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Notation

G grasp map; mapscontact forces to object forces

J hand Jacobian; maps joint velocities to contact velocities

N(A) null space of the matrix A

Tl{A) range space of the matrix A
S(u) s^ew svmmet"c matrix associated with w; defined

by S(u)a = u x a for all a € R; S(w) € se(3)
SE(Z) special Euclidean group; rigid motions

se(3) TeS£(3); Lie algebra of5£(3); generalized velocity
50(3) special orthogonal group; rotation matrices

so(3) TeSO(3); Lie algebra of50(3); rotational velocity
u „i ^ie bracket between two vector fields; in coordi-
"•« nates [/,,] =§*/-&,

fc number of fingers

mi number of forces exerted by the ith contact

m total number of grasping constraints

n,- number ofdegrees of freedom of the ith finger

n total number of degrees of freedom for the hand



Chapter 1

Introduction

In these notes we give the reader a feel for themathematical problems involved in
describing grasping and fine motion manipulation of objects with multifingered
robot hands. Multifingered robot hands can be thought of as several robots
(fingers) on a common base (palm) cooperatively manipulating anobject. It is
clear that positioning an object inspace, namely specifying its position and ori
entation needs 6 degrees offreedom. However, dextrously manipulating objects
requires far more degrees of freedom especially in the execution of tasks involv
ing picking up an object, regrasping it and using the object. It is here that the
study ofmultifingered hands is important. The study ofmultifingered hands
has a long history not just in the context of robotics but also in the context of
prosthesis.

In Chapter 2, we set down a brief discussion of the kinematics of a single
rigid body, followed by astudy of contacts and the kinematics of rolling. Rolling
is an especially important way in which finger tips move over the surface ofan
object in order both to reposition and regrasp the object. In Section 2.4 we
study the kinematics of a multifingered hand in terms of the kinematics of the
individual fingers. Finally, we define grasp stability and the manipulability of
grasps. The appendix contains a derivation of the contact equations in terms
of the metric tensor and connection form of the surfaces in contact at the finger
tip and object.

In Chapter 3, we develop the dynamics of multifingered hands by aggregating
the dynamics of individual fingers with the dynamics of the grasped object and
the kinematic equations of contact. In Section 3.3 we describe a few different
control techniques to follow a specified trajectory for the body and the grasp
forces exerted on it.

In Chapter 4, we axiomatize the process of regrasping an object by rolling
the finger tips on the surface of the object. We show how the problem of finding
geodesies for singular or Carnot-Caratheodory metrics is useful in steering the
finger tips from one grasp to another. We conclude with some open problems.



Introduction

The discussion of this paper is a summary of our own work and that of
others, notably those at Harvard, in the last few years in this area. Detailed
references to these appear in the body of the notes.



Chapter 2

Kinematics and Statics

This chapter provides a brief introduction to grasping and the notation used
in this paper. We derive the basic velocity and force transformations for both
fixed and rolling contacts. For a more complete discussion of the kinematics of
grasping see Kerr [5] and Montana [12].

2.1 Rigid body kinematics

A rigid motion of an object is a motion which preserves distance and orien
tation. Every such rigid motion can be represented by a rotation followed by
a translation. Letting 50(3) represent the group ofall proper 3 x.3 rotation
matrices and Rdenote the real numbers, we can represent a rigid motion by
the pair (72, p) e 50(3) x R3. We define S£(3) = 50(3) x R3 to be the set of
all rigid motions and note that SE(Z) is a manifold ofdimension 6 as well as a
group. It may be verified that S£(3) is a Lie group.

The configuration ofa rigid body with respect to some identity configuration
is described by an element g6 SE(Z). gacting on apoint attached to the body
defines the new location of the point relative to its identity configuration. If
q€ R is a point on the body relative to some base (world) reference frame,
then the location ofqwith respect to that basis after the body undergoes a rigid
motion g is

9(q) = Rq + P (2.1)
where R and p are represented in the same basis as q. This action is shown
pictorially in Figure 2.1. We refer to the absolute coordinates as the world or
base coordinates and the coordinates of a point on the object relative to the
identityconfiguration as the body coordinates.

An object trajectory is described by a time parameterized curve, g(t) 6
SE(Z). The velocity of an object is a tangent vector at g, so g€ TgSE(Z). g
also acts on points in R3, giving a velocity vector g(q) e R3. Since SE(Z) is
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Figure 2.1: Rigid motion

a Lie group, we can associate each element of TgSE(Z) with the Lie algebra
se(3) « TeSE(Z) where e is the identity element. An element f e se(Z) can
be represented as a skew symmetric matrix, S € so(Z) and a vector v £ R3.
Furthermore, any skew symmetric matrix has the form:

S =

0 -Us Uy

uz 0 -0/

. ~wy w, 0

(2.2)

and hence we will often write 5(w) € $o(Z) to be the skew symmetric matrix
associated with u> € R3. Note that S(u)q = w x q.

There aretwo ways to map TgSE(Z) toTeSE(Z) —left and right translation.
The usual method is to use left translation, Lg-i, where Lgh = go h. The
tangent map of Lg-x maps I>S£(3) to TeSE(Z) and when applied to g, the
resulting map, T5-i(L?_i)£, takes a point inbody coordinates to the velocity in
body coordinates. For our purposes it ismore natural to use the velocity ofthe
point in world coordinates. This can be accomplished by using right translation
and the resulting map takes a point in world coordinates to a velocity in world
coordinates. Formally, we define the generalized velocity, £ 6 TeSE(Z), in terms
of g e ^5^(3) as

£ = 99~l (2.3)
The generalized velocity f is also called a twist.

Elements of SE(Z) can be represented as 4 x 4 matrices, referred to as
homogeneous coordinates. If g € 5£(3) we write

9 =
R p
0 1 (2-4)

Apoint ?€R3 can be represented as a vector in R4 by defining q= (q, 1) e
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R3 x R. Using this representation, g(q) becomes matrix multiplication

To simplify notation we shall usually refer to qsimply as q.
The generalized velocity ofa motion, in world coordinates, is

€»*,-!. [*f P-**TP
which can be rewritten as

= f%) «1

(2.6)

(2.7)

where w€ R3, v€ R3 and 5(w) is the skew symmetric matrix generated by w.
The vector

-C) (2.8)

is referred to as the twist coordinates of f and represents the rotational and
linear velocity of an object as viewed in world coordinates.

2.2 Fixed contact kinematics

Traditionally, a fixed contact between a finger and an object is described as a
mapping between forces exerted by the finger at the point of contact and the
resultant forces at some reference point on the object (e.g., the center of mass).
We represent the force exerted at the ith contact as FCi = (/Ci, fCi) £ R6 where
fCi is the force exerted by contact and rCi is the moment. The relationship
between contact force and object force has the form

\ro ) \rei+ re. x fCi J
I 0

S(rCi) I (2.9)

where r«. € R3 is the vector between the object reference point and the contact.
Typically, a finger will not be able toexert forces in every direction; several

simple contact models are used to classify common contact configurations. A
point contact is obtained when there is no friction between the fingertip and the
object. In this case, forces can only be applied in the direction normal to the
surface oftheobject and hence we can represent the applied force as

:> " [ 0 fa (2.10)

where nCi is the unit vector normal to the object and /e. GR is the amount of
force applied by the finger in that direction.
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A point contact with friction model is used when friction exists between the
fingertip and theobject, in which case forces can be exerted inany direction that
is within a cone offorces about the direction ofthe surface normal. This cone,
called the friction cone, is determined by the coefficient offriction. Figure 2.2b
shows a point contact with friction and the resultant friction cone. This model
assumes that moments cannot be applied (i.e., there is no torsional friction
about the surface normal). As before, we represent the force felt by the object
with respect to a basisofdirections which are consistent with the friction model:

