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I. The Geometry of the Domain Spacet *

CLAUS KAHLERT AND LEON O. CHUAI

Abstract

Continuous piecewise-linear functions from IR." to IR™ are analyzed in terms of the dimen-
sion of their domain space and of degenerate k-th order intersections of region boundaries.
The theory developed demonstrates how these two quantities are connected. Moreover, the
ezact number of independent parameters will be demonstrated for boundary configurations
containing degenerate intersections of arbitrary orders.
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1. Introduction

Continuous piecewise-linear (PWL) models have proven very helpful in analyzing nonlinear
circuits and other nonlinear problems. Since the domains of the functions describing such
models are partitioned into polyhedral regions where the functions are linear throughout,
all nonlinearities are localized in the region boundaries. This makes them much more
amenable to analysis than virtually any other type of nonlinear functions. Moreover, since
the composition of PWL functions (and the inverse, if it exists) is again piecewise-linear,
unlike most other systems of functions, this class is closed under the above operations.

For a long time, the major obstacle to a broad and systematic application of PWL
methods was the potentially huge number of parameters, i.e., the entries of the different
Jacobians for the individual regions, and their redundancy resulting from continuity condi-
tions. This problem was conceptually overcome by the notion of canonical representations
[1). These forms contain the ezact number of parametric degrees of freedom, which is always
(much) smaller than the number of entries in the Jacobians of a conventional representa-
tion (see the examples in [2]). The classical canonical representation of continuous PWL
functions (since only continuous functions will be considered, continuity will henceforth be
assumed implicitly) from IR" to IR™:

-2
F(x) =b+Bx+ Y _c'|(a,x) - §| (1)
=1
introduced by Chua and Kang [1] assigns one parameter vector, c?, to each boundary
(between regions) and includes thereby already a majority of PWL functions treated so
far in practice. In particular, it covers all one-dimensional PWL functions. However, three
region boundaries in IR 2 intersecting in one point were identified in [2] to cause a breakdown
of this representation. Such intersections were called “degenerate” and a rank criterion for
degeneracy was introduced there. Unfortunately, the criterion, as it stands, is only of value
in IR?. Below, we shall demonstrate how to extend it to higher dimensions and higher
orders of intersections. Here we are going to call a boundary configuration, “degenerate
of order k”, if the PWL function possessing these boundaries cannot be described by a
(k — 1)-st order representation (see the formal definition below).

Recently [3], the problem of representing the threefold (and any multiple) intersection
in IR?, as well as its suspensions to IR ", was overcome by the form

F(x) =b+Bx+ Y c'[(a',x) - #| + (2)
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2. The Geometry of Intersections

which covers all two-dimensional boundary configurations. It adds one parameter (vector),
&% for each degemerate intersection of boundaries (strictly speaking, for each degree of
degeneracy appearing, see [3]) to the representation. (See also [4] and the Appendiz for
a different approach describing a subclass of the functions presented in [3]). As a new
feature, (2) possesses nested absolute-value functions.

However, in IR? and higher dimensional spaces, all canonical representations of PWL
functions introduced so far are not closed under the operations mentioned above, i.e., in the
general case, due to a lack of parametric degrees of freedom, the composition of two PWL
functions cannot be characterized in terms of one of the currently known representations.
The significance of functional compositions was demonstrated in the examples provided in
[3]: In order to obtain the constitutive relation of a composite n-port circuit, one must
often form the composition of the constitutive relations of its elements. If these elements are
already piecewise-linear, the appearing absolute-value functions have to be nested. Some
of these nestings can be rewritten in terms of simple (unnested) absolute-value functions,
others cannot. In [3] we demonstrated that the latter type exhibits degenerate boundary
intersections. Thus such intersections turn out to be generic and robust properties, which
persist under perturbations of the parameters. Here our goal is to connect the geometric
notion of degenerate intersections and the form of the functions possessing such a boundary
structure for arbitrary orders of degeneracy.

For boundary configurations more complex than those shown in (3], where elements
which are already described by (2), have to be combined, we have discovered that “degen-
erate intersections of degenerate boundary intersections” can occur in dimensions greater
than two and the above representation (2) breaks down in such cases of higher degeneracy.
This clearly demonstrates the necessity for a general framework which covers the nonlinear-
ities emerging from intersections of all orders (not just intersections of region boundaries),
and which properly handles the degeneracies appearing there. This will allow us to de-
termine the effective parameters for arbitrary classes of PWL functions and characterize
them in terms of these parameters.

2. The Geometry of Intersections

In this section we are going to demonstrate how the geometry of the region boundaries,
specifically their intersections, can be characterized in a unified manner. Any PWL function

F:R"—-R™ ; x+~— F(x) (3)

is specified completely by a constant offset and a Jacobian for each region of the domain
space. However, in order to maintain continuity, these quantities cannot be chosen com-
pletely independently for the different regions. It turns out (see for example [1]) that the
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exact behavior inside one arbitrary region and the jumps in the Jacobian (which, more-
over, must have a special form, see below) along the region boundaries yield a sufficient
description. In addition, all boundaries are linear manifolds (or hyperplanes). This funda-
mental property of boundaries, although frequently stated as an extra assumption, is an
immediate consequence of continuity (see [3]). The configuration of boundaries can thus
be seen as the skeleton for a class of functions, where the geometry gives all the structural
information while the concrete behavior is determined by the values of the parameters.

