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Abstract

In this dissertation we propose and study the properties of two global edge de

tection methods. Both methods are based on variational regularization, and result in the

mathematical and computational problem of minimizing a cost functional depending on

the edges as well as a piecewise smooth estimate of the true image function. The total

cost consists in both cases of the sum of three separate subcosts—an edge cost penalizing

the extent of the edges, a deviation cost promoting close approximation of the. true image

function by the estimated image function and a stabilizing cost favoring a smooth estimated

image function.

In the first method, the edges are represented by parametrized curves in R2. We

consider quite general such curves as well as the special case of spline curves. The central

theoretical contribution is a proof of the existence of a solution to the cost minimization

problem in a solution space containing a relatively large class of possible detected edges. By

applying techniques of variational calculus we furthermore derive a number of optimality

conditions for the edges as well as the estimated image function. Based on this analysis

we develop a steepest descent type algorithm for detecting and locating edges represented

by splines. We also describe a software implementation of the algorithm and present our

experimental results.

In the second method, the edges are represented by a continuity control function

defined on the entire image domain. While this method was originally intended as a general

improvement on variational edge detection, it can also be viewed as a biased anisotropic

diffusion method. This unification of the seemingly very different regularization and diffu-



sion approaches is remarkable. The new method furthermore shares the better properties

of both these approaches. Indeed, it only requires the solution of a single boundary value

problem on the entire image domain, and it converges to a solution of interest. As a conse

quence the new method is computationally less expensive than most, if not all, of the other

regularization-based edge detection methods. It is also better for circuit implementations

than previous (anisotropic) diffusion methods.

Shankar Sastry

Thesis Chair



Preface

This thesis is concerned with global edge detection. The first chapter contains a

brief introduction to the topic. The four following chapters describe two distinct variational

approaches to the edge detection problem. The major difference between the two approaches

is in the representation of the edges. In chapter 2-4 we consider curve-represented edge

detection in which the edges are represented by parametrized curves in the image domain,

that is the region in R2 occupied by the image. The edges are thus formed by the union of

the ranges of a collection of Revalued functions. In the method in chapter 5, which we will

refer to as biased anisotropic diffusion, the edges are instead represented by a single real

valued (continuity control) function defined on the entire image domain. The edges consist

in this case of the inverse image of some interval under this function.

Both the curve representation and the continuity control function representation

have their merits, and are at present worth while pursuing. While the curve-based meth

ods yield edge descriptions which are both compacter and likely to be more suitable for

further processing, the biased anisotropic diffusion method requires less computation. A

curve-based method could also use a continuity control function-based global edge detection

method, such as biased anisotropic diffusion, as a preprocessing stage. This could provide it

with a relatively accurate initial estimate of the edges which in turn would make it converge

faster than if the initial estimate were obtained with a less accurate local edge detection

method.
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Chapter 1

Introduction

Before diving into the details of our paradigms we will briefly review the reasons for

processing of image data, edge detection in general and global edge detection in particular.

We will also review some of the previous approaches to global edge detection in some detail.

This will put our paradigms in perspective, and thereby motivate our efforts.

1.1 Why Process Image Data?

There are basically two main reasons for processing image data:

1. To generate descriptions of the environment.

2. To enhance certain features of interest in a given image.

The first of these two tasks, which we will discuss further below, falls in the domain of

computer vision. The second task belongs to "classical" image processing, and is per se not

considered to be computer vision. It can be applied to images to be inspected by humans

or as a preprocessing stage in computer vision.

1.1.1 Object Oriented Descriptions of the Environment

We—the human beings—tend to perceive our environment, (at least the part of it,

that we are used to manipulate with some degree of success,) as being composed of distinct

objects. Whether this is good or bad, we seem to be stuck with this way of thinking, and it

is likely that all machines we design will inherit it from us. Detection, location, description

and recognition of objects are therefore of interest for a variety of applications for example:



1. automatic manipulation of objects

2. collision avoidance

3. search for and tracking of objects

4. efficient presentation of information to a human operator

5. data reduction for efficient storage of information in a data base

1.1.2 Free-Space Descriptions of the Environment

Collision avoidance plays a vital role in navigation and path planning. In this

context the objects in the scene are obstacles, and all that matters is which space they

occupy. This information can of course be collected in an object oriented fashion, with the

advantage of producing a concise representation. Another approach, which bypasses the

object description task, is to generate a so called depth-map of free visible space by means

of stereoscopic vision or a laser range finder.

1.2 Why Edge Detection?

Over the last three decades many techniques to detect, locate and link edges

have been reported in the computer vision literature. A common concern is to locate the

"significant" changes of some property of the image data with respect to position in the

image (domain). Why is it of interest to locate such changes? Marr [1] discusses this

question at some length, and distinguishes between three fundamental motivations for edge

detection. Adding the important task of line drawing generation to his list we obtain the

following four reasons:

1. line drawing generation

2. image segmentation

3. computational efficiency

4. imitation of human vision



1.2.1 Line Drawing Generation

It is evident from both the comic book literature and the engineering drawing

tradition that plenty, if not most, of the information, which is necessary for understanding

an image, can be concentrated in a line drawing. In fact a line drawing reveals a whole lot

about the relative location and shape of the objects in a scene, and line labeling algorithms,

which attempt to extract this information from line drawings have been developed [2, 3].

In order for these algorithms to work as intended, it is essential that the line drawing in

question correctly reflects the smoothness properties of the image data. In other words the

line drawing should be composed of piecewise smooth curves with tangent discontinuities

in the "right" places. Since the location and the shape description of the objects in the

scene represent the most relevant knowledge for automatic manipulation as well as object

oriented collision avoidance, and since shape descriptions are useful for object recognition,

line drawing generation is possibly the most important reason for edge detection.

1.2.2 Image Segmentation

Image segmentation is closely related to and competing in importance with the

generation of line drawings. While line drawing analysis is concerned with the information

carried by the edges themselves, the purpose of image segmentation is to partition the

image into image segments, that is connected regions, which can thereafter be processed and

analyzed one by one. Thus in image segmentation the interest is really in the complement

of the edges. As a consequence the smoothness properties of the edges are not of as much

concern as in the line drawing generation case.

A good image segmentation should yield image segments that correspond to smooth

surface patches in the scene. One can then assume, that each image segment carries infor

mation about a single smooth surface of a single object or about the background. This is

of importance for all further processing aiming at describing or recognizing the objects in

the scene. The fact that each image segment corresponds to a smooth surface, also allows

for noise suppression and surface reconstruction by means of linear filters operating locally

over the separate image segments, without the errors that such filters are known to cause

at discontinuities. (Minimizing a quadratic cost functional over each of the image segments

is one example of such an operation.) This can be of value for generation of both object

oriented and free-space descriptions of the environment as well as for feature enhancement



by standard image processing techniques.

1.2.3 Computational Efficiency

The edge points are in general sparse in comparison with all the points in the

image. Any processing of the image data can therefore benefit in terms of complexity, if

it can be cast to operate on edges rather than on whole images. Stereoscopic vision is one

such example.

1.2.4 Imitation of Human Vision

Research in biological vision has according to [1] established the existence of

anatomical structures that respond to abrupt changes in brightness and color with respect

to position in the field of vision. This indicates that the human vision relies on some form

of edge detection.

1.3 Edges as Discontinuities

Usually the image can, at least ideally, be represented by an image function, z :

B —• Rn, defined on some bounded connected image domain B in R2. A simple and by

far the most common example of such an image function is a real-valued function, whose

value at a point (x,y) € B represents the image brightness or grey-level at that point, but

z can also represent other quantities such as depth (measured with an optical range finder)

or disparity (acquired by stereoscopic vision). Other examples include image functions of

multidimensional range (n > 1), frequently occurring in color vision, and binary image

functions (z : B —*• {0,1}), which are common in drawing and text processing.

In general the edge detection problem can be thought of as the task of finding the

"significant" discontinuities of z and/or its derivatives. Which of these derivatives are to be

considered, depends of course on the level of ambition and the computational resources at

hand, but also and more importantly on which kind of image data is to be processed. The

most interesting discontinuities in the scene are those of the distance to and the tangent

plane of the visible surfaces. If z represents depth, these discontinuities obviously correspond

to discontinuities in z and Vz respectively, whereas if z represents brightness, they both

cause discontinuities in z itself. As a result the various approaches to edge detection differ



in, which kinds of discontinuities are considered significant. Attempts have for example

been made to find idealized discontinuities in z, (step edges,) [4, 5, 6, 7, 8, 9, 10, 11] and

Vz, (roof edges,) [5], points of large magnitudes of the first and second derivatives of z [12]

and points of local maxima in ||VzT|| in the direction of Vz [12, 13, 14].

Another source of variation in approach is the fact, that in practice the true image

function z, that one would obtain by pure projection onto the image plane, is not known. In

reality noise is present in the image formation process, which also blurs the image. Finally

at some stage the image function is sampled. Thus one is only given the values of a smooth

approximation £ to a noisy version of z on a discrete subset S of B, and exactly what

properties of (\S or even £ that correspond to discontinuities in z and its derivatives is far

from obvious. We will refer to £ as the original image function because it represents the

original data. (Some authors, for example Geman and Geman, use a different terminology.)

1.4 Why Global Edge Detection?

One can distinguish between four different benefits that global edge detection

provides over the older local methods:

1. nondestructive noise suppression

2. smooth edges

3. conceptually appealing models

4. simultaneous image function estimation

Among these benefits the first two are the major reasons for pursuing global edge detection.

The other two are hardly strong enough to motivate the relatively costly global techniques

on their own.

1.4.1 Non-destructive noise suppression

Until the mid 1980s edge detection was dominated by local methods such as local

best fit techniques and linear filtering. (An excellent survey of a large body of the relevant

literature is presented in [15].) These methods typically involve convolution with some

kernel followed by thresholding. Whatever the initial outlook might have been, the resulting



Figure 1.1: T-junction partitioning 5x5 best fit window into three regions (Si, 52 and 53).

convolution basically has one common purpose: to suppress noise prior to the decision about

the presence of an edge is made. As a result of this kind of noise reduction L-junctions

disappear, and T-junctions are disconnected. The possibility of successful subsequent line

drawing analysis is thereby seriously diminished. Another problem with these methods

is that they cause dislocation of the edges in the vicinity of high gradients in the image

function. One way to attempt to remedy these problems is to introduce nonlinearities

in the noise reduction. This can be done locally as well as globally. Nalwa and Binford

[9] apply best fit techniques, which are nonlinear in the estimated parameters. They fit

functions, which are constant along some direction in R2, to the data. Such a function is

an adequate model only for a short smooth segment of an edge. Hence the technique will

have potential problems with both L- and T-junctions.

If one were to do a proper job for all junctions of interest with a local best fit

method, it should be possible to obtain a good fit for each one of them. Besides being sub

stantially more expensive than the common simpler best fit techniques this would inevitably

require, that (basis) function families be included in the model, for which some of the fitted

parameters depend on the original image function £ over only a tiny portion of its domain,

thus in practice on maybe just one or two samples of £ on the grid 5. Such a scenario is

depicted in figure 1.1. Here some of the best fit parameters must obviously depend solely on

the values of the two pixels centered in the region S\. They are therefore very sensitive to



noise—a contradiction of the main purpose of the best fit idea. This problem could be cured

if somesamples in the extension of Si* outside the window wereincluded. In fact, why not

make use of all the samples in the extension of Si? Well, this is what a number of recent

global edge detection methods are all about. In effect these methods seek to suppress the

noise in the image function by smoothing it separately within each image segment, without

smoothing across the segment boundaries. Since these boundaries, that is the edges, are

not known in advance, but to be detected, this problem is nontrivial, and as a consequence

a variety of approaches has emerged.

1.4.2 Smooth Edges

In all descriptions (of the environment) there is a trade-off between accuracy and

simplicity. This condition is reflected explicitly in most global edge detection schemes by

means of a penalty for including edges in the description. Without such a penalty the

edges would fill up the image domain, yielding the most accurate, the least simple and a

completely useless description of the environment.

Usually the edge penalty is proportional to the length of the edges or something

similar. This is sufficient to encourage edges, that are smooth in some sense. In its weakest

interpretation, and this is the rule among the global edge detection approaches to date, this

means, that the edges are represented by samples on a grid in such a way, that it is easy to

fit a smooth or piecewise smooth curve to the sample points. However, stricter smoothness

conditions can readily be achieved by explicitly incorporating such requirements in the edge

penalty [16]. We will have more to say about this later.

1.4.3 Conceptually Appealing Models

Global edge detection lends some intuitively very appealing models and mathe

matically well-developed ideas from other fields of science. These include variational regu

larization techniques, mechanical models of solids, probabilistic models of random Markov

fields and physical models of diffusion.

Many problems in early vision such as edge detection, computation of lightness,

computation of optical flow, shape from shading, stereopsis and surface reconstruction are

By the extension of Si we mean the (unique) component of the intersection of the image domain and
the complement of the edges that contains S\.
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ill-posed in the sense of Hadamard, that is their solutions fail to exist, to be unique or to

depend continuously on the given data [17,18]. In the case of edge detection it is the last of

these three conditions that is of concern. To find a satisfactory solution to such an ill-posed

problem the solution space has to be restricted by imposing constraints representing some

kind of a priori knowledge about the possible solutions—a process known as regularization.

Such methods have been studied in mathematics, and a common technique is to replace the

original problem by that of minimizing a (cost) functional including stabilizing terms of the

kind proposed by Tikhonov [19]. In the edge detection context this technique is often given

the interpretation that it resembles problems of continuum mechanics [20, 21, 22, 23, 24].

Another way to regularize the edge detection problem is to introduce a probabilistic model

for the solution space, and solve an estimation problem [25, 26].

Aside from regularization, physical diffusion models related to the heat equation

have been explored [27, 28, 29, 30].

Finally it is intuitively satisfying, that all the information carried by the image

function, not only that associated with a neighborhood of its (and some of its derivatives')

discontinuities, is applied in determining the edges. This idea is also certain to find some

support from simple psychophysical experiments, on human vision.

1.4.4 Simultaneous Image Estimation

Besides finding the discontinuities of the image function and possibly some of its

derivatives, typically the global edge detection algorithms also produce a piecewise smoothed

version of the image function, which preserves the detected discontinuities. This "side ef

fect", usually thought of as estimation, reconstruction, recovery or restoration of an image

function, which is sparsely sampled and/or corrupted by noise, has different applications

depending on, what kind of data is being processed. Reconstruction of the visible surfaces

from sparse depth data can be used to generate a dense free-space description of the envi

ronment [20, 21, 26]. Noisy images can be restored by estimation of the brightness function

[25, 26]. The same can of course be done with noisy dense depth data [31].

In some instances the estimation of the image function seems to be the major

concern. Some authors argue, however, that the main purpose of estimating the image

function is to find its discontinuities. [24].



1.5 Previous Global Edge Detection Approaches

By a global edge detection method we understand an edge detection method that

utilizes all the given information about the original image function to detect and/or locate

the edge elements or segments in the image domain.

1.5.1 Early Efforts

Until the early 1980s global edge detection in the sense of the "definition" above

was restricted to relatively simplistic methods such as search for special features by means

of accumulator arrays [32, 33, 34, 35, 36] and histogram techniques [37, 38]. A brief presen

tation of these methods can be found in [39, pl23-131, pl52-153]. In the methods based

on accumulator arrays the space of possible edges is limited by the type(s) of features one

is looking for—typically lines, circles or other simple geometric curves—and thus far too

restricted to account for any but rudimentary descriptions of the environment. The his

togram techniques suffer from instability with respect to the given data, unless the image

function is known to represent very simple scenes arranged with the particular technique in

mind, for example parts on a conveyer belt under controlled light conditions.

1.5.2 Recent Efforts

In recent years a number of interesting and mathematically more sophisticated

global edge detection methods with far more general application domains have appeared

in the computer vision literature. These include various regularization techniques and

anisotropic diffusion.

Variational Regularization

Terzopoulos [20] reconstructs a piecewise Cl-surface from sparse depth data by minimiz

ing a functional representing the potential energy of a thin plate under tension and a col

lection of springs suspended between the plate and the given original data points. He solves

the problem for known but arbitrarily irregular domains, that is the edges, which in his case

are depth and orientation discontinuities in the reconstructed surface, are prespecified—to

be neither detected nor located.

In a later paper [21] his energy functional is somewhat different. First of all sparse
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surface orientation data is incorporated along with the sparse depth data. Secondly and

more importantly the internal potential energy of the thin plate is replaced by a so called

"controlled-continuity stabilizer" defined as a sum of spatially weighted generalized spline

functionals [40]. The weighting functions are also referred to as continuity control functions.

Since the edges can be represented by the sets at which the weighting functions vanish, this

paradigm allows for edge detection by adjusting these functions, so as to lower or minimize

the energy functional. Two methods for this adjustment are discussed.

The first method essentially applies local edge detection techniques to the recon

structed surface. Depth discontinuities are detected where "opposing bending moments

are imparted to the surface", and the magnitude of the gradient of the estimated image

function, (that is the function, whose graph is the reconstructed surface,) is greater than a

certain threshold. The procedure turns out to be equivalent to detecting zero-crossings of

the Laplacian of the estimated image function, and then weeding out inflections due to small

insignificant ripples in the reconstructed surface by thresholding the gradient magnitude at

these zero-crossings. Since the reconstruction of a surface without the presence of edges is

equivalent to filtering with a second order Butterworth low-pass filter [40]—a smoothing

operation not too different from convolution with a Gaussian kernel, this method ends up

being similar to that proposed by Marr and Hildreth [14], and thus prone to exhibit similar

drawbacks.

The second weighting function adjustment method attempts to minimize the en

ergy functional—now augmented with a term penalizing the presence of edges—with respect

to the weighting functions as well as with respect to the estimated image function. This

method basically makes sense only after the problem has been discretized. The adjust

ment is carried out by flipping the values of the discretized weighting functions between

their two only possible values—from zero to one or vice versa—at all points of their (com

mon) discrete domain, where such a flip lowers the value of the energy functional. A new

controlled-continuity stabilizer is thereby obtained, according to which the surface is sub

sequently reconstructed. This adjustment-reconstruction procedure is then repeated until

convergence is achieved. However, since the flip decisions are made without regard to the

alteration in the reconstructed surface implied by such a flip, optimality of the solution

cannot be claimed in general.

In both the papers the surface reconstruction (for fixed continuity control func

tions) amounts to solving an elliptic Euler-Lagrange equation. This is done by means of the
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finite element method. Multigrid methods are also being used in order to give descriptions

of the environment at different scales of resolution, as well as to speed up the computations.

Mumford and Shah [16] locate piecewise smooth edges by minimization of an energy

functional of the form

£(/, B) =p2 f(f- gfdx+ f ||V/r||2 dx +pv f dl
Jr Jr\B Jb

where / and g are the estimated and original image functions respectively, R C R2 is the

image domain, B is the union of a finite number of smooth curves meeting each other and

the boundary of R only at their endpoints, p and u are strictly positive parameters and

dl indicates integration with respect to arc length. The paper also treats the simpler case,

when R C R, and B is just a finite collection of points. This analysis can also be found in

[41]. Since the space of possible edges in this setting is vast and complicated, they do not

attempt a proof of the existence of an optimal estimated image function / and an optimal

set of edges i?, which minimize E. While admitting, that this is the "central mathematical

problem", they instead conjecture the existence of / and B, and proceed to develop an

algorithm for minimizing E. They observe, that for a given set B there exists a unique

estimated image function /b, such that

E(B) = E(fB,B) = ME(f,B)

and that fs and thus E(B) can be found by solving an elliptic boundary value problem.

Starting with a set B obtained by means of a local edge detector, derived by asymptotic

analysis (p —• oo), they continue to minimize E(B) by updating B according to a steepest

descent rule. The update of B depends on /g. Hence the elliptic boundary value problem

has to be solved at each iteration. This is done numerically with a standard multi-grid

elliptic problem solver program.

