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Cellular neural networks (CNNs) [1, 2] are a new parallel analog circuit architecture for image
processing. Although they discuss the extension of cellular neural networks to include cells
with a vector of state variables (multiple layers), the original papers by Chua and Yang intro-
ducing CNNs deal mainly with networks composed of a two dimensional layer of cells with a
scalar state variable. This tutorial further develops the extension to multiple layers. Starting
by studying a simple subclass of single layer CNN, we gain insight into how the continuous
time/continuous state dynamics of the CNN perform some basic image processing tasks. This
insight aids in the design of several multi-layer CNNs. The design of these CNNs exploits
architectural similarities between CNNs and cellular automata (CA), a parallel digital circuit
architecture useful in image processing. In fact, any single iteration operation possible on a
cellular automata (CA) as described in [3, 4] can be performed with a (possibly multi-layered)
CNN [5]. After discussing the relationship with CA, this chapter concludes by describing the
operations of several binary image processing CNNs which were designed using the results
presented here.

1. INTRODUCTION

Cellular neural networks (CNNs) have been introduced [1, 2] as a parallel analog circuit archi-
tecture for image processing. They are composed of a two dimensional array of analog proces-
sors or ‘cells.” Each pixel in the image plane has a cell associated with it. Each cell contains a
set of capacitors, the voltage across which will be referred to as the ‘state’ of the cell. A ‘layer’
refers to the two dimensional array of capacitors formed by taking one capacitor from each cell.
Thus, a single layer CNN has one capacitor per cell. Each cell also has an input voltage asso-
ciated with it. The currents through the capacitors in a cell are functions of their voltages, the
cell’s input voltage and the voltages of the capacitors and inputs of the nearest neighbor cells.
Typically, the voltages of some of the capacitors of a cell and/or the input associated with it are
initialized to the value of the associated pixel in the image to be processed. The circuit is then
allowed to settle. The steady state outputs of the cells represent the result of the ‘computation’
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performed by the CNN.

Theoretically, due to the analog nature of the processors, CNNs can process gray level images of
arbitrary precision. However, in practice uncertainties associated with VLSI fabrication and the
input and output of analog voltages limit the precision obtainable. The CNN can also be used
for binary image processing as it can be designed to ensure that the steady state output of each
cell is either £1. The key advantages of the analog approach are asynchronous fast operation
and a small cell size for VLSI design. Currently, work is being done in fabricating CNN chips
[6l.

In this chapter, we restrict the discussion to the implementation of binary image processing
operations. Our results explain how the dynamics of the cells perform the processing of some
of the examples presented in [2]. These results provide a foundation for the design of more
complex applications by exploiting the possibility of using multiple layer CNNs. To simplify
the discussion of the basic results, we begin by discussing single layer cellular neural networks
before extending our results to the multiple layer networks. Section 2 describes single layer
cellular neural networks as introduced in [1]. Section 3 discusses some dynamical properties
of these networks. Section 4 extends the previous results to multiple layer neural networks.
Section 5 introduces cellular automata and shows how to use the results of Sections 3 and 4 to
map certain cellular automata operations onto a CNN architecture. This mapping motivates the
design of the CNNs of the next section. Section 6 provides numerous design examples before
Section 7 summarizes the main results of this chapter.

Many of the ideas presented here have been presented in other contexts associated with artificial
neural networks, and will be familiar to those readers familiar the neural network literature. We
will identify these as they arise. However, since this chapter is meant to be of a tutorial nature,
our treatment assumes no prior knowledge of neural networks.

2. SINGLE LAYER CELLULAR NEURAL NETWORKS

Since each pixel in the image plane has a cell associated with it, an L layer cellular neural
network designed to process an M by NV pixel image is composed of a two dimensional M by
N array of cells. Each cell of this CNN contains L capacitors and the state is an L-dimensional
vector. Thus, each cell of a single layer CNN contains a single capacitor and the state is a scalar

variable. The rest of this section assumes a single layer CNN. The extension to multiple layers
will be made explicit in Section 4.

Each cell of a single layer CNN will be denoted C (i, j) where 1 i < M and1< j < N. The
output y; ; of C(3, j) is a piecewise-linear function of its state v; ;:

1 1
Yij = f(vij) = 5!”-’.5 + 1| - ilvo'.j - 1]

This function restricts the output of each cell to lie in the interval [ 1, 1]. See Figure 1. The state
of the CNN, v, is defined to be the vector of the states of all the cells in the network. Similarly,
the output of the CNN, y, is defined to be the vector of the output of the cells. Each cell also has
an associated input voltage. The input to the CNN, u, is defined to be the vector of the inputs to
the cells. For binary image processing, +1 values of input and output are associated with image
pixels and —1 values with background pixels. When discussing boolean functions implemented
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Figure 1: The piecewise-linear sigmoid function is the only non-linearity in each cell of a CNN.
This non-linearity maps the state to the interval [-1,1].

with CNNs, +1 is associated with the boolean value ‘true’ and —1 with ‘false’.

The dynamical behavior of the CNN which determines the processing performed is provided
by allowing the current entering the capacitors of the cells to vary with the state of the array.
We impose two restrictions on this interaction. First, the current entering a cell’s capacitor is
an affine function of the cell’s state, its input and output, as well as the input and output asso-
ciated with its nearest neighbors. The restriction to affine functions allows us to implement the
current using only linear voltage controlled current sources. The restriction to nearest neighbor
interactions is imposed to limit the number of interconnections between cells. Due to the com-
plexity and number of interconnections required, a reasonably sized fully interconnected two
dimensional network, such as the Hopfield neural network [7], is practically impossible to build
with today’s VLSI technology.

To clarify the term nearest, define the distance between C(z, ) and C(m,n) by
d(¢, j;m,n) = max(jm — |, |n — j|).
Using this metric, the r-neighborhood of cell C(3, j) is defined as

N,(¢,7) = {C(m,n)|d(i,j;m,n) < r;1<m < M;1<n <N}
For example, the 1-neighborhood of C(, j) is a three by three square of nine cells centered at
C(i,7). Define ro to be the minimum r such that for all ¢,5 € {1,...M;1,... N}, the cells
whose outputs affect the current through the capacitor of C(z, j) are in the rg neighborhood of
C(z, 7). The restriction to nearest neighbor interconnections requires ro to be much smaller than
both M and N. For many applications, ro will be 1 or 2.

Second, since image processing operations should often be invariant under translation of the
image, the interaction between each cell and its nearest neighbors must be uniform over the
entire array. Thus, the function determining the current through the capacitor of one cell of the
CNN uniquely determines the functions determining the currents through the capacitors of all
the cells in the entire array. Of course, the cells on the boundary of the array must be treated
separately. We discuss how to deal with these cells at the end of this section.
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Figure 2: The state equation of each cell of a single layer CNN can be implemented with the
above circuit consisting only of a capacitor, resistors, and voltage controlled current sources.
I,,(a, b) = A(a, b)yg+¢,j+5 and Iu(a, b) = B(a, b)u.~+,,.,-+5.