In our following investigations of the fundamental structures, with very little loss of
generality, only one intersection of the “highest order” appearing will be considered. This
entails no real restriction since two distinct intersections “see” each other just linearly,
unless they share a common structure, i.e., a lower order intersection (cf. [3]). Nevertheless,
in analogy to what we saw in [3], this does not affect the representation and requires just a
few modifications in the algorithm for finding the parameter vectors. For the time being,
treating just one “k-th order intersection” will allow us to get rid of one index and the
corresponding summation.

To avoid further clutter and without loss of generality, in the following offset constants,
both in the domain and the range space of the function to be represented will be suppressed;
they can always be included by a trivial translation in either of the two spaces. In other
words, all nonlinear structures contain the origin and thus “subspaces” rather than “affine
manifolds” will henceforth be assumed to be handled.

Since we are going to focus on the nonlinear aspects of piecewise-linear functions, let
us introduce first the concept of nonlinearity components.

For every continuous PWL function F from IR™ to IR™, the domain space IR™ can be
decomposed locally into N x £, where £ and N are isomorphic to R™ and R™" (n =
n' 4+ n"), respectively. Inside £ the function is assumed to be linear throughout, while A/
contains the nonlinearities; more precisely, for no vector x € A is the directional derivative
DiF a global constant. Thus N is the quotient space relevant for our purposes. Since
we are only interested in the nonlinear behavior of F (inside A), the components from
L will be suppressed and we shall frequently refer to A simply as the domain space.
However, it should be stressed once more that this is a local decomposition. Eventually, all
contributions coming from the different A’s have to be combined, which effectively means
a simple superposition and embedding into the original domain space, i.e., a summation
over all the “local” representations at the level of functions.

The notion of nonlinearity components should shed some light into the obvious con-
fusion found in the literature about the “dimensions of representations”. Although any
PWL function can be embedded into a space of arbitrarily high dimension, only inside its
nonlinearity components we can find any behavior that cannot be represented by a simple
linear mapping.

The dimension of A is tightly connected to the highest order of intersection appearing

in a given boundary configuration. These fundamental structures are defined recursively
as follows:
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Def. 1 A pre-boundary in the sense of Definition 6 of [3] (i.e., an (n — 1)-dimensional
subspace where at least part of it is a boundary) is said to be a first-order intersection,
denoted by S(). A subspace of dimension n — k in IR™ is a k-th order intersection S*) if
it is the intersection of two or more subspaces of type S(k=1) j.e.

>2
Sk .— ﬂ S(k=1),i (4)

=1
| ]

Let us add a brief note concerning our notation: The order of an object will be
indicated by an upper index in parenthesis, like in S (¥). If necessary, a further upper index
will provide a labeling of the object, like in S(¥~1), Lower indices will be reserved for
vector or matrix components.

From Definition 1 it is clear that k is the codimension of the intersection, which for
k < n is spanned by the vectors v(¥):1 ... 4=k (for k = n, 4(¥) is-the null vector).
However, the term “of order k” implies not just the codimension k, but also an intersection
of different linear subspaces of order k — 1. For example (see Fig.1), (a) as two boundaries
(S1)%) in IR™ intersect, they form an S(?). This situation can be described by a space
N, isomorphic to IR2. Consequently, (b) three planes in IR® (S(1)’s) having three mutual
(one-dimensional) intersections (S(2)’s), possess one common point (the origin), which is
an S®). However, (¢) a line intersecting a plane in IR3 does not give rise to the above sort
of intersection, because in our current context, a line can only occur as the intersection of
two or more planes .

Figure 1

In the following section, we shall be interested in a special kind of S(¥)’s, called de-
generate intersections of order k, and denoted by S(¥). Their appearance will be directly
connected to the terms in the canonical representation. The exact definition of degeneracy
will, however, be postponed until we have gained sufficient motivation from the behavior
of PWL functions.

Let us now look at a function’s possible behavior on a boundary configuration con-
taining a k-th order intersection. By definition, piecewise-linear functions behave linearly
inside the different regions, i.e., they possess piecewise-constant Jacobians which change
abruptly at the boundaries. Thus on every boundary S (1) we define a jump (first-order)
function for the Jacobian

AWM, s, gmxn s ox - ADTIX) (5a)

which is piecewise-constant, i.e., it might switch where boundaries meet — at second-
order intersections. Hence, as a generalization of (5a), on every intersection S(*) a set
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(indicated by the index j, which labels the current a-vector, see below or [3]) of k-th order
jump functions is defined

AR g . sk, mrmxn . x s AB T (x) (50)

as the difference between the (k — 1)-st order jump functions on the S(¥~1)’s which are
involved in the pertinent S(¥). These jump functions, due to the piecewise-linear nature of
the functions to be represented, are all piecewise-constant, possessing values A (¥)J* (where
v is any labeling, usually a multi-index indicating the S (¥=1)’s, the a-vectors involved and
the segment of S(*) where this specific value appears).

This notion will become clear shortly, when we analyze the current state of the theory
(as it is found in the literature) in the framework of k-th order intersections and the
corresponding jump functions.

At this point we should include a further remark on the notation used. Three different
symbols can be found here for a k-th order jump in the Jacobian on an intersection S (¥): (a)
The function A%¥) 7, having as values at a point x € S(*) (b) the actual k-th order jumps
ART = AK) 7(x), which, due to the piecewise-constant character of A(K) 7, represent the
jump on a whole portion of the k-th order intersection. Finally, (c) the symbol A (¥J for
the jump characterizing the whole S(¥) is needed to define a form of mean value, i.e., if no
(k 4 1)-st order jump occurs on the intersection then A(¥) 7 is constant and has the value
AR J. This third value is also called “characterizing” because it will yield the parameter
for the canonical representation.

