
Copyright © 1990, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.



HIP: A HYPERMEDIA EXTENSION OF THE

PICASSO APPLICATION FRAMEWORK

by

Beverly S. Becker and Lawrence A. Rowe

Memorandum No. UCB/ERL M90/121

19 December 1990



and hypermedia systems.

Several noteworthy features of HIP allow it to achieve these goals and distinguish it from
otherexisting hypermedia systems. Principal among these features is HIP's support for video
data. While mere areother systems that incorporate video, few provide the level of functionality
achieved in HIP. Users can not only follow links into and out of video nodes, but can also use the
integrated PICASSO video browser to view any partof the video data at any speed or direction.
Moreover, HIP's multidimensionalrepresentation scheme allows links to be associated with
regionswithin frames as well as with temporal sequences of frames.

HIP's internal representation schemeis related to another of the system's distinguishing char
acteristics: extensibility. Many systems claimextensibility,which may mean simply that the sys
temsupports the development of new applications, orthatthe systemsupports the addition ofnew
media butrequires custom-built browsers to do so. HIP provides amoregeneral extension mech-
anis by defining anabstraction layer matallows newmedia to be incorporated quickly and easily.
Any browseror editor developed in PICASSO canbe integrated into HIP.

Finally, HIP provides comprehensive user interface support for creating and browsing hyper
mediadocuments. While many of the features of the HIP interface are found in othersystems, the
completeness of the setand the sophistication of several of the individual tools are noteworthy.
For example, many systems provide a graphical overview map of ahyperdocument; in HIP, this
graph is generated dynamically from thedata structures representing thehyperdocument, and thus
can be updated automatically whenever the document is modified. HIP also provides the path,
bookmark, andhistory listmechanisms commonto most hypermedia systems; in addition, it pro
vides a flexible filtering toolmat allows the userto view only the nodes and links satisfying spec
ified criteria. The use of filters can be particularly helpfulin complexhyperdocuments with
hundreds or even thousands of nodes.

The remainder of the paper is organized as follows. Section 2 contains abriefdiscussion of
related workin hypertext and hypermedia. Section 3 introduces HEP through examples that illus
trate itsnoteworthy features. The HIP data model and storage mechanisms are presented in Sec
tion 4. Section 5 describes the HIPuser interface, focusing in particular on the facilities
implemented to reduce user disorientation and aid navigation. Thehypermedia abstractions used
to integrate HIP withPICASSO are outlined in Section 6. Section 7 discusses thelessons learned in
developing HIP and theadvantages and disadvantages of using PICASSO as abase for the system.
Finally, Section 8 presents ourconclusions and discusses plans for future work.

2. Related Work

Dozens of hypertext and hypermedia systems exist today, ranging from relatively simple hyper
textbrowsers to sophisticated multimedia authoring tools. Tliis range of functionality is well-doc
umentedby Conklin [Con87]. The former class includes systems such as the Symbolics
Document Examiner, aread-only Help system for the Symbolics Lispenvironment thatincludes
extensive search and bookmarking mechanisms [Wal85]. The latter class contains systems like
Intermedia, a complex hypermedia applications development environment that provides tools for
building andnavigating multimedia documents [Mey86]. HEP also belongs atthis end ofthe spec
trum, providing a full complement of authoring and browsing tools for multimedia hyperdocu
ments.



HIP: A HYPERMEDIA EXTENSION OF THE

PICASSO APPLICATION FRAMEWORK

by

Beverly S. Becker and Lawrence A. Rowe

Memorandum No. UCB/ERL M90/121

19 December 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



HIP: A HYPERMEDIA EXTENSION OF THE

PICASSO APPLICATION FRAMEWORK

by

Beverly S. Becker and Lawrence A. Rowe

Memorandum No. UCB/ERL M90/121

19 December 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



EDDP: A Hypermedia Extension of the
Picasso Application Framework1

Beverly S. Becker
Lawrence A. Rowe

Computer Science Division-EECS
University of California

Berkeley, CA 94720

Abstract

HIP is an extensible hypermedia system built using the PICASSO graphical user
interface development system. HIP incorporates text, images, tables, graphics,
video, and audio data, and allows users to define new media types easily. This
paper describes the HEP architecture and hypermedia capabilities, focusing in
particular on its support for continuous media, its extensibility, and the tools it
provides to minimis user disorientation.

1. Introduction

The PICASSO application framework is a lisp-based, object-oriented graphicaluser interface
development system developed at U.C. Berkeley [Row90]. It provides a variety of editors and
browsers for displaying and manipulating text, graphics, tables, video, and other data. Htt^ is an
extensible hypermedia framework that is fully integrated with PICASSO.

Authors can use HIP to organizemultimedia information into complex hyperdocvments. Each
hyperdocument contains a set ofnodes, each ofwhich presents a collection of datain one or more
media (e.g., text, tables, images, video sequences). Relationships among the nodes are expressed
via typed, directional links. Hyperdocument readers can browse this network ofnodes by follow
ing links from node to node, by selectingnodes from menus or a graphical map of the document,
by creating and accessing bookmarks, and by following predefined paths.

HIP has been designed to satisfy three main goals.The first goal was to produce a truly multi
media system, incorporating not only text, graphics, and other static media, but also continuous
media (Le., video and audio). Moreover, these diverse media were to be integrated within a single
framework with consistent internal software and user interfaces. The second goal was to minimize
the effort requiredto incorporate new media: well-defined, simple procedures should be provided
to facilitate the addition ofnew node andlink types. The final goal was to provide a rich set of

1. This researchwas supported by the NationalScience Foundation(GrantMIP-8715557) and The Semiconductor
Research Corporation,Philips/Signetics Corporation, Hams Corporation, Texas Instruments, National Semicon
ductor, Intel Corporation, Rockwell International, Motorola Inc., and Siemens Corporation with a matching grant
from the State of California's MICRO program.

2. Hypermedia In PICASSO



and hypermedia systems.

Several noteworthy features of HIP allow it to achieve these goals and distinguish it from
otherexisting hypermedia systems. Principal among these features is HIP's support for video
data. While there areother systems that incorporate video, few provide the level of functionality
achieved in HIP. Users can not only follow links into and out of video nodes, but can also use the
integrated PICASSO video browserto view any partof the video dataat any speed or direction.
Moreover, HIP's multidimensional representation schemeallows links to be associated with
regions within frames as well as with temporal sequences of frames.

HIP's internal representation scheme is related to another of the system's distinguishing char
acteristics: extensibility. Many systems claimextensibility, which may mean simply that the sys
temsupports thedevelopment ofnewapplications, orthat thesystem supports theaddition ofnew
media butrequires custom-built browsers to do so. HIP provides amore general extension mech-
anis by defining anabstraction layer matallows new mediato beincorporated quickly and easily.
Any browser oreditordeveloped in PICASSO canbe integrated into HIP.

