
Copyright © 1990, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

THE IMPLEMENTATION OF POSTGRES

by

Michael Stonebraker, Lawrence A. Rowe,
and Michael Hirohama

Memorandum No. UCB/ERL M90/34

27 April 1990

THE IMPLEMENTATION OF POSTGRES

by

Michael Stonebraker, Lawrence A. Rowe,
and Michael Hirohama

Memorandum No. UCB/ERL M90/34

27 April 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

THE IMPLEMENTATION OF POSTGRES

by

Michael Stonebraker, Lawrence A. Rowe,
and Michael Hirohama

Memorandum No. UCB/ERL M90/34

27 April 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

THE IMPLEMENTATION OF POSTGRES

Michael Stonebraker. Lawrence A. Rowe and Michael Hirohama

EECS Department

Universityof California, Berkeley

Abstract

• Currently, POSTGRES is about90,000 lines of code in C and is being usedby assorted "bold and

brave" early users. The system has beenconstructed by a team of 5 part timestudents led by a full time

chief programmer over the last three years. During this period, we have made a large number of design

and implementation choices. Moreover, in some areas we would do things quitedifferently if we were to

startfrom scratch again. The purpose of thispaperis to reflect on thedesign and implementation decisions

we made and to offer advice to implementors who mightfollow some of our paths. In this paper we res

trict our attention to the DBMS "backend" functions. In another paper some of us treat PICASSO, the

application development environment thatis being builton topof POSTGRES.

1. INTRODUCTION

Currentrelational DBMSsare orientedtoward efficient supportfor business data processing applica

tions where large numbers of instances of fixed format records must be stored and accessed. Traditional

transaction management and queryfacilities for thisapplication area willbe termeddata management

To satisfy the broader application community outside of business applications, DBMSs will have to

expand to offer services in two otherdimensions, namely object management and knowledge manage

ment. Object management entails efficiently storing and manipulating non-traditional data types suchas

bitmaps, icons, text, and polygons. Object management problems abound in CAD and many other

engineering applications. Object-oriented programming languages and data bases provide services in this

area.

This research was sponsored by the Defense Advanced Research Projects Agency through NASA Grant NAG2-530 and by the

Army Research Office through Grant DAALO3-87-K-0083.

Knowledge management entails theability to store and enforce a collection of rules thatare partof

the semantics of an application. Such rules describe integrity constraints about theapplication, as well as

allowing thederivation of data that is notdirectly stored in thedatabase.

We now indicate a simple example which requires services in all three dimensions. Consider an

application that stores andmanipulates text and graphics tofacilitate the layout of newspaper copy. Such a

system will be naturally integrated with subscription andclassified advertisement data. Billing customers

for these services will require traditional data management services. Inaddition, this application must store

non-traditional objects including text, bitmaps (pictures), and icons (the banner across thetop of thepaper).

Hence, object management services are required. Lastly, there aremany rules thatcontrol newspaper lay

out Forexample, thead copy for two major department stores cannever beon facing pages. Support for

such rules is desirable in this application.

We believe that most real worlddata management problems are three dimensional. Like the news

paper application, they will require a three dimensional solution. The fundamental goal of POSTGRES

[STON86, WENS88] is to provide support for such three dimensional applications. To the best of our

knowledge it is the first three dimensional data manager. However, we expect that most DBMSs will fol

low the lead of POSTGRES into these new dimensions.

To accomplish this objective, object and rule management capabilities were added to the services

found in a traditional data manager. In the next two sections we describe the capabilities provided and

comment on our implementation decisions. Then, in Section 4 wediscuss the novel no-overwrite storage

manager thatwe implemented in POSTGRES. Other papers have explained themajor POSTGRES design

decisions in these areas, and we assume that the reader is familiar with [ROWE87] on the data model,

[STON88] onrulemanagement, and [STON87] on storage management Hence, in these three sections we

stress considerations that led to our design, what we liked about the design, and the mistakes that we felt

wemade. Where appropriate we make suggestions for future implementors based on ourexperience.

Section 5 of the paper comments on specific issues in the implementation of POSTGRES and cri

tiques thechoices that we made. In this section wediscuss how weinterfaced to theoperating system, our

choice of programming languages and someof our implementation philosophy.

The final section concludes with someperformance measurements of POSTGRES. Specifically, we

reportthe resultsof someof the queries in theWisconsin benchmark [BITT83].

2. THE POSTGRES DATA MODEL AND QUERY LANGUAGE

2.1. Introduction

Traditional relational DBMSs support a data model consisting of a collection of named relations,

each attribute of which hasa specific type. Incurrent commercial systems possible types are floating point

numbers, integers, character strings, and dates. It is commonly recognized that this data model is

insufficient for non-business data processing applications. In designing a new data model and query

language, we were guided by the following three design criteria.

1) orientation toward data base access from a query language

We expect POSTGRES users to interact with their data bases primarily by using the set-oriented

query language, POSTQUEL. Hence, inclusion of a query language, an optimizer and the corresponding

run-time system was a primary design goal.

It is also possible to interact with a POSTGRES data base by utilizing a navigational interface. Such

interfaces were popularizedby the CODASYLproposals of the 1970's and are enjoying a renaissance in

recent object-oriented proposals such as ORION [BANE87] or 02 [VELE89]. Because POSTGRES gives

each record a unique identifier (OID), it is possible to use the identifier for one record as a data item in a

second record. Using optionally definable indexes on OIDs, it is then possible to navigate from one record

to the next by running one query per navigationstep. In addition,POSTGRESallows a user to define func

tions (methods) to the DBMS. •Such functions can intersperce statements in a programming language,

query language commands, and direct calls to internal POSTGRES interfaces. The ability to directly exe

cute functions which we call fast path is provided in POSTGRES and allows a user to navigate the data

base by executing a sequence of functions.

However, we do not expect this sort of mechanism to become popular. All navigational interfaces

have the same disadvantages of CODASYL systems, namely the application programmer must construct a

query plan for each task he wants to accomplish and substantial application maintenance is required when

ever the schema changes.

2) Orientation toward multi-lingual access

We could have picked our favorite programming language and then tightly coupled POSTGRES to

the compiler and run-time environment of that language. Such an approach would offer persistence for

variables in this programming language, as well as a query language integrated with the control statements

of the language. This approach has been followed in ODE [AGRA89] and many of the recent commercial

start-ups doing object-oriented data bases.

Our point of view is that most data bases are accessed by programs written in several different

languages, and we do not see any programming language Esperanto on the horizon. Therefore, most appli

cation development organizations are multi-lingual and require access to a data base from different

languages. In addition, data base application packages that a user might acquire, for example to perform

statistical or spreadsheet services, are often not coded in the language being used for developing applica

tions. Again, this results in a multi-lingual environment.

Hence, POSTGRES is programming language neutral, that is, it can be called from many different

languages. Tight integration of POSTGRES to a particular language requires compiler extensions and a

run time system specific to that programming language. One of us has built an implementation of per

sistent CLOS (Common LISPObject System) on top of POSTGRES. Persistent CLOS (or persistent X for

any programming language, X) is inevitably language specific. The run-time system must map the disk

representation for language objects, including pointers, into the main memory representation expected by

the language. Moreover, an object cache mustbemaintained intheprogram address space, orperformance

will suffer badly. Both tasks are inherently languagespecific.

We expect many language specific interfaces to be built for POSTGRES and believe that thequery

language plus the fast path interface available in POSTGRES offers a powerful, convenient abstraction

againstwhich to build these programming language interfaces.

3) small number of concepts

We tried to builda data modelwith as few concepts as possible. The relational model succeeded in

replacing previous data models in part because of its simplicity. We wanted to have as few concepts as

possible so that users would have minimum complexity tocontend with. Hence, POSTGRES leverages the

following three constructs:

types

functions

inheritance

In the next subsection we briefly review the POSTGRES data model. Then,we turn to a short description

of POSTQUEL and fast path. We conclude the section with a discussion of whether POSTGRES is

object-oriented followed by a critique of our datamodel and query language.

2.2. The POSTGRES Data Model

As mentioned in the previous section POSTGRES leverages types and functions as fundamental

constructs. Therearethree kindsof types in POSTGRES and three kindsof functions and we discuss the

six possibilities in this section.

Some researchers, e.g. [STON86b, OSB086], have argued that one shouldbe able to constructnew

base types such as bits, bitstrings, encoded character strings, bitmaps, compressed integers, packed

decimal numbers, radix 50 decimal numbers, money,etc. Unlikemostnext generation DBMSs whichhave

a hard-wired collection of base types (typically integers, floats and character strings), POSTGRES contains

an abstract data type facility whereby anyuser can construct an arbitrary number of newbase types. Such

types can be added to the system while it is executing and require thedefining user to specify functions to

convert instances of the type to and from the character string data type. Details of the syntax appear in

[WENS88].

The secondkind of type available in POSTGRES is a constructed type.** A user can create a new

typeby constructing a record of base typesand instances of otherconstructed types. For example:

create DEPT (dname = clO, floor = integer, floorspace = polygon)

create EMP (name = cl2, dept = DEPT, salary = float)

Here, DEPT is a type constructed from an instance of each of three base types, a character string, an

integer and a polygon. EMP, on the other hand, is fabricated from base types and other constructed types.

A constructed type can optionally inherit data elements from other constructed types. For example,

a SALESMAN type can be created as follows:

create SALESMAN (quota = float) inherits EMP

In this case, an instance of SALESMAN has a quota and inherits all data elements from EMP, namely

name, dept and salary. We had the standard discussionabout whether to include single or multiple inheri

tance and concluded that a single inheritance scheme would simply be too restrictive. As a result

POSTGRES allows a constructed type to inherit from an arbitrary collection of other constructed types.