Let us now turn to a systematic treatment of boundary intersections and the functions
found there: The simplest “PWL” function from IR"™ to IR™ is a completely linear one. It
contains no nonlinear structure at all, so it can be characterized by its Jacobian J at one
arbitrary point, yielding A7 = A®J = A3 = J. Thus the associated nonlinearity
component A is of dimension zero.

As two objects of codimension zero (regions with Jacobians J and J', respectively)
meet, a boundary (first-order intersection) emerges, which is associated to a (first-order)
jump in the Jacobian, AMT = AWJ = AMJ = J — J', appearing along this region
boundary. Consequently such a boundary configuration requires dimA = 1. In the present
case, the boundary S() is completely from £, i.e., it is of dimension zero in N, hence the
function A(DJ is merely a constant, showing no internal siructure, thereby reflecting the
“constant variation” property introduced in [2]. Note that in the first example A(97 is
constant while here it “picked up structure” from a first (uniform or constant) jump A (V7.

Going one step further, as region boundaries meet in a subspace of dimension n — 2,
they yield an intersection of order two and thus require A to be a two-dimensional space.
This situation may allow us to impose a structure on the different A ()7 functions along
the boundaries, which appears in the form of (constant) second-order jumps A (2 7, located
at the intersection S(2),
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In higher dimensions (dimA = k > 3) a similar pattern is maintained. Asintersections
of order k — 1 (being lines in A') meet in one point, an intersection S (¥) emerges, which
may allow the functions A(*~1)J to become non-constant by performing jumps A(FJ =
A-D7(x) — A= 7(y), where x,y € S*~1) are on different sides of S(¥), i.e, for one
A € (0,1) the point (1—-A)x+\y is from S(*), This will add new terms to the representation
of the function F.

These examples demonstrate the fundamental approach of the representation to be
achieved. Instead of plainly stating the function’s values in the different regions, a hierarchy
of differences is developed, which is immediately reflected in the dimensions of the different
intersections or “higher order boundaries” in /. Due to the special functional form of the
differences appearing, this will turn out to be a much more efficient procedure. The major
problem to be addressed next will be to identify those cases where a non-zero A (¥ 7 is
possible.

At this point the impression could arise that the canonical representation to be devel-
oped here is similar to a sort of power series expansion. Although the notion introduced
presents more and more details as higher order intersections are taken into account, every
term appears linearly in the representation, that is, they are all at the same algebraic level.
Thus there is no way of treating the higher orders as “perturbations”. Hence the question
on a representation is not of qguantitative nature: How well can a function be approximated
by a representation of a given order? PWL functions require a gqualitative decision, whether
a function can be described or not.

This means both an advantage and a disadvantage compared to approximations in
the form of power series or other functions. The disadvantage is that no term can be
dropped without affecting the function’s behavior linearly everywhere. On the other hand,
the (higher order) intersections of boundaries are found where the function “needs special
attention”. So it is always a good idea to treat these intersections carefully. If, however,
for some particular problem the highest order intersection is outside the range of current
consideration, then all the terms evolving from it will contribute just a constant Jacobian
in the area of interest. This might help to identify simpler models, which may be more
adequate for these situations.

3. Degenerate Intersections of Order &

In the previous Section the notion of k-th order jump functions and their interdependences
was (by intention) not sharply specified, since it will turn out that on most S(¥)’s such a
jump cannot occur, i.e., the functions A(¥) 7 vanish and the A(*~1) 7’s remain unchanged
. Thus here we are going to discuss, what sort of k-th order intersection allows a non-zero
AMJ to appear, and how the different k-th order jumps interact. In this paper a prototype
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k-th order degenerate intersection will be constructed which can eventually be used as a
building block for higher order degenerate intersections, or as a basis for intersections of
higher degeneracy.

Def. 2 Every intersection of order k which allows a non-zero A (¥)J of a PWL function
is called degenerate. .

As it stands, this definition of degeneracy appears not very constructive, nevertheless,
it sets exactly the condition needed for the canonical representation and in the following
we have to transform this into a geometrical notion of boundary intersections. First of all,
however, let us quickly recall two fundamental properties to be used heavily further on:

(I) Along any closed path inside an S(¥) the jumps A(*+1)J in the Jacobian have to sum
up to zero. This is an immediate and obvious extension of the closed path property from
[3]. (II) A jump in the Jacobian along a region boundary can always be represented as a
dyad [5]. That is

AMFY = gWwrT (6a)

Here (as we used it before) A(M)J¥ is the current jump in the Jacobian associated with
c(1):¥ where v, as above, is a multi-index specifying the boundary and the section on this
boundary. The parameter vector €(1)+* is from the range space IR™ and a” is a vector of the
domain space, being normal to the section S(1)* of the region’s boundary in question. This
immediately demonstrates two things: (a) The number of linearly independent A () Js,
i.e., the dimension of the space of linear maps involved in the problem, is dim & (which
shows that the space spanned by the A(1)J’s is isomorphic to ). (b) Since a k-th order
jump is the difference of two A(¥=1)J’s, possessing the same a-vector, within one (k —1)-st
order intersection, all the A(¥)J* appearing have to have essentially the form (6a), i.e., we
can write a k-th order jump as

ARFY =gkt T (6b)

For the parameter vectors we apply the same convention as for the jumps in the Jacobian,
i.e., a bar will be used for the current value while c ()7 “characterizes” the whole intersection
S0U)#, This form will give us one key to the representation of functions which possess
higher order intersections. Moreover, with the algebraic structure of all possible jumps in
the Jacobian, no matter what order, now on hand, we have obtained an exact notion of
the term parametric degrees of freedom. These are exactly those c-vectors which can be
chosen freely for a function possessing a given boundary configuration. (This is a property
of the function and thus of the geometry found in the domain space, hence it should not
be confused with linear independence inside the range space. Since the dimension of the
range space is not relevant for our present purposes, the term “parameter” always means
a parameter vector from the range space.)