Blake and Zisserman [24] reconstruct image functions from brightness data, sparse

depth data, dense depth data and edge data by fitting a weak membrane, (appropriate for

brightness and edge data,) or a weak plate, (most appropriate for depth data) to the given

data. This is done mainly in the interest of edge detection. An exception is the fitting of a

one-dimensional weak membrane (weak string) to the ('angle', 'arc length')-data associated

with a jagged edge in order to obtain a piecewise smooth edge. In this case one is interested
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in the reconstructed real valued (image) function representing the smoothed edge as well

as in the discontinuities representing the corners of the edge.

The term "weak" is used to indicate, that the membrane and the plate satisfy so

called "weak continuity constraints". This means, that they are allowed to fracture in the

presence of high stresses; The weak plate is also allowed to crease in the presence of high

bending moments.

The fitting is in the sense of minimizing functionals. The membrane functional is

in its continuous version identical to the functional considered by Mumford and Shah in

[16]. The plate functionals on the other hand are basically identical to the edge penalty

augmented functional with controlled-continuity stabilizers considered by Terzopoulos in

[21]. Thus there is little new in the paradigm. What is new, and very interesting, with

this approach, is the minimization technique. While Terzopoulos, Mumford and Shah and

others as well use the fact, that the reconstructed image function can be eliminated from

the energy functional by solving a well-behaved elliptic problem, Blake and Zisserman go

the opposite way, and eliminate the continuity control functions, by them referred to as the

line process. Once the reconstructed image function has been found, the line process, which

incidentally is of the most interest, can easily be recovered.

The line process elimination leads to a nonconvex minimization problem, to which

calculus of variations does not readily apply. In order to solve it a method, referred to

as graduated nonconvexity (GNC), is introduced. This involves approximating the true

energy 2?, now expressed as a function of the values of the discretized reconstructed image

function, by a family {£p}Pe[o,i] of functions, such that Eq = E, and E\ is convex. Since E\
is convex, an image function that minimizes E\ can be found by means of a steepest descent

algorithm. The GNC-method then proceeds to minimize a sequence (EPi)f=ly where p,- j as

i |, using the image function resulting from minimizing EPi_x as the starting point for the

minimization of EPi.

While unable to guarantee convergence to the global minimum, the GNC-method

is still quite appealing for two very important reasons.

1. Unlike Terzopoulos' and Mumford and Shah's algorithms it both detects and locates

the edges in a truly global fashion.

2. If the approximating family (£p,)/=1 is well chosen, the authors claim, the GNC-
procedure "pulls" towards a "good" local minimum of £, without the costly search
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required by algorithms like simulated annealing, which promise convergence to the

global minimum.

It should be noted that the trick of eliminating the line process, results in "thin"

edges only if it is applied after the problem has been discretized. For the continuous

problem its formal counterpart could yield edges consisting of quite arbitrary, in particular

nonmeager, sets. In contrast, the elimination of the estimated image function works in both

the continuous and the discrete cases for any chosen class of edges.

Lee and Pavlidis [42] claim to improve on Terzopoulos' surface reconstruction method

by proposing "discrete regularization" as a preprocessing technique for prior discontinuity

detection. According to the authors such a method is to be preferred over postvalidation, for

example by detecting "opposing bending moments". However, the discrete regularization

technique per se does not detect the discontinuities. Instead it produces a "smoothing

polygon" approximating the data, or more precisely, a piecewise affine approximation, which

avoids large slope changes between neighboring linear segments of its graph. This problem

is resolved by resorting to postvalidation by means of local methods quite similar to those

proposed by Terzopoulos [21]—a somewhat contradictory turn-around, especially as little

analysis is presented to support the idea that the proposed local methods are better than

any others. The authors argue, that postvalidation at this stage has less disadvantages, than

if applied as part of the original surface reconstruction, because the discrete regularization

is much cheaper in computation, and one can thus afford to iterate the polygon-smoothing

(followed by discontinuity detection) many more times, than one would have been able to

iterate the corresponding surface reconstruction. This argument is, however, less convincing,

than one would desire.

For dense data the discrete regularization leads to exactly the same linear system

of equations, as does the finite difference scheme, that Terzopoulos employs for solving the

Euler-Lagrange equation for the reconstructed surface. Thus in this case the smoothing

polygon is just the reconstructed surface, and the computation just as expensive.

For sparse data on the other hand a couple of serious questions arise, which are

not being addressed in the paper. First of all, while the generalization to two dimensions is

straight forward for data sampled on a regular grid, this is not the case for irregularly sam

pled data. Since sparse data is commonly gathered by stereopsis, this should be of major
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concern. Secondly for sparse data one would suspect, that the piecewise affine approxima

tion represented by the smoothing polygon is in general quite crude in comparison with that

represented by a piecewise smooth reconstructed surface, and that this could easily lead to

dislocation and spurious detection of edges, and possibly prevent edges from being detected.

Thus there is a question of, whether the proposed reiteration of the discrete regularization

with intermediate updates of the edges can make up for these potential drawbacks, and if

so, whether in the end any computation is being saved. Since the discrete regularization

technique is meant to replace later postvalidation in the surface reconstruction process, this

question is of utmost importance.

Incidentally all the examples of experimental results in the paper exhibit data

sampled on regular grids, whence one tends to suspect, that the generic sparse data case

has hardly been studied enough.

Probabilistic Regularization

Geman and Geman [25] restore images from dense brightness data corrupted by noise.

More precisely, they solve for (/,/), where / is a piecewise constant image function of

finite range defined on the grid of pixel sites, and / is a function that explicitly marks the

discontinuities of /. The function /, referred to as a (sample function of a stochastic) "line

process", is defined on the grid associated with the mutual boundaries between neighboring

pixels, and takes values in a finite set corresponding to the possible edge elements at each

grid point. The functions / and / thus play the roles of the reconstructed surface and

the continuity control function(s) respectively in the mechanical models discussed above.

In this case, however, the problem is discretized from the very outset. The problem is

regularized by introducing probabilistic models for the image formation process as well

as for the prior knowledge about the solution space. The solution is then defined to be

the maximum a posteriori probability (MAP) estimate of the true image function and its

discontinuities given the data. For the image formation process the authors adopt a quite

general model incorporating the effects of blurring, nonlinear sensors and "cancelable",

(for example additive or multiplicative,) sensor noise. The solution space and the noise

process they model by independent Markov random fields (MRFs)specified in terms of their

independent Gibbs distributions. These models lead to a Gibbsian posterior distribution,

and the MAP estimate can thus be found by minimizing the associated energy function.



15

This is done numerically by stochastic optimization using simulated annealing and the

Metropolis algorithm.

Marroquin [26] also estimate images from data corrupted by noise. His paradigm is

basically the same as that of Geman and Geman. There are, however, three essential

differences:

1. The estimated image function is basically piecewise continuous.

2. The given data may be sparse.

3. The MAP estimator is replaced by the optimal Bayesian estimator with respect to

some arbitrary cost function.

The first two of these differences are important generalizations of Geman and

Geman's approach. While piecewise continuity of the estimated image function is insufficient

for reconstruction of the visible surfaces from depth data, it is adequate for restoration of

images and their discontinuities from brightness data.

The third difference is in theory also a generalization, but with the particular cost

functional that Marroquin chooses as his favorite, it turns out to be equivalent (modulo

quantization effects) to estimating the individual pixel values, (that is the samples of /,)

by their posterior mean values, and the individual edge elements, (that is the samples of /,)

by their maximum posterior marginal probabilities. Marroquin refers to these estimates as

the "thresholded posterior mean" (TPM) and the "maximizer of the posterior marginals"

(MPM) respectively. When he finally discusses an algorithm for computing these estimates,

however, he restricts attention to image formation in the presence of additive zero-mean

Gaussian white noise. Under these circumstances the TPM estimate reduces to the MAP

estimate, and the energy function associated with the Gibbsian posterior distribution is

the same as that of a membrane under tension. The estimation problem therefore ends up

being solved by minimizing this energy function.

Since the target space of the estimated image, though finite, is of considerable

cardinality, the computational burden would be increased enormously, if the optimization

method of Geman and Geman were applied without modification. Similarly to Terzopoulos

and Mumford and Shah, Marroquin therefore makes use of the fact, that for given edges,

that is for a given sample function / of the line process, an optimal estimate // of the
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image function can be found by solving a linear system of equations. For this task he

chooses a deterministic iterative technique. The remaining part of the problem, consisting

of minimizing the energy of (//, /) with respect to /, is then done by stochastic optimization

using the same methods as Geman and Geman.

Anisotropic Diffusion

Perona and Malik [27, 28, 29] have introduced anisotropic diffusion as a method of

detecting discontinuities in image functions at multiple scales of resolution. This method is

not global in the sense of our "definition" above. In fact, the diffusion per se does not detect

any discontinuities; the detection is done in a postprocessing stage, typically with some local

method. Neither does it converge to a globally optimal state of any kind; it converges to a

constant image function. Nevertheless it shares the most significant advantage of the global

edge detection methods, that is, it suppresses noise without smoothing the original image

function across its discontinuities—at least not right away.

The method operates by repeatedly filtering the image function with a data depen

dent kernel of small support. By design of the kernel this is analogous to diffusion governed

by the partial differential equation

•^(s, y, i) = V•[c(x, y, t)V/(*f y, t)]

where V* and V are the divergence and gradient operators respectively with respect to

the spatial coordinates (x,y), t is the time corresponding to the iteration index in the

numerical scheme, / is the image function—here thought of as representing density and c is

the conductivity. In order to discourage diffusion across the edges the conductivity is made

to depend on / according to

c(x,y,t)±g(\\VI(x,y,t)T\\)

where g is a strictly positive strictly decreasing function.

The filtering stages produce a sequence of diffused images of successively lower

resolution, each of which can be subject to edge detection in a postprocessing stage. After

only a few iterations the result is the same as that of a "discontinuity preserving" local

smoothing operator. Later on, as data propagate throughout the image domain, noise is

efficiently suppressed, while the more interesting large scale discontinuities still remain, or
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are even sharpened. Finally all discontinuities disappear, and the image function approaches

a constant. At some stage in the iteration remarkably impressive results can be obtained

by postprocessing with the most rudimentary local edge detector. The task of finding this

stage, however, has so far been a matter of manual inspection.

In Nordstrom [30] I have recently discovered a very close relationship between Ter

zopoulos' variational regularization approach and Perona and Malik's diffusion method; the

former can be modified to yield a truly global edge detection method, which can also be

interpreted as an anisotropic diffusion method, very similar to that of Perona and Malik.

The global nature of Perona and Malik's method is thereby made transparent. Besides this

benefit the new method possesses some of the more attractive properties of both variational

regularization and anisotropic diffusion. As the other variational methods it converges—at

least in practice—to a "good" local minimum of a cost functional, and the (diffused) image

function reaches a limit, which is very appropriate for rudimentary local edge detection.

Unlike other existing diffusion methods the new method does thus not require premature

termination of the diffusion process. Supervision is consequently unnecessary. At the same

time the new method shares the relatively low computational cost of Perona and Malik's

anisotropic diffusion method.

The new method, referred to as biased anisotropic diffusion (BAD), will be ana

lyzed in detail in chapter 5.

Discussion

The regularization methods described above have a lot in common. In all of them the

solution space is of the form F x X, where F and L are the spaces of possible estimated

image functions and possible detected edges respectively. Furthermore the sought solution

minimizes an energy functional E : F x L —• R of some sort. It is also the case, that

the energy for given edges, that is the functional Ei : F —• R : / *-+ £(/,/), is a positive

definite quadratic form (plus some arbitrary constant). With the single exception of the

approach by Mumford and Shah it is assumed somewhere along the line, that the edge

space L is finite in an essential way—not just because of the quantization necessitated by

machine computation. This finite edge space assumption greatly simplifies the problem

both theoretically and computationally.

The theory is simplified, because the question of existence of a solution, that is
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whether there exists an optimal pair (/, /) € FxL that minimizes the energy jE7, is reduced

to the question, whether there for each / € L exists an optimal // € F that minimizes Ei.

For the energy functionals in question this is a well-studied problem; given / an optimal

image function // does indeed exist, and in the case of dense (or continuous) data // is also

unique. A detailed analysis of this problem is presented in chapter 3. In addition to the

finite edge space assumption Geman and Geman further assume, that the image function

space F is finite. Thus in their case the existence problem is completely trivial.

The computational problem is also simplified, because the finite edge space as

sumption grants successful utilization of a number of algorithms and problem formulations,

which would otherwise fail. Some examples are:

1. Terzopoulos' method of flipping the values of the continuity control functions

2. Blake and Zisserman's line process elimination

3. Lee and Pavlidis' discrete regularization method

4. the Metropolis algorithm and its various versions used by Geman and Geman as well

as Marroquin

Besides having the advantage of greater simplicity, the finite edge space assump

tion, at least in its forms discussed above, also has some less tractable implications. Indeed,

the detected edges merely consist of an unorganized collection of linear edge elements located

on a grid and each of length (approximately) equal to the width of a pixel. Consequently

they lack several properties of importance for later processing, for example:

1. piecewise smoothness

2. subpixel localization

3. one-dimensional structure

4. a compact parametric analytic description

These inadequacies, at least the first three, can be remedied by edge linking and various

other postprocessing techniques. See for example [43, 44, 45, 46, 47]. However with such an

approach there is no mechanism that governs the trade-off between optimal edge location

with respect to the fit of the estimated image function versus optimal edge location with

respect to parametric description, smoothness, sensible linking, etc.
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Anisotropic diffusion provides an interesting alternative to the global edge detection

methods based on regularization. While preserving junctions and locating edges correctly,

problems of thinning, linking, smoothing and ultimately of generating a parametric descrip

tion of the edges still remain.



Chapter 2

A Variational Approach to

Curve-Represented Edge

Detection

20

In this chapter we present our paradigm for detecting and locating curve-repre

sented edges in images. The method is global and based on regularization. It is adequate

for dense data, and in its present version most suitable for processing of brightness data.

However, heuristic generalizations better suited for other data types, such as depth data,

are straight forward, and rigorous generalizations conceivable.

As it has turned out, our approach is very similar to that of Mumford and Shah

[16]*. In fact the paradigm to be presented includes theirs as a special and probably

the most interesting case. Our contributions to curve-represented edge detection are the

following:

1. Our framework is more general.

2. We have solved the central problem of existence of optimal edges for a relatively large

class of possible detected edges.

3. We have developed an algorithm for locating spline curve-represented edges.

At the time the paradigm presented herein was developed, this report by Mumford and Shah was not
widely circulated, if at all printed.
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We begin by choosing representations for the edges to be detected thereby im

plicitly selecting appropriate solution spaces for the global edge detection problem. We

then regularize the problem by posing it as one of minimizing a cost functional. Various

possible such costs are presented, and their variations, that is their differentials, calculated.

Although this analysis is in part heuristic, it is well motivated for two good reasons. It pro

vides valuable guidelines for further strict mathematical treatment, where the intuition is

often buried in the formalism. This is exemplified by the analysis of the existence of optimal

edges in chapter 3. The heuristic optimality analysis also serves as a vehicle for developing

global edge detection methods such as the algorithm to be described in chapter 4.

The functions that we choose to represent both the image and the edges throughout

most of our analysis are defined on connected, (in particular nondiscrete,) domains, and we

postpone the eventually necessary discretization of the problem until after the development

of most of the theory. We thus end up with an algorithm for a "continuous" problem.

By doing so, we believe, we solve the mathematically most relevant problem, and thereby

generate a method with which every method originating from a "discrete" approach to the

same problem should be consistent.

2.1 Edge Representations

A principal immediate purpose of detecting edges in any image is to find the curves

in the image domain which correspond to significant discontinuities in depth and orientation

of the visible surfaces in the scene. Sometimes discontinuities in reflectance properties and

illumination of the visible surfaces are also of interest. In the case of brightness data, which

is our major concern in this thesis, all these discontinuities give rise to discontinuities in

the image function itself, at least in the true image function one would have obtained by

pure projection onto the image plane without the corruptive influences of blurring and

noise. Our goal is therefore to detect and locate the set on which the (true) image function

exhibit significant discontinuities. Throughout the rest of this part we will refer to this set

informally as "the edges" and formally as the discontinuity set. Naturally the final product

of our edge detection method will depend on how we choose to represent this set. We have

in this approach chosen to work with edge representations in terms of general parametrized

curves and spline curves.
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2.1.1 Parametrized Curves

It was mentioned in chapter 1 that finite edge space models, that is models includ

ing only finitely many discontinuity sets, lead to solutions which are often inappropriate

for later processing. One way to introduce an infinite edge space is to allow all possible

discontinuity sets in the plane and represent them by their characteristic functions. Al

though this continuity control function representation, (which is part of the paradigm to be

considered in part 5,) provides analytic descriptions and permits subpixel localization of the

edges, it has some disadvantages. First of all it overlooks the fact that the edges of interest

consist of piecewise smooth curves in the plane. In other words, this edge space is too large

to guarantee meaningful solutions. Secondly parametrization of the edges in terms of their

spatial coordinates in R2 leads to a cumbersomedata structure in which the most important

information about the geometric interrelationships among the points in the discontinuity

set, viz. the linking information, is not explicit. Thus even if edges consisting of piecewise

smooth curves are detected, this is by no means apparent from the representation of the

solution. Finally it is hard to see how the infinity of an edge space based on parametrization

by the spatial coordinates would be able to "survive" the for computational purposes nec

essary discretization of the image domain. A curve-represented edge space will of course in

any practical implementation also be finite. However, this restriction, due to quantization

rather than sampling, is independent of the discretization of the image domain, and does

hardly affect the possible structures and locations of the edges.

For the reasons just mentioned we have chosen to represent the edges as we would

like the solution to the edge detection problem to be represented. More precisely, we

represent the edges by a finite collection of edge segments each of which is a parametrized

curve in R2. The desired smoothness of the edge segments is controlled by assuming that

their Cartesian components in R2 belong to the function space C'(£)t for some / € No and

some compact interval S € R. The discontinuity set is then defined to be the set

N

Dy=\J 7»(S)
n=l

where 71,.. .,7^ € C^S)2 = C(S) x C'(E) are the parametrizations of the N € N0 edge

segments and the vector 7 = [7^•••jJf)T is referred to as the image segmentation. As usual

*For any set Q C RA the space C'(ft) is defined to consist of all functions / : Ct —» R whose partial
derivatives of orders < / all exist and are continuous. In particular C°(Q) consists of all continuous functions
/ : Q — R.
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the space Cl(L) is given the norm

ll/lb(E)= VsupI/(l)(")I /eCCE)

In order to have a measure of distance between image segmentations (with the same number

of edge segments), for K € N we also define a norm on

K

C\Y,)K = J] <?'(s)

by

ll/lld(E)* = V IIAIb(E) f±[fi--MTeCl(X)K • (2.1)

which of course generates the product topology on Cl(T>)K.
The edge representations proposed above have the following advantages:

1. The edges have one-dimensional structure. No further thinning or linking processing

is necessary.

2. The edges have desired smoothness.

3. The edges have analytic descriptions which permit prompt calculations of many of

their geometric properties such as position, tangent vector, curvature and arc length.

4. The representations allow subpixel localization of the edges.

5. The edge space is given a metric which depends on the geometry of the edges so that

it reflects the intuitive notion of distance between edges. As we shall see later in

this chapter and in chapter 3, the metrics that we have chosen are also in consonance

with the weak notions of distance implied by the kind of cost functionals that typically

result from standard regularization techniques. They are therefore adequate as a basis

for various optimization strategies aimed at solving the regularized edge detection

problem by minimizing such functionals.

