a probability
P, that, if the emor strikes an unguarded page, the transaction error checker eventually looks at the page
and detects the error. The models described below use the following symbols:
M is the degree of multiprogramming)
P is the average number of pages used by a transaction
W is the fraction of pages written
C is the fraction of pages in disk cache, but not in use

4.3.1.1. Uniform Distribution
In this distribution, all pages are equally likely to be hit by an error. Pages in the cache and read-
only pages are guarded, so
Pg=C+(1-W)*(1-C).
In our simulations, most of the pages in memory are not in use because contention for locks, disks, and cpu

always outweighs contention for memory. Thus, P, ranges from 97 to 99 percent for simple page guard-
ing. Deferred write unguards W records instead of W pages, so its P, will be slightly larger.

43.1.2. Locality-Biased and Write-Locality-Biased Error Distributions

In this distribution, the system has a K page working set of recently used pages. Only pages from the
working set can be damaged by wrong page errors. A page from the working set is only unguarded if writ-
ten. Even the pages that were written are now guarded again if the transaction that wrote them has com-
mitted. To determine P, we must determine what fraction of the last K pages used belong to uncommitted
transactions. Suppose for simplicity that a transaction touches its P pages in order one after another with
no rereferences.

14

In the steady state, a transaction completes after every 1/P page references. The chance that a page
touched i references ago belongs to a committed transaction is then min((] i/M]),P)/P, and, the chance that
the page belongs to a transaction that is still alive is L; =1 - min([i /M] P)/P. The average L; from 1 to K
is the average number of the last K references that went to transactions that are still uncommitted at the
time of the error.

Using these assumptions, we can compute P,. In simple page guarding, W percent of the references
to uncommitted pages were writes. Thus, Py = 1 - (w*(f[L.-). In the write-locality distribution, an error
can only strike pages that have been written, so the paé; is only guarded if the transactions is finished.
Hence, P, =1-(‘) For (P=10,M=100,W=.20) and K=50,300,1000, P, = 0.82, 0.84, and 0.89, respec-

tively, using the locality-biased distribution. In the write-locality-biased distribution, P, is 0.10, 0.30, and
0.4S for the same parameters.

In deferred write, scratch pages belonging to the transaction do not become guarded when the tran-
saction commits. These pages are reused (or at least are never guarded). Hence, for the locality-biased
distribution, P, = 1 - W. For the write-locality-biased distribution, Py =0.

4.3.1.3. 10-biased Distribution

The link between device failures and software errors suggests that pages may be more subject to
error when they are read from or written to the disk. Of course, nothing suggests that device failures cause
pointer errors or that those pointer errors would primarily affect the data being transferred.

For this distribution, P, is the ratio of disk reads to total disk operations.. Data being written is
guarded while data being read cannot be. Suppose the cache hit rate is H. Then P*(1-H) pages must be
read during every transaction. Because W percent of the cache is dirty, the transaction flushes W*P*(1-H)
pages to disk. Assuming that transactions are small enough that only one page is written out on commit,
Py, = (P*W*(1-H) + 1)/(P*(1-H)*(14W)+1). Using the parameters (and hit rate) from our simulations, P,
=0.26

4.3.1.4. Summary of Error Seeding Analysis Results

The analysis shows that the reliability increase provided by guarding varies significantly with the
error distribution. In all but the most pessimistic assumptions, however, the P, is substantial (10% to
99%). Even if P, is small, these are errors that transaction error checkers would normally not detect. Sup-
pose P, is 50% (the checker is 50% effective against the pointer errors that it sees). Then, P, of, say, 10%
in the write-locality-biased case implies an overall increase in pointer error detection from (30*50) 45% to
55%. ~

4.4. Performance and Reliability Evaluation: Conclusions

The simulation results make the performance of deferred write look promising. Since it provides
more protection than simple page guarding at nearly equal cost, deferred write will be preferable to guard-
ing in most cases. Only when records are very large or when whole pages are being initialized by a transac-
ﬁ%x;tﬁhenoe nothing in the page needs to be protected during the transaction) might page guarding alone be
worthwhile.

