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Abstract

Present VLSI circuits involving the design ofanalog subcircuits have spurred the
demand for more sophisticated analog CAD tools. This research addresses the problem
ofimproving existing analog Cad tools, both individually and from the viewpoint ofthe
general design process. Nectar is acomputer framework that implements the proposed
improvement methods.

Electrical circuit simulators are the mostused analog Cad tools. They are compli
cated programs characterized byconvergence, user-interface, speed, and other limitations.
Software redesign has resulted in numerous improvements but several harder problems re
main. The first part of this research involves the examination of alternative methods for

tool improvement The proposed Expert-Emulation Approach is based on the observation
that experienced users successfully complete simulation tasks with artful manipulations of
input data and control options ofthe programs. Simulation expertise, acquired from ex
perts, experimentation, and observation ofnovices, is incorporated in the knowledge base
ofNectar as rules. Nectar rules identify patterns that lead to nonconvergence and apply
appropriate corrective actions tothe tool inputs.

As circuit designers have become dependent on amultitude ofpolymorphic Cad
tools, the need for tool integration and automatic design management has emerged. Cad
frameworks supply the software foundation to meet these needs. The second part ofthis
research involves the improvementofanalog Cad tools by their integration in aframework.
The Nectar framework unites ahost ofanalog circuit verification tools, including several
types ofsimulators, post-processors, editors, and the Expert Emulator. With the integra-



tion in NECTAR, tool interaction is automated, a shared dgtahngft minimise Hq^ ffcw m^

conversions, emphasis is moved from tools todesign tasks, routine actions are automated,
distributed computing environments can be accessed easily, and user errors and training
requirements are reduced.

Particular emphasis is given to human-computer interaction issues. Nectar's

uniform, friendly userinterface simplifies tools invocation andresult presentation and takes
advantage ofmoderncomputerhardware.

A final aspect ofthis research has been the choice ofdifferent programmingmod
els and languages for the implementation ofthe various concepts as computer programs.

Donald O. Pederson

Thesis Committee Chairman
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Chapter 1

Introduction

Circuit simulation, the task of modeling and numerically analyzing the perfor

manceofelectricalcircuits using computers, playsanessential rolein the design of present-

day integrated circuits (IC*s). Electrical circuit simulation, the most widely used level of

simulation, involves analytical models for the circuit elements that relate terminal volt

ages and currents. Circuit designers use simulation for two main purposes. During the

initial phase of the design process, simulations are used to evaluate quickly design ideas

andto compare alternative designs. In the later stages of the design, detailed (and possibly

lengthy) electrical simulations are the main meansof verifying, before an IC is fabricated,

that the design specifications are met

Designersuse circuit simulationprograms (simulators) routinely but with varying

degrees of effectiveness [McCalla88]. Electrical simulators, such as Spice [Nagel75], are

complex, CPU-intensive computer programs characterized by convergence and other limi

tations. Efficient use of simulators depends on the designer's familiarity with the programs

and knowledge of the underlying principlesof simulation. Less experienced or infrequent

users often encounter problems with simulators that offer little or no information on the

cause of the problem or possible remedies. Such complications may lead to user frustra

tion, waste of time and CPU resources, and eventually dislike and avoidance of the tools.

Numerous major and minor algorithmic and software enhancements have im

proved many of the convergence, user-interface, speed, and other properties of simulators.

Nevertheless, some of the harder problems have defied solutions general enough to be in-

1 •



corporated in the programs. The first part of the research described in this dissertation

involves the investigation of alternative methods of improving simulation programs. An

improvement approach is proposedthathasbeendrivenby the observation thatexperienced

usersoften areable to complete simulation tasks by carefully avoiding or overcoming pro

gram shortcomings. The implementation of the proposed method as a computer program,

called Expert Emulator, has been investigated The choices of a programming model, a

knowledge representation scheme, and an implementation language, crucial in developing

a useful tool, are described.

As circuitdesigners have becomeincreasingly dependent on a hostof computer-

aided design (Cad) tools for the timely completion of new designs, so has the need for

tool integration and automatic design management grown. Cad frameworks provide the

software infrastructure to meet the integration anddesign management needs. Cad frame

works have been developed first for digital-circuit design. This has been a result of the

higher degree of attention and importance reached by digital circuits compared to analog

circuits, theproliferation of digital Cad tools, and because analog design couldgetby with

few tools. Recently, however, ever increasing clock frequencies and the tendency toward

integration of digital and analog subcircuits on the same chip have stimulated significant

interest for analog Cad tools and frameworks.

Started asanattempt to generalize the program environment of the Expert Emu

lator, the research described in the second part of this dissertation involves the delineation

and development of an analog Cad framework, called Nectar. Since synthesis tools for

all buta few types of analog circuits are still inexperimental stage, analog design remains

an iterative process, with manual intervention by the designer an essential part of each

iteration. Electrical circuit simulators are the main Cad tools used by analog designers,

including thedesigners of critical digital building blocks. Hence, simulators and otherver

ification tools are of primary importance forNectar. This part of the research focuses on

collecting an array of simulation-related toolsin a single environment thatuses acommon

database to minimize data flow and conversions, automates routine actions, emphasizes

task completion, hides tool idiosyncrasies, and reduces user errors and training require

ments. Particular emphasis is given to human-computer interaction issues, with the goal

of providing a uniform, friendly interface that best takes advantage of modem computer



hardware.

• Theremaining chapters are organized as follows. Chapter 2 describes the inves

tigation of alternative methods to overcoming limitations of simulation programs leading
tothe Expert-Emulation Approach. The choice ofaprograrnming model for the realization

of the Expert Emulator is also presented in the same chapter. The organization of circuit-

simulation expertise as rules, tobeused by the Expert Emulator, is described in Chapter 3.

Primitive representation objects are defined and rules are classified and illustrated with ex

amples.

Chapter 4 presents the evolution of theanalog-verification framework, Nectar,

and the various choices made in its design. Issues and decisions on the human-computer

interfaceof the framework are described in Chapter 5. Versionsofthe interfaces fortwo dif

ferent classes of hardwareare illustrated. In addition, a special mechanism for the straight

forward incorporation of new rulesin the ExpertEmulator is presented.

Chapter 6 describes the implementation of the Expert Emulator and Nectar.

The experiences with the programming platforms used (two each for the ExpertEmulator

and Nectar) are presented. Finally, the main research conclusions are summarized in

Chapter 7.



Chapter 2

Improving the Use of Simulation

Programs

2.1 Overview

In this chapter, a new approach to the use of simulation programs is presented.

In addition, the choice of a programming model for the implementation of the approach is

described. The various capabilities of the new approach are classified and illustrated with

examples in Chapter3. The actual implementation is presented in Chapter6.

Users ofelectrical circuit simulators, such as SPICE, often experience convergence

and other problems with the simulators. Although programimprovements have alleviated

many shortcomings, some of the harder-to-solve problems remain. A novel approach to

overcome such problems is proposed in this chapter. Based on observations on the actions

of experienced users, the new approach, called the Expert-Emulator Approach, does not

improve directly the simulation programsbut instead it enhances the use of the programs.

This is accomplished with appropriate modifications to the simulation input.

The software realization of the Expert-Emulator Approach is a program called the

Expert Emulator that, based on incorporatedexpert knowledge, is able to identify problem

patterns and suggest solutions. Both the Expert Emulator and Spice are embedded in a

controlling environment, called Nectar, that aids novice and more experienced users by

automatically acting like a human expert.



A software implementation of the Expert Emulator has been chosen based on the

irregularity andill-defined boundariesofthe domainofsimulationproblems. Expert knowl

edge is represented and applied according to the production-system programming model.

The program consists of an unordered collectionof basic units, called rules. Rules corre

spond tounitsofhuman problem-solvingknowledge. Theinference engine, theproduction-

system executer, runs the rules in anorder related to the problem being solved. Rulescan

be added to the program incrementally as they are acquired, owing to the separation of

domain knowledge and program control in production systems.

2,2 The Difficulty of Improving SPICE

The initialmotivation forthe research reported in this dissertation was provided

by the presence of convergence and other limitations in the simulation program SPICE de

spite continuous improvements.

Firstreleasedin 1972, SPICE has enjoyed widespreadacceptance and use among

companies and universities around the world. The success of Spice has been attributed to

the following:

• Electrical circuitsimulation programs are complex software systems thatincorporate

many different algorithms. SPICE combines a"best set" of algorithmic procedures

resulting in a"well-conditioned" package [Pederson84].

• Most types of circuit analysis, including nonlinear DC, nonlinear transient, AC, Fourier,

pole-zero (in SPICE3), small-signal DC, distortion, noise, and sensitivity, are allowed.

• Circuits containing awide range of nonlinear active circuit devices can besimulated.

• Spiceruns on most types of machines — from personal computers to workstations,

minicomputers, mainframes, and supercomputers — under several operating sys

tems.

• The source code of the program and executables are available in the public domain.

The advent of new circuit simulators with more cost-effective algorithms, such as Relax

[White86] andSPLICE [Saleh87], hasnotchanged the preference andconfidence thatcircuit

designers show in Spice [Cande86]. The above-mentioned simulators are notyet in wide



use, partly because they provide alimited number ofanalyses and can simulate only certain

classes of circuits.

SPICE has gone through numerous majorand minorversions. A review of the evo

lution of Spice is given in Appendix A. Changes introduced in newer versions resulted in

new simulation capabilities, an augmented applicability range, speed-ups, theelimination

of implementation errors, and other improvements. Despite all the changes and enhance

ments, some problems with SPICE, mostnotably algorithmic convergence problems, perse

vere. Attempts at finding general solutions tothose problems have reached several impasse

points that show the inherent difficulty of the problems [Hailey87, Colon89, Quarles89].

The difficulty of overcoming persistent problems with Spice prompted the fol

lowing objective at the onset of this research:

Research Objective 1 Investigation ofalternativemethods toovercoming SPICE problems.

In particular, emphasis should be given to the implementation ofsuch methods, so that they

result in useful Cad tool(s).

2.3 Observing the Expert User

This section describes several practical observations on experienced users that

led to the novel method for improving the use of SPICE proposedin Section 2.4.

As mentioned previously, SPICE has become an indispensable tool formany cir

cuitdesigners. Constantly having to deal withthe idiosyncrasies of the program, designers

have become expert usersof Spice. Their expertise becomes evident when they encounter

problems withorlimitations of the program. By nature, such problems do notalways yield

to rigorous analysis.

SPICE users do not just give up when problems arise. Novice and experienced

users alike typically change the simulation input data and attempt a new simulation run.

If the simulation fails again, they attempt a new modification and run, and so on until the

problem is overcome or, as is often the case with novices, until expert help is sought. It

may take many iterations beforethis process is over,especially fora novice, who, lacking

the special knowledge about the simulation program, usually attempts semi-random mod-



8

ifications. On the other hand, the process for an experienced user is better structured and

shorter. Experts rely on their experience to solve the problem. Figure 2.1 illustrates the

steps that an expert takes when encountered with problems.

Step 1—Problem Classification: Experts have acquireda "sense" forrecognizing the trou

blesome elements of a problematic case. They extract the essential information from

• the circuit at hand, and

• the simulation results including error messages,

and are able to recognize the type of the problem. Examples of classes of problems

are wrong connections, positive feedback loops, and isolated circuit nodes.

Step 2—Corrective-Technique Application: Having categorized the problem, experts are

able to use certain corrective techniques, that have been applied to similar problems

in the past with success. There is usually an explanationfor using such techniques.

However, usually there is no rigorous proof that guarantees the results. For most

cases, this limitation stems from the absence of a convergence theorem for Spice, as

mentioned in Section 3.4. Hence, these techniques are, in general, empirical "rules

of thumb." Examplesof such techniques are topological modifications, use of simu

lation control parameters, and introduction of parasitics.

Detailedexamples of the applicationof both steps are presentedin Chapter 3.

The important point to observe is that, using their experience and following the

steps outlined above, designers are often able to overcome many of the problems with

Spice. They successfully use the programthat has beenmade availableto them to complete

the task of accurately simulating their designs. This practice by the designers suggests an

alternative approach to overcoming limitations of Spice.

2.4 The Expert-Emulation Approach—NECTAR

Toinvestigatealternative methods to improvethe useof Spice, a Spice simulation

is first analyzed from a systems' standpoint. Figure 2.2a shows the three basic elements in

a simulation: the input to the simulator, the simulation program (SPICE), and the output



•

problem

Step 1: Problem Classification

•

problem class

*

Step 2: Corrective-Technique Application

' solution

Figure 2.1: The expert's steps

generated during the simulation run. Assume that the simulation output is unsatisfactory

because of shortcomings of the program. Then, a simple inspection of Figure 2.2 verifies

the following:

Fact 1 (Simulation Improvement) Consider a simulation program and an input to that

program resulting in a certain (unsatisfactory) output. If theoutput can be improved, then

the improvement will occur ifand only if one of thefollowing options occurs:

0-1 The simulationprogram is improved.

0-2 The input to the simulator is modifiedappropriately.

0-3 Both ofthe above.

The first option, illustrated in Figure 2.2b, represents the natural, direct method to

improve the simulation output, namely, code improvements or redesign. One can experi

ment with and modify subroutines in SPICE, fine tune device models, which are hard-coded

in the program, improve the input compiler, so that it becomes able to recognize more

errors, and fix implementation errors that exist in SPICE.

Given the size of the SPICE code and the complexity of the data structures and

the overall flow of the program, understanding and modifying the code is not an easy task.
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input

input

modified

input

(a)

improved

SPICE

(b)

(c)

output

improved

output

improved
output

Figure 2.2: Illustration of the Simulation-Improvement Fact: (a) the basic elements of a

simulation with SPICE; (b) the direct improvementmethod; (c) the alternative method
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Even though individual algorithms in Spice may besimple, their effect on the overall per

formance of the program is often complicated. Hence, any proposed change needs to be

tested notjustlocally butin the context of the whole simulation package. These tests must

involve a wide selection of benchmarks to ensure the global improvement. Similar re

marks asmade for Spice's algorithms apply to the(hard-coded) device models. Electronic

companies, such as AT&T Bell Labs, Harris, Hewlett Packard, SGS-Thompson, Tektronix,

Texas Instruments, etc., and Cad companies, such as Daisy, Meta Software, MicroSim,

NCSS, etc., have used this approach to develop their own proprietary versions of Spice.

These proprietary versions, known as "alphabet Spice's" (Advice, Dspice, Hspice, HP-

spice, ISPICE, ISSPICE, Pspice, Tspice, TIspice, etc.), have improved convergence and

user-interface properties compared to thestandard versions SPICE2G.6 and Spice3c2.

The second option above, 0-2, illustrated in Figure 2.2c, represents an alterna

tive, indirect method. Since improving the program directly is a complex anddifficult un

dertaking, thismethodattempts to sidestep problems employing appropriate modifications

to thesimulation inputforcing thesimulatorto produce acceptable results. Clearly, thesim

ulation problem described by the modified input must be the same with, or at least "close

enough" to, the problem described by the original input. Otherwise, the new, improved

simulation output wouldbe worthless, as it wouldbe the solution to the wrongproblem.

Option 0-2 makes an important implicitassumption, namely, that an appropri

ately modified input for the simulation is available. Inreality, only the original input, that

results in unsatisfactory output, is available at first An improvement method based on

Option 0-2 should detail how the appropriately modifiedinput is obtained.

Proposed here is the Expert-Emulation Approach, animprovementmethodbased

on Option 0-2 and using the program Expert Emulator for the derivation of the modified

input (Figure 2.3). As its name suggests, the Expert Emulator is a program emulating the

actions of experienced SPICE users: it automatically performs the two steps of an expert,

as outlined in Section 2.3, i.e., problem classification and corrective-technique applica

tion. The Expert Emulator, similar to a human expertuser, takes its input from theoriginal

simulation input and from simulation results fed back from SPICE. The decisions of the

ExpertEmulatorare basedon domain knowledge collected from humanexperts and stored

in the program in an appropriate form. The expertknowledge is made available to aidboth
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novices and more experienced users.

input
Expert

Emulator

NECTAR

modified
input

Spice

improved
output

Figure 2.3: The Expert-Emulation Approach

The realization of the new technique as a computer program is described in Sec

tion 2.5. The computer environment that combines the Expert Emulator and SPICE, shown

in Figure 2.3, is called NECTAR, an acronym for "kNowledge Environment for Cad Tools

in the Analog Realm." In Chapter 4, NECTAR is extended to a more general environment

combining several analog-circuit verification capabilities.

The purpose oftheExpert-Emulation Approach is nottoreplace thedirect method

of Figure 2.2b, but to act as a parallel, complementary remedy. When a direct-approach

improvement is made, it shouldsupersede the corresponding Expert-Emulation-Approach

solution. However, owing to the difficulty ofmany ofthe problems, the valueof the Expert-

Emulation Approach can be significant and lasting.