The first three of these features are essential for accurate line drawing analysis and therefore

of value for various tasks such as automatic manipulation, object description and object

recognition.
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2.1.2 Splines

For the purpose of storage of the detected edges and for computational feasibility

of the global edge detection itself as well as of later processing, it is desirable that the edge

representation be as compact as possible. In particular it has to be finite dimensional. If

the finite dimensionality is achieved simply by sampling the edge segment parametrizations

on a finite subset of E, the explicit smoothness of these functions is lost. An inherently

finite dimensional model for the edge segments is therefore called for. One simple such

model, which is frequently used in computer graphics, is the B-spline representation. We

have settled for so called uniform cubic B-splines for the following two reasons:

1. Uniform cubic B-splines are twice continuously differentiable. This means that the

most interesting geometric properties of the edge segments, viz. position, tangent

vector, curvature and arc length, are well-defined and easy to compute.

2. Uniform cubic B-splines are easy to implement.

This representation is briefly outlined below. A comprehensive exposition of the theory of

B-splines and the related beta-splines, of which the former constitute a special subclass,

can be found in [48] and [49] respectively.

The B-spline representation of the edges is essentially the same as the general

parametrized curve representation discussed above with the additional requirement, that

each edge segment is a planar uniform cubic B-spline curve and thus parametrized by a

univariate uniform cubic B-spline with range in R2. Such a spline is by definition a function

q : [0, M] —• R2, M € N, specified in terms of a sequence (vm)mio of control vertices in

R2 according to

q(m + a) = qm(o) = £ vm+r6r(<r) ra = 0,...,M-l a € [0,1]
r=0

where the so called basis functions 6q, ..., 63 : [0,1] —• R are given by

bo(tr) -a3 + 3<r2 - 3<r -|-1

M<7)
.

3a3 _ 6<72 + 4
1

b2{a) -3<r3 + 3<r2 + 3<r + 1 6

bz{°) a3

'€[0,1]

(2.2)

(2.3)

The basis functions are, as the name suggests, and as is easily verified, linearly

independent. Each one of the functions qm : [0,1] —• R, m = 0,...,M —1, therefore
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Figure 2.1: Uniform cubic B-spline curve and its defining control polygon.

has a unique representation as a linear combination of the basis functions with its associ

ated control vertices vmi...,vm+z as combination coefficients. There is thus a one-to-one

correspondence between the splines and their defining sequences of control vertices.

The basis functions are chosen to be polynomials of degree < 3, and such that

any possible spline q is twice continuously differentiable (regardless of its defining control

vertices). These requirements determine them uniquely up to a common factor of which a

certain choice yields the expressions in (2.3). This special choice has the intuitively very

appealing consequence that every point on the mth spline curve segment qm ([0,1]) is a

convex combination of its associated control vertices—a property referred to as the convex

hull property.

In general the control vertices do not lie on the spline curve that they specify.

Due to the convex hull property, however, the spline curve is a reasonable C2-smooth

approximation of the control polygon formed by the line segments joining its control vertices

in consecutive order. See figure 2.1.

Before finishing the description of the B-splines themselves a final word has to be

said about the end conditions that we use for the spline curves. There are two separate

cases to be considered.
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For representation of smooth closed curves we use what we naturally shall call

closed splines. To obtain such a spline from a closed control polygon we simply augment the

corresponding control vertex sequence by repeating the three first vertices in their original

order at the end of the sequence. Thus for a closed spline v\f+m = vm, m = 0,1,2. This

yields a smooth closed spline curve on which all of its original control vertices vo,..., i>m-i

have equally strong influence. Its endpoints are thus pure artifacts.

For representation of smooth curves with distinct endpoints we use what we shall

refer to as open splines. These are splines with so called triple vertex end conditions, which

means that the first and last control vertices in the sequence both are repeated twice. In

other words, vo = v\ — v2 and vm = vjv/+i = v\f+2- The most important characteristic

of this end condition is that the endpoints of the spline curve coincide with those of its

control polygon. Indeed, so do the corresponding tangent vectors and (zero) curvatures at

these points as well. This makes it easy to constrain the different spline curves in the edge

representation to form junctions at any desired points in the plane. It can of course happen

that a spline curve of this kind is closed by accident. In this case, however, the curve is in

general not smooth at vo = vm+2-

In many symbolic manipulations it is necessary to distinguish between closed and

open splines. With each spline we will therefore associate a binary number o which we shall

refer to as the openness of the spline (curve). If o = 0, the spline is closed, whereas if o = 1,

it is open.

From the convex hull property it is obvious that too short control vertex sequences

result in pathological spline curves. The control polygon of a closed spline must have at

least three vertices, or else the spline curve collapses to two line segments lying on top of

each other. Likewise the control polygon of an open spline must have at least two vertices

in order not to collapse to a point. Since the number of genuine vertices in the control

polygon, as can be seen, equals M —o, we will therefore always demand that M > 3.

In order to represent the edges by B-splines, we associate with the nth edge seg

ment, (n = 1,...,JV € No,) a sequence of control vertices (unm)m=J2» (Mn > 3,) and

parametrize it by the corresponding spline 7n : En = [0, Mn] —* R2 defined by
3

7n(m +<7) =7nm(<r) = ]Tv„,m+r6r(<T) ae [0,1] m =0,...,Mn- 1 (2.4)
r=0

The nth edge segment is thereby also given a certain openness on. Since the number of

control vertices, that is required for accurate spline representation of a given curve, varies
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with the length and the shape of the curve, the control vertex sequences associated with

the edge segments are, as indicated by the notation, allowed to depend on n. Consequently

the domains of the parametrizations differ from segment to segment. Except for this minor

modification, the B-spline representation is just a special case of the general parametrized

curve representation discussed above. Thus the discontinuity set is given by

N

IX, = (J 7»(S")
n=l

where 7n € C2(En)2, n = 1,..., N, and the image segmentation is given by

Junctions of various kinds are represented within the spline representation frame

work by constraining subsets of the endpoints of the edge segments (or equivalently of their

control polygons) to coincide. We refer to the common position of such a set of endpoints

as a junction, and the associated constraints as interconnection constraints. For notational

and computational convenience we also consider the position of an unconstrained endpoint

of an edge segment parametrized by an open spline to be a junction.

For the purpose of metrization of the space of all possible image segmentations

we partition this space into equivalence classes of image segmentations with similar con

figuration with regard to the interconnection constraints. Accordingly we say that two

image segmentations /? € I"In=i C2([0> Mpn]) and 7 € rin=i C2([0> -M-yn]) have the same

configuration if:

1. N0 = JV7 = N

2. M0n = Af7„, n= l,...,N

3. The control vertices associated with /? and 7 are subject to identical (spline curve)

end conditions and interconnection constraints.

It is clear from the earlier discussion that there is a one-to-one correspondence

between the splines and their control polygons. This correspondence permits the construc

tion of a simple norm on the space of image segmentations of any given configuration in

terms of the Euclidean norms (of parts) of the control vertex sequences associated with

the splines of the image segmentations. Since some of the vertices are dependent, in the
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sense that they are forced by the end conditions and the interconnection constraints to

coincide, one has the choice, and it is geometrically most adequate, to exclude from the

Euclidean norms the extra copies of the therefore duplicated vertices. Thus for any im

age segmentation 7 = [7^ ••'"f]^]T of a given configuration C and with associated openness

variables oi,...,o#, control vertex sequences (vnm)Jf=o2» n = 1,..., JV-, and junctions
W\,..., wj £ R2 we define

c =

N Mn-l J

. E E ik»ii2+Eikii2 (2-5)
\n=l m=3on j—\

If the class of image segmentations of configuration C is equipped with the obvious ap

propriate addition and scalar multiplication operations, it becomes a normed vector space

with norm || • ||c- Since the splines approximate their control polygons reasonably well, the

metric induced by this norm shares mostof the advantages of the C/(E)2^v-norms discussed
earlier.

2.2 Cost Functional Problem Formulation

In the "continuous" edge detection problem that we are addressing the objective

is, as mentioned earlier, to find the significant discontinuities of the true image function

one would obtain by pure projection onto the image plane. Since we are interested in

brightness data, we will assume that this image function is real-valued. However, the true

image function is not known. Instead the image formation process yields an original image

function £ : B —• R which is corrupted by blurring as well as measurement noise. We will

assume that the original image function is square integrable, that is £ € L2(B). Its domain

B, henceforth referred to as the image domain, will always be assumed to be a connected

open bounded set in R2. Besides the effects due to imperfection of the image formation

process there are additional disturbances caused by true but insignificant discontinuities

which are irrelevant for the generation of a useful description of the environment at a given

scale of resolution. Many fine textures in the scene, not to forget dirt and dust, just add

unnecessary complexity to the edges which is more likely to hinder than to support any

subsequent processing stages. These insignificant discontinuities can in a sense be regarded

as a form of noise though quite different in nature from the measurement noise.

Because of the blurring in the image formation process the discontinuity detection
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more or less boils down to a search for large magnitudes and/or zero-crossings of various

(linear) combinations of partial derivatives of the original image function. This problem

is (for the physically relevant topologies on the data space) unstable with respect to the

given data, and thus ill-posed in the sense of Hadamard [17, 18]. The presence of noise

(including insignificant discontinuities) therefore necessitates some kind of regularization

of the global edge detection problem. We have already encountered different approaches

to regularization in our review of various global edge detection methods in chapter 1, and

there are other techniques as well [17]. In similarity with those methods we attempt to

find an "estimate" z* of the true image function along with an explicit representation of its

associated discontinuity set D7 by minimizing a total cost functional of the form

£N{l) + Vc^z,Q + SCy(z)

where the edge cost Sn measures the extent and complexity of the discontinuity set, the

deviation cost Vc^ measures the discrepancy between the estimated and the original image

functions, and the stabilizer or stabilizing cost 5c7 measures the spatial variation of the

estimated image function. We will discuss the purposes and definitions of these three

separate functionals in more detail in the following subsections. The edge cost depends as

indicated on both the number of edge segments N and the image segmentation 7. The

other two costs depend on 7 only through the complement C7 = B\D^ of the discontinuity

set relative to the image domain. This set is referred to as the continuity set because it

is the domain of the estimated image function z : C7 —• R, which is required to be the

limit (in some appropriate space to be discussed later) of functions which are continuously

differentiable a certain number of times.

Both the deviation cost and the stabilizing cost are essentially associated with the

estimated image function z, and depend only implicitly on the edges. They will indeed both

be expressed as integrals of z-dependent integrands over the continuity set, which of course

is determined by the edges. In spite of the different purposes of the deviation cost and the

stabilizer, their sum is therefore most often naturally treated as a single functional. We will

refer to this functional as the image cost.

*Theletter z will henceforth be reserved for the estimated image function. Since the true image function—
earlier also denoted by z—does not figure in any of the following analysis, this inconsistency will not cause
any ambiguities.
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2.2.1 Deviation Costs

The purpose of the deviation cost Vc^ is to ensure that the estimated image

function z is a faithful approximation of the original image function £. In principle it could

be chosen so as to discourage discrepancy between the partial derivatives of z and £ up to

any given order. Natural examples of such deviation costs are given by

/ 2 2

Po>(».0=/ EE"E £ a! dx /€N° (2.6)

However, the nature of the noise, one is willing to tolerate, puts a limit on which of the partial

derivatives of £ are, (if at all existing,) representative of the corresponding partial derivatives

of the true image function that one wants to estimate. In the case of brightness data one

can at most assume that the energy and the magnitude of the noise signal, corresponding

to its L\- and Xoo-norms respectively, are small. On the other hand, the derivatives of the

noise function can be quite large in spite of blurring. First of all in order for Qto be a good

approximation of the potentially discontinuous true image function the blurring must be

kept at a minimum so that even very high frequency components of the input signal are not

being attenuated. Secondly, since noise enters the signal throughout the different stages of

the image formation process, the blurring of the sensor noise, which is last to enter, might

be much less than that of the true image function itself. Under these circumstances only

the simplest of the deviation costs in (2.6) is appropriate. For any open subset Q, of the

image domain we therefore define

%(*, C) = / (* - O2 dx z€I3(«) (2.7)
For any given image segmentation 7 the deviation cost is the given by the functional X>c7 •

2.2.2 Stabilizing Costs

The purpose of the stabilizer «Sc7 is to restrict the space of possibleestimated image

functions and thereby regularize the (edge detection) problem so that, as the name suggests,

stability with respect to the initial data is achieved. Several classes of such stabilizing

functionals have been studied in the mathematical theory of ill-posed problems. This theory

was pioneered by Tikhonov [50,19]. He proposed a general class of stabilizers for univariate

regularization of the form

5^=/RE«(£) <<*
Rt'=0
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where po,...,pi : R —• R+ are prespecified continuous weighting functions. These sums of

spatially weighted Sobolev norms are since then commonly referred to as Tikhonov stabi

lizers. For multivariate regularization generalized spline functionals of the form

2

w'iS-|(^) *
have been considered with varying generality of the domain fi C R^, its dimension K and

the "order of regularization" / [51, 52, 53, 54]. Other possible stabilizers for multivariate

regularization are the functionals

S(z)= [ A*zdx

where ft C R^, and A denotes the A'-dimensional Laplacian operator Y!>k=i ~§Z*' These
k

"Laplacian" stabilizers are clearly somewhat simpler than the multivariate generalized spline

functionals just mentioned. If one intends to apply direct minimization methods to solve

the regularized problem, this could be of some advantage. In contrast the "Laplacian"

stabilizers lead to Euler equations which are more complicated than those resulting from

the multivariate generalized spline functionals. Thus for indirect minimization via solution

of the Euler equation, which is our intended approach, the situation is reversed.

Examples of the stabilizers discussed above have been used for regularization of a

wide range of early vision problems with varying degree of success [18]. A common flaw of

these stabilizers in this context is that they do not allow the estimated image function z to

be discontinuous. This problem was addressed by Terzopoulos [40] who proposed further

generalizations of the multivariate generalized spline functionals. His stabilizing functionals,

referred to as controlled-continuity stabilizers are given by

/ K K I Qiz \«

^^"Ik"^*^ dx

where the (weighting) functions p\,...,pi : HK —• [0,1], referred to as continuity control

functions are in general discontinuous. They are in particular able to make jumps to zero,

and edges, where the partial derivatives of z of order > j are allowed to be discontinuous,

are represented by the sets

n t'({o}) j=o /-i
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For reasons that we have already discussed we have (in this approach) chosen to

avoid the use of continuity control functions. Instead we let the estimated image function

depend on the edges through its domain C7. For any open set ft C R2 we therefore define

*(*)*^S','£""£(sr^),*e /eNo (2-8)
where po,.. .,pj € R+ (are constants), and the zero times iterated sum occurring for i = 0

is consistently defined to be equal to its only possible term, that is

For any given image segmentation 7 the stabilizing cost for our bivariate problem is then

given by the functional Scy-

Since we are only interested in discontinuities of z itself and not its partial deriva

tives, the most important term in the sum in (2.8) is the term corresponding to i = 1. (In

the proof of existence of optimal edges in chapter 3 we will with this condition in mind as

a matter of fact only consider the case when / = 1, po = 0 and p\ = p > 0.) The other

terms are not useless, however, because sharp changes in the original image function £,

presumably due to step discontinuities in the true image function, in the absence of an edge

segment also cause the cost associated with the higher order terms (i > 1) to rise, thereby

contributing to the call for an edge segment at the point in question. Such an occurrence

due to, what is sometimes referred to as the Gibbs phenomenon, is depicted in figure 2.2.

In regions of constant gradient V£ on the other hand no such phenomenon will occur no

matterhow large the value of ||V£T||. The higher order terms can thus serve as a mechanism

for distinguishing regions of smooth shading from true edges. The term corresponding to

i = 0 is more questionable. It basically discourages the most extreme values of (, from being

taken too seriously. If for example those values for some reason were highly suspected of

being caused by noise, this could have some merit.

2.2.3 Edge Costs

The purpose of the edge cost €n is to limit the extent and complexity of the

edges. This is not only important for the goal of generating simple useful descriptions of

the environment; it is absolutely necessary for the cost functional minimization approach
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(a) (b)

Figure 2.2: Effects of a step discontinuity in the original image function £ (dashed) on a

piecewise C2-smooth estimated image function z (solid) in the absence (a) vs. presence (b)

of an (estimated) edge at the location of the step.

to have any meaning at all. Indeed, the other part of the total cost, that is the image cost

^c7(*>C) + $Cy(z) has, as we shall see in chapter 3, a global minimum with respect to z

which decreases monotonically as the continuity set C7 decreases. Thus under any attempt

to minimize this cost with respect to both z and 7, the edges, would tend to fill up the entire

image domain. This would undoubtedly lead to completely useless results.

It is of course desirable that the edge cost only reflects the properties of the dis

continuity set, and that it is in other ways independent of the particular parametrizations

of the edge segments. This concern leads us to edge costs composed of quite natural quan

tities associated with the edge segments themselves such as their total number, their total

arc length and various parametrization independent measures of their "curvedness". It is

also desirable that the form of the edge cost is suitable for the variational methods that we

intend to use for solving the regularized edge detection problem. Any appropriate curved

ness measure should therefore, just as the arc length, be expressible in terms of integrals of

smooth algebraic expressions of the edge segment parametrizations and their derivatives.

This suggests the use of integrands involving some power of the curvature which in turn

requires that the edge segment parametrizations 71,.. . ,7/v are regular, that is that

7n(<r)/0 V<r€E n=l,...,N



34

For / 6 N we therefore define the function spaces

C'rV)2 = {/ 6 C'(S)2 : 0 i /(E)}

and

Ck(S)2W = II C*V? N 6 No
n=l

where the empty product denotes a space consisting of one single trivial "function".

The edge cost is most easily and quite reasonably defined as a weighted sum of

cost functionals each of which is associated with an individual edge segment. We will next

discuss some possible choices of such edge segment costs. We begin with costs for general

parametrized curves. Thereafter a couple of additional possibilities for spline curves will be

considered. Finally we give some examples of edge costs for the entire discontinuity set.

General Parametrized Curve Costs

The simplest possible edge segment cost is a constant presence cost. If the con

stant is the same for all the edge segments, this just results in an edge cost term which is

proportional to the number of edge segments.

The next simplest measure of the extent of an edge segment is given by its length.

We therefore define the arc length cost functional

A:C^E)2 ^R^if^f di= I \\f(a)\\ da (2.9)
.//(E) ^E

The variational methods to be used in the next section will require that the integrand

||/(cr)|| is continuously differentiable with respect to f(a) for all a G E. This is clearly not

the case if 0 € /(E). We will, however, only consider regular edge segment parametrizations

whence this problem disappears.

For a simple measure of the curvedness of an edge segment we likewise define the

curvedness cost

.//(E) \di j ys WfWW

where 9j denotes the tangent orientation angleof the edge segment /(E), £as before denotes

the arc length variable, and the rotation matrix

#x =
0 1

-1 0
(2.11)
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plays the role of the "cross product". (It will later also be used for general rotation pur

poses.) The choice of (d0f/dt)2 as opposed to any other power of \d9j/d£\ in the integrand

is motivated by simplicity as well as variational considerations. It might appear simpler to

use the first power, but the resulting integrand

\h<r)TRj(a)\
ll/(<0ll2

(in the corresponding integral over E) fails to be continuously differentiable with respect

to f(o) and f(a). The problem occurs wherever f(a)TRxf(a) = 0, which in particular

includes all points of zero curvature. Since edge segments possessing such points are com

mon, one cannot, unlike in the case of the arc length cost above, get around this problem

by simple restriction of the parametrization space.