In order to find the independent parameters, the crucial properties to be worked out
first are the interdependences of the different A¥)J’s appearing on the 5(¥=1)’s involved
in an 5(¥), Taking into account the restrictions being imposed on the different A (97
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functions by the continuity of the overall function F, will yield the number of parametric
degrees of freedom. Since here our goal is to construct the simplest k-th order degenerate
intersections, each of them should eventually turn out to contribute exactly one parameter
vector c(¥),

In this light, we may now analyze again the above examples:

In one dimension (dim N = 1, where all vectors from the regions are normal to the
boundary spanned by the null-vector) two Jacobians (A (%) J’s) meet at an intersection
of order-one to yield a AMJ. This automatically makes every boundary a degenerate
intersection 5(1) of order-one and degeneracy-one (i.e., a degeneracy of degree-one). Thus it
is no surprise that the representation in [1] could be found without a concept of degeneracy.
(Here we are confronted with two different concepts within the notion of degeneracy, the
order and the degree. While the order was defined above, a general notion of the degree of
degeneracy will be elaborated in a forthcoming publication, for second order intersections it
was defined in [3]. For the time being, we are only interested in degeneracies of degree-one,
meaning that it will contribute the minimal number of parameters to the representation.)

Figure 2

For two dimensions, it was shown in [2] that three boundaries (with three different a’s)
intersecting in one point, form a degenerate boundary configuration 5(2). In this case the
different a-vectors involved and with them the A(MJ are no longer linearly independent
(see Fig.2) and thus the consistency of the jump in the Jacobian along a boundary breaks
down. This notion is discussed in detail in [3].

Heading towards three dimensions, the boundary configuration depicted in Fig. 3a
(although characterized as being “degenerate” by the criterion in [2]) shows no degenerate
second-order intersections, i.e., it can be described by (1). Fig.3b possesses two degenerate
second-order intersections, which makes it accessible to (2), while the boundary configura-
tion in F'ig.3c has a degenerate intersection of order three and is thus beyond the capability
of the currently known representations.

For the example of Fig 3a, it is, on the one hand, obvious that the four a-vectors
of the boundaries are linearly dependent (cf. [2], p. 104). On the other hand, the six
S5 are formed by two S(1)’s each, so none of them is degenerate. For the two other
boundary configurations, the properties mentioned can be demonstrated by performing
some bookkeeping along closed paths on both sides of the §(*) around every 5(2) appearing
(indicated by the arrows in F'igs.3a, b). Thereby several conditions on the observed jumps
(AMJ, which, via Eq. 6, yield parameter vectors ©(1)) are obtained. Eventually, a rank
analysis can be performed for the resulting set of linear equations. In the case of Fig. 3b,
14 different &(1)’s are found, and of the eight conditions on them, five turn out to be
independent. Therefore, the effective number of free parameters for this problemis 14—5 =
9. Looking at the conmstituents of S(®), we find six ¢! (characterizing the six region
boundaries) and three c(?)-vectors (one coming from the degeneracy-one 5(2) and the two
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others emerging from the second-order intersection of degeneracy-two; for a definition of
the degree of degeneracy in 2-D see [3]). So this boundary configuration is a non-interacting
superposition of two 5(2)’s with A(2) 7 functions which are constant throughout the second-
order intersections.

Figure 3

For the final case (Fig. 3c), 24 &1)’s appear together with 16 conditions on them,
emerging from eight closed paths. Here a rank of 13 is obtained for the coefficient matrix
of the &1)’s, which means that 11 free parameters are required to describe a general function
with this geometry of boundaries. Up to second-order, six ¢(!) and four ¢(?) parameter

vectors are available. This demonstrates the necessity of one additional parameter of type
(3
c®),

Proceeding to higher dimensions, the number of A()J’s (or €1)’s) involved grows
rapidly, so the described “brute force” approach reaches its limits very fast. Thus we are
going to introduce a characterization of intersections, which does not go back all the way to
the level of region boundaries but rather involves just the previous two levels of (degenerate)
intersections. To this end, the promised prototypic degenerate k-th order intersection will
be constructed. Since it will turn out to be the most fundamental boundary configuration
for a given order, it is said to be minimal.

Def. 3 A degenerate intersection of order k is called minimal if it is formed by the
smallest possible number of 5U)’s forall 1 < j < k. "

For this type of degenerate intersection, the number of lower order intersection follows
a strict law, which is stated in the following lemma.

Lemma 1 A minimal degenerate intersection S(*) (k > 3) is formed by k + 1 minimal
degenerate intersections of order k — 1, being the intersections of £X*1) minimal 5(k-2)s,
]

Here the number of intersections of order k — 2 is very crucial since in three and more
dimensions the number of 5(*-1)’s does not specify the number of intersections of the
next lower order involved. This difficulty, having to deal simultaneously with three orders,
also to some extend makes clear why the older canonical representations (in one and two
dimensions) could not immediately lead to the general form.

