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Abstract

Present VLI circuits involving the design of analog subcircuits have spurred the
demand for more sophisticated analog CAD tools. This research addresses the problem
of improving existing analog CAD tools, both individually and from the viewpoint of the
general desigxi process. NECTAR is a computer framework that implements the proposed
improvement methods.

* Electrical circuit simulators are the most used analog CAD tools. They are compli-
cated programs characterized by convergence, user-interface, speed, and other limitations.
Software redesign has resulted in numerous improvements but several harder problems re-
main. The first part of this research involves the examination of alternative methods for
tool improvement. The proposed Expert-Emulation Approach is based on the observation
that experienced users successfully complete simulation tasks with artful manipulations of
input data and control options of the programs. Simulation expertise, acquired from ex-
perts, experimentation, and observation of novices, is incorporated in the knowledge base
of NECTAR as rules. NECTAR rules identify patterns that lead to nonconvergence and apply
appropriate corrective actions to the tool inputs.

As circuit designers have become dependent on a multitude of polymorphic CAD
tools, the need for tool integration and automatic design management has emerged. CAD
frameworks supply the software foundation to meet these needs. The second part of this
research involves the improvement of analog CAD tools by their integration in a framework.
The NECTAR framework unites a host of analog circuit verification tools, including several
types of simulators, post-processors, editors, and the Expert Emulator. With the integra-
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tion in NECTAR, tool interaction is automated, a shared database minimizes data flow and
conversions, emphasis is moved from tools to design tasks, routine actions are automated,
distributed computing environments can be accessed easily, and user errors and training
requirements are reduced. '
Particular emphasis is given to human-computer interaction issues. NECTAR’s
* uniform, friendly user interface simplifies tools invocation and result presentation and takes
advantage of modern computer hardware. '
A final aspect of this research has been the choice of different programming mod-
els and languages for the implementation of the various concepts as computer programs.

(..

Donald O. Pederson
- . Thesis Committee Chairman
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Chapter 1
Introduction

Circuit simulation, the task of modeling and numerically analyzing the perfor-
mance of electrical circuits using computers, plays an essential roleiin the design of present-
day integrated circuits (IC’s). Electrical circuit simulation, the most widely used level of
simulation, involves analytical models for the circuit elements that relate terminal volt-
ages and currents. Circuit designers use simulation for two main purposes. During the
initial phase of the design process, simulations are used to evaluate quickly design ideas
and to compare alternative designs. In the later stages of the design, detailed (and possibly
lengthy) electrical simulations are the main means of verifying, before an IC is fabricated,
that the design specifications are met.

Designers use circuit simulation programs (simulators) routinely but with varying
~ degrees of effectiveness [McCalla88]. Electrical simulators, such as SPICE [Nagel75], are
complex, CPU-intensive computer programs characterized by convergence and other limi-
tations. Efficient use of simulators depends on the designer’s familiarity with the programs
and knowledge of the underlying principles of simulation. Less experienced or infrequent
users often encounter problems with simulators that offer little or no information on the
cause of the problem or possible remedies. Such complications may lead to user fruétra-
tion, waste of time and CPU resources, and eventually dislike and avoidance of the tools.

Numerous major and minor algorithmic and software enhancements have im-

proved many of the convergence, user-interface, speed, and other properties of simulators.

Nevertheless, some of the harder problems have defied solutions general enough to be in-
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corporated in the programs. The first part of the research described in this dissertation
involves the investigation of alternative methods of improving simulation programs. An
improvement approach is proposed that has been driven by the observation that experienced
users often are able to complete simulation tasks by carefully avoiding or overcoming pro-
gram shortcomings. The implementation of the proposed method as a computer program,
called Expert Emulator, has been investigated. The choices of a programming model, a
knowledge representatibn scheme, and an implementation language, crucial in developing
a useful tool, are described.

As circuit designers have become increasingly dependent on a host of computer-
aided design (CAD) tools for the timely completion of new designs, so has the need for
tool integration and automatic design management grown. CAD frameworks provide the
software infrastructure to meet the integration and design management needs. CAD frame-
works have been developed first for digital-circuit design. This has been a result of the
higher degree of attention and importance reached by digital circuits compared to-analog
circuits, the proliferation of digital CAD tools, and because analog desigh could get by with
few tools. Recently, however, ever increasing clock frequencies and the tendency toward
integration of digital and analog subcircuits on the same chip have stimulated significant
interest for analog CAD tools and frameworks.

Started as an attempt to generalize the program environment of the Expert Emu-
lator, the research described in the second part of this dissertation involves the delineation
and development of an analog CAD framework, called NECTAR. Since synthesis tools for
all but a few types of analog circuits are still in experimental stage, analog design remains
an iterative process, with manual intervention by the designer an essential part of each
iteration. Electrical circuit simulators are the main CAD tools used by analog designers,
including the designers of critical digital building blocks. Hence, simulators and other ver-
ification tools are of primary importance for NECTAR. This part of the research focuses on
collecting an array of simulation-related tools in a single environment that uses a common
database to minimize data flow and conversions, automates routine actions, emphasizes
task completion, hides tool idiosyncrasies, and reduces user errors and training require-
ments. Particular emphasis is given to human-computer interaction issues, with the goal

of providing a uniform, friendly interface that best takes advantage of modern computer



hardware.

. The remaining chapters are organized as follows. Chapter 2 describes the inves-
tigation of alternative methods to overcoming limitations of simulation programs leading
to the Expert-Emulation Approach. The choice of a programming model for the realization
of the Expert Emulator is also presented in the same chapter. The organization of circuit-
simulation expertise as rules, to be used by the Expert Emulator, is described in Chapter 3.
Primitive representation objects are defined and rules are classified and illustrated with ex-
amples.

Chapter 4 presents the evolution of the analog-verification framework, NECTAR,
and the various choices made in its design. Issues and decisions on the human-computer
interface of the framework are described in Chapter 5. Versions of the interfaces for two dif-
ferent classes of hardware are illustrated. In addition, a special mechanism for the straight-
forward incorporation of new rules in the Expert Emulator is presented. '

Chapter 6 describes the implementation of the Expert Emulator and NECTAR.
The experiences with the programming platforms used (two each for the Expert Emulator

and NECTAR) are presented. Finally, the main research conclusions are summarized in
Chapter 7.



Chapter 2

Improving the Use of Simulation

Programs

2.1 Overview

In this chapter, a new approach to the use of simulation programs is presented.
In addition, the choice of a programming model for the implementation of the approach is
described. The various capabilities of the new approach are classified and illustrated with
examples in Chapter 3. The actual implementation is presented in Chapter 6.

Users of electrical circuit simulators, such as SPICE, often experience convergence
and other problems with the simulators. Although program improvements have alleviated
many shortcomings, some of the harder-to-solve problems remain. A novel approach to
overcome such problems is proposed in this chapter. Based on observations on the actions
of experienced users, the new approach, called the Expert-Emulator Approach, does not
improve directly the simulation programs but instead it enhances the use of the programs.
This is accomplished with appropriate modifications to the simulation input.

The software realization of the Expert-Emulator Approach is a program called the
Expert Emulator that, based on incorporated expert knowledge, is able to identify problem
patterns and suggest solutions. Both the Expert Emulator and SPICE are embedded in a
controlling environment, called NECTAR, that aids novice and more experienced users by
automatically acting like a human expert.



A software implementatioh of the Expert Emulator has been chosen based on the
irregularity and ill-defined boundaries of the domain of simulation problems. Expertknowl-
edge is represented and applied according to the production-system programming model.
The program consists of an unordered collection of basic units, called rules. Rules corre-
spond to units of human problem-solving knowledge. The inference engine, the production-
system executer, runs the rules in an order related to the problem being solved. Rules can
be added to the program incrementally as they are acquired, owing to the separation of
domain knowledge and program control in production systems.

2.2 The Difficuity of Improving SPICE

The initial motivation for the research reported in this dissertation was provided
by the presence of convergence and other limitations in the simulation program SPICE de-
spite continuous improvements.

First released in 1972, SPICE has enjoyed widespread acceptance and use among
companies and universities around the world. The success of SPICE has been attributed to
the following:

o Electrical circuit simulation programs are complex software systems that incorporate
many different algorithms. SPICE combines a “best set” of algorithmic procedures
resulting in a “well-conditioned” package [Pederson84].

e Most types of circuit analysis, including nonlinear DC, nonlinear transient, AC, Fourier,
pole-zero (in SPICE3), small-signal DC, distortion, noise, and sensitivity, are allowed.

e Circuits containing a wide range of nonlinear active circuit devices can be simulated.

e SPICE runs on most types of machines — from personal computers to workstations,
minicomputers, mainframes, and supercomputers — under several operating sys-
tems.

e The source code of the program and executables are available in the public domain.
The advent of new circuit simulators with more cost-effective algorithms, such as RELAX
[White86] and SPLICE [Saleh87], has not changed the preference and confidence that circuit
designers show in SPICE [Cande86]. The above-mentioned simulators are not yet in wide’
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use, partly because they provide a limited number of analyses and can simulate only certain
classes of circuits.

SPICE has gone through numerous majc;r and minor versions. A review of the evo-
lution of SPICE is given in Appendix A. Changes introduced in newer versions resulted in
new simulation capabilities, an augmented applicability range, speed-ups, the elimination
of implementation errors, and other improvements. Despite all the changes and enhance-
ments, some problems with SPICE, most notably algorithmic convergence problems, perse-
vere. Attempts at finding general solutions to those problems have reached several impasse
points that show the inherent difficulty of the problems [Hailey87, Colon89, Quarles89].

The difficulty of overcoming persistent problems with SPICE prompted the fol-
lowing objective at the onset of this research:

Research Objective 1 Investigation of alternative methods to overcoming SPICE problems.
In particular, emphasis should be given to the implementation of such methods, so that they
result in useful CAD tool(s).

2.3 Observing the Expert User

This section describes several practical observations on experienced users that
led to the novel method for improving the use of SPICE proposed in Section 2.4.

As mentioned previously, SPICE has become an indispensable tool for many cir-
cuit designers. Constantly having to deal with the idiosyncrasies of the program, designers
have become expert users of SPICE. Their expertise becomes evident when they encounter
problems with or limitations of the program. By nature, such problems do not always yield
to rigorous analysis.

SPICE users do not just give up when problems arise. Novice and experienced
users alike typically change the simulation input data and attempt a new simulation run.
If the simulation fails again, they attempt a new modification and run, and so on until the
problem is overcome or, as is often the case with novices, until expert help is sought. It
may take niany iterations before this process is over, especially for a novice, who, lacking

the special knowledge about the simulation program, usually attempts semi-random mod-
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ifications. On the other hand, the pi'ocess for an experienced user is better structured and
shorter. Experts rely on their experience to solve the problem. Figure 2.1 illustrates the
steps that an expert takes when encountered with problems.

Step 1—Problem Classification: Experts have acquired a “sense” forrecognizing the trou-
blesome elements of a problematic case. They extract the essential information from

e the circuit at hand, and

o the simulation results including error messages,

and dre able to recognize the type of the problem. Examples of classes of problems
are wrong connections, positive feedback loops, and isolated circuit nodes.

Step 2—Corrective-Technique Application: Having categorized the problem, experts are
able to use certain corrective techniques, that have been applied to similar problems
in the past with success. There is usually an explanation for using such techniques.
However, usually there is no rigorous proof that guarantees the results. For most
cases, this limitation stems from the absence of a convergence theorem for SPICE, as
mentioned in Section 3.4. Hence, these techniques are, in general, empirical “rules
of thumb.” Examples of such techniques are topological modifications, use of simu-
lation control parameters, and introduction of parasitics. ‘

Detailed examples of the application of both steps are presented in Chapter 3.

The important point to observe is that, using their experience and following the
steps outlined above, designers are often able to overcome many of the problems with
SPICE. They successfully use the program that has been made available to them to complete
the task of accurately simulating their designs. This practice by the designers suggests an
alternative approach to overcoming limitations of SPICE.

2.4 The Expert-Emulation Approach—NECTAR

To investigate alternative methods to improve the use of SPICE, a SPICE simulation
is first analyzed from a systems’ standpoint. Figure 2.2a shows the three basic elements in

a simulation: the input to the simulator, the simulation program (SPICE), and the output



l izmblem
Step 1: . Problem Classification
pro.blem class
Ste? 2: Corrective-Technique Application
l solution

Figure 2.1: The expert’s steps

generated during the simulation run. Assume that the simulation output is unsatisfactory
because of shortcomings of the program. Then, a simple inspection of Figure 2.2 verifies
the following:

Fact 1 (Simulation Improvement) Consider a simulation program and an input to thar
program resulting in a certain (unsatisfactory) output. If the output can be improved, then
the improvement will occur if and only if one of the following options occurs:

O-1 The simulation program is improved.

O-2 The input to the simulator is modified appropriately.

O-3 Both of the above.

The first option, illustrated in Figure 2.2b, represents the natural, direct method to
improve the simulation output, namely, code improvements or redesign. One can experi-
ment with and modify subroutines in SPICE, fine tune device models, which are hard-coded
in the program, improve the input compiler, so that it becomes able to recognize more
errors, and fix implementation errors that exist in SPICE.

Given the size of the SPICE code and the complexity of the data structures and
the overall flow of the program, understanding and modifying the code is not an easy task.
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input output
> SPICE N
(a)
improved
input improved output
SPICE
®)
modified improved
input output
> SPICE
©

Figure 2.2: Illustration of the Simulation-Improvement Fact: (a) the basic elements of a
simulation with SPICE; (b) the direct improvement method; (c) the alternative method
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Even though individual algorithms in SPICE may be simple, their effect on the overall per-
formance of the program is often complicated. Hence, any proposed change needs to be
tested not just locally but in the context of the whole simulation package. These tests must
involve a wide selection of benchmarks to ensure the global improvement. Similar re-
marks as made for SPICE’s algorithms apply to the (hard-coded) device models. Electronic
companies, such as AT&T Bell Labs, Harris, Hewlett Packard, SGS-Thompson, Tektronix,
Texas Instruments, etc., and CAD companies, such as Daisy, Meta Software, MicroSim,
NCSS, etc., have used this approach to develop their own proprietary versions of SPICE.
These proprietary versions, known as “alphabet SPICE’s” (ADVICE, DSPICE, HSPICE, HP-
SPICE, ISPICE, ISSPICE, PSPICE, TSPICE, TISPICE, etc.), have improved convergence and
user-interface properties compared to the standard versions SPICE2G.6 and SPICE3c2.

The second option above, O-2, illustrated in Figure 2.2c, represents an alterna-
tive, indirect method. Since improving the program directly is a complex and difficult un-
dertaking, this method attempts to sidestep proﬁlems employing appropriate modifications
to the simulation input forcing the simulator to produce acceptable results. Clearly, the sim-
ulation problem described by the modified input must be the same with, or at least “close
enough” to, the pi'oblem described by the original input. Otherwise, the new, improved
simulation output would be worthless, as it would be the solution to the wrong problem.

Option O-2 makes an important implicit assumption, namely, that an appropri-
ately modified input for the simulation is available. In reality, only the original input, that
results in unsatisfactory output, is available at first. An improvement method based on
Option O-2 should detail how the appropriately modified input is obtained.

Proposed here is the Expert-Emulation Approach, an improvement method based
on Option O-2 and using the program Expert Emulator for the derivation of the modified
input (Figure 2.3). As its name suggests, the Expert Emulator is a program emulating the
actions of experienced SPICE users: it automatically performs the two steps of an expert,
as outlined in Section 2.3, i.e., broblem classification and corrective-technique applica-
tion. The Expert Emulator, similar to a human expert user, takes its input from the original
simulation input and from simulation results fed back from SPICE. The decisions of the
Expert Emulator are based on domain knowledge collected from human experts and stored
in the program in an appropriate form. The expert knowledge is made available to aid both
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. novices and more experienced users.

NECTAR
input modified improved
> Expert input . output

y

SPICE >

Emulator

Figure 2.3: The Expert-Emulation Approach

The realization of the new technique as a computer program is described in Sec-
tion 2.5. The computer environment that combines the Expert Emulator and SPICE, shown
in Figure 2.3, is called NECTAR, an acronym for “kNowledge Environment for CAD Tools
in the Analog Realm.” In Chapter 4, NECTAR is extended to a more general environment
combining several analog-circuit verification capabilities.

The purpose of the Expert-Emulation Approach is not to replace the direct method
of Figure 2.2b, but to act as a parallel, complementary remedy. When a direct-approach
improvement is made, it should supersede the corresponding Expert-Emulation-Approach
solution. However, owing to the difficulty of many of the problems, the value of the Expert-
Emulation Approach can be significant and lasting.

Occasionally, supposed improvements in the code of SPICE have resulted in worse
results. This fact may be an explanation to what is generally the case, that designers tend
to distrust new versions and stay with the older version they are accustomed to. In the
Expert-Emulation Approach, SPICE is used unaltered. In this way, all the good properties
that have made SPICE popular are retained and the new scheme is guaranteed to behave at
least as well as SPICE on its own.