Besides desiring discontinuity sets with few edge segments, short total arc length

and moderate curvedness, one might have a preference for certain curve shapes over others

regardless of curve size. None of the edge segment costs above serves to promote such a

preference. The constant cost is obviously independent of any property of a particular edge

segment except its existence, and both the arc length and curvedness costs depend on the

size of the edge segment in question. Indeed, if x 6 R2, r > 0 and / is an edge segment

parametrization, then

A(x + rf) = rA(/) (2.12)

and

K(* +r/) =±K(/) (2.13)
r

One way of obtaining a size invariant edge segment cost, which discourages unnecessary

complexity of the edges, is to modify the curvedness cost K by replacing the arc length

variable £ by the parameter a as independent variable in its defining integral. This modifi

cation yields the functional

1 h\daj h ll/WH"

A problem with this cost, however, is that it turns out to depend on the particular parame

trization / of the edge segment /(E). This problem can be remedied by selecting a unique

canonical parametrization for each edge segment. The only choice that makes sense (from

a symmetry point of view) for a given fixed compact parameter interval E is the constant



36

velocity parametrization characterized by

ii'̂ " =$§ Vff€S (2-14)
where m denotes the Lebesgue measure. One then ends up with the shape cost

C&(E)2->1I7:/~K(/)A(/) (2.15)

Spline Curve Costs

For edge segments represented by splines, edge segment costs defined directly in

terms of their associated control vertex sequences offer simple alternatives to the general

parametrized curve costs discussed above. (Since each edge segment 7n([0,Afn])> » =

1,...,N, corresponds to a unique control vertex sequence, the previous definition of the

edge cost Sn as a functional of the image segmentation is strictly speaking still valid even

if it is expressed in terms of the associated control vertices.)

The length of a spline curve can for example be approximated by the length of its

defining control polygon. We therefore define the polygon length cost

oo M-\

n : IJ R2<M+3> - R7: (vm)%$ ~ E ll«W+i - <\ (2-16)
M=3 m=2o

where o as before denotes the openness of the spline. (As we see, the repeated control

vertices do not contribute to the cost.)

Similarly extensively curved shapes of the edge segments can be prevented by

penalizing the jaggedness of the control polygons. If consecutive control vertices are con

strained to be separated, except when constrained to coincide by the spline end conditions,

a simple jaggedness cost 0 : (J55=3 R2(M+3) -> R^ can for example be defined by

ft/,, „ \- ^ (Vm+i - Vm)T(Vm-\ - Vm) f0 ,-.
W{vo,...,vM+2)= }. T\ iTTi n" (2-17)

Edge Cost Examples

Of the many possible edge costs that can be composed as weighted sums of the

various edge segment costs presented above we will henceforth consider only a few practical

examples. In particular, with the exception of the constant presence cost we will not mix

the general parametrized curve costs with the spline curve costs. In the absence of more
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specific information about the individual edge segments we will moreover choose weighting

coefficients which are uniform with respect to the edge segments.

For edges represented by general parametrized curves we will consider the edge

cost
N

£N(7) = £[„ +AA(7n) +*K(7n) +iK(7»)A(7»)] N <E N0 (2.18)
n=l

where v, A,k, i > 0 and v + A > 0. The interesting special case

N

flvfr) = El" + AA(7»)1 * e N° (2-19)
n=l

corresponding to « = i = 0 will also be given some extra attention.

For edges represented by splines we will only consider one basic edge cost which

we shall define as a function directly in terms of the control vertex sequences (vnm)m~o2^
n = 1,..., N. Thus we choose

JV

flv(7) = E I" +^HKo, •••,vnMn+2)] N € N0 (2.20)
n=l

where v, w > 0 and v + G7 > 0.

2.3 Variations

Having regularized the the global edge detection problem by posing it as a cost

functional minimization problem, the next natural step is to seek conditions for optimality.

In other words we want to see if the solution, that is the detected image segmentation and the

estimated image function that minimize the total cost functional SnM+Vc^z, Q+Sc^z),

(for a given original image function,) satisfy some manageable set of equations. A solution

or at least part of it can then be found by solving these equations. A standard method

for deriving such conditions for local minima of the kind of cost functional that we are

concerned with is to use calculus of variations.

Before getting into the details of calculations of the sort, we should note that

calculus of variations typically yields conditions only for local minima in the interior of

the domain of the functional in question. In order to get the most out of a variational

method the problem should therefore as far as possible be formulated so that at least the

vast majority of the local minima of interest are located in the interior of this domain. For

continuity control function-represented edge detection this is an important issue. Although
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it can be dealt with successfully, it has so far been overlooked by the variational edge

detection approaches in the vision literature. (This is the main motivation behind the

biased anisotropic diffusion method to be presented in part 5.) For curve-represented edge

detection, which is our present concern, the consequences are much milder, but also harder

to get around. Since No has empty interior, there is no hope of finding the optimal number

of edge segments directly by calculus of variations. For similar reasons the variational

methods do not provide direct means for selecting an optimal edge segment interconnection,

that is the set of interconnection constraints each of which forces a set of edge segment

endpoints to coincide at a junction. However, for a given interconnection of N € No

edge segments, calculus of variations yields, (at least for sufficiently nice edges,) necessary

conditions for both the optimal (JV-segment)image segmentation and the optimal estimated

image function. As for the majority of the global edge detection methods discussed in

chapter 1 these conditions determine for each given image segmentation the associated

estimated image function as the solution of a partial differential equation. While they do

not support a similar technique for finding the optimal image segmentation, they provide

valuable directions for a structured search. Calculus of variations is thus useful for finding

the optimal image segmentation and the optimal estimated image function for each given

number of edge segments and each edge segmentation interconnection of interest. One can

then select the best among as many such solution candidates as one can afford to compute

by simply comparing their associated costs.

In the next three subsections we will derive expressions for the variations of most

of the cost functionals presented in section 2.2 with respect to the image segmentation 7,

the control vertices vnm, m = 0,..., Mn, n = 1,..., N, and the estimated image function

z. In the following section we will then use these expressions to establish the necessary

conditions for optimality. At this point we are mainly interested in what these conditions

are, and not in under exactly which additional conditions they are valid. We will therefore

make the simplifying assumption that the edges to be detected and the image function to be

estimated are sufficiently well behaved, (smooth and integrable,) that we can differentiate

and integrate by parts as many times as needed, and that the variation of the image cost

fi-i[DCi(zi Q+Sc^iz)] due to a displacement £7 of the edges can be evaluated by integrating

the difference between the local image cost density, that is the integrand of the image cost,

on each side of the edge times the normal component of the local edge displacement along

the edges.
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2.3.1 Variation with Respect to the Image Segmentation

Since all the cost functionals that depend on the edges only depend on the edge

segments themselves and not on their particular parametrizations, the same must be the

case with the variation due to a certain displacement of the edges. For the purpose of

deriving the optimality conditions we can therefore assume any convenient parametrization

of the edge segments. The simplest choice that complies with our earlier definitions is

the constant velocity parametrization characterized by (2.14). This parametrization will

be used throughout this subsection as well as in the sequel wherever reference is made to

the results derived herein. Since we have already assumed that E = [0,1], the constant

"velocity" of the nth edge segment parametrization is given by

||7„(a)|| = An <7<EE, n = l,...,N

where An = A(7n) denotes the (total) arc length of the nth edge segment.

The variation (of any of the cost functionals) with respect to the image segmenta

tion will not surprisingly be expressed as (a sum of) line integrals along the edge segments.

For more convenient and intuitive notation we therefore define the tangential and normal

unit vectors eTn and eun respectively of the nth edge segment 7n(E), (n = 1,..., JV,) ac

cording to

rA (a) \ a € E (2.21)

where jRx is the 90° clockwise rotation matrix defined in (2.11). The orientation of these

vectors relative to the nth edge segment and its tangent vector is depicted in figure 2.3, and

their first and second derivatives (with respect to o) are easily found to be given by

Cm = €j/nAnKn (z.zza)

€un = -eTnA„«„ (2.22b)

6Tn = —eTnAnKn + e„nAnKn {z.2.1c)

evn = —ernAnKn — ei/nAn/cn (2.22d)

where

K _u 7n#x7n
A2

n

is the curvature of 7n(S).
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Figure 2.3: Orientation of the tangential and normal unit vectors eTn(a) and eun(a) relative

to the edge segment 7n(E) and its tangent vector 7n(o").

The subcosts, of which the variation with respect to the image segmentation is of

primary interest, are the arc length cost A(7„), the curvedness cost K(7n), the shape cost

K(7n)A(7n) and the image cost VCl(z,Q+ Sc^(z).

Length Cost Variation

The variation of the arc length cost (2.9) with respect to the image segmentation

is given by

*7A(7„) =«, /' spOhndo =f1 %p±da
Jo y Jo An

Integrating this expression by parts and using (2.21) and (2.22) we obtain

£yA(7n) = ^7nr|i=o ~K f Kn6jnt/d(7 = ^7nr|?=0 ~ / *nhnv *t (2.23)
Jo ./-ME)

where 6ynT = c^nb^n and 8^nu = ejn^7n are the tangential and normal components re

spectively of the variation in the edge parametrization 7n. This result is very intuitive; in

order to lower the arc length cost the edge segment 7n(E) should be adjusted as indicated

in figure 2.4.
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Figure 2.4: Appropriate adjustment of edge segment 7n(E) for lowering the arc length cost

A(7n).



Curvedness Cost Variation

For the curvedness cost (2.10) a calculation similar to that above yields

&yK(7„) =

=SiJ ("»\/Tn7»J da
f1 [2Kn(<7n^x7n +7^xf7n) 5«27^*7nl .

=Jo [ ai -rr~\ d°
=(-«2 *7»r - ^i*7n, +̂ ,J)[^+j£ (a.«» +gl) Sj„ <**

42

+/ _l"S +2^r)*7.u,<tt (2-24)
In this case the intuition is not as immediate as for the arc length cost, and we will in fact

only attempt an interpretation of four of the five terms.

As we see from (2.13) the curvedness cost decreases if the edge segment is mag

nified. The first of the three "endpoint terms" and the first term in the integrand above

clearly correspond to this effect. Indeed, in order to lower the cost associated with these

terms the edge segment should be expanded as indicated in figure 2.5 (a). Naturally the

response to such an adjustment is strongest where the magnitude of the curvature is the

largest.

The last of the "endpoint terms" and the second term in the integrand are more

related to the shape than the size of the edge segment. The former decreases if the edge

segment is "straightened out" near its endpoints. The cost due to the latter decreases if

the curvature is redistributed more evenly along the edge. An appropriate adjustment for

lowering the cost associated with these terms is depicted in figure 2.5 (b).

Shape Cost Variation

The variation of the shape cost (2.15) with respect to the image segmentation 7,

which is easily expressed in terms of those of the arc length and curvedness costs calculated

above, is given by
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(a)

(b)

Figure 2.5: Appropriate adjustment of the edge segment 7n(E) for lowering the curvedness

cost K(7n) associated with the "expansion terms" (a) and the "shape terms" (b).



*,[K(7n)A(7„)] =

= «TK(7»)A(7„) + K(7»)«rA(7»)

(*«*, -2^7.+Wfe) C,+jU, (* +2^)^ *] A"
+K(7n) (^7nr|fcS) " / M7m, «K )

V -ME) /
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The appropriate edge segment adjustment for reducing the shape cost is thus just a weighted

combination of the corresponding adjustments for the arc length and curvedness costs.

Because of the special weights, An and K(7n), however, there is a more geometric way to

interpret this adjustment as a modification of the appropriate adjustment for the curvedness

cost. Indeed, since the average square curvature of the nth edge segment is given by

-• An(E)*n<*l K(7n)
Kt, =

the variation of the shape cost with respect to 7 can be written as

&y[K(7n)A(7»)] =

= I |-(«n-^7nr-2^7n,+2Kn/7^
dt 1-0

"o\ . «<P*n+ /, |(«2-K2K-}-2
d£2

8~fnt, dl An (2.25)

Comparing this expression with (2.24) we notice two and only two differences. First of all

the entire expression is multiplied by the arc length of the edge segment. Although this has

no effect on the "direction" of an appropriate edge segment adjustment for lowering the cost,

for a fixed step size steepest descent scheme it would affect the size of the update so as to

make it proportional to the size of the edge segment. This is perfectly reasonable for a size

independent edge cost. Secondly the two "expansion terms" suggesting the adjustment in

figure 2.5 (a) are moderated by the square curvature being measured relative to its average

value. More precisely, k2 is replaced by «2 -k2. The effect that this has on the appropriate

adjustment for reducing the cost associated with these two terms is depicted in figure 2.6.

Image Cost Variation

When the image segmentation is displaced from 7 to 7 + ^7, the current continuity

set C^ is replaced by a new continuity set C7+^7. The "difference set" (in R2) that the
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Figure 2.6: Appropriate adjustment of edge segment 7n(E) for lowering the shape cost

K(7n)A(7n) associated with the "expansion terms".

discontinuity set, that is the edgesegments,would haveswept over, should this displacement

have taken place in a continuous fashion, will by a minor abuse of notation be denoted by

£Cy. An example of such a set is displayed in figure 2.7. Since the continuity set is the

domain of the estimated image function z, the perturbation £7 necessarily affects the image
cost density

/ 2 2 / «,- \ 2

g=(*-o2+E*E-EL a*
,=0 k% k%\dx^'"dxkij

and thus the image cost

Vcy(z,0 +SCy(z)= f gdx

If the restriction zcy\C^ \ SC^ of the estimated image function zcy :-* R could be extended

to a new (admissible) estimated image function zcy+Si :_> " on tne new continuity set, the
resulting image cost difference would be given by

VCy+Sy(zCy+6y,0 + SCy+Sy(zCy+Sy) - [T>cy(zCy,Q + SCy(zCy)] =

=/
Js<«s~"-ef*Srk-&{&*;)'
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Y+5v

Figure 2.7: A discontinuity set Z>7, a slightly altered discontinuity set D^+Sy and the
resulting "difference set" SC^ (shaded).

ia k% k%\dx^"-dxkij
dx

We will study such extensions in detail in chapter 3. For now we will just assume that such

an extension exists, and that it is sufficiently well behaved that the integral above for an

infinitesimal displacement £7 reduces to a (sum of) line integrals along the edge segments.
The variation of the image cost with respect to the image segmentation is then given by

N r
AyP>C,(*. 0 +SC,(Z)] = - E / *Qnhn» dl (2.26)

n=1^n(S)

where

A°n = ijm[£(7„(<r) +evn(a)h) - o(in(cr) - eun(a)h)]

is the image cost density difference across the nth edge segment. In order to lower the

image cost the edge segments should thus be shifted towards the side on which the image
cost density is the highest. Intuitively enough, the area of relatively low image cost density

is thereby enlarged at the expense of the area of relatively high image cost density.
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2.3.2 Variation with Respect to the Control Vertices

If the edges are represented by splines, as suggested in section 2.1, the solution to

the edge detection problem essentially consists of finding the control vertices that specify the

optimal image segmentation. In this context it is desirable that the optimality conditions

are expressed directly in terms of the control vertices rather than the spline curves that

they define. The variations of both the edge and the image costs with respect to the

control vertices are therefore of interest. In the case of spline represented edges an edge

cost composed by the special spline costs, discussed in section 2.2, is to be preferred. We

will illustrate the calculations by considering the polygon length cost (2.16) in detail. The

jaggedness cost (2.17) can be treated in a similar fashion.

Polygon Length Cost Variation

The variation of the polygon length cost with respect to the control vertices exists

only at those points in control vertex space where the polygon length cost is differentiable

with respect to all its independent^ control vertices. This means that all independent
consecutive control vertices must be distinct. Assuming that this "regularity" condition is

satisfied the variation of the polygon length cost with respect to the (independent) control
vertices is given by

6vIl{vo,...,vM+2) =
A/-1

= sv E Hv"»+i ~V™W
m=2o

M-l , v t

•£.(i^£i) (^-^> (2-27)
where o is the openness of the spline. Collecting the terms depending on the perturbation

of each individual control vertex, for closed splines we obtain

6vJl(v0,...,vM+2) =£ („1?m""m-1„ +liVm~Vm+\l)TSvm (2.28)
where we have used the fact that vm = v0. For open splines we similarly get

'Two control vertices are said to be independent if they are neither constrained by the spline end condi
tions nor by the interconnection constraints.
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Figure 2.8: Appropriate adjustment of the control vertices for lowering the polygon length
cost n(vo,..., «io).

SvJl(v0,...,vM+2) =

_ ( V2-V3 \T , , r^V^m- Vm-1 , Vm - Vm+1 \T c
-\\\v2 -v3\\) ^2 +̂ 3l|K-Vm.1|| +|K-Vm+1||J 6v™

\\\VM-VM-\\\J V '

The expressions above have a very simple interpretation. In order to decrease the

polygon length cost the control polygon should be adjusted as indicated in figure 2.8. In

other words, intermediate vertices should move along the bisectors of the angles formed by

the polygon, and end vertices should move along the polygon itself.

Image Cost Variation

For the image cost we need to reexpress the previously derived variation with

respect to the image segmentation in terms of the control vertices. Recalling that the

domain of the edge segment parametrization 7„ now is En = [0, Mn] from (2.4) we have
that
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/ ±Qnhn» dl =
An(E„)

JfMn
' ^QnhnRx^inda
0

M„-l -!

= E / A£n(™ +<T)tf7nm(<7)T#x7nm(<7) <*<?
m=0 */0

M„-l -! 3 3

= E / A^n(m+a)E*r(^vJ,m+r^xEVm+56aWrf<7
m=0 J0 r=0 5=0

/"I 3
= / y2dn(m,r,s,a)ba((r)da n= l,...,N (2.30)

-70 3=0

where &o,..., 63 are the basis functions given by (2.3), and

3 M„-l

</n(m,r,5,<7) = E E A0n(m + a)br{a)6vltm+rRlvn)Tn+s (2.31)
r=0 m=0

In order to collect the terms associated with each individual control vertex we substitute

m for m + r and change the order of summation in (2.31). Dropping the subscript n and

using the fact that M > 3 we then get

d{m,r,s,a) =
2 m

= E E A^(m " r+°)br(*)6VmRlvm-r+s
m=0 r=0

M-l 3

+ E E M™ " r + °)br(<r)6VmRZvm-r+,
m=3 r=0

M+2 3

+ E E A?(m-r + (j)l»r((7)^4t)m.r+J
m=M r=m—M+l

For closed splines vm = %+m, m = 0,1,2. Since m - r € {0,..., M - 1} in each of the

double sums above, we therefore have that

M 3

d(m, r, s,a) = E E A^(m " T) mod M+*)M*)*<M*>(m-r)modM+5 (2.32)
m=l r=0

For open splines on the other hand vq = v\ = u2 and vjv/ = i>a/+i = vm+2- Hence

d(m, r, s, a) =
2 m

= E E A#(m " r + <r)br(<r)6vjRlvm.r+3
m=0 r=0
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M-l 3

+ E E Ae(m ~ r+o)bT{°)&vlRlvm_r+a
m=3 r=0

M+2 3

+ E E Ae(™~r + (r)br(<T)SvMRlvm_r+s (2.33)
m=M r=m—M+1

Using (2.26), (2.30), (2.32) and (2.33) the image cost variation with respect to the
control vertices can now be expressed as

*v[VCy(z,0 + Sc,(z)] =
N Mn-1 3 3 .j

=~E E EE/ Aen(m +<T)br(a)ba(a)dav*ym+sRxSvn,m+r
n=l m=0 r=0a=0*/0

M„ 3 3 fl
=~E EEE/ A^n((m-r)modMn +(T)6r(<T)6s((T)rf(7

ngNo m=l r=0 3=0 */0

*Vn,(m-r)modMn+*^X^nm
2 m 3

-E
n€Wi

Mn-1 3 3

E E E L AQn(m - r+<7)&r(<r)6s(<r) rfffwJtm_p+Ji2x*BB2
n=0 r=0 3=0 J0

iwn-l 3 3-i

+ E EE/ft A^(m-r +(T)6r(a)65(cr)df7T;J)m^r+5JRx^nrn
m=3 r=0s=OJ0

M„+2 3 3 .!

+ E E E/ Aff„(m-r +(y)6r(<r)i,(flr)der
m=M„ r=m-M„+l 3=0 J°

*vn,m-r+3-Rx^nMnl (2.34)

where Nt = {n G{1,. ..,N} : o„ = t}, t = 0,1, that is JV0 is the set ofedge segments
indices corresponding to closed splines, and Ni is the set of those corresponding to open
splines. Unfortunately this expression is too complicated to provide much insight. A few
general observations can, however, be made:

1. The image cost variation with respect to the control vertex vnm depends in addition

to on vnm itself on the three closest vertices in both the directions along the control
polygon. (If vnm is close to the end of the polygon, some of these vertices may of
course be identical.)