Finally, HIP provides comprehensive user interface support for creating and browsing hyper
media documents. While manyof the features of theHIP interface are found in other systems, the
completeness of the set and the sophistication of several of the individual tools are noteworthy.
For example, many systems provide agraphical overview map of ahyperdocument; in HIP, this
graph isgenerated dynamically from the data structures representing the hyperdocument, and thus
can beupdated automatically whenever the document ismodified. HIP also provides thepath,
bookmark, and history listmechanisms common to mosthypermedia systems; in addition, it pro
vides a flexible filtering toolthat allows theuser to view onlythenodes and links satisfying spec
ifiedcriteria. The use of filters canbe particularly helpful in complexhyperdocuments with
hundreds or even thousands of nodes.

The remainder of the paper isorganized as follows. Section 2 contains abriefdiscussion of
related work inhypertext and hypermedia. Section 3 introduces HEP through examples that illus
trate itsnoteworthy features. The HIP data model and storage mechanisms are presented in Sec
tion 4. Section 5 describesthe HIPuser interface, focusing in particular on the facilities
implemented toreduce user disorientation and aid navigation. The hypermedia abstractions used
tointegrate HIP with PICASSO are outlined inSection 6.Section 7 discusses thelessons leamed in
developing HIP and theadvantages and disadvantages of using PICASSO as abase for thesystem.
Finally, Section 8 presents ourconclusions and discusses plans for future work.

2. Related Work

Dozens of hypertext and hypermedia systems existtoday, ranging from relatively simple hyper
textbrowsers to sophisticated multimedia authoring tools. This range of functionality iswell-doc
umentedby Conklm [Con87]. The former class includes systems such asthe Symbolics
Document Examiner, aread-only Help system forthe Symbolics Lispenvironment that includes
extensive search and bookmarking mechanisms [Wal85]. The latter class contains systems like
Intermedia, acomplex hypermedia applications development environment that provides tools for
building andnavigating multimedia documents [Mey86]. HIP also belongs atthis end of the spec
trum, providing a full complement of authoring and browsing tools for multimedia hyperdocu
ments.



HIP's design was influenced by many other hypertext and hypermedia systems, including the
above-mentioned Document Examiner and Intermedia. Like the Document Examiner, HIP sup
ports user-defined bookmarks; however, HP allows the user to mark any region as abookmark
andto annotate these bookmarks with meaningful text, whereas the Document Examiner simply
stores the tide of the sectionbeingmarked. Intermedia's influenceis apparent in the HIP data and
interaction models (e.g., the operations for creating and following links) andin the variety of nav
igation tools provided. Bothsystems are extensible to newmedia and applications; however,
Intermedia requires custom-built browsers whereas HIP was designed to be integrable with any
PICASSO tool.

Other systems whose features arereflectedin HIPinclude the Virtual Notebook System
[Shi89]. NoteCards [Hal87], HyperCard [App87], andMuse [Hod89]. The 'Virtual Notebook Sys
tem, developedto support collaborative biomedical research, provides a flexible filtering mecha
nism that simplifiesdataretrieval by restricting the search space.A similar filtering capabilitywas
incorporated into HIP. NoteCards is anextensible"idea processingenvironment" that, like HIP,
uses typed nodes andlinks to organizedatain variousmedia. NoteCards is integrated into the
Xerox Lisp environment much as HIP is integrated into PICASSO. like HyperCard, the Macintosh-
based hypertext tool, HIP defines severaluser levels that determine what commands are available
at a given time. Finally, the Athena Muse system, designed to support curriculum development by
MIT faculty, defines a flexible model for incorporating multidimensional information that signifi
cantly influenced the hypermedia abstractionsand video interface used in HIP.

3. Example HIP Applications

This section presents two examples that illustratethe use of HEP. The first example focuses on
HIP's ability to integrate data in a variety ofmedia within a well-organized, consistent frame
work. The second demonstrates the navigation tools and complexity-reducing features of the sys
tem.

3.1 The Engineer's Notebook

The Engineer's Notebook is an applicationof HIP in the Computer Integrated Manufacturing
(QM) domain [Bec90]. It providesapaperless medium in which process engineers in a microfab-
rication facility can recorddata associated with steps in the manufacture of semiconductor chips.
Normally, process engineers carrypapernotebooks in which they record tables of measurement
data, textual comments and observations, andsimple line-drawingsofwafer profiles or junctions.
The Engineer's Notebook captures this same information in an on-line system, as Figure 1 illus
trates. This figure presents some typicalNotebook componentsand HIPwindows: 1) the top-level
control window (upperleft); 2) the introductory node of the Notebook, containing a textual out
line of the processing steps to be documented(lowerleft); 3) a notebook entry containing awafer
profile image Cower right); and4) the overview map of the Notebook hyperdocument (upper
right).

This system has several advantages over a traditional papernotebook. First, it reduces the use
of paper in the facility, which in turn reducesthe particlecount in the clean-room environment.
Second, it allowsthe engineer to includemany types of datanot easily represented in atraditional
notebook, such as digitized images and video sequences. Finally, it supports cross-referencingof



infomiation (e.g., process measurements and test data across many runs), both within an individu
al's notebook and across several notebooks.

(3 tapJvp.mol H

A**t>-»©»- I Srcw*^ 1 Cuatwtaz* E l*Mwnr«imi 61

r £>*S>-*«T EfiOOK HOC

C^i-rt:! EBBQK

ad

Edit Co*>y 3*l#t»J Uvj

3
,;•{'.

C.oto fan*.

ta-rtin ^*yg<t:

i CM0S-RUM1
V OXI0E-P1T-PH0TO

S !•>•*• cw> «*_•» J

^I1 1*.'%']»*J * 'OOOC far 86

flo-1 not s^L£^ 3e.l*^t>t»*J »-of<-^.
:«1» J»«»-.

tor-»»<* P#tJ>:

<»»•»♦«« P«o»:

Figure l: Example HIP application: The Engineer's Notebook
Pictured axe (clockwise from upper left): The HIP top-level control panel; a graphical map
of the currentNotebook; an image node displaying a waferprofile; and a text node outlin
ing processingsteps. ^^^

Arelated application will present training materials for users ofthe Berkeley Microfabrication
Facility. HIP is being used to develop a multimedia introduction to integrated circuits, semicon
ductor design and manufacturing, and the semiconductor industry as awhole. The application will
include: l) textual descriptions ofthe history ofintegrated circuits, semiconductors, and manufac
turing equipment and processes; 2)video sequences illustrating proper use ofequipment; 3)video
"tours" of the lab; and 4) cross-referenced instructional materials for each step of a simple process
(e.g., step parameters, equipment use, and wafer profiles and pictures showing the desired results
of the processing).

As demonstrated by these applications, HTP provides apowerful environment in which multi
media data can be integrated within structured, on-line documents.



n*j«o u»
p.