**« = /c (2.11)

with fei € R3.
A more realistic contact model is the soft finger contact. Here we allow not

only forces to be applied in a cone about the surface normal but also torques
about that normal (see Figure 2.2c). These torques are limited by the tor
sional friction coefficient. Inside the relevant friction cones, this contact can be
described as

F„ =
0 fCi

7V
(2.12)

where fCi 6 R3 and rc. € R.
Matrices mapping finger forces to contact force as in equations (2.10), (2.11)

and (2.12) are referred to as selection matrices and we denote them by B,(x0) €



2.2 Fixed contact kinematics

R6xmS where m,- is the dimension of the range of forces and moments that
can be applied for a given contact type. Note their dependence on the (fixed)
contact point and the orientation of the object. Each of the contact types thus
can be represented as a linear map Gi{rCi,x0): FCi € Rm< •-»• F0

Gi(rei,x0) =[ 7 ° Bi(x0) (2.13)

Since rv, isa function ofthe object orientation, we shall usually write G,(rc., x0)
as Gi(x0).

If we have several fingers contacting an object then the net force on the
object is the sum of theforces due to each finger. The grasp map, G: Rm —• R6,
is the map between finger forces and the resultant total object force. Since each
contact map is linear and forces can be superposed, we can add the individual
contact maps to form G:

Fo=[G1 ... Gk ]
F*x \

Fck )

= GF F0£ R6
c' Fc e Rmi x Rm' x ... x Rm*

(2.14)
The null space of the grasp mapcorresponds to finger forces which cause no

net force to be exerted on the object. We call the force on the object resulting
from finger forces which lie in the null space of 0, denoted tf{G), internal or
null forces. It is in part these internal forces which allow us to grip or squeeze
an object.

Dual to the representation ofcontacts asapplied force and torque, one may
also represent acontact as aconstraint between the relative velocity ofthe object
and the finger. Letting vCi and uCi represent the linear and angular velocity of
the contact point and v0 and u0 represent the object velocity,

(iJ-I.'VIC)
If we define vc to be the velocities conjugate to fe, the forces exerted by the
fingers, it follows that

(::)=cr(::) ™
This relationship between object velocity and finger velocities can also be de
rived in a more general setting using the principle of virtual work.

Example

Consider a simple two-fingered planar hand as shown in Figure 2.3. Since we
are in the plane, the grasp matrix maps finger forces into x and y forces, and a
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Figure 2.3: Planar two fingered grasp

torque perpendicular to the xy plane. If we assume that the contacts are point
contacts with friction,

Gi(x, y, <f>) =
/

/±rcos^\
O ( ±rsin<j>]

and the planar grasp map for Figure 2.3 is

G(x, y, <f>) =

" 1 0 1

0 "
0 1

0 0

/ 0 0
J

0 0

0 0

rsin(<f>) -rcos(<£) -rsin(<£) rcos(<£)

(2.17)

(2.18)

where all forces are measured with respect to the xy coordinates shown in the
figure.

Equation (2.18) shows that x and y forces from the fingers cause the same
x and y forces to be exerted on the object as well as a torque that isdependent
on the orientation of the object. The null space of this map is spanned by the
vector

( cos <f> \
sin<£

—cos^
\ —sin^ J

(2.19)
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Figure 2.4: Parameterization of rolling contacts

which corresponds to forces applied along the line connecting the two fingertips.
Finger forces applied along this line will cause no net force on the object.

2.3 Rolling contact kinematics

Most real world grasping situations involve moving rather than fixed contacts.
Human fingers and many robotic fingers are actually surfaces and manipulation
ofan object by a set of fingers involves rolling of the fingers along the object
surface. In this section we derive the kinematic equations for one object rolling
against another.

Consider two objects, S0 and 5/ in R3 which are touching at a point. We will
restrict ourselves to the case where motion is contained in a single coordinate
chart for each object. Let (c0, U0) and (cf,Uf) be charts for thetwo surfaces and
c*o = (w0, v0) GU0 and ocf = (uf,vj) € Uj be local coordinates. We will assume
that c0 and cj are orthogonal representations ofthe surface.1 Furthermore, we
let rj> represent the relative orientation of the tangent planes at the point of
contact (see Figure 2.4). We call rj = (a0,a/, V>) the contact coordinates.

Let g e SE(Z) describe the relative position and orientation of Sf with
respect toS0. We wish to study the relationship between g and the local contact
coordinates. To do so we assume that ge WC SE(Z) where W is the set ofall
relative positions for which the two objects remain in contact.

We begin by writing the algebraic equations that 77 must satisfy. At any

1A surface representation c: (u, v) -* R? is orthogonal if f£ and £ are orthogonal. Such
a representation can always be constructed for a regular surface in a given coordinate chart.
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point ofcontact the location ofthe contact inspace must agree for bothobjects

gocf(af) = co(a0) (2.20)

Furthermore, the tangent planes must coincide and hence the outward surface
normals n0:S0 -»• S2 C R3 and ns:Sj -* S2 C R3 must also agree. Letting
R G50(3) be the rotational component ofg

Rnj(af) = -n0(a0) (2.21)

between the tangent planes as the unique angle

(2.23)

Finally, we define the angle between the tangent planes as the unique angle
iff e [0,2ir) such that

docj J v dot.
where

r sc^.. 0
Mi= "*"<" lldc.

I ° life
insures that the columns of |j are unit length and

*,= [ C0S^ "Sint^ L —sm^y —cos iff (2.24)

converts a9 coordinates to the equivalent ocj coordinates at the point of con
tact. Since the normals are in opposite directions, ify acts by negating the y
coordinate and rotating by an angle tf>. Note that R$ —#T = R~l.

Proposition 1 There is a smooth local bijection between rj and g C W if and
only if

is full rank

Proof. Functionally, equations (2.20) through (2.22) are ofthe form h(g, rj) =
0. It is therefore sufficient (and necessary) to show that f| spans the allowable
velocity space, TW. Since if> can be defined directly, we omit the if) coordinate
and consider the dependence on a = {a0,ocj)t

%>a) = 1 / ^p \\ I (2-25)
dh ( dc°<Q^ -Rdc<iat) ,
^(J'°» = *JZa r£Li I <226>
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First we show that the span ofthe rows of f£ does not contain either (n0,0) or
(0, n„), corresponding to translation and rotation about n0. (0, n0) is spanned
directly by dif> and (no,0) should not belong to the row span of §£ because
motion in the n0 direction is not contained in TW. Since the ranee of I5"-

an<* 3*7 define the tangent plane and the n,'s have unit magnitude and using
equation (2.21), we find

(2.27)

(2.28)

Next we examine the conditions under which §£ loses rank. Plugging equa
tion (2.22) into equation (2.26), §£ can only lose rank when ££*• = JW/1J2*Af,£g
so f£ is full rank ifand only if

&n° A*
M,

oa0 ;l+RlJ%MJlR*
.0n,

(2.29)

is full rank. 0

Proceeding along the lines of the proof given above, the differential relation
ship between r) and gcan be derived (see appendix at end of this chapter). It is
convenient to make use of the normalized gauss frame defined on each surface

[*« «] =[ftWl *] (2.30)

Ifwe do not allow the fingers to slide on the object (soft finger contacts) then
the motion of the contacts, ij.asa function of the relative motion, (w, v), is
given by

6c0 = M-\K0 + ks)-^t
or/ = MJ-^iKo + K/)-1^ (2.31)

iff = ToModco + TjMjaj
where

ut =

K0 =

Kt = R,

na x cj

dn(

da.
-M71

iyJ t^**

(2.32)

(2.33)

(2.34)

11
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(K0 -fKj) is called the relative curvature [12]. From equations (2.22) and (2.29)
we see that the relative curvature isinvertible precisely when j* isonto TW. We
shall assume that all manipulation occurs in an open set on which the relative
curvature is invertible.