Occasionally, supposedimprovements in thecode of SPICE have resultedin worse

results. This fact may be an explanation to what is generally the case, that designers tend

to distrust new versions and stay with the older version they are accustomed to. In the

Expert-Emulation Approach, SPICE is used unaltered. In this way, all the good properties

that have made SPICE popular areretained and the new scheme is guaranteed to behave at

least as well as SPICE on its own.

To use an analogy from systems, SPICE is created as a "black box." The state

of the simulator is observed only from its output, i.e., no additional internal probes are
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set. Modifying the input is the only means of controlling the outcome of the simulation.

Clearly, both theobservability and thecontrollability of SPICE, alarge and complex system,

are limited. It follows that thepossibilities that a given problem can beovercome using the

Expert-Emulation Approach are also limited Thestate of SPICE is simply of amuch higher

dimension than either its input or its output Nevertheless, problems in the controllable

subspace have the potential to be solved using the new approach.

The third option of Fact 1,0-3, involvesbothprogram andinputmodifications.

If one assumes that the program changes are permanent, i.e., resulted in a new improved

version, then0-3 degenerates intotwo simple successive steps, anO-l-type step followed

by an O-2-type step. In essence, once the first step is completed, the improved Spice

becomes the new default versionof the program. It is conceivable, however, that an older

version mightbebetter than thedefault version for a particularapplication. A userknowing

this fact may want to use the older version when the occasion arises. The implication of

the previous remarkon thedesign of Nectar is presented in Chapter 4.

2.5 Realization of the Expert Emulator

A software realization of the Expert-Emulation Approach should automate the

two stepsof anexpert, as outlined in Section 2.3. The problem-classification step requires

searching the space of incorporated types of simulation problems for patterns matching

the problem at hand. The corrective-technique-application step involves the execution of

certain procedures associated with the type of problem determined in the first step.

Forreasonsexplained in Section 2.5.2, the realization of the Expert Emulatorhas

been based on theproduction-system model ofcomputation. This model is described in the

next section.

2.5.1 Production Systems

Artificial Intelligence (Al) is that partof computer science that investigates rea

soning processes, data representations, and other aspects of information systems that are

able to perform tasks that would be thought to require intelligence if done by humans. Un-
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reasonably high expectations and promises by the firstAl researchersbrought the field into

disrepute among potential applicants. In recent years, however, the setting of more real

istic, less general goals by the Al community has resulted in several successful scientific

and engineering applications and has contributed to a big change in the general perception

and recognition of the field [Barr82, Walker86]. Results of Al research, such as frames,

semantic networks, rule-based systems, and others, are now seen not as panaceas but as

useful programming tools.

Expert systems have been successful products of Al research. These systems,

which vary widely in structure and behavior, all focus on methods of transferring knowl

edge from human experts to computer programs. The remainder of this section describes

production systems, which are a type of expert systems that appearsuitable for the realiza

tion of the Expert Emulator.

The familiar procedural programming model uses sequenced instructions as the

basic unit ofcomputation. In contrast, a production system uses a data-sensitive unordered

collection of basic programming units, called production rules or simply rules.

Each rule has two parts. The condition part,or "if' part,or Left-Hand Side (LHS)

of the rule describes the data configurations (patterns) for which the rule is appropriate.

The action part, or "then" part, or Right-Hand Side (Rhs) of the rule contains instructions

for modifying the problem data when the rule is executed. The following is an example of

a Nectar rule in Lisp-like pseudo-code.-

(rule source-stepping

(if
(error (type convergence))
(analysis (type dc)))

(then

(modify (source (value (ramp 0 dc))))
(make (analysis (type transient)))))

This rule for Spice use, named "source-stepping," looks for a convergence error during a

DC analysis — in the LHS. The RHS instructs the conversion of DC sources to ramp sources

(starting at 0 and ending at the DC value), followed by a request for a (pseudo-) transient

analysis.

Both production systems and conventional procedural models have three major



15

components: the program, which expresses the computation to be performed and has the

formof unordered rulesand sequenced instructions, respectively; theexecuter, which per

forms the computation; and the data, which describes the problem to be solved andstores

results. Theexecuter in the procedural model simply executes theinstructions in the order

they are given in the program, unless specifically directed outofsequence byaninstruction.

The executer in the production-system model, called the inference engine, is

needed for a more complicated task; it must determine which rules are relevant to the

current problem data and choose a rale to execute. The inference engine is a finite-state

machine with a cycle consisting of three main states:

Match State: Theinference engine checks therule baseagainsttheproblemdataandfinds

all theruleswithLHS's satisfied bythecurrentdata. Theoutcomeof thisstate iscalled

the conflict set. A singlerule may be present in the conflict set multiple times, if its

LHS is matched by different sets of objects in the data base.

Select State: Duringthis stateof themachine, theconflictset is orderedaccording to some

selection strategy. These strategies typically use heuristics, such as the following:

• refraction: requiring that a rale can be executedat most once on the samedata;

• data ordering: giving preference to rules that match data most recently added

or accessed;

• specificity: favoring rales that are more specific according to some measure,

such as the number of patterns in the LHS;

• rule ordering: statically and independent of the data;

• arbitrary or parallel selection: when everything else fails.

Execute State: One or more rules selected in the second state are passed to the third state

for execution.

Since the rules usually change the data, the conflict set changes after each match-

select-execute cycle. The inference engine halts when the conflict set becomes empty.

Figure 2.4 illustrates the flow of control and data in a production system.
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2.5.2 Choosing a Programming Model

This section outlines the considerations thatled to achoice ofprogrammingmodel

for the Expert Emulator.

The size of the problem space to be searched during the problem-classification

step constitutes an important issue in designing the Expert Emulator. That size clearly
depends on the amount of expert knowledge incorporated in the system. A "reasonably

complete" Expert Emulator should contain expertise about many types ofcircuits, analyses,

and simulation results. The problem space is a subset of the cross product of the spaces of

circuit types, analysis types, and simulation-result types. Given the irregularity and huge

sizeof the space of analog circuits alone, it follows that the search space can be huge.

Large search spaces tend also to be complicated. However, for some large prob

lems, such as the traveling-salesman problem, there are efficient approximate algorithmic

solutions. In general, algorithmic solutions exist for well-structured problems, i.e., prob

lemshaving arigid data format for which similar actions are performed for all data. When,

on the contrary, there are many independent variables in the domain and responses mustbe

diverse and based on attention to many factors, then a production system is an appropri

ate model. A procedural program would require acomplex control structure to handle the

switching to the appropriate code. The problem space for the Expert Emulator is notwell

structured.

In addition, the boundaries of the problem space can not be defined exactly and

may be changing. This is another argument for the production-system choice, as such

systems have the property of being able to cope with unanticipated situations. Unplanned

but useful interactions result from applying knowledge (rules) when it is appropriate rather

than calling on it in a predetermined sequence.

This last property is a consequence of whatis considered the main advantage of

production systems, the separation of domain expertise, contained in the rules, from the

flow of control of the program, administered by the inference engine.

Because knowledge is stored in separate, nearly independent units, rules can be

added to a production system with few side effects. This facilitates the addition of new

rules to the knowledge base incrementally, as the rules are acquired.
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The disadvantages of productionsystems compared to procedural programs are:

slowerspeedofexecution,because hardware is generally designedforprocedural programs

and, hence, an additional level of compilation, fromrules to procedures, is needed; larger

program size, since the inference engine must be included for the program to be able to

execute; undesirable interaction among rules, which may result from the non-transparent

behaviorof the program, especially when the number of rules becomes large.

Al techniques have been used previously in Cad tasks, in particular when con

siderable amountof symbolic computation (alone or mixed with numerical computation)

is required. In the area of circuit verification, the programs Rubicc [Lob84], Critter

[Kelly84], DIALOG [DeMan85], QCritic [Bergquist86], and Critic [Spickelmier89] have

used knowledge-based models. Knowledge-based synthesis systems include Daa

[Kowalski85] and BLADES [ElTurky89].

After considering thevarious arguments, thechoiceofaproduction-system model

forthe ExpertEmulator was made (illustrated in Figure 2.5). Further implementation con

siderations, including the choice of a programming language, are outlined in Chapter 6.

The organization of the domain expertise in rules is described in Chapter 3.
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Chapter 3

Organizing Circuit Simulation

Expertise as Rules

3,1 Overview

In this chapter, simulation expertise, which is the basis of the Expert-Emulation

Approach, is organized as rules. The various capabilities of theExpert Emulator are clas

sified and illustrated with examples.

A detailed examination of thespace ofsimulation problems reveals thecategories

of data objects in the domain. A set of basic representation classes for the production-

system model is declared to correspond with the objects of the domain. Expert-Emulator

rules usetherepresentation classes both for pattern matching during problem classification

and for problem-data modifications during the application of corrective techniques.

Rules are divided in sets so that the performance of the production system does

not degrade — a common problem of rule-based systems with many rules. The initial

classification is made in three sets: simulation-error-recovery rules, presimulation rales,

and design-aid rules.

Foreach rule set, the capabilities of the Expert Emulator are illustrated with ex

amples ofrepresentative rules applied on test circuits.

21
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3.2 Data-Representation Classes for the Expert Emulator

Expert knowledge must be incorporated in the Expert Emulator using a repre

sentation, suchthat intelligible inferences can bedrawn. As explained in Section 2.5.2, the

polymorphism of the problemdata has been adeciding factor for thechoice of aproduction-

system model. Production systems generally are not strongly typed programming models.

Data-structure declarations, when required at all, serve to specify the field names forcom

pound data types butnot the fundamental types (integer, floating-point number, character,

etc.) of the individualfields. The latter are determined atruntime. In this section, the basic

classes of data for theproduction rules are defined, following adetailed examination of the

problem space.

Data in theExpert Emulatorcan bedivided in twomain categories—input/output

(I/O)data, used forthecommunicationwith theenvironment, andstrictlyinternal data, used

for storing intermediate results. As shown inPigure 2.5, the inputto the Expert Emulator

consists of the simulation input data and simulation output data, andoutput from the Ex

pert Emulator consists of simulation input data. Hence, the set of I/O data for the Expert

Emulator is the same as the set of I/O data for the simulator. Table 3.1 summarizes the

categories of data in thedomain. The simulation input consists of thecircuit topology (net-

Expert-Emulator Data

I/O Data Simulation Input circuit topology

circuit-element values

device models

analysis requests

simulator-control options

Simulation Output output-variable values

error messages

Internal Data abstractions of above

Table 3.1: Data categories in the domain of the Expert-Emulator

list), values forcircuitelements and parameters, modeldescriptions for nonlinear devices,

circuit-analysis requests, and options tocontrol thesimulator. The simulator output consists
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of arithmetic values for output circuit variables — voltages, currents, power consumption,

poles and zeros, harmonics, distortion, sensitivities, etc. — and, when problems occur,

error messages. Circuit variables can be scalars or vectors.

The apparent polymorphism of the I/O data is further compounded by the exis

tence of many different types of circuit elements and by abstractions of the basic circuit

elements via subcircuit definitions. The levels of abstraction for stricdy internal data may

varyconsiderably to correspond to expert knowledge ofvarying generality.

Table3.2 lists thebasicdata classes forthe production system. The basicsimulation-

input classes have been chosen to conform to the input language of Spice. The latter is a

compact and expressive language and has been adopted (sometimes with modifications)

as the input language for several other simulation programs as well The choice of basic

classes similar to the basic types of the simulator minimizes data conversions. In addition

to the simulation-input classes, two simulation-output classes are declared. They accom

modate values for output variables and error messages, respectively. It should be notedthat

class fields are meant to storedifferent fundamental types of data depending on the partic

ular problem data. As an example, the"value" field of the"capacitor" class mightcontain

any of the following data: 1,200p, 4.7 x 10"3, or(poly, 0.03,10"6). The "elements" field

of the "subcircuit" class contains an arbitrary list of instances of circuit-element classes.

Some fields, such as "turns-ratio" of "mutual inductance", are not specified in the Spice

input but arecomputed from other quantities.

Declarations for new classes can be added to the production system when the need

arises. This capability is essential fortheExpert Emulator, because it is impossible toderive

a completelist of necessary classes in advance. In particular, hierarchical classes would be

advantageous to the pattern-matching process, providedthat the implementation language

has an inheritance mechanism. Two different implementations of the Expert Emulator are

described in Chapter 6.
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Class Name

resistor

capacitor

inductor

mutual inductance

transmission line

vccs

vcvs

cccs

ccvs

voltage source

current source

diode

bjt

jfet

mosfet

subcircuit

model

analysis

option

output variable

error

Fields ^

name terml term2 value tc tc2 terminals

name terml term2 value ic terminals

name terml term2 value ic terminals

name inductorl inductor2 coupling-coefficient turns-ratio

name nodel node2 node3 node4 zO td f nl ic

name terml term2 control-terml control-term2 value

name terml term2 control-terml control-term2 value

name terml term2 control-source value

name terml term2 control-source value

name terml term2 value

name terml term2 value

name terml term2 model area off ic

name collector base emitter bulk model area off ic

name drain gate source model area offic

namedrain gate source bulk model1w adas pd ps nrdnrsoff ic

name nodes elements

name type af beta bf br bv cbd cbs cgd cgs cgbo cgdo cgso cj
cjc cje cjo cjs cjsw delta eg eta fc gamma ibv ikf ikr irb is isc
ise itf js kappa kf kp lambda Idlevel m mj mjc mje mjs mjsw n
nc ne neff nf nfs nr nss nsub pb phi ptf rb rbm re rd re rs rsh tf
theta tox tpg tr tt ucrit uexp uo utra vaf var vj vjc vje vjs vmax
vtf vto xcjc xj xqc xtb xtf xti

type parameters

name value

name value

name type status

Table 3.2: The basic data classes for the Expert Emulator
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3.3 Rule Acquisition and Organization

Each rule in the Expert Emulator corresponds toaunitof human problem-solving

expertise. Rules are added tothe knowledge base as they are acquired inthe following ways:

• from experienced Spice users

• from circuit designers

• from simulation experts

• by experimenting with the simulator

• by monitoring the behavior andcommonerrors of novice users of SPICE

• from the several classes of error checks that exist in SPICE; the error messages and

warnings of SPICE2 are listed in Appendix B.

From an initial investigationof the various types of rules it has been concluded

thatthe taskofcollecting acomplete setofrules is adifficultundertaking. In addition, it has

been felt thatdesigners will always wantto addtheir"own" rulesthatreflecttheirpersonal

expertise and needs. There may be a needto modify certain rules, as aresultof changes to

the simulator(new versions). Hence, instead of attempting to compile a "complete" set of

rules, the following objective was set:

Research Objective 2 Investigation of techniques thatwouldsimplifyfurther theincorpo

rationof new rules to theknowledge baseof Nectar by individual users oftheenvironment

—a taskalreadymadequitestraightforward by thechoice oftheproduction-system model.

The outcome of the research toward the above objective is presented in Section 5.7.

Rules can be classified according to several characteristics, such as the type of

simulation error, the type of circuitanalysis, and the classof circuit. Experience from pre

vious rule-based systems has shown that when the number of active rules is in the several

hundreds, significant performance degradation occurs [Walters88]. Consequently, the fol

lowing classification criterion has been chosen: Rules are to be divided in rule sets so that

for each application of the Expert Emulator only one rule set is active. By deactivating

rules unnecessary for a particular application, the number of active rules is reduced and the

point of performance degradation becomes more distant.
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Rules are first divided in three sets according to the point in the design cycle at

which they become relevant (see Section 4.6).

• Rules for recovery from convergence and other simulationerrors

• Rules for data checking before the simulation

• Rules for design aid (not related to simulation problems)

Each rule set can be subdivided in smaller sets when the need arises. In particular, the type

of simulation error is a good classification criterion for the error-recovery set

The remainderof this chapter containsexamplesof applyingrepresentativerules

from each set on test circuits.

3.4 Overcoming Convergence and Other Simulation Prob

lems

The Newton-Raphson algorithm is the backbone of the SPICE routines for nonlin

earDC and transient analysis, where itisapplied tosystems ofnonlinear algebraic equations1.

An advantage of the Newton-Raphson algorithm is the existence of the following theorem

that states the criteria under which the algorithm converges (and does so quadratically)

[Forsythe77, Ralston78].

Theorem 1 (Convergence of Newton-Raphson algorithm) Letthefunction F(x) betwice

continuously differentiable and have a simple rootfor x = xr. Then the sequence x{l),

i = 0,1,2, , generated by theNewton-Raphson algorithm

P{xW)

will converge to the root xr, provided that x(0) is sufficiently close to xr.

The theorem can be generalized for the multidimensional case £{x) : 3£m •-»• >ftn, under

the assumption that the Jacobian 2£j£l is Lipschitz continuous.
Most of the convergence problems in SPICE result from violations of the above

convergence criteria. First, providing an initial guess close to the solution can be difficult.