Our reliability results are less conclusive. The error study shows that our techniques are attacking
the right problems. Concurrency, error recovery, and pointer management cause most failures. Intuitively,
this makes sense. Concurrency and error handling code is often complex and difficult to test. Pointer
errors may simply be an early manifestation of many different kinds of control and data errors. These

- errors are also difficult to correct since different parts of the system can be damaged each time the error
arises. Although our techniques are designed to protect against these kinds of errors, we have not been
able to quantify their fault tolerance impact.

5. Fast Recovery: Main Memory as Recovery Store

The techniques we have proposed to protect against long latency errors can also be used to improve
recovery speed. The POSTGRES Storage System has a fast recovery mechanism that depends on non-

15

volatile main memory [30]. Even a traditional database storage system could recover faster if the database

log and frequently-used database pages did not need to be reread from disk during recovery. The hardware

challenges in building reliable non-volatile main memory have for the most part been solved [171[29]).
Unfortunately, concemn about software errors still forces TPS designers to use Disk Recovery Store (DRS)

instead of Main Memory Recovery Store (MMRS). With a few modifications, the techniques discussed so

far can tip the scales toward using MMRS.

5.1. Issues: What makes MMRS different from DRS?

Our model of MMRS is as follows: A region of non-volatile main memory is guarded for use as
recovery store. The DBMS maps this region into its shared memory. When a transaction commits, its log
records and any modified operands are copied to this region. The MMRS is still managed as a cache so log
records and data pages are aged out to disk eventually. On a failure, all main memory data except that in
MMRS is thrown away. Figure 4 shows how DBMS shared memory might take advantage of MMRS.

From the standpoint of software error protection, MMRS poses several problems not found in DRS:

(1) Error Propagation Speed: Broken software can damage memory faster than it can damage disk.
If a transaction decides to overwrite a location in main memory, it can do so in one instruction. The
advent of page guarding can only slow a determined overwrite by a few more instructions. Des-
u'oyingdataondiskmkessevaalthousandinsnucﬁons(&ombeginningmend)Aﬁertheinsm-
tions are complete, there is a delay of about 18 ms (180,000 instructions on a 10 MIP machine)
while the disk seeks to the correct location. The extra work and extra latency in the DRS case give
the system a chance to detect that it is in error and fail.

(2) Data Error Buffering: Recovery causes the DRS system to throw away its cache. During
recovery, pages in the cache damaged by latent data errors will be thrown away as well. In DRS
systems, data errors are buffered in memory for seconds before being flushed to disk. As memories .
become larger, this extra latency becomes even larger. MMRS moves data errors into recovery
store immediately upon commit, hence, the data error becomes a disaster immediately.

(3) Meta-Data Risks: MMRS faces a larger threat from meta-data errors for three reasons. First, disk
meta-data can be checked for errors on every write to the disk. Main memory meta-data is used by

DBMS
Shared Memory

Main Memory Recovery Store
Figure 4: Allocation of MMRS

16

hardware and is on the critical path for every instruction execution. The meta-data structures are
relatively inflexible (making error checker design hard) and error checking on use is severly res-
tricted for performance reasons. Second, in DBMS systems, the disk meta-data for critical files
does not usually change very often. Memory allocation changes regularly, as pages are brought in
and out of memory. If the chance of errors is proportional to the frequency with which something is
updated (quite possible for propagated errors), main memary meta-data is more susceptible to
error. Third, MMRS is managed as a cache, so it requires some recoverable data structures
unnecessary for DRS. The dirty bits and buffer-to-disk-block mappings for the cache must survive
failures. Latent errors in these data structures are thrown away with the data structures during DRS
recovery.

(4) Independent Failure Modes: If disk management and memory management software fail
independently, DRS has an advantage. Failure of disk management software can cause a disaster
for either system. Memory management failure (directly) causes a disaster only in MMRS. Con-
versely, though, there is a correlation between load on a device and failure rate in both the
hardware and software related to the device. MMRS may produce a reliability advantage by
lessening the disk load.

In the section that follows, we reexamine the effects of each error type on MMRS and make some sugges-
tions to handle the increased danger of meta-data errors.