Proof First, from the above examples we know that a region boundary is a minimal
degenerate intersection of order one, three region boundaries form a minimal degenerate
intersection of order two (see [3]), and four 5()’s on six boundaries are required for an
53, which will also turn out to be minimal.

In order to obtain the general structure, we show that each 5(*=2) involved in S(*)
carries exactly two S(¥=1), This will immediately yield the number of 5(¥=1)’s and 5(*¥-2)’s
appearing in a minimal degenerate boundary configuration.
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Assume first that the (k — 2)-nd order degenerate intersection 5(*-2)¢" (being a plane
in NV) possesses just one (k — 1)-st order degenerate intersection, say S(*=1:J° which has
the (k — 1)-st order jumps A*-1VJi1 and AF-1)JJ%, to the left and the right of S(¥),
respectively. Since 5(¥—2)#" js two-dimensional, we can “encircle” the point S(*) by a
closed path T inside this plane, which yields A(*-UJii — AGk-1)Jiz = 0 (see Fig. 4a).
From this it immediately follows that A(*=1) 73" is constant throughout. Thus 5(k=2),¢°
does not contribute to a A(¥)J, thereby implying that the boundary configuration is either
not minimal or even not degenerate.

Figure 4

With two §(*=1) on §(k=2):i" ( Fig.4b), four A*—-1J% (j = 1... 4) appear, which right
now have to obey the closed path property (for every boundary, i.e., a-vector, involved in
5(¥-2),i"), Hence three independent A*~1)J are found, which means that indeed a k-th
order jump in the Jacobian can occur.

Next let us explicitly construct a k-th order minimal degenerate intersection. (For a
concrete visualization of the discussion in 3-D please cf. Fig. 3c.) To this end we assume
ezactly two (k —1)-st order degenerate intersections (lines) 5(¥=1)+ (i = 1,2) on the plane
5(=2),1_ Then besides 5(*=2):1 another (k —1) (k — 2)-nd order intersections, say S(k=2).j
(j=2...k)and §*-2J (j = k41 ... 2k — 1), contribute to either of the two S(*-1),
These 2- (k — 1) planes possess (k — 1)2 mutual, non-degenerate intersections. Let us pick
one of these S(¥-1)’s, the intersection of §(¥=2):2 and §(k=2).k+1_ In order to make it the
degenerate intersection 5(¥-1):3 another k —2 new 5(¥=2)’s have to be added, which can be
chosen to “connect” 5(¥—1):% with k —2 of the previously constructed (k —1)? intersections
of order k¥ — 1 which now involve three 5(¥=2) each. This step terminates the process in
the three-dimensional case.

For k > 4 we have to continue, since we need two S(*=1)’s on every 5(k—2), §(k-1).4
has to be constructed. To this end let us pick one of the previously constructed threefold
intersections. To make it degenerate, k — 3 new planes must be added, leaving us with k—3
fourfold (for k£ > 5 non-degenerate) intersections. This scheme continues until 2+ k —1 =
k +1 5(* -1 are introduced. Thus, in the end the number of 5(¥=2)’s employed is

1+2.(k_1)+(k-—1)é(k—2)=k-(k2+1) . ™

[\ S ~ ]
— —

This is a very appealing result since on the one hand it tells us that in order to obtain a
k-th order degenerate boundary configuration, k+1 = 1+ dim A one-dimensional 5(¥—1)’s
have to contribute and that every “pair” of 5(*=1)’s spans an 5(k=2), thereby leading to a
completely symmetric, maximally connected situation. A symbolic representation of these
properties is depicted in F'ig. 5. Another remarkable property of this type of boundary
configuration is that the v(¥F~1).vectors (defining the 5(¥~1)’s) form a minimal set of vectors

11
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which both span the whole space A and are linearly dependent. This looks very similar
to the rank criterion for degeneracy in [2]. However, without a concept of higher order
degeneracies, the roles of (what we now call) 5(1) and 5(¥-1), which coincide in IR?, were

mixed up. Thus, although stated for IR™, this criterion gives the desired answer only in
IR2

Figure 5

If we follow the above scheme to the next lower order of intersections, in every 5(k=2),
k — 1 §(k=3)s intersect, with each of them being capable of participating in three (k — 2)-
nd order intersections, etc. This immediately yields the number of I-th order degenerate
intersections involved in a k-th order boundary configuration:

. k k-1 1+2 Hkt+2-j
Ni() = (k+1) x 5 x ——=x ... X1 = J=1'[IT : (8)

Eventually, as we are going to count the boundaries (i.e, the a-vectors) involved in a
minimal intersection, their number turns out to be

Ny = Ni(1) = w . (8a)

This again is a very interesting result, which will be fully appreciated later, when the
representation of a function is constructed explicitly [6]. Here let us just mention that
Ny = Ni_; + k, this is the number of a-vectors involved in one S(*=1) plus dim A, which
means that the basis spanning A can be obtained in a natural manner from the a-vectors
of those region boundaries which have to be added in order to obtain an S (¥) from a single
(k — 1)-st order degenerate intersection (see Fig. 6).

Figure 6

Finally, to complete the proof, we have to demonstrate that an 5(*-2) containing more
than two $(¥-1)’s leads to a boundary configuration with more than k+1 degenerate inter-
sections of order k—1. To this end, let us assume r (> 2) §=1i (j = 1...r) in S*-2",
Since the planes intersecting in, say §(*~1)j* have no further mutual intersections, each
of them has to carry one more (k — 1)-st order intersection. Thus the number of S(¥-1)’s
in such a boundary configuration is at least r 4+ (k — 1), which is greater than the minimal
number obtained above. .