When ambiguities arise because an object has multiple parents with the same field name, we elected

to refuse to create the new type. However, we isolated the resolution semantics in a single routine, which

can be easily changed to track multiple inheritance semantics as they unfold over time in programming

languages.

We now turn to the POSTGRES notion of functions. There are three different classes of

POSTGRES functions,

normal functions

operators

POSTQUEL functions

and we discuss each in turn.

A user can define an arbitrary collection of normal functions whose operands are base types or con

structed types. For example, he can define a function, area, which maps an instance of a polygon into an

instance of a floating point number. Such functions are automatically available in the query language as

illustrated in the following example:

retrieve (DEPT.dname) where area (DEPT.floorspace) > 500

** In this section the reader can use the words constructed type, relation, and class interchangeably. Moreover, the words

record, instance, and tuple are similarly interchangeable. This sectionhas been purposelywritten with the chosen notation to illus

tratea point about object-orienteddatabases which is discussed in Section 2.5.

Normal functions can be defined to POSTGRES while the system is running and are dynamically loaded

when required during query execution.

Functions are allowed on constructed types, e.g:

retrieve (EMPjiame) where overpaid (EMP)

In this case overpaid has an operand of type EMP and returns a boolean. Functions whose operandsare

constructed types are inherited down the type hierarchy in the standard way.

Normal functions are arbitrary procedures written in a general purpose programming language (in

our case C or LISP). Hence, theyhave arbitrary semantics andcan run otherPOSTQUEL commands dur

ing execution. Therefore, queries with normal functions in the qualification cannot be optimized by the

POSTGRES query optimizer. For example, the above query on overpaid employees will result in a

sequential scan of all employees.

To utilize indexes in processing queries, POSTGRES supports a second class of functions, called

operators. Operators are functions with one or two operands which use the standard operatornotation in

the query language.For example the following query looks for departments whose floorspace has a greater

area than that of a specific polygon:

retrieve (DEPT.dname) where DEPT.floorspace AGT polygonr(0,0), (1,1), (0,2)"]

The "area greater than" operator AGT is defined by indicating the token to use in the query language as

well as the function to call to evaluate the operator. Moreover, several hints can also be included in the

definition which assist the query optimizer. One of these hints is that ALE is the negatorof this operator.

Therefore, the query optimizer can transform the query:

retrieve(DEPT.dname) wherenot (DEPT.floorspace ALEpolygon["(0,0), (1,1), (0,2)"])

which cannot be optimized into the one above which can be. In addition, the design of the POSTGRES

access methods allows a B+-tree index to be constructed for the instances of floorspace appearing in DEPT

records. This indexcan supportefficient access for the class of operators {ALT, ALE, AE, AGT, AGE).

Information on the access paths available to the various operators is recorded in the POSTGRES system

catalogs.

As pointedout in [STON87b] it is imperative that a user be able to constructnew access methods to

provideefficientaccess to instancesof non-traditional base types.For example,supposea user introduces a

new operator "!!" defined on polygons that returns true if two polygons overlap. Then, he might ask a

query such as:

retrieve (DEPT.dname) where DEPT.floorspace !! polygon["(0,0), (1,1), (0,2)"]

There is no B+-tree or hash access method that will allow this query to be rapidly executed. Rather, the

query mustbe supported by some multidimensional accessmethod such as R-trees, grid files, K-D-B trees,

etc. Hence, POSTGRES was designed to allow new access methods to be written by POSTGRES users

and then dynamically added to the system. Basically, an access method to POSTGRES is a collection of

13 normal functions which perform record level operations such as fetching the next record in a scan,

inserting a new record, deleting a specific record, etc. All a user need do is define implementations for

each of these functions and make a collection of entries in the system catalogs.

Operators are only available for operands which are base types because access methods traditionally

support fast access to specific fields in records. It is unclear whatan access method for a constructed type

should do, and therefore POSTGRES does not include this capability.

The third kind of function available in POSTGRES is POSTQUEL functions. Any collection of

commands in the POSTQUEL query language can be packaged together and defined as a function. For

example, the following function defines the overpaidemployees:

define function high-pay as retrieve(EMP.aIl) where EMP.salary > 50000

POSTQUEL functions can also have parameters, for example:

define function ret-sal as retrieve (EMP.salary) where EMP.name = $1

Notice that ret-sal has one parameter in the body of the function, the name of the person involved. Such

parameters must be provided at the time the function is called. A third examplePOSTQUELfunction is:

define function set-of-DEPT as retrieve (DEPT.all) where DEPT.floor = $.floor

This function hasa single parameter "S.floor". It is expectedto appear in a record andreceives the valueof

its parameter from the floor field defined elsewhere in the same record.

Each POSTQUEL function is automatically a constructed type. For example, one can define a

FLOORS type as follows:

create FLOORS (floor = i2, depts = set-of-DEPT)

This constructed type uses the set-of-DEPT function as a constructed type. In this case, each instance of

FLOORS has a value for depts which is the value of the function set-of-DEPT for that record.

In addition, POSTGRES allows a user to form a constructed type, one or more of whose fields has

the special type POSTQUEL. For example, a user can construct the following type:

create PERSON (name = cl2, hobbies = POSTQUEL)

In this case, each instance of hobbies contains a different POSTQUEL function, and therefore each person

has a name and a POSTQUEL function that defines his particularhobbies. This support for POSTQUEL as

a type allows the system to simulate non-normalized relationsas found in NF**2 [DADA86].

POSTQUEL functions can appear in the query language in the same manner as normal functions.

The following example ensures that Joe has the same salary as Sam:

replaceEMP(salary = ret-sal("Joe")) where EMP.name = "Sam"

In addition, since POSTQUEL functions are a constructed type, queries can be executed against

POSTQUEL functions just like otherconstructed types. For example, the following query can be run on

the constructed type, high-pay:

retrieve (high-pay.salary) where high-pay.name = "george"

If a POSTQUEL function contains a single retrieve command, then it is very similar to a relational view

definition, and thiscapability allows retrieval operations to be performed on objects which are essentially

relational views.

Lastly, every time a user defines a constructed type, a POSTQUEL function is automatically defined

with the same name. For example, when DEPT is constructed, the following function is automatically

defined:

define function DEPT as retrieve (DEPT.all) where DEPT.OID = $1

When EMP was definedearlier in this section, it contained a field dept which was of type DEPT. In fact,

DEPTwas the above automatically defined POSTQUEL function. As a result, instance of a constructed

type is available as a typebecause POSTGRES automatically defines a POSTQUEL function foreachsuch

type.

POSTQUEL functions are a very powerful notion because they allow arbitrary collections of

instances of types to be returned as the value of the function. Since POSTQUEL functions can reference

other POSTQUEL functions, arbitrary structures of complex objects can be assembled. Lastiy, POST

QUEL functions allow collections of commands such as the 5 SQL commands that make up TPl

[ANON85] to be assembled intoa single function andstored inside theDBMS. Then, onecan execute TPl

by executing the single function. This approach is preferred to having to submit the 5 SQL commands in

TPl one by one from an application program. Using a POSTQUEL function, one replaces 5 round trips

between theapplication andtheDBMS with 1,which results ina 25% performance improvement in a typi

cal OLTP application.

2.3. The POSTGRES Query Language

The previous section presented several examples of the POSTQUEL language. It is a set oriented

query language that resembles a superset of a relational query language. Besides user defined functions

and operators which wereillustrated earlier, the features which have been added to a traditional relational

language include:

path expressions

support for nested queries

transitive closure

support for inheritance

support for time travel

Path expressions are included because POSTQUEL allows constructed types which contain other

constructed types to be hierarchically referenced. For example, the EMP type defined above contains a

field which is an instance of the constructed type, DEPT. Hence, one can ask for the names of employees

who work on the first floor as follows:

retrieve (EMP.name) where EMP.dept-floor = 1

ratherthan being forced to do a join, e.g:

retrieve (EMP.name) where EMP.dept = DEPT.OID and DEPT.floor= 1

POSTQUEL also allows queries to be nested and has operators that have sets of instances as

operands. Forexample, to find the departments which occupy an entire floor, one would query:

retrieve (DEPT.dname)

where DEPT.floorNOTIN {D.floor from D in DEPTwhere D.dname !=DEPT.dname}

In this case, the expression inside the curly braces represents a set of instances and NOTIN is an operator

which takes a set of instances as its right operand.

The transitive closure operation allows one to explode a parts or ancestor hierarchy. Consider for

example the constructed type:

parent (older, younger)

One can ask for all the ancestors of John as follows:

retrieve* into answer (parentolder)

using a in answer

where parentyounger = "John"

or parentyounger = a.older

In this case the * after retrieve indicates that the associatedquery should be run until answer fails to grow.

If one wishes to find the names of all employees over 40, one would write:

retrieve (E.name) using E in EMP

where Rage > 40

On the other hand, if one wanted the names of all salesmen or employees over 40, the notation is:

retrieve (E.name) using E in EMP*

where E.age > 40

Here the * after the constructed type EMP indicates that the query should be run over EMP and all

constructed types under EMP in theinheritance hierarchy. This use of * allows auser toeasily run queries

over a constructed type and all its descendents.

Lasdy, POSTGRES supports the notion of time travel. This feature allows a user to run historical

queries. Forexample to find the salary of Sam at timeT one wouldquery:

retrieve (EMP.salary)

using EMP (T]

where EMP.name = "Sam"

POSTGRES will automatically find the version of Sam's record valid at the correct time and get the

appropriate salary.