2. The image cost variation with respect to vnm also depends on the image cost density
along a local segment of the nth edge segment. This local segment is exactly the
portion of 7„(En) that is influenced by the control vertices just referred to.
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3. The functions

ars(<r) = / M06(<0 ds r, s€{0,..., 3} (2.35)
Jo

can be expected to play a significant role in the evaluation of the image cost variation.

2.3.3 Variation with Respect to the Estimated Image Function

The edge cost Sn(j) is as indicated independent of the estimated image function

z. Its variation with respect to z is hence equal to zero. We thus only have to consider the

image cost. In this case the deviation and stabilizing costs are most conveniently treated

separately.

Deviation Cost Variation

The variation of the deviation cost (2.7) with respect to the estimated image

function is extremely easy to calculate. Indeed, for any open domain ft

*zVQ(z, C) =6Z j {z - C)2 dx =2/ (z - Q6z dx (2.36)
Jn Ju

Stabilizing Cost Variation

The calculation of the variation of the stabilizer (2.8) with respect to the estimated

image function is more involved. We begin by defining the differential operators

Qo(f,9) = fg

QiU.g) = E-Eo y/» * **» ieNjtT^i fcT^i °Xki'' •dx^ dx><i''' dxk
where the functions / and g are allowed to be matrix valued, as long as the dimensions

match so that the product fg makes sense. We note that the definition of Q0 is consistent

with our earlier notion ofsums ofthe form £*, •••£*, (for i = 0). It is also consistent with
the simple rule

Q.(/^) = Q,-i(V/,V/) ieN (2.37)

for scalar valued functions / and g. Letting (-A)j denote the j times repeated negative
Laplace operator [-(d/dxi)2 - (d/dx2)2]i we then have the following.
Proposition 2.3.1

t

QiU,9) = V. ECi-i(/, V(-A)1'-^) + f(-Ayg
3=1
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Proof: For t = 0 the sum on the right hand side vanishes, whence the assertion is trivially

true. Suppose now the assertion is true for i = p 6 Nq. Then by (2.37)

Qp+1(f,g) =

= E-EV;
dpf v d*f T

k% k% 9xkl"-dxkp dxkl--dxki
2 2

= E-E
Jfei=l fcp=l L

dpf v &pf( W
\dxkl-.- dxkp dxkx-"dxk.

dpf A &>j
dxkx •••dxkp dxkx •••dxkp

= V.Qp(/,V5) + gp(/,-A^)

= V•Qv{f, Vg) + V•E Oi-i(/, V(-A)'-'+1fl>) + /(-A)*+1<7

p+i

= v •E<?;-i(/, v(-a)p+1-^) + /(-A)"*1*,

The proposition thence follows by induction.

:)

The calculation of 6zSn{z) is now straight forward. Indeed, noting that 6zQi(z,z)
= 2Qi(6z,z), Vi € No, for any open domain ft we have

. I . /

6zSn(z) = 6z / J2^Qi(z^z)dx = 2 / T\liiQi{Sz,z)dx
y",=o Jn£i

By proposition 2.3.1 and Gauss' divergence theorem it thus follows that

6zSq(z) =

,/w t=0

r I i I
=2 / E^E^-i(^v(-Ar^)en^+2 / ^pM-Ayzdx

Jdil i=i j=i -to t=0

where en is the outward normal unit vector and dl indicates integration against the arc

length measure along the boundary dft of ft. Changing order of summation and applying
the chain rule we then obtain

SzSQ(z) =2YtJ^Qj_l hz^^pii-Ay-hj dl+2jjzJ2pi(-A)izdx

V •'ZQj-itfz, V(-A)'-V) +6z(-A){z
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where d/den denotes the directional derivative in the direction of the outward normal unit

vector en. In order to see what this really means one can expand the Qj-\-expressions in

the integral over dft. The final result then becomes

=2EE- E / „ *'"«* » » di »—j:Pi(-Ay-izdi
r I

2/ 6zY,»i{-&)tzdx (2.38)
Ja t=0

2.4 Optimality Conditions

With the expressions for all the cost variations in the previous section at hand it

is relatively straight forward to compile a collection of optimality conditions. One simply

has to add up the total cost variation with respect to each independent variable and set

the resulting sum identically equal to zero. The only part of the matter that calls for some

special attention is the interdependence among some of the edge variables imposed by the

interconnection constraints.

The optimality conditions are naturally divided into those concerning the esti

mated image function and those concerning the edges. The latter category furthermore

takes different forms depending on the edge cost as well as on how the edges are being

represented. In this section we will present optimality conditions for the estimated image

function, for the image segmentation when the edge cost is given by (2.18), and for the

control vertices when the edge cost is given by (2.20).

2.4.1 Estimated Image Function Conditions

Adding (2.36) and (2.38) (to the zero edge cost variation &z£n(i)) we find that

the total cost variation with respect to the estimated image function z is given by

Sz[eNh)-rVc,(z,o + Sc,(z)] =

=2/JCy
6z ^-c+E^(-A)^

i=0

dl

dx

+2^^ Vs f d 6z d3 V* f-AV-i
k& \J^J^^r'-dxkJ.ldendxk1--dxkJ_1tj } "
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For optimality this variation has to vanish for all possible perturbations Sz. This in turn

requires that the estimated image function satisfies the partial differential (Euler) equation

*~ C+ YtPii-AYz = 0 on Cy (2.39a)
t=0

with the boundary conditions

te.ftn,y-•&»»,_, §«<-*>'"'* =° °" dc- (2-39b)
Even for quite small values of / the equations above are fairly complicated, and

one is therefore led to consider the simplest examples. One interesting such example, to

which we will pay most ofourattention from now on, is specified by choosing / = 1,p0 = 0
and pi = p > 0. In this case the optimality conditions above reduce to

z - C- pAz = 0 on C-, (2.40a)
dz^- = 0 on dC^ (2.40b)

In chapter 3 we will show that this partial differential equation has a unique solution for

all open domains. Since the continuity set C7, being the intersection of two open sets, is
always open, the optimality condition above does thus by itself not put any restriction on
the image segmentation 7.

2.4.2 Edge Conditions

Unlike the optimality conditions for the estimated image function, the conditions

for the edges depend on the interconnection constraints. To be specific we will assume
that these constraints are of the form discussed in section 2.1, that is each edge segment
endpoint, except the artificial ones of closed spline curves in case ofspline represented edges,
has to coincide with one of J e N0 junctions wu..., wj € R2. However, more elaborate
interconnection constraints, for example such involving the tangents of the edge segments
at their endpoints, are of course both possible and useful.

For later reference, for j = 1,..., J we define Nj0 to be the set of those of the
edge segment indices n = 1,.. .,N for which the "beginning" endpoint 7n(0) is forced to
coincide with the junction Wj. Similarly we let Nji be the set of those indices for which the

"terminating" endpoint, 7„(1) in case ofgeneral parametrized curves or 7„(il/„) in case of
splines, is forced to coincide with Wj.
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Image Segmentation Conditions

Suppose that the edges are represented by general parametrized curves as described

in section 2.1, and that the edge cost is of the form

N

**(7) = El" + AA(7n) + *K(7„) + lK(7n)A(7n)]
n=l

where v, x,t > 0 and A> 0. From (2.23), (2.24), (2.25) and (2.26) we then have that

N

= E(AM(7n)+ *&yK(7n) + ^[K(7„)A(7„)D +^[Vc,{z,0+ Sc,(z)\
n=l

N

= E (Vn*7n, - °»^<hW +«»M^f)

where

An

1=0

<Pn(<r) = A- xKn(a)2 - iAn[Kn(a)2 - k2] a GE, n = 1,..-., N (2.41)

and

an = 2(x+iA„) n = l,..., JV

After eliminating the dependence between the endpoints 7n(0, * = 0,1, n = 1,...,N,
by replacing them by the appropriate junctions, the total cost variation with respect to the
image segmentation can thus be written as

6JSN(y) + VCy(z, Q + SC, (*)] =

=EE EM)1-'
j=l <=0 nfiiVj,

Vn(t)eJn(t) - an^-(t)eln(t)

-5 JL(e, r*n -an&+A*n) ^rf£

N

SWj + E anKnS
n=l

d-fr

1=0

(2.42)

For optimality this expression should vanish for all possible perturbations 6j. The edge
segment parametrizations 71,... ,7/v must therefore satisfy the ordinary differential (Euler)
equations

d2K
onE, n=l,...,N (2.43a)<PnKn - an-^2~ + ±Qn = 0



with the boundary conditions

£(-D' £
t=0 neNjt

dKn
em(*to.(<)-e.m(0«»-if(0 = 0 j = l,...J

«n«n(0 = 0 * = 0,1, 71 = 1,...,AT
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(2.43b)

(2.43c)

Nonzero Curvedness and/or Shape Cost. Consider the case when x > 0 and/or

i > 0. Since the edge segment parametrizations are (by (2.9) implicitly) assumed to be

regular, it follows that An > 0, and hence that an > 0, n = \,...,N. From (2.43c) we
then see that

«n(0) = Kn(l) = 0 71=1,...,AT

whence

Vn(0) = V?n(l) = ^n = A+ iK(7n)>0 71 = 1,...,AT

This results in the following optimality conditions for the image segmentation

d2Kn
<Pn*n ~ Ctn

dl2
+ A£„ = 0 on E, n —\,...,N

D-D* E
i=0 n^Njt

Cm{t)Pn-eun(t)an-^(t) = 0 i=l,...,J

«n(0) = «„(1) = 0 71 = 1,..., N

(2.44a)

(2.44b)

(2.44c)

Unfortunately the system (2.44) does not seem to be of any use for finding an op

timal image segmentation. There are in fact several factors contributing to the hopelessness

of any such attempt. First of all, the "coefficients" an, (3n and <pn in (2.44a) and (2.44b)

depend on the values of the functionals A and K evaluated at the unknown edge segmen

tation parametrization 7„. Secondly, even if A(7„) and K(7n) were known, the ordinary

differential equation (2.44a) would be nonlinear due to the Kn(a)2-terms in (2.41). A third

complication is that the image cost density difference A£„ in (2.44a) is defined in terms of

the unknown parametrization 7„. Finally and most importantly Agn depends also on the

estimated image function z which in turn is defined on a different domain for each differ

ent image segmentation, and therefore depends on all the edge segment parametrizations

7i,..., 7iv in a very subtle and inconvenient manner.
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Figure 2.9: Free endpoints (in circles).

While the conditions (2.44) cannotbe solved directly for the optimaledges, they do

provide immediate information about some of the properties of the edges that will result if

the edge detection problem gets solved, regardless of how this is being done. The ordinary

differential equations (2.44a) relate the local shape of the optimal edge segments to the

local image cost density, and thereby, if yet in a vague sense, to the original image function

C- The boundary conditions (2.44b) restrict the possible ways in which the optimal edge

segments can meet at the junctions. The boundary conditions (2.44c) finally tell us that all

the optimal edge segments have zero curvature at their endpoints.

A disturbing but important consequence of (2.44b) is that the optimality condi

tions cannot be satisfied by any interconnection that allows single endpoint junctions, In

other words, edge segments with free endpoints as those highlighted in figure 2.9 are ruled

out. Indeed, for such a junction the double sum in (2.44b) contains only one term. Since the

unit vectors eTn and eun are orthogonal, and (3n > 0, this implies that (2.44b) is violated.

A possible "conclusion" would be that interconnections of this kind are always suboptimal,

but this goes against all intuition. In fact, if the variation (2.42) were used to compute

an appropriate edge segment adjustment for lowering the edge cost, the resulting update
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"inside" \ "outside"

g(y) > q(x)

Figure 2.10: Relationship between the local shape of an optimal edge segment 7n(E) and

the local image cost density g.

scheme would keep on shortening a straight edge segment with a free endpoint until it dis

appeared. Since examples can be contrived for which such a "solution" could impossibly

be optimal, we must conclude that our earlier simplifying assumptions regarding the "well-

behavedness" of the image cost with respect to perturbations of the image segmentation

are not valid for the interconnections in question. As the boundary of the continuity set is

far from smooth at a free endpoint of an image segment, this should not be too surprising.

Pure Existence and Arc Length Cost. If x = i = 0, the optimality conditions (2.43)
reduce to

AKn + A£n = 0 on E, 7i = l,...,N (2.45a)
l

E(-l)' E «m(0 = 0 ; = 1,...,J (2.45b)
<=0 neNjt

Although these equations are much simpler than (2.44), they share some of the same fun

damental complications discussed above, and can therefore not be solved directly either.

The meaning of the Euler equations (2.45a) are in this case easier to grasp; wher

ever an edge segment curves, the image cost density immediately "outside" the curve has

to exceed that on the immediate "inside", as shown in figure 2.10. In places where the
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optimal edges curve a lot, the estimated image function can thus be expected to fit the

original image function better and/or to be smoother on the "inside" of the curve than on

the "outside".

The geometric meaning of the boundary conditions (2.45b) is also transparent;

if all the edge segments are imagined to pull on their endpoints in the local tangential

direction with equal force, the edge segments, whose endpoints are forced to coincide at a

junction, must meet at such angles so that the junction remains stationary. The optimality

conditions thus in particular disallow edge segments with free endpoints, which once again

has to be blamed on the simplifying assumptions.

Control Vertex Conditions

Suppose that the edges are represented by splines as discussed in section 2.1, and

that the edge cost is of the form

N

£^(7) = 2 W+ ^H^nO,. . •V„,M„+2)]
n=l

where u > 0 and w > 0. From (2.28), (2.29) and (2.34) we then have that

N

n=l

Mn [ / v -V— V* \^ I m vn,m—1 .

3 3rl

Vnm - Vn,m+\

\Vnm - Vn,m+l|

- Z)Z)/ ±Qn((rn-r) mod Mn +a)bT(a)ba(<r)d(TvlArn_T)modMn+3R:
r=0 s—0

n€iVi

G7
/ Vn2 ~Vn3 Y

\||V„2-Vn3||/|V„2 ~ Vn3

2 m 3

" Z) iL £ / A2n(m ~r+0)br(<r)i>s(<r) d™Ztm_r+3R>
m=0r=0s-0J°

Afn-1

+ £ G7

m=3

(Vnm ^n,m—1

\\Vnm ~ Vn,m-l|
vnm ~ ^n,m+l

|Vnm —V„,m+i | )'
3 3 ri

- J^i, I AQn(™-r +<7)br(<T)bs(<T)d<jvTm_r+3Rx
r=05=0 J°

SVT

6vn2



, w( Vn,Mn ~Vn,Mn-l \
\\\VnMn-VnMn-l\\)

Af„+2 3 3-i

~ E J2 Yl Aen(m-r + <T)br(<T)bs(<T)d<TvTm_r+sRx
m-Mnr=m-Mn+l s=0J°

The control vertex interdependence imposed by the spline end conditions was eliminated

already in the derivations of (2.28) and (2.29). In order to eliminate the interdependence

due to the interconnection constraints we have to express the end vertices v„2, vn,Mn, n =

1,..., JV, of the open splines in terms of the junctions t»i,..., wj. This procedure leads to

the following expression for the total cost variation with respect to the control vertices.

N Mn-on J

Sv[SN(j) +Vc^z, C) +SCy(z)] = E E dLSvnm +E gfSwj (2.46)
n=l m=l+2on j=l

where

9nm —

j. / Vnm - Vn,m-1

\vnm - Vn,m-1
3 3

+ &x 2^ 2-f Vn,(m-r)modM„+»
r=0 a=0

=d , vnm —Vn,m+l \
\\Vnm- V„,m+l||/ ^

60

y A^n((m - r) mod M„ +a)br((r)ba{a) da (2.47a)
and

& =

E
V„2 - U„3

|V„2 - V„3

2 m 3

•K7

+R* E E 2 Vn,m-r+5 / A£n(m ~r+0r)^r(^)6a(a) fifcr
m=0 r=0 a=0 ^ °

Vn,Mn ~ Vn,A/n-l
+ E

M„+2 3 3

+ jR* E E Ev«.™-r+*
m=Afn r=m-Afn+l *=0

•tU

/ Agn(m-
Jo

r + <r)6r(a)6a(<r) <fo (2.47b)
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For optimality the expression in (2.46) must vanish for all possible perturbations of the

control vertices, which in turn means that all the coefficient vectors gnm and gj in (2.47)

must be equal to zero. These vectors are of course nothing but the (2x1 block) components

of the gradient of the total cost with respect to the independent control vertices. Setting

the expressions in (2.47a) equal to zero gives the optimality conditions for the intermediate

vertices, that is all those control vertices that are not end vertices of open splines. The

optimality conditions for the end vertices or equivalently for the junctions are similarly

obtained from (2.47b).

Even though the expressions in (2.47) are algebraic in the control vertices, and

therefore simpler to deal with than the differential Euler equations (2.43a), the problem with

the image cost density difference Agn remains. The optimal control vertices can therefore

not be found buy simply setting the total cost gradient to zero and solving the resulting

set of equations. In this case the optimality conditions are moreover a bit too complicated

to lend themselves to geometric interpretations. The reward for deriving the expression

(2.46) is that the total cost gradient, (which is actually more conveniently represented as

in (2.46) rather than by a vector requiring some artificial ordering of all the independent

control vertices,) can be used for updating the edges so as to reduce the total cost by means

of a finite dimensional gradient method. This topic will be treated in chapter 4.
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Chapter 3

Existence of Optimal Edges

One of the central questions, that arises from the discussion in the previous chapter,

is whether the total cost function attains its greatest lower bound for some discontinuity

set formed by the edges and some estimated image function. In this chapter we present

an affirmative answer to this question for a certain class of cost functions, by proving the

existence of an optimal discontinuity set and an optimal estimated image function, which

minimize the total cost.

3.1 Introduction

As in the previous chapter we assume, that we are given an original image function

£ : B —• R, and thereby implicitly, that the image domain B is a connected bounded open set

in R2. Again we represent the edges by a finite number of continuous curves, parametrized

by the functions 71,...,7at € C(E)2,* defined on some compact interval SCR, and define

the image segmentation

7 = [7r---7£]r€C(Sr (3.1)

the discontinuity set
N

V-i = (J 7»(S) C R2 (3.2)
n=l

and the corresponding continuity set

Oy± B\D^ (3.3)

*For any set QCRn, C(Q) = C°(n) = {/ :Q—R: / is continuous}.
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As before we consider a total cost function of the form

c(JV,7,2r)=cjv(7) + cc,W (3.4)

where cn and cc7 are the nonnegative real valued edge and image costfunctions associated

with ZXy and C7 respectively, and z : C7 —*• R is the estimated image function, often referred

to as just the image function. The difficulty of the existence proof does of course depend on

the specific forms of the functions c# and ccy as well as on the domain, in which we allow

(JV, 7, z) to lie.

For the edge cost given by the functions cjv : Sn C C(Y,)2N —*• R+, N € No, we

will assume that

1. For each N € No the function cpj is lower semicontinuous with respect to some

topology 7at, no weaker than the C(S)2A^-topology (induced by the norm defined

in (2.1) with / = 0 and K = 2N).

2. inf cjv(7) —• oo as N —• oo
m£SN

It is easy to check, that all the examples of edge cost functions in the previous chapter

satisfy this condition for some appropriate choice of the topologies 7/v, JV € No-

For the image cost ccy however, we will restrict our attention to the first example

in the previous chapter, that is we will assume that

cc^z) = f \(z- C)2 +HI V*T||2] dx z-.C^^R (3.5)
The main reason for this restriction is, that the cost functional given in (3.5) is well studied

in the mathematical literature. Another reason is, that it allows our techniques to handle

discontinuity sets, which are sufficiently nonsmooth to represent corners formed by inter

secting edges. Among the image cost functions discussed in the previous chapter, the one

given in (3.5) is also the most interesting from a practical point of view. It results, as least

with the methods wc have used, and which are described in chapter 4, in the simplest and

fastest software implementations. The same is very likely to be true for other methods and

hardware implementations as well.