1In transient analysis, a set of algebraic equations is derived from the integration of a set of differential
equations.
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Secondly, themodelequations oftenhave discontinuous derivatives IYladimirescu80]. Some

users getaround thediscontinuity problems by modifying themodelequations, butonehas

to be careful about the consequences of such actions on the general behavior of the algo

rithms [Sangiovanni81]. Finally, the algorithm in SPICE is not the pure Newton-Raphson

algorithm but a modified version. For instance, heuristics are used to limit the danger of

numerical overflow because of theexponential characteristics ofcertain devices [Nagel75].

Some convergence problems with Spice are related to other algorithms, such as

the numerical integration algorithms, the time-step control algorithms, Muller's iteration

method (applied in the calculation of poles and zeros), etc.

The Expert Emulator uses its knowledge base to infer reasons for nonconver-

gence. The essence ofthis phase is torecognize patterns that lead toconvergence problems

and employ special techniques to overcome the problems. The following is a list which is

typical of the error-prone patterns recognized by Nectar:

• forward-biased source/drain-bulk pn-junctions in Mos transistors

• rings of pn-junctions

• positive feedback loops

• regenerative switching circuits

• nodes isolated by high impedance

• erroneousor incomplete specification of connections between circuit elements

• unrealistic values for circuit parameters

• inappropriate values for SPICE control parameters

• insufficient use of simulator-control options (tolerances and limits)

• input-format violations.

Corrective techniques used by experts and employed in NECTAR include:

• correcting wrong connections

• adding parasitics

• modification of simulator-control parameters

- using the Off option for devices in the feedback path
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- changing ABSTOL (good values are: AftA for Mos and IpA for bipolar)

- increasing iteration limits

• modification of model parameters

- specifying capacitance and resistance in models

• presetting the initial guess for Newton-Raphson (NODESET option)

• setting initial conditions (IC option)

• switch integration method, e.g., from trapezoidal to Gear's

• use of the source-stepping technique.

The following examples demonstrate the application of error-recovery rules. It

should be noted that modifications to the input file are not only suggested by the rules but

made automatically. However, the user has finalcontrol and can override any changes.

Example 1 (MOS Oscillator)

Figure 3.1 shows the schematic of a n-channel Mos relaxation oscillator. A

novice user of SPICE mightrequest a transient analysis, as indicated in the SPICE input file

(Figure3.2), but without specifying chargestorage in the transistor model. A Spice sim

ulationon that file aborts beforecompletionwith the error message shown in Figure 3.3a.

As a result of this, the rule set in the knowledge base of the Expert Emulator that handles

time-step errors is activated. The following rule uses circuit-topology pattern matching,

based on the net-list of the circuit2.

(rule cross-coupled-mos

(if
(mos (name ?ml) (drain ?y) (gate ?x))
(mos (name ?m2) (drain ?u) (gate ?v))
(capacitor (terminals (?y ?v)))
(capacitor (terminals (?x ?u))))

(then
(send-message"Positive feedback loop ?x-?y-?v-?u-?x detected.")
(make (node (name ?x) (type possibly-isolated)))
(make (node (name ?v) (type possibly-isolated)))))

2*?' characters in rules denote variables.
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VDD

Figure 3.1: The Mos-Oscillator example
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MOS relaxation oscillator

ml 2 1 0 6 modi w=100u l=5u

m2 4 5 0 6 modi w=1 OOu l=5u

m3 3 2 2 6 mod2 w=20u l=5u

m4 3 4 4 6 mod2 w=20u l=5u

m31 3 116 mod2 w=20u l=5u

m10 1 0 0 6 mod2 w=20u l=5u

m35 3 5 5 6 mod2 w=20u l=5u

m50 5 0 0 6 mod2 w=20u l=5u

.model modi nmos vto=+0.7 kp=30u

.model mod2 nmos vto=-0.7 kp=30u lambda=0.01
c12 5 100p
c2 4 1 200p
vee 6 0-9

vdd 3 0 5

M 5 0pulse 10u0 0 00 1
.tran 2u 1800u 1400u

.plot tran v(5)

.width out=80

.option nopage nomod limpts=1001

.end

Figure 3.2: Input file for the Mos-Oscillator example
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♦ERROR*: INTERNAL TIMESTEP TOO SMALL IN TRANSIENT ANALYSIS

(a)

Volts

secx 10"3

Figure 3.3: SPICE results for the Mos-Oscillator example: (a) initial run; (b) run afterthe

addition of parasitic capacitors
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This rule3 recognizes the cross-coupled configuration of the four transistors Mi, M2, M3,

and M4, and the positivefeedbacklooparoundnodes 1-2-5-4-1. A secondrule examines

whetherthe two gate nodes in the loop (nodes 1 and 5) are dynamically isolated.

(rule isolated-node

(if
(node (name ?n) (type possibly-isolated))
(not capacitor (terminals ?n 0)))

(then
(modify (node (name ?n) (type isolated))
(make (capacitor (terml ?n) (term2 0) (value 10fF)))
(send-message "Parasitic groundedcapacitoradded at node ?n.")))

Node 1 is the gate of Transistor Mi. The modelfor Mi, modi, does not include any charge

storage. Hence, there is no capacitive path from Node 1 to ground through the transistor.

In addition, there is no explicit path via externalcapacitors. Therefore,Node 1 is found by

the rule to be dynamically isolated. The same is true for Node 5, the gate of M_.

To achieve convergence, NECTAR adds small parasitic capacitors from the two

gate nodes to ground. The value for thesecapacitors is set to 10fF, which is smallenough

not to changesignificandy the operation of thecircuit The addition of the two capacitors

is implemented as two extra lines in the input file:

C3445 1 0 1.0e-14

C3447 5 0 1.0e-14

Nectar sends the modified input file to Spice, which this time is able to converge. The

results of the completed Spice simulation are shown in Figure 3.3b.

Error Explanation

Tosee whySpice abortedthefirstsimulation runand whytheparasiticcapacitors

helped in the second, consider the corresponding transient-simulation graphs of Vi, the

voltage at Node 1, during a low-to-high transition. Assume that *„_i is the last time-point

for which SPICE computed zero voltage for Vj (Figure 3.4). At first, SPICE computes the nth
time-point witha time-step equal to acomputed initial value, TINIT. Because of the positive

3A similarruleapplies tocross-coupled bipolar devices; insuchcases,code replication couldbeavoided
with the use of hierarchical data structures and property inheritance (object-oriented programming), which
would allow a single higher-level rule ("cross-coupled-transistor").
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TINTT

iTlNTT
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(a)

t»-i time
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Figure 3.4: Explanation of the time-step error: (a) initial simulation run: because of dy

namic isolation, the voltage at Node 1 jumps; (b) second run: the presence of a parasitic

capacitor forces a smooth voltage rise
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feedback, Vi(tn) tends towards infinity, but is limitedto 5 Volts by the nonlinearitiesof the

transistor. The time-stepcontrol algorithmin Spice does not accept a solution with a 5-Volt

jump from the previous time-point The time-step is cut to half and a new calculation is

performed for time-point t„2. Again, because of thepositive feedback, V\(tni) is found to

be 5 Volts. The time-step is cut in half again and the process continues until the time-step

becomes less than Tmin, an internal SPICE constant At that point the simulation run aborts.

The presence of Cp, the parasitic capacitor, in the second run prohibits voltage

jumps at Node 1:

iCo < oo =• 3k € ft : ic* < k

lcP - W dt

dVcP k
dt Cp

kVCp(t) - VCp(t„-,) <£r(t - *„-i) +0((t - rB.,)2)
It follows that,forrealisticvaluesof Cp, at someiteration of the time-step controlalgorithm

the time-step, t —<n_i, becomes smallenoughfor the voltage increase, Vcp(t) - VCp{tn-\),

to be less than the maximum accepted by the algorithm.

Example 2 (Pull-Up)

Figure3.5 showsa digitalcircuitthatmodels a pull-up load. A transient analysis

using SPICE2 with the input shown in Figure 3.6fails witha time-step error at t = 1.88ns.

The partial results, shown in Figure 3.7a, suggest that the problem lies with the voltage

feed-through from the gatesof transistors M\-Ms, which results in the forward biasing of

the corresponding substrate junctions. The following rule4 detects the suspect transistors

and, to alleviate the problem, reduces the values of the gatecapacitances by increasing the

oxide thickness in the models [Meyer71], [Mayaram88, pages 203-204].

(rule mos-oxide-thickness

(if
(error (type timestep))
(voltage-source (terml ?tl) (term2 ?t2) (value pulse ?*))
(mosfet (gate (or ?tl ?t2) (model ?m))
(model (name ?m) (tox ?tx:(< le - 7))))

4««7*» denotes a multiple-valued variable.
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Pull-up
.Model N NMOS level=2 vto=0.75 kp=76.0u gamma=0.4 lambda=0.025
+tox=25n nsub=4e16 tpg=1 xj=0.45u ld=0.4u uexp=0.16 vmax=5.5e4
+ RSH=35 js=1u cgso=220p cgdo=220p cj=230u cjsw=260p cgbo=4p
.Model P PMOS level=2 vto=-0.75 kp=27.0u gamma=0.5 lambda=0.046
+tox=25n nsub=2e16 tpg=-l xj=0.4u ld=0.05u uexp=0.15 vmax=9.0e4 .
+ RSH=120 js=1u cgso=220p cgdo=220p cj=670u cjsw=215p cgbo=4p
VDD 9 0 DC 5

VI8 0 pulse(0 51ns 1ns 1ns 3ns 20ns)
ml 1 8 9 9 P l=1.6u w=14.4u ad=34.6p as=34.6p pd=19u ps=19u nrd=0.17 nrs=0.17
m2 2 8 1 9 P l=1.6u w=14.4u ad=34.6p as=34.6p pd=19u ps=19u nrd=0.17 nrs=0.17
m3 3 8 2 9 P l=1.6u w=14.4u ad=34.6p as=34.6p pd=19u ps=19u nrd=0.17 nrs=0.17
m4 4 8 3 9 P 1=1.6u w=14.4u ad=34.6p as=34.6p pd=19u ps=19u nrd=0.17 nrs=0.l7
m5 5 8 4 9 P l=1.6u w=14.4u ad=34.6p as=34.6p pd=19u ps=19u nrd=0.17 nrs=0.17
m6 5 8 0 0 N M.6u w=14.4u ad=20.0p as=20.0p pd=12u ps=12u nrd=0.15 nrs=0.15
m11 1 9 9 9 P 1=1.6u w=14.4u ad=34.6p as=34.6p pd=19u ps=19u nrd=0.17 nrs=0.17
m12 1 9 9 9 P l=1.6u w=14.4u ad=34.6p as=34.6p pd=19u ps=19u nrd=0.17 nrs=0.17
m13 1 9 9 9 P 1=1.6u w=14.4u ad=34.6p as=34.6p pd=19u ps=19u nrd=0.17 nrs=0.17
m141 9 9 9 P 1=1.6u w=14.4u ad=34.6p as=34.6p pd=19u ps=19u nrd=0.17 nrs=0.17
m15 1 9 9 9 P 1=1.6u w=14.4u ad=34.6p as=34.6p pd=19u ps=19u nrd=0.17 nrs=0.17
m16 1 9 9 9 P l=1.6u w=14.4u ad=34.6p as=34.6p pd=19u ps=19u nrd=0.17 nrs=0.17
m17 1 9 9 9 P l=1.6u w=14.4u ad=34.6p as=34.6p pd=19u ps=19u nrd=0.17 nrs=0.17
m18 1 9 9 9 P 1=1.6u w=14.4u ad=34.6p as=34.6p pd=19u ps=19u nrd=0.17 nrs=0.17
m21 29 9 9 P l=1.6u w=14.4u ad=34.6p as=34.6p pd=19u ps=19u nrd=0.17 nrs=0.17
m22 2 9 9 9 P l=1.6u w=14.4u ad=34.6p as=34.6p pd=19u ps=19u nrd=0.17 nrs=0.17

m55 5 9 9 9 P l=1.6u w=14.4u ad=34.6p as=34.6p pd=19u ps=19u nrd=0.17 nrs=0.17
m56 5 9 9 9 P 1=1.6u w=14.4u ad=34.6p as=34.6p pd=19u ps=19u nrd=0.17 nrs=0.17
m57 5 9 9 9 P l=1.6u w=14.4u ad=34.6p as=34.6p pd=19u ps=19u nrd=0.17 nrs=0.17
m58 5 9 9 9 P 1=1.6u w=14.4u ad=34.6p as=34.6p pd=19u ps=19u nrd=0.17 nrs=0.17
CL 5 0 330ff

C1 1 0 Iff

C2 2 01ff

C3 3 01ff

C44 01ff

.tran 0.1ns 20ns

.print tran v(8) v(5)

.options limpts=2000

.options abstol=m vntol=1u

.options def1=1.6u

.options itl1=2000

.width out=80

.END

Figure 3.6: Input file for the Pull-Up example
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Figure 3.7: SPICE results for the PuU-Up: (a) initial run; (b) run after modification
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(then

(modify (model (tox le-7)))
(send-message "Oxide thickness for model ?m set to lOOnm.")))

A similar effect could be obtained with the artificial rise of the substrate voltages to a level

that wouldpreventforward biasing. Figure3.7b shows the results of the completed simu

lation after the modification of "tox."

Example 3 (Iteration Limit)

Thefollowing simple rulesdetectviolations of theiteration limitin transient anal

ysis. As suggestedin the corresponding SPICE errormessage(AppendixB), the rules over

ride this limit using the optional parameter Itl5.

(rule no-iteration-limit

(if
(error (type iteration-limit))
(not (option (name itl5))))

(then

(make (option (name itl5) (value 20000)))
(send-message "Iteration limit set to 20000.")))

(rule low-iteration-limit

(if
(error (type iteration-limit))
(option (name id5) (value ?v)))

(then

(modify (option (name id5) (value (* 8 ?v))))
(send-message "Iteration limit set to " (* 8 ?v)".")))

In the Mos-Oscillator above, the iteration limit is violated when the parasitic capacitors are

introduced. The completed simulation in Figure 3.3b is achieved after the application of

the rule "no-iteration-limit"

Example 4 (Bipolar Oscillator)

The bipolar(blocking) relaxation oscillator shown in Figure 3.8 — its Spice in

put is in Figure 3.9 — is anotherexample of an error in transient analysis. Figure 3.10a

shows the partial simulation results up to the time-step error at t = 1.87//.$. The existence

of a resistorless feedback loop (2-L\-L2-3-2) is one possible explanation for this error,
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which is not well understood. Nevertheless, the introduction of a resistive element in the

loop (in this case, using the base-resistance parameter of the bipolar model) corrects the
problem, as shown inthe results ofFigure 3.10b5. The error isdetected and amended with

the applicationof the following rule:

(rule bjt-base-resistance

(if
(error (type timestep))
(bjt (model ?m))
(model (name ?m) (rb 0)))

(then
(modify (model (rb 100)))
(send-message "Base resistance for model?m set to 100ohms.")))

Figure 3.8: The Bipolar-Oscillator example

5Thesimulatedcollector voltage(> 60V) may not be practically feasible.
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Bipolar oscillator
vcd 0 10

M 1 2 1k

d 1 2 300p
11 1 2 3u

12 3 5 20.83n

k1 11 12 1

vbb 5 0 pulse( .708 .76 5e-9 0 0 1e-3)
q1 2 3 0 modi
.model modi npn bf=100 is=1e-16
.tran 20e-9 4e-6

.plot tran v(2) (-10,20)

.options nopage

.width out-80

.end

Figure 3.9: Input file for the Bipolar-Oscillator example
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Figure 3.10: SPICE results for the Bipolar Oscillator: (a) initial run; (b) run after modifica

tion
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3.5 Data Checking Before the Simulation

As mentionedabove, die input to the ExpertEmulatorcomes from the input and

outputSPICEdata. It is possible,however, to identify problems bylookingat the Spice input

data alone. Such checks can be made before the simulation, since no simulation results are

used, and are similar to checks that exist hard coded in SPICE2 and SPICE3. The rules for

presimulation checks are similar to convergence-errorrules. The only difference lies in the

absence of simulation-result patterns in the LHS of presimulationrules.

The application of this type of rule is illustrated with the following example.