We can now describe the kinematics for rolling contact—the relationship
between the object velocities and a set of finger velocities. This situation is
identical to that given for fixed contacts except that the vector rc. between the
object reference frame and the ith contact point is now a function of rj as well
as the object orientation. But r\ is a continuous function ofg —x~1xji so we
have

F0 = G(xotxf)Fe (2.37)

where xj = (*/,,•••,x/k) is the position and orientation of the fingers and
Fc € Rn/ x •••x Rn* is the force exerted bythe fingers at the contact point. As
before, G is composed of matrices of the form

Gi(XoiXf)=[s(rei) / Bi{x0,xj) (2.38)

The velocity relationship canagain bederived from the principle ofvirtual work
or algebraically to determine

Examples

To illustrate the form of the contact equations, we consider two examples—a
sphere rolling on a plane and a sphere rolling on another sphere. The local
coordinates of the plane are choosen to be c0(u,v) = (w,v,0). The sphere
requires multiple coordinate charts to describe the entire surface, so we shall
restrict ourself to the chart

cj(u,v) = {pcosucosv, -pcosusinv,/?sinu) (2.40)
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Figure 2.5: Spherical finger rolling on a plane and on another sphere. The finger
is only allowed to roll on the object and not slip or twist.

where p is the radius of the sphere and -ir/2 < u < tt/2, —t < v < tt. The
curvature, torsion and metric tensors are easily calculated to be

Ka

M0 -[J!]
To = [ 0 0 ]

Kj =

Mf =

l/P 0
0 1/p

P 0
0 pcosu

Tf = [ 0 -lip tanu ]

(2.41)

Consider first a spherical finger of radius prolling on a plane. The equations
governing the evolutionof the contact point are

Vf

Vo

4

"1

sec Uf u>2

pcostff ui —psmiff o»2
—p sin iff wi —pcos iff o>2
—tan uj u>2

(2.42)

where ut = (wi,w2). Ifour object is a sphere of unit radius instead of a plane,
the contact equations become

uf =

iff =
iio =

v0 =

if, =

1+7 "i
j$j sec Uf w2
j^cosiffwi - j^sinipuf2
-•fa sin if; sec u0 wi - -^ cos if) sec u0 w2
^sinV' tanu0 wx + ^(cos^ tanw0 - lrAo tanw/) w2

(2.43)

2.4 Finger Kinematics

Up to this point we have assumed that the fingers of the hand are points or
surfaces in space. In fact, we are more interested in considering fingers which

13
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are kinematic mechanisms. For each finger i we associate a forward kinematic
map Kft: Rni -+SE(Z) which takes joint position to end effector position and
orientation. The Jacobian ofthe forward kinematic map relates jointvelocities
to the end effector velocities,

/ vt. \ dKf. dd
\ »n J= ~d0f7TtK* =J^9^e^ '/. «R* (vfi,ufi) e R6 (2.44)

Combining this with the velocity transformation between the finger location
and thecontact location (a function ofx~lXf) we write the contact Jacobian as

*.(«..»/,)=(£ *?>)*. j*<:e*+ (::) (2.45)

As with the fixed contacts, fingers are only allowed to exert forces in certain
directions depending on the contact type. This is equivalent to saying that
finger motions are only constrained in certain directions; these directions are
given by the column span ofBj(x0%9Ji)\Rm* —R6 (where Bt is the selection
matrix defined in Section 2.2). Combining this with the grasp map for the ith
finger, we obtain the velocity constraint due to the ith contact,

G?(*o,0/j( l°o )=BJixo^f^Xxo^f^f, (2.46)
We now stack these matrices and write the grasp constraint for the hand as

Gf

lGJj
(::)-

r *fj.i

GT(x0,9)(vJo^=J(Xo,

0

B?lk Jck .

9)6

(2.47)

(2.48)

2.5 Grasp stability and manipulability
For contact models involving friction, we must insure that all contact forces lie
within the friction cone determined by the coefficient offriction. The set ofall
forces lying in or on the friction cone is

TO={/c€R":||/(fj.||< |̂|/c"J|, ,•=!,...,&, i=l,...,mv} (2.49)
where ft., is the tangent component of the jth element of fe., /£ is the normal
force for the ith contact, and fi4j is the coefficient of friction corresponding to
fdj. For soft finger contacts, the torques exerted by the fingers also satisfy
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equation (2.49) with f*.. replaced by the torque (i.e., we do not want toapply a
torque which isgreater than the torsional friction coefficient multiplied by the
magnitudeof the normal force).

We say a grasp on an object is stable if we can resist, through a set of
contacts, arbitrary forces and torques on the object. This requires that the
image ofthe grasp map over the set offerees in the friction cone span the space
of forces and torques on the object, that is G(FC) = R6. Note that this is
a condition only on the contact kinematics and not the finger kinematics. A
stablegrasp is also called a force closure grasp.

A grasp is said to be manipulate if arbitrary motions of the object can be
accommodated by the fingers. Unlike stability, manipulability is a property
ofboth the contact and finger kinematics. Since the range of motion of the
contacts is given locally by the range of the hand Jacobian, the condition can
be written as H(GT) C K(J).

It is also useful todefine the concept ofprehensility. Agrasp isprehensile if
there exists a force contained in the null space ofthe grasp map which also lies
in the interior of the friction cone. More formally, M{G)C\ FC£ {} where FC is
the set offerees lying completely within the friction cone (i.e., \\f*..\\ < A*y||/?||).
We shallrequire thisproperty inorder to insure that ourcontrollers canmaintain
a grip on an object while manipulating it.

We shall generally assume that a grasp has been chosen which is stable,
manipulate and prehensile. The problem of finding such grasps given a set
of fingers and an object has been studied in some detail. Agood treatment is
given by Nguyen [14].
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Appendix - Contact kinematics derivation

In this appendix we derive the kinematics ofcontact for two objects touching
each other at a point. The notation is described more fully in Section 2.3. An
alternate derivation can be found ina recent paper by Montana [12].

Toderive the kinematics, we begin with constraint equations given by equat
ing the points ofcontact, normals ofcontact and tangent planes at the contact
points:

Rcf(ctf) + p = Co{<x0) (2.50)
Rnf(acf) = -n0(a0) (2.51)

Differentiate (2.50) and (2.51)

Multiply (2.53) by f£T and substitute a0 into (2.54)

Using (2.52) in the last term of(2.55) and rearranging

tdnf . dn0 .r_<,,dc0Tdc

= -^-fe^feV/+P) (2.56)
Simplify the first term and multiply by M~7'§§?-T on the ieft

={^fe'gfo%+̂ fe'fe^1) W-57)
*/ *«
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Multiply both sides of (2.56) by M"T|̂ T and use the previous calculation

(-"^fe'**'~W^iRc,+p)j (2.58)
Let wt stand for the Rnf term and ut represent the Rcf + p term:

or/ =M/% (tf, +K0) (wt - K0vt) (2.59)
Now wt and vt can now be calculated in terms of the relative velocity given by
(«S(w), v) = gg'1. We use the fact that S(u))a = wxaandwxo = -oxuto
obtain

Wt = -M-"T|~T(wx(i2n/)) =-M."T£;TKxa,) (2.60)
vt = Af-T^-2- (w x(flC/) +uxp+v)

= M«> ^~ (wx(ca-p)+wxp+»)

= ° J*~o (-CoXw +^,) (2.61)
We see that ut is the relative rotational velocity projected onto the tangent
plane at the contact. It includes only terms due to rolling since rotation normal
to the surface is annihilated by taking the cross product with n0. Likewise, vt
is the relative linear velocity between the contacts, projected onto the tangent
plane, i.e., the sliding velocity.