5.2. Error Analysis: What Causes MMRS Disasters?

In order for MMRS to be acceptable, errors must be no more likely to damage MMRS than DRS.
Earlier, we discussed three ways that errors could cause disaster: damaging the log, damaging data, and
damaging recovery store meta-data. In this section, we are going to compare DRS and MMRS according to
the danger posed to each system by each of these kinds of disasters. Log errors were defined earlier as
errors whose effects are propagated to the transaction log. These become disaster on transaction commit.
For this analysis, we break data errors into three types: direct data errors, pointer errors, and indirect data
errors. Direct data errors are those that can affect MMRS directly -- meta-data and decision errors. Pointer
errorsareaspecialcaseofdirecterrors,since,ifafewprecauﬁonsaretakm,theycanbeneuualizedwiﬂl
guarding. Indirect data errors are those that affect data while it is writable and are eventually aged into
recovery store.

52.1. Log Errors

Once a damaged log record is stored in recovery store, the kind of recovery store used (MMRS or
DRS) will not matter. Log errors are more of a concem to MMRS than DRS only because the latency ofa
disk write operation allows the system a chance to fail before the log write is complete. Log errors are
equivalent in MMRS and DRS if delayed commit is used to simulate the latency between the decision to
write to the log and the completion of the write.

5.2.2. Pointer Errors

In order for MMRS to be effectively protected against pointer errors, all committed data in MMRS
must be guarded. The simple page guarding technique will not be sufficient since permanent records are
left unguarded during a transaction. Deferred write is better, but during restore, it, t00, leaves committed
data records unguarded. If a record is being restored into page P, a pointer error during the restoration
could damage the other records.on P. The risk to the unprotected pages can be reduced by (1) unprotecting
one page at a time so interrupts can be suspended during each copy, (2) only allowing the record to be
qnprotected for the single process doing the copy, and (3) carefully coding and testing the OS restore rou-
tine.

In environments in which a carefully-coded restore is impossible, the OS can maintain a guarded
backup copy of the page being updated. Before unguarding the original page, the system copies the page
into a writable backup page. After the copy, the backup is unmapped (from the OS virtual address space),
and the original is made writable. When restore is done, the original page is reguarded. No matter when a
pointer error occurs during restore, either the backup or the original is unwritable. The system must add to
its MMRS meta-data, however, the mapping between backup page and data page undergoing restore.
Below, we discuss the performance implications of copying a full hardware page for each record modified

17

by the transaction.

5.2.3. Indirect Data Errors

As we mentioned above, indirect data errors have a longer propagation latency in DRS than they do
in MMRS. If the system recovers between the time a data page is damaged and the time it is flushed to
recovery stare, the damaged page is thrown away without causing a disaster. By saving backup copies from
restore, MMRS can manufacture its own indirect error buffer. Backups for the last K buffers updated
could be saved (unmapped) in MMRS. On recovery, the backup and the transaction log would be used to
reconstruct the current state of the database. As in DRS, a checkpointing mechanism is required to bound
the number of log records touched during recovery. Also a second update to the same buffer shouldn’t
require a new backup.

Depending on how much space is allocated for the buffer, MMRS can approach the fault tolerance of
DRS for indirect errors. The cost, however, is that less memory is available for disk cache.

5.2.4. Direct Data Errors

Given guarding and the new restore algorithm, the only remaining software fault tolerance concern is
that errors somehow subvert the guarding mechanism and overwrite MMRS pages. The two types of errors
that might behave that way are decision errors and meta-data errors. We have already discussed a
capability-based mechanism for reducing the effects of decision errors. It would have to be extended to
limit OS access to the DBMS buffer pool. ‘

For meta-data errors, we described three important differences between DRS and MMRS: meta-data
cannot be checked on use, meta-data is updated more often, and MMRS requires cache management meta-
data. The solution for all but the last of these is to treat MMRS meta-data differently from other main
memory meta-data. Distinguishing MMRS meta-data can allow the system’s MMU to check for bad
meta-data at run time efficiently.