Chua and Yang [1] derived the state equation of each cell of the CNN as the dynamical equation
governing the circuit shown in Figure 2. Each capacitor is shunted to ground by a resistance
R. 1t is also driven by a bias current and linear voltage controlled current sources which are
controlled by the inputs and outputs of the cell and its nearest neighbors. The piecewise-linear
function mapping the state of each cell to its output is the only non-linearity in the cell. Making
the local interconnections and translation invariance explicit, the state equation of of C(, j)
presented in [1] reduces to:

dv,"j vi.j o ro ) 70 0

TRt X X AlBWuasst 3 3 BlasBuiass+I (1)

a=-rg f==ro oa==—r9 f=—rg

where ro is defined above and C and R are positive constants. The coefficient A(«, B) is the
gain of the voltage controlled current source linking the output of C(i + a, j + B8) to the current
entering C(2, j). Note that it is independent of i and j. Similarly B(e, 8), the gain of the
voltage controlled current source linking the input voltage associated with C (i + ¢, j + ) with

the current entering C(Z, 7), is also independent of ¢ and ;. I is a bias current applied uniformly
to each cell.

C

Since this state equation is an affine function, it is uniquely specified by the coefficients of the
affine relation. These coefficients are defined to be the CNN’s cloning template. Thus, the
values of A(-,-) B(:,-), I, C and R are the cloning template for this CNN. Because of the two
dimensional and local nature of the interactions, it is convenient to express the coefficients of
A(-,-) and B(-,*) as 2ro + 1 by 2r¢ + 1 matrices where the center element corresponds to the
coefficient which weights the effect of the cell’s own output or input upon its state’s derivative.
See (8) for an example withrg = 1.

Those familiar with the neural network literature will recognize the above equation as being
similar to that governing the dynamics of the Hopfield neural networks. However, the key
differences are that we restrict ourselves to local interconnections and use a piecewise linear
sigmoid nonlinearity. This non-linearity, in conjunction with the self feedback term from the
cell’s output to its input current, allows for +1 steady state outputs without the assumption
of infinite gain in the sigmoid non-linearity. Chua and Yang show show that the condition
A(0,0) > R~ ensures that each cell has a 1 steady state output. Since we discuss exclusively



binary image processing applications, unless specified otherwise we shall assume this condition
holds.

We made the assumption that the nearest neighbor interaction of each cell is uniform over the
entire array. In other words, the relationship between the derivative of each cell’s state and
outputs of the cell’s neighbors is the same for every cell. However, since in practice the CNN
array has a finite size, there is a problem with cells which are close to the boundary of the array.
- These cells may not have the full complement of nearest neighbors that cells in the interior of
the array have. Thus, the dynamics of the cells cannot be uniform over the array. Improperly set
boundary conditions may lead to strange effects propagating in from the edges of the array. In
the following, the cells which do not have the full complement of nearest neighbors are referred
to as edge cells. -

To compensate for the effect of finite array size, we can imagine that there are cells outside of
the array which complete the neighborhood of each edge cell. There are various choices for
the output states of these imaginary boundary cells. In the hole finding CNN discussed below,
the imaginary boundary cells output a constant +1 voltage. This boundary condition provides
a ‘source’ which drives the output voltages of the edge cells to +1. These cells in turn drive
the voltages of their neighbors to 41, and so on. This creates a ‘wave’ of cells with +1 output
voltage propagating into the array. The hole finding CNN stops this propagation at the outside
edges of the image objects with an appropriate choice of B. On the other hand, the boundary
cells of a layer can also be set to output a constant —1. In this case, the edge cells always
see the imaginary boundary cells as part of the background. Although there are many other
possible boundary conditions, only these two boundary conditions are used in the examples of
this chapter. |

From the standpoint of VLSI implementation, the imaginary boundary cells do not add to the
number of cells which must be put on the chip. Instead of actually building boundary cells
outside of the CNN array to input to the edge cells, the boundary cell effects can be incorporated
into the dynamics of each edge cell. In fact, for the cases mentioned above, the change can be
made by simply altering the bias current of each edge cell.

3. DYNAMICAL PROPERTIES OF SINGLE LAYER CELLULAR NEURAL NET-
WORKS

This section begins with a discussion of a necessary and sufficient condition for an output vector
to have an associated stable equilibrium point. Due to the local nature of the interconnections,
this condition is expressed as an implicit equation of a cell’s input and output and the inputs
and outputs of its nearest neighbors which must be satisfied at each cell. Under certain circum-
stances, the right hand side of this equation is the expression for the map from input and initial
conditions to the steady state output.

A CNN has symmetric coefficients if and only if A(a,8) = A(—a,—8). In this case, the dy-
namics of the CNN operate to minimize the following energy functional:

1 1
E= Z Yij (—5 27; Ao, B)Yitaje8+ 3RV~ EﬁB (ay B)titajs8—1 )
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subject to the constraint that |y; ;| < 1 for all ¢, j. The existence of this functional ensures the
stability of all CNNs of this type as well as a means of characterizing the dynamics of the CNN
as a gradient descent system. In the case of asymmetric coefficients, we have no such energy
functional. However, recently a connected component detecting CNN [8] and a image thinning
CNN [9] have been developed using asymmetric coefficients. Not all CNNs with asymmetric
coefficients will be stable, but Chua and Roska have recently discovered some stability results
for CNNs with asymmetric coefficients [10].

It can easily be shown that any minimum {§; ;} of the above energy functional such that yj; ; =
=1 for all , ; must obey the following condition: For all ¢, j

1 -~ o
gis = sgn (A(0,0) — w)di; + Y Ala,Biitaiis+ D Bla, Buira,irs + I] [¢))
a,B#0,0 a8
In fact, this condition is a necessary and sufficient condition for an output vector to be a stable
equilibrium point of the output dynamics, even in the case of asymmetric coefficients.

Claim 1 Asswme the right hand side of (2) is well defined (i.e., the quantity inside the signum is
never zero) for all binary (+1) combinations of the input, u, and output, y, variables. A binary
ourput state, § = {§ ;} satisfies the implicit equation (2) for all i, j, if and only if there exists
an equilibrium point ¥ = {4; ;} of the CNN which maps to § through the output non-linearity.
Furthermore, this equilibrium point is asymptotically stable and its basin of attraction contains
the neighborhood in which the states of all the cells are operating in the appropriate saturated
region of the piecewise-linear output non-linearity.

The proof of this claim is contained in the appendix. Essentially, Claim 1 states that if a CNN’s
output satisfies (2) for all ¢, j, the output of the CNN will no longer change and the state con-
verges to a stable equilibrium point, and vice versa. Due to the uniform local nature of the
interactions between the cells of a CNN, this necessary and sufficient condition is a single local
condition which must be satisfied for all cells in the array.

In general, even if there exists a binary output vector which satisfies (2), a CNN may not be
stable for all initial conditions nor can the state trajectories be easily predicted, short of simu-
lating them. However, there exists a class of single layer CNN which is stable regardless of the
symmetry of the coefficients. In addition, for this class there is a simple explicit expression for
the map from input and initial conditions to steady state output.

Definition 1 A single layer CNN is said 1o be in the linear threshold class if and only if
A(e, ﬂ) =0 V(a’ ﬂ) # (0, 0)

This definition prohibits any interconnections between the cells of a linear threshold single layer
CNN, thereby considerably simplifying its dynamics. The state trajectories of the cells depend
only upon their own states and the external input. The corner detecting and edge detecting
CNNs of [2] are both in the linear threshold class.

For a linear threshold single layer CNN, (2) reduces to:

a l "
R ap

Analysis similar to that in [1] shows that assuming the input is constant, the right hand side
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Figure 3: The function h(v) determines the contribution from the state of a linear threshold
single layer CNN to its derivative.

of this equation is exactly the map from the input and initial conditions to steady state output.
Partitioning the right hand side of (1) into a part, k(v;,;), which depends upon v;,; and a part, g,
which does not, the state equation of v; j can be rewritten as

dv; ;
C—> dt h(vld) + 9 (4)

where
h(vig) = = + A(0,0)f (vi;)
and

9= B(a,f)uitajsp+1
a,f

Figure 3 shows the graph of k(v).