As an immediate consequence of our construction of a minimal k-th order intersection,
we can state the following lemma:
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Lemma 2 In a minimal 5%) every a-vector is either considered a basis vector of N
or it is a linear combination of two basis vectors. .

This property will turn out to be of fundamental importance for the concrete rep-
resentation of PWL functions since it tells us that the scheme of substituting a vector
by an expression of two basis vectors, as developed in [3], is also valid for higher order
intersections, which is not at all obvious.

Proof  Of the Ny a-vectors in $(¥) let us pick the k vectors o (i = Nxy_; +1 ... Ni)
as a basis (see above). Let us further assume that the boundaries $(1):1 ... §(1):Ne-1 form
an S(k-1) say §(k=1).1  Duye to the symmetry of the boundary configuration this can be
done without loss of generality.

Now the k¥ 5(1)’s belonging to the basis vectors have w = Nj_; mutual intersec-

tions of type S(?). In order to make them degenerate second-order intersections, each of
the Ni_; boundaries of 5(¥=1)1 also has to participate in one of them. Then the overall
number of degenerate second-order intersections is N_;1(2) + Ng_; = Ni(2) (this formula

is a special case of an identity which will be stated and proved below), as is required for
Sk,

Hence we found that Ni_; of the N(2) second-order degenerate intersections which
contribute to 5(¥) involve in each case two basis vectors and one a from S(*¥-1):1_ Since
the three a-vectors in an S$(?) are linearly dependent, each of the a* (i =1 ... Nx_;) can
indeed be written as a linear combination of two basis vectors. .

Now that the two fundamental lemmas dealing with the geometry of degenerate inter-
sections have been proved, we are ready to investigate the crucial property of the functional
representation — the number of parametric degrees of freedom.

4. The Number of Effective Parameters

With the A(®)J functions introduced above, the structure of the canonical representation
is already obtained, albeit, on a rather abstract level. A concrete formulation will be
presented in [6]. The major problem we are facing right now is the bookkeeping of the
interdependences of the various A(¥) 7’s present, which are reflected in the side conditions
guaranteeing continuity. Eventually two properties will emerge from the canonical repre-
sentation: (a) It is a closed form with all the side conditions being absorbed, i.e., they are
properties of the representation with no need to be stated explicitly. And (b) all paramet-
ric degrees of freedom are realized, i.e., the representation contains the correct number of
parameters and all of them are independent.

In order to put this into an exact formulation, we present:

13
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Lemma 3 Every minimal degenerate intersection 5(¥) adds exactly one parametric
degree of freedom to a superposition of its constituents. .

This lemma provides the key to the concrete representation because it allows us to con-
struct a k-th order jump along one arbitrary 5(¥—1) thereby assigning the free parameter.
Then all the other jumps appearing have to be automatically correct.

Proof  For first and second-order degenerate intersections the property stated in
Lemma 3 is demonstrated in [1] and (3], respectively, by the representations and their
completeness in one and two dimensions, respectively. For an arbitrary S(¥) we use induc-
tion, assuming that the property holds for all 5U) (j =1 ... k —1) involved.

To prove that an intersection 5(¥) possesses exactly one parametric degree of freedom,
we follow the construction of a minimal k-th order degenerate intersection (and utilize the
symbols) introduced in the proof of Lemma 1.

The plane 5(k—2):1 (see Fig. 4b) possesses four segments, separated by the two in-
tersections S(k-1)+ (i = 1,2), on which we find four (k¥ — 2)-nd order jumps A (¥-2)J1i
(4 =1...4). The differences between these jumps are the four (k — 1)-st order jumps
AK=DJFl and A*-DJ% (1 = 1,2). All of these jumps should carry an additional index,
referring to their a-vector (cf. Eq. 6 above). However, since we assume Lemma 3 to hold
for all intersections of order smaller than k, we can pick any a contributing to a specific
intersection and characterize the intersection by the “jump in this direction”; all jumps
with respect to the other a’s can then be obtained due to the lemma. Thus the a-index
will be suppressed and the jump functions used are considered to be generic.

Due to the closed path property, three out of the four A(*—1)J’s can be chosen freely.
So we pick the characterizing parameters A-DJ1 A(k-1J2 and A J, which gives us
A*=DIlyz = AR-DJ1 £ LAMT and A*-DJ2/2 = AF-DJ2 £ LAK]F. Thus AR, via

(6), contains the parameter vector characterizing 5(¥).