In current systems, the protection bits in a PTE are assumed to be the only information available
about whether or not a page is writable. In fact, those bits could be wrong either because they have been
recorded incorrectly or because a writable PTE is accidentally mapped to data that is supposed to be pro-
tected. If, however, a database buffer pool uses a fixed size region of physical memory and that region is
always guarded, additional information is available. In this case, pages at the physical addresses associated
with the buffer pool should never be writable except during restore. Furthermore, since the buffer pool is
never paged, the addresses can be mapped into the DBMS process address space in sequential order. Now,
the system has additional information that can be used to determine whether or not a page table entry has
been damaged. '

An MMU could be modified to take advantage of this information without slowing the critical path
of instruction execution. The modified MMU would have two registers for the base and bound of the pro-
tected region of physical memory. When the MMU is loaded with a writable page mapping, it can quickly
check whether the physical address maps to the buffer pool. Because the checks happen when the MMU is
loaded, they are not in the critical path for most instructions. In crder to allow the pages to be written dur-
ing restore, the MMU would have to have a restore register containing the physical address of the one
page which is currently being copied. If the MMU detects an invalid PTE load, it checks the restore regis-
ter to see if the PTE being loaded refers to a record being restored. If the MMU is software-loaded (as in
the DECstation and Sun architectures), the mechanism just described can be built into software rather than
the MMU hardware.

This kind of MMU management is advantageous for several reasons. First, PTEs can be checked on
reference. If a buffer pool page is ever accidentally mapped into writable memory, it is still protected. In
the background, the system can also check that the buffer pool addresses are always mapped in the correct
order. Second, the PTEs for the buffer pool are never modified. That removes the possibility that the PTE
will be damaged during an update. The downside is that the shared memory region must be fixed size and
contiguous in order for this mechanism to be efficient and safe. This limits the operating system’s freedom
to allocate main memory.

18

130 130
120 120
% of Noemal % of Narmal ! b
k—-—m-«-—w R { Throaghpat o 5&{&\:*::::3:3::‘:_..,.._...
110 % 1 %: D
100 \ 100 \‘ .
A Prgpa D) \ Log Osly (Dsk)
] - %
Ry \\ Lovo G
4K Pages (Cpo) 00
&—0 20 Safo Copy (Dk) 8o
8K Pages (Cpa)) .—
o—o - X
10 G—a 7
0 150 2% 350 %0 150 2% - 3%
Number of Cancurrent Usors) Number of Concurrazt Usars
Graph 5: Normalized Throughput Graph 6: Safe vs. Normal Restore Algorithm

Performance of Main Memory Recovery Store

Making cache management meta-data (dirty bits and mappings) recoverable requires updates to this
data to be logged. Delayed commit can help reduce MMRS vulnerability to errors in this meta-data.
Buffers loaded during the last D seconds could not contain data for committed transactions. Targeting the
buffers for replacement more than D seconds ahead of time reduces the effectiveness of LRU replacement,
but will guarantee that the D second old mapping meta-data is enough information for recovery. That
allows buffers loaded during the last D seconds to be marked unoccupied and allows the new mappings to
be thrown away. The buffer used to delay indirect errors also delays the time until dirty bits must be recov-
erable. Dirty bits do not need to be recoverable until the backups for the buffers they represent are thrown
away.

5.3. MMRS Performance Impact :

MMRS improves the recovery speed by reducing the amount of data that must be read from disk dur-
ing recovery. The tail of the database log and much of the most often used data is in protected memory,
hence is available after a crash. In order to determine the performance impact of MMRS on normal system
operation, we modified our TPS simulator.

Performance of an MMRS system is different from that of a traditional system in two ways. MMRS
systems do not write log data to disk on transaction commit, but, because of the safer restore operation,
they must copy a full page for every data record the transaction modifies. Graphs 5 and 6 show the effects
of these two differences on performance. In the graphs, we show MMRS systems with 8K and 4K pages.

In all cases, the advantage of not having to go to disk on commit makes MMRS faster, during normal
operation, than a traditional system. In the cpu-bound case, the copying costs of the restore algorithm start
to dominate as the cpu becomes saturated. The original restore algorithm could be used instead of the safe
one in order to lessen the cpu cost of a transaction. Here, MMRS beats DRS unless the cpu is so saturated
that the difference in disk load does not matter.