Like relational systems, theresult of a POSTQUEL command can be added to the data base asa new

constructed type. In this case, POSTQUEL follows the lead of relational systems by removing duplicate

records from the result The user who is interested in retaining duplicates can do so by ensuring that the

OID field of some instance is included in the target list being selected. For a full description of POST

QUEL the interested reader should consult [WENS88].

2.4. Fast Path

There are three reasons why we chose to implement a fast path feature. First, a user who wishes to

interact with a data base by executing a sequence of functions to navigate todesired data can use fast path

to accomplish his objective. Second, there are a variety of decision support applications in which the end

user is given a specialized query language. In such environments, it is often easier for the application

developer toconstruct a parse tree representation for aquery rather than an ASCII one. Hence, it would be

desirable for the application designer to be able to directly call the POSTGRES optimizer or executor.

Most DBMSs do not allow direct access to internal system modules.

The third reason is abitmore complex. In the persistent CLOS layer of PICASSO, it is necessary for

the run time system to assign a unique identifier (OID) toevery constructed object that is persistent It is

undesirable for the system to synchronously insert each object directly into a POSTGRES data base and

thereby assign a POSTGRES identifier to the object This would result in poor performance inexecuting a

persistent CLOS program. Rather, persistent CLOS maintains a cache of objects in the address space of

the program and only inserts a persistent object into this cache synchronously. There are several options

which control how the cache is written out to the data base at a later time. Unfortunately, it is essential that

a persistent object beassigned a unique identifier atthe time it enters the cache, because other objects may

have to point to the newly createdobject and use its OID to do so.

If persistent CLOS assigns unique identifiers, then there will beacomplex mapping that mustbe per

formed when objects are written outto the data base and real POSTGRES unique identifiers are assigned.

Alternately, persistent CLOS must maintain its own system for unique identifiers, independent of the

10

POSTGRES one, an obvious duplication of effort The solution chosen was to allow persistent CLOS to

access the POSTGRES routine that assigns unique identifiers and allow it to preassign N POSTGRES

object identifiers which it can subsequendy assign to cached objects. At a later time, these objects can be

written to a POSTGRES data base using thepreassigned unique identifiers. When the supply of identifiers

is exhausted, persistent CLOS can requestanother collection.

In all of these examples, an application program requires direct access to a user-defined or internal

POSTGRES function,and therefore the POSTGRES query language hasbeen extended with:

function-name (param-list)

In this case, besides running queries in POSTQUEL, a user can ask that any function known to

POSTGRES be executed. This function can be one thata userhas previouslydefined as a normal, operator,

or POSTQUEL function or it can be one thatis includedin the POSTGRESimplementation.

Hence, the user can directly call the parser, the optimizer, the executor, the access methods, the

buffer manager or the utility routines. In addition he can define functions which in turn make calls on

POSTGRES internals. In this way, he can have considerable control over the low level flow of control,

much as is available through a DBMS toolkitsuch asExodus [RICH87], but without all theeffort involved

in configuring a tailored DBMS from the toolkit Moreover, should the user wish to interact with his data

base by making a collection of function calls (method invocations), this facility allows the possibility. As

noted in the introduction, we do not expect this interface to be especially popular.

The above capability is called fast path because it provided direct access to specific functions

without checking the validity of parameters. As such, it is effectively a remote procedure call facility and

allows a user program to call a function in another address space rather than in itsown address space.

2.5. Is POSTGRES Object-oriented?

There havebeen many next generation data modelsproposed in the last few years. Some arecharac

terized by the term "extended relational", others are considered "object-oriented" while yet others are

termed "nested relational". POSTGRES could be accurately described as an object-oriented system

because it includes unique identity for objects, abstract data types, classes (constructed types), methods

(functions), and inheritance for both data and functions. Others (e.g. [ATKI89]) are suggesting definitions

for the word"object-oriented", andPOSTGRESsatisfies virtually allof the proposed litmus tests.

On the other hand, POSTGRES could also be considered an extended relational system. As noted in

a previous footnote, Section 2 could have been equally well written with the word "constructed type" and

"instance" replaced by the words "relation" and "tuple". In fact, in previous descriptions of POSTGRES

[STON86], this notation was employed. Hence, others, e.g. [MAJE89] havecharacterized POSTGRES as

an extended relational system.

11

Lastiy, POSTGRES supports the POSTQUEL type, which is exacdy a nested relational structure.

Consequently, POSTGRES could be classified as a nestedrelational systemas well.

As a result POSTGRES could be described using any of the three adjectivesabove. In our opinion

we caninterchangeably use thewords relations, classes, and constructed types indescribing POSTGRES.

Moreover, we can also interchangeably use thewords function and method. Lastly, we can interchange

ably use thewords instance, record, and tuple. Hence, POSTGRES seems to be either object-oriented or

notobject-oriented, depending on thechoice of a few tokens in the parser. Asa result wefeel thatmost of

the efforts to classify theextended data models in next generation data base systems are silly exercises in

surface syntax.

In the remainder of this section, we comment briefly on the POSTGRES implementation of OIDs

and inheritance. POSTGRES giveseach record a unique identifier (OID), and then allows the application

designer to decide for each constructed type whether he wishes to have an index on the OID field. This

decision shouldbe contrasted with mostobject-oriented systems which construct an OID index for all con

structed types in the system automatically. The POSTGRES scheme allows thecostof the index to be paid

only for those types of objects for which it is profitable. In our opinion, this flexibility has beenan excel

lent decision.

Second, there are several possible ways to implement an inheritance hierarchy. Considering the

SALESMEN and EMP example noted earlier, one can store instances of SALEMAN by storing them as

EMP records and then only storing the extra quota information in a separate SALESMAN record. Alter

nately, one can store no information on each salesman in EMP and then store complete SALESMAN

records elsewhere. Clearly, there are a variety of additional schemes.

POSTGRES chose one implementation, namely storing all SALESMAN fields in a single record.

However, it is likely thatapplications designers willdemand several otherrepresentations to givethem the

flexibility to optimize their particular data. Future implementations of inheritance will likely require

several storage options.

2.6. A Critique of the POSTGRES Data Model

There are five areas where we feel we made mistakes in the POSTGRES data model:

union types

access method interface

functions

big objects

arrays

We discuss each in turn.

12

A desirable feature in anynext-generation DBMSwould be to support union types,i.e. aninstance of

a type can be an instance of one of several given types. A persuasive example (similar to one from

[COPE84]) is thatemployees can be on loan to another plant or on loan to a customer. If two base types,

customer and plant exist one would like to change the EMP type to:

createEMP(name=cl2, dept = DEPT,salary = float on-ioan-to = plantor customer)

Unfortunately including union types makesa queryoptimizer morecomplex. For example, to find all the

employees on loan to the same organization one would state the query:

retrieve (EMP.name, E.name)

using E in EMP

where EMP.on-loan-to = E.on-loan-to

However, the optimizer must construct two different plans, one for employees on loan to a customer and

one for employees on loan to a different plant The reason for two plans is that the equality operatormay

be different for the two types. In addition, one must construct indexes on union fields, which entails sub

stantial complexity in the access methods.

Union types are highly desirable in certain applications, and we considered three possible stances

with respect to union types:

1) support only through abstractdata types

2) support through POSTQUEL functions

3) full support

Union types can be easily constructed using the POSTGRES abstract data type facihty. If a user wants a

specific union type, he can construct it and then write appropriate operators and functions for the type. The

implementation complexity of union types is thus forced into the routines for the operators and functions

and onto the implementor of the type. Moreover, it is clear that there are a vast number of union types and

an extensive type library must be constructedby the application designer. The PICASSO team stated that

thisapproach placedan unacceptably difficult burden on them, andtherefore position 1 was rejected.

Position 2 offers some support for union types but has problems. Consider the example of employ

ees and their hobbies from [STON86]:

create EMP (name = cl2, hobbies = POSTQUEL)

Here the hobbies field is a POSTQUEL function, one per employee, which retrieves all hobby information

about that particular employee. Now consider the following POSTQUEL query:

retrieve (EMP.hobbies.average) where EMP.name = "Fred"

In this case the field average for each hobby recordwill be returnedwhenever it is defined. Suppose, how

ever, that average is a float for the Softball hobby and an integer for the cricket hobby. In this case, the

13

application program must be prepared to accept values of different types.

The more difficult problem is the following legal POSTQUEL query:

retrieve into TEMP (result = EMP.hobbies.average) where EMP.name = "Fred"

In this case, a problem arises concerning the type of the result field, because it is a union type. Hence,

adopting position2 leaves one in an awkwardposition of not having a reasonable type for the result of the

above query.

Of course, position 3 requires extending the indexing and query optimization routines to deal with

union types. Our solution was to adopt position2 and to add an abstractdata type, ANY, whichcan holdan

instanceof any type. This solutionwhich turns the typeof the resultof the above query from

one-of (integer, float)

into ANY is not very satisfying. Not only is information lost but we are also forced to include with

POSTGRES this universal type.

In our opinion, the only realisticalternative is to adoptposition 3, swallow the complexity increase,

and that is what we would do in any next system.

Another failure concerned the access method design and was the decision to support indexing only

on the value of a field and not on a function of a value. The utility of indexes on functions of values is dis

cussedin [LYNC88], and the capability wasretrofitted, ratherinelegandy, intoone version of POSTGRES

[AOKI89].