A similar calculation yields

a0 =M-1(Kf +Koy (wt-KfVt) (2.62)
which gives the kinematics for the object contact point in local coordinates.

Next we solve for iff, the angle between the tangent planes of the finger and
object. Combining (2.51) and (2.52) we can write

*[£W »/][t -iH^-1 -] (2 63)
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and using the normalized gaussian coordinates this can be rewritten

R[xf yf ZfJRj, = [xo ya zc] (2.64)
Take the derivative of (2.64)

M*fy/zf]R* +R[xjyfh]^ +R[*fyfZf]\RJ j] =[*oyoio] (2.65)
Premultiply by yfRT

l^il'Af*/ V/ 2r,]/^+y7[Ay y, i/]^+(010) [^gl =pJiZ^txo V* *•] (2.66)
Postmultiply by Rj, (0 ) and note R+R+ = I

yJRTRxf+yJxf+(0l0)[^ l](o)=yjRT[ioyoi0]R^(o) (2.67)
yJR'Rxf +yjxf +(0 1)[_0^ \ ](J) =yJ^[i0 y, i.]*, (J) (2.68)

yfRTRxf +yji, -^=j/J^r [i0 y0 ij^ fo) (2.69)

From (2.64) we see that yJRT = (0 10)^
.T i

=(01)**[*fr ]and so

*=tfJ™«, +tffgA,-<0 !)*♦[£'; J|;]^G) (2.70)
Using the following identities

xjyi = 0 =• xTyi = -xTyi = yTXi

xjxi = 1 =» ifx,- = 0

(2.70) can be written as

(2.71)

= w„ -f r0M0d0 + TfMfOf (2.72)

where

<*>„ = yjRTRxf = (Ryf)Tuf x (ifcc/)
(2.73)



Appendix - Contact kinematics derivation 19

and the last equality follows from the vector formula a-6xc=6-cxa. This last
equation shows that u„ isjust the relative rotational velocity projected onto the
surface normal.

Collecting equations (2.59), (2.62) and (2.72) we have

oco = M;l(K9 +Kj)-l(ut-it,vt) (2.74)
aj = MJlR+{K9+Ks)-l(ut-K9vt) (2.75)

if) - utn + ToMo6to + TfMfCtf (2.76)

The matrix Kc + Kf is called the relative curvature by Montana[12]. /



Chapter 3

Dynamics and Control

In this section we review some basic results in dynamics ofrobot systems. The
primary result which we present is that even for relatively complicated robot
systems, the equations of motion for the system can be written in a standard
form. This point of view has been used by Khatib in his operational space
formulation [6] and in some recent extensions [7]. The results presented in this
section are direct extensions ofthose works, although the approach is different.

3.1 Robot dynamics

We begin by deriving the robot dynamics for a manipulator in joint space. Let
9e Rn be the joint angles for the manipulator and r €Rn be the corresponding
joint torques. The Lagrangian for the system may be shown to be ofthe form

L= M(9)(9,9)-rV(9) (3.1)

where M{9) is the inertia matrix for the manipulator and V{9) is the potential
energy due to gravity. Substituting into Lagrange's equations

Id dL dL \ A

and letting r represent the actuator torques (and other non-conservative forces),
we obtain

M{9)(9,.) +DM(9)(9, .)(0) - ±DM(9)(9,9)(.) +DV(9)(.) =r (3.3)
To put this in a more conventional form we define the matrix C{9,9) as

\DM{9){b,a){9)-1-aTC{9,9)b =\DM{9){9, a)(b) +\DM{9){b, a){9) - \dM{9){9, b)(a) (3.4)
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and write

M{9)9 + C{9,9)9 + N{9,9) = r (3.5)

where N{9,9) includes gravity terms and other forces (such as friction) which
act at the joints.

For systems ofthis type, the inertia matrix is always symmetric and positive
definite and it can be shown thatM-2C is skew symmetric (using this particular
choice ofC). It is both the form and the structure ofthis equation that we will
attempt to maintain in more complicated systems.

3.2 Robot hand dynamics

We now examine the dynamics ofaset offingers actuated at each joint connected
through a set ofcontacts to a rigid body. The finger dynamics can be written
as

Mf(9)9 + Cf(9,9)9 + Nf(0,9) = r (3.6)
where 9 € Rni x •. •x Rn* is now the set ofjoint angles for all of the robots
and r is the corresponding set of torques. The object dynamics are given by
the Newton-Euler equations

where I0 = R1RT is the object inertia in world coordinates and V0 is the
potentialenergy. In local coordinates this has the same basic form as the robot
dynamics, lacking only the actuator torques:

M0(x)x + C0(x, x)x + N0(x, x) = Q (3.8)

where x is a local parameterization of xQ € SE(Z). We attach these two systems
with a set of constraints

GT(x}9)x = J(x,9)9 (3.9)
which represents the grasp. We will assume that the grasp is both stable and
manipulable. For the moment we will also require J to be injective.

This velocity constraint generates a constraint on the virtual displacements
69 and Sx, namely 69 = J-\q)GT{q)6x with q= (x,9). Using this relationship,
we can write Lagrange's equations as

d dL dL , \ c

*&£')(:)-• <»»dtdx dx / \ ox I

l£dL
\dtdq
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IddL dL \,Q^(ddL 8L\C
\JtTri9'T)8e+\JtJi-^)6x = 0 (3.12)

rT-T(ddL dL \ ^IddL dL\c A , ^

and since 6x is arbitrary

ddL dL T(ddL dL\ „T T
Jtii-^+GjT\jtTri9)=GJ T <3-14)

This equation together with the velocity constraint given in equation (3.9)
describes the system completely. Note that equation (3.14) is a vector differen
tial equation with n-m rows and equation (3.9) is a vector equation with m
rows.

It is tempting to derive equation (3.14) by using the velocity constraint
directly in the kinetic energy equation (which is a function of 9and x) and then
substituting this into Lagrange's equations. As noted in Rosenberg [15] this can
only be done if the constraint is holonomic, i.e., 9 can be written as a function
of x.

Next we separate the kinetic energy into an object portion and a robot
portion

T= 9TMf(9)9 +xTM0(x)x (3.15)
Usingequation (3.14) we find

M(q)x + C(q,q)x = GJ~Tr= F (3.16)
where

M = M0 + GJ-TMfJ-lGT
-TC = Co-rGJ (c,J-W+M,±(j-*<F))

and Cf and Cc are obtained from equation (3.4) by replacing Mwith Mf and
Mo respectively. Itcan be shown that the matrix Af-2C is still skew symmetric.

Thus we have an equation with form (and structure) similar to our "simple"
robot In the object frame of reference, Mis the effective mass of the object,
and C is the effective Coriolis and centrifugal matrix. These matrices include
the dynamics of the fingers, which are being used to actually control the motion
of the object. However the details of the finder kinematics and dynamics are
effectively hidden in the definition of M and C.