In this case, g is constant. Figure 4 depicts the dynamic routes [11, 12] for three characteristic
g values. If |g| > A(0,0) — R~! > 0, then there exists only.one equilibrium point for the cell.
Since this equilibrium point is globally asymptotically stable, the state of the cell settles to this
point. If g is positive, then the output of the cell is +1. In addition, since A(0, 0) — —R-!'> 0by
assumption, (A(0,0)- R“)+g > —(A(0,0)—~R-!)+g > 0.Onthe other hand, if g is negative,
then the output of the cell is —1 and —(A(0,0) - R"}) + g < (A(0,0) - R 1) +¢g < 0. If
lg| < A(0,0)— R~}, then there exist two stable equilibrium points and one unstable equilibrium
point. If v; ; < mﬂ-ﬂﬁ, then the cell will settle to the stable equilibrium point which maps
to —1. fv,; > pgip=r, then the cell will settle to the stable equilibrium point which maps
tol Ifv; = =2, then the initial condition lies exactly on the unstable ethbnum
point and theoretic: ly, the output is equal to the initial condition for all time. However, in
practice, thermal noise will cause the the cell to eventually settle at one of the stable equilibrium
points, although we cannot tell which in advance. The case of |g] = A(0,0) — R™! is also
somewhat problematic. In this case, there are two equilibrium points. One is stable whxle the
other is unstable. Theoretically, this case is identical to the case where |g| < A(0,0) —

8



= dt dt

¢ J $

(a) ®) ©

Figure 4: The value of g determines the dynamic routes for a cell in the linear threshold layer.
(@) g < —(A(0,0) = R7"). (b) lg] < (A(0,0) — R"). () g > (A(0,0) — ;).

However, in practice due to inevitable thermal noise, the trajectories will eventually approach
the stable equilibrium point. Fortunately, we will see that for many applications in binary image
processing, these two cases can be avoided. Ignoring these last two cases, the following equation
summarizes the above results

lim y; ;(t) = sgn|(A(0,0) — R™")y:;(0) + 3_ B(a, B)uitaj+s + I] ®

: a,B
where |y,;| < 1 and y;,;(0) = v;;(0) if |y;,;| < 1. The two problematic cases correspond to
situations in which the quantity inside the signum function is exactly zero and thus the right
hand side is undefined. Assuming g # 0, the analysis above also holds even if A(0,0) = R-1.

In this case, the y;,;(0) term drops out and the steady state output of the cell depends solely on
the external input,

The left hand side of (5) is a signum function of an affine combination of the input and the ini-
tial condition of the output. This type of function is commonly referred to as a linear threshold
function. Any boolean function which can be expressed in this form must be linearly separable
by a hyperplane in the variable space. Conversely, any boolean function of the input which is
linearly separable can be implemented with a CNN such that the signum function in (3) is well
defined (i.e., the quantity inside the signum is never zero). See appendix. This fact implies that
any linearly separable boolean function of the input can be implemented using a CNN com-
posed of a single linear threshold layer. However, we cannot implement all linearly separable
boolean functions of the input and initial condition of the state as the coefficient A(0, 0) — R~!
is constrained to be greater than or equal to zero.
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Figure S: The interconnect‘ions of a CNN are restricted to nearest neighbor couplings. This
figure illustrates the interconnections for a cell in layer two of a three layer CNN.

In fact, the map (5) is exactly the same as the input/output map of the single layer perceptron
[13]. The limitations of the single layer perceptron were extensively studied in Minsky and
Papert’s Perceptrons [14]. However, the continuous time dynamics and multiple layer capability
of CNNs extend the possible applications of CNNs beyond those of simple perceptrons. In
addition, this type of single layer CNN is only a small subset of all possible single layer CNNs.

4. THE EXTENSION TO MULTIPLE LAYER CELLULAR NEURAL NETWORKS

As stated above, each cell of an L layer cellular neural network contains L capacitors and has
_ an associated L dimensional state vector. The output of the cell is also an L dimensional vector
where each component is the previously given piecewise-linear function of the corresponding
component of the state. The input can also be a vector, although for most applications so far
it has been a scalar. Thus, the coefficients C and R are L by L diagonal matrices of positive
coefficients. Each A(«, 8) is also an L by L matrix, although not necessarily diagonal. B(«, 8)
and I are L dimensional vectors. The treatment of the edge cells is completely analogous to
the single layer case, except that the imaginary boundary cells have vector valued output where
each element can be specified independently. This approach to multiple layer CNNs taken in
[21. '

A completely equivalent way to view a multiple layer CNN is as an L by M by N array of
cells with scalar state variables. We adopt the latter interpretation as it simplifies the discussion
and is intuitively appealing as it emphasizes the grouping of the state variables into L layers
of M by N cells. Figure § illustrates the connectivity pattern of a single cell in layer 2 of a
three layer network with ro = 1. Often each layer will perform a different processing task. In
this interpretation, imaginary boundary cells with scalar valued output are associated with each
layer. When dealing with multiple layer CNNs, cells and their states and outputs will be denoted
by Ci(%,7), v,,; and yx,j, where k € {1,...L} is the layer number. We will generally drop
the subscript k for simplicity when dealing with single layer CNNs.

A )(a, B) denotes the k, I-th element of the matrix A(a, 8) which is the gain of the voltage
controlled current source linking the output of Ci(¢ + «, j + B8) to Ci(,j). Ck, Ry, and I; are
the capacitance, resistance and bias current associated with each layer. Bi(a, ) denotes the
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k-th element of the vec&;é(a, B), which is the gain of the voltage controlled current source
linking the input associated with C(i + a, j + 8) to Ci(, 7). Using the new notation, the state
equation governing the state of Ci(i, ) is:

g e e e
C'lci%ﬁ = ki D03 Arqloy Byritaies + Y Bi(a, B)irajes + It (6)
dt Ry r=1a,8 a,B
This equation differs from that presented in [1] in that layers of higher index than k can affect
the dynamics of layer k. To ensure stability for multiple layer CNNs, Chua and Yang assumed
that layer k& was connected only to the output of lower layers and that the coefficients were
symmetric within each layer. We change the definition to encompass the Radon Transforming
CNN presented here and the image thinning CNN. -

With this new notation, the previous results extend trivially to the multiple layer case. Claim 1
can be applied to multiple layer CNNs by replacing (2) with (7),

Uki; = sgn[(Arx(0,0) - R—k):t?k.-'.j + ;kooAm(a, B)ivitai+s
¥, YUy

+ 3 Bi(e, B)tirasa+ Ii), )
a,B

forall k,i, 5.

Although a multiple layer CNN cannot be in the linear threshold class, any layer of a multiple
layer CNN can be. E

Definition 2 The k-th layer of a multiple layer CNN is in the linear threshold class if and only
if

Ari(a, ) =0 V(a,B) # (0,0).
This definition reduces to the previous definition in the single layer case.

Using multiple layer feedforward CNNs constructed of linear threshold layers removes the re-

striction to linearly separable boolean functions encountered by linear threshold single layer
CNNs.

Definition 3 A CNN is feedforward if and onlyif Aty =0forallk < 1.
All multiple layer CNNs defined in [1] are feedforward.