To use an analogy from systems, SPICE is treated as a “black box.” The state

of the simulator is observed only from its output, i.e., no additional internal probes are
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set. Modifying the input is the only means of controlling the outcome of the simulation.
Clearly, both the observability and the controllability of SPICE, a large and complex system,
are limited. It follows that the possibilities that a given problem can be overcome using the
Expert-Emulation Approach are also limited. The state of SPICE is simply of a much higher
dimension than either its input or its 6utput. Nevertheless, problems in the controllable
subspace have the potential to be solved using the new approach.

The third option of Fact 1, O-3, involves both program and input modifications.
If one assumes that the program changes are permanent, i.e., resulted in a new improved
version, then O-3 degenerates into two simple successive steps, an O-1-type step followed
by an O-2-type step. In essence, once the first step is completed, the improved SPICE
becomes the new default version of the program. It is conceivable, however, that an older
version might be better than the default version for a particular application. A user knowing
this fact may want to use the older version when the occasion arises. The implication of
the previous remark on the design of NECTAR is presented in Chaptér 4,

2.5 Realization of the Expert Emulator

A software realization of the Expert-Emulation Approach should automate the
two steps of an expert, as outlined in Section 2.3. The problem-classification step requires
searching the space of incorporated types of simulation problems for patterns matching
the problem at hand. The corrective-technique-application step involves the execution of
certain procedures associated with the type of problem determined in the first step.

For reasons explained in Section 2.5.2, the realization of the Expert Emulator has
been based on the productibn—system model of computation. This model is described in the

next section.

2.5.1 Production Systems

Artificial Intelligence (AI) is that part of computer science that investigates rea-
soning processes, data representations, and other aspects of information systems that are

able to perform tasks that would be thought to require intelligence if done by humans. Un-
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reasonably high expectations and prémises By the first Al researchers brought the field into
disrepute among potential applicants. In recent years, however, the setting of more real-
istic, less general goals by the Al community has resulted in several successful scientific
and engineering applications and has contributed to a big change in the general perception
and recognition of the field [Barr82, Walker86]. Results of Al research, such as frames,
semantic networks, rule-based systems, and others, are now seen not as panaceas but as
useful programming tools.

Expert systems have been successful products of Al research. These systems,
which vary widely in structure and behavior, all focus on methods of transferring knowl-
edge from human experts to computer programs. The remainder of this section describes
production systems, which are a type of expert systems that appear suitable for the realiza-
tion of the Expert Emulator.

The familiar procedural programming model uses sequenced instructions as the
basic unit of computation. In contrast, a production system uses a data-sensitive unordered
collection of basic programming units, called production rules or simply rules.

Each rule has two parts. The condition part, or “if”” part, or Left-Hand Side (LHS)
of the rule describes the data configurations (patterns) for which the rule is appropriate.
The action part, or “then” part, or Right-Hand Side (RHS) of the rule contains instructions
for modifying the problem data when the rule is executed. The following is an example of

a NECTAR rule in LISP-like pseudo-code-
(rule source-stepping
af
(error (type convergence))
(analysis (type dc)))
(then
(modify (source (value (ramp 0 dc))))
(make (analysis (type transient)))))
This rule for SPICE use, named “source-stepping,” looks for a convergence error during a
DC analysis — in the LHS. The RHS instructs the conversion of DC sources to ramp sources
(starting at 0 and ending at the DC value), followed by a request for a (pseudo-) transient
analysis.

Both production systems and conventional procedural models have three major
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components: the program, which expresses the computation to be performed and has the

form of unordered rules and sequenced instructions, respectively; the executer, which per-

forms the computation; and the data, which describes the problem to be solved and stores
results. The executer in the procedural model simply executes the instructions in the order

they are given in the program, unless specifically directed out of sequence by an instruction. .

The executer in the production-system model, called the inference engine, is
needed for a more complicated task; it must determine which rules are relevant to the
current problem data and choose a rule to execute. The inference engine is a finite-state
machine with a cycle consisﬁng of three main states:

Match State: The inference engine checks the rule base against the problem data and finds
all the rules with LHS’s satisfied by the current data. The outcome of this state is called
the conflict set. A single rule may be present in the conflict set multiple times, if its
LHS is matched by different sets of objects in the data base.

Select State: During this state of the machine, the conflict set is ordered according to some
selection strategy. These strategies typically use heuristics, such as the following:
e refraction: requiring that a rule can be executed at most once on the same data;

e data ordering: giving preference to rules that match data most recently added
or accessed; |

e specificity: favoring rules that are more specific according to some measure,
such as the number of patterns in the LHS;

e rule ordering: statically and independent of the data;

e arbitrary or parallel selection: when everything else fails.

Execute State: One or more rules selected in the second state are passed to the third state
for execution.

Since the rules usually change the data, the conflict set changes after each match-

select-execute cycle. The inference engine halts when the conflict set becomes empty.

Figure 2.4 illustrates the flow of control and data in a production system.
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Figure 2.4: The flow of data and control in a production system
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2.5.2 Choosing a Programming Model

This section outlines the considerations that led to a choice of programming model
for the Expert Emulator. _

The size of the problem space to be searched during the problem-classification
step constitutes an impbrtant issue in designing the Expert Emulator. That size clearly
depends on the amount of expert knowledge incorporated in the system. A “reasonably
complete” Expert Emulator should contain expertise about many types of circuits, analyses,
and simulation results. The problem space is a subset of the cross product of the spaces of
circuit types, analysis types, and simulation-result types. Given the irregularity and huge
size of the space of analog circuits alone, it follows that the search space can be huge.

Large search spaces tend also to be complicated. However, for some large prob-
lems, such as the traveling-salesman problem, there are efficient approximate algorithmic
solutions. In general, algorithmic solutions exist for well-structured problems, i.e., prob-
lems having a rigid data formét for which similar actions are performed for all data. When,
on tﬁe contrary, there are many independent variables in the domain and responses must be
diverse and based on attention to many factors, then a production system is an appropri-
ate model. A procedural program would require a complex control structure to handle the
switching to the appropriate code. The problem space for the Expert Emulator is not well
structured.

In addition, the boundaries of the problem space can not be defined exactly and
may be changing. This is another argument for the production-system choice, as such
systems have the property of being able to cope with unanticipated situations. Unplanned
but useful interactions result from applying knowledge (rules) when it is appropriate rather
than calling on it in a predetermined sequence.

This last property is a consequence of what is considered the main advantage of
production systems, the separation of domain expertise, contained in the rules, from the
flow of control of the program, administered by the inference engine.

Because knowledge is stored in separate, nearly independent units, rules can be
added to a production system with few side effects. This facilitates the addition of new

rules to the knowledge base incrementally, as the rules are acquired.
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The disadvahtages of proc.luctim} systems compared to procedural programs are:
slower speed of execution, because hardware is generally designed for procedural programs
and, hence, an additional level of compilation, from rules to procedures, is needed; larger
program size, since the inference engine must be included for the program to be able to
execute; undesirable interaction among rules, which may result from the non-transparent
behaviox: of the program, especially when the number of rules becomes large.

AI techniques have been used previously in CAD tasks, in particular when con-
siderable amount of symbolic computation (alone or mixed with numerical computation)
is required. In the area of circuit verification, the programs RUBICC [Lob84], CRITTER
[Kelly84], DIALOG [DeMan85], QCritic [Bergquist86], and Critic [Spickelmier89] have
used knowledge-based models. Knowledge-based synthesis systems include DAA
[Kowalski85] and BLADES [ElTurky89].

After considering the various arguments, the choice of a production-system model
for the Expert Emulator was made (illustrated in Figure 2.5). Further implementation con-
siderations, including the choice of a programming language, are outlined in Chapter 6.
The organizatiori of the domain expertise in rules is described in Chapter 3.
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Figure 2.5: The Expert Emulator as a Production System



Chapter 3

Organizing Circuit Simulation

Expertise as Rules

3.1 Overview

In this chapter, simulation expertise, which is the basis of the Expert-Emulation
Approach, is organized as rules. The various capabilities of the Expert Emulator are clas-
sified and illustrated with examples.

A detailed examination of the space of simulation problems reveals the categories
of data objects in the domain.. A set of basic representation classes for the production-
system model is declared to correspond with the objects of the domain. Expert-Emulator
rules use the representation classes both for pattern matching during problem classification
and for problem-data modifications during the application of corrective techniques.

Rules are divided in sets so that the performance of the production system does
not degrade — a common problem of rule-based systems with many rules. The initial
classification is made in three sets: simulation-error-recovery rules, presimulation rules,
and design-aid rules. 4

For each rule set, the capabilities of the Expert Emulator are illustrated with ex-

amples of representative rules applied on test circuits.

21
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3.2 Data-Representatibn Classes for the Expert Emulator

" Expert knowledge must be incorporated in the Expert Emulator using a repre-
sentation, such that intelligible inferences can be drawn. As explained in Section 2.5.2, the
polymorphism of the problem data has been a deciding factor for the choice of a production-
system model. Production systems generally are not strongly typed programming models.
Data-structure declarations, when required at all, serve to specify the field names for com-
pound data types but not the fundamental types (integer, floating-point number, character,
etc.) of the individual fields. The latter are determined at run time. In this section, the basic
classes of data for the production rules are defined, following a detailed examination of the
problem space.

Data in the Expert Emulator can be divided in two main categories — input/output
(I/0) data, used for the communication with the environment, and strictly internal data, used
for storing intermediate results. As shown in Figure 2.5, the input to the Expert Emulator
consists of the simulation input data and simulation output data, and output from the Ex-
pert Emulator consists of simulation input data. Hence, the set of /O data for the Expert
Emulator is the same as the set of I/O data for the simulator. Table 3.1 summarizes the
categories of data in the domain. The simulation input consists of the circuit topology (net-

Expert-Emulator Data

Simulation Input | circuit topology

circuit-element values
device models

analysis requests
simulator-control options

Simulation Output | output-variable values

€ITOr messages

Internal Data abstractions of above

Table 3.1: Data categories in the domain of the Expert-Emulator

list), values for circuit elements and parameters, model descriptions for nonlinear devices,

circuit-analysis requests, and options to control the simulator. The simulator output consists
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of arithmetic values for output circuit variables — voltages, currents, power consumption,
poles and zeros, harmonics, distortion, sensitivities, etc. — and, when problems occur,
error messages. Circuit variables can be scalars or vectors. ‘

The apparent polymorphism of the I/O data is further compounded by the exis-
tence of many different types of circuit elements and by abstractions of the basic circuit
elements via subcircuit definitions. The levels of abstraction for strictly internal data may
vary considerably to correspond to expert knowledge of varying generality.

Table 3.2 lists the basic data classes for the production system. The basic simulation-
input classes have been chosen to conform to the input language of SPICE. The latter is a
compact and expressive language and has been adopted (sometimes with modifications)
as the input language for several other simulation programs as well. The choice of basic
classes similar to the basic types of the simulator minimizes data conversions. In addition
to the simulation-input classes, two simulation-output classes are declared. They accom-
modate values for output variables and error messages, respectively. It should be noted that
class fields are meant to store different fundamental types of data depending on the partic-
ular problem data. As an example, the “value” field of the “capacitor” class might contain
any of the following data: 1, 200p, 4.7 x 10~3, or (poly, 0.03, 10-5). The “clements” field
of the “subcircuit” class contains an arbitrary list of instances of circuit-element classes.
Some fields, such as “turns-ratio” of “mutual inductance”, are not specified in the SPICE
input but are computed from other quantities. .

Declarations for new classes can be added to the production system when the need
arises. This capability is essential for the Expert Emulator, because it is impossible to derive
a complete list of necessary classes in advance. In particular, hierarchical classes would be
advantageous to the pattern-matching process, provided that the implementation language
has an inheritance mechanism. Two different implementations of the Expert Emulator are
described in Chapter 6.
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Class Name Fields |

resistor name term1 term2 value tc tc2 terminals
capacitor name term1 term2 value ic terminals
inductor name term] term2 value ic terminals

mutual inductance | name inductorl inductor2 coupling-coefficient turns-ratio

.transmission line | name nodel node2 node3 node4 z0 td f nl ic

vces name terml term2 control-term1 control-term2 value

vevs name terml term2 control-term1 control-term2 value

cces name term1 term2 control-source value

cevs | name term1 term2 control-source value

voltage source name terml term2 value

current source name terml term?2 value

diode ‘| name term1 term2 model area off ic

bjt | name collector base emitter bulk model area off ic

jfet name drain gate source model area off ic

mosfet name drain gate source bulk model 1 w ad as pd ps nrd nrs off ic
subcircuit name nodes elements

model name type af beta bf br bv cbd cbs cgd cgs cgbo cgdo cgso ¢j

cjc cje cjo cjs cjsw delta eg eta fc gamma ibv ikf ikr irb is isc
ise itf js kappa kf kp lambda Id level m mj mjc mje mjs mjsw n
nc ne neff nf nfs nr nss nsub pb phi ptf rb rbm rc rd re rs rsh f
theta tox tpg tr tt ucrit uexp uo utra vaf var vj vjc vje vjs vmax
vtf vto xcjc xj xqc xtb xtf xti

analysis type parameters
option : name value
output variable name value
error name type status

Table 3.2: The basic data classes for the Expert Emulator
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3.3 Rule Acquisition and Organization

Each rule in the Expert Emulator corresponds to a unit of human problem-solving
expertise. Rules are added to the knowledge base as they are acquired in the following ways:
¢ from experienced SPICE users

¢ from circuit designers

¢ from simulation experts

¢ by experimenting with the simulator

e by monitoring the behavior and common errors of novice users of SPICE

¢ from the several classes of error checks that exist in SPICE; the error messages and
warnings of SPICE2 are listed in Appendix B.

From an initial investigation of the various types of rules it has been concluded
that the task of collecting a complete set of rules is a difficult undertaking. In addition, it has
been felt that designers will always want to add their “own” rules that reflect their personal
expertise and needs. There may be a need to modify certain rules, as a result of changes to
the simulator (new versions). Hence, instead of attempting to compile a “complete” set of
rules, the following objective was set:

Research Objective 2 Investigation of techniques that would simplify further the incorpo-
ration of new rules to the knowledge base of NECTAR by individual users of the environment
— a task already made quite straightforward by the choice of the production-system model.

The outcome of the research toward the above objective is presented in Section 5.7.

Rules can be classified according to several characteristics, such as the type of
simulation error, the type of circuit analysis, and the class of circuit. Experience from pre-
vious rule-based systems has shown that when the number of active rules is in the several
hundreds, significant performance degradation occurs [Walters88]. Consequently, the fol-
lowing classification criterion has been chosen: Rules are to be divided in rule sets so that
for each application of the Expert Emulator only one rule set is active. By deactivating
rules unnecessary for a particular application, the number of active rules is reduced and the
point of performance degradation becomes more distant.
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Rules are first divided in three sets according to the point in the design cycle at
which they become relevant (see Section 4.6).
e Rules for recovery from convergence and other simulation errors

¢ Rules for data checking before the simulation

o Rules for design aid (not related to simulation problems)
Each rule set can be subdivided in smaller sets when the need arises. In particular, the type
of simulation error is a good classification criterion for the error-recovery set.

The remainder of this chapter contains examples of applying representative rules
from each set on test circuits.

3.4 Overcoming Convergence and Other Simulation Prob-

lems

The Newton-Raphson algorithm is the backbone of the SPICE routines for nonlin-
ear DC and transient analysis, where itis applied to systems of nonlinear algebraic equations'.
An advantage of the Newton-Raphson algorithm is the existence of the following theorem
that states the criteria under which the algorithm converges (and does so quadratically)
[Forsythe77, Ralston78].

Theorem 1 (Convergence of Newton-Raphson algorithm) Lerthe function F(z) be twice
continuously differentiable and have a simple root for ¢ = x,. Then the sequence z\"),
1=0,1,2,..., generated by the Newton-Raphson algorithm

. L F(z®)
(i+1) = () _
T =z Fi(a0)

will converge to the root ., provided that z\% is sufficiently close to x..
The theorem can be generalized for the multidimensional case Z(x) : ™ — R, under
the assumption that the Jacobian Q%_ﬂ is Lipschitz continuous.

Most of the convergence problems in SPICE result from violations of the above

convergence criteria. First, providing an initial guess close to the solution can be difficult.

'In transient analysis, a set of algebraic equations is derived from the integration of a set of differential
equations.
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Secondly, the model equations often have discontinuous derivatives [Vladimirescu80]. Some
users get around the discontinuity problems by modifying the model equations, but one has
to be careful about the consequences of such actions on the general behavior of the algo-
rithms [Sangiovanni81]. Finally, the algorithm in SPICE is not the pure Newton-Raphson
algorithm but a modified version. For instance, heuristics are used to limit the danger of
numerical overflow because of the exponential characteristics of certain devices [Nagel75].