This simple result has some interesting consequences in control. Typically
robot controllers are designed by placing a feedback loop around the joint po
sitions (and velocities) of the robot. The controller generates torques which
attempt to make the robot follow a prescribed joint trajectory. This can lead
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to difficulty in grasping situations since the joint level controllers are often not
aware of the constraints and therefore may violate them. However, since the
grasping dynamics are of the same form as the dynamics of a single manipu
lator, we can just as easily write the control algorithm in object coordinates.
An additional advantage of this approach is that controller objectives are often
specified in terms of the object motion and hence it might be easier to perform
the controller design and analysis in that space.

Even though we will write our controllers in terms of F, it is actually the
joint torques which we are able to specify. Giventhe desired force in constrained
coordinates, we can apply that force using an actuator force of JtG+t, where
G+ is a pseudo-inverse for G. In general Gis not square and by examining the
right side oftheequations ofmotion (3.16) we note that if J~tt € tf{G) then
the net force in the object frame of reference is zero and hence forces of this form
cause no net motion on the object. These forces are in fact the forces which
act against the constraint and are generally termed internal or constraint forces.
We can use these internal forces to satisfy other conditions, such as keeping the
contact forces inside the friction cone (to avoid slipping) or varying the load
distribution ofa set of manipulators rigidly grasping an object.

Redundant manipulators

Some manipulators contain more degrees offreedom than are necessary tospec
ify the position of the end effector. Mathematically, these robots can be rep
resented by a change of coordinates /: Rm -• Rn where m > n. In this case
J '•— 89 ls not square and hence J"1 is not well defined so our derivation of
equation (3.16) does not hold.

It isstillpossible to write thedynamics ofredundant manipulators ina form
consistent with equation (3.16). To do so, we first define a matrix K(9) whose
rows span the null space ofJ(9). As before we assume that J(9) isfull row rank
and hence K{9) has constant rank m-n. The rows ofK(9) are basis elements
for the space of velocities which cause no motion of the end effector; we can
thus define an internal motion, y e Rm-n using the equation

(J)-[f (3.17)

and our constraint becomes

The kinetic energy can be written

r-**,(•>*+(*)*[* J](J) (3.19)
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and since J is invertible it follows from our previous derivation that

M{q) (! )+C(q, q) (*)+N(q, q) =GJ~Tr (3.20)
where M and C are obtained as in thenonredundant case but replacing J with
J_ and G with G. If we choose K such that its rows are orthonormal then
/_1 = (J+ KT) where J+ = JT(JJT)-1 is the least-squares right (pseudo)
inverse of J.

As before, the structure of the robot dynamics is maintained. However, the
inertia and Coriolis/centrifugal matrices arefunctions oftherobot configuration,
9, and not the end effector configuration, x. This complication is unavoidable
due to the non-uniqueness of the inverse kinematic problem. In principle, one
could locally parameterize the redundant motion by y (the integral of y), al
lowing these matrices to be written as functions of both x and y; we will not
assume that such a parameterization is available.

3.3 Control

The grasping control problem can be broken into two parts

1. Tracking - the center of mass of the object should follow a specified tra
jectory.

2. Holding - the finger forces should lie within the friction cone at all times.

Condition 2 is important not only because we do not wish to lose our grip on
theobject, butalso because we assumed inour derivation ofthe grasp dynamics
thatcontact was maintained. Without this constraint we would have tospecify
the dynamics of contact.

Ifa grasp is prehensile it can be shown that given an arbitrary set offinger
forces, Fe, we can find an internal force, FN € tf(G), such that the combined
force Fe + Fff \s inside the friction cone. Thus, given a force generated to solve
the tracking problem, we can always add a force to this such that condition 2
is satisfied. Since internal forces cause no net motion of the hand or object,
this additional force does not affect the net force exerted by the fingers on the
object. We shall assume in the sequel that such an internal force is available at
all times. The choice of this force is discussed in more detail below.

To illustrate the control of robot systems, we look at two controllers which
have appeared in the robotics literature. We consider only grasps which are
stable, manipulable and prehensile. We start by considering systems of the
form

M{q)'x + C(q, q)x + N(q, q) = F (3.21)
where M(q) is a positive definite inertia matrix and C(q, q)x is the Coriolis
and centrifugal force vector. The vector N(q, q) e Rn contains all friction and
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gravity termsand the vector F € Rn represents generalized forces in the object
coordinate frame. Given an object force F, we apply that force bycommanding
a set of joint torques

r = JTG+F + JTFN (3.22)
where J and G define the grasping constraint and Fn € N{G).

Computed torque

Computed torque is an exactly linearizing control law (i.e., the dynamics are
rendered linear by state feedback) that has been used extensively in robotics
research. It has been used for joint level control [1], Cartesian control [11], and
most recently, control ofmulti-fingered hands [10, 4]. Given a desired trajectory
Xd we use the control

F = M(q) (xd + Kve + Kpe) + C(q, q)x + N(q, q) (3.23)

where error e = x«f-x and Kv and Kp areconstant gain matrices. Theresulting
dynamics equations are linear with exponential rate ofconvergence determined
by Kv and Kp. Since the system is linear, we can use linear control theory to
choose the gains (Kv and Kp) such that they satisfy some set ofdesign criteria.

The disadvantage of this control law is that it is not easy to specify the
interaction with the environment. From the form of the error equation we
might think that we could use Kp to model the stiffness of the system and exert
forces by commanding trajectories which result in fixed errors. Unfortunately
this is not uniformly applicable as can be seen by examining the force due to a
quasi-static displacement Ax:

AF = M(q)KpAx (3.24)

Since Kp mustbe constant in order to prove stability, the resultant stiffness will
vary with configuration. Additionally, given a desired stiffness matrix it may
not be possible to find a positive definite Kp that achieves that stiffness.

'PD' control

PD controllers differ from computed torque controllers in that the desired stiff
ness (and potentially damping) of the end effector is specified, rather than its
position tracking characteristics. Typically, control laws of this form rely on the
skew symmetric property of robot dynamics, namely aT (i\f - 2C) a= 0for
all or € Rn, for proof of stability. Consider the control law

F = M(q)xd + C(q, q)xd + N(q, q) + Kve + Kpe (3.25)

where Kv and Kp are symmetric positive definite. Using a Liapunov stability
argument, it can be shown that the actual trajectory ofthe robot converges to
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the desired trajectory asymptotically [8]. Extensions to the control law result
in exponential rate of convergence [17, 16].

This PD control law has the advantage that for a quasi-static change in
position Ax the resulting force is

AF = KpAx (3.26)

and thus we can achieve an arbitrary symmetric stiffness. Experimental results
indicate that the trajectory tracking performance of this control law does not
always compare favorably with thecomputed torque control law [13]. Addition
ally there is no simple design criteria for choosing Kv and Kp to achieve good
tracking performance. While the stability results give necessary conditions for
stability they do not provide a method for choosing the gains. Nonetheless,
PD control has been used effectively in many robot controllers and has some
computational features which make it an attractive alternative.

Internal forces

All of the controllers rely on the choice .of a grasping force, Fn 6 N(G) which
maintains contact between the fingertips and the object by insuring that the
finger forces lie in the friction cone. There are several possible methods for
calculating this term. Since FN does not affect the motion of the object, its
choice does not affect object tracking. We begin by showing that given any
desired object force, there exists a set of finger forces lying in the friction cone
which achieves it.

Proposition 2 If a grasp is prehensile, given any Fe € Rm, there exists a null
force, FN, such that the total finger force, FC + FN, is inside the friction cone.