Pjc»j«; <€ufw I firowj* i C»»ton»i»

t

*![ :

!*irw.iTi-.«-i-

IS NODES

•-'

fteMM :

ft lotto riifumnt* jtwu «>t of fl»t«. «»ic+« •» « »-««: fix
|im(i, or- a dot-«o»stj rweoro. Yoo. •»-*• «frwtla vi-t»*m«

«ti "Nod**.*" •» J*xlie*e*d i* tfc«t.i.ti« *r«« **~ ^1 a"*°'". '
h>»i» pane*. Coot* «ca»r- J* »•»<• of ow of •«»«• r«eupoopim •1fc»

MVP sttpiMrrto <wu dl*?*r««L. fcgpe* of ««n»«. ft fiffilr Eimafl
•«r*i» oooe t^PO« con or foun4 i" fr '»«*» «•»«» j ftoot-T^-r*-

Ma.»-» rotttm **t*«r»' liH»«. mate03^ One- )»«i»»iii« of il«u»
*rc»e ot>>o«- W0H,

C«rr«r* P»lh:

f\. M0DE-TYPCS-TA8LE HHBOBBI

^t«*»«> i »>.»«>*

^

mvj.

TOJttl

«oOe t«po 3»t» tfj«pj«v*d Sourca «a*c

^
r

OSCU cr-c -..'«'i

row:-.

tvr victor:. ;.j

"«i.:*r 0»c» »*aj»K--ial ^-..iif. . ;. T3s:

D<K«OfcJ« rtjna ftyprr-coil ret :.&n v».:j<

•.-©»» BtttM
-i-r-r*

:>iT-r*r>c fiitorj: hotlr KoyertJr. NODE -
i ii ii

C*u-«rt *"*t«:

Figure 2: Example HTP application: The HEP Help system.

Pictured are (clockwise from upper left): The HIP top-level control panel; a text node
describing what nodes are; a table node summarizingnode types; and a graphical display
of the hyperdocument, filtered to show only nodes involving the concept "Nodes".

3.2 The HIP Help system

The second example of HEP's features is the system's own on-line Help system, illustrated in Fig
ure 2. Help is presented as a hypermedia document containing information about all objects and
operations in HEP. This document is opened by default when a user begins a HIP session. It pro
vides both a starting point for learning to use the system and a handy reference for later questions.
The Help document includes two indices: one subject-oriented, like a table of contents, and the
other alphabetical, as in a back-of-the-book index.

HEP's navigational aids are employed to make this Help system as easy to use as possible.
Link typing is used to distinguish the Topic links associated with the subject-oriented index
from the Index links associated with the alphabetical listing. This distinction allows the user to
filter out all links from one index in order to focus on the other view. Consequently, this document
can be used as a subject-oriented user's guide or tutorial, as an advanced user's reference manual,
or as a combination of both. Several predefined paths through the Help document are also pro- -
vided, each offering a hands-on introduction to some aspect of the system. For example, one path



provides abasic overview of the concepts embodied in HIP and theparadigm ofhyperdocument
browsing; another focuses on authoringcommands andmore advanced features. The user can also
leave bookmarks in the Help document, for easy access to complex or frequently-used operations.

4. The HIP Data Model

This sectiondescribes the HIPdatamodel andstorage mechanisms.Hypertext datamodels gener
ally involve nodes (also called cards or pages) logically connected by links to form a directed
graph(also called a web or network).The specific tenninology and object definitions used in HIP
are as follows:

(1) Hyperdocuments are collections ofnodes and links between them. A given node or link
may belong to multiple hyperdocuments,andis available to the user if at least one ofthose
hyperdocuments is open. One node in eachhyperdocument is designated asthe start-node,
to serve as the default entry point into the document.

(2) Nodes arethe building blocks ofhypermediadocuments. A node containsdatain some
medium (e.g., a text file, a video segment, a scanned image). HIP currently supports the
following node types:

Text Text nodes correspondto ASCII text files. They are displayed using
the PICASSO text editor, which provides Emacs-like editing capabilities on
a scrollable text buffer. Text file contents can be edited and saved from HIP.

Table. Table nodes present formatted, tabular data. This datacanbe storedin
a file, a database, or any user-specified locationand format PICASSO's scroll
ing tablebrowseris used forthe display. Tablescanbe given row andcolumn
headings, and can have as many rows and columns as desired.

Image. Image nodes contain scannedimages in bitmap or GIF format
[Com87]. Both black-and-white and color images are supported.

Graphics. Graphic nodespresent line-oriented graphics. They are displayed
usingthe PICASSO graphical browser, which provides panning, zooming, and
selection capabilities. A PICASSO direct-manipulation graphics editor is
under development and will be integrated into HIP.

Object An object node represents any complex object with heterogenous
attributes. Object nodes areoften used, for example, to display database
records. PICASSO providesanelectronic forms editorthat is used in HIP to
display objects. The type of each object attribute determines how it is dis
played.

Video. Video nodes correspond to video sequences stored on interactive vid
eodiscs. PICASSO provides a sophisticated tool forbrowsingandindexing
videodiscs that supports functionality such asvariable-speed play,indexed
search, and separate control of audio and video channels. HIP uses a simpli
fied version of this tool that provides the basiccontrol operations andthe
capability to define new entries in anindex for a particular videodisc. Users
can create links into video nodes that, when followed, will cause the video
disc to advanceto the start frame specifiedby the destination marker. The



video controls can then be used to view the selection (or any other portion of
the disc).

Audio. Audionodescontain digitized voice,music,or othersounds. Audio is
currently handled likevideo, using thetwoaudio tracks on a videodisc to
store and access audio data.

Because the various mediaarerepresented by different nodetypesin HIP, the terms"node
type" and "medium" are often used interchangeably. In reality, a given medium might cor
respond to a setofnode types. Forexample, wemight define several subtypes of thetable
node type, eachrepresenting a different table datastorage format (e.g., onefor tables
stored in a relational database, another for tables stored in flat files). The user, however, is
unaware of these underlyingdifferences, so the various subtypes are generally viewed as a
single class.

(3) Links expresstypedrelationships between nodes. Links are defined between subregions
of nodes rather than between the nodes themselves. A given region, called a marker, may
be the source or destination for any number oflinks. Each link has a type selected from an
extensible taxonomy and a label that communicates to the user the type of information at
the link's destination.

HIP provides an initial taxonomy of link types based on that proposed by DeRose
[DeR89]. This taxonomy can be extended by any user to define custom link types for a
particular application. For example, a group using HIP to support collaborative document
development may wish to define specialized link types for various kinds of comments and
annotations. The only restrictions regarding the creation of new types are that all type
names must be distinct, and only subtypes of existing types are permitted (ie., all types
must descend from the single base type, Link).

(4) Markers represent selectablecomponents or subregionsof a node. A marker may specify
a single item (e.g., an object in a graphics node), a collection of items (e.g., a paragraph in
a text node) or all items in anode. Marker regions may overlap within anode. All markers
are given user-defined labels, which must be unique within a node.

HIP defines two subtypes ofmarker link-markers, which serve as anchors for links, and
bookmarks, which provide arbitraryreferencepoints within a hyperdocument

(5) Paths represent sequencesof nodes. A path provides a default traversal order for a subset
of the nodes in a hyperdocument.

Figure 3 summarizes the HIP data model with a simple example diagram showing three nodes
and the links among them. Note that the text node at the left of the figure has two link-markers,
pictured as outlined regions. The top link-markerhas a single link from it to a link-marker repre
senting a column in the table node on the right. The other link-marker serves as the source for two
links, one to the table node and one to the graphics node, and thus is shown with a double outline.
Similar visual cues are used in the HIP user interface to convey link and marker information.