Some convergence problems with SPICE are related to other algorithms, such as
the numerical integration algorithms, the time-step control algorithms, Muller’s iteration
method (applied in the calculation of poles and zeros), etc.

The Expert Emulator uses its knowledge base to infer reasons for nonconver-
gence. The essence of this phase is to recognize patterns that lead to convergence problems
and employ special techniques to overcome the problems. The following is a list which is
typical of the error-prone patterns recognized by NECTAR:

o forward-biased source/drain-bulk pn-junctions in MOS transistors

e rings of pn-junctions

¢ positive feedback loops

e regenerative switching circuits

¢ nodes isolated by high impedance

¢ erroneous or incomplete specification of connections between circuit elements
¢ unrealistic values for circuit parameters

e inappropriate values for SPICE control parameters

e insufficient use of simulator-control options (tolerances and limits)

input-format violations.
Corrective techniques used by experts and employed in NECTAR include:

e correcting wrong connections
¢ adding parasitics

¢ modification of simulator-control parameters

- using the OFF option for devices in the feedback path
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- changing ABSTOL (good values are: .1uA for MOS and 1pA for bipolar)

- increasing iteration limits

modification of model parameters

- specifying capacitance and resistance in models

presetting the initial guess for Newton-Raphson (NODESET option)

setting initial conditions (IC option)

switch integration method, e.g., from trapezoidal to Gear’s

use of the source-stepping technique.

The following examples demonstrate the application of error-recovery rules. It
should be noted that modifications to the input file are not only suggested by the rules but
made automatically. However, the user has final control and can override any changes.

Example 1 (MOS Oscillator)

Figure 3.1 shows the schematic of a n-channel MOs relaxation oscillator. A
novice user of SPICE might request a transient analysis, as indicated in the SPICE input file
(Figure 3.2), but without specifying charge storage in the transistor model. A SPICE sim-
ulation on that file aborts before completion with the error message shown in Figure 3.3a.
As a result of this, the rule set in the knowledge base of the Expert Emulator that handles
time-step errors is activated. The following rule uses circuit-topology pattern matching,
based on the net-list of the circuit?.

(rule cross-coupled-mos

Gf
(mos (name ?m1) (drain ?y) (gate 7x))
(mos (name ?m2) (drain ?u) (gate ?v))
(capacitor (terminals (?y ?v)))

" (capacitor (terminals (?x ?u))))

(then
(send-message “Positive feedback loop 7x-?y-?v-Tu-?x detected.”)
(make (node (name ?x) (type possibly-isolated)))
(make (node (name ?v) (type possibly-isolated)))))

2¢9* characters in rules denote variables.
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MOS relaxation oscillator

mi1 2106 mod1 w=100u |=5u

m2 4 5 0 6 mod1 w=100u I=5u

m3 3 2 2 6 mod2 w=20u |1=5u

m4 3 4 4 6 mod2 w=20u |=5u

m31 3 1 1 6 mod2 w=20u I=5u

m10 1 0 0 6 mod2 w=20u |=5u

m35 3 5 5 6 mod2 w=20u I=5u

mS0 5 0 0 6 mod2 w=20u |=5u
.model mod1 nmos vto=+0.7 kp=30u
.model mod2 nmos vto=-0.7 kp=30u lambda=0.01
c125100p '
c241200p

vee 6 0 -9

vdd305

i150pulse 10u0000 1

Aran 2u 1800u 1400u

.plot tran v(5)

width out=80

.option nopage nomod limpts=1001
.end

Figure 3.2: Input file for the M0Os-Oscillator example
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*ERROR*: INTERNAL TIMESTEP TOO SMALL IN TRANSIENT ANALYSIS

(a)

Volts

5.00 —- v(5)

4.00 .
500 )
2.00
1.00
0.00
-1.00

sec x 1073
1.40 1.50 1.60 1.70 1.80

(b)

Figure 3.3: SPICE results for the M0Os-Oscillator example: (a) initial run; (b) run after the
addition of parasitic capacitors
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This rule?® recognizes the cross—cou;;led configuration of the four transistors M, Ma, Ms,
and My, and the positive feedback loop around nodes 1-2-5—4-1. A second rule examines
whether the two gate nodes in the loop (nodes 1 and 5) are dynamically isolated.

(rule isolated-node

(f
(node (name ?n) (type possibly-isolated))
(not capacitor (terminals 7n 0)))

(then
(modify (node (name 7n) (type isolated))
(make (capacitor (term1 7n) (term2 0) (value 10fF)))
(send-message “Parasitic grounded capacitor added at node ™n.”)))

Node 1 is the gate of Transistor M;. The model for M, mod1, does not include any charge
storage. Hence, there is no capacitive path from Node 1 to ground through the transistor.
In addition, there is no explicit path via external capacitors. Therefore, Node 1 is found by
the rule to be dynamically isolated. The same is true for Node 5, the gate of Mb.

To achieve convergence, NECTAR adds small parasitic capacitors from the two
gate nodes to ground. The value for these capacitors is set to 10 fF, which is small enough -
not to change significantly the operation of the circuit. The addition of the two capacitors
is implemented as two extra lines in the input file:
c3445 1 0 1.0e-14
c3447 5 0 1.0e-14
NECTAR sends the modified input file to SPICE, which this time is able to converge. The
results of the completed SPICE simulation are shown in Figure 3.3b.

Error Explanation

To see why SPICE aborted the first simulation run and why the parasitic capacitors
helped in the second, consider the corresponding transient-simulation graphs of 1}, the
voltage at Node 1, during a low-to-high transition.- Assume that ¢,_, is the last time-point
for which SPICE computed zero voltage for V; (Figure 3.4). At first, SPICE computes the n'"
time-point with a time-step equal to a computed initial value, TINIT. Because of the positive

3 A similar rule applies to cross-coupled bipolar devices; in such cases, code replication could be avoided
with the use of hierarchical data structures and property inheritance (object-oriented programming), which
would allow a single higher-level rule (“‘cross-coupled-transistor™).
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Figure 3.4: Explanation of the time-step error: (a) initial simulation run: because of dy-

namic isolation, the voltage at Node 1 jumps; (b) second run: the presence of a parasitic

capacitor forces a smooth voltage rise
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feedback, V/(t,) tends towards inﬁnity, but is limited to S Volts by the nonlinearities of the
transistor. The time-step control algorithm in SPICE does not accept a solution with a 5-Volt
jump from the previous time-point. The time-step is cut to half and a new calculation is
performed for time-point ¢,,,. Again, because of the positive feedback, Vi(t,,) is found to
be 5 Volts. The time-step is cut in half again and the process continues until the time-step
becomes less than TMIN, an internal SPICE constant. At that point the simulation run aborts.

The presence of Cp, the parasitic capacitor, in the second.run prohibits voltage
jumps at Node 1: '

ic, <oo=>3JkER:ic, <k dVCP<i
d G

. chE
i, = CP dt

= Ve, (t) = Ve, (ta-1) < Ci(t —tn-1) + O((t = ta_1)?)

It follows that, for realistic values of Cp, at some iteration of the time-step control algorithm
the time-step, ¢ — ¢,—1, becomes small enough for the voltage increase, V¢, (t) — Ve, (ta-1),
to be less than the maximum accepted by the algorithm.

Example 2 (Pull-Up)

Figure 3.5 shows a digital circuit that models a pull-up load. A transient analysis
using SPICE2 with the input shown in Figure 3.6 fails with a time-step error at t = 1.88ns.
The partial results, shown in Figure 3.7a, suggest that the problem lies with the voltage
feed-through from the gates of u'ansistofs M=Ms, which results in the forward biasing of
the corresponding substrate junctions. The following rule* detects the suspect transistors
and, to alleviate the problem, reduces the values of the gate capacitances by increasing the
oxide thickness in the models [Meyer71], [Mayaram88, pages 203-204].

(rule mos-oxide-thickness
@if
(error (type timestep))
(voltage-source (term1 ?t1) (term2 ?t2) (value pulse 7*))
(mosfet (gate (or ?t1 712) (model 7m))
(model (name 7m) (tox 7tx:(< le — 7))))

4«9 denotes a multiple-valued variable,
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Pull-up

.Model N NMOS level=2 vt0=0.75 kp=76.0u gamma=0.4 lambda=0.025

+ tox=25n nsub=4e16 tpg=1 xj=0.45u ld=0.4u uexp=0.16 vmax=5.5e4

+ RSH=35 js=1u cgs0=220p ¢gdo=220p ¢j=230u cjsw=260p cgbo=4p

.Model P PMOS level=2 vto=-0.75 kp=27.0u gamma=0.5 lambda=0.045

+ tox=25n nsub=2e16 tpg=-1 xj=0.4u |d=0.05u uexp=0.15 vmax=98.0e4 .

+ RSH=120 js=1u cgs0=220p cgdo=220p ¢j=670u cijsw=215p cgbo=4p
vDD90DCS

Vi 8 0 pulse(0 5 1ns 1ns 1ns 3ns 20ns)

m1 1899 P I=1.6u w=14.4u ad=34.6p as=34.6p pd=19u ps=19u nrd=0.17 nrs=0.17
m228 19 P |=1.6u w=14.4u ad=34.6p as=34.6p pd=19u ps=19u nrd=0.17 nrs=0.17
m3 3 8 29 P I=1.6u w=14.4u ad=34.6p as=34.6p pd=19u ps=19u nrd=0.17 nrs=0.17
m4 4 8 39 P I=1.6u w=14.4u ad=34.6p as=34.6p pd=19u ps=19u nrd=0.17 nrs=0.17
m55 8 4 9 P I=1.6u w=14.4u ad=34.6p as=34.6p pd=19u ps=19u nrd=0.17 nrs=0.17
m658 00N |=1.6u w=14.4u ad=20.0p as=20.0p pd=12u ps=12u nrd=0.15 nrs=0.15
m11 1999 P |=1.6u w=14.4u ad=34.6p as=34.6p pd=19u ps=1Su nrd=0.17 nrs=0.17
m12 199 9 P I=1.6u w=14.4u ad=34.6p as=34.6p pd=19u ps=19u nrd=0.17 nrs=0.17
m13 19 9 9 P I=1.6u w=14.4u ad=34.6p as=34.6p pd=19u ps=19u nrd=0.17 nrs=0.17
m14 199 9 P I=1.6u w=14.4u ad=34.6p as=34.6p pd=19u ps=19u nrd=0.17 nrs=0.17
m15 19 9 9 P l=1.6u w=14.4u ad=34.6p as=34.6p pd=19u ps=19u nrd=0.17 nrs=0.17
m16 19 9 9 P l=1.6u w=14.4u ad=34.6p as=34.6p pd=19u ps=19u nrd=0.17 nrs=0.17
m17 199 9 P I=1.6u w=14.4u ad=34.6p as=34.6p pd=19u ps=1%u nrd=0.17 nrs=0.17
mi8 19 9 9 P I=1.6u w=14.4u ad=34.6p as=34.6p pd=19u ps=19u nrd=0.17 nrs=0.17
m21 299 9 P l=1.6u w=14.4u ad=34.6p as=34.6p pd=19u ps=19u nrd=0.17 nrs=0.17
m22 29 9 9 P I=1.6u w=14.4u ad=34.6p as=34.6p pd=19u ps=19u nrd=0.17 nrs=0.17

- m55 5999 P I=1.6u w=14.4u ad=34.6p as=34.6p pd=19u ps=19u nrd=0.17 nrs=0.17
m56 59 9 9 P I=1.6u w=14.4u ad=34.6p as=34.6p pd=19u ps=19u nrd=0.17 nrs=0.17
m57 59 9 9 P I=1.6u w=14.4u ad=34.6p as=34.6p pd=19u ps=19u nrd=0.17 nrs=0.17
m58 59 9 9 P I=1.6u w=14.4u ad=34.6p as=34.6p pd=1Su ps=19u nrd=0.17 nrs=0.17
CL 5 0 330ff

C1101ff

C220 1f

C33 0 1ff

C4 40 1ff

tran 0.1ns 20ns

.print tran v(8) v(5)

.options limpts=2000

.options abstol=1n vntol=1u

.options defl=1.6u

.opfions it11=2000

.width out=80

.END

Figure 3.6: Input file for the Pull-Up example
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Figure 3.7: SPICE results for the Pull-Up: (a) initial run; (b) run after modification
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(then
(modify (model (tox 1e-7)))
(send-message “Oxide thickness for model ?m set to 100nm.”)))
A similar effect could be obtained with the artificial rise of the substrate voltages to a level
that would prevent forward biasing. Figure 3.7b shows the results of the completed simu-

lation after the modification of “tox.”

Example 3 (Iteration Limit)

The following simple rules detect violations of the iteration limit in transient anal-
- ysis. As suggested in the corresponding SPICE error message (Appendix B), the rules over-
ride this limit using the optional parameter ITLS.
(rule no-iteration-limit
(if
(error (type iteration-limit))
(not (option (name itl5))))
(then
(make (option (name itlS) (value 20000)))
(send-message “Iteration limit set to 20000.”)))
(rule low-iteration-limit
(if
(error (type iteration-limit))
(option (name itl5) (value ?v)))
(then
(modify (option (name itl5) (value (* 8 ?v))))
(send-message “Iteration limit set to ” (* 8 ?v) *.”)))
In the Mos-Oscillator above, the iteration limit is violated when the parasitic capacitors are
introduced. The completed simulation in Figure 3.3b is achieved after the application of

the rule “no-iteration-limit.”

Example 4 (Bipolar Oscillator)

The bipolar (blocking) relaxation oscillator shown in Figure 3.8 — its SPICE in-
put is in Figure 3.9 — is another example of an error in transient analysis. Figure 3.10a
shows the partial simulation results up to the time-step error at ¢ = 1.87us. The existence

of a resistorless feedback loop (2-L;—L2—-3-2) is one possible explanation for this error,



39

which is not well understood. Nevertheless, the introduction of a resistive element in the
loop (in this case, using the base-resistance parameter of the bipolar model) corrects the
problem, as shown in the results of Figure 3.10b°. The error is detected and amended with
the application of the following rule:

(rule bjt-base-resistance

af
(error (type timestep))
(bjt (model m))
(model (name ?m) (rb 0)))
(then
(modify (model (rb 100)))
(send-message “Base resistance for model ?m set to 100 ohms.™)))
4)) Vee
&)
i [ I e N
2121 _-&'1 A Ey Ly
V3] LI
| ®
Q ' 7:7:]
A 3)

L

Figure 3.8: The Bipolar-Oscillator example

5The simulated collector voltage (> 60V) may not be practically feasible.



Bipolar oscillator

veci0 10

rM121k

c112300p

1123u

123520.83n

kinti21

vbb 5 0 pulse( .708 .76 5¢-90 0 1e-3)
qi 23 0 mod1 4
.model mod1 npn bf=100 is=1e-16
Aran 20e-9 4e-6

plot tran v(2) (-10,20)

.options nopage

.width out=80

.end

Figure 3.9: Input file for the Bipolar-Oscillator example
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Figure 3.10: SPICE results for the Bipolar Oscillator: (a) initial run; (b) run after modifica-
tion
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3.5 Data Checking Before the Simulation

As mentioned above, the input to the Expert Emulator comes from the input and
output SPICE data. Itis possible, however, to identify problems by looking at the SPICE input
data alone. Such checks can be made before the simulation, since no simulation results are
used, and are similar to checks that exist hard coded in SPICE2 and SPICE3. The rules for
presimulation checks are similar to convergence-errorrules. The only difference lies in the
absence of simulation-result patterns in the LHS of presimulation rules.

The application of this type of rule is illustrated with the following example.

Example 5 (Enhancement-Load Inverter)

Consider the enhancement-load inverter circuit, whose schematic is shown in
Figure 3.11. Without Transistor M and Capacitor C}, the maximum value for the output

Vbp M
| My
]
1 ) I M,
el
e @ .
| v,
G) M 4
[o} < ——
v; ' _I CL
L

Figure 3.11: The Enhancement-Load-Inverter example

voltage V, would be Vpp — V;. By adding M, and C, the designer ingeniously raises the
gate voltage of M, so that V, can reach Vpp. This dynamic design technique, known as
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bootstrapping, eliminates the need for an additional supply [Hodges88]. However, in the
SPICE description shown in Figure 3.12, the substrate of M, is tied to the source. As a

Enhancement load inverter

vdd 105.0
vinS50pwli051n010n011n520n521n 0
m1 11 3 3 mod2 w=5u I=3u

m2 1 3 4 4 mod2 w=5u |=3u

m3 4 5 0 0 med2 w=5u |=3u

cl4 0 .1pf

c134 .1pf

.model mod2 nmos level=5 vto=1.13 tox=0.050u nsub=2.5¢16 uo=800
+ld=0.4u gamma=1.34 phi=0.75 nfs=5e10
+vmax=85k neff=2

+¢gs0=276p cgdo=276p

+Cj=320u mj=0.5 cjsw=800p mjsw=0.33
+js=100u tpg=+1 xj=200n

fran .2ns 30ns

.options reltol=1e-5

.print tran v(5) v(4)

width=80 ~

.end

Figure 3.12: Input file for the Enhancement-Load-Inverter example

result, the substrate-drain junction of M, becomés forward biased limiting the voltage rise
of Node 3 and, hence, the output swing, as shown in Figure 3.13a.