Proof By the definition of a prehensile grasp there exists FN € N(G)C\ FC
such that

11^,11 <*II*»J| (3.27)
where FN.. is the tangent component of FN projected onto the jth force direction
of the ith contact and FNi is the normal component of FN at the ith contact point
Fn, is nonzero for each i and therefore by increasing FN, we always increase
the normal component of the force exerted at each contact with respect to the
tangential forces. Since FC is defined as the Cartesian product ofthe n friction
cones in equation (3.27), FN e tf(G)D FC implies aFN <= X{G)f\ FC for all
a e R+. Now we can look at the unit vector in the Fc + aFN direction as
or —*• oo:

.. Fe + aFN
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0

Since FN €FC it follows that for sufficiently high a, ^XIfZ\\ is also in FC
and hence Fe + aFN is in the interior of the FC. Now from'the definition of
FC, the individual contact forces must all lie within their respective friction
cones simultaneously. D

The simplest FN is a constant Fir. It must be large enough so that finger
forces never leave the friction cone over the entire trajectory of the object.
Generally this requires a knowledge of the bounds on the external forces that
can be exerted on the object. The advantage ofthis approach is that J%FN can
be calculated at thesame rate as Jh—saving computation time.

Amore robust FN could be calculated by looking at the finger forces—these
can be derived from the joint torques, r, using Fc = J^Tr—and finding a null
force which causes Fe + FN to lie in FC. If the grasp map has a simple form,
such as the one given in the example in Section 2.2, a basis for the null space
can be used to construct the set ofall valid FN. This calculation takes time but
may be necessary in the case of large uncertainties.

Other grasp force calculations are discussed in [10] but all of these share
some fundamental problems. One difficulty is that in a real-world hand the
maximum motor torques that can be generated are finite. Thus, we are not
guaranteed that we can apply an FN which satisfies Fe + FN € FC without
saturating the motors. Another issue is the effect of the null force term in the
presence of errors. If a large internal force term is used and, due to sensor or
actuator errors, it does not actually liein the null space of the grasp matrix, the
resulting force can cause positioning errors and in theextreme case, instability.

Redundant motion

In addition to internal forces, fingers with excess degrees of freedom can have
internal motions which do not cause motion of the fingers. Controllers must be
extended to take into account this redundant motion. This is fundamentally
no different than control ofan ordinary finger except that position information
is not available in redundant directions. Thus the computed torque law would
become

Motion specification for such a control law would be in terms of a position
trajectory xd{.) and a velocity trajectory yd(-).
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Planning

Chapter 3 was dedicated to establishing control laws under which a grasped
object moved along a specified trajectory denoted xd(t). This is useful in the
instance that the task involved does not necessitate a change ofgrasp. This is
not to say that the model and control laws do not allow for fingers to roll on
the surface ofthe object. Indeed, in this instance the motion ofthe finger tips
described by the equations (2.31) will determine where the grasp points go and
how the grasp map changes during the course of the manipulation. However,
there isnoexplicit control ofthe locations ofthe fingertips on the surface of the
object. There are however a number ofapplications in which an object needs
to be moved while the fingers are being repositioned in somecontrolled fashion
on the surface of the object: for instance, twirling a baton or regrasping an
object for greater stability or manipulability. In thischapter we will discuss the
planning of individual finger motions on the surface ofan object.

4.1 Dynamic finger repositioning

In Chapter 2, we derived the kinematic equations of contact for a single finger
rolling on a body. We will aggregate these into a composite equation for all
of the fingers. To review the notation of Chapter 2, we recall that g{ = x0x~jl
stands for the position and orientation ofthe ith finger (xfi £ SE(Z)) relative to
the body (x0 € SE(Z)). Also rn = {ct0.,aji,if>i) is the vector of the ith contact
coordinates with a0i € R2 standing for the surface representation ofthe object,
atfi € R2 the surface representation of the ith finger and fa, the angle of contact
(angle between the two orthogonal surface frames). The equations (2.31) can
then be written as

W=*<(*.,*)(* ) (4.1)
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where Bi(x0,rn) represents the contact kinematics,

T
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(:)- 0 M~T^ iSSK:) (-)
and

(:)-*.-' (4.3)

In turn, v and w are linear functions of volci/otv/,,ci//{ so that (4.1) may be
rewritten as

/ V0 \

rji = Bi(x0irji) Ut
(4.4)

Aggregating equations (4.4) for i —1,..., kand using theJacobian ofthe finger
kinematics (2.44) we have

where

r) = B(x0,T}) [ Wo
9

B(xo,r,) =B(xo,r,)\I0
Also, the grasping constraint (cf. equation (2.48)) is given by

GT(xo,9)(vJo^=J(x0,9)9

0

Jf(9)

(4.5)

(4.6)

(4.7)

If the grasp mapG is onto (the grasp map is stable) we can uniquely solve for
(v0,u0) in (4.7) as

{l°0 )=G+(xo,9)J(x0,9)9
Using (4.8) in (4.5) we have

t) = B(x0,tj) G+(x0,9)J{x0,9)
I

(4.8)

9 (4.9)

We have determined that rj is a smooth bijection ofx~lxf. Further provided
that the fingers do not have more than 6degrees offreedom, Xf (locally) uniquely
determines 9. Consequently (4.9) can be rewritten as

r) = B(x0,t))9 (4.10)
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Noting that the left hand side of(4.8) determines x0, we now combine (4.8) and
(4.10) as follows: define

9 = 9x+92 (4.11)
where 9X e K(JT(x0,9)) and 92 € M(J(x0,9)). Further, define

«i = G^{x0,9)J{x0,9)9lXo (4.12)
Note that the map between u\ and 9\ is a bijection and let

92 = K(xot9)u2 (4.13)

where the columns of K{x0,9) span the null space of J(x0,9). Using these two
definitions it may be seen that (4.8) and (4.9) can be written as

io = Ul fd^A\
r) = Bi(*o,i7)tti + £2(*o,»?)t«2 K }

Thus the problem of finger repositioning and body manipulation can be re
formulated as the problem of steering the states (xQ, rj) of the control system
(4.14). In the previous chapter we neglected the u2 and considered the problem
ofsteering x0 (ux was referred to as xd). Thereare as manyu2 as the dimension
of the null space ofJ(x9,9). Away from kinematic singularities this dimension
is

k

]T max (n< - mit 0) (4.15)
i=i

Recall that m is the number ofjoints in the ith finger and m< isdetermined by
thecontact type of the ith finger. The formula above represents the number of
extrafinger degrees offreedom available to reposition thefingers. Note also that
even if u2 = 0 (i.e. no extra finger degrees of freedom) it may still be possible
to steer both x0,77 using the i*i alone.

With this discussion by way of preamble, we begin a detailed of steering
systems of the form

x = £(x)u (4.I6)
with x G Rn,« € Rm. Note that our steering problem really is a steering
problem on a nontrivial manifold SE(Z) x R5* ((x0,77) space) rather than Rn
but we will content ourselves with a local discussion, namely on a coordinate
chart of 5^(3) x R5*.

4.2 Review of Optimal Control

Following Brockett [2], we will review some results from optimal control. Con
sider control systems of the form

x = £(x)u (4.17)
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Here x € Rn, u € Rm and £(x) € Rnxm. The optimal control problem is to
minimize

JjfH ldt (4.18)

subject to the conditions x(0) = x\ x(l) = x*. When m<n, this problem is a
geodesic problem with a singular Riemannian metric specified by the equations
(4.17) and (4.18). From Chow's theorem, it follows that this problem has a
solution for arbitrary x*,x/ if and only if the involutive closure of the vector
fields described by the columns of£(x) is all of Rn.