6. Related Work

6.1. Writing Fault Tolerant Software

Strategies for improving software fault tolerance fall into three classes: fault prevention, error correc-
tion, and retry. Errors can be prevented through modular design, exhaustive testing, and formal software
verification (techniques surveyed in [23]). Although all software designs incorporate one or more of these
techniques, the complexity and size of corcurrent programs like the OS and DBMS make error prevention
alone an insufficient approach.

Correction, or forward recovery, techniques use redundancy to detect and correct damage caused
by errors. One common forward recovery technique is N-version programming [2], in which several ver-
sions of a program are designed independently by different programmers. The N versions run simultane-
ously, comparing results and voting to resolve conflicts. In theory, the independent programs will fail
independently. In practice, multiple version failures are caused by errors in common tools, errors in pro-
gram specification, errors in the voting mechanism, and commonalities introduced during bug fixes. Furth-
ermore, experimental work [19] has indicated that while N-version programming can increase reliability,
often independently constructed programs fail on the same input. Not surprisingly, different programmers
often find the same hard tasks difficult to code cormrectly.

Retry, or backward recovery,-eliminates an error’s effects and then reattempts the computation.
Recovery techniques which use data stored on disk for backward recovery are surveyed in [15]. Normally
in commercial systems, the retry uses the same software that just failed. There is evidence that, in con-
current system software (OS and DBMS), timing differences cause the software to execute differently dur-
ing retry, hence avoid repeating the error [13). Some research systems attempt to avoid repeated failures
by using different code to execute the retry [27]. This technique only works if both versions: of the code
are equally well tested and debugged. :

6.2. Fast Recovery .

Several systems have been designed so that recovery time is not bounded by magnetic disk access
speeds. One suggestion is to have two processors: one general purpose cpu for transaction processing and
one recovery cpu with access to non-volatile storage [21]. The main cpu does not have access to MMRS;
at commit time, it hands log records to the recovery cpu. The recovery cpu copies log records into non-
volatile storage, collects them into batches, and writes the batches to disk. Although the approach requires
specialized hardware, the second cpu runs less complex software so it may be less vulnerable to software
errors. The two cpu approach increases danger of synchronization errors during commit, and does not pro-
tect the buffer pool.

, The usual technique is to contain software errors so that only part of the system needs to be

recovered. Auragen and Tandem systems run on non-shared memory multiprocessors replicating critical
software components on more than one processor [5](3]. Their recovery mechanism assumes that OS and
DBMS errors will be contained on the machine that causes them. Each critical OS and DBMS process has
abackupprocessthatcantakeovetiftheprimaryprocwsfails.Recoveryisfastetmaninnormalback-
ward recovery because the takeover mechanism is faster than rollback and restart.

Unfortunately, process-pair technigues involve a lot of communication overhead. The primary must
continually pass state information to the backup so that it will be able to take over on a failure. By trusting
more of the low-level system software, we can trade off reliability against increased performance. For
example, the primary and backup could run on different virtual machines on the same physical machine
[6]. Object-oriented languages [31) or modular systems with typesafe languages [20] could use the com-
piler to prevent errors from affecting both primary and backup. Guarding and deferred write put more
confidence in the OS virtual memory management software than is required by process pair technique, but
less confidence in the message passing system. We expect these techniques to outperform process pairs
since communication goes through shared memory instead of an interprocessor bus.

6.3. Measuring Software Fault Tolerance

Analytic models for judging improvements in software reliability are sometimes used in commercial
systems ([12] surveys some of these techniques). Existing models, however, are oriented towards finding
trends in reliability improvement over a single system’s lifetime. The most common models [25](22]
assume that effort spent debugging a system will show diminishing returns over time. Given current and
past rate of bug fixes, these models project the increase in reliability expected from continued debugging.

20

Normally, the models cannot be used to weigh two alternative strategies for detecting errors.

Researchers evaluating fault tolerance techniques have used error seeding and randomized input
models. In [1] and [19], thousands of random test cases were generated for test applications built with dif-
ferent fault tolerance mechanisms (recovery blocks and N-version programs). The mechanisms were com-
pared on the basis of the number of the random test cases that they failed on. These cases all involved sen-
sor data for flight management applications. For a TPS, random input would not be as interesting.