In order to describe the domain of the total cost function correctly, we need to

review and build up notation for a few concepts from real and functional analysis.

Since we will only consider real image functions, we will only consider real vector

spaces. If A" is a vector space, we denote by X* its algebraic dual space, consisting of all
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linear functional on X. If A" and Y are topological vector spaces, we denote by £(A", Y) the

vector space of bounded linear maps from X to Y. The space £(A", R) is as usual referred

to as the dual space of A", and denoted by X'. If (A", | • \x) is a seminormed vector space,

and (y,|| • ||y) is a normed vector space, C(X,Y) is also a normed vector space with the

norm

\\f\\c(xx) = sup ||/(»)||y / € £(X, Y) (3.6)
|x|<l

In particular the vector space X' is normed with norm

\\f\\x, = sup |/(x)| feX' (3.7)
xex
\x\<l

For any set 5 in a space A", we denote by CS the complement X \ S of 5, and by

S and S° the closure and interior respectively of S in X. For a function / : ft C Rn —• R'

we then define the support of / to be the set

Z = nn/-i(C{o}) (3.8)

that is / is the closure in its domain of the set, where it does not vanish. (Some authors

define the support of a function slightly differently.) If U is an open set, and K C U is

compact, we write K CC U.

For open sets ft C Rn, we denote by C°°(ft) the space of real valued functions on

ft, which are continuously differentiate of all orders, and by Co°(ft) the subspace

CS°(ft) = {/ € C°°(ft): / CC ft} (3.9)

Functions in Co°(ft) we refer to as test functions (on ft), and linear functional on Co°(ft),

that is elements of Co°(ft)* we refer to as distributions. We will not find it necessary, to

consider the commonly used smaller space Z>(ft)' of Schwartz distributions.

The pointwise partial derivative of a function / : ft —• R with respect to the Arth

variable Xk at a point x 6 ft we denote by (d/dxk)f(x). If (d/dxk)f(x) exists a.e., this

defines a function (d/dxk)f on ft. Thus d/dxk is a linear operator on Co°(ft). We will

denote this operator by Dk- If ct is an (n-dimensional) multi-index, that is a = (ajk)jj=1 €

No, of "magnitude" |a| = £?=i ajt, we also define the |a|th order differential operator

n

Da = J] Dlk (3.10)
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If the product of two functions f,g : ft C Rn -> R is integrable (or nonnegative),

we define

</,*)n= f fgdx (3.11)
Jn

We recall, that (•, -)q defines an inner product and thereby a norm || • \\l2(Q) on tne space

i2(ft) of square integrable real valued functions on ft, and that Co°(ft) *s dense in /^(ft)

in the topology induced by this norm. We also recall, that £2(ft) is a Hilbert space. Hence

its dual £2(fty can be identified with £2^) itself via (3.11) by the Riesz representation

theorem. If ft C Rn is open, and / € X\oc(ft), the space of locally integrable real valued

functions on ft, we identify / with the distribution Co°(ft) —• R : y? •-• (/, ¥?)n, an<l define

DQf € Cg°(ft)- by

Vf(<p) = I" IIW</, Da<ph <p € C0°°(ft) (3.12)

It will often be the case, that there exists a function g € £i°c(ft), such that

Daf(<p) = (g, <p)a *<P € Cg°(ft) (3.13)

We will then identify DQf with g. Finally for open sets ft C Rn and / 6 No we define the

Sobolev space

ft'(ft) = {/ e Z2(ft): DQf e I2(ft), ol € IMS, \a\ < 1} (3.14)

On 7i*(ft) we also define the inner product

(f,9h,l= £ I DafD°gdx /,j €«'(«) (3.15)
o€NJ

and the corresponding norm

II/IIk>(0) =J(f,f)tu f €«'(«) (3-16)

The inner product spaces so defined have the following important property.

Theorem 3.1.1 The Sobolev space 7il(ft) is a separable Hilbert space.

Proof: The completeness of /^(ft) implies, that Hl(Q) is also complete and hence a Hilbert

space. For the proof that 7 '̂(ft) is separable we refer to [55, p47]. •
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It turns out, that the appropriate domain for the total cost function c(JV,7,z) is

given by

T>K = {(N,i,z): z e Hl{CJtf €KN€K,N€ N0} (3.17)

where Kn is compact in (SnjTn), N € N0. We will show that there exists a collection

K, = {iiOv}jveNo ofsuch compact sets ofimage segmentations, such that UaT€N0 ^n Is large
enough to describe the edges in most images, and that the total cost function c(JV,7,z)

attains its minimum on the resulting domain 2>£-

3.2 Outline of Existence Proof

The proof, that the total cost function attains its minimum on the domain V/c

for a sufficiently large collection K of sets of image segmentations is quite long. We have

therefore decomposed it into a number of parts, each of which is presented in a separate

section of this chapter. To help the reader in getting the overall picture, in this section we

present a brief outline of the whole proof section by section. This will hopefully motivate

each of these sections, and clarify their interrelationships.

We begin by proving, that for each open subset ft of the image domain B, there

exists a unique imagefunction zq € ft1(ft), which minimizes the image cost cq on ft. Thus

for each N 6 No we can define the optimal N-(edge-)segment image cost function

cN:C(S)2N^R7:7^cc7^) (3.18)

The main idea is then to select for each N € No a sufficiently large compact set Kn in

(Sn,Tn), and show, that &n\Kn is lower semicontinuous. It then follows in a straight

forward manner from the assumptions on the edge cost, that the total cost function attains

its minimum on T>£.

In section 3.3 we review some Hilbert space methods for elliptical problems, and

use these methods to show the existence of a unique optimal image function zn, which

minimizes the image cost cq(z) for any given open set ft C B, or equivalently for fixed

edges. Thus with each open set ft C B there is an associated optimal image cost cq(zq).

This result is important, because it allows us to define the optimal JV-segment image cost

cyv, N € N0, as a function of the image segmentation 7 € C(S)2/V. It is also of importance

in our later efforts to show, that this function cjv is lower semicontinuous.
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In section 3.4 we define the notion of a Lipschitz chart, and derive some of the

properties of such charts. These charts are homeomorphisms, which will later be used to

form atlases on neighborhoods of boundaries of subsets of the image domain.

In section 3.5 we define the Lipschitz property for domains in R2, and show, that

the "natural" atlas on a neighborhood of the boundary of a domain with this property, also

called a Lipschitz domain, consists of Lipschitz charts.

In section 3.6 we prove a number of simple results about restrictions and trivial

extensions of functions.

In section 3.7 we use the results from the sections 3.4 - 3.6 to construct an extension

operator ifo € £(W1(ft),'H1(R2)) for a Lipschitz domain ft, and find an explicit bound on

the norm of Pq in terms of an atlas of Lipschitz charts on a neighborhood of its boundary

5ft.

In section 3.8 we define the concept of admissible image segments, and present a

sufficient condition for subsets of the image domain to belong to this category. We then

find a lower bound for any upper bound of the optimal image costs for a certain class of

interior set approximations of an admissible image domain in terms of the optimal image

cost for the admissible image domain itself.

In section 3.9 we define, what we mean by an image segmentation being admissible.

Using the result from section 3.8 we then show, that the optimal JV-segment image cost cn

is lower semicontinuous on the set of admissible image segmentations.

In section 3.10 we use the edge cost assumptions given in the previous section and

the lower semicontinuity result from section 3.9 to prove the existence of optimal edges, or

equivalently of an optimal image segmentation with an optimal number of edge segments,

which minimizes the total cost function over the entire image domain. As mentioned earlier,

this minimization is done over a restricted domain V^, of image segmentations.

Section 3.10 essentially completes our existence proof, except that it does not

specify the domain V^. In section 3.11 we therefore present a nontrivial example of a

collection K of image segmentation domains, which we claim, is rich enough to describe

the edges in most images, and moreover results in a total cost function domain V/c, which

satisfies the conditions required by the existence proof in section 3.10.
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3.3 Optimal Images for Fixed Edges

In this section we consider the simplified problem of proving the existence of an

optimal image function, which minimizes the image cost for a given open subset of the

image domain. Given an image domain BCR2 and an original image function C€ L2(B)

we define for open sets ft C B, the image cost function

2

dx fi>0 (3.19)

Our task then is to prove, that argmin{cn(2): z G7iJ(ft)} exists. For this purpose we need

the concept of directional derivative of functionals, which supports a rigorous version of the

variational calculus ideas, we applied in the previous chapter.

Definition 3.3.1 Let X be a vector space. A functional f : X —»• R is said to be dif

ferentiate in the sense of Gateaux, or simply G-differentiable at x G A", if there exists a

functional f^(x) € X', such that

^/(*+*y)-/(*) =/(1)(,)(y) Vy6X

In this case f^\x) is called the G-differential of f at x.

Since £ 6 L2(B), it is now easy to establish the following fact.

Fact 3.3.2 The imagecost cq is G-differentiable everywhere in H1^), and its G-differential

is given by

c£\z): W^ft) ^R:y»2^ (zy +fi^DkzDky) dx -2(C|ft,y)« V* <E ^(ft)
Proof: Let z,y € ft*(ft). Then

cn(z + ty) - cq(z) _
t

=\JQ((z+iy-02 +»£ V>k{z +ty)]2 -(z-02-H JZ(Dkz)2) dx
=2jM *y +ji £ DkzDky -Cy) dx +tj\y2 +fi£(£jfcy)2
-^2JLy +̂ DkzDky\ dx-{(\Sl,y)Q
= cg)(2)(y) as*jO

dx
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with cjj given as above. Clearly c^ (z) is linear, and by the Schwarz inequality

i41}wwi <
< 2(1 v |i)||2r||Wi(n)||y||Hi(n) + 2||C|ft||i,2(n)IMlL2(n)

<2[(1 v/i)|M|w«(o) +||CI«llL2(n)] ||y||*i(o)

Thus t$\z) € ft1 (ft)'. •

Motivated by the form of the G-differential c^ , for open sets ft C B we now define
the bilinear form

an:Wl(n)2-fR:(*,y)i-»y (*y+ ai]£ 0fc*jD*y) da: (3.20)
and note that

cq(z) = an(z, *) - 2(C|ft, z)Q + ||CMl£2(n) V* €W^ft) (3.21)

and

%\z)(y) = 2an(2r, y) - 2<C|ft, y)n (3.22)

We then continue with a couple of definitions and facts concerning eft .

Definition 3.3.3 Let X be a vectorspace. A function f : X —*> X' is said to be monotone,

if

[/(*)-/(V)](*-V)>0 Vs,y€A

Fact 3.3.4 The G-differential c^ :ft1 (ft) -+ ft1 (ft)' of the image cost is monotone.

Proof: Let z,y 6 ft1(ft). Then by (3.22) and the bilinearity of an we have

[cq](z) - c(n](yj\ {z-y) =2aQ(z,z - y) - 2an(y,z - y) =2aQ{z -y,z-y)>0

Definition 3.3.5 Let X be a normed vector space. A function f : X —• X' is said to be

coercive, if
/(*)(*) „ „-j-r • oo as \\x\\x —> oo



Fact 3.3.6 The G-differential ctf :ft1 (ft)' is coercive.

Proof: For z € ^(ft) by (3.22) we have

c{n\z)(z) _
\\z\\nl(Q)

__ 2aQ(z,z)-2(<;\n,z)n

\\z\\hhq)
> 2(1 AM)p||wi(ii) - 2||C|ft||L2(fi) —• oo as \\z\\w(si) —♦ oo

70

We are now in the position to make use of the following theorem, of which a proof

can be found in [56, pl57].

Theorem 3.3.7 Let X be a separable Hilbert space, and let the functional f : X -* R be

G-differentiable on X. Assume its G-differential /M is monotone and coercive. Then

{xeX:f(y)>f(x) Vy€X} = {x€X:fM(x)(y) = 0 Vy € X}

From theorem 3.1.1 and the facts 3.3.2, 3.3.4 and 3.3.6 we see, that theorem 3.3.7 above

applies to the functional cq : ft1(ft) -»• R. Hence from (3.22) we conclude, that the set of

functions in ft1(ft), which minimize en is given by

{* € W^ft): c0(y) > cn(*) VyGW1(^)} =

= {z € Wl(ft): an(z, y) = (C|fi, y)n Vy € Wl(ft)} (3.23)

Our goal is now to show, that this set contains exactly one function zq € ft1 (ft).

In order to do so, we need a few more definitions and facts regarding an and £|ft.

Definition 3.3.8 Let X bea Hilbert space with norm \\-\\x- A bilinear form a : X2 -> R is

said to be A"-coercive, if there exists a constant c > 0, such that \a(x,x)\ > c\\x\\x Vx 6 X.
The constant c will then be referred to as the coercivity of the bilinear form a.

Fact 3.3.9 The bilinear form an : ft1(ft)2 -* R is H1 (ft)-coercive with coercivity 1A// and
continuous (with respect to the product topology).
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Proof: The coercivity claim follows immediately from the definition of an and defini

tion 3.3.8. To prove, that an is continuous, let z,y,z\,y\ € ft1(ft). Then by the bilinearity

of an we have

\an(zi,y{) - aa(z,y)\ <

< \a>n(z\ -z,yi- y)\ + |an(*i - *,y)| + |an(z,yi - y)|

<(ivaO

•(\\zi - «ll«i(o)l|yi - yllwi(n) +ll*i - *llw>(o)l|y|lw»(o)
+\\z\\n*(Q)\\vi-v\\nHQ))

—>0 as(zi,yi) —• (z,y)

Since £ G £2(8), for open sets ft C B we can define the functional

/c|n : W1 (A) -> R•z ~ (Clft, *>n (3.24)

Fact 3.3.10 The functional /c|n € Wl(fl)' and ||/C|n||wi(n)' ^ HCIIl2(B).

Proof: Clearly /^|n is linear. Moreover for z £ ft1 (ft) we have

l/cmtol < HCMlL2(fl)IMlL2(fi) < ||Cl|La(B)lkllw»(n)

With these preparations we are now ready to apply the following theorem, of which

a proof can be found in [56, p54].

Theorem 3.3.11 Let X be a Hilbert space with norm \\ • \\x, and let a : X2 -* R be an

X-coercive continuous bilinear form with coercivity c > 0. Then for each f € X' there

exists a unique x € X, such that a(x,y) = /(y) Vy € X. Furthermore

\Mx <
C

From theorem 3.1.1 and the facts 3.3.6 and 3.3.10 we see, that theorem 3.3.11 applies to the

bilinear form an and the functional /^n. Thus by (3.23) we have the following important
conclusion.
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Theorem 3.3.12 (Existence of a Unique Optimal Image Function) Let ( € L2(B)

be an original image function, and let ft C B be an open set. Furthermore let the image cost

function cq : ft1(ft) -»• R7 and the bilinear form an : ft1(ft)2 -• R be defined as in (3.19)
and (3.20) respectively. Then there exists a unique optimal image function zq € ft1(ft),

which minimizes cq. Moreover

aa(zQ,z) = (C|ft, *)0 V* <= H\Q)

and

,, „ IIC||La(B)
Mw*<n) * "T77"

For the cost cn(zn), referred to as the optimal image cost over ft, this also implies

Corollary 3.3.13 Let B,(,Q, and cq be as in theorem 3.3.12. Then the optimal image

cost over ft is given by

Proof: From theorem 3.3.12 we see that

an(zQ,zn) = (C|ft,*n)n

The corollary then follows from (3.21). •

Another important consequence of theorem 3.3.12 is, that it shows, that the optimal image

cost over the entire continuity set is a function of this set alone. We will make use of this

idea in section 3.9, where we consider the optimal image cost over the continuity set as a

function of the edge segments forming the corresponding discontinuity set.

3.4 Lipschitz Charts

Having demonstrated the existence of a unique optimal image function yielding

an optimal image cost for any given edges, the next obvious question is, whether we can

find some edges, that is a discontinuity set, which minimizes this optimal cost. To answer

that question we will have to be more specific about, which discontinuity sets are to be

considered. Basically we will require, that the components of the resulting continuity set

have boundaries, which are locally described by the graphs of Lipschitz continuous functions.
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This requirement, which does not even imply, that the components of the continuity set have

piecewise smooth boundaries, is yet sufficiently powerful to support the necessary analysis

of the image functions near these boundaries as well as of the boundaries themselves. The

Lipschitz chart is the basic technical tool in this context. In this section we present its

definition along with some related results, that are needed later.

Definition 3.4.1 We say, that a homeomorphism $ : Q C Rn —* U -*> Rn is a Lipschitz

chart, if both $ and its inverse $-1 are Lipschitz continuous and differentiable a.e. (almost

everywhere).

For any function / : V C Rn -*• W C R', whose first partial derivatives exist at

x 6 V, we denote by Jj(x) the Jacobian matrix of / at x. If J/(x) exists a.e., this defines

an equivalence class of matrix valued functions, which we denote by Jj. For any square

matrix we also define |J| = | det J\. We then have the following extension of the regular

change of variables formula for multiple integrals.

Proposition 3.4.2 Let $ : Q -• U be a Lipschitz chart. Then

f fdy= f(fo*)\J*\dx VfeLM)
JU JQ

and obviously by symmetry

f fdx= [(fo$-*)\J^\dy V/€li(Q)
JQ JU

This fact can be proven, by modifying the proof of [57, Theorem 8.26, pl85]. It differs from

that theorem, in that the differential of $ is allowed to not exist on a set of measure zero.

It differs from the "regular change of variables formula" seen in most books, in that $ is

not required to be a C1-difFeomorphism.

In order to use proposition 3.4.2 for our Lipschitz charts, we will need some bounds

on the Jacobians involved as well as expressions for the distributional derivatives of certain

Lipschitz continuous functions.

Proposition 3.4.3 Let $ : V C Rn -*• W C Rn he Lipschitz continuous with Lipschitz

constant L and differentiable a.e. Then

(i) ||Mx)\\ < L a.e. in V

(ii) |J*(ar)| < Ln a.e. in V
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Proof: For all x € V for which Jq(x) exists, we have

II*(*)ll2 =

= sup ||J*(x)f||2
llvll<t t

=isup||$(x +y)-$(a:) +o(||y||)||2
* llvll<<

=i sup [||ft(* +y) - $(x)||2 +2||ft(* +y) - ft(s)||o(||y||) +o(||y||)2]
* IMI<<L J

<±[L2t2 +2Lto(t) +o(t)2]
= L2 + 0(t) V* > 0

Hence (i) follows. Moreover

|/«(*)l2 =\M*)TMx)\ =f[\k [Mx)TMx)] <\\Mx)\\2n
jfe=i

from which (ii) follows. •

We say that a function / : ft C Rn -• R* is absolutely continuous on a line

A C Rn, if A Dft ^ 0, and / (that is each of its components) is absolutely continuous on

every closed interval in An ft. For such functions the distributional partial derivatives equal

their corresponding pointwise partial derivatives, according to the following theorem, which

can be found in [58, p61].

Theorem 3.4.4 let ft be an open set in Rn, and let f € Ii°c(ft). Assume that f is

absolutely continuous on almost all lines parallel to theXk-axis in Rn, and that its pointwise

partial derivative df/dxk, (which exists a.e.) € £P(ft), p > 0. Then its corresponding

distributional partial derivative Dkf is given by

D*f=lk ••••
Corollary 3.4.5 Let ft be a bounded open set in Rn, and assume, that the function f :

ft —• R* is Lipschitz continuous. Then Dkf= df/dxk a.e., k = 1,.. .n.

Proof: Being continuous, / € Ll°c(Q). Since / is Lipschitz continuous, it is absolutely

continuous along all lines (parallel to the coordinate axes) in Rn, and its pointwise partial

derivatives are bounded and exist a.e. •
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The conclusions of the previous discussion are important, because they lead up

to the following result, which basically asserts, that composition with a Lipschitz chart (or

its inverse) can be viewed as a bounded linear operator, whose norm depends only on the

Lipschitz constants of the Lipschitz chart and its inverse.