It is instructive to analyze some sample solutions to this problem which are
in some sense canonic. We start with n = 3 and m = 2:

Xi = Uj

x2 = u2 (4.19)
X3 = X\U2 — X2U\

with x(0) = (0,0,0) and x(l) = (0,0,a). The cost function may be written as

1 f1
[2Jo &Jri2)dt (4'2°)

with the control system (4.19) written as a constraint

x3 = x2xi - XiX2 (4.21)

From standard calculus ofvariations we may write the Euler-Lagrange equations
with X(t) denoting the Lagrange multiplier as

xi —Xx2 = 0

x2 + Axi = 0 (4.22)
A = 0

Equation (4.22) establishes that \(t) is constant and using equation (4.19) we
see that

mm

u2 J-[i}][:]-»[:]
so that

(33)=eA'u(o) (4-24)
Consequently, since xi(0) = x2(0) = 0
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Further, becausexx(l) = x2(l) = 0, wehavethat A= 2nic so as to makeeA = I.
Using this fact and noticing x3 = A/2 (x\ + x2,) it follows that

«3(1) = x3(0) + A|6|2 = a (4.26)
Also since the total cost is

' M2<ft =A2|6|2 - (4.27)
Jo

we see that the optimal choice of input is A= 2t and |6|2 = a/2?r but oth
erwise is arbitrary. The structure of the optimal control for steering between
the conjugate points (0,0,0) and (0,0, a) is interesting—it is sums ofsines and
cosines at a frequency of2tt. The frequency ofthe signal isdictated by the time
interval. Note that the optimal input is still a combination of sines and cosines
even if xi(l) ^ 0 or x2(l) 7- 0.

The generalization of this example to the case that m > 2 is as fol
lows: consider the situation that the {6,(x): i = l,--,m} are linearly in
dependent for all x and also all the m(m - 1) first-order (first-efa^e) brack
ets {[6,(x), bj(x)]: i,j = 1,..., m} are linearly independent of the &,-(*). The
minimum dimension of the state space to allow for this possibility is n =
m + m(m - l)/2. The canonic example of this situation is

•*' = Ui »'=l,-.-,m
Xij = XiUj -XjUi i=l,.-.,m \*.*o)

A slightly more pleasing representation ofequation (4.28) is obtained by
forming the skew symmetric matrix Y. € Rmxm with the x,y as the bottom
lower half (below the diagonal).

x - u (4.29)
Y = xuT-uxT (4.30)

The Euler-Lagrange equations for (4.28) are an extension of (4.22):
f = Ax (4.31)
A = 0 (4.32)

where Ais the skew symmetric mxm matrix ofLagrange multipliers associated
with y. Thus, as before, the optimal input u satisfies the equation

it = Au (4.33)

with A € Rmxm begin a constant, skew symmetric matrix. Thus u(t) is a
linear combination of sinusoids. The exact eigenvalues of Aare determined by
the initial and final state. In fact, if x(0) = x(l) = 0, 7(0) = 0 and Y(l) a
nonsingular mxm skew symmetric matrix (this requires that mis even), then
it can be shown that Ahas m/2 sinusoids at frequencies 2tt, 2•2tt, •••, m/2 •2tt.
Ifm is odd and y(l) has only one zero eigenvalue, Ahas one zero eigenvalue
and (m - l)/2 sinusoids at frequencies 2tt, 2•2jt, •••, (m - l)/2 •2tt.
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4.3 Steering of controllable systems

The results of the previous section derive the geodesies for first etage, linear
systems of the form in equation (4.17). There are several ways of generalizing
this further:

1. build model control systems where the vector fields

bi i = l,..-,m
[bi,bj] i,j = l,...,m

[V>i,bj],bk] i,j,k=lr..,m

are linearly independent and n = m+ m{m - l)/2 + m(m - l)(m+ l)/3.

2. understand conditions under which more general control systems can be
transformed into canonical systems studied above.

3. use the results summarized thus far as inspiration to propose sinusoidal
inputs at multiple frequencies which are integrally related to provide (sub-
optimal) control laws to steer the systems between arbitrary initial and
final conditions.

In this section we shall explore the latter possibility.

First Etage Controllable Systems

By first etage controllable systems we mean systems of the form (4.17) with
m<n, with the columnsof 2?(x) linearly independent and with

span{6,(x), (6<(x), bj(x)]: i,j = 1,..., m} = Rn (4.34)

Namely, one level ofLie brackets is adequate to achieve the full tangent space
for all x. We discussed the optimal control ofcanonical systems satisfying (4.34)
inSection 4.1. Here we illustrate the application ofthis problem to the steering
ofa unicycle as shown in Figure 4.1. If ux denotes the driving velocity and u2
the steering velocity the functional form of the state equations for this system
is

x = cos^ U\
y = sin^tt! (4.35)
<ff = u2

An approximation to this system isobtained by setting cos^ ~ 1, sin^ ~ 4> and
relabelling x as z_, y as x3 and <f> as x2 to get

xi = Ui

xi = u2 (4.36)
X3 = XnUi
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Figure 4.1: Steerable unicycle. The unicycle has two independent inputs: the
steering input controls the angle of the wheel, <f>; the driving input controls the
velocity of the cart in the direction of the wheel. The configuration of the cart
is its Cartesian location and the wheel angle.

To steer this system, we first use ti_,u2 to steer xi, x2 to their desired loca
tions; this may cause X3 to drift. Now use u_ = asm(ut),u2 = /?cos(w<) and
note that after 2ir/w seconds, xi and x2 complete a periodic trajectory and the
X3 coordinate advances by an amount equal to

irafi

w

a,0,u can now be chosen appropriately. In order to apply this strategy to the
unapproximated system (4.35) we modify the input to

and relabel the states to get

V\ = COS <f> U\
v2 = U2

xi = Vi

x2 = v2

X3 = tanx2 vi
(4.37)

As before, we steer xx and x2 using vx,v2. To steer the third variable, we use
vi = asin(u)t),v2 = 0cos(ut). Then

x3 = tan(— smut) a sin(u>t) (4.38)

The value of x3 after 2tt/w seconds is determined by the constant part of the
right hand side of (4.38). The constant coefficient is given by

1 1 r 0
- • - / tan(— sin 9)a sin(9)d9
2 it J-r U)
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Figure 4.2: Sample Trajectories for the unicycle. The trajectory shown is a
two stage path which moves the unicycle from (0, -.6, 0) to (3, 0, 3). The first
portion of the path, labeled A, drives the xi and x2 states to their desired values
using a constant input. The second portion, labeled B, uses a periodic input to
drive x3 while bringing the other two states back to their desired values. The
top two figures show the states versus a?_; the bottom figures show the states
and inputs as functions of time.

Sample trajectories for this scenario are shown in Figure 4.2

Second and Higher Etage Controllable Systems
Systems (4.17) are said to be second etage controllable if

span{6t(x), [6,(x), &,(*)], [&,-, [bJt bk]]: i,j,k= 1,..., m} = Rn

An example of such a system is a front wheel drive cart of the form shown in
Figure 4.3. As in the case ofthe previous example ux is the driving velocity and
u2 the steering velocity. The equations of this cart are

x = cos 9 cos <j) u\
y = sva.9cos4> u\
<f> = u2

9 = jsin^ui
(4.39)
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Figure 4.3: Front wheel drive cart. The configuration of the cart is determined
by its Cartesian location, the angle the car makes with the horizontal and the
steering wheel angle relative to the car body. The two inputs are the velocity
of the front wheels (in the direction the wheels are pointing) and the steering
velocity. The rear wheels of thecart are always aligned with the cart body and
are constrained to move along the line in which they point or rotate about their
center.