The following NECTAR rule checks whether, for digital circuits, the substrates of
n-channel devices are connected to the most negative node (a dual rule checks p-channel
devices).

(rule nmos-bulk-connection

(f
(mosfet (name ?t) (model 7m) (bulk ?b))
(model (name ?m) (type nmos))
(node (name ?n) (type most-negative))
(not (equal ?b Mn)))

(then ,
(modify (mosfet (bulk 7n)))
(send-message “Substrate of 7t connected to node ?n (most negative).”)))
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Figure 3.13: SPICE results for the Enhancement-Load Inverter: (a) with wrong substrate
connections; (b) with corrected connections
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The rule connects the substrate of M to ground and the desired output swing is obtained,
as illustrated in Figure 3.13.

3.6 Rules for Design Aid

This class of rules for NECTAR involves circuit design constraints. These rules are
activated, regardless of convergence problems, when requested by the user (see Figure 4.7
in Chapter 4), to satisfy design specifications. A typical example might be to provide a
minimum gain for a MOs amplifier stage with respect to device dimensions.

A novice circuit designer often attempts to meet the specifications using a “trial-
and-error” procedure. In the process, SPICE is run numerous times, each time with a differ-
ent value for some parameter. This procedure is often done randomly and uses significant
amounts of CPU time.

NECTAR can accept and apply circuit design rules and formulas to modify appro-
priate circuit parameters and aéhieve the desired functionality. Such rules apply to specific
circuit topologies. The design constraints are obtained from the analysis of similar circuits.
It should be pointed out that these rules do not involve optimization.

The following example illustrates the use of design-aid rules.

Example 6 (Near-Sinusocidal Oscillator)

A bipolar near-sinusoidal transformer-coupled oscillator circuit is shown in Fig-
ure 3.14 — the input file is shown in Figure 3.15. This circuit may exhibit the phenomenon
of “squegging” [Mayaram87], a multimode oscillation illustrated in Figure 3.16a. Analysis

of the oscillator results in the criterion

2nC
(a=1)

[Pederson90b] for the coupling capacitor C. to avoid “squegging.” This criterion has been

C. <

coded in the following rule.

(rule near-sinusoidal-oscillator
(if
(bjt (collector 7c) (emitter ?e))



(&) Vee

n:l1 -L—
i @ e @
ﬂl —-E't : g Ly L %
(2)
1

1 () ©

n O
- Cc
R,
)

n
VEE

Figure 3.14: The Near-Sinusoidal-Oscillator example
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Transformer-coupled oscillator
rt101

Q1213 modi

vec4 010

42750

ct4 2 450e-12

i1 42 5¢-6

12 0 6 0.05e-6

k11121

ce 6 3 10e-9

re 3 5 4.65e3

vee 50 -10 pulse -15-10 0 0 0 6e-6
ran 30e-9 6e-6

.plot tran v(2)

.model mod1 npn is=1e-16 bf=100 rc=10
.options nopage nomod limpts=500
width out=80

.end

Figure 3.15: Input file for the Near-Sinusoidal-Oscillator example

(capacitor (name ?ce) (terminals 7z ?e))

(capacitor (name ?ct) (terminals ?a ?c) (value ?v))

(inductor (name ?1) (terminals ?a ?c) (value ?11))

(inductor (name ?m) (terminals ?z ?12))

(mutual-inductance (inductorl ?1) (inductor2 ?7m) (turns-ratio 7r)))
(then

(modify (mutual-inductance (turns-ratio (sqrt (/ 11 12)))))

(modify (capacitor (name ?ce) (value (/ (* 7r ?v) (-1 (/ 1 71))))))

(send-message “Coupling capacitor 7ce changed to ?v.”)))

The rule automatically modifies the value of C.. Figure 3.16b shows the SPICE results for
the new capacitor value.



48

Volts
20.00 ~ 1 V)
15.00 . A
o~ A I \ A N PN A
5.00 —
0.00
sec X 106
0.00 . 200 4.00 6.00
(a)
Volts
. v(2)
12.00 n ﬂ—f‘-ﬁ ﬁ— B
11.00
—la A n
10.00 | 7y
9.00 {
300 — HH
. sec x 10°6
0.00 2.00 4.00 6.00

(b)

Figure 3.16: SPICE results for the Near-Sinusoidal Oscillator: (a) initial run; (b) run after
modification



Chapter 4

Integration of Analog Verification Tasks

in a Framework

4.1 Overview

In this chapter, NECTAR is expanded into a framework that integrates several ana-
log verification tools running in a distributed computing environment. The user interface
of the framework is presented in Chapter 5, and the actual implementation is described in
Chapter 6.

NECTAR is generalized from the two-program environment presented in Chapter 2
to an open CAD framework for verification. The tools that are integrated in the framework
include various simulation programs, simulation-result post-pfocessors, design data edi-
tors, programs to check input data and recover from simulation errors, and auxiliary shell
utilities. The close coupling of the tools allows the end user of the framework to focus on
the design tasks, instead of on how to use the tools.

Design and simulation data is managed automatically by the framework. Data-
storage formats have been chosen to minimize format conversions. In the presence of a
distributed computing environment, NECTAR can direct jobs to remote machines, hidding
communication details. Although the overall framework control lies with the user, a princi-

pal control cycle is prescribed to correspond to the main activity loop during analog design.

49
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4.2 Evolution of a Framework |

In Section 2.4 of Chapter 2, NECTAR is presented as the integration of two inter-
acting programs, SPICE and the Expert Emulator. This section describes the generalization
of NECTAR into a CAD environment that includes several simulation-related programs.

4.2.1 A First Generalization Step

As brought out in Section 2.4 concerning Option O-3 of Fact 1, a knowledgeable
user might want to choose between several versions of SPICE, because different versions
are best for the simulation of different types of circuits or for different analysis requests. As
an example, early releases of SPICE3 lack a reliable distortion analysis capability. Such a
capability is available in SPICE2G.6. Hence, users of SPICE3 turn to SPICE2 when the need
for a distortion analysis arises. The decision to choose a different (than the default) version
of the simulation program may come either after an initial unsuccessful run with the default
version or following an examination of the analysis requests before any simulation run.

The process of choosing among several simulators can be automated using NEC-
TAR. The augmented environment, shown in Figure 4.1, comes from the scheme in Fig-

NECTAR
input Cc];:?rS.ﬁr Chooser SPICE A
Expert
)ff SPICE B output
Emulator :
modified :
input
»1 SPICEN

Figure 4.1: Choosing from several SPICE versions

ure 2.3 with the following modifications: instead of just one, several SPICE versions are
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embedded in NECTAR; expert knowiedge about the analysis capabilities and limitations of
various versions of SPICE is incorporated in the Expert Emulator as rules; a choosing mech-
anism, controlled by the Expert Emulator, runs the appropriate SPICE version on the input
data. ‘ ‘

" Atthis point, NECTAR integrates more than two programs. Further additions and -
enhancements have extented NECTAR into a CAD framework for analog circuit verification,
as described below.

4.2.2 CAD Frameworks

Circuit designers are becoming increasingly dependent on a multitude of CAD
tools from various sources to speed up the design process, to manage the growing amounts
of design data, and to accommodate the strengthening interdependencies between tech-
nologies, design styles, and design teams. The concept of a CAD framework has emerged
recently to meet the need for integration and automatic management of today’s numerous
and polymorphic CAD tools. |

A CAD framework can be defined as a software infrastructure that provides a com-
mon operating environment for CAD tools. The infrastructure can include user interface,
tool interaction, interprocessor communication, and data management facilities. These and
other functions of CAD frameworks are necessary to tie together not only different tools but
also different processors, different operating systems, and different human designers. A
prime goal of CAD frameworks is to allow the end users (designers) to focus on the design '
activity by shielding them from tool and system details.

Some of the main issues in the development of CAD frameworks are the types of
tools to be integrated, the representation scheme for design data, the representation of de-
sign knowledge, and the control of the design process. These issues have been addressed in
several research efforts in the field. Designer’s Workbench [Friedenson82], one of the first
CAD frameworks, integrated already existing tools under a central user interface. The Palla-
dio project [Brown83] introduced a hierarchical design representation integrating tools built
specially for that representation. In DEMETER [Siewiorek84], a commercial database was

used for storage of information common to four different tools running on differentcomput-
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ers. The ongoing ADAM project [Gn:a.naclciSS] uses separately stored design knowledge to
manipulate hierarchically represented design data. The Oct approach [Harrison86] provides
a general hierarchical data management model shared by all integrated tools, which must
be consistent to a formal set of data types and access parameters, called policy. ULYSSES
[Bushnell87] integrates several dissimilar tools into a single conceptual framework based
on a global data space for storage of intermediate results and goals, called blackboard,
and special high-level representations of tool execution sequences, called scripts. Cad-
weld [Daniell89], a continuation of the ULYSSES project, decentralized the part of the con-
trol mechanism that is specific to each tool using object-oriented programming techniques
[Stefik86).

Most of the frameworks above are concerned with all phases of IC design and, as
such, must accommodate a host of different tools in several different areas:

¢ synthesis: high-level, logic, physical (placement and routing), etc.

e optimization: minimization of logic and finite-state machines, layout compaction,
device sizing, etc.

e verification: circuit, device, timing, and switch-level simulation, design critiquing,
etc. '

¢ editing: schematic, layout, etc.

e translation: extraction, etc.
In each of the areas above, the problem solved varies considerably from the rest and applies
to different aspects of the design data. The corresponding tools also differ considerably,
thus complicating their interaction in a framework.

4.2.3 Analog CAD

In contrast to tools for the design of digital circuits, analog CAD tools are few
and comparatively primitive. This disparity can be attributed to the fact that, compared
to analog, digital circuits are characterized by higher topological regularity and are easier
to partition into subcircuits, to analyze, and to design [Carley88]. This has led to a bet-
ter understanding of digital circuits and the development of many digital CAD tools that
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have contributed significantly to the more recent designs. In addition, digital circuits have
achieved much higher chip densities, p;uftly a reflection of the tremendous impact of the
Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET), which is suited to realize
digital functions more effectively than analog functions [Hodges88]. Digital circuits have
attracted most of the attention of CAD-tool researchers and developers in the last several
years.

Despite the lesser emphasis given on them, analog circuits are important for high-
frequency applications, integrated sensors, real-time control systems, in realizing power
supplies, and for interfaces between digital systems and external (naturally continuous)
signals [Brodersen84]. Such interfaces usually are implemented with separate analog com-
ponents and IC’s. Recently, however, designers have started integrating both analog and
digital subcircuits on the same chip. Even though the analog parts typically occupy about 10
percent of the chip, they now require about 90 percent of the total design time [Pederson90].
As aresult, the need for more sophisticated analog CAD tools has become evident [Allen86].
The programs IDAC [Degrauwe87], OAsYs [Harjani87], and OPASYN [Koh90] are some of
the first arialog synthesis tools.

Since analog synthesis tools are still in an experimental stage, analog design is,
for the most part, an iterative “trial-and-error” process, as illustrated in Figure 4.2. First,
the design specifications, i.e., the functional, performance, and physical properties of the
circuit, are set. Then, potential circuit realizations are successively modified and checked,
resulting in a gradual refinement of the design, until the specifications are met. The modifi-
cation (editing) parf of the design process is based on certain techniques, the most common
of which is the manual input of design expertise by the designer. Once the topology of
the circuit is fixed, the much smaller subspace of all circuits differing only in the values of
certain parameters can be searched with optimization tools [Nye88, Shyu88]. As for the
verification part of the process, analog circuit designers, including the designers of critical
digital building blocks, primarily depend on electrical circuit simulation.
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Formulate design specs

Edit circuit

Simulate

Examine results

Figure 4.2: The iterative nature of analog-circuit design
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42.4 The NECTAR Framework

The polymorphism of CAD tools constitutes not only a motive for integration
" but also an obstacle in the development of frameworks. In addition, the requirements for
CAD frameworks are changing as tools and designs are changing and, hence, designing
a framework is a task with a moving target. Therefore, attempting to develop a single
framework for all CAD activities may not be the best approach. In this research, the scope
of a CAD framework has been narrowed:

Research Objective 3 Development of a framework for simulation and other tasks perti-
nent to the analog design cycle (Figure 42).

The NECTAR framework evolved from the two-program shell of Figure 2.3 and
the several-program environment of Figure 4.1 to the schema of Figure 4.3, which shows
the various programs, databases, and hardware components that NECTAR ties together.
Integrated programs include several simulators, post-processors of simulation results, design-
data editors, the Expert Emulator, a special rule editor (presented in Section 5.7), and system
utilities. There are two databases, one for design data and one for rules containing simula-
tion and design expertise. NECTAR interfaces to different types of machines and displays.
Finally, a user-interface module gives the NECTAR user direct control over the actions to be
taken, including overwriting decisions by the Expert Emulator.

Since the focus is on analog verification, the various components of NECTAR do
not need to be as abstract as those of a general CAD framework; thus, they can be made
efficient. The goals of the NECTAR framework, including some goals common to general
CAD frameworks, are the following:

e Collecting and making available in a single software shell an array of programs and
functions related to circuit verification

Development of a uniform user interface for all integrated tools

Elimination of redundant information flow to and from the user

Use of a common database for all tools

Minimization of data-format translations

Hiding tool and system details from the user
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Figure 4.3: General view of the framework: programs, databases, and hardware are inte-

grated in an environment for simulation
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Putting emphasis on design tasks, not tools

Automatic execution of tasks needed most of the time

Increasing the designer’s productivity

¢ Minimization of errors by the user

Minimization of training requirements for novice designers.

The remainder of this chapier describes the choices made regarding supported
tasks, integrated tools, data organization, computing facilities, and framework control. De-
cisions for goals related to the user interface are presented in Chapter 5.

4.3 Tasks Supported by the Framework

NECTAR supports design tasks that normally are needed during the analog design
cycle. For each task, one or more tools have been integrated in the framework. Multiple
tools for a single task are included when no one tool covers all the requirements or when
users’ preferences are divided among several tools.

The following tasks can be accomplished using NECTAR:

Direct-Method Electrical Circuit Simulation: Various types of circuit simulators ana-
lyze circuits at different detail levels and, therefore, are characterized by varying
run-time and result-accuracy properties. For most analog circuits, the optimal trade-
off point between speed and accuracy corresponds to direct-method electrical-level
simulation. Devices are represented at this level with analytical models relating their
terminal voltages and currents. The circuit equations are solved directly to yield the
voltage waveforms at all nodes and the current waveforms through the branches of
the circuit. NECTAR gives access to several versions of the program SPICE varying
in their analysis capabilities, algorithms used, or in the language in which they were
programmed (FORTRAN for SPICE2; C for SPICE3), the compiler used (public domain
or commercial), or the type of machine on which they run (UNIX workstations, VAX

minicomputers, IBM mainframes).

Mixed-Level Simulation: The circuit properties in certain designs depend heavily on the
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performance of one or more critical devices. There is a need to simulate critical
devices with an accuracy higher than that of an electrical-level simulator. Device-
level simulators [Price82j analyze devices by solving the nonlinear partial differential
equations in space and time (Poisson’s and current-continuity equations) obtained
from device physics. It is assumed that the terminal voltages, which constitute the
boundary conditions for the differential equations, are known or set. However, it is
not easy to predict the boundary conditions for the realistic case of a device embedded
in a circuit.

Mixed-level simulators, such as MEDUSA [Engl82] and CODECS [Mayaram88], com-
bine circuit and device simulation. Critical devices are simulated at the device level
with boundary conditions determined from the rest of the circuit, which is analyzed
with an electrical circuit simulator. Mixed-level circuit and device simulators are
much slower than electrical simulators. The program CODECS has been integrated in
NECTAR. Even though it runs on smaller machines, CODECS jobs are usually submit-
ted to a mainframe, because of the high CPU-time requirements.

Steady-State Simulation: The periodic steady-state behavior is of primary importance for

large classes of circuits, such as amplifiers, oscillators, filters, multipliers, mixers,
etc. Harmonic distortion, noise, power dissipation, gain, and other useful circuit pa-
rameters are calculated based on the steady state. However, steady-state simulations
using direct time-domain methods can be computationally expensive, in particular
for high-Q and narrow-band circuits.

Special simulators for the steady state use algorithms that bypass initial transients
and compute the periodoc steady state directly. This results in faster simulations.
The steady-state simulators Spectre [Kundert86] and SSPICE [Ashar89] have been
integrated in NECTAR. Spectre simulates nonautonomous weakly nonlinear circuits
in the frequency domain based on the method of harmonic balance. SSPICE, on the
other hand, is able to simulate both autonomous and nonautonomous circuits in the
time domain based on shooting methods.