Text Node

Link

Marker

Link Marker

(multiple links)

Table Node

Graphic Node

Hyperdocument

Figure 3: The HIP datamodel

Nodes, links, and hyperdocuments can all be given arbitrary textual descriptions and keyword
attributes. These attributes are used both as documentation and as selection criteria for viewing a
subset of the hyperdocumentusing filtering (seeSection 5.5).

HIP supports controlled sharing and collaboration through the use ofdocument ownership and
access permission attributes. All HIP documents are owned and can beassigned permissions
specifying read, append, or edit access. Read access designates adocument as read-only. Append
access allows a user to annotate the document with new nodes and links, but not to modify exist
ing elements orattributes. Finally, Edit access permits notonly additions to adocument butalso
modifications to its attributes and those of its constituents. At the node level, Append access
allows the addition oflinks to or from anode, while Edit permission allows modification of the
actual node contents as well as its attributes.

HEP objects are stored in arelational database [Ing89]. This database system provides the
access control and data management facilities needed to support document sharing and searching.
The database is usedto store the attributes of and relationships among hyperdocuments and their
constituent nodes and links. Actual node contents arenot stored in the database; instead, a pointer
suchasa filename, database relation identifier, orvideodisk label is stored to indicate the location
of the contents. This indirection has several advantages: 1) it allows HIP to use a traditional data
base instead ofrequiring amultimedia database; 2) it greatly reduces the size of the database; and
3)it allows users to access hypermedia data outside of HIP and easily import existing data into the
system.

HEP also provides an interchange format that allows hyperdocument information tobe stored
in a file system. Operations for importing and exporting hyperdocument data using this format are



provided. When ahyperdocument isexported, the attributes and link information for each ofits
nodes is also exported. This process creates a setof files which canthenbe edited outside of HIP
and subsequently imported again, allowing substantive changes to bemade with theuser's favor
iteeditor. When a nodeis selected fordisplay, themodification dateon its link file canbe checked
to determine whether that information shouldbe usedin place of the currentdatabase contents.

5. Using HOOP

This sectiondescribes the HIP interactionmodel andpresents the main components and features
of the user interface.

The HIP user interfacereflects two primarydesign goals: 1) consistent treatment of a variety
of media, including continuous media such as video, and 2) reduction of the navigational com
plexity inherent in hypermediasystems. The second goal in particular had a major impact on
manyaspectsof the design,includingthe placementof operations,the use of modes to distinguish
different user levels, the abundance of navigational methods, and the provision of filters to man
age the complexity of the data presented.

5.1 Beginning a HIP session

When a user invokes HIP,the names of all hyperdocuments she is permitted to access are fetched
from the database. She can then openone or more of those hyperdocuments to create a working
set for the session. New documents can also be created and added to the working set at any time.
From this set of open hyperdocuments, one is selected as the current hyperdocument, which is
then used as the context for all other operations. The user can easily move from one open docu
ment to another, as a researcher in a library might utilize several reference books spread out on a
table. Bookmark and history list mechanisms are provided to reduce the potential disorientation of
having multiple documents in use.

Figure 4 shows two views of the top-level HIP window, with a sample list of open hyperdocu
ments and the document named "CMOS-NOTEBOOK" selected as the current hyperdocument.
These two views show the same window, but in 4(a) the AUTHORmenu and the commands below
the list of open hyperdocuments are dimmed, whereas in 4(b) they are selectable. This difference
reflects a change in usermode. Modes are used in HIP to reduce the cognitive overhead of using
the interfaceby presenting only those commands which are appropriate to the user's task. HIP
supports three user modes:Browse, Author, andModify. These modes correspondto the Read,
Append, and Edit permissions defined on HIP objects. In Browse mode, shown in 4(a), the user
can open and traverse any hyperdocument for which she has read access, and can create book
marksfor use in navigating through thosedocuments; no other creationor modification opera
tions are accessible. Figure 4(b) shows the same window in Authormode: commands are
available for creatingand deletinghyperdocuments, nodes, and links and for editing the attributes
of existingcomponents (again subject to user permissions).Modify mode additionally allows the
user to edit the actual contentsof nodes, for thosemedia that provide editing capabilities.The
CUSTOMIZE menuprovides the USER MODE command for changing the currentmode.



(a) Browse mode

hip :hip. tool
mmmmmmmmmwmmmmmmmmmmmmmmmmmm

Picasso Author Browse

r
Cuf*i*»nt Hup#r Document J

CMOS-NOTEBOOK;

'Ciioeri HMperDocunents.

CMOS-KOTEBGGK

Edit; | Copy Delete! Saw
J -

he sares

Spoilowtnr link iLLUSIftflTEt S£H pit photo
-£» op«ni«t Image «wi* oxjde-pjt-photo
w4 OK

(b) Author mode

Customize

Figure 4: The top-level HIPwindow in (a)Browse mode and(b)Author mode

10



IHTRO-TO-HIP

Picasso

Welcome to the HIP Help Oocumen

This document contains information regarding; the construction -end
navigation or complex,* multimedia* documents* called **nyperdocuments>.
using the HIP tool. This information is 0rg«ni.zeo! in two waysi

<1> [Table of contents: topic listing organized by subject|
\2) [Index.* alphtabecical listing of topics covered by Help J

To u3e either of these listings, click the mouse cursor within the box
outlining the one you would Ilk.* to use* then click in the button
narked "Follow" at the right of this panel, ft new panel will appear
*fith the desired listing, tise the same sequence cf selections to
cnoose any of tne items from the list.

Current Pachi

Figure 5: Introductory node of the HEP Help document

5.2 Browsing a hyperdocument

As described above, the user chooses a hyperdocument to browse by selecting a name from the
list of open hyperdocuments. When a hyperdocument is selected, it becomes the current hyper
document and its start-node is automatically opened. The process of opening a node involves
fetching the contents of the node and presenting that data in one of the HEP display panels. Figure
5 shows one such panel, showing the start-node of the HIP Help document.

HEP maintains a cache of these panels, allocating them according to a least-recently-used
algorithm. When a node is opened, a panel from the cache is selected based on the time each panel
was allocated for its current node or the last time an operation was performed from that panel. A
panel can be locked, using the lock button shown in the upper-right of the panel in Figure 5.
Locked panels will not be reused, allowing frequently-accessed nodes to remain available. The
size of the panel cache (initially three) can be adjusted by the user to allow for a larger or smaller
working set of nodes. Panels can also be resized and closed as desired.

Video data is also displayed using these panels, but with some additional commands for con
trolling the videodiscplayer, as shown in Figure 6.. Since markers denote sequences of frames
rather than spatial coordinates, a timeline is used to display marker regions. The buttons under the
marker display area bring up control panels for the videodisc player which allow the user to play,
scan, search, and create markers in the video. Video data is currendy displayed on a monitor adja
cent to the workstation, but we recently received a video overlay board that will enable it to be
shown in the panel itself. The image shown in the figure is not actual video output, but illustrates
how the video will be appear when this board is in use. The video model will also be extended to
allow markers to specify regions within frames as well as temporal sequences of frames.

n



C200 2503 C7S03 1000

•
Video Controls.. Create Entries...