Error seeding is generally used to measure software reliability in the face of hardware faults (e.g.
[91(14]). Chillarege and Bowen [8] simulated pointer errors with error seeding to evaluate the recovery
capabilities of an IMS data manager and an MVS operating system. Errors were simulated by choosing a
random page of physical memory and overwriting its contents with garbage. Error latencies have been
observed using a fault injection model in (7). All of these models used what we have called the uniform
error distribution.

7. Conclusions

As hardware becomes more reliable and non-volatile memory becomes more common, fail-stop
errors will become less and less the norm. We have suggested several techniques for reducing data unavai-
lability due to long latency software errors. '

(1) Page guarding is a passive protection technique in which unused and read-only disk cache blocks
are write-protected. Page guarding allows hardware to prevent damage due to corrupted pointers.

(2) Unguard keys increase the effectiveness of guarding by disallowing one module from unprotecting
another module’s data. .

(3) Deferred write helps keep damaged DBMS processes from propagating errors to healthy ones.
Because most shared data is protected until transaction commit, propagation only occurs if the error
remains undetected during the entire transaction. ‘

(@) Synchronized write allows deferred write’s to detect violations of the buffer locking protocol.

(5) Delayed commit gives the system extra time to detect errors before the affected data becomes irre-
coverable. .

All of these methods can be used in conjunction with the application-dependent error checking and safe
coding practices commonly used in high-availability systems.

We have evaluated the performance and reliability impact of these techniques using both analytic
models and simulations. The overhead from our fault tolerance techniques is only noticeable in cpu-bound
systems. Even then, the effect on throughput is not significant unless the DBMS itself does very little pro-
cessing. Although little is known about error distributions, our reliability analysis shows that page guard-
ing is effective for all but the most pessimistic assumptions. A survey of existing system error data indi-
cates the most common errars to occur in practice are the ones our techniques handle best. These common
errors involve (a) concurrency and synchronization, (b) recovery and error handling, and (c) bad pointers.

We also looked at the ways in which the fault tolerance techniques could be used to support a main
memory recovery store. MMRS improves recovery speed by obviating the need to read the log and reload
the buffer pool from disk after a failure. The software fault tolerance differences between main memory
and disk recovery store come largely from (a) faster propagation of errors in memory, and (b) more com-
plex meta-data for memory management. Our proposed techniques offer many ways to reduce or delay
software error propagation. Modifications to the software or hardware that loads the MMU allows MMRS
meta-data to be safer than that used for the rest of memory.

8. Acknowledgements

) Members of the POSTGRES, Sprite, and RAID groups have provide comments and suggestions dur-
ing the course of this work. Ramon Caceres, Peter Danzig, Anant Jhingran, Margo Seltzer, and Shin-Yuan
Tzou have been especially helpful.

21

9. References

1.

2.

10.

11.
12.

13.
14,
15.
16.
17.
18.
19.
20.

21.

T. Anderson, P. Barrett, D. Halliwell and M. Moulding, ‘‘Software Fault Tolerance: An
Evaluation’’, JEEE Transactions on Software Engineering SE-11, 12 (December 1985).

A. Avizienis, ‘“The N-version approach to Fault Tolerant Software’’, IEEE Transactions on
Software Engineering SE-11, 12 (December 1985).

J. Bartlett, *‘A NonStop Kemnel”’, Proc Eighth Symposium on Operating Systems Principles, 1981.

D. Black, R. Rashid, D. Golub, R. Hill and R. Baron, ““Translation Lookaside Buffer Consistency: a

Software Approach’’, Proc. Third Archztectural Support for Programming Languages and Operating
systems, April 1989.

A. Borg, W. Blau, W. Graetsch, F. Herrman and W. Oberle, “Fault Tolerance Under UNIX"’, ACM
Transactions on Computer Systems 7, 1 (February 1989).

J. Buzen and U. Gagliardi, *‘The Evolution of Virtual Machine Architectures’’, AFIPS Conference
Proceedings, June 1973.

R. Chillarege and R. Iyer, ‘‘Measurement Based Analysis of Error Latency’’, JEEE Transactions on
Computers C-36, 5 (May 1987), 529-537. '

R. Chillarege and N. Bowen, ‘‘Understanding Large System Failures — A Fault Injection
Experiment’’, International Symposium on Fault Tolerant Computing Systems, 1989.