Another comment on the access methoddesign concernsextendibility. Because a user can add new

base typesdynamically, it is essential that he also be able to add new access methods to POSTGRES if the

system does not come with an access method that supports efficient access to his types. The standard

example of this capability is the use of R-trees [GUTM84] to speed access to geometric objects. We have

now designedand/or coded three access methods for POSTGRES in addition to B+-trees. Our experience

has consistentlybeen that adding an access method is VERY HARD. There are four problems that com

plicatethe situation. First the access methodmust include explicit calls to thePOSTGRES lockingsubsys

tem to set and release locks on access method objects. Hence, the designer of a new access method must

understand locking and how to use the particularPOSTGRES facilities. Second, the designer must under

stand how to interface to the buffer manager and be able to get, put pin and unpin pages. Next the

POSTGRES execution engine contains the "state'* of the execution of any query and the access methods

must understand portions of this state and the data structures involved.Last but not least the designer must

write 13 non-trivial routines. Our experience so far is that novice programmers can add new types to

POSTGRES; however, it requires a highly skilled programmer to add a new access method. Put dif

ferently, the manual on how to add new data types to POSTGRES is 2 pages long, the one for access

methods is 50 pages.

14

We failed to realize the difficulty of access mediod construction. Hence, we designed a system that

allows end users to add access methods dynamically to a running system. However, access methods will

be built by sophisticated system programmers who could haveused a simplerto build interface.

A third area where our design is flawed concerns POSTGRES support for POSTQUEL functions.

Currendy, such functions in POSTGRES arecollections of commandsin the query language POSTQUEL.

If one defined budget in DEPT as a POSTQUEL function, then the value for the shoe department budget

might be the following command:

retrieve (DEPT.budget) where DEPT.dname = "candy"

In this case, the shoe department will automatically be assigned the same budget as the candy department

However, it is impossible for the budget of the shoe department to be specifiedas:

if floor = 1 then

retrieve (DEPT.budget) where DEPT.dname = "candy"

else

retrieve (DEPT.budget) where DEPT.dname = "toy"

This specification defines the budget of the shoe department to be the candy department budget if it is on

the first floor. Otherwise, it is the same as the toy department This query is not possible because POST

QUEL has no conditional expressions. We had extensive discussions about this and other extensions to

POSTQUEL. Each such extension was rejected because it seemed to turn POSTQUEL into a program

ming language and not a query language.

A better solution would be be to allow a POSTQUEL function to be expressible in a general purpose

programming language enhanced with POSTQUEL queries. Hence, there would be no distinction between

normal functions and POSTQUEL functions. Put differendy, normal functions would be able to be con

structed types and would support path expressions.

There are three problems with this approach. First path expressions for normal functions cannot be

optimized by the POSTGRES query optimizer because they have arbitrary semantics. Hence, most of the

optimizations planned for POSTQUEL functions would have to be discarded. Second, POSTQUEL func

tions are much easier to define than normal functions because a user need not know a general purpose pro

gramming language. Also, he need not specify the types of the function arguments or the return type

because POSTGRES can figure these out from the query specification. Hence, we would have to give up

ease of definition in moving from POSTQUEL functions to normal functions. Lasdy,, normal functions

have a protection problem because they can do arbitrary things, such as zeroing the data base. POSTGRES

deals with this problem by calling normal functions in two ways:

trusted - loaded into the POSTGRES address space

untrusted -- loaded into a separate address space

15

Hence, normal functions are eithercalled quickly with no security or slowly in a protected fashion. No

such securityproblemariseswith POSTQUEL functions.

An better approach might have been to support POSTQUEL functions written in the4th generation

language (4GL) being designed for PICASSO [ROWE89]. Thisprogramming system leaves typeinforma

tion in the system catalogs. Consequendy, there would beno need for a separate registrations step to indi

cate type information toPOSTGRES. Moreover, a processor for the language isavailable for integration in

POSTGRES. It is also easy to make a 4GL "safe", i.e. unable to perform wild branches or malicious

actions Hence, there would be no security problem. Also, it seems possible that path expressions could be

optimized for 4GL functions.

Current commercial relational products seem to be moving in this direction by allowing data base

procedures to be coded in their proprietary 4th generation languages (4GLs). In retrospect we probably

should havelookedseriously atdesigning POSTGRES to support functions written in a 4GL.

Next POSTGRES allows types to be constructed that are of arbitrary size. Hence, large bitmaps are

a perfecdy acceptable POSTGRES data type. However, the current POSTGRES user interface (portals)

allowsa userto fetch one or more instances of a constructed type. It is currendyimpossible to fetch only a

portion of an instance. This presents an application program with a severe buffering problem; it mustbe

capable of accepting anentire instance, nomatter howlarge it is. We should extend the portal syntax in a

straightforward way to allow an application to position a portal on a specific field of aninstance of a con

structed type and then specify a byte-count that he would like to retrieve. These changes would make it

much easier to insert and retrieve big fields.

Lastly, we included arrays in the POSTGRES data model. Hence, one could have specified the

SALESMAN type as:

create SALESMAN (name=cl2, dept= DEPT, salary = float quota= float[12])

Here, the SALESMAN has all the fields of EMP plus a quota which is an array of 12 floats, one for each

month of the year. In fact character strings are really an array of characters, andthecorrect notation for

the above type is:

create SALESMAN (name= c[12], dept= DEPT, salary = float quota= float[12])

In POSTGRES we support fixed and variable length arrays of base types, along with an array notation in

POSTQUEL. For example torequest all salesmen whohave anApril quota over 1000, one wouldwrite:

retrieve (SALESMAN.name) where SALESMAN.quota[4] > 1000

However, we do not support arrays of constructed types; hence it is not possible to have an array of

instances of a constructed type. We omitted this capability only because it would have made the query

optimizer and executor somewhat harder. In addition, there is no built-in search mechanism for the

16

elements of an array. For example, it is not possible to find thenames of all salesmen who have a quota

over 1000 during any month of the year. Inretrospect we should included general support for arrays orno

support at all.

3. THE RULES SYSTEM

3.1. Introduction

It is clear to us that all DBMSs need a rules system. Current commercial systems are required to

support referential integrity [DATE81], which is merely a simple-minded collection of rules. Inaddition,

most current systems have special purpose rules systems to support relational views, protection, and

integrity constraints. Lasdy, a rules system allows users to do event-driven programming as well as

enforce integrity constraints that cannot be performed inother ways. There are three high level decisions

that the POSTGRESteam had to make concerning the philosophyof rule systems.

First a decision was required concerning how many rule syntaxes there would be. Some

approaches, e.g. [ESWA76, WID089] propose rule systems oriented toward application designers that

would augment other rule systems present for DBMS internal purposes. Hence, such systems would con

tain several independendy functioning rules systems. On theother hand, [STON82] proposed a rule sys

tem thattried to support userfunctionality as well as needed DBMS internal functions in a singlesyntax.

From thebeginning, a goal of the POSTGRES rules system was to have only onesyntax. It was felt

that this would simplify the user interface, since application designers need learn only oneconstruct Also,

they would nothave to deal with deciding which system to use in thecases where a function could be per

formed bymore than onerules system. It wasalsofeltthata single rules system would easetheimplemen

tation difficulties that would be faced.

Second, there are two implementation philosophies by which one could support a rule system. The

first is a query rewrite implementation. Here, a rule would be applied by converting a userquery to an

alternate form priorto execution. Thistransformation is performed between thequery language parser and

the optimizer. Support for views [STON75] is done this way along with many of theproposals for recur

sivequery support [BANC86, ULLM85]. Suchan implementation willbe veryefficient when there are a

small number of rules on anygiven constructed type andmost rules cover thewhole constructed type. For

example, a rule such as:

EMP [dept] contained-in DEPTfdname]

expresses the referential integrity condition that employees cannot be in a non-existent department and

applies to all EMP instances. However, a query rewrite implementation will not work well if there are a

large number of rules oneach constructed type, each of them covering only a few instances. Consider, for

example, the following three rules:

17

employees in the shoe departmenthave a steel desk

employees over 40 have a wood desk

employees in the candy department do not havea desk

To retrieve the kind of a desk that Sam has, one must run the following three queries:

retrieve (desk = *'steel' *) where EMP.name= "Sam**and EMP.dept=4'shoe*'

retrieve (desk = "wood") where EMP.name= "Sam" andEMP.age>40

retrieve (desk = null) where EMP.name = "Sam" andEMP.dept= "candy"

Hence, a user query must be rewritten for each rule, resulting in a serious degradation of performance

unless allqueries are processed asa group using multiple query optimization techniques [SELL86].

Moreover, a query rewrite system has great difficulty with exceptions [BORG85]. For example con

sider the rule "all employees havea steel desk" together with the exception "Jones is an employee who

has a wood desk". If one ask for the kind of desk and age for all employees over 35, then the query must

be rewritten as the following 2 queries:

retrieve (desk ="steel",EMP.age) whereEMP.age >35andEMRname != "Jones"

retrieve (desk = "wood",EMP.age) whereEMP.age > 35 andEMP.name = "Jones"

In general, the number of queries as well as the complexity of their qualifications increases linearly with

the number of rules. Again, this will result in bad performance unless multiple query optimization tech

niques are applied.

Lastly, a query rewrite system does not offer any help in resolving situations when the rules are

violated. For example, the above referential integrity rule is silent on what to do if a user tries to insert an

employee into a non-existent department

On the other hand, one could adopt a trigger implementation based on individual record accesses

and updates to the data base. Whenever a record is accessed, inserted, deleted or modified, the low level

execution code has both the old record and the new record readily available. Hence, assorted actions can

easily be taken by the low level code. Such an implementation requires the rule firing code to be placed

deep in the query execution routines. It will work well if there are many rules each affecting only a few

instances, and it is easy to deal successfully withconflict resolution at this level. However, rule firing is

deep in theexecutor, and it is thereby impossible for the query optimizer toconstruct anefficient execution

plan for a chain of rules that are awakened.