Current Path:

Figure 6: Example video node display

The node shownin Figure 5 contains two link-markers, as indicated by the outlined regions in
the text3. The single outline around a marker denotes that a single link can be followed from that
point. To traverse that link, the user can select thelink-marker (by clicking theleft-mouse button
anywhere in its region) and then select the FOLLOW button at the right of the panel. If a link-
marker has multiple outgoing links, indicated by a double border (see Figure 1, lower-left panel),
the user canpress thebutton labeled SELECT to bring up a menu of the links associated with the
chosenmarker. This menu allows the user to examine the type and destination of a link before
incurring the overhead ofopening its destination node, and thus isuseful even with single links. If
the FOLLOW button is used with a markerwith multiple links, the first link in the set is traversed.
Keyboardshorthands are also provided for both of these commands.

Another way to see the links associated with a node is to use the SHOW ALL LINKS command in
the BROWSE menu on the panel.This command brings up a menu of all links with a sourceor des
tination within the current node. The user can then follow any link directly, without having to
locate and select its marker in the node.

3. Marker display canbe suppressed andrecalled through a command on the BROWSE menu.

12



Link traversal is the primary means ofnavigation inmost hypertext and hypermedia systems.
Because link traversal alone canbe disorienting and inefficient, HIP provides avariety of other
tools to aid the user in navigating complex documents:

(1) Node list An alphabetical listof the nodes inthe current hyperdocument is available viaa
menucommand. This listing includes notonlythename of each node,but also its textual
description, keywords, and dataset location. This tool isuseful for the user who knows the
nameof anodebut not its location withinthehyperdocument, or forobtaining amore
detailed overview of the nodes in the current hyperdocument.

(2) Node visit history. All nodes visitedduring asession are kept in ahistorylist, whichcan
be called upvia amenucommand and used toreturn to apreviously-visited node.

(3) Backtracking. If the usertraverses a link to arrive atanode,the RETURN buttonon the
node panel (represented by aleft-pointing arrow icon) is madeselectable. The user can
select this button to return via that link, backtracking to the source node.

(4) Bookrriarks. A bookmark can be left ma ncKle by markmg a region m
ing the CREATE BOOKMARK command under the BROWSE menu on the nodepanel. This
command prompts the user fora descriptive label for thenew bookmark. The SHOW BOOK
MARK LIST command underthe top-level BROWSE menu provides a menu of these descrip
tors that allows the user to select a bookmark and return to the specified region.
Bookmarks are not saved between HIP sessions.

(5) Graphical overview map. The graphical browserpresents an overview of the hyperdocu
ment as adirected graph or network ofnodes (see Figure 7)4. The user can open or delete
a node directly from the map, and can easily update the graphas nodes and links are cre
ated or deleted5. Color isused todistinguish visited nodes, and adotted outline indicates
nodes currentlybeing viewed. This tool is an application ofthe Picassographical browser,
which providespanning and zooming functions; the user canthus get a feel for the struc
ture of largehyperdocuments and then zoom in to inspect smaller groups ofnodes.

(6) Paths. A path is an ordered sequence ofnodes in a particular hyperdocument. By choos
ing one of the paths defined on the currenthyperdocument, the user can simply use the
PREV and NEXT commands on the node panels to move from node to node along that path.
A path can be entered either by using the SELECT PATH command to choose from all avail
able paths, or by selectingthe SHOW PATHS command in the BROWSE menu of a node
panel. The latter command brings up a menu of all paths through that node and can be
used to enter any one of them at that point A path can be suspended at any point during
traversal and resumed from that point the next time that path is selected.

When a path is selected, the panel interface changes to reflect the new context Figure 8
shows the introductory HIP Help node from Figure 5 after the user selected the path
named "HIP-TUTORIAL-1". Note that the name of the path appearsat the bottom of the
panel, and the PREV and NEXT buttons are selectable while the FOLLOW and SELECT buttons
aredimmed. The link-markers in this node areshown as dotted outlines, indicating that
their links are not currently accessible.

4. Graphlayout is computed automaticallyby the GRAB algorithm[Row87]. The Lisp implementation was done by
Ralph Marshall [Max90].

5. Automatic graphupdateis straightforward, but addsconsiderable overhead to creationand deletion operations.

13



>fMACE:P»F-PiglFU.€»

t1yiD€0:TVlAW-W>ECI

Delete
Hode

— ?•!

Update

;tTSXI: CMO^-16-ePFa
»«»AOt- wu-crossuo

Full Vie;

;kaOE; On£>£ - J1I -WO«3

1 ware-5cwoaAeg-cocs }

Close panel
: :

• :
Current filters:

Figure 7: Graphicalmap of a hyperdocument

Welcome to the HIP Help Document-

This document contains information regarding the construction and
nav

US

vigation of complex,, multimedia documents, called "hyperdocuments,"
mg the HIP tool.. This information is organized in two ways;

*»..«.««......w.-• <♦.».■ • ...»♦.•..«.• •*...• *. —.■*....*-**..».•*...♦•••*•*«»*•♦.♦.-*-».*.•**...^

U> 'fable of contents; c^i~:_if.?J'i,P?L?r**!^.?.?5l - M.^^A?^-

12> *S«3tS«?; ^It^'aoetic*aT yfff^f3_'pf,Y?ffpf_????F??- J?*L i*?if- -'
[To use either of these listings- click the mouse cursor within the boxj
outlining ii
narked TolJ
*ith the de?
choose arty of the items from the list.

Current Path: HIF-TUTORIAL-i '•" • •
,, in-iiir ,n in,- inn nil niiiiirnii i mi i i inn •- - - ••"'

Figure 8: Panel displaying path information andcommands

14



In addition to these navigation tools, HIP provides a flexible filtering mechanism that allows
the user to select the amountand type of information presented at a giventime.Three filtering cri
teria are currently supported: linktype, node type, and keyword. The link type filter canbe used,
for example, toshow only the Topic links inthe HIP Help hyperdocument, removing the clutter
caused by the Index (andother) links. Thenode type filter works similarly. Figure 9 shows the
graphical map ofthe Help document before and after applying the filtering mechanism: in9(a), no
filters have beenapplied; in 9(b), link types Xref and Index have beenfiltered, as indicated by
the filter status line at the bottom of the panel.

hip:browser.panel

_U"»Or, 0> Mfetf-iAX,

I '1'x- tr-ti-ir. >•/. V~-

TmrnrtP-»o»ci

Current filters:

hip -imiws pr. pane I

W*fl O* rKX.1"-UUU,

^tXT:Htlt-tor;cS j

I "•*•' 3£) *'»t«wt:s

•Current filters;

} uxi-wooes

si reyfttatKS

„4—] re*T:«AaKgfiS*] r

r\ ;-x: WtWgjgft'j•••>fR.'-'W

) rg«'-wvsrRooc? i'

ZTr
-OC CfKKfefcKEJ

">-£ itjii a*K-#Atcr£ftt ]

^%"w' y
('••.-M >'. '•».( *-^v«-t«l ','•';''j

w€If XI BOOKItAAKl |

?./ 'i_ tA»Lftiicof-ivpfi-i#Bir 1

Z roils mpcsi •*-.€<'. j

1 1£}0:CttA1C-U«K I

(a) Graph of hyperdocument with no filters applied.