Assume all the layers of a feedforward CNN with constant input are of the linear threshold class
such that A+(0,0) = R;! forall & > 1. The output of layer 1 settles to a constant given by
(5) since the input is constant. Once layer 1 has settled, by the feedforward assumption the
input to layer 2 is constant. Any initial conditions setup by the initial conditions of layer 2 and
the effect of the transient response of layer 1 are irrelevant to the final output of layer 2 since
A22(0,0) = R3! by assumption. Iterating this argument for each successive layer, we see that
the steady state of each layer depends only upon the steady state outputs of the previous layers
and the input. Thus, the outputs of all the cells of the CNN depend only upon the input to
the CNN and the initial condition of layer 1. Stability is guaranteed since the definitions of a
feedforward CNN and a linear threshold layer rule out any feedback paths between the cells.

If in addition A;; = R;!, this type of CNN is equivalent to a two dimensional array of feed-
forward hidden layer neural networks [15] operating on the input to the CNN. A feedforward




hidden layer neural network with enough layers can implement any boolean function of its in-
puts. Any boolean function of n variables can be decomposed into a sum of products of the
variables and their complements. The sums correspond to the boolean relation ‘or’ and the
products correspond to the boolean relation ‘and’. It can easily be verified that each of the prod-
ucts can be implemented using a single perceptron. The output of all of these perceptrons can
be input to another perceptron which performs the summation.

5. THE RELATIONSHIP WITH CELLULAR AUTOMATA
5.1. Cellular Automata

Preston and Duff describe the theory and applications of cellular automata applied to image
processing in [3]. Much of their discussion assumes an architecture based on the CLIP4 machine
described by Duff and Fountain [4]. In CLIP4, each pixel in the image plane has a boolean
processing element (cell) associated with it. Each processing element is connected only to its
nearest neighbors. Although CLIP4 can process a 96 by 96 pixel image with 64 levels of gray
scale, the gray scale values must be held in memory external to the processing array. Preston
and Duff discuss primarily operations on binary images. In this case, the image can be held in
registers internal to the processor array. We discuss only the binary image processing case in
the following.

At each discrete time iteration, a supervising controller determines the computation to be per-
formed by the processing array. Aside from steps for input and output of data, each iteration
consists essentially of two phases: a processing phase preceded by a propagation phase. In the
processing phase, all the cells’ states are updated simultaneously. The value of the next state
of each cell is a boolean function of its current value and the inputs from its nearest neighbors.
This operation is referred to as a cellular logic transform. The propagation phase establishes the
input values. The term, propagation, as used in [3, 4] refers to the propagation of information
over the array. In the traditional definition of a cellular automata, each cell outputs its current
value to its neighbors. Preston and Duff refer to this as local propagation, as information is
only shared locally among nearest neighbor processors. Preston and Duff also allow for global
propagation. In this case, a cell will output a second signal to its neighbors based on the value
of its own state and whether it has received a similar signal from one of its neighbors. Infor-
mation is ‘propagated’ globally throughout the array as the signal is passed from neighbor to
neighbor until a steady state is reached. For example, assume that the state of cells associated
with background pixels is O and the state of cells associated with image pixels is 1. If a cell
propagates a signal if it receives a propagation signal and its own value is 1, then a signal will
be propagated throughout a connected component in the image. Directional sensitivity can also
be added to the cell’s input and output of the global propagation signal. This propagation phase
allows data to be passed over the entire array, overcoming some of the restrictions of the local
interconnectivity of the processing elements while preserving the nearest neighbor interaction.

The architecture of CLIP4 is very similar to that of the CNN. Both are composed of a two
dimensional array of simple processors connected only with nearest neighbors. In both cases,
the interaction between the neighboring elements is assumed to be uniform over the array. The
chief differences between CNNs and CA are that CNNs operate in continuous time and in a
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continuous state space, while CA operate in discrete time and in a discrete state space. However,
they can both operate on binary images with binary input and output and processing involving
only nearest neighbor interactions. The natural question which arises is what types of operations
can be accomplished by both the CNN and CA.

5.2. Single Iteration Operations

Given enough layers, a CNN composed solely of linear threshold layers can implement any
boolean function of its input. Therefore, by taking the input of the CNN to be the image to be
transformed (the current state in the case of CA), any single iteration CA operation involving
only local propagation can also be accomplished by a CNN composed solely of linear threshold
layers. In particular, the logical convolution and binary mask matching operations of [3] can
be implemented with a linear threshold single layer CNN. To do this, set the B matrix equal to
the mask or the convolution kernel, set the current I equal to the negative of the corresponding
threshold, set A(0,0) = R-! and set the input equal to the image to be transformed.

This result can be extended to include global propagation. A CA cell will propagate a global
propagation signal based upon two factors: whether its current state is 1 or 0 and whether it has
received a propagation signal from one of its neighbors or not. Clearly, a propagation rule in
which a cell will propagate a signal if it has not received a propagation signal will not lead to
global propagation of data. In fact, a rule of this type essentially implements local propagation.
Global propagation over the array can only be accomplished by propagation rules in which a
cell propagates a signal if it has received a signal from one of its neighbors and some condition
on the value of the current state is satisfied. Thus, in this section we consider only rules of this
type.

In order to realize global propagation in a CNN, an additional layer is added to perform the
global propagation. The outputs of this layer are +1 if the cell is propagating a signal and —1
otherwise. The cellular logic transform is performed by a set of feedforward linear threshold
layers satisfying A (0,0) = R;!. Under these conditions, the outputs of the linear threshold
layers will depend solely upon the steady state of layer 1 (analogous to the propagation signal
from each cell) and the input (analogous to the current state of the CA for the case of single
iteration operations). This is clearly equivalent to global propagation of data in CA.

Since the other cases are quite similar, we discuss only the case where a cell will propagate a

signal if it has received a signal and the value of its input is + 1. Consider the single layer CNN
defined by the following template:

0.25 025 0.25 00 00 0.0
A=1025 125 025 B=]00 200 00| I=-180
0.25 0.25 0.25 00 00 0.0

The coefficients have been normalized so that R = C = 1.0.

The analysis of the state trajectories for this CNN turns out to be somewhat similar to the analysis
for a linear threshold layer. The state equation of each cell is also given by (4). However, in
this case, g depends also on the outputs of other cells.

g=025 E Yita,j+8 + 20.0u; ; — 18.0
a,8#0,0
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Note that A(0,0) — R~ = 0.25.

Consider cell C(3, ). f u;; = —1, g < —35.75 < —(A(0,0) — R~1) for all combinations of
nearest neighbor outputs. Thus, in steady state y; ; = —1. Foru;; = 1, g > A(0,0) — R~ if
the output of at least one of C(z, 7)’s nearest neighbors is +1. If all of the outputs of C(3, j)’s
nearest neighbors are — 1 then g = 0, and the output of the CNN is equal to the initial output. Ifa
cell with an associated + 1 input is initialized to +1, then the outputs of its neighbors which also
have an associated +1 input will be driven towards + 1. In turn, the outputs of their neighbors
with associated +1 input will also be driven to 4 1. This provides the propagation.