Example 5 (Enhancement-Load Inverter)

Consider the enhancement-load inverter circuit, whose schematic is shown in

Figure 3.11. Without Transistor Mi and Capacitor C\, the maximum value for the output

Vdd (1)

Mi

(3) M2

c,
(4)

t-—o

(5) iV/3

v; CL

X

Figure 3.11: The Enhancement-Load-Inverter example

voltage V0 would be VDD - Vt. By adding M\ and C\, the designer ingeniously raises the

gate voltage of ikfe, so that V0 can reach VDD. This dynamic design technique, known as
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bootstrapping, eliminates the need for anadditional supply [Hodges88]. However, in the

SPICE description shown in Figure 3.12, the substrate of Mi is tied to the source. As a

Enhancement load inverter

vdd 1 0 5.0

vin5 0pwl0 5 1n0 10n 0 11n5 20n5 21n 0
ml 1 1 3 3 mod2 w=5u l=3u

m2 1 3 4 4 mod2 w=5u l=3u

m3 4 5 0 0 mod2 w=5u l=3u

cl4 0.1pf
c13 4.1pf
.model mod2 nmos level=5 vto=1.13 tox=0.050u nsub=2.5e16 uo=800
+ld=0.4u gamma=1.34 phi=0.75 nfs=5e10
+vmax=85k neff=2

+cgso=276p cgdo=276p
+cj=320u mj=0.5 cjsw=900p mjsw=0.33
+js=100u tpg=+1 xj=200n
.tran .2ns 30ns

.options re!tol=1e-5

.print tran v(5) v(4)

.width=80

.end

Figure3.12: Inputfilefor the Enhancement-Load-Inverter example

result, the substrate-drain junctionof Mi becomes forward biased limitingthe voltage rise

of Node 3 and, hence, the output swing, as shown in Figure 3.13a.

The following NECTAR rule checks whether, for digitalcircuits, the substrates of

n-channel devices are connected to the most negative node (a dual rale checks p-channel

devices).

(rule nmos-bulk-connection

(if
(mosfet (name ?t) (model ?m) (bulk ?b))
(model (name ?m) (type nmos))
(node (name ?n) (type most-negative))
(not (equal ?b ?n)))

(then
(modify (mosfet (bulk ?n)))
(send-message "Substrate of ?t connected to node ?n (most negative)^")))
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v(5)

secx 10"^
30.00

Figure 3.13: SPICE results for the Enhancement-Load Inverter (a) with wrong substrate

connections; (b) with corrected connections
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The rule connects the substrate of Mi to ground and the desired output swing is obtained,

as illustrated in Figure 3.13.

3.6 Rules for Design Aid

This class ofrules for Nectar involves circuit design constraints. These rules are

activated, regardless ofconvergence problems, whenrequested by the user (see Figure 4.7

in Chapter 4), to satisfy design specifications. A typical example might be to provide a

minimum gain fora Mos amplifier stage with respect to device dimensions.

A novice circuitdesigner often attempts to meet the specifications using a "trial-

and-error" procedure. Intheprocess, SPICE is run numerous times, each timewith adiffer

ent value for some parameter. This procedure is often done randomly anduses significant

amounts of CPU time.

Nectar can accept andapplycircuit designrulesand formulas to modify appro

priate circuit parameters andachieve thedesired functionality. Suchrules apply to specific

circuit topologies. The designconstraints are obtained fromthe analysis of similar circuits.

It should be pointed out that these rules do not involve optimization.

The following example illustrates the use of design-aid rules.

Example 6 (Near-Sinusoidal Oscillator)

A bipolar near-sinusoidal transformer-coupled oscillatorcircuitis shown in Fig

ure3.14—the input file is shown in Figure 3.15. This circuitmay exhibit the phenomenon

of"squegging" [Mayaram87], amultimode oscillation illustrated in Figure 3.16a. Analysis

of the oscillator results in the criterion

2nC

Ce<7 lY

[Pederson90b] for the coupling capacitor Ce to avoid "squegging." This criterion has been

coded in the following rule.

(rule near-sinusoidal-oscillator

(if
(bjt (collector ?c) (emitter ?e))
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Figure 3.14: The Near-Sinusoidal-Oscillator example



Transformer-coupled oscillator
r1 1 01

Q1 2 1 3 modi

vcc4 0 10

rl 4 2 750

ct4 2 450e-12

11 4 2 5e-6

12 0 6 0.05e-6

k1 11 12 1

ce6 3 10e-9

re 3 5 4.65e3

vee 5 0-10 pulse -15-10000 6e-6
.tran 30e-9 6e-6

.plot tran v(2)

.model modi npn js=1e-16 bf=100 rc=10

.options nopage nomod limpts=500

.width out=80

.end

Figure 3.15: Input file for the Near-Sinusoidal-Oscillator example
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(capacitor (name ?ce) (terminals ?z ?e))
(capacitor (name ?ct) (terminals ?a?c) (value ?v))
(inductor (name ?1) (terminals ?a ?c) (value ?11))
(inductor (name ?m) (terminals ?z ?12))
(mutual-inductance (inductorl ?1) (inductor2 ?m) (turns-ratio ?r)))

(then
(modify (mutual-inductance (turns-ratio (sqrt (/1112)))))
(modify (capacitor (name ?ce) (value (/ (* ?r ?v) (-1 (/1 ?r))))))
(send-message"Coupling capacitor ?ce changed to ?v.")))

The rule automatically modifies the value of Ce. Figure 3.16b shows the SPICE results for

the new capacitor value.
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Figure 3.16: SPICE results for the Near-Sinusoidal Oscillator: (a) initial run; (b) run after

modification



Chapter 4

Integration of Analog Verification Tasks

in a Framework

4.1 Overview

In this chapter, Nectar is expanded into a framework that integratesseveral ana

log verification tools running in a distributed computingenvironment The user interface

of the framework is presented in Chapter 5, and the actual implementation is described in

Chapter 6.

Nectar is generalized fromthe two-program environment presentedin Chapter2

to an open Cad framework forverification. The tools that areintegratedin the framework

include various simulation programs, simulation-result post-processors, design data edi

tors, programs to check input data and recover from simulation errors, and auxiliary shell

utilities. The close coupling of the tools allows the end user of the framework to focus on

the design tasks, instead of on how to use the tools.

Design and simulation data is managed automatically by the framework. Data

storage formats have been chosen to minimize format conversions. In the presence of a

distributed computing environment, Nectar can direct jobs to remote machines, hidding

communication details. Although the overall framework control lies with the user, a princi

palcontrol cycle is prescribedto correspond to the main activity loop during analog design.

49
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4.2 Evolution of a Framework

In Section 2.4 of Chapter 2, Nectar is presented as the integration of two inter

acting programs, SPICE and theExpert Emulator. This section describes the generalization

of Nectar into a Cad environment that includes several simulation-related programs.

4.2.1 A First Generalization Step

As brought out in Section 2.4concerning Option 0-3 of Fact 1,aknowledgeable

user might want to choose between several versions of Spice, because different versions

are best forthe simulation ofdifferenttypesofcircuits or fordifferentanalysis requests. As

an example, early releases of SPICE3 lack areliable distortion analysis capability. Such a

capability is available in SPICE2G.6. Hence, users of SPICE3 turn to Spice2 when the need

for adistortion analysis arises. The decision tochoose adifferent (than the default) version

of thesimulation program maycomeeither after an initial unsuccessful run withthedefault

version or following an examination of the analysis requests before any simulation run.

The process ofchoosing among several simulators can be automated using Nec

tar. The augmented environment, shown in Figure 4.1, comes from the scheme in Fig-

nectar

input
Expert

Emulator

Chooser
control

modified
input

Chooser
Spice a

y- Spice B

Spice n

Figure 4.1: Choosing from several SPICE versions

output

ure 2.3 with the following modifications: instead of just one, several SPICE versions are
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embedded in Nectar; expert knowledge about the analysis capabilities and limitations of

various versions of Spice is incorporated in the Expert Emulator as rules; achoosing mech

anism, controlled by the Expert Emulator, runs the appropriate SPICE version on the input

data.

At this point, NECTAR integrates more than two programs. Further additions and

enhancements have extented Nectar into a Cad framework for analogcircuitverification,

as described below.

4.2.2 CAD Frameworks

Circuit designers are becoming increasingly dependent on a multitude of Cad

tools fromvarious sources to speed up the design process, to manage the growing amounts

of design data, and to accommodate the strengthening interdependencies between tech

nologies, design styles, and design teams. The concept of aCad framework has emerged

recently to meet the need for integration and automatic management of today's numerous

and polymorphic Cad tools.

A Cad framework can be defined as a software infrastructure that provides a com

mon operating environment for Cad tools. The infrastructure can include user interface,

toolinteraction, interprocessor communication, and data management facilities. These and

other functions ofCad frameworks are necessary to tie togethernot only different tools but

also different processors, different operating systems, and different human designers. A

prime goal of Cad frameworks is to allow theendusers (designers) to focus on thedesign

activity by shieldingthem from tool and system details.

Some of the main issues in the developmentof Cad frameworks are the types of

tools to be integrated, the representation scheme for design data, the representation of de

sign knowledge, and thecontrol of thedesign process. Theseissueshavebeenaddressed in

several research efforts in the field. Designer's Workbench [Friedenson82], one of the first

Cad frameworks, integrated already existingtoolsunder acentral userinterface. The Palla-

dioproject [Brown83] introduced ahierarchical design representation integrating tools built

specially for that representation. In Demeter [Siewiorek84], a commercial database was

used for storage of information commonto four differenttoolsrunning on differentcomput-
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ers. The ongoing Adam project [Granacki85] uses separately stored design knowledge to

manipulate hierarchically represented designdata. The Oct approach [Harrison86] provides

a general hierarchical data management model sharedby all integrated tools, which must

be consistent to a formal set of data types and access parameters, called policy. Ulysses

[Bushnell87] integrates several dissimilar tools into a single conceptual framework based

on a global data space for storage of intermediate results and goals, called blackboard,

and special high-level representations of tool execution sequences, called scripts. Cad-

weld [Daniell89], a continuation of the Ulysses project,decentralized the partof the con

trol mechanism that is specific to each tool using object-orientedprogramming techniques

[Stefik86].

Most of the frameworks above areconcerned with all phases of IC design and, as

such, must accommodate a host of different tools in several different areas:

• synthesis: high-level, logic, physical (placement and routing), etc.

• optimization: minimization of logic and finite-state machines, layout compaction,

device sizing, etc.

• verification: circuit, device, timing, and switch-level simulation, design critiquing,

etc.

• editing: schematic, layout, etc.

• translation: extraction, etc.

In eachof the areas above, the problemsolved variesconsiderably from the rest and applies

to different aspects of the design data. The corresponding tools also differ considerably,

thus complicating their interaction in a framework.

4.23 Analog CAD

In contrast to tools for the design of digital circuits, analog Cad tools are few

and comparatively primitive. This disparity can be attributed to the fact that, compared

to analog, digital circuits are characterized by higher topological regularity and are easier

to partition into subcircuits, to analyze, and to design [Carley88]. This has led to a bet

ter understanding of digital circuits and the development of many digital Cad tools that
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have contributed significantly to the more recent designs. Inaddition, digital circuits have

achieved much higher chip densities, partly a reflection of the tremendous impact of the

Metal-Oxide-SemiconductorField-EffectTransistor (MOSFET), which is suited to realize

digital functions more effectively than analog functions [Hodges88]. Digital circuits have

attracted most of the attention of CAD-tool researchers and developers in the last several

years.

Despite the lesser emphasis given onthem, analog circuits are important forhigh-

frequency applications, integrated sensors, real-time control systems, in realizing power

supplies, and for interfaces between digital systems and external (naturally continuous)

signals [Brodersen84]. Such interfaces usually are implemented with separate analog com

ponents and IC's. Recently, however, designers have started integrating both analog and
digital subcircuits onthe same chip. Even though the analog parts typically occupy about 10

percentofthe chip, they now require about90percent ofthe total design time [Pederson90].
Asaresult, theneed formore sophisticated analog Cad tools hasbecome evident [Allen86].

The programs Idac [Degrauwe87], Oasys [Harjani87], and OPASYN [Koh90] are some of

the first analog synthesis tools.

Since analog synthesis tools arestill in an experimental stage, analog design is,

for the most part, an iterative "trial-and-error" process, as illustrated in Figure 4.2. First,

the design specifications, i.e., the functional, performance, andphysical properties of the

circuit, areset. Then, potential circuit realizations are successively modified andchecked,

resulting ina gradual refinement of the design, until the specifications are met. Themodifi

cation(editing) partof thedesign process is basedon certaintechniques, themostcommon

of which is the manual input of design expertise by the designer. Once the topology of

the circuit is fixed, the much smaller subspace of all circuitsdiffering only in the values of

certain parameters can be searched with optimization tools [Nye88, Shyu88]. As for the

verification partof the process, analog circuit designers, including thedesigners of critical

digital building blocks, primarily depend on electrical circuit simulation.
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begin

Formulate design specs

Figure 4.2: The iterative natureof analog.-circuit design
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4.2.4 The NECTAR Framework

The polymorphism of Cad tools constitutes not only a motive for integration

butalso an obstacle in the development of frameworks. In addition, the requirements for

Cad frameworks are changing as tools and designs are changing and, hence, designing

a framework is a task with a moving target. Therefore, attempting to develop a single

framework for allCad activities may notbe thebestapproach. In this research, the scope

of a Cad framework has been narrowed:

Research Objective 3 Development ofaframework for simulation andothertasks perti

nent to the analog design cycle (Figure 42).

The Nectar framework evolved from the two-program shell of Figure 2.3 and

the several-program environment of Figure 4.1 to the schema of Figure 4.3, which shows

the various programs, databases, and hardware components that NECTAR ties together.

Integrated programs include several simulators, post-processors ofsimulation results, design-

data editors, theExpertEmulator, aspecial ruleeditor(presented in Section5.7), andsystem

utilities. There aretwo databases, one for design data and one forrules containing simula

tion and design expertise. Nectar interfaces to different types of machines and displays.

Finally, auser-interface module gives the NECTAR userdirectcontrol over the actions to be

taken, including overwriting decisions by the Expert Emulator.

Since the focus is on analogverification, the various components of Nectar do

not need to be as abstract as those of a general Cad framework; thus, they can be made

efficient. The goals of the NECTAR framework, including some goals common to general

Cad frameworks, are the following:

• Collecting and making available in a single software shell an array of programs and

functions related to circuit verification

• Development of a uniform user interface for all integrated tools

• Elimination of redundant information flow to and from the user

• Use of a common database for all tools

• Minimization of data-format translations

• Hiding tool and system details from the user
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Figure 4.3: General view of the framework: programs, databases, and hardware are inte

grated in an environment for simulation
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• Puttingemphasison design tasks, not tools

• Automatic execution of tasks needed most of the time

• Increasing the designer's productivity

• Minimization of errors by the user

• Minimization of training requirements for novice designers.

The remainder of this chapter describes the choices made regarding supported

tasks, integrated tools, dataorganization, computing facilities, andframework control. De

cisions for goalsrelated to the userinterface are presented in Chapter 5.

4J Tasks Supported by the Framework

Nectar supports design tasks thatnormally are needed duringthe analog design

cycle. For each task, one or more tools have been integrated in the framework. Multiple

tools for a single task are included when no one tool covers all the requirements or when

users' preferences are divided among several tools.

The following tasks can be accomplished using NECTAR:

Direct-Method Electrical Circuit Simulation: Various types of circuit simulators ana

lyze circuits at different detail levels and, therefore, are characterized by varying

run-timeand result-accuracy properties. For most analog circuits, the optimal trade

off point between speed and accuracy corresponds to direct-method electrical-level

simulation. Devices are represented at this level with analytical models relating their

terminal voltages and currents. The circuit equations are solved directly to yield the

voltage waveforms at all nodes and the current waveforms through the branches of

the circuit NECTAR gives access to several versions of the program SPICE varying

in their analysis capabilities, algorithms used, or in the language in which they were

programmed (Fortran for Spice2; C for SPICE3), the compiler used (public domain

or commercial), or the type of machine on which they run (Unix workstations, VAX

minicomputers, IBM mainframes).

Mixed-Level Simulation: The circuit properties in certain designs depend heavily on the
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performance of one or more critical devices. There is a need to simulate critical

devices with an accuracy higher than that of an electrical-level simulator. Device-

level simulators [Price82] analyze devices by solving the nonlinearpartial differential

equations in space and time (Poisson's and current-continuity equations) obtained

from device physics. It is assumed that the terminal voltages, which constitute the

boundary conditions for the differential equations, are known or set However, it is

not easy to predict the boundaryconditions for the realistic case ofa device embedded

in a circuit

Mixed-level simulators, such as MEDUSA [Engl82] and Codecs [Mayaram88], com

bine circuit and device simulation. Critical devices are simulated at the device level

with boundary conditions determined from the rest of the circuit, which is analyzed

with an electrical circuit simulator. Mixed-level circuit and device simulators are

much slower than electrical simulators. The program Codecs has been integrated in

Nectar. Even though it runs on smallermachines, Codecs jobs are usually submit

ted to a mainframe, because of the high CPU-timerequirements.

Steady-State Simulation: The periodicsteady-state behavioris of primaryimportancefor

large classes of circuits, such as amplifiers, oscillators, niters, multipliers, mixers,

etc. Harmonic distortion, noise, power dissipation, gain, and other useful circuit pa

rameters are calculated based on the steady state. However, steady-state simulations

using direct time-domain methods can be computationally expensive, in particular

for high-Q and narrow-band circuits.