Now it is an easy task to complete the proof and demonstrate that no more parametric
degrees of freedom emerge from a minimal boundary configuration. For this purpose let
us pick the plane 5(¥=2):2 (and any convenient a-vector), carrying 5(¥=1):1 and §(k-1):3,
Here we find again three parameters to be filled in; with two of them, A (*-1)J! and A(FJ,
already set in the previous step of the construction, only one, A(*=1J3  is left for the
characterization of 5(F—1):3, Following the path of the construction of a minimal boundary
configuration, we can access all the remaining k —1 5(F=1)% in a plane where one (k —1)-st
order intersection is already characterized by its A(*~DJ and A(¥J. This shows that,
compared to a non-degenerate boundary configuration containing k + 1 different 5(¥-1)%,
exactly one new parametric degree of freedom, in the form of A(F)J, emerges. ]

This is again a very appealing result, since it tells us that, no matter how complicated
the geometry of a k-th order intersection is, it contributes ezactly one term to the represen-
tation. This term describes the interaction of the contributing (k — 1)-st order intersections
and its weight is controlled by a parameter vector from the range space. Our goal in [6]



4. The Number of Effective Parameters

will be to write the above discussed minimal boundary configurations as a genuine term
of the highest order appearing and a superposition of functions describing its constituents,
which themselves are formed similarly:

k Ne(j)

F) =Y 3 ci. Fi (9)

=1 =1

Here the scalar functions F(/)+ contain the geometric information while the parameter
vectors c¢(?)+ determine the values of the function. Moreover, for a given j* all the FU")/
are of the “same type”, i.e., they can be transformed into each other by linear maps. For
example, the generic first-order function is F'(!) = |{a,x)| while for the generic second-order
term we found F®) = [[{a, x)| + {a2,%)] - [(a?, %) + (a2, )]l

As a corollary of Lemmas 1 and 3 we now present the following result which yields
the total number of parametric degrees of freedom for a minimal boundary configuration:

Lemma 4 The total number of free parameters for a minimal degenerate boundary
configuration of order k is

k
T =Y Ni(j) . (10)
j=1
This yields the recursive formula
T'=1 ; Tpr=2Ti_1+k (k>1) (11)
.

Proof  The first statement is an immediate consequence of Lemma 3. In a minimal
boundary configuration of order k, each order j of degeneracy contributes exactly N(7)
parameters.

For the second part we have to utilize an identity coming from Egq. 8, where a special
case was applied above already:

Nk(l) =Nk_1(l)+Nk_1(l—1) (ZSlSk—l) . (12)

15
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This can be seen from

k—-1-1 . k=1 .
k+1- k+1-—
N+ Ne(-1) = [ 2= 4 222
1) J L J
=1 j=1
gy N 1+1
= [[ —— 1+
= -
k—1-1 . 13)
k+1-—j 1 (
= (k+1)- H F T
Jj=1
k-1-1 .
k+1—3j
= (k+1)- -
k+1)- 11 =555
=1
= Ni(D)

Now it is an easy task to evaluate Tk directly in terms of Tx_; by utilizing (12), in order
to decompose the sum over Ni(j) into two components:

k-1

T = Nk+sz(j) + 1
Jj=2

k-1 k-2 (14)
= (Nk—1+ZNk-1(j)) + (1+ZNk-1(j)) + k

j=2
= 2-Tk_1+k

This concludes the proof of Lemma 4. ]

Lemma4 makes clear how fast (stronger than exponentially) the number of parameters
is growing with the order of degeneracy. This behavior is mainly due to the numerous
degenerate intersections of intermediate orders appearing in such a boundary configuration.
Nevertheless, the number of the most prominent degenerate intersections, those of orders
one and k — 1, grow just quadratically and linearly, respectively, with the order of the
highest degenerate intersection.
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5. Discussion

An analysis of the nonlinearity component N, the subspace relevant for the nonlinear
behavior of a PWL function, turns out to be a fruitful concept. First of all, it allows us to
extract those directions in space where a function behaves just linearly. Thereby it turns
out that, at least conceptually, it is not necessary to formulate a function’s representation
in a space bigger than the nonlinearity component.

Since the dimension of A is directly connected to the highest order of intersections
appearing, thereby rendering the latter object a point in N, it also yields an upper bound
for the order of functional representations to be employed. The exact order, however,
is only accessible after a more detailed analysis, which requires the determination the
degeneracies of the boundary configuration (non-degenerate intersections can be desribed
as simple superpositions of their constituents). Here we introduced a general concept of
degeneracy for the intersections of region boundaries and linked it to the parametric degrees
of freedom of PWL functions, which is the main contribution of the present work.

For a special type of boundary configurations, minimal degenerate intersections, the
number of parameters for every order of intersection could be obtained. These configu-
rations play a prominent role: On the one hand, they allow us to distinguish between a
degenerate intersection of order k and a mere superposition of lower order intersections. On
the other hand, we shall show in a forthcoming paper how all other k-th order intersections
can be derived from the minimal one.

Finally, we would like to mention that the characterization of boundaries introduced
here also indicates the form of the general representation of PWL functions, with one
term representing each degenerate intersection. As mentioned already, this problem will
be treated in [6], where the major problem will be to find a “pure representation” for each
order.

17
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Appendix

Recently, an extension of the canonical representation from [1] was proposed in [4], us-
ing an approach which is different from the one introduced in [3]: The idea elaborated

there is to replace some of the hyperplanes by “piecewise-affine planes”. This results in a
representation of the form

1
f(x)=s+Jx +Zbi |{ai,x) + Bi| +

i=1

P !
> i (65 + (v x) + D dij (i, x) + Bil
i=1

i=1

(A1)

For the different symbols and their meaning cf. [4]. Let us just mention that the first sum
ranges over [ hyperplanes while the second one covers the p piecewise-affine planes, having
their breakpoints at hyperplanes.