There is one subtle point here. Even though a cell in the background directly adjacent to an
image component has —1 output in steady state, if initialized to +1 it might start propagation
through the adjacent image component due to the finite time required for the transition of its
output from +1 to —1. However, the CNN has been designed so that this transition is essentially
instantaneous compared to the time required to start propagation. In the worst case, a cell with
+1input and — 1 initial condition is surrounded by background cells with —1 input and +1 initial
condition. The time derivative of the cell with +1 input decreases from 3.25 to a negative value
as the outputs of cells around it decrease from +1 to —1. The time derivatives of the cells with
—1 input in the 1-neighborhood of the cell with +1 input are always less than -36.25. Thus,
the outputs of the cells with —1 input decrease to —1 before the output cell with +1 input can
reach +1 and begin propagation. Thus, a cell will have +1 steady state output if and only if
it is associated with an image component and was either initialized to +1 or received a valid
propagation signal from a nearest neighbor.

This type of global propagation has been used in the examples of Section 6, as well as in a ‘hole
filler’' CNN [16] and a ‘shadow detector’ CNN [17]. One of the examples of Section 6 shows
how to incorporate directional sensitivity to the global propagation. Since both local and global
propagation can be implemented on a CNN, any single iteration CA operation consisting of a
propagation phase (local or global) and a cellular logic transform can be accomplished with a
CNN.

5.3. Multiple Iteration Operations

Although the CNN can accomplish any single iteration CA operation, multiple iteration oper-
ations are more difficult. If the operation requires a small number of iterations, CNN layers
designed to do each iteration can be cascaded into one large CNN on a single chip. To ensure
that the iterations are carried out sequentially, the capacitances of each layer are chosen so that
the layers corresponding to the first iteration settle much faster than those corresponding to the
second and so on. Some of the examples presented in Section 6 use this technique. However,
this is limited to operations with a small number of iterates since the capacitance and resis-
tance values must be scaled to slow down the dynamics of progressive layers, leading quickly
to impractically large capacitors and resistors for a VLSI chip. Alternatively, a digital controller
could start the layers associated with each step of the CNN with the appropriate input and initial
conditions once the layers associated with the previous step have settled. In this case, the layers
associated with each step can be separated onto different chips.

For the rest of this section, we restrict the discussion to implementing CA which continually it-
erate the same cellular logic transform with only local propagation. Fora CA of this type, a state
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vector will be an equilibrium point if it is a fixed point of the boolean map governing the state
transitions. Due to the local interconnectivity of the CA, this condition is equivalent to a local
condition which must be satisfied at all cells in the array. For example, say the state transition
rule for cell (7, 7) is z; (¢ + 1) = 8(zi-1,j(t), zi,j(t), Ti41,5(t)), where s(-) is a boolean function.
A state vector {z; ;} is an equilibrium point of the CA if and only if z:,; = s(2i-1,5, Zi,j, Ti+1,5)
is satisfied at each cell of the array. Claim 1 showed that a similar condition for binary output
vectors holds for CNNs.

To emphasize the similarity with the CA case, consider the signum function in (7) to be a boolean
function since it maps {—1, 1}" to {—1, 1}. This equation provides a necessary condition for a
CNN to execute a CA operation since the same output vectors must be stable in both cases. Thus,
(7) provides a convenient starting point for converting CA applications to CNN applications.

What if (7) is not satisfied for all k, ¢, j? For a cellular automata the next state of the network is
given a boolean function of the current state. For a CNN, the continuous time/state dynamics
make the situation more complex. This is where the difficulty in designing cloning templates
for CNN’s arises. However, we can obtain a weaker result.

Claim 2 Ifthe output vector § corresponding to a state vector % does not satisfy (7) for all k, 1, j,
then the state of at least one the cells which does not satisfy (7) will enter the linear region of
the piecewise-linear sigmoid output function.

For a proof of this claim, see the appendix. Thus, the output states which do not satisfy (7)
for all k,¢, 5 are unstable. In fact, the proof of Claim 2 shows that for some time the states of
all the cells which do not satisfy (7) progress towards the linear region. Interestingly, a CA
implementation of the corresponding signum function of the connected component detector [8]
does settle to same steady state as the CNN for identical initial conditions. However, because
of the complex dynamical behavior associated with the continuous time/state dynamics of the
CNN, in general this signum function is not an approximate boolean function which the CNN
is implementing.

6. DESIGN EXAMPLES
6.1. Corner Extraction From a Noisy Image

This simple example uses the above results to design a two layer CNN which extracts the cor-
ners from a noisy image. In the process, we see exactly how the dynamical behavior of the
corner detecting CNN presented in [2] performs the desired processing, and how to use this
understanding the redesign the corner detecting CNN so that it can be incorporated into a more
complex two layer CNN.

Consider the comer detecting CNN presented in [2]. Although the CNN easily detects the
corners of a noise free image, additive noise can result in false corner detection. For example,
Figure 6 shows the steady state output of the corner detecting CNN introduced in [2] when
presented with an image of the letter ‘a’ corrupted by Gaussian noise of variance 0.3. The noise
causes some corner pixels to be missed and other pixels to be misclassified as corner pixels. It
would be helpful if the comer detection CNN could be combined the noise removal CNN also
presented in [2] to create a two layer CNN which filters the image before extracting the corners.
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Figure 6: The CNN presented in [2] must be redesigned to detect the corners of a noisy image.
(a) The original noise free image. (b) The original image corrupted by zero mean Gaussian noise
of variance 0.3. (c) The corners detected using the comner detector of [2] on (a). (d) The corners
detected using the corner detector of [2] on (b). (e) The corners detected using the ‘naively’
cascaded CNNG of [2] on (b). (f) The corners detected using the redesigned CNN on (b).
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One alternative is to use the noise removal CNN to remove the noise from the input image and
then initialize the corner detecting CNN to the steady state output of the noise removal CNN.
However, this operation requires an intermediate step in which the output must be read from
one chip and passed to another. Not only will this intermediate step take extra time, new noise
may be added to the image during this step and we have the same problem. A CNN which
simultaneously removes noise and extracts the corners would be more desirable.

If we proceeded rather naively, we might cascade the noise removal CNN and corner detection
CNN presented in [2] by connecting the output of the noise removal layer to the input of the
corner detection layer and initializing both layers to the same (noisy) image. The result of this
computation is shown in Figure 6. This CNN detects only the same true comers that the previous
one did, except for the comner associated with the tip of the serif of the ‘a’. Adding the noise
removal layer has eliminated the false positives, but has not solved the problem of the missed
corners.

The state equation of the corner detection cells sheds light on why the two CNNs cannot simply
be cascaded as above. The cloning template of the corner detecting CNN is:

0.0 0.0 0.0 -025 -0.25 -0.25
A=100 20 00 -025 20 =025 I=-3.0. ®)
0.0 0.0 0.0 -0.25 -0.25 -0.25

where R = C = 1.0. This CNN consists of a single linear threshold layer. Substituting the
actual parameters into (1) yields:

C% = v; ; + 2.0f(vi ;) + 2.0u; ; + 0.25 E Uipa,j+8 — 3.0. ©)
a,f#0,0
Since in the previous example the input of the CNN was connected to the output of the noise
removal layer, the input to the CNN is in fact time varying. Thus, the state trajectory of the
corner detection layer depends not only upon its own (noisy) initial conditions, but also upon
the transient response of the noise removal layer.