Hence, this implementation complements a query rewrite scheme in that it excels where a rewrite

scheme is weak and vica-versa. Since we wanted to have a single rule system, it was clear that we needed

to provide both styles of implementation.

18

A thirdissuethatwe faced was the paradigm for the rules system. A conventional production system

consisting of collections of if-then rules has been explored in the past [ESWA76, STON82], and is a

readily available alternative. However, such a schemelacksexpressive power. Forexample, supposeone

wants to enforce a rule thatJoe makes the same salary as Fred. In this case,one must specify two different

if-then rules. The first one indicates the action to take if Fred receives a raise, namely to propagate the

change on to Joe. The second rule specifies thatany update to Joe's salary mustbe refused. Hence, many

userrules require two or more if-then specifications to achieve the desired effect

The intent in POSTGRES was to explore a more powerful paradigm. Basically, any POSTGRES

commandcan be turned into a rule by changing the semantics of the commandso that it is logically either

always running or never running. For example, Joe may be specified to have the same salary as Fred by

the rule:

always replace EMP (salary = E.salary)

using E in EMP

where EMP.name = "Fred" and E.name = "Joe"

This single specification will propagate Joe's salary on to Fred as well as refuse direct updates to Fred's

salary. In this way a single "always" rule replaces the two statementsneeded in a productionrule syntax.

Moreover, to efficiently support the triggering implementation where there are a large number of

rules present for a single constructed type, each of which applies to only a few instances, the POSTGRES

team designed a sophisticated marking scheme whereby rule wake-up information is placedon individual

instances. Consequently, regardless of the numberof rulespresent fora singleconstructed type, only those

which actually must fire will be awakened. This shouldbe contrasted to proposals without such data struc

tures, which will be hopelessly inefficient whenever a large numberof rules are present for a single con

structed type.

Lastly, the decision was made to support the query rewrite scheme by escalatingmarkers to the con

structed type level. For example, consider the rule:

always replace EMP (age = 40) where name !="Bill"

This rule applies to all employees except Bill and it would be a waste of space to mark each individual

employee. Rather, one would prefer to set a single marker in the system catalogs to cover the whole con

structed type implicitly. In this case, any query, e.g:

retrieve (EMP.age) where EMP.name = "Sam"

will be altered prior to execution by the query rewrite implementation to:

retrieve (age = 40) where EMP.name = "Sam" and EMP.name !="Bill"

19

At the current time much of the POSTGRES Rules System (PRS) as described in [STON88] is

operational, and there are three aspects of the design which we wish to discuss in the next three subsec

tions, namely:

complexity

absence of needed function and

efficiency

Then, we close with the second version of the POSTGRES Rules system (PRS II) which we are currently

designing. This rules systemis described in moredetail in [STON89, STON89b].

3.2. Complexity

The first problem with PRS is that the implementation is exceedingly complex. It is difficult to

explain the marking mechanisms that cause rule wake-up even to a sophisticated person. Moreover, some

of us have an uneasy feeling that the implementation may not be quite correct The fundamental problem

can be illustrated using the Joe-Fred example above. First the rule must be awakened and run whenever

Fred's salary changes. Thisrequires thatone kind of marker be placed on the salary of Fred. However, if

Fred is given a new name, say Bill, then the rule must be deleted and reinstalled. This requires a second

kind of markeron the name of Fred. Additionally, it is inappropriate to allowany update to Joe's salary;

hence a thirdkind of marker is required on that field. Furthermore, if Fred has not yet been hired, thenthe

rule must take effect on the insertion of his record. This requires a marker to be placed in the index for

employee names. To support rules that deal with ranges of values, for example:

always replace EMP (age = 40)

where EMP.salary > 50000 and EMP.salary < 60000

we require that two "stub" markers be placed in the index to denote theendsof the scan. In addition, each

intervening index record must also be marked. Ensuring that all markers are correctly installed and

appropriate actions taken when record accessesand updates occur has beena challenge.

Another source of substantial complexity is the necessity to deal with priorities. For example, con

sider a second rule:

always replace EMP (age = 50) where EMP.dept = "shoe"

In this case a highlypaid shoe department employee would be given two different ages. To alleviate this

situation, the second rule could be given a higher priority, e.g:

always replace EMP (age = 50) where EMP.dept = "shoe"

priority = 1

The default priority for rules is 0; hence the first rule would set the age of highly paid employees to 40

unless they were in the shoe department in which case their age would be set to 50 by the second rule.

20

Priorities, of course, add complications to the rules system. For example, if the second rule above is

deleted, then the firstrule must be awakenedto correct the agesof employees in the shoe department

Another aspect ofcomplexity is ourdecision tosupport both early and late evaluation of rules. Con

sider theexample rule thatJoe makes thesame salary asFred. Thisrulecanbe awakened when Fredgetsa

salary adjustment, or activation can be delayed until a user requests the salary of Joe. Activation can be

delayed as long as possible in thesecond case, and we term this late evaluation while the former case is

termed earlyevaluation. This flexibility also results in substantial extra complexity. Forexample, certain

rules cannot be activated late. If salariesof employees are indexed, then the rule that sets Joe's salary to

thatof Fredmustbe activated earlybecause the index must bekeptcorrect Moreover, it is impossible for

anearly ruleto read datathat is written bya laterule. Hence, additional restrictions must be imposed.

Getting PRS correct has entailed uncounted hours of discussion and considerable implementation

complexity. Thebottom lineis thattheimplementation of a rulesystem thatis clean andsimple to theuser

is, in fact, extremely complex and tricky. Ourpersonal feeling is thatweshould have embarked on a more

modest rules system.

3.3. Absence of Needed Function

The definition of a useful rulessystem is one thatcan handle at leastall of the following problems in

one integrated system:

support for views

protection

referential integrity

other integrity constraints

We focus in thissection on support forviews. Thequery rewrite implementation of a rules system should

be able to translate queries on views intoqueries on real objects. In addition, updates to views should be

similarlymapped to updates on real objects.

Thereare various special casesof view support thatcanbe performed byPRS,forexample material

ized views. Consider the following view definition:

define view SHOE-EMP (name = EMP.name,age = EMRage, salary = EMP.salary)

where EMP.dept = "shoe"

The following two PRS rules specify a materialization of this view:

always append to SHOE-EMP (name = EMP.name, salary =» EMP.salary) whereEMP.dept = "shoe"

always delete SHOE-EMP where SHOE-EMP.name not-in {EMP.name where EMP.dept = "shoe"}

In this case, SHOE-EMP will always contain a correct materialization of the shoe department employees,

and queries can be directed to this materialization.

21

However, there seemed to be no way to support updateson views that are not materialized. One of

us hasspentcoundess hours attempting to support thisfunction dirough PRS and failed. Hence, inability to

supportoperations conventional viewsis a majorweakness of PRS.

3.4. Implementation Efficiency

Thecurrent POSTGRES implementation uses markers on individual fields to support ruleactivation.

The only escalation supported is to convert a collection of field level markers to a single marker on the

entire constructed type. Consequently, if a rule covers a single instance,e.g:

always replace EMP (salary = 1000) where EMRname = "Sam"

then a total of 3 markers will be set one in the index, one on the salary field and one on the name field.

Each marker is composed of:

rule-id - 6 bytes

priority ~ 1 byte

marker-type —1 byte

Consequently, the markeroverhead for the rule is 24 bytes,Now considera morecomplexrule:

always replace EMP (salary = 1000) where EMP.dept = "shoe"

If 1000 employees workin theshoedepartmentthen 24,000 bytes of overhead willbe consumed in mark

ers. The only other optionis to escalate to a marker on the entireconstructed type, in which case the rule

will be activated if any salary is read or written and not just for employees in the shoe department This

will be an overhead intensive option. Hence, for mles which cover many instances but not a significant

fractionof all instances, the POSTGRES implementation will not be veryspace efficient

We are considering several solutions to this problem. First we have generalized B+-trees to

efficiently store interval data as well as point data. Such "segmented B+-trees" are the subject of a

separate paper [KOLE89]. This will remove the space overhead in the index for the dominant form of

access method. Second, to lower the overhead on data records, we will probably implement markers at the

physical block levelas wellas at the instance andconstructed type levels. Theappropriate extragranulari

ties are currendy under investigation.

3.5. The Second POSTGRES Rules System

Because of the inability of the currentrulesparadigm to support views and to a lesserextent the fun

damental complexity of the implementation, we areconverting to a second POSTGRES rulessystem (PRS

II). This rules systemhas much in common with the first implementation, but returns to the traditional pro

duction rule paradigm to obtain sufficient control to perform view updates correcdy. Thissection outlines

our thinking, and a complete proposal appears in [STON89b].

22

The production rule syntaxwe are using inPRSn has the form:

ON event TO objectWHERE POSTQUEL-qualification

THEN DO POSTQUEL-command(s)

Here, event is retrieve, replace, delete, append, new (i.e. replace orappend) orold(i.e. delete orreplace).

Moreover, object is either the name of a constructed type or constructed-typexolumn. POSTQUEL-

qualification is a normal qualification, with no additions orchanges. Lasdy, POSTQUEL-commands is a

set of POSTQUEL commands with the following two changes:

NEW, OLDorCURRENT canappear instead of thename of aconstructed type in front of

any attribute.

refuse (target-list) is addedas a new POSTQUELcommand

In this notation we would specify the "Fred-Joe" rule as:

on NEW EMP.salary where EMP.name = "Fred"

then do

replace E (salary = CURRENT.salary)

using E in EMP

where E.name = "Joe"

on NEW EMP.salary where EMP.name = "Joe"

then do

refuse

Notice, that PRS II is less powerful than the "always" system because the Fred-Joe rule require two

specifications instead of one.