A. Damm, *‘The Effectiveness of Software Error Detection Mechanisms in Real-Time Operating
Systems"’, International Symposium on Fault Tolerant Computing Systems, 1986.

A. Endres, ‘‘Software Errors in Systems Programs”’, JEEE Transactions on Software Engmeermg
SE-1 (June 1975).

R. Fabry, *‘Capability-based Addressing’’, Communications of the ACM 17,7 (July 1974), 403412,
A. Goel, “Software Reliability Models: Assumptions, Limitations, Applicability’’, IEEE
Transactions on Software Engineering SE-11, 12 (December 1985).

J. Gray, “Why Do Computers Stop and What Can Be Done About It?*’, Proc. Sixth Symposium on
Reliability in Distributed Software and Database Systems, 1987.

U. Gunneflo, J. Karlsson and J. Torin, ““Evaluation of Error Detection Schemes Using Fault Injection
by Heavy-lon Radiation”’, International Symposium on Fault Tolerant Computing Systems, 1989.

T. Haerder and A. Reuter, ‘‘Principles of Transacnon-Onented Database Recovery Computing
Surveys 15,4 (December 1983).

M. Hill, S. Eggers, J. Larus, G. Taylor and al., **Design Decisions in SPUR"’, IEEE Computer 19, 11
(November 1986).

R. Horst, “Reliable Design of High Speed Cache and Control Store Memories™, Intematwnal
Symposium on Fault Tolerant Computing Systems, 1989.

R. Iyer and D. Rossetti, “‘Effect of System Workload on Operating System Reliability: A study on
IBM 3081, IEEE Transactions on Software Engineering SE-11, 12 (December 1985).

J. Knight, N. Leveson and L. Stiohn, “‘A Large-Scale Experiment in N-version Programming’’,
International Symposium on Fault Tolerant Computing Systems, 1985.

B. W. Lampson and D. D. Redell, “‘Experiences with Processes and Monitors in Mesa™, Comm. of
the ACM 23, 2 (February 1980), 105-117.

T. Lehman and M. Carey, “‘A Recovery Algorithm for a High-Performance Memory-Resident
Database System’’, Proc. Thirteenth Very Large Data Bases, December 1987.

B. Littlewood, ‘‘How to Measure Reliability and How Not To’’, JEEE Transactions on Reliability
R-28, 2 (June 1979).

D. Morgan and D. Taylor, “A Survey of Methods for Achieving Reliable Software’, IEEE
Computer 10hhhjj, 2 (February 1977).

S. Mourad and D. Andrews, “‘On the Reliability of the IBM MVS/XA Operating System’’, IEEE
Transactions on Software Engineering SE-13, 10 (October 1987).

26.

27.

29.

30.

31
32.

22

J. Musa, *“Theory of Software Reliability’’, JEEE Transactions on Software Engineering SE-1, 3
(September 1975). .

J. Ousterhout and al., *““The Sprite Network Operating System’’, IEEE Computer 21, 2 (February
1988).

B. Randell, “System Structure for Software Fault Tolerance™, JEEE Transactions on Software
Engineering SE-1,2 (June 1975), 220-232.

L. Rowe and M. Stonebraker, ‘“The POSTGRES Data Model”’, Proc. Thirteenth Intl. Conference on
Very Large Data Bases, December 1987.

D. Sarrazin and M. Malek, *‘Fault-Tolerant Semiconductor Memories'’, JEEE Computer 17, 8
(August 1984).

M. Stonebraker, ‘‘The POSTGRES Storage System®, Proc. 1987 VLDB Conf. Conference,
September 1987.

B. Stroustrup, ‘“The C++ Programming Language’’, Addison-Wesley, 1986.

P. Velardi and R. Iyer, “A Study of Software Failures and Recovery in the MVS Operating
System’’, IEEE Transactions on Computers C-33, 6 (June 1984).

	Copyright notice1990
	ERL-90-11