B=

Ideally, the corner detection layer should operate on the steady state output of the noise removal
layer. The results of Sections 3 and 4 can completely characterize the processing taking place
and be used to redesign the CNN so that it will work properly when cascaded with the noise
removal CNN. When working in isolation, the corner detecting CNN is a linear threshold single
layer CNN with constant input. The input and initial conditions of the CNN are set equal to the
input image, which is denoted by {I;,;}. Assume binary initial conditions and input. The map
from the input and the initial conditions to the output steady state is explicitly given by (5):

lim y.',,-(t) = sgn[y.-,,-(O) + 2.011.',,' +0.25n_; — 0.25n; — 3.0]

t—00
where n_, and n; are the numbers of neighbors in the 1-neighborhood whose inputs are —1 and

+1 respectively. Using the fact that I; ; = y; ;(0) = u; ; and n_; + n; = 8 simplifies the above
equation to

‘l_iglo ¥i,5(t) = sgn[(3.0I; ; — 3.0) + (2.0- 0.5n)] .

where n is the number of neighbors of I; ; which are +1. If I; ; = —1, then in steady state
¥ij = —1. If I, ; = 41, then the steady state output of the CNN depends upon the sign of
(20 -0.5n). If n < 4, then lim; .o y:;(t) = 1 since (2.0 — 0.5z) > 0. If ny > 4, then
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limy. yi,5() = —1 since (20 — 0.52) < 0. If n = 4, then (2.0 — 0.57) = O and the
signum function is not defined. The state equation (9) shows that this is exactly one of the
problematic cases mentioned in Section 3. In this case, due to the inevitable thermal noise,
limy—.o0 ¥i,j(t) = —1. Summarizing, lim, .o, y;,/(¢) = 1 if and only if J;; = +1 and less than
five of I;;’s neighbors are + 1, otherwise lim—oo yi,5(t) = —1. Assuming that the CNN’s initial
conditions and input are set.equal to the image data, the steady state output of the CNN is a
simple linearly separable function of the image data.

Using this fact, the corner detection layer can be redesigned so that the output depends only upon
the input to the CNN, independently of the initial conditions. Consider the following cloning
template.

A=

0.0 0.0 0.0 -025 -025 -0.25
00 1.0 00| B -025 20 -025| I=-175.
0.0 00 0.0 -0.25 -0.25 -0.25

Again R = C = 1.0. Substituting the above parameters into (5) yields:
}i’g ¥ii(t) = sgn[2.0u,-',- + 0.25n.; — 0.25n; — 1.75] .

All of the dependence upon the initial conditions has been removed by setting A(0,0) = R-1,
Further manipulating the above equation yields -

lim y,,5(t) = sgn[(2.0u;; — 2.0) + (2.25 — 0.5n)] .

It can easily be verified that lim;—.c yi,;(t) = 1 if and only if C(3, j)’s input is +1 and less
than five of C(3, j)’s neighbors’ inputs are +1. In other words, given identical images, the two
CNNs will settle to the exact same steady state. The redesigned CNN has also eliminated the

problematic case where thermal noise was required to ensure the output settled to the desired
steady state.

If the new corner detection layer is cascaded with the noise removal layer, the transient response
of the noise removal layer will still affect the state trajectory of the corner detection layer. How-
ever, in steady state the output of the noise removal layer is constant. After the transient response
of the noise removal layer has died out, the comer detection layer has constant input. The output
steady state of the corner detection layer is a function only of this constant input, independent of
any initial conditions set up by the transient response of the noise removal layer. The new two
layer CNN settles to a steady state very close to the desired steady state. In fact, the pictures
differ only by the pixel associated with the tip of serif of the ‘a’. That pixel has been removed
by the noise removal operation! This combined CNN has the additional advantage that only
the noise removal layer need be initialized. Analysis similar to the above can also be used to
explain the processing of the edge detection CNN [2).

6.2. Additional Examples

Equation (5) and the global propagation layer have been used to translate many other CA ap-

plications presented in [3, 4] to a CNN architecture. Here we present five examples of CNNs
which:

1. Extract the holes in an image
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2. Extract objects containing holes
3. Extract objects larger than a 3x3 square
4. Extract objects containing specified image pixels

5. Compute the minimal circumscribing octagonal convex hull

Below, the operation of each of these CNNs is described in detail by explaining the processing
performed by each layer. Each of these CNNs contains at least one global propagation layer
and possibly a linear threshold layer. The are all feedforward. Each linear threshold layer
satisfies Axx(0,0) = R;! so that its steady state depends only upon the steady state values
of the previous layers and the input. Unless stated otherwise, the coefficients of the cloning
template have been normalized so that Ry = Ci = 1.0. Any zero elements of the cloning
template have been omitted and when possible, the matrices associated with the Ay, and By
have been reduced to the lowest dimension possible.

In the following, assume that the background is 4-connected and that objects in the image are
8-connected. A region is 4-connected if each pixel in the region has one face in contact with
another pixel in the region. A region is 8-connected if each pixel in the region has one face or
corner in contact with another pixel in the region. This distinction between the connectivity of
the background and the connectivity of the image objects is necessary to ensure that the Jordan
curve theorem is satisfied.

Hole Extraction  This CNN finds the holes in an input image. A hole for this application is
defined as a 4-connected segment of background which is isolated from the edge of the image
plane by an 8-connected image component. This CNN has two layers. The image to be pro-
cessed is presented as the input to the array. The cells of layer 2 whose steady state output is
+1 are associated with pixels contained inside the holes in the image. See Figure 7.

Layer 1 fills in the background which is connected to the edge of the array using the global prop-
agation described in Section 5. This layer is essentially the same as the hole filler of Matsumoto,
Chua and Furukawa [16). Cells in this layer are initialized to —1 but are +1 in steady state if
they have —1 input and share a face with another cell whose output is + 1. To start propagation
from the edge of the array, the imaginary cells outside the boundary of layer 1 output a constant
+1. Layer 2 is a linear threshold layer which finds the pixels associated with cells whose input
and layer 1 output are both —1, i.e., the pixels associated with the holes.

Hole Figure Extraction This CNN is similar to the previous one except it actually extracts the
objects which contain the holes in the image. This CNN is also a two layer CNN. The image is

presented as the input to the CNN. The output of layer 2 contains the objects in the image which
contain holes in their interior. See Figure 8.

In this case, both layers perform global propagation. Layer 1 is exactly the same as above,
except the capacitors associated with this layer are much smaller than 1.0 so that its settling
time is much faster than that of layer 2. Layer 1 is essentially in steady state for the entire
transient response of layer 2. Layer 2 is initialized to —1 and propagates a +1 signal through
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Figure 7: Extraction of the holes in an image. (a) Sample input and output images. (b) The
CNN cloning template.
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Figure 8: Extraction of objects containing holes. (a) Sample input and output images. (b) The
CNN cloning template.
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Figure 9: Extraction of objects larger than a 3x3 pixel square. (a) Sample input and output
images. (b) The CNN cloning template.

image pixels associated with objects next to holes. To prevent propagation from the edges, the
imaginary cells outside the boundary of layer 2 all output a constant —1.

Large Object Extraction  This three layer CNN extracts those figures in the input image whose
total area including holes contained in their interior contains a three by three pixel square. The
image is presented as the input to the CNN. The output of layer 3 contains the desired figures.
See Figure 9.

Layers 1 and 2 are global propagation layers and layer 3 is a linear threshold layer. Again
C1 < 1.0 so that the cells of layer 1 in the background adjacent to the edge settle to +1 steady
state output voltage during the initial moments of the transient response of layer 2. Layer 2
is initialized to —1 and its imaginary boundary cells output a constant —1. Propagation in
layer 2 is started from pixels at the center of 3x3 pixel squares contained in regions which
have not received a propagation signal in layer 1. Propagation is stopped at the boundary of
these regions. Layer 3 outputs the image pixels contained the the regions which received the
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Figure 10: Extraction of objects containing specified image pixels. (a) Sample input and output
images. (b) The CNN cloning template.

propagation signal in layer 2.