The form of the equations shows that when <f> = 7r/2, the cart cannot be driven
forward. As in the previous section an approximation to this system is in
structive. Relabelling the variables x,y,<f>,9 as xi,x4,x2,x3, setting / = 1 and
approximating sines and cosines as before yields

Xi = Ui

x2 = u2

X3 = X2tii

X4 = X3U1

(4.40)

Note thatspan{6i, 62, [61, b2], [bx, [bx, b2]]} = Rn so that system is a second etage
system. It is also easy to verify that this condition also holds for the original
system. Steering the states xl,x2,x3 of (4.40) is immediate from the previous
section. To steer X4 note that if

«i = orcoswt , u2 = /?cos2u;<

then xi, x2 and x3 are all periodic and return to their initial values after 2tt/w
seconds. Also

<x0 olQ
X3 = --—rcosurt - —-—cosZut

4oj2 12u>2

so that it too is periodic. Finally the increment in x4 is given by

______/_
4u3
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Figure 4.4: Trajectories for a simple cart. The trajectory shown illustrates
motion in the x4 direction. Periodic inputs are used to generate periodic tra
jectories in the first three states while giving an open trajectory in the last
state.

To carry this development through for the unapproximated system define
vi = ux cos9 cos<f> and v2 = u2. Then with the same relabelling as before, the
equations become

x\

x2

xz

x4

Vi

v2

008(3:3) *

tanx3«i

(4.41)

We refer to such systems as triangular but not strictly triangular since x3 de
pends on x3. By approximating cosx3 by 1, the equations become strictly
triangular; using vx = acosurt, v2 = f3cos2u>t wecan solve for the Fourier series
coefficients of xlt x2, x3 and x4. Note that only the Fourier coefficient corre
sponding to the zero frequency is needed to get the change in x4 after one time
period.
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To summarize, it is easy to see that for higher etage (than 2) controllable
systemsone can use simpleFourier series techniques to steer the systems using
as inputs integrally related sinusoids provided that they arestrictly triangular
in the sense discussed above. To steer the variable corresponding to the kth
etage it is possible to use frequencies u andku in the two inputs. The Lissajous
figures that are obtained from the phase portraits of the different variables are
quite instructive. Consider the Figure 4.4, which is the system of (4.41) with
COSX3 replaced by 1 and the inputs vi = a cos ut, v2 = £cos2wt. The upper
left plot is the Lissajous figure for xi, x2 (two loops); The lower left plot is the
corresponding figure for X3, xi (one loop) and the open curve in x4,xi shows
the increment in the x4 variable. The very powerful implication here is that the
Lie bracket directions correspond to rectification of harmonic periodic motions
of the driving vector fields and the harmonic relations are determined by the
etage of controllability desired. This point has also been made rather elegantly
by Brockett [3] in the context of the rectification of mechanical motion.

Open Problems and Nontriangular Higher Etage Systems

Consider the kinematic equations for a front wheel drive cart with a trailer as
shown in Figure 4.5. The kinematic equations are those of the car with an
additional equation to describe the angle of the trailer:

, x = cos 0 cos ^ «i
y = sin 9 cos <f> ux
9 = fsin^ui (4.42)
0 = u2
iff = \ sin(0 - if)) cos <f> iti

It may be verified that

span{6i, b2, [bub2], [61, [*i,&2]], [61, [&i,[&i,62]]]} = R5

It is also not difficult to see that with k trailers we need Lie brackets up to the
fc+2 etage toguarantee controllability. Also, it may be seen that after redefining
the inputs the system isonly triangular rather than strictly triangular so that
the harmonic analysis techniques ofthe previous section cannot be applied even
though numerical simulation suggests that sinusoids of integer multiples are
useful to steer along the direction of the jth Lie bracket. The full theory for
these systems is as yet incomplete.
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Figure 4.5: Front wheel drive cart with trailer. The trailer configuration is
described the the angle the trailer makes with the horizontal, if). The rear
wheels of the trailer are fixed and constrained to move along the line in which
they point or rotate about their center. The inputs to the system are the inputs
to the cart: the driving velocity (of the front wheels) and the steering velocity.
This system is an example of a third etage system; higheretage systemscan be
generated by adding extra trailers.

4.4 Dynamic finger repositioning revisited

We now reconsider the case of a multifingered hand grasping an object. The
equations of motion are given by equation (4.14) which we reproduce here:

x0 = ux

i) = B1(x0,»;)ti1 + S2(x0,i7)U2 (4>43)

Recall that these equations were obtained byattaching a controller to the system
and letting ux reflect the desired object velocity and u2 parameterize the internal
motion of the system.

The general case of finding ux(t) and u2(t) such that the object and the
fingers move from an initial to final position (while maintaining contact) can be
very difficult. Bx(x0, rj) and B2(x0, rj) are rarely in any of the simple forms that
we have considered thus far. We point out two interesting special cases:

1. If the hand has no redundant degrees of freedom (i.e., B2 is not present)
then it might bepossible to move toan arbitrary location/grasp using only
u\. Moving just the contact location requires a carefully chosen closed loop
path in x0.
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Figure 4.6: Steering applied to a multifingered hand. We consider the motion of
a finger with aspherical tip on a polyhedral object (left). The plots to the right
show a trajectories which move a finger down the side ofanobject. The location
of the contact on the finger is unchanged (upper graph), while the location of
the contact on the face of the object undergoes a net y displacement (lower
graph).

2. If we have redundant degrees of freedom, then we can move the fingers
along the object while keeping the object position fixed (x0 = t*i = 0). In
this case we use only the vector fields inB2 to move the fingers.

In the second case, it is sufficient to study the control of a single finger since
the fingers are decoupled if the object is held fixed. This situation has been
studied by Li and Canny [9] and we review some examples from that paper in
the context of steering controllable systems.

Examples

Consider the case ofa single spherical finger rolling on a plane. The control
kinematics were derived in Section 2.3:

vf

77 =

V + I

( 1

0

p COS iff
—psiniff

0

\

ui +

/ 0 \
secuf

—psiniff
—pcos iff

\ —tanUf J

U)2 (4.44)

For simplicity, we assume that we control ux and w2 directly. It can be verified
that the system is second etage controllable and that by a change of input
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variables we can put this systeminto strictly triangular form. Furthermore, the
approximate version of this system is given by

Uf Xi = «i

Vf x2 = u2

-+ X3 = Xi«2

U0 - pUf X4 = X3U2

Vo + pVf X5 = X3U1

(4.45)

This is identical to the approximat cart kinematics in equation (4.40) with
the addition of an extra state. Using the same techniques as before, we can
construct paths using integrally related sinusoids and apply these sinusoids to
the full nonlinear system in equation (4.44). Anexample ofa path which moves
a finger vertically down the side ofa planar object is shown in Figure 4.6.

A more challenging example considered by Li and Canny is that of moving
a spherical finger on a spherical object. It may be verified that the system
is controllable except when the object and finger radii are identical (in this
case the rolling constraint becomes holonomic). The contact kinematics, from
equation (2.43) are

r) =

/
0

\

j^cosiff Wl+
—j^sin iff sec u0
Y^-;sin^»tan«0 /

\ /

V

0

•fc sec uf
-j^sinip

—1+7 cos iff sec u0
j^(cosiff ta.nu0 - 1//? tanit/) /

\

u>2 (4.46)

We see that this system is not strictly triangular (iff depends on uQ) and hence
requires a more sophisticated approach. Motion for thisparticular system canbe
constructed using the techniques described by Li and Canny due to the special
choice ofobject and finger shapes. Motion planning for more general choices of
finger and object shapes is still unsolved.
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