Proposition 3.4.6 Let $ : Q C Rn —• U C Rn be a Lipschitz chart, and let £$ and L$-i

be the Lipschitz constants of$ and $~l respectively. If f € Hl(U) is Lipschitz continuous,

then fo$eHl{Q) and

||/o *||W1(Q) < j(l +L%)Ll_x\\f\\ni(u)

Proof: Applying propositions 3.4.2 and 3.4.3 to $_1 we have

11/°•III(4) =j \f°*l2 dx =I l/lV*-1 «*» ^£*"' H/lli,(lO
Since / and $ are Lipschitz continuous, so is / o $. By corollary 3.4.5 we thus have

£ lPa(/°*)HL«) =
|a|=l

= /||V(/o$)rf<te
JQ

=[ \\J$(Vf°*)T\\2dx
JQ

<[ LUWftf**
JQ

=4/llv/r|iV*-.|d!/
J u

< LlL%.{ £ HCVIlMtf)

Hence

a€N£
|a|=l

ll/o«lfti(g,<(l +UW-.||/lfti(v,

3.5 Lipschitz Domains

The discussion in the previous section about Lipschitz charts was motivated by a

desired property of the components of the continuity set, namely that these have boundaries,
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which are locally described by the graphs of Lipschitz continuous functions. In this section

we give the precise definition of this desired property, which we naturally shall call the

Lipschitz property. We then show, how this property relates to the Lipschitz charts in the

previous section, and explain the reason for the usefulness of its concept.

In manipulating functions z € ?i1(ft) close to the boundary of an open set ft C R2,

we will frequently map a patch of ft onto a patch of a half-space in R2. For this purpose we

define the three sets R^ = R x R± and R2, = R x {0}, where as before R±= ±]0,oo[. We

then have the following.

Definition 3.5.1 We say, that a bounded open domain ft C R2 is a Lipschitz domain, jY

there exists a finite collection {Tm}Jf=1 of (rigid) coordinate transformations, a collection
{<f>m : Am =]am, bm[—> R}m=i of corresponding Lipschitz continuous functions and a number
d > 0, such that the maps

$m : Qm±&mx]-d,d[->Um±*m(Qm)

: x^Tm(xi,(j>m(xi) + X2) m=l,...,Af

satisfy the following conditions:

(i) *m(R3. n Qm) C ft m=l,...,M

(ii) $m(Ri n Qm) C CIT ro = l,...,M

M

(iii) (J *m(R20CiQm) = dn
m=l

Here as well as in the mathematical literature Lipschitz domains are also referred to as

domains having the Lipschitz property or domains of class C0,1.

The maps $i,.. .$a/ in the definition above are indeed Lipschitz charts. This fact

follows from a special caseof the following proposition, which will be useful in later sections

as well.

Proposition 3.5.2 Consider two Lipschitz continuous functions <f>,\ :]a,b[-+ R. Ifx(]a,b[)
CC R+, then the map

$ :]a,6[xR-*]a,6[xR:
Xi

*2

Xi

X(x\)x2 + <t>(xi)



has an inverse

-l .
$

Xi

x2

Xi

x(*i)

Moreover, $ and $-1 are differentiable a.e. and satisfy the local Lipschitz conditions

< J(MI)l|y-*ll V*,ye]a,6[xRll«(»)"

II*-

rt - *(*)ll 1
Hir)-*-1^)!! J
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where the "local Lipschitz constant" L : R+ -• R+ is an increasing function that can be

fully specified in terms ofany constant exceeding the Lipschitz constants of<f> and x as well

as the three constants supXie]ab[<j>(xi), supa.l€]a>6[x(^i) and l/infXl€]0t6[x(*i)-

Proof: It is easy to verify that *_1 as given aboveis a well-defined inverse of *. By straight

forward calculation we have

$(x + y) —*(x) =

2/1

[x(*i + yi) - x(*i)] *2 + x(*i + yi)y2 + <K*i + yi) - <K*i)
(3.25)

Since <f> and x are Lipschitz continuous, they are absolutely continuous, and hence differen

tiable a.e. It thus follows that

*(x + y) - *(s) -
1 0

X(1)(*i)*2 + <£(1)(*i) *(*i)

0

o(yi)x2 + [x(x\ -r yi) - x(*i)] y2 + o{yi)

= o(\\y\\)

for almost all x\ €]a, b[ Vx2 € R. Hence $ is differentiable a.e. Let L$ and Lx be the

Lipschitz constants of <f> and x respectively, and let Mx = supXl€ja6rx(^i)- From (3.25) we
then see that

||*(x + y)-*(a;)||2<

< lyil2 + (£XNM + Mx|y2| + i^|yi|)2

< [l +(Lx||s|| +Mx +L*)2] \\y\\2 \/x,x +y<=]a, 6[xR

which shows, that $ satisfies the local Lipschitz condition. Finally we note that if we

substitute <j>(x\) for -<f>(x\)/x(xi) and xC^i), for l/x(ii) then $_1 takes the original

y =
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form of *. Since the maps x\ *-*> —<f>(xi)/x(x\) and x\ i-> l/xfai) are Lipschitz contin

uous with Lipschitz constants (L<f>Mx + M^L^/m^ and ix/m2 respectively where Mj, =

suPxie]o,6[ l^(xi)l < °° an(J mx = 'lia^xi€]aj^x(xi) > 0»tne proposition then follows. •

Since any (rigid) coordinate transformation T : R2 —• R2 is an afhne isometry, and

hence a diffeomorphism of class C°°, composition with a coordinate transformation does

neither affect the properties of invertibility and differentiability, nor the values of Lipschitz

constants. It is therefore evident from proposition 3.5.2, that the maps *i,...,*Af in

definition 3.5.1 are Lipschitz charts according to definition 3.4.1. In particular this implies,

that any map * meeting the conditions of *i,...,*a/ in definition 3.5.1 is open. Since

ft is bounded, and #ft therefore compact, this means, that definition 3.5.1 is equivalent to

the condition, that for each x € #ft there exist a coordinate transformation Tx, a Lipschitz

continuous function <f>x : Ax =]ax, bx[—*• R and a number dx > 0, such that the map

*x :Qx = Arx] -dx,dx[-> R2 : y h-» Tx(yu<t>x(yi) + y2)

satisfies

(i) *x(R?.nQx)cn

(H) *x(Ri n Qx) c Cft

(Hi) x € *x(Ro n Qx) c aft

For verification of condition (iii) above we will find it useful to consider the notions

of (function) graphs and congruence. We therefore introduce the following notation. For

any function / : X -*• Y we denote by pj its graph {(x, f(x)): x 6 X} C X x Y. Two sets

U,V C Rn are said to be congruent (to each other), and we write U ^ V, if there exists a

rigid coordinate transformation T : Rn —• Rn, such that V = T(U). Using this notation the

second relation in condition (iii) can be written: ^ = TC c?ft.

For any set ft C Rn, we denote by C£°(Rn)|ft the space of functions in Cg°(Rn)

restricted to ft, that is Cg°(Rn)|ft = {/|ft : / 6 C^(Rn)}. For Sobolev spaces of functions

on Lipschitz domains we then have the following important result, of which a proof can be

found in [58, p67].

Theorem 3.5.3 Jfft C R2 is of class C0'1, then Cg°(R2)|ft is dense in ft'(ft) for all I € N0.
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This theorem allows us to approximate the distributions in Hl(Q) by the extremely well

behaved functions in Cq°(R2). Since these approximations are crucial in our analysis, as

well as for various regularity results in the literature, the concept of the Lipschitz property

defined earlier is well-motivated.

3.6 Restrictions and Trivial Extensions

Restrictions and extensions of functions are going to be important on several occa

sions in the following sections. In the treatment of the nonrectangularly shaped components

of the continuity set we will need to restrict functions to the domains and the ranges of the

Lipschitz charts, as well as to extend functions, which are merely defined on these sets to

the entire image domain B. The decomposition of the continuity set by the edges is one

such example. Another one occurs, when we consider perturbations of the edges. Then each

one of the components of the continuity set will be decomposed into two subcomponents,

one which "encloses" the perturbation, and one which is "untouched" by the perturbation.

In each of these cases it will further be necessary, that the restricted or extended function

remains in the same type of Sobolev space. More precisely, if W C V C Rn, we want to be

able to think of elements in Hl(W) as elements in Hl(V) and vice versa. (This is to say,

that we are interested in the embedding of Hl(W) in Til(V) and the projection of Hl(V) on

Hl(W).) In this section we collect the simpler results of this kind, which will be necessary

for the continuation. In the next section we will consider a more complicated case of a

nontrivial extension.

For any function / : ft C Rn -»> R' we define its trivial extension f, (also written

r). by

[ 0 if x6 Cft
The next proposition lists a number of simple useful facts about the supports, defined as in

section 3.3 of various functions.

Proposition 3.6.1 For any functions f,g:VCRl—*Rk,$:UCRn—*V and any set

W CRl the following are true:

0) /-1(C{o})c/ = yn/c/ = /-HC{o})cK

(H) f\wcWnlcWr\v



(iii) f\w = wr\f\wcwnfcwnv

(iv) f\w = vnwnf\w = vnf\wcwnfcwnv

(v)5c/ri£

(vi) fgQfng
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(vii) /o*C *-*(/)

Proof: Claim (i) follows straight from the definition of / together with the observation

that

/ = R'n/-i(C{0}) = /-HC{0})

For W CRl we then have

f\w = w n f-1 (C{0}) cwn/cwnv

Thus

f\w = wnf\w

and

/|w = y nw n /iw cynvrn/ = ^n/

Hence (ii), (iii) and (iv) follow. Moreover

/2 = /-'(C{o})n5-i(C{0})c/n£

SO

/5 = vrngcFn/np/n£

which proves (v) and (vi). Finally

/o* = *-l(/"1(C{o»)c *-»(/)

establishes (vii). •

For functions of compact support we also have the following useful characterizations.

Proposition 3.6.2 LetV C Rn be an open set, and consider a function f : V —• R'. Then

the following are equivalent:
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(i) 3 a set K, such that f-l(l{ti)) C K CC V

(ii) l = lccv

(iii) f\W_ CC V Vopen sets IfDV

(iv) /|W CC V Vopen sets W DV

Proof: Using the claims (i) and (iii) in proposition 3.6.1 we show, that (i) =>• (ii), (ii)

(iii) & (iv), (iii) =>> (i) and (iv) =*• (i): Suppose (i) is true. Since K is compact

/ = /-'(C{o})c/rcF

and thus

Since / is closed and j_ C K CC V, we therefore conclude, that (i) ^ (ii). Next suppose

(ii) is true. Then for W D V

f\w = w n /-l(C{o» = lccv

and thus

f\W = WC)f\W = fCC V

Hence (ii) ^ (iii) & (iv). Finally since f\V = /, (iii) =*> (i), and since f\V = /, (iv) =» (i).

It is worth while noticing, that if / CC V or / CC V, then (i) is satisfied, and hence / = /.

The next couple of results are useful, when we consider restrictions of functions in

Sobolev spaces.

Proposition 3.6.3 Let V and W be open sets in Rn, and let a € Ng. Iff, Daf € L^C(V),
then DQ(f\W) = (Daf)\W.

Proof: Let y> € Cg°(V n W). BY proposition 3.6.2 (ii) and (iv) (f\V_ CC V C\ W. Moreover

<p\V = <p on Vfl Wand <£|V = 0 on V\ <£jF DV\ W, with Vn W and V \ <£|F both open.
Thus £|F GCg°(y). If / and Daf are locally integrable

DQ(f\W)(<p) = | - l\W(f\W,Da<p)vnW =| - 1|H / fD°<pdx
JVnw



and

(D°f)\W (tp) =((D*f)\W,<p)vnW = / D°f<pdx
JVnW

are both well-defined. Furthermore by the properties of <p\V

|-l|lal / fDQ<pdx =
JVnW

=\-l\MjvfD°(<p\V)dx
= (Daf,<p\V)v

= / Daf<fi\Vdx
Jv

= I Daf<pdx
Jvnw
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We remark, that this proposition is not quite as obvious, as it might seem to be at first

sight. One can for example easily find examples of functions / 6 Ll°c(V), for which Daf is

not even a function, in which case (Daf)\W does not make much sense.

Proposition 3.6.3 is useful, because it allows us to replace the functional Da(f\W)

by the function (Daf)\W in computations. The proof of the next result is a good example

thereof.

Proposition 3.6.4 Let V and W be open sets in Rn, and let f € Hl(V). Then f\W €

Hl(Vn\V) and \\f\W\\mvnw) < ||/||wW.

Proof: Since / € Hl(V), it follows, that D°f € L2(V) C Ll?c(V) Va € Ng with |q| < /.

Hence by proposition 3.6.3

\\DQ(f\W)\\L2{VnW) = MITfWVWwvnw) < H^/IIl^) Va € NJ with |a| = 1

We end this section with a few results for (restrictions of) trivial extensions of

functions in Sobolev spaces. For the proof of the first of these results we need the following

theorem, which can be found in [56, p28].

Theorem 3.6.5 Let V be an open set in Rn. For every set K CC V there exists an open

neighborhood Wk 2 V of K and a function i>K G C^iV), such that iPk(V) C [0,1] and

1>k(Wk) = {1}.
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Theorem 3.6.6 Let V and W be open sets in Rn. Iffe Hl(V n W) and / CC V, then

f\W e Hl(W) and \\f\W\\nt{w) = \\f\\n<(vnwy

Proof: Let (p 6 Cq°(W), and let a € Ng with |a| < /. Since / and £ are compact,
/ n £ CC VnW. Thus by theorem 3.6.5 3 an open neighborhood U C V f)W oi f_C\<p
and a function rf> 6 Cg°(V n W), such that ijj(V C\W) C [0,1] and ij){U) = {1}. Thus

fDa(ptf; = fDa<p on U. Since / = 0on (V 0 W) \ / and <p = 0on the open set (Vniy)\ £,
we also have that fDa(p = 0 on (VC\W)\ ([rig) D(VCiW)\U. Hence fDa<p1> = /£°V
on V fl W, and we obtain

(D°(f\W),V)w\ =
=\jwlD°vdx
=1/ fDa<pdx

\JvnW

iVnW
fDa(ptl> dx

( fDa(<p1>)dx- Y f fDa-0ipDfiil)dx
Jvnw „ rr? M Jvnw

/?€NJn{0>
\P\<\°\

(3.26)

Since fD°~Py> = 0 on (V n W) \ U and ip = 1 on the open set U, the sum over ft vanishes.

Moreover by proposition 3.6.1 (v)

(<p\v VO_1(C{0}) = {v\Vil>)~ c$ = i>_ccvc\w

Hence by proposition 3.6.2 ip\V ij> CC V C\ W, and therefore <p\V $ € C^(V n W). From

(3.26) we then see that

(Da(f\W),<p)w\ =\(Daf,<p\V1>)vnw\ <\\Daf\\L2{vnW)\\<p\V4>\\L2{vnW)
Since DQ f e L2(V DW) and

IMV |̂|i,(vnnr) =JVnWM2M2dx *jw \*\2dx =IMIL(W)
this shows, that D*{f\W) € L2{W), and that \\DQ(f\W)\\L2{W) < ||Z>°7||L2(vmv) Va € Ng

with |a| < /. Hence f\W € W'(W) and ||/|W||w,(lv) < ||/||W<(vw). Since / = (f\W)\V,
the theorem then follows from proposition 3.6.4. •



84

Corollary 3.6.7 Let V C W be two open sets in Rn. If f € Hl{V) and / CC V, then

f\W € Hl(W) and \\f\W\\nl(w) = \\f\\mv).

Proof: By proposition 3.6.2 /= /CC V —V C\W. Hence the corollary follows from the

previous theorem. •

Proposition 3.6.8 Let V be the collection of all the components of an open set W C Rn,

and let fy € Wl(V), V € V, for some fixed I € N0. Assume that

£ H/HI*«<v) < oo (3.27)
vev

Define the function

Then f € Hl(W) and

f=EMw
vev

11/11won <,/E ll/HI*w
V^€V

Proof: Since W is open, so are its components. Thus Hl(V) is well-defined VV 6 V. Let

<p € Cg°(W). We claim, that ^|F € C?(V) VV € V. To see this, let V G V. Since v?|V = v>

on the open set V, we have Da(ip\V) = (£°V)|Vr Va € Ng, and thus <p\V 6 CtW. Let

U be an open covering o(Vf\(p. Then WU(V\ {F}) is an open covering of the compact

set (p. Hence 3 a finite collection WCWof open sets, such that W U (V \ {V}) is an open

covering of (p. Since J7 n V fl £ = 0 V£/ € V\ {V}, this implies, that W is a finite open

covering of V C\ <£, which shows, that V D(p is compact. Thus

(< |̂V)-1(C{o}) = v n <p~l(l{0}) cyn^ccv

By proposition 3.6.2 it then follows, that (p\V CC K, which proves the claim. Next we

observe, that fv\W € L2(W) VV € V, and therefore / <= L2(W) C Llfc(W). Hence

Daf e C^(W)m Va 6 Ng, and if |a| < /, by the Cauchy-Schwarz inequalities we have

\Dam\ =

dx

= £ f fvDa(f\V)dx
\V€VJV



<Y,\(D°fvMV)v\
V£V

< E \\Dafy\\L,iv)\MV\\^(v)
vev

<,/E ii^/viiL(v,,/E \Mni(v)
Vvev VV€V

yvev

From (3.27) it then follows, that Daf e L2(W) and

\\DQf\\l2iw) < £ \\Dafv\\l2(V) Va € NJ with |a| </
vev

Thus / € W'(W), and by changing order of summation we obtain

H/iittw = £ ii^/HLw <EE \\Dafv\\i2{v) = £ n/vi&w
a€NJ a€NJ VgV VeV
\a\<l \a\<l
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From the proof above and the propositions 3.6.3 and 3.6.4 it is easy to show, that the map

n:n'(W) - \(fv)vev €I] *HV) •E IIMI«W <°4 •f- (f\V)vsV
K vev vev )

is an isometric isomorphism with inverse

II"1 :(fv)vev ~ £ fv\V
vev

but this is more information, than we will need.

3.7 Extension Operators on Lipschitz Domains

In the previous section we examined some trivial extensions of functions in Hl(V)

to some larger domain W. We gave conditions, under which these extensions are functions

in Hl(W), and found bounds on the 7^(W)-norm of the extension in terms of the Hl(V)-
norm of the original function. However, it was always the case, that the function / GHl(V)

under consideration vanished on a neighborhood of dV\dW (in W). If this condition is not

satisfied, it is obvious, that a trivial extension in general does indeed not define a function

in 7il(W). Thus in the general case a more sophisticated extension method is needed.
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Definition 3.7.1 Let V C Rn be an open set. We say, that g € ?^(Rn) is an extension

off€ nl{V), ifg = f a.e. on V. We say, that an operator Pv € C(Hl{y),Hl(Rn)) is an

extension operator, if Pv(f) is an extension off V/ € 7il{V).

The existence of an extension operator Py of this kind for Lipschitz domains is

well known in the mathematical literature. See for example [55, 58, 56], where the extension

operators due to Calderon and NikoPskii for fixed domains of class C0'1 can be found. For

our purpose however, we will need to construct a whole collection V = {Pnh}he]o,H[ of such

extension operators for a corresponding collection {Q>h}he]o,H[ of domains, and in such a

way, that the operators in V are uniformly bounded. For this reason we will go through

the procedure of constructing an extension operator Pq € C(W}(Sl),Hl(R2)) for a bounded

open set fi C R2. This will give us an explicit upper bound on ||-Pn||£(fti(ft)t?{i(R2)), from
which the necessary uniform boundedness can be determined.