PRS II hasboth a query rewrite implementation anda trigger implementation, and it is an optimiza

tion decision which one to use as noted in [STON89b]. Forexample, consider the rule:

on retrieve to SHOE-EMP

then do

retrieve (EMP.name, EMP.age, EMP.salary) where EMP.dept= "shoe"

Any query utilizing such a rule, e.g:

retrieve (SHOE-EMP.name) where SHOE-EMP.age <40

would be processed by the rewrite implementation to:

retrieve (EMP.name) where EMP.age<40 and EMP.dept= "shoe"

As can be seen, this is identical to the query modification performed in relational view processing

23

techniques [STON75]. This rule could also be processed by the triggering system, in which case the rule

would materialize the records in SHOE-EMP iteratively.

Moreover, it is straightforward to support additional functionality, such as allowing multiple queries

in thedefinition of a view. Supporting materialized viewscan beefficiendy doneby cachingtheaction part

of the above rule, i.e. executing the commandbeforea userrequests evaluation. This corresponds to mov

ing therule to early evaluation. Lasdy, supporting views that are partly materialized and partly specified as

procedures aswellasviews that involve recursion appears fairly simple. In [STON89b] we present details

on these extensions.

Considerthe followingcollectionof rules thatsupport updates to SHOE-EMP:

on NEW SHOE-EMP

then do

append to EMP (name = NEW.name, salary = NEW.salary)

on OLD SHOE-EMP

then do

delete EMP where EMP.name = OLD.name and EMP.salary a OLD.salary

on UPDATE to SHOE-EMP

then do

replaceEMP (name = NEW.name, salary = NEW.salary)

where EMP.name = NEW.name

If theserules areprocessed by the trigger implementation, thenanupdate to SHOE-EMP, e.g:

replace SHOE-EMP (salary = 1000) whereSHOE-EMP.name =''Mike' *

will be processednormally until it generates a collectionof

[new-record, old-record]

pairs. At this point the triggering system can be activated to make appropriate updates to underlying con

structed types. Moreover, if a user wishes non-standard viewupdate semantics, he can perform anyparticu

laractions he desires by changing the action partof the above rules.

PRS II thereby allows a user to use the rules system to define semantics for retrievals and updates to

views. In fact we expecttobuilda compiler that willconvert a higher levelview notration intotheneeded

collection of PRS II rules. In addition, PRS n retains all functionality of the first rules system, so protec

tion, alerters integrity constraints, and arbitrary triggers are readily expressed. The onlydisadvantage is that

PRS II requires tworules to perform many tasks expressible asa single PRS rule. To overcome this disad

vantage, we will likely continue to support the PRS syntax in addition to the PRS II syntax and compile

24

PRS into PRS n. support

PRS n can be supported by the same implementation thatwe proposed for the query rewrite imple

mentation of PRS, namely marking instances in the system catalogs. Moreover, the query rewrite algo

rithmis nearly the same as in the first implementation. The triggering system can be supported by the same

instance markers as in PRS. In fact the implementation is bit simpler because a couple of the types of

markers arenot required. Becausethe implementation of PRS II is so similarto our initialrulessystem, we

expect to have the conversion completed in the near future.

4. STORAGE SYSTEM

4.1. Introduction

When considering the POSTGRES storage system, we wereguidedby a missionary zeal to do some

thing different All currentcommercial systems use a storage manager with a write-aheadlog (WAL), and

we felt that this technology was well understood. Moreover, the original INGRES prototype from the

1970sused a similarstorage manager, and we had no desireto do anotherimplementation.

Hence, we seized on the idea of implementing a "no-overwrite" storage manager. Using this tech

nique the old recordremains in the database whenever an updateoccurs, and serves the purpose normally

performed by a write-ahead log. Consequently, POSTGRES has no log in the conventional sense of the

term. Instead the POSTGRES log is simply 2 bits per transaction indicatingwhether each transaction com

mitted, aborted, or is in progress.

Two very nice features can be exploited in a no-overwrite system. First abortinga transaction can

be instantaneous because one does not need to process the log undoing the effects of updates; the previous

records are readily available in the data base. More generally, to recover from a crash, one must abort all

the transactions in progress at the time of the crash. This process can be effectively instantaneous in

POSTGRES.

The second benefit of a no-overwrite storagemanageris the possibility of time travel. As noted ear

lier, a user can ask a historical query and POSTGRES will automatically return information from the

record valid at the correct time.

This storage manager should be contrasted with a conventional one where the previous record is

overwritten with a new one. In this case a write-ahead log is required to maintain the previous version of

each record. There is no possibility of time travel because the log cannot be queried since it is in a dif

ferent format. Moreover, the data base must be restored to a consistent state when a crash occurs by pro

cessing the log to undo any partiallycompleted transactions. Hence, there is no possibility of instantaneous

crash recovery.

25

Clearly a no-overwrite storage manager is superior toa conventional oneif it canbe implemented at

comparable performance. There is a briefhand-wave of anargument in [STON87] that alleges this might

be the case. In our opinion, the argument hinges around the existence of stable main memory. In the

absence of stable memory, a no-overwrite storage manager must force to disk at commit time all pages

written by a transaction. This is required because theeffectsof a committed transaction mustbe durable in

case a crash occurs and main memory is lost A conventional data manager on the other hand, needonly

force to disk at commit time the log pages for the transaction's updates. Even if there are as many log

pages as data pages (a highly unlikely occurence), the conventional storage manager is doing sequential

I/Oto the log whilea no-overwrite storage manager is doing random I/O. Sincesequential I/Ois substan

tially faster than random I/O, the no-overwrite solution is guaranteed tooffer worse performance.

However, if stable main memory is present then neither solution must force pages to disk. In this

environment performance should be comparable. Hence, with stable main memory it appears that a no-

overwrite solutionis competitive. As computermanufacturers offer some form of stable main memory, a

no-overwrite solution may become a viable storage option.

In designing the POSTGRES storage system, we wereguided by two philosophical premises. First,

we decided to make a clear distinction between current data and historical data. We expected access pat

terns to be highly skewed toward current records. In addition, queries to the archive might look very dif

ferent from thoseaccessing current data. For bothreasons, POSTGRES maintains two different physical

collections of records, one for the current data and one for historical data, each with its own indexes.

Second, ourdesign assumes theexistence of a randomly addressable archive deviceon which histori

cal records are placed. Our intuitive model for thisarchive is an optical disk. Ourdesign was purposely

made consistent with an archive that has a write-once-read-many (WORM) orientation. This characterizes

many of the optical disks on the market today.

In the next subsection we indicate two problems with the POSTGRES design. Then, in Section 5.3

we make additional comments on the storage manager.

4.2. Problems in the POSTGRES Design

There areat leasttwo problems with our design. First it is unstable underheavy load. An asynchro

nousdemon, known asvacuumcleaner, is responsible for movinghistorical records from the magnetic disk

structure holding the current records to the archive where historical records remain. Under normal cir

cumstances, themagnetic disk portion of each constructed type is (say) only 1.1 times theminimum possi

ble sizeof theconstructed type. Of course, the vacuum cleaner consumes CPU and I/O resources running

in background achieving this goal. However, if the load on a POSTGRES data base increases, then the

vacuum cleaner may not get to run. In this case the magnetic disk portion of a constructed type will

increase, and performance will suffer because the execution engine must read historical records on the

26

magnetic diskduring the (presumably frequent) processing ofqueries to thecurrent database. Asa result

performance will degrade proportionally to the excess size of the magnetic disk portion of thedata base.

As load increases, the vacuum cleaner gets less resources, and performance degrades as the size of the

magnetic disk data base increases. This will ultimately result ina POSTGRES data base going into melt

down.

Obviously, the vacuum cleaner should be run in background if possible so that it can consume

resources at 2:00 A.M. when there is litde other activity. However, if there is consistent heavy load on a

system, then the vacuum cleaner must be scheduled at the same priority as other tasks, so theabove insta

bility does notoccur. Thebottom lineis thatscheduling thevacuum cleaner is a tricky optimization prob

lem.

The second comment which we wish to make is that future archive systems are likely to be

read/write, and rewritable optical diskshavealready appeared on themarket. Consequendy, thereis no rea

son for us to have restricted ourselves to WORM technology. Certain POSTGRES assumptions were

therefore unnecessary, suchas requiring thecurrent portion ofanyconstructed typeto be on magnetic disk.

4.3. Other Comments

Historical indexeswill usually be on a combined key consisting of a time range togetherwith one or

more keys from the record itself. Suchtwo-dimensional indexes can be stored using the technology of R-

trees [GUTM84], R+-trees [FAL087] or perhaps in some new way. We are not particularly comfortable

that good ways to index time ranges have been found, and we encourage additional work in this area. A

possibleapproach is segmentedR-trees which we are studying [KOLE89].

Anothercommentconcerns POSTGRES support for time travel. There are many tasks that are very

difficult to express with our mechanisms. For example, the query to find the time at which Sam's salary

increased from $5000 to $6000 is very tricky in POSTQUEL.