Simulation-Result Post-Processing: After a simulation run is completed, usually a long

streamn of results is produced. Post-processors are programs that take the simula-
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tion results and present them in such a form that the designer can easily evaluate the
simulated circuit performance and compare it against the design specifications. Typ-
ically, a post-processor allows a user to plot voltage and current waveforms as well
as measure certain quantities directly on the plots. By taking advantage of modern
multiple-color bit-mapped displays, post-processors allow users to focus quickly on

the data of interest.

Simulation programs often include their own built-in post-processors. Other simula-
tors generate results in formats suitable to be processed by stand-alone post-processors.
The choice of a post-processor often is a matter of personal taste. Hence, the goal
for NECTAR has been to allow users to proéess and view results from any simula-
tor using any one of several post-processing and plotting programs integrated in the
framework. The available choices include the programs Nutmeg [Christopher87],
Xsplot [Bradley87], Xgraph [Harrison88], and the text pagers More and Less. The
data-format conversions between simulators and post-processors are made automat-
ically, as described in Section 4.4.

Design-Data Editing: Each iteration of the design cycle (Figure 4.2) starts with the for-
mation or modification of the input-data for the simulation. This data contains the
circuit description, the analysis requests, and the control options for the simulation.
Even though a program like the Expert Emulator is capable of modifying the input
data automatically, direct access to the design database is essential to the designer and
is accomplished using editors. In the past, text editors were the only type of editors
available for this task. They are still widely used today. Designers using text editors
need to know the exact input-language syntax for the simulators they use. Syntactic

errors are common when text editors are used.

- Schematic editors are a big improvement over text editors, since they let designers
edit the schematic of the circuit. Diagrams (on paper) are used even when only text
editors are available. However, the task of translating the circuit description from the
schematic to the textual format is done automatically by the schematic editor, thereby
eliminating most syntactic errors and saving time. Schematic editors usually simplify

the entering of analysis requests and simulation options with a friendly interface. The
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visual text editors Vi and Emacs are currently available, but schematic editors, such
as OctSPICE [Laidig90] and iSPI [Acuna90], could be included as well.

Simulation-Error Recovery: The Expert Emulator, introduced in Chapter 2, can be in-
voked by the designer whenever simulation errors occur. Modifications to the input
data are not only suggested but made automatically. The user, however, can override
the modifications. |

Pre-Simulation Data Checking: Errors caught early cost less, since in this way unneces-
sary and possibly CPU-expensive simulation runs can be avoided. Therefore, it may
be beneficial to run the Expert Emulator before a simulation, using an appropriate set
of rules. The program SPLINT [Kuo090] is a SPICE-format checker that may also be
used for this purpose. SPLINT is a conventional procedural program and can not be
augmented with new rules as easily as the Expert Emulator.

Circuit-Design Aid: The Expert Emulator has a third use, described in Section 3.6. It
can be used to criticize a design and to suggest improvements based on results and
formulas derived from circuit analysis. A similar technique has been presented in
[Spickelmier89]. For this task, the design rule set in the knowledge base is used.

4.4 Data Flow and Organization

The flow of data between the various tools in NECTAR is illustrated in Figure 4.4.
The user accesses NECTAR through a computer terminal (TE). A circuit editor (ED) can be
used for the initial formulation or for modifications of the circuit and analysis (input) data
(ID). Input data is sent to a simulation program (SI) running on one of the machines (MA)
available in the computing environment (CE). Simulation results are stored in the output
database (OD) and displayed on the terminal by a post-processor (PP). When invoked,
the inference engine (IE) of the Expert Emulator (EE) executes rules from the knowledge
base (KB) driven by the problem data from the input and output databases. The user can
access the knowledge base to add or modify rules with the rule editor (RE). Through the
user interface (UI) the user controls the framework. The user-interface module and the
Expert Emulator can alter the status variables of the framework (FS), which determine the
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Figure 4.4: Framework data flow between simulators (SI), post-processors (PP), editors
(ED), the Expert Emulator (EE) [composed of an inference engine (IE) and a knowledge
base (KB)], the Rule Editor (RE), the user interface (UT), and utility programs (UT) running

in a distributed computing environment (CE) with various machines (MA) and termiinals

(TE). ID and OD represent the simulation input and output data, CO is the framework

controller, and FS is the framework status.
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.

sequence of events through the framéwork controller (CO). Finally, various utility programs
are available to send information to the user.

NECTAR stores data in the database as files. As a result, the communication be-
tween programs is simpliﬁed. More significantly, almost any program can be included in
the framework, since programs are not restricted to conform to a specific data model. Only
the more common formats are used for storage. The predominant formats are those of SPICE
input and SPICE output. Files are named automatically by NECTAR and can be accessed us-
ing framework utility functions. Other utilities allow directory browsing and can recognize
files containing data in certain formats.

Formats required by less frequently used programs typically are not present in the
database. Special database-to-program translators convert data from the available formats.
Similarly, output from those programs is converted with program-to-database translators
before stored in the databases. Figure 4.5 illustrates the use of data-format translators for
the Expert Emulator. The DB-to-EE translator converts data from SPICE input and output

Input Output
Data Data Expert Emulator
*1 | DB-t0-EE Inference EE-to-DB
» | Translator Engine .| Translator
A
Knowledge
" Base

Figure 4.5: Data-format translators for the Expert Emulator
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formats and the EE-to-DB translator converts data to SPICE input format.

Even for the frequently used SPICE2, the “raw” part of the output is first converted
to SPICE3 “rawfile” format and then stored. The reason for this conversion is that the more
likely use of the “raw” data is plotting it using Nutmeg, the post-processor of SPICE3. The
translation is done with the program Sconvert, as illustrated in Figure 4.6.

Input
Data
SPICE2 SPICE3 Nutmeg
Sconvert .
Display
Output
Data

Figure 4.6: SPICE3 post-processor Nutmeg plots results from SPICE2 translated by the pro-
gram Sconvert (SPICE2-to-DB translator)

4.5 Integration in a Diverse Computing Environment

A typical computing environment for IC design today includes several, possibly
different, machines interconnected in a network. NECTAR accommodates and takes advan-
tage of distributed and heterogeneous computing environments. Integration of computing

environments has been simplified owing to several advances in computer networking.



CPU-intensive simulation jbbs can be sent from NECTAR for execution on remote
machines that are either more powerful or less loaded. Operating-system utilities are used
for the communication between machines. The communication across UNIX machines is
based on the remote shell command rsh, which connects to the remote machine and ex-
ecutes the specified command. Output data is passed back to the local host. For the com-
munication between a UNIX host and a remote IBM 3090 machine, the rje utility program
is used. This program is based on TCP/IP mail. In either case, the user of NECTAR does not
need to know how the communication, which remains hidden, is achieved.

Multiple processes may run in parallel in a multitasking operating system. Run-
ning processes can be monitored and terminated with simple NECTAR commands, which
use operating-system utilities, such as ps and kill.

Design and other data on a remote file system can be accessed from within NEC-
TAR. Remote access is based on the Network File System (NFS), a file system implemen-
tation that allows sharing of ordinary files and directories in a multivendor networking

environment.

4.6 The Flow of Control in the Framework

NECTAR is invoked from the UNIX shell with the command “nectar”. By en-
tering NECTAR, users enter a command loop that continues until the “quit” command is
issued. Using the task commands, one can invoke tools without having to remember the
syntactic details of how each tool is invoked on its own. More details on the user interface
are given in Chapter 5. Other commands serve to set the various framework status variables
and options, such as the execution machine, file names, the pager and editor of choice, and
others.

Of particular interest is the flow of actions that correspond to the edit-simulate-
examine design 106p shown in Figure 4.2. A framework;control cycle for this design loop
has been incorporated in NECTAR. The corresponding flowchart is shown in Figure 4.7.

First, the circuit is edited with a circuit editor. Then, if desired, the presimulation

rules of the Expert Emulator are applied to find problems with the simulation input data.
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Figure 4.7: NECTAR flowchart corresponding to principal analog design cycle
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If .no errors are found or errors are found and the corrections made are acceptable, the
process proceeds to the simulation phase. If errors are found but the corrections made are
not acceptable, the circuit editor is invoked again.

In the simulation phase, after the simulation run is over, a post-processor displays
the simulation results. If simulation errors occurred, the simulation-error rules of the Expert
Emulator can be applied. If the Expert Emulator comes up with acceptable corrections to
the input data, a new simulation is started. If no rules are relevant or the corrections made
are not acceptable, the process goes back to the editing phase.

Once the simulation concludes with no errors, the simulation results are checked
against the design specifications. If the specifications are met, the design is over. Else, the
design rules of the Expert Emulator can be applied. As in the previous phases, acceptable
corrections lead to a new simulation, whereas otherwise the editor is invoked.



Chapter 5
Improving the User Interface

5.1 Overview

~ The NECTAR framework is an interactive software package. This chapter presents
issues and decisions on the design of the human-computer interface of NECTAR. Implemen-
tation aspects of the interface design are described in Chapter 6.

With the increasing use of computers, human factors in the design of software
are receiving the due attention. Numerous design principles and guidelines have been ob-
tained from practical experience and empirical studies. In one view of user interfaces,
the user-computer “communication” is analyzed as a component of the general task fulfill-
ment. Anothér analysis decomposes user interfaces into several increasingly refined levels,
from conceptual to physical. The choice of an interaction style and the accommodation of
novices as well as of experienced users are among the central design issues.

A task analysis at the conceptual and computer-system levels reveals the neces-
sary functionality for the interface of NECTAR. The tasks have been mapped to two prevail-
ing hardware platforms, the alphanumeric and the bit-mapped display. The two interfaces
are compatible and can be used interchangeably during a project. In accordance with princi-
ples of “friendly” design, data entry is minimized, routine actions are automated, command
arguments can be specified in several ways, and commands have a common “feel”. Data
is displayed in graphical form, whenever possible, and messages inform the user of system

actions. The alphanumeric interface is based on a flexible command language, whereas the
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bit-mapped interface uses multiple windows and a menu selection system.
A rule editor, a special interface to the knowledge base of the Expert Emulator,

allows NECTAR users to create and modify rules while circumventing most of the syntactic
details of the rules. '

5.2 Issues in Computer-User Interfaces

This section presents analysis methods and design issues in user interfaces of
interactive computer programs.

" Often in the past, software designers would devote little time in the part of the
program that handled the communication from and to the program user, the user interface.
A software project would be considered finished when the core algorithms were developed
and debugged. With the increasing use of computers by a larger and more varied pool
of people, software developers have recognized the importance of user interfaces. “Hu-
man engineering is now understood to be the steel frame on which the structure is built”
[Shneiderman87].

Designing “friendly” programs is not a simple matter. The field of human factors
studies the implications of human characteristics on the design of equipment to be used by
people. Some features of human-machine interaction, especially those specific to comput-
ers, are not well understood; hence, general principles of interface design are not yet suf-
ficiently well developed. Instead, design guidelines have been compiled from experimen-
tation, informal observation, and intuition. In [Smith82], hundreds of issues on functional
capabilities, data entry, data display, and sequence control are covered through thorough
lists of guidelines and checks. [Heckel84] specifies thirty “elements of friendly software
design” that provide a variety of perspectives on interface design. Current good practice
is based on guided evolution, an iterative design approach that guarantees flexibility by
intentionally leaving some options open during the early sta{ges of software development
[Nickerson90].

The interaction of humans and computers can be analyzed from several points of

view. Figure 5.1 illustrates the central concepts of the interaction from the task perspective
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Figure 5.1: Central concepts in a task perspective of human-machine interaction
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[W2m89]. The general task — verifying or designing an analog circuit, in the context
of NECTAR — is divided in two parts, one to be carried out by the human and one for the
machine. The larger the machine part, the more automated the general process. In NECTAR,
the input of the IC designer (human) is essential in each cycle of the design task, as presented
in Chapter 4. The machine subtasks are computational, administrative, and diagnostic. In
general, humans excel in creative, intuitive, and low-precision tasks, whereas computers
are better at repetitive, algorithmic, high-precision, and routine tasks.

The human and the computer handle their respective tasks according to “task
models” implicitly or explicitly present in the human’s expertise and in computer pro-
grams, respectively. During task handling, commands, responseﬁ, data, and other infor-
mation flows between human and computer. This “communication” is inherently “uhnatu-
ral,” because of the radical difference in levels of “intelligence.” A well-designed interface
narrows the “intelligence” gap by supporting many of the implicit assumptions that char-
acterize the communication between humans. It is claimed that writing “friendly” software
is an art involving techniques of effective communication [Heckel84].

A portion of the human-machine interaction consists of supplementary commu-
nication about the rules and requirements of the communication that is directly related to
task handling. This supplementary communication is called metacommunication and in-
cludes help sessions, error messages, on-line tutorials, and information and commands on
the system status. Since metacommunication intervenes in the main task, designers have to
consider whether it should happen “actively” (for guidance) or on request, as expert users
generally prefer.

A different analysis of user interfaces is presented in [Moran81]. This analysis
introduces a hierarchical representation of command language systems, called the Com-
mand Language Grammar, that spans the conceptual (tasks and abstract concepts), com-
municational (command language, dialogues), and physical (I/O devices) aspects of user
interfaces. The representation is made up of six description levels, illustrated in Fi;gure 5.2,
each level being a refinement of the previous levels.

At the Task Level, user needs are described in a way amenable to an interactive
system. Concepts used by the system for the accomplishment of the tasks are introduced at

the Semantic Level. Commands, arguments, state variables, and other syntactic elements
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.Figure 5.2: Level structure of the Command Language Grammar

are laid out at the Syntactic Level. The Interaction Level specifies the physical actions, such
as key presses and mouse manipulations by the user and display actions by the system. The
Spatial Layout Level describes the arrangement of the I/O devices and the display graphics. -
Finally, all remaining physical features are described at.the Device Level. The description
of each level contains procedures for accomplishing the tasks in terms of the conceptual
entities and actions available at that level. The stratification into levels is not always precise.
The needs of NECTAR call for a less abstract representation with fewer levels, as presented
in Section 5.3.

Different styles can be chosen to support the user-computer interaction. The
styles most in lise are the foilowing [Shneiderman87]:

e Menu Selection: The user chooses from a list of options presented by the system.

o Form Fill-In: Data is entered by the user in a particular format that simplifies repeti-

tive actions.

¢ Command Language: Instructions are expressed directly using a language of a par-
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ticular syntax.

o Natural Language: The communication is comprised of sentences from a restricted
vocabulary resembling natural language.

¢ Direct Manipulation: The user moves and transforms objects on the screen directly, as
if they were real objects; also described as “what you see is what you get” (WYSIWYG)
interaction.

No one style is “best” in general, but one style may be better than the rest for a particular

task. Menu selection and command language are the main contrasting styles, representing

a trade-off between simplicity and power. Direct manipulation generally requires advanced

hardware and sophisticated software and is being increasingly employed in all kinds of ap-

plications. It should be noted that the distinctions between different styles are sometimes

blurred and that hybrid styles are common. Numerous rules and guidelines, applicable to

one, several, or all interaction styles have been developed. Response time, system mes-
. sages, screen design, and use of color are some additional important issues.

Among the challenges in user interface design is accommodating humans of vary-
ing profiles. Even though the users of a program such as NECTAR are much less diverse than,
for example, the users of automated-teller machines, the general distinction into novice and
experienced users still applies. Typically, novices are characterized by limited syntactic and
semantic knowledge of the task and by anxiety about interacting with a computer. Expe-
rienced users have good knowledge of the task and familiarity with the computer. Knowl-
edgeable but intermittent users are able to maintain the semantic knowledge of the task and
the computer concepts but have difficulty retaining the syntactic knowledge. Each class
of users has different needs about guidance, speed, and feedback. Novices prefer select-
ing to giving commands, feel more confident with full terminology, and require generous
prompting, error messages, and on-line assistance. For expert users, it is important to be
able to work rapidly, to avoid being disturbed by extensive messages, and to be equipped
with shortcuts, abbreviations, and macros for frequent actions. Intermittent users need, at
least in the beginning, novice-like interaction to refresh their memory.

Several CAD programs have addressed user interface issues. VEM [Harrison89],
an interactive graphics program for the Berkeley Design Environment, uses multiple over-
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lapping windows, deck-of-cards pob-up menus, dialogs, and other user interface entities.
The user of VEM can specify commands using the menus, using single keystrokes, or
by typing the command name. Cleopatra [Samad86] is a natural language interface for
circuit-simulation post-processing. An evaluation of Cleopatra has led to the conclusion
that a graphics interface would be preferable to natural language for the CAD domain
[Cobbum87]. ECSTACY [Shyu88], an interactive IC optimization system, uses a form
fill-in interface for the detailing of problem specifications. The Cadweld CAD framework
[Daniel189] provides an icon-driven interface comprised of several views that represent tool
classes and hierarchies and the flow of control and data.