Specified Object Extraction  Given specified image pixels, layer 3 of this three layer CNN will
output the figures in the image whose total area including enclosed holes contains at least one of
the specified image pixels. This CNN is also composed of two global propagation layers and a
linear threshold layer. However, unlike the previous CNNs, some of the information necessary
for processing is contained in the initial conditions of the array. The cells of layer 2 which
correspond to the specified image pixels are initialized to +1. The output of layer 3 contains
objects of the image which contain the pixels specified in layer 2. See Figure 10.

Layer 1 is the same as the layer 1 of the previous examples. Again, C; < 1.0 so that layer 1
settles much faster than layer 2, which subsequently propagates a signal through the unlabeled
regions of layer 1 containing a specified image pixel. To prevent propagation from the edges,
imaginary boundary cells for layer 2 output a constant —1. Layer 3 is a linear threshold layer
which selects those image pixels contained inside the regions receiving a propagation signal in
layer 2.
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Figure 11: Computation of the minimal circumscribing octagonal convex hull. (a) Sample input

and output images. (b) The CNN cloning template.

Octagonal Hull Compuration The output of layer 5 of this five layer CNN is the minimum
circumscribing convex set whose boundaries are restricted to lie parallel or at 45 degrees to
the coordinate axes. This CNN demonstrates the use of directional sensitivity in the global

propagation. See Figure 11.

Initial conditions of layer 1 through 4 are the image. Each of these layers propagates a signal
from the image in one of the four directions associated with the borders of the octagonal hull.
To prevent signals propagating from the edges, the imaginary cells outside the boundary of the
array should all be —1. Layer 5 is a linear threshold layer which selects those pixels in the

intersection of the outputs of layers 1 through 4.
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Figure 12: (a) For fixed values of po and 6 the Radon Transform R(po, 60) of an image I(z,y)
is the line integral of I(z, y) along line L. (b) For fixed o, the function R(p, 8o) is the projection
of the image onto the line 8 = 6.

6.3. A Radon Transforming CNN

Introduction  Up to this point, linear threshold layers have been used as a means of working
around the effects of the continuous time/state dynamics. This example uses linear threshold
layers to produce a CNN whose operation depends critically upon the effects of the continuous
time dynamics of the CNN. The CNN described here computes one projection of the Radon
Transform of a binary image. For any given image, define I(z,y) to be the image intensity at
the point (z,y) in the image plane. The Radon Transform of the image is a function R(p, §),
where p and 6 are polar coordinate variables. For specific values of po and 6o, R(po, 6o) is the
integral of I(z,y) along the line which is perpendicular to the line § = 6, and passes through
the point (po, fo). Thus, for fixed 6o, the resulting one dimensional function P(p) = R(fo, p)
is the projection of the image intensity onto the line § = 6o. See Figure 12. For binary images,
the horizontal, vertical and diagonal projections are sufficient to compute the zeroth, first and
second moments of a region in a binary image. These moments can be used to find the position
and orientation of that object [18].

The CNN template presented here finds the value of R(p, 7 /2) for a binary image. In other
words, the CNN integrates the image intensity along the horizontal rows of the image plane.
To obtain the full Radon Transform, the image can be rotated through all desired angles. The
output R(p, /2) is presented as a histogram along the right hand side of the image plane.

An Infinitely Iterated Cellular Logic Transform In order to utilize the ideas presented in this
chapter, first consider one way to compute one projection of the Radon Transform of a dis-
cretized binary image using an infinitely iterated cellular logic transform. Since the projection
operates on each horizontal line independently, to simplify the discussion consider one horizon-
tal line. For each pixel in the image plane, assign the value 1 to that pixel if it is in the image
and O otherwise. At each time step, image pixels which have a background pixel on their right
shift right. See Figure 13. In other words, the value of each pixel at time ¢ + 1 is determined by
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Figure 13: One iteration of the state transition rule which can compute one projection of the
Radon Transform of a binary image on a cellular automata. Image pixels with a background
pixel to their right at time ¢ shift to the right in time ¢ + 1.
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Figure 14: The values which map to zero and one by the boolean function (10) are not separable
by a plane in (, ¢, r) variable space

the following boolean function of the values at time ¢ of the pixel (c,) and its left (/;) and right
(r¢) neighbor pixels:

Ci4+1 = CTy =+ Ig&g. (10)

where ¢, is the complement of ¢;. The values of equation (10) are shown in graphical and tabular
form in Figure 14. The boundary conditions should be set up so that the cells on the left hand
side of the image plane have I; = O for all ¢ and the cells on the right hand side have r, = 1
for all . As time progresses, pixels continue shifting until they reach either the end of the row
in the image plane or another image pixel. In steady state, the pixels have all ‘piled up’ on the
right hand side of the image plane. Since the number of pixels in each row is preserved, the
resulting logical steady state is a histogram representation of the projection operation.

The CNN Cloning Template The CNN cloning template is shown in Figure 15 where Ry =
Ci = 1.0 for all k. Scaling the values to implementable values only changes the time scale of
the dynamics, but not the state trajectories. The CNN consists of three layers. The cells of the
layers 1 and 3 are initialized to +1 or — 1 depending upon whether the corresponding pixel is in
the image or in the background. The cells of layer 2 are all initialized to —1. When the circuit
finally settles, the output states of layer 1 and layer 3 each contain the output histogram.
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Figure 15: The cloning template of the Radon Transforming CNN shows that it is composed
solely of linear threshold layers.

To see the similarity between the operation of the CNN circuit and the iterated cellular logic
transform, assume for the moment the state of the cells in layer 1 is constant. Essentially, layers 2
and 3 compute the next logical state of the iterated cellular logic transform. Notice that all of the
layers are of the linear threshold class. Since the boolean function (10) is not linearly separable
in the (I, ¢,r) boolean variable space, one linear threshold layer is not sufficient to implement
this function. Based on the current state of layer 1, the cells whose outputs are +1 in layer 2
are those which correspond to pixels which should shift right in the next step of the iterated
cellular logic transform. The outputs of the other cells of layer 2 are —1. If the output of a cell
in layer 2 is +1, then the output of its corresponding cell in layer 3 is —1 and the output of the
cell to its right is +1. Otherwise the outputs of the cells of layer 3 remain equal to their initial
values. Thus, the output of layer 3 corresponds to the next logical state of the iterated cellular
logic transform. Note that the output of layer 2 and the initial conditions of layer 3 are sufficient
to determine the next output of layer 3.

In actual operation, the state of layer 1 is not constant. The design of the A, 3 coefficients ensures
that the outputs of layer 1 track the outputs of layer 3 with some delay due to the time constants
of the dynamics. In the circuit implementation, this delay is associated with the charging and
discharging of the capacitors of layer 1. Heuristically, based upon the output of layer 1, the
output of layer 2 evolves toward the data required to update level 3. The output of layer 3
evolves toward the next logical state. Simultaneously, layer 1 evolves so that it reflects the
current state of layer 3 and so on.