Special simulators for the steady state use algorithms that bypass initial transients

and compute the periodoc steady state directly. This results in faster simulations.

The steady-state simulators Spectre [Kundert86] and SSpice [Ashar89] have been

integrated in NECTAR. Spectre simulates nonautonomous weakly nonlinear circuits

in the frequency domain based on the method of harmonic balance. SSpice, on the

other hand, is able to simulate both autonomous and nonautonomous circuits in the

time domain based on shooting methods.

Simulation-Result Post-Processing: After a simulation run is completed, usually a long

stream of results is produced. Post-processors are programs that take the Simula-
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tion results and present them insuch a form that the designer can easily evaluate the
simulated circuit performance and compare it against the design specifications. Typ
ically, a post-processor allows a user to plot voltage and current waveforms as well
as measure certain quantities directly on the plots. By taking advantage of modern

multiple-color bit-mapped displays, post-processors allow users tofocus quickly on

the data of interest.

Simulation programs often include their own built-in post-processors. Other simula

torsgenerate resultsinformats suitable tobeprocessed bystand-alone post-processors.

The choice of a post-processor often is a matter of personal taste. Hence, the goal

for Nectar has been to allow users to process and view results from any simula

tor using any one of severalpost-processing and plottingprogramsintegrated in the

framework. The available choices include the programs Nutmeg [Christopher87],

Xsplot [Bradley87], Xgraph [Harrison88], and the text pagers More and Less. The

data-format conversions between simulators and post-processors are made automat

ically, as described in Section 4.4.

Design-Data Editing: Each iteration of the design cycle (Figure4.2) starts with the for

mation or modification of the input data for the simulation. This data contains the

circuit description, the analysis requests, and the control options for the simulation.

Even though a program like the Expert Emulator is capable of modifying the input

data automatically,direct access to the design database is essential to the designer and

is accomplished using editors. In the past, text editors were the only type of editors

available for this task. They are still widely used today. Designers using text editors

need to know the exact input-language syntax for the simulators they use. Syntactic

errors are common when text editors are used.

Schematic editors are a big improvement over text editors, since they let designers

edit the schematic of the circuit. Diagrams (on paper) are used even when only text

editors are available. However, the task of translating the circuit description from the

schematic to the textual format is done automatically by the schematic editor, thereby

eliminating most syntactic errors and saving time. Schematic editors usually simplify

the entering of analysis requests and simulation options with a friendly interface. The



60

visual text editors Vi and Emacs are currently available, but schematic editors, such

as OctSPlCE [Laidig90] and iSPl [Acuna90], could be included as well.

Simulation-Error Recovery: The Expert Emulator, introduced in Chapter 2, can be in

voked by the designer whenever simulation errorsoccur. Modifications to the input

data are not only suggestedbut made automatically. The user, however, can override

the modifications.

Pre-Simulation Data Checking: Errorscaughtearlycost less, since in this way unneces

sary and possibly CPU-expensive simulation runs can be avoided. Therefore, it may

bebeneficial toruntheExpert Emulator before a simulation, using anappropriate set

of rules. The program SPLINT [Kuo90] is a SPlCE-format checker thatmay also be

used for this purpose. SPLINT is a conventional procedural program andcan notbe

augmented with new rules as easilyas the Expert Emulator.

Circuit-Design Aid: The Expert Emulator has a third use, described in Section 3.6. It

can be used to criticize a design and to suggest improvements based on results and

formulas derived from circuit analysis. A similar technique has been presented in

[Spickelmier89], Forthis task, the design rule set in the knowledge base is used.

4.4 Data Flow and Organization

The flow of data between the various tools in Nectar is illustrated in Figure 4.4.

Theuser accesses Nectar through a computer terminal (TE). A circuit editor (ED) can be

used for the initial formulation or for modifications of the circuit and analysis (input) data

(ID). Input data is sent toa simulation program (SI) running on one of the machines (MA)

available in the computing environment (CE). Simulation results are stored in the output

database (OD) and displayed on the terminal by a post-processor (PP). When invoked,

the inference engine (IE) of the Expert Emulator (EE) executes rules from the knowledge

base (KB) driven by the problem data from the input and output databases. The user can

access the knowledge base to add or modify rules with the rule editor (RE). Through the

user interface (UI) the user controls the framework. The user-interface module and the

Expert Emulator can alter the status variables of the framework (FS), which determine the
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••User

Figure 4.4: Framework data flow between simulators (SI), post-processors (PP), editors

(ED), the Expert Emulator (EE) [composed of an inference engine (IE) and a knowledge

base (KB)], the Rule Editor (RE), the userinterface (UI), and utility programs (UT) running

in a distributed computing environment (CE) with various machines (MA) and terminals

(TE). ID and OD represent the simulation input and output data, CO is the framework

controller, and FS is the framework status.
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sequence ofevents through the framework controller(CO). Finally,various utility programs

are available to send information to the user.

Nectar stores data in the database as files. As a result, the communication be

tween programs is simplified. More significantly, almost any program can be included in

the framework, since programs are not restricted to conform to a specific data model. Only

the more common formats areused for storage. The predominant formats arethose ofSpice

input and Spice output Files are named automatically by Nectar and can be accessed us

ing framework utility functions. Other utilities allow directory browsing and can recognize

files containing data in certain formats.

Formats required by less frequently used programs typically are not presentin the

database. Specialdatabase-to-program translators convertdata from the available formats.

Similarly, output from those programs is converted with program-to-database translators

before stored in the databases. Figure 4.5 illustrates the use of data-format translators for

the Expert Emulator. The DB-to-EE translator converts data from SPICE input and output

Input

Data

Output

Data

DB-to-EE

Translator

bxpert Emulator

Inference

Engine

EE-to-DB

Translator

Figure 4.5: Data-format translators for the Expert Emulator
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formats and the EE-to-DB translatorconverts data to SPICE input format

Even for thefrequently used Spice2, the "raw" part of theoutput is first converted

to SPICE3 "rawfile" format and then stored. The reason for this conversion is that the more

likely use of the "raw" data is plotting it using Nutmeg, the post-processor of SPICE3. The

translation is done with the program Sconvert, as illustrated in Figure 4.6.

Input

Data

'
' '

SPICE2 SPICE3 Nutmeg

1 t r

Sconvert •

Display

' >

Output

Data

Figure 4.6: SPICE3 post-processor Nutmeg plots results from SPICE2 translated by the pro

gram Sconvert (SPlCE2-to-DB translator)

4.5 Integration in a Diverse Computing Environment

A typical computing environment for IC design today includes several, possibly

different, machines interconnected in a network. Nectar accommodates and takes advan

tage of distributed and heterogeneous computing environments. Integration of computing

environments has been simplified owing to several advances in computer networking.
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CPU-intensive simulation jobs can be sent from Nectar for execution on remote

machines that are either more powerful or less loaded. Operating-system utilities are used

for the communication between machines. The communication across Unix machines is

based on the remote shell command rsh, which connects to the remote machine and ex

ecutes the specified command. Output data is passed back to the local host For the com

munication between a UNIX host and a remote IBM 3090 machine, the r j e utility program

is used. This program is based on TCP/IP mail. In either case, the user of NECTAR does not

need to know how the communication, which remains hidden, is achieved.

Multiple processes may run in parallel in a multitasking operating system. Run

ning processes can be monitored and terminated with simple Nectar commands, which

use operating-system utilities, such as ps and kill.

Design and other dataon a remote file system can be accessed from within Nec

tar. Remote access is based on the Network File System (NFS), a rile system implemen

tation that allows sharing of ordinary files and directories in a multivendor networking

environment

4.6 The Flow of Control in the Framework

NECTAR is invoked from the UNIX shell with the command "nectar". By en

tering NECTAR, users enter a command loop thatcontinues until the "quit" command is

issued. Using the task commands, one can invoke tools without having to remember the

syntactic details of how each tool is invoked on its own. More details on the userinterface

are givenin Chapter 5. Othercommands serve to setthevarious framework status variables

and options, such astheexecution machine, file names, the pager and editor ofchoice, and

others.

Of particular interest is the flow of actions thatcorrespond to the edit-simulate-

examine design loop shown in Figure 4.2. A framework-control cycle for this design loop

has been incorporated in NECTAR. The corresponding flowchart is shown in Figure 4.7.

First, the circuit is edited with a circuit editor. Then, if desired, the presimulation

rules of the Expert Emulator are applied to find problems with the simulation input data.
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If.no errors are found or errors are found and the corrections made are acceptable, the

process proceeds to the simulation phase. If errors are found but the corrections made are

not acceptable, the circuit editor is invoked again.

In the simulation phase, afterthe simulation runis over,a post-processor displays

the simulation results. If simulation errors occurred, the simulation-errorrules of the Expert

Emulator can be applied. If the Expert Emulator comes up with acceptable corrections to

the input data, a new simulation is started. If norules are relevant orthe corrections made

are not acceptable, the process goes back to the editing phase.

Once the simulation concludes with no errors, the simulation results are checked

against the design specifications. If the specifications are met, the design is over. Else, the

design rules of the Expert Emulator can beapplied. As in the previous phases, acceptable

corrections lead to a new simulation, whereas otherwise the editor is invoked.



Chapter 5

Improving the User Interface

5.1 Overview

The Nectar framework is an interactive software package. This chapter presents

issues and decisions on the design of the human-computerinterfaceofNECTAR.'Implemen

tation aspects of the interface design are described in Chapter 6.

With the increasing use of computers, human factors in the design of software

are receiving thedue attention. Numerous design principles andguidelines have been ob

tained from practical experience and empirical studies. In one view of user interfaces,

theuser-computer"communication" is analyzed asacomponent of the general task fulfill

ment Another analysisdecomposes userinterfacesinto severalincreasinglyrefined levels,

from conceptual to physical. The choiceof an interaction style and the accommodation of

novices as well as of experienced users are among the central design issues.

A task analysis at the conceptual and computer-system levels reveals the neces

sary functionality for the interfaceof NECTAR. The tasks have been mapped to two prevail

ing hardware platforms, the alphanumeric and the bit-mapped display. The two interfaces

arecompatible and can be used interchangeably during a project. In accordance with princi

ples of"friendly" design, dataentry is minimized, routineactions areautomated, command

argumentscan be specified in several ways, and commands have a common "feel". Data

is displayed in graphical form, whenever possible, and messages inform the user of system

actions. The alphanumeric interface is based on a flexible command language, whereas the

67
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bit-mapped interface uses multiple windows and a menu selection system.

A rule editor, a special interface to the knowledge base of the Expert Emulator,

allows Nectar users to create and modify rules while circumventing most of the syntactic

details of the rules.

5.2 Issues in Computer-User Interfaces

This section presents analysis methods and design issues in user interfaces of

interactive computer programs.

Often in the past, software designers would devote little time in the part of the

program thathandledthe communication from andto the program user, the user interface.

A software project would be considered finished when the core algorithms weredeveloped

and debugged. With the increasing use of computers by a larger and more varied pool

of people, software developers have recognized the importance of user interfaces. "Hu

man engineering is now understood to be the steel frame on which the structure is built"

[Shneiderman87].

Designing "friendly" programs is not a simple matter. The fieldofhuman factors

studies the implicationsof human characteristics on the design ofequipment to be used by

people. Some features of human-machine interaction, especiallythose specific to comput

ers, are not well understood; hence, general principles of interface design are not yet suf-

ficiendy well developed. Instead, design guidelines have beencompiled from experimen

tation, informal observation, and intuition. In [Smith82], hundreds of issues on functional

capabilities, data entry, data display, and sequence control are covered through thorough

lists of guidelines and checks. [Heckel84] specifies thirty "elements of friendly software

design" that provide a variety of perspectives on interface design. Current good practice

is based on guided evolution, an iterative design approach that guarantees flexibility by

intentionally leaving some options open during the early stages of software development

[Nickerson90].

The interaction of humans andcomputers can be analyzed from several pointsof

view. Figure 5.1 illustrates the central conceptsof the interaction from the task perspective
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Figure 5.1: Central concepts in a task perspective of human-machine interaction
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[Wzern89]. The general task — verifying or designing an analog circuit, in the context

of Nectar — is divided in two parts, one to be carried out by the human and one for the

machine. The larger the machine part, the moreautomated the general process. In Nectar,

theinputof theICdesigner (human) is essential ineach cycleofthedesign task, aspresented

in Chapter 4. The machine subtasks are computational, administrative, and diagnostic. In

general, humans excel in creative, intuitive, and low-precision tasks, whereas computers

are betterat repetitive, algorithmic, high-precision, and routine tasks.

The human and the computer handle their respective tasks according to "task

models" implicitly or explicitly present in the human's expertise and in computer pro

grams, respectively. During task handling, commands, responses, data, and other infor

mation flows between human and computer. This"communication" is inherently "unnatu

ral," because of theradical difference in levels of "intelligence." A well-designed interface

narrows the"intelligence" gap by supporting many of the implicit assumptions that char

acterize the communication between humans. It is claimed that writing "friendly" software

is an art involving techniques of effectivecommunication [Heckel84].

A portion of the human-machine interaction consists of supplementary commu

nication about the rules and requirements of the communication that is directly related to

task handling. This supplementary communication is called metacommunication and in

cludes help sessions, error messages, on-line tutorials, and information and commands on

the system status. Since metacommunication intervenes inthe main task, designers have to

consider whether it should happen"actively" (for guidance) or on request, as expert users

generally prefer.

A different analysis of user interfaces is presented in [Moran81]. This analysis

introduces a hierarchical representation of command language systems, called the Com

mand Language Grammar, that spans the conceptual (tasks and abstract concepts), com-

municational (command language, dialogues), and physical (I/O devices) aspects of user

interfaces. The representation ismade up of six description levels, illustrated inFigure 5.2,

each level being a refinement of the previous levels.

At the Task Level, user needs are described in a way amenable to an interactive

system. Concepts used bythe system for the accomplishment of the tasks are introduced at

the Semantic Level. Commands, arguments, state variables, and other syntactic elements
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are laidout atthe Syntactic Level. The Interaction Level specifies the physical actions, such

askey presses and mousemanipulations by theuser and display actions by the system. The

Spatial LayoutLeveldescribes thearrangement of the I/Odevices and thedisplay graphics.

Finally, all remaining physical features are described at the Device Level. The description

of each level contains procedures for accomplishing the tasks in terms of the conceptual

entities and actions available at that level. The stratification into levels is not always precise.

The needs of NECTAR call for a less abstractrepresentation with fewer levels, as presented

in Section 5.3.

Different styles can be chosen to support the user-computer interaction. The

styles most in use are the following [Shneiderman87]:

• Menu Selection: The user chooses from a list of options presented by the system.

• Form Fill-In: Data is entered by the user in a particular format that simplifies repeti

tive actions.

• Command Language: Instructions are expressed direcdy using a language of a par-
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ticular syntax.

• Natural Language: The communication is comprised of sentences from a restricted

vocabulary resembling natural language.

• DirectManipulation: The usermoves andtransforms objects on the screendirectly, as

if they were realobjects; alsodescribedas"what you see is what you get" (Wysiwyg)

interaction.

No one style is "best" in general, but one style may be better than the rest for a particular

task. Menu selection and command language are the main contrasting styles, representing

atrade-offbetween simplicity andpower. Directmanipulation generally requires advanced

hardware and sophisticated softwareandis beingincreasingly employed in all kinds of ap

plications. It should be noted that the distinctions between different styles are sometimes

blurredand that hybrid styles arecommon. Numerous rules and guidelines, applicable to

one, several, or all interaction styles have been developed. Response time, system mes

sages, screen design, and use of color are some additional important issues.

Among the challengesin userinterfacedesignis accommodatinghumans ofvary

ingprofiles. Even thoughthe usersofa program suchasNECTAR are much lessdiverse than,

forexample, the usersof automated-teller machines, the general distinction into novice and

experienced usersstill applies. Typically, novicesare characterized by limited syntactic and

semantic knowledge of the task and by anxiety about interacting with a computer. Expe

riencedusers have good knowledge of the task and familiarity with the computer. Knowl

edgeable but intermittentusers are ableto maintain the semantic knowledge of the task and

the computerconcepts but have difficulty retaining the syntactic knowledge. Each class

of users has different needs about guidance, speed, and feedback. Novices prefer select

ing to giving commands, feel more confident with full terminology, and require generous

prompting, errormessages, and on-line assistance. For expert users, it is important to be

able to work rapidly, to avoid being disturbed by extensive messages, and to be equipped

with shortcuts, abbreviations, and macros for frequent actions. Intermittent users need, at

least in the beginning, novice-like interaction to refresh their memory.

Several Cad programs have addressed user interface issues. VEM [Harrison89],

an interactive graphics program for the Berkeley Design Environment, uses multiple over-
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lapping windows, deck-of-cards pop-up menus, dialogs, and other user interface entities.