In order to put this result into perspective and to avoid further confusion about the
class of functions described by this representation, we show how (A1) can be derived from
Eq. 2 of [3] by imposing three conditions on a second-order representation: (a) All the
degeneracies appearing are either of degree-zero or one (Vj € {node labels} §/ € {0,1}).
For any node j* with §7° = 1, the parameter vectors of the first and second-order terms
have to be linked by (b) €% +ajs js ¢(®" = 0 and (c) ¢33 +a;s js (27" = 0. The effect
of the latter two conditions was visualized in the examples of [3] in the form of “terminating
boundaries”. The actual sign applying in the conditions depends on the sign convention
employed (see [3]) and the orientation of the two branches of a piecewise-affine plane which

meet at the hyperplane defined by (a/i,x) = 871 (note the different sign conventions for
the B’s in [4] and [3]).

Figure 7

Let us now look at one intersection as depicted in Fig. 7 and show how to obtain (A1)
from a second-order representation. This boundary configuration can be chosen without
loss of generality since both the representations (A1) and (2) in (3] are linear superpositions
of nodes, and, besides the simple intersection of two hyperplanes, the depicted situation is
the only one that can appear in (A1l). As usual, constant shifts are neglected. The three
pre-boundaries in F'ig. 7 already reflect condition (a). Next, let us transform conditions
(b) and (c) into a form appropriate for (A1). Since this representation requires

C!2=

N =

(@® +a®) +do? (A2a)

3=

(AN

a (® +o®) — da? (A2b)
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we have to rescale the a-vectors, which yields a condition on the expansion coefficients a; :

1 1
1 _ 2 3 _ 2 3 A3
o' =appa® +a;a =53 +2da (A3)
This gives us the new set of conditions: (b’) @12 = —aj3 = 35 =: a and (¢) ac® =

(2 = (13 =: ¢(1), Actually, the a-vectors could be scaled to make both a and d equal
to unity. However, since this cannot be achieved for all nodes simultaneously, for the sake
of generality, we omit it. Now it is just a matter of some algebra to plug the conditions

(a), (b’), and (c’) into Eq. 2 of [3] and show that

cW(a? + a® x)+

e [(a!,x)] + e (|(a®,x)] + [(a*, 2)]) +
¢

_{||a(a2,x)| - a(a",x)} - ’a(a2,x) + |a(as,x)||} (A4)

a

= ¢ [(a?,x)| + 2¢ %(ax2 +a®,x) + d|(a’,x)|

(The readers are invited to verify this equation.) The right-hand side of (A4) obviously
has the required form of (A1) with the constant and linear term being omitted.

Besides being limited to intersections of degeneracy one, two more major properties
of the representation from [4] become clear from Eq. A4. The first one is the reduction of
the parametric degrees of freedom from four to two, which is an immediate consequence
of the conditions (b) and (c), and thus, besides the flexibility in the boundaries gained, it
does not possess more parametric degrees of freedom than a non-degenerate intersection
of two boundaries. Moreover, (A1) does not share the symmetry properties of the rep-
resentation introduced in (3] (which will turn out to be fundamental also for the higher
order representations [6]). So the final sum, with the nested absolute values, is in fact a
superposition of terms of all orders appearing (up to second-order), which means that a
modification there cannot be isolated in general, but might require “corrections” in other
terms of the representation.
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Captions

Captions

Figure 1 (a) Two lines in IR?, being themselves first-order intersections, meet in a
second-order intersection, S(?). (b) A boundary configuration with three (non-parallel)
planes in IR3? possesses three second-order intersections. If they coincide in one point, a
third-order intersection appears. (c) However, a line intersecting a plane is not a valid
boundary configuration.

Figure 2 With three boundaries meeting in one point in IR2, the a-vectors and with
them the jumps in the Jacobian become linearly dependent. This causes the breakdown of
the consistent variation property, making the intersection degenerate of order two.

Figure 3 Three examples of third-order intersections at the origin. (a) In spite of a third-
order intersection, no degeneracies (except the boundaries, being of first-order) appear.
Hence this boundary configuration can be described by Eg. 1. (b) A superposition of
two degenerate second-order intersections, of first and second-degree, respectively. This
situation is fully described by Eq.2. (c) Four degenerate second-order intersections, 5(2)’s,
are required to render the origin a degenerate third-order intersection. This lets us gain
one additional parametric degree of freedom.

Figure 4 Representation of the situation on a selected 5(¥=2), (a) With just one 5(¥-1)
residing on the plane (5(¥—2)), from the closed path property, it becomes obvious that the
two (k — 1)-st order jumps in the Jacobian on both sides of S(¥) have to coincide. (b)
Having two S(*=1) available, allows four A(¥~1)J’s with up to three (via the closed path
property) independent values. This eventually permits non-uniform A (¥~ 7 functions
and thereby a k-th order jump in the Jacobian.

Figure 5 A symbolic representations of second (a), third (b), and fourth (c) order mini-
mal degenerate intersections. The (k — 1)-st order degenerate intersections are represented
by the corners while the 5(*=2)’s are visualized as edges. This demonstrates the close
relation of polygons in the plane and the higher order degenerate intersections, stressing
again the co-space properties.

Figure 6 The boundary configuration of Fig. 3¢ with the boundaries grouped. The first
set (light gray) are those $(1)’s forming a degenerate second-order intersection. The three
other boundries are the “additional” ones, which are necessary to obtain a S5(). Their
corresponding a-vectors form a basis of V.

Figure 7 The only non-trivial boundary configuration described by [4]. Since two of
the boundaries terminate, the origin is a true second-order intersection. However, these
terminations are mandatory, so the representation (A1) does not possess more paramet-
ric degrees of freedom than a boundary configuration of two boundaries, i.e., two (three
emerging from first-order contributions plus one from the second-order intersection minus
two due to side conditions).
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