• j 7eXI:»<OOES |

'V } rr*T: owxs''}

'fc««:**V»-e»UOi

f{y);». f•»•''?•> •*'"•'t"iin?;„|'"

| lADttWCOI-TVPLi-lAi'i: j

c~Trrrt9«*-B*s»Krj>5 J

^cTlXlSOCX»«A»»KS J

j ic.\i CT-^'T KVfttr^" 1

/
^ r~«•/! c*c-.ic-*cat i

«

\i itSKi'js's'ow-ilco; j
',

r~teit: c«CAJf-i»« i

Link types; XREF INDEX;

Open
Tiodz-

Delete
Hods

ttodat*

Full View

Close panel

Open
Kode

Jelete
Node

ypoate

Fuii View

Close panei

(b) Graph of hyperdocument after filtering link types XREF and INDEX.

Figure 9: The graphical map of the HEP Help document, before and after applying type filters.

15



Figure 10: The dialog for selecting link type filters.

Figure 10presents the interface for selecting andapplying linktype filters. The tree represent
ing the link type taxonomy is generated using the same algorithm that produces the graphical
overview map of the hyperdocument. Note that selecting an inner node in thetree causes the
entire subtree rooted there to be selected.

Keyword filters allow the user to select a setofkeywords that define a subset of nodes and/or
links to display. For example, when browsing the HIP Help system, the user can filter on the key
word "link,"which causes only those Help nodes dealing with linkconcepts and operations to be
displayed. Additional filters could be added to select nodes and links based onlast access time,
owner, creation date, etc.

Link types and filters are used to implement the path facility described above. When a new
path iscreated, anew link type ofthe same name isadded tothe taxonomy. Links ofthat type are
then created between adjacent nodes in the path, using "invisible" markers (i.e., markers with null
regions) as endpoints. When the userselects a path, alllink types are filtered exceptthe one asso
ciated with thepath, effectively restricting theuserto those links until the pathis suspended or
completed.

53 Building a hyperdocument

The process ofbuilding ahyperdocument inHIP involves several basic operations: 1) creating the
new hyperdocument; 2) adding nodes, either by creating new nodes or importing nodes from
existing hyperdocuments; and 3) creating appropriate links between the nodes. Table 1 summa
rizes the commands provided to support these operations.

16



TABLE L Operations used in building hyperdocuments

Operation Description

New Hyperdocument Creates and opens newhyperdocument, prompting user
for name and attributes.

NewNode Creates new nodein anient hyperdocument, prompting
user forname, type, and other attributes.

Import Node Addsselected node, wim orwimoutits Imks, to current
hyperdocument, eitherby sharing or by copy.

Start Link Createsnew link marker around selected item(s), prompts
user for label, starts new link from that marker.

Start Link from Marker Starts new hnk from selected marker.

End Link Creates new link marker around selected item(s), prompts
user for label sets destination oflink in progress to new
marker, prompts user forattributes ofnew link.

End Linkat Marker Sets destinationof link in progressto selected marker,
prompts user for attributes ofnew link.

Most of these operations involve specifying the attributes of anew object These attributes
include atextual description andalist ofkeyword attributes, a defaultpathname for hyperdocu
ments (used asa starting pointwhen looking for the contents of its nodes),type anddata location
for nodes, andtype for links. Dialog boxes are usedto prompt the user forthis information, as
illustrated in Figure 12. Similardialogs are used for subsequent requeststo edit the attributes of
existing objects.

The last four commands listed in Table 1 support the processofcreatinglinks between nodes.
This process, illustrated in Figures 11 and 12, involves the following steps: opening the source
node, starting the link, openingthe destination node, endingthe link, and specifying the attributes
of the new link. When starting a link, the user can either create a new link-marker implicitly, by
marking a region in the node and selecting the START LINK command, or can add the link to an
existing link-marker by selecting the desired marker and choosing the START LINK FROM MARKER
command6. Ending the link is analogous; command names automatically change to END LINK and
END LINK AT MARKER, respectively,until the destinationis specified. The dialog box of Figure 12 is
presented after the link's destinationhas been chosen to allow the user to set the type and other
attributes of the link. The link type canbe entered in the Type fielddirectly,or can be selected
from a graphical view of the taxonomy by pressingthe SELECTTYPE button. This button brings up
anotherdialog box showing the graphof the taxonomy (similar to the dialog for choosing link
type filters), from which the user can select an existing type or can add a new subtype to be used
for the link.

6. Originally,a single START LINK command was used, internally selecting the appropriateoption according to the
currentmark region or cursor position; however, since marker regions can overlap or can be created aroundsingle
points, the commands were separated in orderto remove ambiguity.

17



(a) Staring a link from a marked region of text
V: AUTHORING-OVERVIEW

Plc*i«a Sithor grouse- :

fa^iieific a Wfciw-dociMxnt. <<:th HIP

H.P »1^(T tacasscxo-prompter nmcr)
qffwdd

Jtr to Creating Nodes j."

3! Crretinj '.ir*.g bot—ean nod»*

: _ ___ ' •

(b) Labelling the new marker

S CREATE-NODE

i:;';:;:;
PlC«J»5tO

IBs itin^ ♦ **r»> Hoc

Ttw KEU HCH cotmand i*
w» the KIP twi«»'«l
ccnerva to fe» accawrtfale

'.•*«*«- '**» ~«m» <*dr t*« n*w neet*. Mo*e r>*»«« e*« t>» «rv!::i*iiitj!irv;
tat OK»«t <*9% .0O«^JIJA «p»cc*. Hyphens or an<Jc>"«op'e»:-fCxQ

•I«*xK Trw ttnie o* data «© too dlaj»i a^atl *n th* mad*. Pti*w»::-fch«;;::;
pop-tu/ttor. in tfii* field aid ar»x the wo**»»- to «t4««e-the.:

ii' nminmm,nimt,iiulT\t wirmr*.ifn>• nnrw>*fiirfw-iiii.it.i

Carr«nt Path:

(c) Ending the link at an existing marker

CK3

::.:v:v:-:-:-X;>:y:-:::v

Figure 11: Steps involved in creating a new link

18



hip :edit-link-dialog

Atrribucet cf Link

Source ftode:

Source ^rker*

Be*^. Nods';

ftetfuirea attrtot/tes:

; Typ^; igtJBTWIC

Optional atftoutes:

Description: a

C^flTE-NCDE

:re»t< Mcde dewriptief*;

Type.