The user of Vem can specify commands using the menus, using single keystrokes, or

by typing the command name. Qeopatra [Samad86] is a natural language interface for

circuit-simulation post-processing. An evaluation of Qeopatra has led to the conclusion

that a graphics interface would be preferable to natural language for the Cad domain

[Cobourn87]. ECSTACY [Shyu88], an interactive IC optimization system, uses a form

fill-in interface for the detailing of problem specifications. The Cadweld Cad framework

[Daniell89] provides an icon-driven interface comprised of several viewsthat represent tool

classes and hierarchies and the flow of control and data.

5.3 Designing The User Interface of NECTAR

5.3.1 Assigning Representation Levels

The six-level structure of Figure 5.2 can be simplified for the needs of NECTAR.

The merging of the Semantic and Syntactic Levels into a single level, the System Level,

and, likewise, of the Spatial Layout and Device Levels into the Physical Level, results

into a more concise four-level structure, as illustrated in Figure 5.3. The Task and Interac

tion Levels are identical to the corresponding levels of the Command LanguageGrammar

(Section 5.2). The System Level represents the system operations that are necessary to ac

complish thetasks, aswellashowtheoperations are evoked. The Physical Level describes

the physical arrangements and features of the I/O devices.

An example may help make some of the notions of the level structure more con

crete. At the Task Level, one might want to "simulate a circuit with SPICE". The entities

at this level are: circuit, simulation, and simulation type. The same action is represented

at the System Level with the notionof "invoking the spice executable with input the

file containing the Spice description of the circuit". The entities at this level are: com

mand, executable, arguments, and system files. At the Interaction Level, the action is rep

resented by the keystrokes of the user at the system prompt (for a UNIX system: "spice

< input-file".) Finally, at the Physical Level, the action is described with additional

information about the screen layout, the relative positions of the system prompt and the
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Figure 5.3: Level structure for the user interfaceof Nectar

'echo" of the user's command, fonts, colors, and other screen details.

5.3.2 Task Analysis

Essential in the designof the userinterface ofNectar is to identify the necessary

functionality, i.e., the tasks that must be accomplished. The functionality of the interface

must be adequate but not excessive, because unnecessary complexity may confuse and

discourage the users.

Necessary tasks are the design tasks supported by the framework, as listed in

Section 4.3: various types of simulation, post-processing, design editing, simulation-error

recovery, data checking, and design aid. Inaddition, theanalog-design cycle, as represented

by the flowchart of Figure 4.7 in Chapter 4, mustbe supported asacompound task. A help

facility, a history mechanism, and a bug-report feature are tasks that fall in thecategory of

metacommunication.

Inaddition to the tasksabove, whichrepresent decisions attheTaskLevel, several

new tasks are introduced at the System Level. These tasks relate to system entities not

represented at the previous level, such as files, directories, commands, paths, computer
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jobs, and state variables.

The various types of tasks are summarized inTable 5.1. Tasks introduced atthe

Task Level are represented at the System Level as well, but not vice versa. Even though

tasks introduced at the System Level do not direcdy promote the principal goal of design

verification, they do represent useful utilities.

Interface Level of Task Type Task

Task Introduction

Task Level Simple Simulation

Post-processing

Editing

Error recovery

Data checking

Design aid

Compound Analog-design cycle

Metacommunication Help

History

Bug report

System Level File system File-name setting

File deletion

Directory listing

Directory change

Computer jobs Job monitoring

- Job termination

Parallel-job control

State variables Status check

Status change

Table 5.1: Summary of tasks for the user interface
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5.33 Choices at the Interaction Level

In choosing an interaction style, one first needs to consider the type of hardware

that the program will be running on, and in particular the type of computer terminal that

will beused. Engineering workstations with bit-mapped displays are widely usedamongIC

designers, but alphanumeric terminals used with minicomputers and mainframes are also

in use, at the work place and remotely through low-bandwidth lines. Mixed use of both

types of terminals is not unusual.

Although bit-mapped terminals generally allow the design of better interfaces

than do alphanumeric terminals, either type would be adequate for most Nectar tasks.

Targetingonly one type of terminals would be an unnecessaryrestriction to potential users.

Hence, two interfaces have been developed for NECTAR, one for alphanumeric and one for

bit-mapped displays.

The two interfaces are identical at the Task and System Levels and, thus, have the

same functionality. They differ at the Interaction andPhysicalLevels in orderto exploit the

different capabilities offered by the hardware. Detailed descriptions and design choices at

the Interaction and Physical Levels are presented in Section 5.5 for alphanumeric displays

and in Section 5.6 for bit-mapped displays.

Despite their differences, the two interfaces are compatible. Work started using

one interface can be continued using the other interface with no need for data adjustments

and transforms. This is possible because NECTAR stores data in the databases as files, as

mentioned in Section 4.4, and also because of the equivalence of the two interfaces at the

System Level.

5.4 Data Entry and Display

This section presents principles of interface design that have been applied to the

two Nectar interfaces.

A guideline for data entry is the minimization of input actions by the user. In

Nectar, users's actions are minimized in several ways. Most choices are made using one

or two keystrokes or a mouse click. Simple framework commands have substituted lengthy
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commandsequences attheoperating-system level. This reduces training andmemorization

requirements. As an example, the Unix command

spice1 -r rawfile < infile > outfile

is substituted with the keystroke "2" or a click of the mouse on the "SPICE2" menu entry

(assuming that the name of the input file has been specified in advance).

Certain commands, when invoked from the operatingsystem, requirecertainen

vironment variables or auxiliary files — such as "dot" files in Unix systems — to be in

a certain state. Whenever changes to ensure such requirements can be made without the

user's intervention, actions are taken and remain "hidden" from the user. As an example,

the r je UNIX program,used for the communication with IBM mainframes, does not work

properly if the user'sauxiliary mail file, .mailrc, contains a"set records.." entry,

which allows outgoing mail to be saved in a file. When the above condition is present, Nec

tar creates a temporary .mailrc with no entry for recording and then executes the r je

command. The .mailrc file is restored to its original form after the task is completed.

Redundant data entry is avoided in NECTAR, thus preventing user annoyance and

the possibility for errors. Any required argument of the stand-alone command for a tool

may be omitted when the tool is invoked inside the framework, if that argument can be

derived from the context of previous commands during a session with NECTAR.

Names for files used to store results from various tools are given default names

by the framework. The user can access those files using framework commands without

having to know the names. A user that insists on specifying the file names can do so using

the appropriate Nectar commands.

Arguments for framework commands can be entered in several ways: some can

be included as options with the NECTAR-invocation command; all arguments can be given

as regular supplements together with the commands; finally, if not supplied previously,

argumentsareinquired with questions to the user. This flexibility gives the user additional

control on data entry.

Actions and subtasks most likely needed after the completion of a user-requested

task areinvoked automatically. As anexample, after asimulation, the default post-processor

'"spice" refers to SPICE2.
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is automatically invoked to display the simulation results. As another example, modifica

tions to the input file by the Expert Emulator are not only suggested but also made auto

matically. The user can always override such actions.

NECTAR takes advantage of initialization files for interactive programs (. init

files, in Unix) to automate actions that would otherwise require typing. As an example,

Nectar copies (with appropriate modifications) plotting or printing commands from in

the SPICE input file to file . spiceinit, the initialization file for SPICE3 and Nutmeg. In

this way, the desiredplottingcommand is executedautomatically. As another example, the

use of the initialization filecompensates forthe lackof a batchrunningmode in the steady-

state simulation program SSPICE [Ashar89]. Instead ofrequiring the typingofthecommand

"steady ..." for each simulation run, NECTAR executes the respective commented-out

line from the input file using . spiceinit.

Frameworkcommands arecharacterized by acommon"feel". Consistency within

the command languageis more helpful to a user than compatibility between the command

language and thenatural language [Waern89]. Theinterface shields theuser from command

differences across different machines.

Communication to the user (data display) is made in graphical form, where ap

propriate. Graphs, dialogboxes, andvisual metaphors relieve the need to readandinterpret

alphanumeric data.

Nectar reports to the user all actions taken with system messages. In particu

lar, modifications by the Expert Emulator are reported togetherwith justifications for the

changes. If a rule is executed with a low degree of certainty, the user is asked before any

modifications are made whether the proposed changes are acceptable.

Computerresponse time significandy affects the user's productivityand level of

satisfaction. Care has been taken in implementing the user interface of Nectar to en

sure short response times — less than a second is considered adequate [Shneiderman87].

Lengthy jobs, such as some simulation runs, are handled either by executing them in the

background or by continually displaying the elapsed CPU time.
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5,5 The Interface for Alphanumeric Displays

A flexible command language combined with user queries has been designed for

the alphanumeric interface of Nectar. Figure 5.4 lists the available commands, as they

nectar 1> help

nectar commands

2 : spice2 3 : spice3 3b : spice3bl+

3c : spice3cl 3d : spice3dl bb : jobs on bigboote

bg : jobs in background br : report a bug bs : spice3 w/ bsim

cd : change directory cl : clean files co : codecs

cs : spice2 w/ cosines d subdirectories fg jobs in foreground

fm : spice2 w/ new fm fs : fort spice2 h help

hi history i new input file ia spice3 interactive

ib submit to the IBM k kill spice jobs 1 : list input files

le : view input file n nutmeg 0 : view output file

q : quit r : remote machine sd : set display

se : set editor so : save output sp : set pager

sr : save raw output st : status S3 : sspice

t : spice cpu time V : edit input file ve : spice version

X : expert emulator xs : xsplot

Figure 5.4: A listing of NECTAR commands taken from the help facility

are displayed by the help facility of the framework.

To serve boththeexperienced and novice users, commands may beentered with

full names or using abbreviations. All non-ambiguous abbreviations of command names

are legal. To comply with the outcome of relevant studies that have shown two-letter ab

breviations to beoptimal, all commands can be shortened to two letters. Some of the more

common commands hold one-letter abbreviations as well.

The commandstyle is influenced by Unix shellcommands. The framework sys

tem prompt includes the name of the program and the number of the command.

5.6 The Windowed Interface

A window is a portion of a display screen, typically assigned to a group of in

formation or to one of several simultaneously running processes. Modern engineering



80

workstations with high-resolution bit-mapped graphics displays make multiple windows

practical. Windows have transformed human-computer communication from linear flow

of informationto multi-dimensionalparallel interaction. Many advances, such as overlap

ping windows, pop-up menus, multiple fonts, direct manipulation using the mouse, and

the desk-top paradigm have been introduced with the Xerox Star [Johnson89] and popu

larized with the Apple Lisa [Williams83] and Macintosh [Apple85] and recendy with the

Microsoft Windows 3.0 [Udell90].

The Nectar interfaceforbit-mapped displays uses severalwindows andis menu-

driven. Figure 5.5 shows the screen layout of the interface. The main windows are tiled,

whereas auxiliary windows are overlapping. Two text windows are used for the display

of input data (the larger one on the top) and messages (the one at the bottom). They are

both scrollable with left-hand-side scrollbars. The input-data window is editable and used

tomodify direcdy the input data.

A menu between the two text windows has entries ("buttons") for the framework

commands. A singlestatic menu has beenchosenbecause the numberof tasks is relatively

small. To avoid confusion, the mouse buttons are equivalent: any button may be pressed

with the identical result. Menu actions are confirmed with the use of reverse video.

Pop-up dialog boxes are used for argument entry and command confirmation.

The visual metaphor of a thermometer-like linear ruler displays the elapsed time of CPU-

intensive jobs as they run. This helps eliminate the "Is the computer down?" syndrome

[Shneiderman87] of computer users, who are anxious about the state of their jobs.

Colorgroups objectson the screen in aconsistent way andcreates anaesthetically

pleasing image. Only a few colors are used,since excessiveuseofcolors disorients the user.

5.7 A Mechanism for the Easy Addition of New Rules

As mentioned in Chapter 2, knowledge-based systems can be easily expanded

with the addition of new rules to the knowledge base,which is separate from the inference

engine. In Nectar, the expandability of the Expert Emulator is further enhanced by a

special ruleeditordeveloped to ease the process ofcomposing new rules. By using the rule
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.end
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Quit Input File Save File Spice 2 Spice 3 Fort Spice Output Version Nutmeg Design

Run Rules Rule Editor Help

TERROR*: INTERNAL TIMESTEP TOO SMALL IN TRANSIENT ANALYSIS

Figure 5.5: The windowed user interface for Nectar
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editor, Nectar users can bypass most of the syntactic details of the rules. As shown in

Figure 4.4 of Chapter 4, the raleeditoris the interface betweenthe userandthe knowledge

base of the Expert Emulator.

The rale editoremploys a cyclic querynetwork,shownin Figure 5.6, thatguides

the user through a series of choices and questions.

The presentation sequence of theitemsin thequeries follows the natural ordering

of the rale format. Rules have four parts: name,comment, left-hand-side (LHS), andright-

hand-side(Rhs). The rale editor has fourcorresponding parts: A, B, C, andD. In Part A the

user is asked to enter the rale name that must be unique;hence, alreadyexisting rule names

arerejected unless the user wants to change an existing rale. Part B asks for a comment

describing the purpose of the rale. A null comment is permitted.

The LHSof the rale contains the conditions that must be met by the problem, for

the rale to be executed. The conditions have the form ofpatterns that must be matched by

the problem data. Each pattern consists of a data primitive together with values for certain

fields of the primitive. In Part C, the rale editor asks for all the patterns in the Lhs of the

rule to be specified. For each pattern, the user is queried about the primitive, the fields of

the primitive present in the pattern, and the corresponding field values. Both for the name

of the primitive and the names of the fields a list of validentries is provided; illegal entries

are rejected.

The RHS of the rale contains the actions that take place when a rale is executed.

In Part D, the rale editor asks the user to specify all the actions to be included in the Rhs

of the rale. Each action is composed of a command name and a set of arguments. A set

of basic actions, such as assert, retract, and modify, manipulate elements in the database.

Another common command is that of sending messages to report actions taken. For each

action, the useris queriedfor the commandname and, depending on the type of the action,

the primitive with its fields andvalues, the text of the message, or a list of otherarguments.

Again, illegal endries are rejected.
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Example

To illustrate the use of the Rule Editor, a session with the editor, involving the

creation of the rale "bjt-base-resistance," is described. The following is the complete text

of theinteraction using an alphanumeric display, with theuser's input in sans-serif font.

A) Specify rule NAME : bjt-base-resistance

B) Specify rale COMMENT:

Q Next, for the 'IF' PART, specify the rale patterns.

Valid pattern types are: resistorcapacitor nonlinear-capacitor inductor

nonlinear-inductor mutual-inductance lossless-transmission-line vccs

vcvs cccs ccvs voltage-source current-source bjt mos model analysis

option width error node

Are there more patterns? [ny]: y

CI) Specify the patterntype : bjt

Next, specify the pattern fields.

Valid fields are: name collector base emitter model

Are there more fields in this pattern? [ny]: y

Specify the field name : model

Specify the field value : var m

Are there more fields in this pattern? [ny]: n

Are there more patterns? [ny]: y

C2) Specify the pattern type : model

Next, specify the pattern fields.

Valid fields are: name type af beta bf br bv cbd cbs cgd cgs cgbo cgdo

cgso cj cjc cje cjo cjs cjsw delta eg eta fc gammaibv ikf ikr irb

is isc ise itf js kappa kf kp lambda Id level m mj mjc mje mjs mjsw

n nc ne neffnf nfs nr nss nsub pb phi ptf rb rbm re rd re rs rsh

tf theta tox tpg tr tt ucrit uexp uo utravaf var vj vjc vje vjs

vmax vtf vto xcjc xj xqc xtb xtf xti

Are there more fields in this pattern? [ny]: y

Specify the field name : name

Specify the field value : var m

Are there more fields in this pattern? [ny]: y
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Specify the field name : rb

Specify the field value : var r and 0 or nil

Are there more fields in this pattern? [ny]: n

Are there more patterns? [ny]: n

D) Next, for the 'THEN' PART, specify the actions.

Are there more actions? [ny]: y

Dl) Specify command : print

Specify message : Base resistance of var m has zero value.

Are there more actions? [ny]: y

D2) Specify command : bind

Specify arguments : var new-value 100

Are there more actions? [ny]: y

D3) Specify command : modify

Specify object : pat2

Specify field name: rb

Specify new value : var new-values

Are there more actions? [ny]: y

D4) Specify command : print

Specify message : MODIFICATION: Base resistance of var m changed to var new-

value ohms.

Are there more actions? [ny]: n

End of session.