A last comment is that time travel can be implementedwith a conventional transaction system using

a write ahead log. For example,one needonly havean "archive" constructed type for each physicalcon

structed type for which time travel is desired. Whena recordis updated, its previousvalue is writtenin the

archive with the appropriate timestamps. If the transaction fails to commit this archive insert and the

corresponding record update is unwound using a conventional log. Such an implementation maywellhave

substantial benefits, and we should have probably considered such a possibility. In makingstorage system

decisions we wereguided by a missionary zeal to do something different than a conventional write ahead

log scheme. Hence, we may have overlooked other intriguing options.

27

5. THE POSTGRES IMPLEMENTATION

5.1. Introduction

POSTGRES contains a fairly conventional parser, query optimizer and execution engine. Two

aspectsof the implementation deserve special mention,

dynamic loading and the process structure

choice of implementation language

and we discuss each in turn.

5.2. Dynamic Loading and Process Structure

POSTGRES assumes thatdata types, operators and functions can be added and subtracted dynami

cally, i.e. while the systemis executing. Moreover, we have designed the systemso thatit canaccommo

date a potentially very large number of types and operators. Consequendy, the user functions thatsupport

the implementation of a type mustbe dynamically loaded and unloaded. Hence, POSTGRES maintains a

cache of currently loaded functions and dynamically moves functions into the cache and then ages them

outof the cache. Moreover, the parser andoptimizer run off of a mainmemorycache of information about

types and operators. Again this cache mustbe maintained by POSTGRES software. It would have been

much easierto assume thatall types and operators were linked into the system at POSTGRES initialization

time and have required a user to reinstall POSTGRES when he wished to add or drop types. Moreover,

users of prototype software are notrunning systems which cannot godown for rebooting. Hence, the func

tion is not essential.

Second, the rules system forces significant complexity on thedesign. A usercanadda rulesuchas:

always retrieve (EMP.salary)

where EMRname = "Joe"

In thiscasehisapplication process wishesto be notified of anysalary adjustment to Joe. Consider a second

user who gives Joe a raise. The POSTGRES process that actually does the adjustment will notice thata

marker hasbeen placed on thesalary field. However, inorder to alert the first user, oneof four things must

happen:

a) POSTGRES couldbe designed asa single server process. In thiscase within thecurrent process the first

user's query couldsimply be activated. However, such a design is incompatible with running on a shared

memory multiprocessor, where a so-called multi-server is required. Hence, this design wasdiscarded.

b) The POSTGRES process for the second user could run the first user's query and then connect to his

application process to deliver results. This requires that an application process be coded to expect

28

communication from random other processes. We felt this was too difficult to be a reasonablesolution.

c) The POSTGRES process for the second user could connect to the input socket for the first user's

POSTGRES and deliver the query to be run. The first POSTGRES would run the query and then send

results to the user. This would require careful synchronization of the input socket among multiple indepen

dent command streams. Moreover, it would require the second POSTGRES to know the portal name on

which the firstuser's rule was running.

d) The POSTGRES process for the second user could alerta special process called the POSTMASTER.

This process would in turn alert the process for the first user where the query would be run and the results

delivered to the application process.

We have adopted the fourth design as the only one we thought was practical. However, we have thereby

constructed a process through which everybody must channel communications. If the POSTMASTER

crashes, then the whole POSTGRES environment must be restarted. This is a handicap, but we could think

of no better solution. Moreover, there are a collection of system demons, including the vacuum cleaner

mentionedabove, which need a placeto run. In POSTGRES they arerun as subprocesses managedby the

POSTMASTER.

A last aspectof our design concerns the operating system process structure. Currendy, POSTGRES

runs as one process for each active user. This was done as an expedient to get a system operational as

quickly as possible. We plan on converting POSTGRES to use lightweight processes available in the

operating systemswe are using. These include PRESTO for theSequent Symmetryand threads in Version

4 of Sun/OS.

5.3. Programming Language Used

At the beginning of the project we were forced to makea commitment to a programming language

and machine environment The machine was an easy one, since SUN workstations were nearly

omnipresent at Berkeley, and any other choice would have been non-standard. However, we were free to

chooseany language in which to program. We considered the following:

C

C++

MODULA2+

LISP

ADA

SMALLTALK

29

We dismissed SMALLTALK quickly because we felt it was too slow andcompilerswere not readily avail

able for a wide variety of platforms. We felt it desirable to keep open the option of distributing our

software widely. We felt ADA and MODULA 2+ offered limited advantages over C++ and were not

widely used in the Berkeley environment Hence, obtaining pretrained programmers would have been a

problem. Lasdy, we were not thrilled to use C, since INGRES had been coded in C and we were anxious

to choose a different language, if only for the sake of doing something different At the time we started

(10/85), there was not a stable C++ compiler, so we did not seriouslyconsider this option.

By a process of elimination, we decided to try writing POSTGRES in LISP. We expected that it

would be especially easy to write the optimizer and inference engine in LISP, since both are mosdy tree

processing modules. Moreover, we were seducedby AI claimsof high programmer productivity for appli

cations written in LISP.

We soon realized that parts of the system were more easily coded in C, for example the buffer

manager which moves 8K pages back and forth to the disk and uses a modified LRU algorithm to control

what pages are resident Hence, we adopted the policy that we would use both C and LISP and code

modules of POSTGRES in whichever language was most appropriate. By the time Version 1 was opera

tional, it contained about 17000 lines of LISP and about 63000 lines of C.

Our feeling is that the use of LISP hasbeen a terrible mistake for severalreasons. First current LISP

environments are very large. To run a "nothing" program in LISP requires about 3 mbytes of address

space. Hence, POSTGRES exceeds 4 mbytes in size, all but 1 mbyte is the LISP compiler, editor and

assorted other non required (or even desired) functions. Hence, we suffer from a gigantic footprint.

Second, a DBMS never wants to stop when garbage collection happens. Any response time sensitive pro

gram must therefore allocate and deallocate space manually, so that garbage collection never happens dur

ing normal processing. Consequendy, we spent extra effort ensuring that LISP garbage collection is not

used by POSTGRES. Hence, this aspectof LISP, which improves programmer productivity, was not avail

able to us. Third, LISP execution is slow. As noted in the performance figures in the next section our LISP

code is more than twice as slow as the comparableC code. Of course, it is possible that we are not skilled

LISP programmersor do not know how to optimize the language; hence our experience should be suitably

discounted.

However, none of these irritants was the real disaster. We have found that debugging a two language

system is extremely difficult The C debugger, of course, knows nothing about LISP while the LISP

debugger knows nothing about C. As a result we have found debugging POSTGRES to be a painful and

frustrating task. Memory allocation bugs were among the most painful since LISP and C have very dif

ferent models of dynamic memory. Of course, it is true that the optimizer and inference engine were easier

to code in LISP. Hence, we saved some time there. However, this was more than compensated by the

requirement of writing a lot of utility code that would convert LISP data structures into C and vica versa.

30

In fact our assessment is that the primary productivity increases in LISP come from the nice programming

environment (e.g. interactive debugger, nice workstation tools, etc.) and not from the language itself.

Hence, we would encourage the implementors of other programming languages to study the LISP environ

ment carefully and implement the better ideas.

As a result we have just finished moving our 17000 lines of LISP to C to avoid the debugging hassle

and secondarily to avoid the performance and footprint problems in LISP. Our experience with LISP and

two language systems has not been positive, and we would caution others not to follow in our footsteps.

6. STATUS AND PERFORMANCE

At the current time (October 1989) the LISP-less Version 1 of POSTGRES has been in the hands of

users for a short time, and we are shaking the last bugs out of the C port In addition, we have designed all

of the additional functionality to appear in Version 2. The characteristics of Version 1 are:

a) The query language POSTQUEL runs except for aggregates, functions and set operators.

b) All object management capabilities are operationalexcept POSTQUEL types.

c) Some support for rules exists. Specifically, replace always commands are operational; however the

implementation currendy only supports early evaluation and only with markers on whole columns.

d) The storage system is complete. However, we are taking delivery shortly on an optical disk jukebox,

and so the archive is currendy not implemented on a real optical disk. Moreover, R-trees to support time

travel are not yet implemented.

e) Transaction management runs.

The focus has been on getting the function in POSTGRES to run. So far, only minimal attention has

been paid to performance. Figure 1 shows assorted queries in the Wisconsin benchmark and gives results

for three systems runningon a SUN 3/280. All numbersarerunon a non-quiescentsystem so there may be

significant fluctuations. The first two are the C and LISP versions of POSTGRES. These are functionally

identical systems with the same algorithms embodied in the code. The footprint of the LISP system is

about 4.5 Mbytes while the C system is about 1 Mbyte. For comparison purposes we also include the per

formance numbers for the commercial version of INGRES in the third column. As can be seen, the LISP

system is several times slower than the C system. In various other benchmarks we have never seen the C

31

cccc

1111.

POSTGRES POSTGRES INGRES

C-based USP-based RTI 5.0

nullqry 0.4 0.3 0.2

scanlOKtups 36. 180. 5.2

retrieve into query

1% selectivity 38. n/a 9.9

append to 10Ktup4.7 180. 0.4

delete from lOKtup 37. n/a 5.7

replace in 10Ktup42. 280. 5.7

A Comparisonof INGRES and POSTGRES

(Times are listed in seconds per query.)

Figure 1

system less than twice as fast as the LISP system. Moreover, the C system is several times slower than a

commercial system. The Public domain version of INGRES that we worked on in the mid 1970's is about

a factor of two slower than commercial INGRES. Hence, it appears that POSTGRES s about one-half the

speed of the original INGRES. There are substantial inefficiencies in POSTGRES, especially in the code

which checks that a retrieved record is valid. We expect that subsequent tuning will get us somewhere in

between the performance of Public domain INGRES and RTI INGRES.