5.3 Designing The User Interface of NECTAR

5.3.1 Assigning Representation Levels

The six-level structure of Figure 5.2 can be simplified for the needs of NECTAR.
The merging of the Semantic and Syntactic Levels into a single level, the System Level,
and, likewise, of the Spatial Layout and Device Levels into the Physical Level, results
into a more concise four-level structure, as illustrated in Figure 5.3. The Task and Interac-
~ tion Levels are identical to the corresponding levels of the Command Language Grammar
(Section 5.2). The System Level represents the system operations that are necessary to ac-
complish the tasks, as well as how the operations are evoked. The Physical Level describes
the physical arrangements and features of the I/O devices.

An example may help make some of the notions of the level structure more con-
crete. At the Task Level, one might want to “simulate a circuit with SPICE”. The entities
at this level are: circuit, simulation, and simulation type. The same action is represented
at the System Level with the notion of “invoking the spice executable with input the
file containing the SPICE description of the circuit”. The entities at this level are: com-
mand, executable, arguments, and system files. At the Interaction Level, the action is rep-
resented by the keystrokes of the user at the system prompt (for a UNIX system: “spice
< input-£file”.) Finally, at the Physical Level, the action is described with additional

information about the scréen layout, the relative positions of the system prompt and the
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Figure 5.3: Level structure for the user interface of NECTAR

“echo” of the user’s command, fonts, colors, and other screen details.

5.3.2 Task Analysis

Essential in the design of the user interface of NECTAR is to identify the necessary
functionality, i.e., the tasks that must be accomplished. The functionality of the interface
must be adequate but not excessive, because unnecessary complexity may confuse and
discourage the users.

Necessary tasks are the design tasks supported by the framework, as listed in
Section 4.3: various types of simulation, post-processing, design editing, simulation-error
recovery, data checking, and design aid. In addition, the analog-design cycle, as represented
by the flowchart of Figure 4.7 in Chapter 4, must be supported as a compound task. A help
facility, a history mechanism, and a bug-report feature are tasks that fall in the category of
metacommunication. |

In addition to the tasks above, which represent decisions at the Task Level, several
new tasks are introduced at the System Level. These tasks relate to system entities not

represented at the previous level, such as files, directories, commands, paths, computer
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jobs, and state variables.

The various types of tasks are summarized in Table 5.1. Tasks introduced at the
Task Level are represented at the System Level as well, but not vice versa. Even though
tasks introduced at the System Level do not directly promote the principal goal of design
verification, they do represent useful utilities.

Interface Level of | Task Type Task

Task Introduction
Task Level Simple Simulation

Post-processing
Editing

Error recovery

Data checking
Design aid
Compound Analog-design cycle

Metacommunication { Help
History
Bug report

System Level File system File-name setting
File deletion |
Directory listing
Directory change

Computer jobs Job monitoring
Job termination
Parallel-job control

State variables Status check

Status change

" Table 5.1: Summary of tasks for the user interface
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5.3.3 Choices at the Interaciion Level

In choosing an interaction style, one first needs to consider the type of hardware
that the program will be running on, and in particular the type of computer terminal that
will be used. Engineering workstations with bit-mapped displays are widely used among IC
designers, but alphanumeric terminals used with minicomputers and mainframes are also
in use, at the work place and remotely through low-bandwidth lines. Mixed use of both
types of terminals is not unusual.

Although bit-mapped terminals generally allow the design of better interfaces
than do alphanumeric terminals, either type would be adequate for most NECTAR tasks.
Targeting only one type of terminals would be an unnecessary restriction to potential users.
Hence, two interfaces have been developed for NECTAR, one for alphanumeric and one for
bit-mapped displays.

The two interfaces are identical at the Task and System Levels and, thus, have the
same functionality. They differ at the Interaction and Physical Levels in order to exploit the
different capabi]ities- offered by the hardware. Detailed descriptions and design choices at
the Interaction and Physical Levels are presented in Section 5.5 for alphanumeric displays
and in Section 5.6 for bit-mapped displays.

Despite their differences, the two interfaces are compatible. Work started using
one interface can be continued using the other interface with no need for data adjustments
and transforms. This is possible because NECTAR stores data in the databases as files, as
mentioned in Section 4.4, and also because of the equivalence of the two interfaces at the
System Level.

5.4 Data Entry and Display

This section presents principles of interface design that have been applied to the
two NECTAR interfaces.

A guideline for data entry is the minimization of input actions by the user. In
NECTAR, users’s actions are minimized in several ways. Most choices are made using one

or two keystrokes or a mouse click. Simple framework commands have substituted lengthy
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command sequences at the operating-system level. This reduces training and memorization
requirements. As an example, the UNIX command

spice! -r rawfile < infile > outfile
is substituted with the keystroke “2” or a click of the mouse on the “SPICE2” menu entry
(assuming that the name of the input file has been specified in advance).

Certain commands, when invoked from the operating system, require certain en-
vironment variables or auxiliary files — such as “dot” files in UNIX systems — to be in
a certain state. Whenever changes to ensure such requirements can be made without the
user’s intervention, actions are taken and remain “hidden” from the user. As an example,
the rje UNIX program, used for the communication with IBM mainframes, does not work
properly if the user’s auxiliary mail file, .mailrc, contains a “set record=...” entry,
which allows outgoing mail to be saved in a file. When the above condition is present, NEC-
TAR creates a temporary .mailrc with no entry for recofding and then executes the rje
command. The .mailrc file is restored to its original form after the task is completed.

-Redundant data entry is avoided in NECTAR, thus preventing user annoyance and
the possibility for errors. Any required argument of the stand-alone command for a tool
may be omitted when the tool is invoked inside the framework, if that argument can be
derived from the context of previous commands during a session with NECTAR.

Names for files used to store results from various tools are given default names |
by the framework. The user can access those files using framework commands without
having to know the names. A user that insists on specifying the file names can do so using
the appropriate NECTAR commands.

Arguments for framework commands can be entered in several ways: some can
be included as options with the NECTAR-invocation command; all arguments can be given
as regular supplements together with the commands; finally, if not supplied previously,
arguments are inquired with questions to the user. This flexibility gives the user additional
control on data entry.

Actions and subtasks most likely needed after the completion of a user-requested

task are invoked automatically. As an example, after a simulation, the default post-processor

l“spice” refers to SPICE2.
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is automatically invoked to 'display ihe simulation results. As another example, modifica-
tions to the input file by the Expert Emulator are not only suggested but also made auto-
matically. The user can always override such actions.

NECTAR takes advantage of initialization files for interactive programs (.init
files, in UNIX) to automate actions that would otherwise require typing. As an example,
NECTAR copies (with appropriate modifications) plotting or printing commands from in
the SPICE input file to file . spiceinit, the initialization file for SPICE3 and Nutmeg. In
this way, the desired plotting command is executed automatically. As another example, the
use of the initialization file compensates for the lack of a batch running mode in the steady-
state simulation program SSPICE [Ashar89). Instead of requiring the typing of the command
“steady ...” for each simulation run, NECTAR executes the respective commented-out
line from the input file using . spiceinit.

Framework commands are characterized by a common “feel”. Consistency within
the command language is more helpful to a user than compatibility between the command
language and the natural language [W2rn89). The interface shields the user from command
differences across different machines.

Communication to the user (data display) is made in graphical form, where ap-
propriate. Graphs, dialog boxes, and visual metaphors relieve the need to read and interpret
alphanumeric data.

NECTAR reports to the user all actions taken with system messages. In particu-
lar, modifications by the Expert Emulator are reported together with justifications for the
changes. If a rule is executed with a low degree of certainty, the user is asked before any
modifications are made whether the proposed changes are acceptable.

Computer response time significantly affects the user’s productivity and level of
satisfaction. Care has been taken in implementing the user interface of NECTAR to en-
sure short response times — less than a second is considered adequate [Shneiderman87].
Lengthy jobs, such as some simulation runs, are handled either by executing them in the
background or by continually displaying the elapsed CPU time.
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5.5 The Interface for Alphanumeric Displays

A flexible command language combined with user queries has been designed for
the alphanumeric interface of NECTAR. Figure 5.4 lists the available commands, as they

nectar 1> help
nectar commands

2 : spice2 3 : spice3 3b : spice3bl+
3c : spice3cl 3d spice3dl bb jobs on bigboote

oe oo

bg : jobs in background br : report a bug bs : spice3 w/ bsim

cd : change directory cl : clean files co : codecs

cs : spice2 w/ cosines d : subdirectories fg : jobs in foreground
fm : spice2 w/ new fm fs : fort spice2 h : help :
hi : history i : new input file ia : spice3 interactive
ib : submit to the IBM k : kill spice jobs 1 : list input files
le : view input file n : nutmeg o : view output file
g : quit r : remote machine sd : set display

se : set editor 80 : save output sp : set pager

sSr : save raw output st : status 83 : sspice

t : spice cpu time v : edit input file ve : spice version

X : expert emulator " xs : xsplot

Figure 5.4: A listing of NECTAR commands taken from the he 1p facility

are displayed by the help facility of the framework. '

To serve both the experienced and novice users, commands may be entered with
full names or using abbreviations. All non-arhbiguous abbreviations of command names
are legal. To comply with the outcome of relevant studies that have shown two-letter ab-
breviations to be optimal, all commands can be shortened to two letters. Some of the more
common commands hold one-letter abbreviations as well. ,

The command style is influenced by UNIX shell commands. The framework sys-

tem prompt includes the name of the program and the number of the command.

5.6 The Windowed Interface

A window is a portion of a display screen, typically assigned to a group of in-

formation or to one of several simultaneously running processes. Modern engineering
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workstations with high-resolution bit-mapped graphics displays make multiple windows
practical. Windows have transformed human-computer communication from linear flow
of information to multi-dimensional parallel interaction. Many advances, such as overlap-
ping windows, pop-up menus, multiple fonts, direct manipulation using the mouse, and
the desk-top paradigm have been introduced with the Xerox Star [Johnson89] and popu--
larized with the Apple Lisa [Williams83] and Macintosh (Apple85] and recently with the
Microsoft Windows 3.0 [Udell90]. »

The NECTAR interface for bit-mapped displays uses several windows and is menu-
driven. Figure 5.5 shows the screen layout of the interface. The main windows are tiled,
whereas auxiliary windows are overlapping. Two text windows are used for the display
of input data (the larger one on the top) and messages (the one at the bottom). They are
both scrollable with left-hand-side scrollbars. The input-data window is editable and used
to-modify directly the input data.

A menu between the two text windows has entries (“buttons”) for the framework
commands. A single static menu has been chosen because the number of tasks is relatively
small. To avoid confusion, the mouse buttons are equivalent: any button may be pressed
with the identical result. Menu actions are confirmed with the use of reverse video.

Pop-up dialog boxes are used for argument entry and command confirmation.
The visual metaphor of a thermometer-like linear ruler displays the elapsed time of CPU-
intensive jobs as they run. This helps eliminate the “Is the computer down?” syndrome
[Shneiderman87] of computer users, who are anxious about the state of their jobs.

Color groups objects on the screen in a consistent way and creates an aesthetically
pleasing image. Only a few colors are used, since excessive use of colors disorients the user.

5.7 A Mechanism for the Easy Addition of New Rules

As mentioned in Chapter 2, knowledge-based systems can be easily expanded
with the addition of new rules to the knowledge base, which is separate from the inference
engine. In NECTAR, the expandability of the Expert Emulator is further enhanced by a

special rule editor developed to ease the process of composing new rules. By using the rule
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0S relaxation oscillator

mli 2 1 0 6 modl w=100u 1=5u

m2 4 5 0 6 modl w=100u 1=5u

m3 3 2 2 6 mod2 w=20u 1=5u

md 3 4 4 6 mod2 w=20u 1=5u
3116 mod2 w=20u 1=5u
1 00 6 mod2 w=20u 1=5u

m35 3 5 5 6 mod2 w=20u 1=5u
50 0 6 mod2 w=20u 1=5u

cl 2 5 100p

c2 4 1 200p

vee 6 0 -9

vdd 3 0 5

i1 5 0 pulse 10u 0 0 0 0 1

.tran 2u 1800u 1400u yes no

.plot tran v({5)

Jwidth out=80

.option nopage nomod limpts=1001

.model modl mmos vto=+0,7 kp=30u

.model mod2 nmos vto=-0,7 kp=30u lambda=0.01

.end

Quit Nutmeg?

Spice2 Run Time
|

[Quit][Input File][Save File |[Spice 2|[Spice 3][Fort Spice|[Output | [Version | [Nutmeg | [ Design |
[Run Rules |[Rule Editor ||Help |
1#ERROR*: INTERNAL TIMESTEP TOO SMALL IN TRANSIENT ANALYSIS

Figure 5.5: The windowed user interface for NECTAR



82

editor, NECTAR users can bypass most of the syntactic details of the rules. As shown in
Figure 4.4 of Chapter 4, the rule editor is the interface between the user and the knowledge
base of the Expert Emulator.

The rule editor employs a cyclic query network, shown in Figure 5.6, that guides
the user through a series of choices and questions.

The presentation sequence of the items in the queries follows the natural ordering
of the rule format. Rules have four parts: name, comment, left-hand-side (LHS), and right-
hand-side (RHS). The rule editor has four corresponding parts: A, B, C, and D. In Part A the
user is asked to enter the rule name that must be unique; hence, already existing rule names
are rejected unless the user wants to change an existing rule. Part B asks for a comment
describing the purpose of the rule. A null comment is permitted. '

The LHS of the rule contains the conditions that must be met by the problem, for
the rule to be executed. The conditions have the form of patterns that must be matched by
the problem data. Each pattern consists of a data primitive together with values for certain
fields of the primitive. In Part C, the rule editor asks for all the patterns in the LHS of the
rule to be specified. For each pattern, the user is queried about the primitive, the fields of
the primitive present in the pattern, and the corresponding field values. Both for the name
of the primitive and the names of the fields a list of valid entries is provided; illegal entries
are rejected.

The RHS of the rule contains the actions that take place when a rule is executed.
In Part D, the rule editor asks the user to specify all the actions to be included in the RHS
of the rule. Each action is composed of a command name and a set of arguments. A set
of basic actions, such as assert, retract, and modify, manipulate elements in the database.
Another common command is that of sending messages to report actions taken. For each
action, the user is queried for the command name and, depending on the type of the action,
the primitive with its fields and values, the text of the message, or a list of other arguments.

Again, illegal endries are rejected.
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Figure 5.6: The query network for the Rule Editor
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Example

To illustrate the use of the Rule Editor, a session with the editor, involving the
creation of the rule “bjt-base-resistance,” is described. The following is the complete text
of the interaction using an alphanumeric display, with the user’s input in sans-serif font.
A) Specify rule NAME : bjt-base-resistance
B) Specify rule COMMENT :

C) Next, for the 'IF’ PART, specify the rule patterns.
Valid pattern types are: resistor capacitor nonlinear-capacitor inductor
nonlinear-inductor mutual-inductance lossless-transmission-line vccs
~ VCVS CcCs ccvs voltage-source current-source bjt mos model analysis
option width error node
Are there more pattemns? [ny]: y
C1) Specify the pattern type : bijt
Next, specify the pattern fields.
Valid fields are: name collector base emitter model
Are there more fields in this pattem? [ny]: Y
Specify the field name : model
Specify the field value : var m
Are there more fields in this pattern? [ny]: n
Are there more patterns? [ny]: Y
C2) Specify the pattern type : model
Next, specify the pattern fields.
Valid fields are: name type af beta bf br bv cbd cbs cgd cgs cgbo cgdo
€gso ¢j cjc cje cjo cjs cjsw delta eg eta fc gamma ibv ikf ikr irb
is isc ise itf js kappa kf kp lambda ld level m mj mjc mje mjs mjsw
‘nnc ne neff nf nfs nr nss nsub pb phi ptf rb rbm rc rd re rs rsh
tf theta tox tpg tr it ucrit uexp uo utra vaf var vj vjc vje vjs
vmax vif vto Xcjc xj xqc xtb xtf xti
Are there more fields in this pattem? [ny]: y
" Specify the field name : name '
Specify the field value : var m
Are there more fields in this patten? [ny]: y
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Specify the field name : rb
Speéify the field value : var r and 0 or nil
Are there more fields in this patten? [ny]: n
Are there more patterns? [ny]: n
D) Next, for the "THEN" PART, specify the actions.
Are there more actions? [ny]: y
D1) Specify command : print
Specify message : Base resistance of var m has zero value.
Are there more actions? [ny]: Y
D2) Specify command : bind -
Specify arguments : var new-value 100
Are there more actions? [ny]: y
D3) Specify command : modify
Specify object : pat2
Specify field name : rb
Specify new valué : var new-values
Are there more actions? [ny]: Y
D4) Specify command : print
Specify message : MODIFICATION: Base resistance of var m changed to var new-
value ohms.
Are there more actions? [ny]: n
End of session.