As a result of this session with the Rule Editor, the following CUPS rale is created and

added to the knowledge base:

(defrule bjt-base-resistance ""
?patl < - (bjt (model ?m))
?pat2 < - (model (name ?m) (rb ?r&0|nil))
=>

(fprintout inf-file "Base resistance of" ?m " has zero value." t)
(bind ?new-value 100)
( modify ?pat2 (rb ?new-values))
(fprintout inf-file "MODIFICATION: Base resistance of" ?m
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" changed to " ?new-value " ohms." t)

)



Chapter 6

Implementation

6.1 Overview

The various novel concepts introduced in the previous chapters have been im

plemented as computer programs. These programs have served as test vehicles for the

evolution of ideas and have shown the feasibility of the proposed solutions. This chap

ter describes the choices made in implementing the programs and the experience with the

programming platforms used.

In implementing the Expert Emulator, the use of an efficient algorithm for the

inference engine of the production system is of primary importance. The Rete Match Al

gorithm, described in Section 6.2.1, optimizes several aspects of the pattern-matching pro

cess, the most computationally intensive function of the inference engine. The reasoning

strategy that best suits searching in the problem space of the Expert Emulator is forward

chaining. Sincethe Rete algorithm is anefficientpattern matcher and favors forward chain

ing, it has been adopted for the Expert Emulator.

A first prototype oftheExpert Emulator wasimplementedin Common Lisp using

an unoptimized but flexible locally developed inference engine. While this version estab

lished the validity of the Expert-Emulation Approach, it was hampered by slow execution

andlarge memory requirements. Consequendy, a secondversion has been developed using

Clips, aC-basedpublic-domain expert-systemtool. While maintaining the functionality of

the first version, the Clips version has reduced both the execution time and memory needs

87
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by over one order of magnitude.

The NECTAR framework also has two implementations, one for each version of

the user interface. The alphanumeric version has been implemented using Unix shell

scripts. Although this version was initially intended to serve only as a prototype, it has

acceptable run-time performance and has been retained for its simplicity and direct access

of UNIX functions. The windowed version has been implemented in C, using the X Win

dow System (X). Many low-level programming details of the X protocol have been handled

automatically with the X Toolkit, a library package layered on topof X.

6.2 Implementation of the Expert Emulator

Thechoice of theproduction-system Diagramming model for theExpert Emulator

(Section 2.5) is essential for the organization of the domain expertise (in rales). Although

the notion of dividing the domain knowledge intorules mightbe considered an implemen

tation issue, it is central to the Expert-Emulation Approach and, hence, presented together

with the principles of the approach in Chapter 2 and detailed further in Chapter 3. The

user of the Expert Emulator should be aware of the rule structure, particularly in view of

the "incompleteness" of the rale set, as explained in Section 3.3. This section presents

the less visible implementation aspects of the Expert Emulator, including thechoices of a

pattern-matching algorithm, areasoning strategy, and a programming language.

6.2.1 Algorithmic Considerations

Production systems were originally conceived to formalize symbolic logic ques

tions; they were shown capable ofrepresenting general problem-solvingknowledge [Post43],

However, the theoretical foundation was not thorough enough to produce practical pro

grams. Algorithms were needed to accomplish the tasks of an inference engine (Sec

tion2.5.1), in particular pattern matching and conflict-set resolution (rule selection).

The first suggested rale control strategy was based on assigning a static priority

orderto rales [Markov54]. As the use of production systems spread, it was seen that sys

tems builtstraightforwardly according to thedefinition are computationally expensive. An
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unoptimized pattern matcher would sequence through the rales inacertain order, compar

ing each rale against all data elements, until all conditions in the "if'-part of arale were
satisfied. This process would be repeated for each cycle of the inference engine (Figure 2.4).

It has been shown that significant improvements inefficiency can begained by minimizing

attempted matches of condition elements inunsatisfied rales with unrelated data elements
[McDermott78]. Such studies resulted inan algorithm that gready improves efficiency, the

Rete Match Algorithm [Forgy82].

The Rete algorithm eliminates most of the redundant work that a straightfor

ward unoptimized pattern-matching algorithm would do. Since most of the data remains
unchanged after each inference cycle — this property is called temporal redundancy —,

the bulk of the attempted matches of an unoptimized algorithm are identical across cycles

[Brownston85]. The Retealgorithm takes advantage of temporal redundancy by notrecom

puting all the matches on each cycle but looking only for changes inmatches. Asillustrated
in Figure 6.1, changes in matches originate in changes indata and result in changes to the

conflict set (Section 2.5.1), which is stored between cycles.

(saved from previous cycle)
Conflict Set

Changes to Conflict Set

Figure 6.1: The incremental matching strategy of the Rete algorithm

The Rete algorithm reduces thedependence of the matching process on the num

ber of rales by exploiting the structural similarity between rales. Conditions shared by

multiple rales are evaluated only once. Another computationally expensive part of the

matching process involves the calculation of whether a rale, whose conditions all match
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individually, matches as a whole. This is not self-evident, since variables appearing in

multiple condition elements of a single rale must be matched with identical data, for the

rale to match as a whole. Instead of computing the cross products of allcombinations of

matches to all condition elements and do this on every cycle, the Rete algorithm stores

partial combined results and uses them onlater computations. Matches for individual con

ditions as well as partial combined results are stored in a tree-structured sorting network

whose nodes represent the condition elements [Forgy82].

The reasoning strategy in a production system refers to the direction of the se

ries of inferences that connect a problem to its solution. Forward-chaining systems start

from known facts and proceed toward the solutions. By contrast, backward-chaining sys

temsstart from ahypothesis, break that upintointermediate hypotheses, and continue until

known facts are reached. Forward-chaining systems are more appropriate when there are

many acceptable solutions and the length of the inference chain is short, as shown in Fig

ure 6.2a. Backward chaining is more appropriate when the search network is narrow and

deep, as illustrated in Figure 6.2b [Giarratano89]. The distinction between the two strate

gies is notabsolute. Many systems implement both reasoning strategies and systems with

either strategycan be programmedto emulate the otherone.

The search space of theExpert Emulator has manyfinal states (solutions), namely

the various corrective techniques. In addition, final states usually are arrived at after only

a few inferences. As explained above, such characteristics (broad and not deep search

networks) call for a forward-chaining reasoning scheme. Since the Rete algorithm is not

onlyefficient but also favors forward chaining, it has been chosen as the pattern-matching

algorithm for the Expert Emulator.

6.2.2 Using LISP

Several production-system languages, such as Ops5, Ops83, and Art, are based

on the Rete algorithm. Among them, Ops5 [Forgy81], developed by the designer of the

Rete algorithm and available in the public domain, has been themost widely used. Ops83

[Forgy841 and ART [Inference89] are twoof the numerous commercial expert-system build

ing tools available today at costs of thousands to tens of thousands of dollars. Ops83 is a
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Figure 6.2: Appropriate applications for reasoning strategies: (a) forward chaining; (b)

backward chaining
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compiler-based descendant of the Ops family that combines a rale-based and a procedural

programming paradigm, whereas Art is a multi-paradigm tool that supports forward and

backward chaining, hypothetical reasoning, and object-oriented programming among other

features.

During the planning stage of the implementation of the Expert Emulator, it was

decided that the acquisitionofacommercial tool was not justified. At the time, the principal

goal had been the demonstration of the proposed approach through a quick prototype. The

public-domain alternative, Ops5, presented two problems:

1. Restrictive data structures and expressions for the conditions in rules.

2. Non-standard underlying language: OPS5 is written in a particular dialect of LISP,

FranzLISP [Foderaro83, Wilensky84]. Unlike many other languages, LISP has evolved

to several dialects that differ considerably from one another. The lack of a language

standard spurred a certain activity in the mid-1980's that resulted in the development

of Common LISP [Steele84], a dialect intended to serve as a standard to which each

implementation of LISP would make any necessary extensions. The clear trend to

ward commonality and portability had suggested that a LlSP-based implementation

of the Expert Emulator should be in Common LISP.

A solution to the seeming language problemwas presentedin the form ofa Com

mon LISP implementation ofthe Rete algorithmdeveloped locally atBerkeley [Guerrieri87].

Although this implementation lacks some of the optimizing features present in Ops5, it al

lows for arbitrary data structures, test expressions in the conditions elements of rales, and

user-defined functions. In addition, its relatively small size (1,400 lines of code compared

to 3,200 lines for OPS5) has allowed easy code modifications for the needs of this project.

One potential enhancement would be the inclusion of the object-oriented paradigm, based

on Portable Common LOOPS (PCL), a partial implementation of the Common Lisp Object

System (CLOS) specification [Bobrow88].

Common LISP has proven to be an excellent, flexible language for the develop

ment ofa prototype for the Expert Emulator. Advantageous featuresof the language include

automatic memory management, superior handling of lists, patterns, and polymorphic data,

a rich environment, and its interactive nature. Extensive use has been made of the loop
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Iteration Macro [Symbolics85], a programmable iteration facility that looks like stylized

English rather than Lisp code and provides an array ofconstructs for iteration control, local

variables, prologue andepilogue, andreturned values.

In addition to the inference engine, the data-format translators (Section 4.4) and

system-interface utilities have also been implemented in LISP. The specific language used

has been Digital's implementation of Common USP, VaxLISP [Digital86], Version U2.2.

The program runs on VAX minicomputers (8600 series) and workstations (VAXStation

II/GPX) under the Ultrtx Operating System (Digital's version of UNIX). The total size

of the LISP version of the Expert Emulatoris 2,500 lines of code.

6.23 Using CLIPS

The LISP version of the ExpertEmulator demonstrated the feasibility of the new

approach. Nevertheless, there was a performance penalty to be paid for the unoptimized

code and the programming conveniences and interactive nature of LISP. The execution

speed of anything but small problems is poor. Furthermore, the size of the executable

programs is huge, since boththe 3.5-megabyte VaxLISP executable and the 2.4-megabyte

suspended image of the ExpertEmulator are needed. A suspended imageis a binary copy

of the memory in use during an interactive LISP session. In this application, the compiled

inference engine, rales, andotherLISP functions are accessed through the suspended image

of a compilation session performed previously. Running the LISP program requires large

amounts of memory to accommodate the executables as well as the memory manager—

Lisp allocates memory automatically andreclaims unusedcells when it runsout ofmemory

(garbage collection).

As a result of the above performance problems, a second version of the Expert

Emulator has been implemented using CLIPS [Giarratano89b], an expert-system shell de

veloped by Nasa. CLIPS, an acronym for C Language Integrated Production System, im

plements the Rete algorithm and supports forward chaining. Its capabilities are similar to

thoseofOPS5, whereas syntactically it resembles asubsetofART. It is composedof30,000

lines of C and has been portedto a wide variety of computers ranging from personal com

puters to Cray supercomputers.
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Although the data structures and expressions supported by Clips are not as gen

eral as those of Common LISP, they are adequate for the particular application. Certain

advanced capabilities of Lisp, such as object-oriented programming through PCL, are not

provided in Clips and must be substituted with additional repetitive code. However, Clips

provides superb speed, good external-function interface, and several LiSP-like predicates

and functions.

Run-time performance results on examples presented in Chapter 3 have been

compiled for the two versions of the Expert Emulator. Table 6.1 presents comparative

CPU times for a VAX 8800 and Table 6.2 gives CPU times for a VAXStation n/GPXl. Re

sults including program initialization times are shown in parentheses2. As illustrated, the

speed-up obtained with Clips is over one orderof magnitude and grows with the size of the

problem. Table 6.3 summarizes the memory requirementsof the two versions and shows

gains of over one order of magnitude.

Example CPU Time

Name Elements Lisp

(sec)

Clips

(sec)

Speed-up

(x)

Bjt Oscillator

MOS Oscillator

Pull-Up

14

21

72

5.4 (6.4)

26.0 (27.0)

915.6 (916.6)

0.6 (3.8)

1.5 (4.7)

32.1 (35.3)

9.0 (1.7)

17.3 (5.7)

28.5 (25.9)

Table 6.1: Speed comparison of Common Lisp and CLIPS on a VAX 8800

The data-formatconverters and system interface functions have been written us

ing CLIPS rules. Although a procedural implementation would be faster, using rules gives

acceptable speed. The size of the converters and system utilities is 1,800 lines of Clips

code.

As a result of the performance improvement, the execution of more rales has

become feasible between simulation runs (Section 4.6). For the LlSP-based version only

a single sequence of rale "firings" was allowed between simulation runs. In this way, the

run-time overhead was kept within an acceptable range. The CLIPS version allows more

'Lisp runtimes includetime spent in garbage collection.
2CUPS rules are not pre-compiled.
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Example CPU Time

Name Elements Lisp

(sec)

Clips

(sec)

Speed-up

(x)

Bjt Oscillator

MOS Oscillator

Pull-Up

14

21

72

38.0 (45.5)

191.9 (199.4)

7629.8 (7637.3)

4.3 (24.1)

10.1 (29.9)

255.2 (275.0)

8.8 (1.9)

19.0 (6.6)

29.9 (27.8)

Table 6.2: Speedcomparison of Common Lisp and Clips on a VAXStation ii/gpx

Object

Size

Lisp

(Mbytes)

Clips

(Mbytes)

Reduction

(x)

Executable Files

Virtual Memory

5.9

10-30

0.19

0.5-1

31

20

Table 6.3: Memory requirements of Common LISP and CLIPS

detailed examination of the available simulation input and output data, as well as multiple

userqueries, thus enhancing the corrective capabilities of the ExpertEmulator.

6.3 Implementation of the Framework

Two different implementations of the NECTAR framework have been built: one

for the alphanumeric interfaceand one for the windowed interface.

6.3.1 Using the UNIX Shell

The necessary operations to accomplish the framework tasks for an alphanumeric

interface are the following:

• Interpretation of the user's commands

• Implementing the flow of controlof the framework (Section 4.6)

• Invoking Cad tools and other programs

• Directing data between programs and databases (files)
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• Controlling the execution of processes

• Database (file and directory) browsing

• Sending results and messages to the display

Almost all operations above involve in some way the underlying operating system (UNIX).

All operationscan be accomplished usingUNIX's command interpreter (shell), the program

that sits between the Unix kernel and the user in a regular Unix system.

The UNIX shell has several useful capabilities: it allows filename specification

using shorthands and patterns; it can redirect the input and output of programs even with

out using files (through pipes); it monitors and controls processes; it allows the creation

of new and complex commands through aliases and shellfiles. Furthermore, since the de

fault output of the shell is the (alphanumeric) terminal, several facilities for the display of

data and messages are available. Clearly, the Unix shell is not a typical command inter

preter. It is really a programming language with variables, loops, decision-making, etc.

[Kernighan84].

Intended to serve as a prototype, the alphanumeric version ofNECTAR was imple

mented using shell scripts, namely shell commands saved in a file. Such programs do not

require compilation and allow rapid prototyping. The performance penalty that character

izes interpreted programsis not noticeable in NECTAR, since the programdoes not contain

any computationally expensive loops. Consequently, there was no need to translate the

prototype in a conventional language, such as C. As an added advantage,Unix commands

and programs can be accessed from inside the Nectar shell.

Among the several versions of the Unix shell, the one used in Nectar has been

csh [Joy83], a shell with C-like syntax. The size of this version of the framework is 1,100

lines of code.

6.3.2 Using the X Window System

The programmingdemands ofa windowed interface areconsiderably higher than

those of an alphanumeric interface. A multitude of additional operations are necessary for

the windowed interface of Nectar, including the following:

• Creating windows
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• Positioning windows on the screen

• Redrawing and updating windows when changes occur

• Moving windows

• Resizing windows

• Combining simple windows to form complex structures

• Handling (selecting, editing, saving) text in text windows

• Scheduling events and managing the general behavior of all windows

Lengthy andcomplicated code is required to handle the added complexity. Characteristi

cally, the"Hello World" program, thecustomary "minimal" program in the C language that

can be written in less than 5 lines for an alphanumeric display, requires pages of code in

windowed versions [Rosenthal87].

Windowing systems have been developed both to simplify prograrmriing and to

set interface standards for application software. Whereas many windowing systems are

specific to one type ofhardware, some havebeendesigned for generality and transparency.

Among them, the X Window System (or simply X) [Scheifler86, Scheifler88] has achieved

widespread popularity, particularly in theUNIX community. X provideshigh-performance,

high-level, device-independent graphics. It is based on a network protocol and a client-

servermodel: client programs runningon the local workstation or on any machine on the

network communicate with the X server programthat runs on the workstation.

The windowed interface of NECTAR has been implemented for X, Protocol Ver

sion 103 [Gettys86]. The program (xnectar) has been written in the C Programming

Language [Kernighan781 and runs on VAX computers under ULTRDC.

The complexity ofwindowing programs can be reduced significandy with the use

of library packages, in the same way \hdistdio simplifies standardUnix programming. For

this application, the X ToolkitLibrary [Athena87] has been used. The X Toolkit extends the

basic abstractions of X by providing a cohesive set of widgets and a component-interaction

mechanism. Widgets are (sub)windows that provide certain user-interface abstractions (for

example, a scroll-bar widget). The X Toolkit handles resizing and redrawing of widgets,

3Version 11 has since been released and become the new standard
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text selection and editing in text windows, color defaults, and otherwindow operations.