This heuristic explanation might suggest a clocked operation. In fact, the layers operate asyn-
chronously. As one layer updates the next, it will have some effect on its own state since the
network is not feedforward. However, each layer is ‘insulated’ from its own effect on the next
layer by a third layer. Each layer has the same time constant. The circuit works in a somewhat
clock-like manner due to the delays induced by the dynamics at each layer. These finite delays
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Figure 16: (a) Simulations of the Radon Transforming CNN indicate that it projects the image
intensity onto the vertical axis. (b) Toobtain other projections of the Radon Transform, the input
image can be rotated. Here the image has been rotated by 90 degrees to obtain the projection
onto the horizontal axis.

are essential to the correct operation of this circuit.

Simulations of the circuit indicate that the circuit does settle to the desired steady state. See
Figure 16. It seems that passing the update information through a sequence of three layers
enables the circuit to preserve the total number of image pixels in the image. Although the
logic described above could be implemented with only two layers, simulations run with only
two layers did not converge. A careful examination of the simulation results indicates that
the actual operation of the circuit cannot be approximated by a clocked iterated cellular logic
transform. Although the operation does appear to mimic the operation of a CA at the beginning
of the transient, toward the middle and end of the transient the pixels do not shift synchronously,
even in a single row. See Figure 17. Since the shifting occurs only at the rightmost end of each
horizontal connected component, synchronous shifting is not essential to the proper operation
of the circuit.

7. CONCLUSION

In this chapter, we have discussed a simple subclass of all the possible CNNs. Because the
state dynamics of these CNNs are so simple, we were able to derive an explicit map between
the input and initial conditions of the CNN to the steady state output. These results explain
how the dynamics perform the processing of some of the examples in [2]. This insight into
the operation of these CNNs has allowed us to redesign the corner detecting CNN of [2] to
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Figure 17: Although the Radon Transforming CNN has been developed using ideas from cel-
lular automata, the CNN does not operate like a CA. Although pixels shift synchronously at the
. start of the transient (a), as time progresses, the pixels shift asynchronously (b).

incorporate it into a more complex multi-layered CNN, as well as to design new binary image
processing applications for the CNN. The similarities between the architectures of CNNs and
CA have proved quite useful in designing new applications. In fact, we have shown that any
single iteration operation possible on a CA is also possible on a CNN. We also discuss the
extension of these results to multiple iteration CA operations, although much work remains to
be done in this area. This paper has only described a small subset of the possible CNNs, and
thus only a subset of the possible applications. Hopefully, the continuous time and continuous
state dynamics will enable the CNN to be applied to a much richer class of problems.
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A+B

Figure 18: A + B is linearly separable, while A = B is not.

APPENDIX

A Linearly Separable Boolean Functions and Multiple Layer Networks

For our purposes, we can view a boolean function of n variables, f, as a mapping from {0, 1}"
to {0,1}. In other words, f assigns a value of either zero or one to each vector of zeros and
ones. If we interpret {0, 1} as a subset of R, f is linearly separable if and only if there exists
a vector a € R” and a constant b € R such that the following two inequalities are satisfied:

(a,x)2b Vxe{xe{0,1}"]|f(x)=1} (11)
(a,x) <t V¥xe{xe{0,1}"| f(x)=0}. (12)
Geometrically, a linearly separable boolean function is a function for which all the points which
map to 1 lie on or to one side of an n — 1 dimensional hyperplane in ®" and all the points which
map to 0 lie on the other side of the hyperplane. For example, in two dimensions the function

A + B is linearly separable while the function A = B is not. See Figure (18). In particular,
examination of Figure 14 reveals that the boolean function (10) is not linearly separable.

If f is linearly separable, we can always find a vector & and a constant b, such that the inequalities
in (11) and (12) are strict. To see this, assume that a and b satisfy (11) and (12). Take § =
min{b — (a,x) | x € {0,1}", f(x) = 0}. This minimum is greater than zero since it is the
minimum of a finite set of positive numbers. The vector & = a and constant § = b — 36 satisfy
(11) and (12) with strict inequality. In other words, for any x € {0, 1}", (&, x) — § # 0. Thus,
any boolean function which is linearly separable can be implemented using signum functions
like those in equations (2),(5), and (7).

B Proofs of Claims 1 and 2
Proof of Claim 1

First assume that (2) is satisfied for all 7, j. Define for each i,7
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[Z Aa, B)itajrp+ Z B(a, B)tita,j+8 + I] (13)
a8

Clearly, v = {9;;} will be an equilibrium point if §; ; = f(5; ;) forall ¢, j. Consider the case

where §;,; = 1. Then from (2),

(4(0,0) - R Djis+ Y Aa, ﬂ)yi+a.:'+ﬁ +Y_ B(a,)titaiss+I>0
a,B#0,0 a,B

Adding R™1§; ; to both sides yields
Z Ala, B)jita,+s + E B(a, B)uita4p+1> R™ lym

Mulnplymg through by R and noting that §;; = 1, we see that 9;; > 1, i.e. f(v,,_,) = i
The case of §;; = —1 is proved similarly. Thus, f(0;;) = i, is true for all ¢, j and ¢ is the
associated equilibrium point.

Now take any binary output vector, §, associated with an equilibrium point ¢ of the CNN. Then
the following equation must be satisfied for all ¢, 5.

0=-R"'5; gt E Ala, B)jivaiira+ Z B(a, Buitairs+ 1
‘B

Assume that §; ; = 1. In tlns case, 0;,; 2 1, which implies
0< —R7'§i; + z A(a, B)Jiva,j+p + Z B(e, B)tisa,jrs+ 1
a,B a,B

The same statement holds for §j;,; = —1 with the inequality reversed. The equality is strict by
assumption and the combination of the two statements results in (2).

To show asymptotic stability we must show that for each ¥ = {9;;} as defined in (13), there
exists a p > 0 such that for all vo € B(V,p) = {v | |[|[v— ¥| < p} the state trajectory
starting at vo approaches \{ asymptotxcally For this proof, we define |[v]] = max;;{|vi;|}.
This definition is not restrictive, since all norms on a finite dimensional Euclidean space are
topologically equivalent. Set p = min; ;{|0;; — i ;|}. This is well defined and greater than
zero as it is the minimum over a finite set of of numbers which are greater than zero since the
quantity in (2) is well defined. Essentially, we have chosen our neighborhood such that all the
states are operating in the saturated region of output nonlinearity. Now take any vo € B(¥, p)
and consider the state trajectory starting at vo. The state of cell C(i, j) evolves according to the
following ordinary differential equation:

dv; ; 6.
R T TS L S Y B
op af

The quantity in braces is the constant R~!%; ;. Thus v;,; approaches 9; ; asymptotically for all
t,J, implying that v approaches ¥ asymptotically.

Proof of Claim 2

For consistency of notation with the proof of Claim 1, we prove Claim 2 for the single layer
case. The proof carries over to the multxple layer case by a shght change in notatlon
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Since (2) is not satisfied for all 2, j, there exists a set { i j,,}g=1 for which (2) is not satisfied.
U is the number of states for which (2) is not satisfied. As long as the output state of the
network is equal to §, the cells of the network evolve according to (14). However, for all (i, j) €
{4, n}Y=1, the quantity in braces is less than one when ©; ; is greater than or equal to one (since
§i; is equal to one) and greater than —1 when 9;; is less than or equal to —1. Thus, in some
finite time the state of one of the cells C(3, j) such that (i, j) € {i,, j,}_, will enter the linear
region. It will not immediately return to the saturated region since the quantity in braces is a
continuous function of the output of the network and thus will remain close to its original value.
Once the state of some of the cells have entered the linear region, the dynamics become much
more complex.

~
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