As a result of this session with the Rule Editor, the following CLIPS rule is created and
added to the knowledge base:

( defrule bjt-base-resistance ‘*”
7patl < — (bjt (model ?m))
7pat2 < — (model (name m) (rb ?r&0|nil))
=>
( fprintout inf-file ‘‘Base resistance of ” ?m ‘‘ has zero value.” t)
( bind ?new-value 100)
( modify ?pat2 (rb 7new-values))
( fprintout inf-file <“MODIFICATION: Base resistance of ” 7m
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Chapter 6

Implementation

6.1 Overview

The various novel concepts introduced in the previous chapters have been im-
plemented as computer programs. These programs have served as test vehicles for the
evolution of ideas and have shown the feasibility of the proposed solutions. This chap-
ter describes the choices made in implementing the programs and the experience with the
programming platforms used.

In implementing the Expert Emulator, the use of an efficient algorithm for the
inference engine of the production system is of primary importance. The Rete Match Al-
gorithm, described in Section 6.2.1, optimizes several aspects of the pattern-matching pro-
cess, the most computationally intensive function of the inference engine. The reasoning
strategy that best suits searching in the problem space of the Expert Emulator is forward
chaining. Since the Rete algorithm is an efficient pattern matcher and favors forward chain-
ing, it has been adopted for the Expert Emulator.

A first prototype of the Expert Emulator was implemented in Common LISP using
an unoptimized but flexible locally developed inference engine. While this version estab-
lished the validity of the Expert-Emulation Approach, it was hampered by slow execution
and large memory requirements. Consequently, a second version has been developed using
CLIPS, a C-based public-domain expert-system tool. While maintaining the functionality of
the first version, the CLIPS version has reduced both the execution time and memory needs

87
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by over one order of magnitude.

The NECTAR framework also has two implementations, one for each version of
the user interface. The alphanumeric version has been implemented using UNIX shell
scripts. Although this version was initially intended to serve only as a prototype, it has
acceptable run-time performance and has been retained for its simplicity and diréct access
of UNIX functions. The windowed version has been implemented in C, using the X Win-
dow System (X). Many low-level programming details of the X protocol have been handled
automatically with the X Toolkit, a library package layered on top of X.

6.2 Implementation of the Expert Emulator

The choice of the production-system programming model for the Expert Emulator
(Section 2.5) is essential for the organization of the domain expertise (in rules). Although
the notion of dividing the domain knowledge into rules might be considered an implemen-
tation issue, it is central to the Expert-Emulation Approach and, hence, presented together
with the principles of the approach in Chapter 2 and detailed further in Chapter 3. The
user of the Expert Emulator should be aware of the rule structure, particularly in view of
the “incompleteness” of the. rule set, as explained in Section 3.3. This section presents
the less visible implementation aspects of the Expert Emulator, including the choices of a
pattern-matching algorithm, a reasoning strategy, and a programming language.

6.2.1 Algorithmic Considerations

Production systems were originally conceived to formalize symbolic logic ques-
tions; they were shown capable of representing general problem-solving knowledge [Post43].
However, the theoretical foundation was not thorough enough to produce practical pro-

" grams. Algorithms were needed to accomplish the tasks of an inference engine (Sec-
tion 2.5.1), in particular pattern matching and conflict-set resolution (rule selection).

The first suggested rule control strategy was based on assigning a static- priority
order to rules [Markov54]. As the use of production systems spread, it was seen that sys-
tems built straightforwardly according to the definition are computationally expensive. An
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unoptimized pattern matcher would 'sequen(:e through the rules in a certain order, compar-
ing each rule against all data elements, until all conditions in the “if-part of a rule were
satisfied. This process would be repeated for each cycle of the inference engine (Figure 2.4).
It has been shown that significant improvements in efficiency can be gained by minimizing
attempted matches of condition elements in unsatisfied rules with unrelated data elements
[McDermott78]. Such studies resulted in an algorithm that greatly improves efficiency, the
Rete Match Algorithm [Forgy82].

The Rete algorithm eliminates most of the redundant work that a straightfor-
ward unoptimized pattern-matching algorithm would do. Since most of the data remains
unchanged after each inference cycle — this property is called temporal redundancy —,
the bulk of the attempted matches of an unoptimized algorithm are identical across cycles
[Brownston85]. The Rete algorithm takes advantage of temporal redundancy by not recom-
puting all the matches on each cycle but looking only for changes in matches. As illustrated
in Figure 6.1, changes in matches originate in changes in data and result in changes to the
conflict set (Section 2.5.1), which is stored between cycles.

(saved from previous cycle)
Data Conflict Set

Changes in Data Rete Changes to Conflict Set

Figure 6.1: The incremental matching strategy of the Rete algorithm

The Rete algorithm reduces the dependence of the matching process on the num-
ber of rules by exploiting the structural similarity between rules. Conditions shared by
multiple rules are evaluated only once. Another computationally expensive part of the

matching process involves the calculation of whether a rule, whose conditions all match
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individually, matches as a whole. This is not self-evident, since variables appearing in
multiple condition elements of a single rule must be matched with identical data, for the
rule to match as a whole. Instead of computing the cross products of all combinations of
matches to all condition elements and do this on every cycle, the Rete algorithm stores
partial combined results and uses them on later computations. Matches for individual con-
ditions as well as partial combined results are stored in a tree-structured sorting network
whose nodes represent the condition elements [Forgy82].

The reasoning strategy in a production system refers to the direction of the se-
ries of inferences that connect a problem to its solution. Forward-chaining systems start
from known facts and proceed toward the solutions. By contrast, backward-chaining sys-
tems start from a hypothesis, break that up into intermediate hypotheses, and continue until
known facts are reached. Forward-chaining systems are more appropriate when there are
many acceptable solutions and the length of the inference chain is short, as shown in Fig-
ure 6.2a. Backward chaining is more appropriate when the search network is narrow and
deep, as illustrated in Figure 6.2b [Giarratano89]. The distinction between the two strate-
gies is not absolute. Many systems implement both reasoning strategies and systems with
either strategy can be programmed to emulate the other one.

The search space of the Expert Emulator has many final states (solutions), namely
the various corrective techniques. In addition, final states usually are arrived at after only
a few inferences. As explained above, such characteristics (broad and not deep search
networks) call for a forward:chaining reasoning scheme. Since the Rete algorithm is not
only efficient but also favors forward chaining, it has been chosen as the pattern-matching

algorithm for the Expert Emulator.

6.2.2 Using LISP

Several production-system languages, such as OPs5, OPs83, and ART, are based
on the Rete algorithm. Among them, OPS5 [Forgy81], developed by the designer of the
Rete algorithm and available in the public domain, has been the most widely used. OPs83
[Forgy84] and ART [Inference89] are two of the numerous commercial expert-system build-
ing tools available today at costs of thousands to tens of thousands of dollars. OPs83 is a
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compiler-based descendant of the OPS family that combines a rule-based and a procedural
programming paradigm, whereas ART is a multi-paradigm tool that supports forward and
backward chaining, hypothetical reasoning, and object-oriented programming among other
features. '

During the planning stage of the implementation of the Expert Emulator, it was
decided that the acquisition of a commercial tool was not justified. At the time, the principal
goal had been the demonstration of the proposed approach through a quick prototype. The
public-domain alternative, OPSS, presented two problems:

1. Restrictive data structures and expressions for the conditions in rules.

2. Non-standard underlying language: OPS5 is written in a particular dialect of LISP,
Franz LISP [Foderaro83, Wilensky84]. Unlike many other languages, LISP has evolved
to several dialects that differ considerably from one another. The lack of a language
standard spurred a certain activity in the mid-1980’s that resulted in the development
of Common LISP [Steele84], a dialect intended to serve as a standard to which each
implementation of LISP would make any necessary extensions. The clear trend to-
ward commonality and portability had suggested that a LiSP-based implementation
of the Expert Emulator should be in Common LIsP. _

A solution to the seeming language problem was presented in the form of a Com-
mon LISP implementation of the Rete algorithm developed locally at Berkeley [Guerrieri87].
Although this implementation lacks some of the optimizing features present in OPS35, it al-
lows for arbitrary data structures, test expressions in the conditions elements of rules, and
user-defined functions. In addition, its relatively small size (1,400 lines of code compared
to 3,200 lines for OPS5) has allowed easy code modifications for the needs of this project.
One potential enhancement would be the inclusion of the object-oriented paradigm, based
on Portable Common LOOPS (PCL), a partial implementation of the Common LISP Object
System (CLOS) specification [Bobrow88].

Common LISP has proven to be an excellent, flexible language for the develop-
ment of a prototype for the Expert Emulator. Advantageous features of the language include
automatic memory management, superior handling of lists, patterns, and polymorphic data,

a rich environment, and its interactive nature. Extensive use has been made of the loop
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Iteration Macro [Symbolics835], a ﬁogamable iteration facility th.at looks like stylized
English rather than LISP code and provides an array of constructs for iteration control, local
variables, prologue and epilogue, and returned values.
In addition to the inference engine, the data-format translators (Section 4.4) and
- system-interface utilities have also been implemented in LIsP. The specific language used
has been Digital’s implementation of Common LisP, VAXLISP [Digital86], Version U2.2.
The program runs on VAX minicomputers (8600 series) and workstations (VaXStation
1/GPX) under the ULTRIX Operating System (Digital’s version of UNIX). The total size
of the LISP version of the Expert Emulator is 2,500 lines of code.

6.2.3 Using CLIPS

The LISP version of the Expert Emulator demonstrated the feasibility of the new
approach. Nevertheless, there-was a performance penalty to be paid for the unoptimized
code and the programming conveniences and interactive nature of LISP. The execution
speed of anything but small problems is poor. Furthermore, the size of the executable -
programs is huge, since both the 3.5-megabyte VAXLISP executable and the 2.4-megabyte
suspended image of the Expert Emulator are needed. A suspended image is a binary copy
of the memory in use during an interactive LISP session. In this application, the cbmpiled
inference engine, rules, and other LISP functions are accessed through the suspended image
of a compilation session performed previously. Running the LISP program requires large

‘amounts of memory to accommodate the executables as well as the memory manager —
LisP allocates memory automatically and reclaims unused cells when it runs out of memory
(garbage collection).

As a result of the above performance problems, a second version of the Expert
Emulator has been implemented using CLIPS [Giarratano89b], an expert-system shell de-
veloped by NAsSA. CLIPS, an acronym for C Language Integrated Production System, im-
plements the Rete algorithm and supports forward chaining. Its capabilities are similar to
those of OPS5, whereas syntactically it resembles a subset of ART. It is composed of 30,000
lines of C and has been ported to a wide variety of computers ranging from personal com-
puters to Cray supercomputers.
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Although the data stmcmrés and expressions supported by CLIPS are not as gen-
eral as those of Common LISP, they are adequate for the particular application. Certain
advanced capabilities of LI§P, such as object-oriented programming through PCL, are not
provided in CLIPS and must be substituted with additional repetitive code. However, CLIPS
provides superb speed, good external-function interface, and several LISP-like predicates
and functions.

Run-time performance results on examples presented in Chapter 3 have been
compiled for the two versions of the Expert Emulator. Table 6.1 presents comparative
CPU times for a VAX 8800 and Table 6.2 gives CPU times for a VAXStation II/GPX!. Re-
sult§ including program initialization times are shown in parentheses®. As illustrated, the
speed-up obtained with CLIPS is over one order of magnitude and grows with the size of the
problem. Table 6.3 summarizes the memory requirements of the two versions and shows
gains _of over one order of magnitude.

Example CpU Time

Name

BIT Oscillator

Pull-Up

Mos Oscillator

Elements

21
72

54 6.4
260 (27.0)
915.6 (916.6)

CLIPS
(sec)

1.5 @7
32.1 (35.3)

Speed-up
(%)

06 @38 %90 @17

173 (5.7
285 (25.9)

Table 6.1: Speed comparison of Common LISP and CLIPS on a VAX 8800

The data-format converters and system interface functions have been written us-
ing CLIPS rules. Although a procedural implementation would be faster, using rules gives
acceptable speed. The size of the converters and system utilities is 1,800 lines of CLIPS
code.

As a result of the performance improvement, the execution of more rules has
become feasible between simulation runs (Section 4.6). For the LISP-based version only
a single sequence of rule “firings” was allowed between simulation runs. In this way, the

run-time overhead was kept within an acceptable range. The CLIPS version allows more

ILISP run times include time spent in garbage collection.
2CLIPS rules are not pre-compiled.
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Example Cpu Time
Name Elements Lisp CLIPS Speed-up
BIT Oscillator 14 380 (455 | 43 (41| 88 (1.9
Mos Oscillator 21 1919 (1994)| 101 (29.9) | 19.0 (6.6)
Pull-Up 72 7629.8 (7637.3) | 255.2 (275.0) | 29.9 (27.8)

Table 6.2: Speed comparison of Common LISP and CLIPS on a VAXStation II/GPX

Executable Files 59 0.19 31
Virtual Memory ||  10-30 0.5-1 20

Table 6.3: Memory requirements of C;)mmon LisP and CLIPS

detailed examination of the available simulation input and output data, as well as multiple
user queries, thus enhancing the corrective capabilities of the Expert Emulator.

6.3 Implementation of the Framework

Two different implementations of the NECTAR framework have been built: one
for the alphanumeric interface and one for the windowed interface.

6.3.1 Using the UNIX Shell

The necessary operations to accomplish the framework tasks for an alphanumeric
interface are the following:

o Interpretation of the user’s commands
¢ Implementing the flow of control of the framework (Section 4.6)
¢ Invoking CAD tools and other programs

¢ Directing data between programs and databases (files)
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¢ Controlling the execution of pfocesses
¢ Database (file and directory) browsing

¢ Sending results and messages to the display
Almost all operations above involve in some way the underlying operating system (UNIX).
All operations can be accomplished using UNIX’s command interpreter (shell), the program
that sits between the UNIX kernel and the user in a regular UNIX system.

The UNIX shell has several useful capabilities: it allows filename specification
using shorthands and patterns; it can redirect the input and output of programs even with-
out using files (through pipes); it monitors and controls processes; it allows the creation
of new and complex commands through aliases and shell files. Furthermore, since the de-
fault output of the shell is the (alphanumeric) terminal, several facilities for the display of
data and messages are available. Clearly, the UNIX shell is not a typical command inter-
preter. It is really a pfogramming language with variables, loops, decision-making, etc.
{Kernighan84].

Intended to serve as a prototype, the alphanumeric version of NECTAR was imple-
mented using shell scripts, namely shell commands saved in a file. Such programs do not
require compilation and allow rapid prototyping. The performance penalty that character-
izes interpreted programs is not noticeable in NECTAR, since the program does not contain
any computationally expensive loops. Consequently, there was no need to translate the
prototype in a conventional language, such as C. As an added advantage, UNIX commands
and programs can be accessed from inside the NECTAR shell.

Among the several versions of the UNIX shell, the one used in NECTAR has been
csh [Joy83], a shell with C-like syntax. The size of this version of the framework is 1,100
lines of code.

6.3.2 Using the X Window System

The programming demands of a windowed interface are considerably higher than
those of an alphanumeric interface. A multitude of additional operations are necessary for
the windowed interface of NECTAR, including the following:

e Creating windows
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Positioning windows on the screen

Redrawing and updating windows when changes occur

Moving windows

e Resizing windows

Combining simple windows to form complex structures

Handling (selecting, editing, saving) text in text windows

¢ Scheduling events and managing the general behavior of all windows
Lengthy and complicated code is required to handle the added complexity. Characteristi-
cally, the “Hello World” program, the customary “minimal” program in the C language that
can be writtén in less than 5 lines for an alphanumeric display, requires pages of code in
windowed versions [Rosenthal87].

Windowing systems have been developed both to simplify programming and to
set interface standards for application software. Whereas many windowing systems are
specific to one type of hardware, some have been designed for generality and transparency.
Among them, the X Window System (or simply X) [Scheifler86, Scheifler88] has achieved
widespread popularity, particularly in the UNIX community. X provides high-performance,
high-level, device-independent graphics. It is based on a network protocol and a client-
server model: client programs running on the local workstation or on any machine on the
network communicate with the X server program that runs on the workstation.

The windowed interface of NECTAR has been implemented for X, Protocol Ver-
sion 10? [Gettys86]. The program (xnectar) has been written in the C Programming
Language [Kernighan78] and runs on VAX computers under ULTRIX.