Owing to the use of the X Toolkit, the size of the windowed interface has been kept to

2,200 lines of code.



Chapter 7

Conclusions

The research activitydescribed in this dissertation hasaddressed the problem of

improving existing analog Cad tools and the analog design process (Section 4.2.3) as a

whole. In particular, the research objectives set in Chapter 2, Chapter 3, and Chapter 4

have beenpursued. Along the way, issues drawn from different disciplines, including cir

cuit simulation, circuit design, expert systems, computer frameworks, user interfaces, and

prognumning languages, havebeeninvestigated, andsolutions andmethodshavebeen pro

posed and implemented.

As its main thesis, this research has shown that the use of Cad tools can be en

hanced significantly without altering the tools themselves. Improvements result from ac

tions peripheral to the tools, including the following, as illustrated in Figure 7.1:

1. Appropriate modifications to the toolinputs, based on the application of expert rules

2. Automation of tool interaction, through their integration in a Cad framework

3. Simplification of tool invocation and result presentation, with the use of a uniform

framework userinterface thatincorporates modem human-computerinteraction prin

ciples.

Nectar, the computer framework that implements the proposed improvement

methods, offers solutions to several shortcomings commonly confronting analog designers.

With the use of NECTAR during a typical design session, a number of new capabilities are

attained:
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NECTAR

1. Input Modifications Input (data)

Cad Tool 2. Tool Interaction • Other Tools

3. User Interface User

Figure 7.1: Tool-usage improvement methods implemented in Nectar

Tool Access: By invoking the framework, the user gains immediate access to a host of oth

erwise "scattered" tools (simulators, post-processors, circuit editors, etc.) and utili

ties (for job monitoring and control, directory browsing, history, etc.) (Figure 4.3).

Available capabilities are displayed either on the menu bar (Figure 5.5) or through

the help facility (Figure 5.4).

Command Specification: Once inside Nectar, the user can specify actions using simple

and straightforward commands. Command-argument specification is flexible, with

default values, command-line specification, and user queries being allowed. Side

command requirements, such as initialization files, are filled automatically by NEC

TAR (Section 5.4).

Input (Design) Data: Design data generated with an editor is piped as input to another

tool, e.g. a simulator, with no need to specify the name of the data file. In addition,

input data is checked, upon request, for format and other errors (Section 3.5).

Job Monitoring: During a simulationrun, partial results are displayed continuously (Sec

tion 5.4). The status of the job, in particular the elapsed CPU time, is also displayed

(Figure 5.5). The job can be terminated with a simple command.

Output Data: Simulation results are stored in files automatically with no need for the user

to specify file names (Section 5.4). Results from any simulator can be viewed using
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any one of several post-processing and plotting programs (Section 4.3). The use ofa

common database by all tools eliminates redundant information flow and minimizes

data-format translations (Section 4.4).

Simulation-Error Recovery: Hard-to-overcome simulation shortcomings, notably con

vergence problems, that otherwise require "trial-and-error" orexpert-user consulta

tion, can be solved on-line with the application of "rules-of-thumb" coded in rules

(Section 3.4). New expert knowledge can be incorporated easily in Nectar using a

special rule editor (Section 5.7).

User Friendliness: A user of Nectar can benefit from a user interface designed with the

user in mind. System and tool details are hidden and emphasis has been puton tasks,

not tools (Section 5.3.2). NECTAR provides a uniforminterface for several (individ

ually polymorphic) tools (Section 5.4). Complicated command-control sequences,

frequently requested by users, are incorporated in the framework flow of control

(Section 4.6).

Hardware: Nectar allows the use ofdifferent types of computer hardware. Jobs can run

on remote machines to optimize CPU usage (Section 4.5). Two different interfaces

are available thatcorrespond to thetwomost widely usedtypes of terminals. The two

interfaces are compatible in the tasks thatcanbe accomplished and, therefore, work

started ononetype ofterminal can becontinued using adifferent type (Section 5.3.3).

Although only the third improvement action mentioned at the beginning of this

chapter refers to what is considered user interface in the strict sense, the other two actions

also improve the interaction withexisting tools. Hence, NECTAR can beconsidered a user-

interface shell, an auxiliary tool thatcan provide significant help to users of analog-circuit

analysis and design programs.



Appendix A

A Short Chronological Review of SPICE

By the end of the 60's a major research activity was present at the University

of California at Berkeley (UCB) and involved the investigation and development of sev

eral circuit simulation programs [Pederson84]. One project, involving ten smdents under

Rohrer, tackled mostaspects of computer circuit analysis and resulted in theProgram Can

cer [Nagel71]. The first version of Cancer came outduring the Academic Year 1969-70

and included nonlinear DC and AC analyses. By the Fall of 1970 Nagel had added the

capability for nonlinear transient analysis. Versions 3, 4, and 5 of Cancer were used in

instructional courses during 1970-72 at UCB. It should be noted that Cancer was never

released in the public domain.

In 1971 the Spice project was initiated by Nagel andPederson. The first version

was released in the public domain in May 1972. Several versions of SPlCEl were released

in the next three years. In July of 1975 SPICE2A.1, the first version of SPICE2 [Nagel75,

Cohen76], was released. For all versions up to 2E UCB used the CDC6000 computer, a

64-bit machine. While others had converted to 32-bit machines earlier, UCB moved to a

32-bit machine with Version2F,which was developed for aVAX running Unix by Dowell,

Newton, and Vladimirescu and was released in March 1980. From July 1980 to August

1983 the G versions were released [Vladimirescu81]. 2G.0 included a source-stepping

algorithm, and 2G.6 was the last release of SPICE2, in 1983. Versions 2G.7 and 2G.8 were

completed in February of 1984 but were not released because of the upcoming SPICE3.

SPICE2G.6 is still used widely in the academia and industry.
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The SPICE3 project was spurred by theneedfor abetter structured, moremodular

software package. Written in FORTRAN and already over 10 years old by the early 80's,

Spice2 impeded easy program modifications and enhancements. As an example, the addi

tion of a new device model into SPICE2 constituted a much more complicated problem than

one might think ordesire. The first version of SPICE3 was written in Ratfor by Quarles

in Decemberof 1983 [Quarles83]. After that, the C Prognunming Language was chosen

for theproject Quarles wrote thecore routines and Christopher implemented the front-end

and post-processor program, called Nutmeg [Christopher87]. The three main releases of

SPICE3 have been: 3al in March 1985, 3bl in April 1987, and 3cl in April 1989. Com

pared with SPICE2, SPICE3 has cleanerdata structures, ismore modular, and has a friendlier

user interface. New models, as well as new analyses, can be (and have been) added with

considerably lesseffort than for SPICE2. Nevertheless, SPICE3 has not yet replaced SPICE2,

which is still widely used. A more complete review of the evolution of SPICE, including

the many commercial derivatives, can be found in [Vladimirescu90].



Appendix B

Error Messages in SPICE

This appendix lists the error messages and warnings generated by SPICE2 in re

sponse to run-time problems. These messages are often not sufficiendy informative and

sometimes refer to entities internal to the program. Other messages include corrective

suggestions. Fatal errors are distinguished by the"*ERROR*" prefix and are listed first.

Warnings may not cause the termination of the simulation job; they are prefixed with

"WARNING." In the following, the character 'A-' denotes variables whose values are deter

mined at run time.

Error Messages

*ERROR*: CPU TIME LIMIT EXCEEDED ... ANALYSIS STOPPED

♦ERROR*: PARAMETER CHANGE FAILED X IS NOT IN THE ORIGINAL CIRCUIT

♦ERROR*: .END CARD MISSING

♦ERROR*: ILLEGAL NUMBER - SCAN STOPPED AT COLUMN X

♦ERROR*: MAXIMUM ENTRY IN THIS COLUMN AT STEP ,Y (X) IS LESS THAN PIVTOL

*ERROR*: NO CONVERGENCE IN DC ANALYSIS. LAST NODE VOLTAGES:

*ERROR*: NO CONVERGENCE IN DC TRANSFER CURVES AT X = X. LAST NODE VOLTAGES:

*ERROR*: TEMPERATURE SWEEP SHOULD BE THE SECOND SWEEP SOURCE, CHANGE THE
ORDER AND RE-EXECUTE

♦ERROR*: INTERNAL TIMESTEP TOO SMALL IN TRANSIENT ANALYSIS

♦ERROR*: TRANSIENT ANALYSIS ITERATIONS EXCEED LIMIT OF X. THIS LIMIT MAY BE
OVERRIDDEN USING THE ITL5 PARAMETER ON THE .OPTION CARD

♦ERRORSCPU TIME LIMIT EXCEEDED IN TRANSIENT ANALYSIS AT TIME = A'
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*ERROR*: X HAS BEEN REFERENCED BUT NOT DEFINED

*ERROR*: CIRCUIT HAS NO NODES

♦ERROR*:ELEMENT X PIECEWISE LINEAR SOURCE TABLE NOT INCREASING IN TIME

♦ERROR*: MEMORY REQUIREMENT EXCEEDS MACHINE CAPACITY MEMORY NEEDS EX
CEED X (06B)

♦ABORT*: INTERNAL MEMORY MANAGER ERROR AT ENTRY X

*ERROR*: ABOVE LINE ATTEMPTS TO REDEFINE X

*ERROR*: UNABLE TO FIND X

•ERROR*: SYSTEM ERROR, ADDRESS X IS NOT ON 4-BYTE BOUNDARY

♦ERROR*:NSUB <= NI IN MOSFET MODEL X

♦ERRORS. EFFECTIVE CHANNEL LENGTH OF X LESS THAN ZERO. CHECK VALUE OF LD FOR
MODEL X

♦ERRORS UNKNOWN DATA CARD: X

♦ERROR*: UNRECOGNIZABLE DATA CARD

♦ERRORSZ0 MUST BE SPECIFIED

*ERROR*: EITHER TD OR F MUST BE SPECIFIED

*ERROR*: ELEMENT TYPE NOT YET IMPLEMENTED

*ERROR*: NEGATIVE NODE NUMBER FOUND

*ERROR*: NODE NUMBERS ARE MISSING

♦ERROR*:VALUE IS MISSING OR IS NONPOSmVE

♦ERRORSMUTUAL INDUCTANCE REFERENCES ARE MISSING

♦ERRORSMODEL NAME IS MISSING

♦ERRORSUNKNOWN SOURCE FUNCTION: X

♦ERRORS UNKNOWN PARAMETER: X

♦ERRORS VOLTAGE SOURCE NOT FOUND ON ABOVE LINE

♦ERROR*:VALUE IS ZERO

♦ERROR*:EXTRA NUMERICAL DATA ON MOSFET CARD

♦ERROR*: MODEL TYPE IS MISSING

♦ERRORSUNKNOWN MODEL TYPE: X

♦ERRORS UNKNOWN MODEL PARAMETER: X

♦ERRORS SUBCIRCUrr DEFINITION DUPLICATES NODE A'

♦ERRORSNONPOSITIVE NODE NUMBER FOUND IN SUBCIRCUrT DEFINITION

♦ERRORS SUBCIRCUIT NAME MISSING

♦ERRORS SUBCIRCUIT NODES MISSING

♦ERRORSUNKNOWN SUBCIRCUIT NAME: X

♦ERRORS SUBCIRCUrT NAME MISSING



♦ERRORS .ENDS CARD MISSING

♦ABORT*: SPICE INTERNAL ERROR IN REORDR

♦ABORT*: INTERNAL SPICE ERROR: SORUPD: X

*ERROR*: X HAS DIFFERENT NUMBER OF NODES THAN .Y

*ERROR*: SUBCIRCUIT X IS DEFINED RECURSIVELY

♦ERROR*: LESS THAN 2 CONNECTIONS AT NODE X

♦ERROR*: NO DC PATH TO GROUND FROM NODE X

*ERROR*: INDUCTOR/VOLTAGE SOURCE LOOP FOUND, CONTAINING A'

***** JOB ABORTED

Warnings
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WARNING: UNDERFLOW X TTME(S) IN AC ANALYSIS AT FREQ = X HZ

WARNING: UNDERFLOW JY TIME(S) IN DISTORTION ANALYSIS AT FREQ = X HZ

WARNING: MORE THAN X POINTS FOR X ANALYSIS, ANALYSIS OMITTED. THIS LIMIT MAY
BE OVERRIDDEN USING THE LIMPTS PARAMETER ON THE .OPTION CARD

WARNING: NO X OUTPUTS SPECIFIED... ANALYSIS OMITTED

WARNING: FOURIER ANALYSIS FUNDAMENTAL FREQUENCY IS INCOMPATIBLE WITH TRAN-
SIENT ANALYSIS PRINT INTERVAL... FOURIER ANALYSIS OMITTED

WARNING: ATTEMPT TO REFERENCE UNDEFINED NODE X - NODE RESET TO 0

WARNING: UNDERFLOW OCCURRED X TIME(S)

WARNING: MINIMUM BASE RESISTANCE (RBM) IS LESS THAN TOTAL (RB) FOR MODEL X.
RBM SET EQUAL TO RB

WARNING: THE VALUE OF LAMBDA FOR MOSFET MODEL X IS UNUSUALLY LARGE AND
MIGHT CAUSE NONCONVERGENCE

WARNING: IN DIODE MODEL X IBV INCREASED TO A', TO RESOLVE INCOMPATIBILITY WITH
SPECIFIED IS

WARNING: UNABLE TO MATCH FORWARD AND REVERSE DIODE REGIONS BV = A" AND IBV

= JY

WARNING: TOO FEW POINTS FOR PLOTTING

WARNING: INPUT LINE-WIDTH SET TO 72 COLUMNS BECAUSE POSSIBLE SEQUENCING AP
PEARS IN COLS 73-80

WARNING: ABOVE LINE NOT ALLOWED WITHIN SUBCIRCUrT - IGNORED

WARNING: COEFFICIENT OF COUPLING RESET TO 1.0D0

WARNING: NO SUBCIRCUrT DEFINITION KNOWN - LINE IGNORED

WARNING: MISSING PARAMETER(S)... ANALYSIS OMITTED

WARNING: UNKNOWN FREQUENCY FUNCTION: A'... ANALYSIS OMITTED

WARNING: FREQUENCY PARAMETERS INCORRECT... ANALYSIS OMITTED
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WARNING: START FREQ > STOP FREQ... ANALYSIS OMITTED

WARNING: TIME PARAMETERS INCORRECT... ANALYSIS OMITTED

WARNING: START TIME > STOP TIME ... ANALYSIS OMITTED

WARNING: ILLEGAL OUTPUT VARIABLE... ANALYSIS OMITTED

WARNING: VOLTAGE OUTPUT UNRECOGNIZABLE ... ANALYSIS OMITTED

WARNING: INVALID INPUT SOURCE... ANALYSIS OMITTED

WARNING: DISTORTION LOAD RESISTOR MISSING... ANALYSIS OMITTED

WARNING: DISTORTION PARAMETERS INCORRECT... ANALYSIS OMITTED

WARNING: FOURIER PARAMETERS INCORRECT... ANALYSIS OMITTED

WARNING: OUTPUT VARIABLE UNRECOGNIZABLE... ANALYSIS OMMTTTED

WARNING: NUMDGT MAY NOT EXCEED .Y ; MAXIMUM VALUE ASSUMED

WARNING: UNKNOWN OPTION: X ... IGNORED

WARNING: ILLEGAL VALUE SPECIFIED FOR OPTION: A"... IGNORED

WARNING: UNKNOWN ANALYSIS MODE: X ... LINE IGNORED

WARNING: UNRECOGNIZABLE OUTPUT VARIABLE ON ABOVE LINE

WARNING: OUT-OF-PLACE NON-NUMERIC FIELD X SKIPPED

WARNING: INITIAL VALUE MISSING FOR NODE X

WARNING: ATTEMPT TO SPECIFY INITIAL CONDITION FOR GROUND INGNORED

WARNING: OUT-OF-PLACE NON-NUMERIC FIELD X SKIPPED

WARNING: INITIAL VALUE MISSING FOR NODE X

WARNING: ATTEMPT TO SPECIFY INITIAL CONDITION FOR GROUND IGNORED

WARNING: FURTHER ANALYSIS STOPPED DUE TO CPU TIME LIMIT



Appendix C

Program Source Listing

The source listing of Nectar is available at the following address:

Software Distribution Office

Industrial Liaison Program
Department of Electrical Engineering and Computer Sciences
University of California
Berkeley, CA 94720

The following should be noted:

• The LISP version of the ExpertEmulatorrequires the executableofVaxLISP, version

U2.2, which can be obtained from Digital Equipment Corporation.

• The CLIPS version of the ExpertEmulator requires the executable of CLIPS, version

4.3, which can be obtained from COSMIC, The University of Georgia, Athens, GA

30602.

• The X-Windows version of NECTAR runs under version 10 of the X protocol.
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