Figure 12: Specifying the attributes of the new link

In addition to these commands for creating and editing hyperdocument, nodes, and links, HIP
provides authoring operations for creating paths through hyperdocuments. The NEW PATH com
mand under the top-level AUTHOR menu brings up the dialog box shown in Figure 13. This dialog
allows the user to build up a path through the current hyperdocument by selecting nodes from a
graphical representation of the document.

tup :etitt - paOi .dialog

• -
-t: . -i-:.- • \-

'

<

lUxl nti* «et *\ ~

n

HtP~TUT£5ZJfti.-i

JMtl in «>»tn:

!«TR0~TD~H3P
WPERODCS

NODES

U HKE

-4~^ it'\ i*xiitt
:,.'EHZE5IS553

• :!t:.',Vf:t^Vt)

>>*»<t*oct»fv»t; -mil

Figure 13: Creating a new path through the HD? Help document

19

i m\

Delete *

Inwrt I

I Full View, 1

Done |

J



6. Extending Picasso to Support Hypermedia

This section outlines the hypermedia abstractions defined for HIP, discusses the approach taken to
provide a consistent display for all media, and illustrates the steps needed to add a new node type.

Many hypermedia systems include custom editorsandbrowsers for text, video, timelines, and
othermedia. HIP, however, was designed to extend the PICASSO toolkit, and therefore utilizes the
underlying PICASSO editors andbrowsers (hereafter referred to aswidgets) to presentallmedia. A
set ofhypermedia primitiveswere definedthat are overlaid on top of existing Picasso widgets to
provide a consistent interface across media This approach also makes HIP easilyextensible to
new media, sincethe only significanteffort involved in adding a new node type is to implement
the necessary primitives.

6.1 Hypermedia abstractions

The hypermedia abstractions are implemented as atwo-level layer, as illustrated in Figure 14(a).
The low-levelabstractions, labeled "Media-dependent primitives,'' encapsulate the interface
between HIP and the PICASSO widget set in a setof primitives thatmust be implemented foreach
type of widgetThe upper levelabstractions, labeled "Abstract operations," provide high-level
operations defined in terms of those primitives. These operations are in turn called by the HIP
interface to implement generic facilities for displaying nodes and manipulating link and marker
information.

The hypermedia abstraction layer is specified in a"mixin" class7. As shown in Figure 14(b),
this class is combinedwith each PICASSO widget class to derive a set of "hyper-widget" classes.
Instances of these classes arethen createdto displaynodes in the interfacepanels.

HIP User Interface

Abstract operations

Media-dependent
primitives

| Text | [Image] | Table | »• | Video |

(a) PICASSO Widgets

Figure 14:The hypermedia abstraction model

r Hypermedia
'mixin' class

PICASSO

widget class

Hyper-widget class

(b)

7. A "mixin" gla$$ is onewhcbis usedonly in conjunction withother classes, to add characteristics or functionality.

20



TABLE 2a. Media-dependent primitives

Method Action/Return value

widget Actual Picasso widget thatdoes I/O
Setup-node Access andloadnode data

Get-current-position Currentcursorcoordinates

Get-mark-region List ofcoordinates describing cunently selected region
Marker-outline-region list of coordinates to useto outline a given marker

Translate-point Translate abstract coordinates to screen coordinates

Scroll-to Scrollwidget to specifiedcoordinates

TABLE 2b. Abstract operations

Method Action/Return value

Get-current-marker Marker indicated by current cursor position

Select-marker Identify particular marker as current

Draw-marker Create marker outline, using translate-point

Do-repaint PICASSO repaintmethod, specialized to draw markers

Tables 2a and 2b summarize the methods defined for the two abstraction levels. The media-
dependent primitives in Table 2aare specialized for each class ofhyper-widget These functions
are primarily concerned with isolating the details of the widget coordinate system. The abstract
operations shown in Table 2b deal mainly withmarker access and display, relying on the underly
ingprimitives to obtain cursor position information and to calculate and display marker regions.

As noted above, a primary goal of the abstraction mechanismis to encapsulate the widget
coordinate system, allowingmarkerregions to be treated in higherlevels simply as lists of tuples.
Thesetuples,whichmay represent row/column pairs for tables ortext, x/y coordinates forimages,
or frame numbers for video, arereturned by the widget (via the marker-outline-region
method) when the marker is created. When amarker is to be displayed, its region is translatedinto
window coordinates,againat the lowest abstraction level. This approachprovides great flexibility
in handling media of arbitrary dimensionality and potentially inconsistent coordinate systems.

6.2 Handling multimedia display consistently

Given the hypermediaabstractions described above,the next task was to determinehow to dis
play the variousmedia using PICASSO interface objects. One option was to define a specialized
type ofdisplaypanel foreachmedium;however, thatapproach would significantlycomplicatethe
task of extending the HEP framework for new media, and would lead to an explosion in the num
ber of panels needed. Instead, HIP provides a single type of display panel that presents all hyper
media operations consistently, regardless ofnode type, while retainingthe full functionality of the
underlying medium.

This generalitywas achieved by associating with each panel an instance ofeach type ofhyper-
widget. The appropriate hyper-widget to use is determined at run-timeby the type ofnode being

21



displayed. The setup-node method for thathyper-widget class is then called to initially it
with the given node8.

Que disadvantage ofusing a generic panelwas thatwe were unableto take full advantage of
PlCASSO's powerful constraint mechanism, which canbe usedto propagate changes from one
variable to another [Row90]. We had originally hopedto bind the availability of various opera
tions to the stateof the currendy-viewed hyper-widget For example,the current cursor position
would dictate whether the link-following commands were dimmed or not, depending upon
whether that position was over a link marker. However, the inconsistency ofboth attributes and
widget behavioracross the different widgets made this approach unwieldy.To avoid addingundue
complexity to the implementation (and reducing extensibility), we instead provide textual feed
back when an operation is selected in an inappropriate state.

63 Extensibility

As described above, media are represented in HIP by hybrid widget classes that inherit hyperme
dia functionality from an abstract class. Adding a new medium thus involves deriving a new
hyper-widget class using this mixin. In addition, anew node type must be defined to represent the
new medium in the datamodel. The following example illustrates how animationswould be inte
grated into the HIP framework:

(1) Define a new subclass of node, named animation-node, to represent the new media
type. Any necessary initializationor saving procedures must alsobe defined by specializ
ing the new-instance and save methods on the new type.

(2) Define anew hybrid widget class, hyper-animation-widget, inheriting from both
the animation-widget class and the hypermedia-mixin class. Using the primi
tives supplied with the animation widget, specialize the hypermedia abstraction. In partic
ular, define the procedures for loading an animation,displaying marker regions in an
animation, and returning current position and region information.

(3) Allow animation-nodes to be displayed by installing hyper-animation-wid
gets in the node display panels.This step involves making minor additions to the code
used to generate those panels, essentially giving each panel anew child".

Extendingthe system to supporta variation on anexisting medium involves only a subset of
these steps. Forexample, the Engineer's Notebook application requiredthe presentation ofwork
in progress(WIP) databaserecords. To accommodate this new data type, a new node type, WIP-
node, was defined as a subtype of object-node. A setup-node method was then defined
for loading the database information into the format requiredby the object display widget.

8. Forefficiency, we planto modify this approach to use cachesofeachkind ofhyper-widget, fillingeachcacheonly
when anode of its type is opened. Panelswill still be generic, andwill be assignedahyper-widget from the appro
priate cache when allocated for a particular node.