The complexity of windowing programs can be reduced significantly with the use
of library packages, in the same way that stdio simplifies standard UNIX programming. For
this application, the X Toolkit Library [ Athena87] has been used. The X Toolkit extends the
basic abstractions of X by providing a cohesive set of widgets and a component-interaction
mechanism. Widgets are (sub)windows that provide certain user-interface abstractions (for
example, a scroll-bar widget). The X Toolkit handles resizing and redrawing of widgets,

3Version 11 has since been released and become the new standard
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text selection and editing in text wfndows, color defaults, and other window operations.
Owing to the use of the X Toolkit, the size of the windowed interface has been kept to
2,200 lines of code. '



Chapter 7

Conclusions

The research activity described in this dissertation has addressed the problem of
improving existing analog CAD tools and the analog design process (Section 4.2.3) as a
whole. In particular, the research objectives set in Chapter 2, Chapter 3, and Chapter 4
have been pursued. Along the way, issues drawn from different disciplines, including cir-
cuit simulation, circuit design, expeﬁ systems, computer frameworks, user interfaces, and
- programming languages, have been investigated, and solutions and methods have been pro-
posed and implemented.

As its main thesis, this research has shown that the use of CAD tools can be en-
hanced significantly without altering the tools themselves. Improvements result from ac-
tions peripheral to the tools, including the following, as illustrated in Figure 7.1:

1. Appropriate modifications to the tool inputs, based on the application of expert rules

2. Automation of tool interaction, through their integration in a CAD framework

3. Simplification of tool invocation and result presentation, with the use of a uniform
framework user interface that incorporates modern human-computer interaction prin-
ciples.

NECTAR, the computer framework that implements the proposed improvement
methods, offers solutions to several shortcomings commonly confronting analog designers.
With the use of NECTAR during a typical design session, a number of new capabilities are
attained:

99
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NECTAR
1. Input Modifications Input (data)
CAD Tool 1 2. Tool Interaction - Other Tools
] 3. User Interface User

Figure 7.1: Tool-usage improvement methods implemented in NECTAR

Tool Access: By invoking the framework, the user gains immediate access to a host of oth-
erwise “scattered” tools (simulators, post-processors, c1rcu1t editors, etc.) and utili-
ties (for job monitoring and control, directory browsing, history, etc.) (Figure 4.3).
Available capabilities are displayed either on the menu bar (Figure 5.5) or through
the help facility (Figure 5.4).

Command Specification: Once inside NECTAR, the user can specify actions using simple
and straightforward commands. Command-argument specification is flexible, with
default values, command-line specification, and user queries being allowed. Side
command requirements, such as initialization files, are filled automatically by NEC-
TAR (Section 5.4).

Input (Design) Data: Design data generated with an editor is piped as input to another
tool, e.g. a simulator, with no need to specify the name of the data file. In addition,

input data is checked, upon request, for format and other errors (Section 3.5).

Job Monitoring: During a simulation run, partial resuits are displayed continuously (Sec-
tion 5.4). The status of the job, in particular the elapsed CPU time, is also displayed
(Figure 5.5). The job can be terminated with a simple command.

Output Data: Simulation results are stored in files automatically with no need for the user

to specify file names (Section 5.4). Results from any simulator can be viewed using
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any one of several post-processing and plotting programs (Section 4.3). The use of a
common database by all tools eliminates redundant information flow and minimizes
data-format translations (Section 4.4). .

Simulation-Error Recovery: Hard-to-overcome simulation shortcomings, notably con-
vergence problems, that otherwise require “trial-and-error” or expert-user consulta-
tion, can be solved on-line with the application of “rules-of-thumb” coded in rules
(Section 3.4). New expert knowledge can be incorporated easily in NECTAR using a
special rule editor (Section 5.7).

User Friendliness: A user of NECTAR can benefit from a user interface designed with the
user in mind. System and tool details are hidden and emphasis has been put on tasks,
not tools (Section 5.3.2). NECTAR provides a uniform interface for several (individ-
ually polymorphic) tools (Section 5.4). Complicated command-control sequences,
frequently requested by users, are incorporated in the framework flow of control
(Section 4.6).

Hardware: NECTAR allows the use of different types of cbmputer hardware. Jobs can run
on remote machines to optimize CPU usage (Section 4.5). Two different interfaces
are available that correspond to the two most widely used types of terminals. The two
interfaces are compatible in the tasks that can be accomplished and, therefore, work
started on one type of terminal can be continued using a different type (Section 5.3.3).

Although only the third improvement action mentioned at the beginning of this
chapter refers to what is considered user interface in the strict sense, the other two actions
also improve the interaction with existing tools. Hence, NECTAR can be considered a user-
interface shell, an auxiliary tool that can provide significant help to users of analog-circuit

analysis and design programs.



Appendix A

A Short Chronologiéal Review of SPICE

By the end of the 60’s a major research activity was present at the University
of California at Berkeley (UCB) and involved the investigation and development of sev- ’
eral circuit simulation programs [Pederson84]. One project, involving ten students under .
Rohrer, tackled most aspects of computer circuit analysis and resulted in the Program CAN-
CER [Nagel71]. The first version of CANCER came out during 'the Academic Year 1969-70
and included nonlinear DC and AC analyses. By the Fall of 1970 Nagel had added the
capability for nonlinear transient analysis. Versions 3, 4, and 5 of CANCER were used in
instructional courses during 1970-72 at UCB. It should be noted that CANCER was never
released in the public domain.

In 1971 the SPICE project was initiated by Nagel and Pederson. The first version
was released in the public domain in May 1972. Several versions of SPICE]1 were released
in the next three years. In July of 1975 SPICE2A.1, the first version of SPICE2 [Nagel75,
Cohen76], was released. For all versions up to 2E UCB used the CDC6000 computer, a
64-bit machine. While others had converted to 32-bit machines earlier, UCB moved to a
32-bit machine with Version 2F, which was developed for a VAX running UNIX by Dowell, -
Newton, and Vladimirescu and was released in March 1980. From July 1980 to August
1983 the G versions were released [Vladimirescu81]. 2G.0 included a source-stepping
algorithm, and 2G.6 was the last release of SPICE2, in 1983. Versions 2G.7 and 2G.8 were
completed in February of 1984 but were not released because of the upcoming SPICE3.
SPICE2G.6 is still used widely in the academia and industry.
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The SPICE3 project was spl;rred by the need for a better structured, more modular
software package. Written in FORTRAN and already over 10 years old by the early 30’s,
SPICE2 impeded easy program modifications and enhancements. As an example, the addi-
tion of a new device model into SPICE2 constituted a much more complicated problem than
one might think or desire. The first version of SPICE3 was written in RATFOR by Quarles
in December of 1983 [Quarles83]. After that, the C Programming Language was chosen
for the project. Quarles wrote the core routines and Christopher implemented the front-end
and post-processor program, called Nutmeg [Christopher87]. The three main releases of
SPICE3 have been: 3al in March 1985, 3b1 in April 1987, and 3c1 in April 1989. Com-
pared with SPICE2, SPICE3 has cleaner data structures, is more modular, and has a friendlier
user interface. New models, as well as new analyses, can be (and have been) added with
considerably less effort than for SPICE2. Nevertheless, SPICE3 has not yet replaced SPICE2,
which is still widely used. A more complete review of the evolution of SPICE, including
the many commercial derivatives, can be found in [Vladimirescu90].



Appendix B
Error Messages in SPICE

This appendix lists the error messages and warnings generated by SPICE2 in re-
sponse to run-time problems. These messages are often not sufficiently informative and
sometimes refer to entities internal to the program. Other messages include corrective
suggestions. Fatal errors are distinguished by the “*ERROR*” prefix and are listed first.
Warnings may not cause the termination of the simulation job; they are preﬁxed with
“WARNING.” In the following, the character ‘X’ denotes variables whose values are deter-
mined at run time.

Error Messages

*ERROR*: CPU TIME LIMIT EXCEEDED ... ANALYSIS STOPPED

*ERROR*: PARAMETER CHANGE FAILED X IS NOT IN THE ORIGINAL CIRCUIT

*ERROR*: .END CARD MISSING

*ERROR*: [ILLEGAL NUMBER - SCAN STOPPED AT COLUMN X

*ERROR*: MAXIMUM ENTRY IN THIS COLUMN AT STEP X (X) IS LESS THAN PIVTOL
*ERROR*: NO CONVERGENCE IN DC ANALYSIS. LAST NODE VOLTAGES:

*ERROR*: NO CONVERGENCE IN DC TRANSFER CURVES AT ¥ = X. LAST NODE VOLTAGES:

*ERROR*: TEMPERATURE SWEEP SHOULD BE THE SECOND SWEEP SOURCE, CHANGE THE
ORDER AND RE-EXECUTE

*ERROR*: INTERNAL TIMESTEP TOO SMALL IN TRANSIENT ANALYSIS

*ERROR*; TRANSIENT ANALYSIS ITERATIONS EXCEED LIMIT OF X. THIS LIMIT MAY BE
OVERRIDDEN USING THE ITL5 PARAMETER ON THE .OPTION CARD

*ERROR*: CPU TIME LIMIT EXCEEDED IN TRANSIENT ANALYSIS AT TIME = X
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*ERROR*: X HAS BEEN REFERENCIéD BUT NOT DEFINED
*ERROR*: CIRCUIT HAS NO NODES
*ERROR*: ELEMENT X PIECEWISE LINEAR SOURCE TABLE NOT INCREASING IN TIME

*ERROR*: MEMORY REQUIREMENT EXCEEDS MACHINE CAPACITY MEMORY NEEDS EX-
CEED X (O6B) :

*ABORT*: INTERNAL MEMORY MANAGER ERROR AT ENTRY X
*ERROR*: ABOVE LINE ATTEMPTS TO REDEFINE X

*ERROR*: UNABLE TO FIND X

*ERROR*: SYSTEM ERROR, ADDRESS X IS NOT ON 4-BYTE BOUNDARY
*ERROR*: NSUB <= NI IN MOSFET MODEL X

*ERROR*: EFFECTIVE CHANNEL LENGTH OF X LESS THAN ZERO. CHECK VALUE OF LD FOR
MODEL X

*ERROR*: UNKNOWN DATA CARD: X

*ERROR*: UNRECOGNIZABLE DATA CARD

*ERROR*: Z0 MUST BE SPECIFIED

*ERROR*: EITHER TD OR F MUST BE SPECIFIED

*ERROR*: ELEMENT TYPE NOT YET IMPLEMENTED
*ERROR*: NEGATIVE NODE NUMBER FOUND

*ERROR*: NODE NUMBERS ARE MISSING

*ERROR*: VALUE IS MISSING OR IS NONPOSITIVE -
*ERROR*: MUTUAL INDUCTANCE REFERENCES ARE MISSING
*ERROR*: MODEL NAME IS MISSING

*ERROR*: UNKNOWN SOURCE FUNCTION: X

*ERROR*: UNKNOWN PARAMETER: X

*ERROR*: VOLTAGE SOURCE NOT FOUND ON ABOVE LINE
*ERROR*: VALUE IS ZERO

*ERROR*: EXTRA NUMERICAL DATA ON MOSFET CARD
*ERROR*: MODEL TYPE IS MISSING

*ERROR*: UNKNOWN MODEL TYPE: X

*ERROR*: UNKNOWN MODEL PARAMETER: X

*ERROR*: SUBCIRCUIT DEFINITION DUPLICATES NODE X
*ERROR*: NONPOSITIVE NODE NUMBER FOUND IN SUBCIRCUIT DEFINITION
*ERROR*: SUBCIRCUIT NAME MISSING

*ERROR*: SUBCIRCUIT NODES MISSING

*ERROR*: UNKNOWN SUBCIRCUIT NAME: X

*ERROR*: SUBCIRCUIT NAME MISSING
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*ERROR*: .ENDS CARD MISSING , :
*ABORT*: SPICE INTERNAL ERROR IN REORDR

*ABORT*: INTERNAL SPICE ERROR: SORUPD: X

*ERROR*: X HAS DIFFERENT NUMBER OF NODES THAN X

*ERROR*: SUBCIRCUIT X IS DEFINED RECURSIVELY

*ERROR*: LESS THAN 2 CONNECTIONS AT NODE X

*ERROR*: NO DC PATH TO GROUND FROM NODE X

*ERROR*: INDUCTOR/VOLTAGE SOURCE LOOP FOUND, CONTAINING X
**+x* JOB ABORTED

Warnings

WARNING: UNDERFLOW X TIME(S) IN AC ANALYSIS AT FREQ= X HZ
WARNING: UNDERFLOW X TIME(S) IN DISTORTION ANALYSIS AT FREQ = X HZ

WARNING: MORE THAN X POINTS FOR X ANALYSIS, ANALYSIS OMITTED. THIS LIMIT MAY
BE OVERRIDDEN USING THE LIMPTS PARAMETER ON THE .OPTION CARD

WARNING: NO X OUTPUTS SPECIFIED ... ANALYSIS OMITTED

WARNING: FOURIER ANALYSIS FUNDAMENTAL FREQUENCY IS INCOMPATIBLE WITH TRAN-
SIENT ANALYSIS PRINT INTERVAL ... FOURIER ANALYSIS OMITTED

WARNING: ATTEMPT TO REFERENCE UNDEFINED NODE X - NODE RESET TO 0
WARNING: UNDERFLOW OCCURRED X TIME(S)

WARNING: MINIMUM BASE RESISTANCE (RBM) IS LESS THAN TOTAL (RB) FOR MODEL X.
RBM SET EQUAL TORB

WARNING: THE VALUE OF LAMBDA FOR MOSFET MODEL X IS UNUSUALLY LARGE AND
MIGHT CAUSE NONCONVERGENCE

WARNING: IN DIODE MODEL .Y IBV INCREASED TO .X, TO RESOLVE INCOMPATIBILITY WITH
SPECIFIED IS

WARNING: UNABLE TO MATCH FORWARD AND REVERSE DIODE REGIONS BV =X AND IBV
=X

WARNING: TOO FEW POINTS FOR PLOTTING

WARNING: INPUT LINE-WIDTH SET TO 72 COLUMNS BECAUSE POSSIBLE SEQUENCING AP-
PEARS IN COLS 73-80

WARNING: ABOVE LINE NOT ALLOWED WITHIN SUBCIRCUIT - IGNORED
WARNING: COEFFICIENT OF COUPLING RESET TO 1.0D0

WARNING: NO SUBCIRCUIT DEFINITION KNOWN - LINE IGNORED
WARNING: MISSING PARAMETER(S) ... ANALYSIS OMITTED

WARNING: UNKNOWN FREQUENCY FUNCTION: X ... ANALYSIS OMITTED
WARNING: FREQUENCY PARAMETERS INCORRECT ... ANALYSIS OMITTED
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WARNING: START FREQ > STOP FREQ ... ANALYSIS OMITTED

WARNING: TIME PARAMETERS INCORRECT ... ANALYSIS OMITTED
WARNING: START TIME > STOP TIME ... ANALYSIS OMITTED

WARNING: ILLEGAL OUTPUT VARIABLE ... ANALYSIS OMITTED

WARNING: VOLTAGE OUTPUT UNRECOGNIZABLE ... ANALYSIS OMITTED
WARNING: INVALID INPUT SOURCE ... ANALYSIS OMITTED

WARNING: DISTORTION LOAD RESISTOR MISSING ... ANALYSIS OMITTED
WARNING: DISTORTION PARAMETERS INCORRECT ... ANALYSIS OMITTED
WARNING: FOURIER PARAMETERS INCORRECT ... ANALYSIS OMITTED
WARNING: OUTPUT VARIABLE UNRECOGNIZABLE ... ANALYSIS OMMITTED
WARNING: NUMDGT MAY NOT EXCEED X ; MAXIMUM VALUE ASSUMED
WARNING: UNKNOWN OPTION: X ... IGNORED

WARNING: ILLEGAL VALUE SPECIFIED FOR OPTION: X ... IGNORED
WARNING: UNKNOWN ANALYSIS MODE: X ... LINE IGNORED

WARNING: UNRECOGNIZABLE OUTPUT VARIABLE ON ABOVE LINE
WARNING: OUT-OF-PLACE NON-NUMERIC FIELD X SKIPPED

WARNING: INITIAL VALUE MISSING FOR NODE X

WARNING: ATTEMPT TO SPECIFY INITIAL CONDITION FOR GROUND INGNORED
WARNING: OUT-OF-PLACE NON-NUMERIC FIELD X SKIPPED

WARNING: INITIAL VALUE MISSING FOR NODE X

WARNING: ATTEMPT TO SPECIFY INITIAL CONDITION FOR GROUND IGNORED
WARNING: FURTHER ANALY SIS STOPPED DUE TO CPU TIME LIMIT



Appendix C
Program Source Listing

The source listing of NECTAR is available at the following address:

Software Distribution Office

Industrial Liaison Program

Department of Electrical Engineering and Computer Sciences
University of California

Berkeley, CA 94720

The following should be noted:
e The LISP version of the Expert Emulator requires the executable of VAXLISP, version
U2.2, which can be obtained from Digital Equipment Corporation.

e The CLIPS version of the Expert Emulator requires the executable of CLIPS, version
4.3, which can be obtained from CosMIC, The University of Georgia, Athens, GA
30602.

e The X-Windows version of NECTAR runs under version 10 of the X protocol.
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