32

7. CONCLUSIONS

In this section we summarize our opinions about certainaspects of the design of POSTGRES. First

we are uneasy about the complexity of the POSTGRES data model The comments in Section 2 all contain

suggestions to make it more complex. Moreover, other research teams have tended to construct even more

complex data models, e.g. EXTRA [CARE88]. Consequendy, a simple concept such as referential

integrity, which can be done in only one way in existing commercial systems, can be done in several dif

ferent ways in POSTGRES. For example, the user can implement an abstract data type and then do the

required checking in the input conversion routine. Alternately, he can use a rule in the POSTGRES rules

system. Lasdy, he can use a POSTQUEL function for the field that corresponds to the foreign key in a

current relational system. There are complex performance tradeoffs between these three solutions, and a

decision must be made by a sophisticated application designer. We fear that real users, who have a hard

time with data base design for existing relational systems, will find the next-generation data models, such

as the one in POSTGRES, impossibly complex. The problem is that applications exist where each

representation is the only acceptable one. The demand for wider application of data base technology

ensuresthat vendors will producesystems with these morecomplex datamodels.

Another source of uneasiness is the fact that rules and POSTQUEL functions have substantial over

lap in function. For example, a POSTQUEL function can be simulated by one rule per record, albeit at

some performance penalty. On the other hand, all rules, except retrieve always commands, can be alter

nately implemented using POSTQUEL functions. We expect to merge the two concepts in Version 2, and

our proposalappears in [STON89b].

In the areas of rules and storage management, we are basically satisfied with POSTGRES capabili

ties. The syntax of the rule system should be changed as noted in Section 3; however this is not a

significantissue and it should be availableeasily in Version 2. The storage managerhas been quite simple

to implement Crash recovery code has been easy to write because the only routine which must be care

fully written is the vacuum cleaner. Moreover, access to past history seems to be a highly desirable capa

bility.

Furthermore, the POSTGRES implementation certainlyerred in the direction of excessive sophistica

tion. For example, new types and functions can be added on the fly without recompiling POSTGRES. It

would have been much simpler to construct a system that required recompilation to add a new type.

Second, we have implemented a complete transaction system in Version 1. Other prototypes tend to

assume a single user environment In these and many other ways, we strove for substantial generality;

however die net effect has been to slow down the implementation effort and make the POSTGRES inter

nals much more complex. As a result POSTGRES has taken us considerably longer to build than the ori

ginal version of INGRES. One could call this the "second system" effect It was essential that

POSTGRES be more usable than the original INGRES prototype in order for us to feel like we were

33

making a contribution.

A last comment concerns technology transfer to commercial systems. It appears that the process is

substantially accelerating. For example, the relational model was constructed in 1970, first prototypes of

implementations appeared around 1976-77, commercial versions first surfaced around 1981 and popularity

of relational systems in the marketplace occurred around 1985. Hence, there wasa 15 year period during

which the ideas were transferred to commercial systems. Most of the ideas in POSTGRES and in other

next generation systems date from 1984 or later. Commercial systems embodying some of these ideas

have already appeared andmajor vendors are expected to have advanced systems within the next year or

two. Hence, the 15 year period appears to have shrunk to less than half that amount Thisacceleration is

impressive, but it will lead torather short lifetimes for thecurrent collection of prototypes.

REFERENCES

[AGRA89]

[ATKI89]

[ANON85]

[AOKI89]

[BANC86]

[BANE87]

[BITT83]

[BORG85]

[CARE88]

Agrawal, R. and Gehani, N., "ODE: The Language and the Data Model," Proc.

1989 ACM-SIGMOD Conference on Management of Data, Portland, Or., May

1989.

Atkinson, M. et al., "The Object-oriented Database System Manifesto," Altair

Technical Report30-89,Rocquencourt France, August 1989.

Anon et al., "A Measureof Transaction ProcessingPower," Tandem Computers,

Cupertino,CA, Technical Report 85.1,1985.

Aoki, P., "Implementation of Extended Indexes in POSTGRES," Electronics

Research Laboratory, University of California, Technical Report 89-62, July

1989.

Bancilhon, F. and Ramakrishnan, R., "An Amateur's Introduction to Recursive

Query Processing," Proc. 1986 ACM-SIGMOD Conference on Management of

Data, Washington, D.C., May 1986.

Banerjee, J. et al., "Semantics and Implementation of Schema Evolution in

Object-oriented Databases," Proc. 1987 ACM SIGMOD Conferenceon Manage

ment of Data, San Francisco, Ca., May 1987.

Bitton, D. et al., "Benchmarking Database Systems: A Systematic Approach,"

Proc. 1983 VLDB Conference, Cannes, France, Sept 1983.

Borgida, A., "Language Features forFlexible Handling of Exceptions in Informa

tion Systems," ACM-TODS, Dec. 1985.

Carey, M. et al., "A Data Model and Query Language for EXODUS," Proc.

1988 ACM-SIGMOD Conference on Management of Data, Chicago, 111., June

34

[COPE84]

[DADA86]

[DATE81]

[ESWA76]

[FAL087]

[GUTM84]

[KOLE89]

[LYNC88]

[MAIE89]

[OSB086]

[RICH87]

[ROWE87]

[ROWE89]

1988.

Copeland, G. and D. Maier, "Making Smalltalk a Database System," Proc. 1984

ACM-SIGMOD Conference on Management of Data, Boston, Mass. June 1984.

Dadam, P. et al., "A DBMS Prototype to Support NF2 Relations," Proc. 1986

ACM-SIGMOD Conference on Management of Data, Washington, D.C., May

1986.

Date, C, "Referential Integrity," Proc. Seventh International VLDB Conference,

Cannes, France, Sept 1981.

Eswaren, K., "Specification, Implementation and Interactions of a Rule Subsys

tem in an Integrated Database System," IBM Research, San Jose, Ca., Research

Report RJ1820, August 1976.

Faloutsos, C. et al., "Analysis of Object Oriented Spatial Access Methods,"

Proc. 1987 ACM-SIGMOD Conference on Management of Data, San Francisco,

Ca., May 1987.

Gutman, A., "R-trees: A Dynamic Index Structure for Spatial Searching," Proc.

1984 ACM-SIGMOD Conference on Management of Data, Boston, Mass. June

1984.

Kolovson, C. and Stonebraker, M., "Segmented Search Trees and their Applica

tion to Data Bases," (in preparation).

Lynch, C. and Stonebraker, M., "Extended User-Defined Indexing with Applica

tion to Textual Databases," Proc. 1988 VLDB Conference, Los Angeles, Ca.,

Sept 1988.

Maier, D., "Why Isn't There an Object-oriented Data Model?" Proc. 11th IFIP

World Congress, San Francisco,Ca., August 1989.

Osborne, S. and Heaven, T., "The Design of a Relational System with Abstract

DataTypes as Domains," ACM TODS, Sept 1986.

Richardson, J. and Carey, M., "Programming Constructs for Database System

Implementation in EXODUS," Proc. 1987 ACM-SIGMOD Conference on

Management of Data, San Francisco, Ca., May 1987.

Rowe, L. and Stonebraker, M., "The POSTGRES Data Model," Proc. 1987 VLDB

Conference, Brighton, England, Sept 1987.

Rowe, L. et al., "The Design and Implementation of Picasso," (in preparation).

35

[SELL86]

[STON75]

[STON82]

[STON86]

[STON86b]

[STON87]

[STON87b]

[STON88]

[STON89]

[STON89b]

[ULLM85]

[VELE89]

[WENS88]

[WID089]

Sellis,T., "Global QueryOptimization," Proc 1986 ACM-SIGMOD Conference

on Management of Data, Washington, D.C., June 1986.

Stonebraker, M., "Implementation of Integrity Constraints and Views by Query

Modification," Proc. 1975ACM-SIGMODConference, San Jose,Ca., May 1975.

Stonebraker, M. et al., "A Rules System fora Relational DataBase Management

System," Proc. 2nd International Conference on Databases," Jerusalem, Israel,

June 1982 (available from Academic press).

Stonebraker, M. and Rowe, L., "The Design of POSTGRES," Proc. 1986 ACM-

SIGMOD Conference, Washington, D.C., June 1986.

Stonebraker, M., "Inclusion of New Types in Relational Data Base Systems,"

Proc. Second International Conference on Data Engineering, Los Angeles, Ca.,

Feb. 1986.

Stonebraker, M., "The POSTGRES Storage System," Proc. 1987 VLDB Confer

ence, Brighton, England, Sept 1987.

Stonebraker, M. et al., "Extensibility in POSTGRES," IEEE Database Engineer

ing, Sept 1987.

Stonebraker, M. et al., "The POSTGRES Rules System," IEEE Transactions on

Software Engineering, July 1988.

Stonebraker, M. et al., "Commentary on the POSTGRES Rules System," SIG-

MOD RECORD, Sept 1989.

Stonebraker, M. et al., "Rules, Procedures and Views," (in preparation).

Ullman, J., "Implementation of Logical Query Languages for Databases,"

ACM-TODS, Sept 1985.

Velez, F. et al., "The 02 Object manager An Overview," GIP ALTAIR, Le

Chesnay, France, Technical Report 27-89, February 1989.

Wensel, S. (ed.), "The POSTGRES Reference Manual," Electronics Research

Laboratory, Universityof California, Berkeley,CA, Report M88/20,March 1988.

Widom, J. and Finkelstein, S., "A Syntax and Semantics for Set-oriented Produc

tion Rules in Relational Data Bases, IBM Research, San Jose, Ca., June 1989.

36