9. Again, mis will change: instead ofmodifying the panel code, this step win involve defining amethod that, given
an animation-node, returns an instance ofhyper-animation-widget

22



TABLE 3. Breakdown of HIP code by component

Component lines of Common Lisp code (approximate)

Data model 1500

Hypermedia abstractions 3500

User Interface 3000

Interfacesuppon 3000

Total: 11,000

7. Experience

This section describesthe lessons learned while designingandimplementing HIP. HIP was devel
oped inapproximately 10person-months, and is composed of approximately 11,000 lines of
Common Lisp code. Table 3 showsthe breakdown of codeby component.

The original development approach was to begin withatext-only prototype and then general
ize thesystem to suppon additional media. Itbecame clear that this approach wasinappropriate as
we realized that the attributes and characteristics of text do not translate naturally to other media,
especially those of different dimensionality. In particular, thecharacteristics of continuous media
such asvideo areinherently different from those of a staticmedium such as text Thus, our
attempt to force atextual modelof theworld onto all other media wassoonrevised, andled to the
developmentof the hypermedia abstractions described in the previous section.

The desire to providea consistent interface for allmedialed to some sacrifice of sophistica
tion. As discussed in 6.2, the use of a generic panel for node display forced us to abandonthe PIC
ASSOconstraint mechanism as an active feedback mechanism. As the number of media grew, the
constraint specification code became unwieldy, since each underlying widget had different
attributes from which to propagatechanges.To propagate cursorposition changes, for example,
we would need to define constraints on the row and column attributes for text, on the cur
rent-indices attribute for tables, and on the selection attribute for graphics, to name a
few. Had the PICASSO widget set been designed with a more consistent set of accessors, the HEP
implementation at this level could have been considerably cleaner.

Other inconsistencies in the implementation of PICASSO widgets necessitated the use of cer
tain inelegant approaches in HIP. Forexample, each widget class has a specialized repaint func
tion, normally invoked by the do-repaint method. In some cases, however, the internal
repaint function is called from other places, such as in the scrolling functions for text-widgets.
Consequently, we had to modify some existing PICASSO code to ensure that markers would
always be displayed following a repaint operation.

Despite these difficulties, PICASSO proved to be a powerful, useful tool for building what
became a fairly complex application. Tne interface toolkit made the creation of frames and dia
logs relatively painless. Moreover, the object-oriented approachused in PICASSO greatly facili
tated the addition of a hypermedia framework, since the new "hyper" classes could easily take
advantageof the attributes and functionality ofexisting widget classes. The implementation ofthe
hypermedia abstraction layer in particulardepends upon object-oriented techniques, using generic
primitives that are specialized for each widget class and used as building blocks for higher levels.

23



Also, PlCASSO's constraint mechanism, though not used as extensively as had been planned, was
used to great advantage throughout HIP in maintaining relationshipsbetween objects and imple
menting the more sophisticated browsing capabilities (for example, constraints are used to propa
gate changes in user mode to the availability of commands in the display panels).

8. Conclusions

The goal of the HIP project was to provide an extensible, easy-to-use hypermedia system using
the tools and interface support provided by the PICASSO application development system. HEP has
achieved this goal, integrating text, images, tables, graphics, audio, andvideo within a consistent,
extensible hypermedia framework. It provides a wealth of navigation tools and other features
designed to reduce the complexity of browsing large hyperdocuments. HIP thus supports a wide
range of user needs and levels, from first-time browsers to experienced authors.

HIP is now being used to build applications, including the Engineer's Notebook and semicon
ductor tutorial examples described in this paper.

Acknowledgments

The author gratefully acknowledges the support andcontributions provided by the PICASSO
research group members,allofwhom graciously responded to numerous requests forbug fixes,
new capabilities, and explanations of"undocumented features": Joe Konstan, Chung Liu, Steve
Seitz, and especially Brian Smith (whose uniformly excellent ideas are reflected in many of the
better aspects of HEP's design). David Mudie was instrumental in implementing the interface
betweenHIP andIngres, andplayeda large role in developing the Engineer's Notebook
application. Dan Riceparticipated inthedesign of the first version of HIP, particularly inworking
outthe details of the data model.RalphMarshall (MITRE, Bedford MA) generously shared his
elegant implementation of the directed graph display algorithm used in the graphical
hyperdocument browserand in severalotherHIP tools.

24



References

[App87] Apple Computer, Inc., HyperCard User'sGuide. 1987.

[Bec90] Becker,B.S., andD. Mudie,"A Paper-Free Replacement for the Engineer's
Laboratory Notebook," presented at the 1990 SRC/DARPAIC-C2M Workshop, U.C.
Berkeley, August 16.1990.

[Com87] CompuServe, Inc., Graphics Interchange Format (GIF) Specification, 1987.

[Con87] Conklin, E. J.,"Hypertext: An Introduction andSurvey," Computer, Vol. 20,No. 9
(Sept 1987), pp. 17-41.

[DeR89] DeRose, S. J.,"Expanding the Notionof Links,"Hypertext '89 Proceedings,
Pittsburgh PA, Nov. 1989.

[Hal87] Halasz, F.G., et al.,"NoteCards in a Nutshell," Proc. oftheACMCHI+GI1987
Conference, Toronto, Canada, April 1987.

[Hod89] Hodges, M.E., R. M Sasnett, andM. S. Ackerman, "A Construction Set for
Multimedia Applications," IEEE Software, Vol. 6, No. 1 (January 1989), pp. 37-43.

[Hod90] Hodges, ME., R. M. Sasnett, and V. J. Harward, "Musings on Multimedia," Unix
Review, Vol. 8, No.2, pp. 83-87.

Png89] Ingres Corp., Introducing INGRES for the Unix and VMS Operarinyr Systems.
(Release 6.2), June 1989.

[Kee88] Keene, S., Object-Oriented Programming in Common Lisp, Addison-Wesley, 1988.

[Mar90] Marshall, R. Implementation of the GRAB directed graph layoutalgorithm. Personal
communication, April 1990.

[Mey86] Meyrowitz, N., "Intermedia: The ArchitectureandConstruction of an Object-
Oriented Hypermedia System and Applications Framework," Proc. OOPSLA '86,
Portland, OR, Sept. 1986.

[Row87] Rowe, LA., et. al, "A Browser for Directed Graphs," SoftwarePractice and
Experience, VoL 17, No. 1 (January 1987).

[Row90] Rowe, L. A., et al,"The Picasso Application Framework," UCB/ERL M90/18,
Computer Science Division -- EECS, U.C. Berkeley, March 1990.

[Shi89] Shipman, F. M., RJ. Chaney, and G. A. Gorry,"Distributed Hypertext for
Collaborative Research: The Virtual Notebook System," Hypertext '89 Proceedings,
Pittsburgh, PA, Nov. 1989.

[Wal85] Walker, J.H., "The Document Examiner," SIGGRAPH Video Review, Edited
Compilation from CHF85: Human Factors in Computing Systems, 1985.

25