The first step is to consider the simplified case, when the domain is just the half-

space R+. A function on this domain can easily be extended to R2, by simply "reflecting"

it in the boundary R2,. Thus we define the maps

R± : R2 - R2 :

and then an operator on W1(R2h) by

x\

x2

X\

±X2
(3.28)

PrI(/)(x) = f(R±(x)) xeR2± (3.29)

Since R2, has zero measure in R2, it is immediately clear, that PR2 (/) € L2(R2), but more

than so, as the next two lemmas will show, PR2 is indeed an extension operator in the sense

of definition 3.7.1.

Lemma 3.7.2 C^(R2)\R\ '« dense in nl(R%).

A proof of this lemma can be found in [56, p46].

Lemma 3.7.3 Let the operator PR2 : Hl(R%) -> X2(R2) be defined as in (3.29). Then
Pr\ € £(Hl(Rl),Hl(R2)) with norm ||PR2 ||£(w,(R2)tW1(R2)) = y/2 and

PRl(f) =lUR-(L) V/€«l(Ri)

Furthermore if f is Lipschitz continuous with Lipschitz constant L, the same is true for
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Proof: For the proof, that PR2 6 £(7i1(R+)>^1(R2)) w<* refer to [56, p46]. Let / €

Cg°(R2)|R5.. Then for a € Ng we have

IPa^+(/)llL2(R2) =

= f WQ(foR.)\2dx-r I \D°(foR+)\2dx

=/ \D°tfdx+ I \D°f\Ux

=2H^"/lli,(^)
Hence ||PR2 (/)||hi(r2) =\/5||/Hwi(R2 \, and thus by lemma 3.7.2

II-Pr*. ll£(«i(R2),W»(R2)) = v2

Since R+ is the identity map, and i£_ is a homeomorphism equal to its inverse, by propo

sition 3.6.1 we further have that

= [R2+ nKfV-Wo}))] u[R! nJCV-'Mo}))]
= /-HC{0})uii:1(/->(C{0}))

= /ufl_(/) V/€H1(R+)

Finally if / GK1(R+) is Lipschitz continuous with Lipschitz constant L, we have

|Pn(/)(y)-PR2+(/)(a:)| =

= l/(yi,tel)-/(xi,N)l

<I>/|yi-*i|2 +||jli|-|ar2||2
<Ly/\yi -xi\2 +\y2 -x2\2
= L\\y-x\\ Vx,2/6R2

Next we consider a (bounded open) domain ftC5of class C0,1. Let A = {$m :

Qm -* Um}m-\ be an *tlas of Lipschitz charts satisfying the conditions (i)-(iii) in defini

tion 3.5.1, and let Uq be an open set with the property that ft \ Um=i Um Q Uq C ft. t

*This requirement is always satisfied for Uq = Q. The proof in appendix A, however, relies on the
possibility of choosing Uq ^ Q.
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Then U = {U}%[=o is an open covering of sets in R2 of the compact set ft. Hence there

exists a C°°-partition of unity for ft subordinate to U, that is a collection ^ = {^m}m=o °f

functions with the following properties:

(0 ^m€C§°(R2), -m = 0,...,M

(ii) ^m(R2)C[0,l], m = 0,...,M

(Hi) ihnCCUn, m = 0,...,M

M

OV) £ *•»(*) = 1 VX € ft
m=0

A proof of this fact can be found in for example [59, p63]. Using this C°°-partition

of unity together with theorem 3.5.3 the construction of an extension operator Pq 6

£(W1(ft),K1(R2)) can be reduced to theproblem ofextending functions ofthe form i})m\Q.z,
m = 0,...,M, where z € Cg°(R2)|ft C ft^ft) to R2 in such a way, that the extension be

longs to KJ(R2). For convenience we define the constant

M 1

M* = V V SUP ll*ff(*)ll (3-30)
m=0 /=0 *€R2

and note that M# < oo. We then have the following useful fact about the products i})m\Slz,

m = 0,...,M.

Fact 3.7.4 If ij> € $ and z <= C$°(R2)|ft, then V|ft z € Hl{Q) and ||^|ft 2||Wi(n) <
V5Af*lkll«i(n).

Proof: Since

and

ll^*(*|0*)lll,(0)-
= / \Dk$z +Tl>Dkz\2dx

Ja

<J 2M% (|*|2 +\Dkz\2) dx
=2A4 (11*111,(0) +1l^*Hl,(n,) *=1-2
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we have

\\m4hm <M% U\z\?um +22llOt*!!^)) <5Mj||*||?,,(n)

The case, when m = 0, is easy. As Vtol^ z vanishes on a neighborhood of 5ft, one

should expect the trivial extension to be good enough. This is, as we shall see next, indeed

the case. We therefore define the linear operator P<> on Hl{Q) by

Po(z) = ^0z zen\n) (3.31)

Fact 3.7.5 P0 6 CCH^n^H^R2)) and ||Po||£(wi(fi),Wi(R2)) < \/5M*.

Proof: Let z 6 C£°(R2)|ft. Then hY fact 3.7.4 above i>0\Q. z € H1^) and

\\4>o\n ^IIhho) ^ v^M«||«||«i(n) (3.32)

Furthermore

Wblft ^"HCfO}) C 0o HCW) C 0o CC #o C ft

so by proposition 3.6.2 V>o|ft* CC ft. Hence by corollary 3.6.7 P0(z) = (0o|ft *)~ € ft*(R2)

and

HJDbWllwi(iP) = ll^|ft*llKi(n) (3.33)

Since ft is of class C0,1, C§°(R2)|tt is dense in ft^ft) by theorem 3.5.3. The fact thus follows

by (3.32), (3.33) and the linearity of P0. •

It remains to consider m = 1,..., M. In this case a nontrivial extension and a bit

more work are required. For to = 1,..., M we therefore define the sets Qm+ = R^ n Qm
and Um+ = ft D Um and a linear operator Pm on H1(ft) by

Pm(z)= [PR2+ (Ummm+o^m\Qm+r\R2+)\Qmo^lY zeHl&) (3.34)

For convenience we also define the constant Lj, to be the maximum of the Lipschitz constants

of all the charts $i,..., $a/ and their inverses fcj"1,..., $^/. We then have the following
fact.
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Fact 3.7.6 For each m G{1,...,M} Pm € C^i^Ti^R2)) and

ll^m|U(7ii(n),Hi(R2)) < Vl0(l + L2A)L2AMv (3.35)

Proof: Throughout this proof we drop the subscript to. Let z € Co°(R2)|ft, and let

h = (4>z)\U+ (3.36)

Since l/+ C ft, /j = (0|ft z)|J7+. Hence from fact 3.7.4 and proposition 3.6.4 we see that

/i <= n^U*) and

ll/ill^^+j^V^^lkllwun) (3.37)

Since 0 € Cq°(R2) and z GC§°(R2)|ft, /i is also Lipschitz continuous. Let

/2 = /io*|«+ (3.38)

It then follows from proposition 3.4.6, that /2 € Hl(Q+) and

ll/2llw»(Q+) <>/l +^^ll/ill«i(y+) (3.39)

Next from proposition 3.6.1 (iv) we note that j±Q Jp- Since ifrCCU and $ is a homeo

morphism, from claim (vii) of the same proposition it thus follows that

h c *-H£) c $-l(±) = ^_1(0) CC $_1(^) = 0

Let

A = /2|R2+ (3.40)

From theorem 3.6.6 we then have that /3 € ^(R+J and

II/3||W1(RJ) = ll/2||*i(Q+) (3-41)

Since f\ and $ are Lipschitz continuous, so is /2 and hence /3. Moreover from proposi

tion 3.6.1 (iii) we see that fa C j\ C Q. Since fa is closed, this implies that fa CC Q.

By the symmetry of Q and the continuity of i2_, defined in (3.28), we then also have that

R-ih) CC R-(Q) = Q. Thus h UJl-(A) CC Q. Let

A = Jfc+(A) (3.42)

From lemma 3.7.3 it then follows, that f\ € Hl(R2) is Lipschitz continuous with UCCQ

and

IIAIIw><iP) <V^ll/sllw.^, (3.43)
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Next let

A = AW (3-44)

Then clearly fs is Lipschitz continuous and moreover by proposition 3.6.4 /s € ^(Q) and

IIAIIw>«) < IIAIIwt(iP) (3.45)

Then letting

A±A°*-1 (3.46)

we find by proposition 3.4.6, that f$ € Hl(U) and

IIAIIwi(V) <>/l +^^||AHwi(Q) (3.47)

Furthermore proposition 3.6.1 (iv) implies that fa C f±. Since f\CCQ and $ is continuous,

then by claim (vii) of the same proposition

/6_1(C{0}) c h c *(£) c ¥(77) = *(£) CC *(Q) = tf

Hence by proposition 3.6.2 faCCU. From corollary 3.6.7 it therefore follows, that /6 €

V}{R2) and

H/ellwuiP) = IIAII*»(tf) (3-48)

Finally by examining (3.36), (3.38), (3.40), (3.42), (3.44) and (3.46) we see that

A= [P*\ (K*W+ o*W+n *+) 10 o*"T =i>W (3.49)
Thus from (3.37), (3.39), (3.41), (3.43), (3.45), (3.47) and (3.48) we obtain

||P(z)||Wi(R2) <v/lOfl +LA)LAMi\\z\\mQ)

Since P is linear and ft is of class C0,1, the fact then follows by theorem 3.5.3. •

We conclude this section with the following important result.

Theorem 3.7.7 Let ft C R2 be a (bounded open) Lipschitz domain and let A = {$m :

Qm -*• #m}m=i De an a^as of Lipschitz charts satisfying the conditions (i)-(iii) in defini
tion 3.5.1. Let Uq C ft be an open set such that {tfm}£f_0 is an open covering ofH, and

let $ = {^m}m=0 *>e a C°°-partition of unity for ft subordinate to {Um}^o- Then there
exists an extension operator Pq € C(H1(Q),Hl(R2)) with norm

\\Po\\c(<HHn)W(W)) < (M + 1)\/10(1 + LA)LAM*
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where LA is the maximum of the Lipschitz constants for the charts in A and their inverses,

and
M 1

M* = \/ V SUP ii^fftoii
m=0 /=0 *€R2

Proof: Let Pq,...,Pm be defined as in (3.31) and (3.34) above, and define

M

Pu=^Pm (3.50)
m=0

From the facts 3.7.5 and 3.7.6 we know, that P0,...,PM € ^(^(ft),?*1^2)) with norms

\\Pm\\c(HHCi),HHR*)) < Vl6(l + L2A)L2AM* to =0,...,M

Hence Pn € /^(JfyW^R2)) and

Hi,nll£(Hi(n),Hi(iP)) < (M + l)\/l0(l + L2A)L2AM*

It remains to show that Pn(z) is an extension of z Vz € 7tJ(ft). First we observe, that by

(3.31)

P0{z)(x) = ^b(s)z(ar) Va; € ft (3.51)

Next for to = 1,..., M we once again drop the subscript to, and use the notation in the

proof of fact 3.7.6. Since /6 € Hl(U) and tj) vanishes outside jp C U, from (3.48) we see
that

P(z)(x) = f6(x) = 0 = i>(x)z{x) Vx € ft n U (3.52)

For x e ft n U = U+ on the contrary S"1^) € Q+ = R^. n Q. Thus using (3.36), (3.38),

(3.40), (3.42), (3.44), (3.46) and (3.48) we get

P(z)(x) =

= /«(*)

= /e(«)

= /.(t-'t*))

= /<|Q (*-«(*))

= /i(*-,(»))

=ity/sXt-'M)
= /3(*-,(*))
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= hK (•"'(«))

= A(#W+ (#-l(»)))

= MWH*)))

= A(«)

= &l)\U+ (x)

= ^r(z)2(x)

= ^(a?)*(*) V* 6 ft n tf (3.53)

From (3.51), (3.52) and (3.53) it is now clear that

Pm{z){x) = 4>m(x)z(x) Vx€ft to = 0,...,M

Hence by (3.50) and the property (iv) of the C°°-partition of unity * we have

M

Pq(z)(x) = £ Mx)z(x) = z(x) Var € ft
m=0

The important aspect to note about this theorem is, that the constant upper

bound on the norm of the extension operator Pq only depends on the upper bound of the

Lipschitz constants of the Lipschitz charts and their inverses, and on the C°°-partition of

unity $. This fact will, as we shall see in appendix A, make it possible to define a uniformly

bounded collection of extension operators for a whole corresponding collection of interior

set approximations of a given Lipschitz domain. The importance of such a collection of

extension operators will be illustrated in the next section.

3.8 Admissible Image Segments

The defining properties of the Lipschitz domains introduced in section 3.5 are, as

we have seen, appropriate for generating an extension operator. This is of course also the

case for other tasks, which can easily be reduced to a local problem, where the Lipschitz

chart serves as a convenient tool. Some proofs of regularity for example, fall into this cate

gory. However, for the analysis of cost sensitivity with respect to boundary perturbations,
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which we soon will be facing, the situation is different. Here the Hilbert space results from

section 3.3 will be adequate and lead to simple solutions for a class of domains characterized

by certain global properties. Exactly which the global properties of these domains, referred

to as admissible image segments, should be, are determined by the necessity, that the opti

mal image cost over such a domain is lower semicontinuous with respect to perturbations

of its boundary.

Consider an open subset G of an image domain B of an original image function

C € L2(B), and let F CG. If F is chosen, so that F CG, the distance between F and the

boundary dG of G is strictly positive, and hence F CG' for any set G' obtained from G by

a sufficiently small perturbation oidG. It then follows, that the optimal image cost cqi(zqi)

over G' is bounded below by the optimal image cost cp(zp) over the interior set F. Hence

the difference cq(zg) —cg'(zG') between the optimal image costs over G and G' is bounded

above by cq(zg) —cf(zf)- The desired lower semicontinuity then follows, provided that F

can be chosen, so that cp(zp) is an arbitrarily good approximation of cg(zq).

It turns out that, if the optimal image function zp over F is extendible by means

of an extension operator of the kind, that we discussed in the previous section, and F is

a "good" interior set approximation of G, that is the set G \ F is of small measure, then

cf(zf) is indeed a good approximation of cq(zg)- Moreover the smaller the norm of the

extension operator, and the smaller the measure of the difference set G\F, the better this

approximation will be. We would therefore like an admissible image segment to be defined

as follows:

Definition 3.8.1 Let B C R2 be an image domain. We say, that a (bounded) open set
G C B is an admissible image segment (of B), if there exists a collection Tq of open sets

with the following properties:

(i)FCGVF6 TG

(ii) 3 a uniformly bounded collection VjrQ = {PF 6 C(ri1(F),7i1(R2))}Fe^G ofextension
operators.

(iii) finfom(GxF) =0

An obvious question at this point is, whether such admissible image segments

exist, and if so, whether one can find sufficient (local) conditions on a given subset of B,
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which ensure, that this subset is an admissible image segment of B. The following theorem,

which we prove in appendix A, gives an answer to that question.

Theorem 3.8.2 All subsets of class C0,1 of an image domain B are admissible image

segments of B.

Although this theorem fails to be conclusive for domains with cusps, occurring for example

in images of cylinders with circular cross sections, such domains or a large subclass thereof,

we believe, are still likely to be admissible image segments. Besides that, it seems for most

purposes reasonable to assume, that domains with cusps can be sufficiently well approxi

mated by domains of class C0,1. Thus the class of admissible image segments seems to be

large enough, to be useful for modeling of the "true" segments in a real image.

We now continue with the cost sensitivity problem outlined above.

Lemma 3.8.3 (Key Approximation) Let ( € L2(B) be an original image function, and

let the image cost function en : ft1(ft) —• R+ be defined for open sets ft C B as in (3.19).

Furthermore let G be an admissible image segment of B, and let Tq oe a collection of open

sets with the properties (i) - (iii) in definition 3.8.1. Then

sup cF(zF) > cg(zg)
FerG

Proof: Let F € .Fg, and let E = G \ F. Then by corollary 3.3.13

cg(zg) - cF(zF) =

= IICI^IIL(E) " K\G**o)q +(C\F,*f)f
= (C\E, (C - zq)\E)b - (Cl^ zG\F - zF)F (3.54)

In order to bound this expression above, we let w = PF(zF)\G, where PF € Vj?G in defini

tion 3.8.1 (ii). By proposition 3.6.4 w € Hl(G) and

IMIw»(G) ^ \\pf\\c(W{F)W{W))\\zf\\'hHF)

Thus by theorem 3.3.12 and the uniform boundedness of VrG we have that

IMI*i(G) ^ M~ SUP II^f||£(«i(f),w>(r»)) ' t LA2i,B) <oo (3.55)
FeTG L /\ fl

where M, so defined, is independent of F (and hence of w). To simplify some later ex

pressions, we also note, that the constant A/ bounds a couple of other quantities as well.
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Indeed from proposition 3.6.4 it is clear, that the norm of any extension operator (€ V?G)

is bounded below by unity. Hence

K\G\\l,(G) < M (3.56)

and by theorem 3.3.12

W*g\\hHG) < M (3.57)

Now let the bilinear form an : H1(ft)2 -*• R be defined for open sets ft C B as in (3.20).

Since F C G is open, and zq € Hl(G), proposition 3.6.4 shows, that zq\F € Hl{F). Hence

by theorem 3.3.12

aF(w\F,zG\F) = aF(zF,zG\F) = (C|P, zG\F)F (3.58)

Likewise as w € 'H1(Gf) we have

aG(w, zG) = (C|G, w)G = (Cl^, zf)f + (C\E,v\E)E (3.59)

Next from proposition 3.6.3 we note that

Dk(f\F) = (Dkf)\F A: = 1,2 VfeH\G)

Thus

(*g(w, zg) - aF(w\F, zG\F) - J IwzG +V^ DkwDkzG ) dx (3.60)

From (3.58), (3.59) and (3.60) we now obtain

(C\F,zG\F - zF)F =(C\E,w\E)E- J (wzG +11^2 DkwDkzG\ dx (3.61)
Substituting (3.61) in (3.54), the Cauchy-Schwarz inequalities and the bounds (3.55) - (3.57)

then yield

cg(zg) - cF(zF) =

=(C\E, (C - zG - w)\E)E +Je(vzg +V>Y1 DkwDkzG) dx
<IICI^IIl2(e)II(C-^-^)I^IIl2(e)

+(iv,0 £ \\(D°w)\E\\L2{E)\\(D°zG)\E\\L2iE)
a€Ng
M<1



< \\C\E\\L2(E)\\C\G - ZG - WW^G)

+ (lVfl)|MI««(G) £ ||(^^g)I^||2L2(e)
r€Ng
cr|<l

<3M||C|^||l2(E) + (1V/x)M

\ or€Ng
\ |or|<l

53 11(^^)1^11^)
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Ni«i<i

Since C€ L2(B), zq € ft1^) an<* infFeTG m(G \ P) = 0, it then follows by the Dominated

Convergence Theorem, that

F€^G ^ZG^ "CF(ZF^ - °

The primary value of the lemma above is, that it captures the dependence of the

image cost functional on the boundary of its domain, without explicit reference to any of the

properties of this boundary or the optimal image function, which minimizes the image cost.

A more naive approach would have been, to use various regularity properties of the optimal

image function to translate small perturbations in the boundary of the domain into small

perturbations of the boundary conditions of the Euler equation associated with the image

cost functional over some interior set of the original domain. From this it might have been

possible to show, that the resulting perturbation of the solution of this Euler equation, that

is the optimal image function over the interior set, is small in some sense, and that this in

turns implies a small perturbation of the optimal cost over the whole domain. This approach

would unavoidably lead to a number of technicalities and possibly extra assumptions, which

the proof of the lemma above in a remarkable way avoids, by finding a more direct estimate

of the perturbation of the optimal image cost in terms only of the measure of the set, in

which the boundary perturbation is taking place. Most of the work in the earlier sections

of this chapter has been aimed at deriving results used in the proof of the lemma above,

or at finding conditions, under which this lemma can be applied. In addition the work in

the sections to come largely depends on this same lemma. It is therefore fair to say, that

lemma 3.8.3 is the heart of the entire proof of existence of optimal edges in the sense of the

total cost functions considered in this chapter.



98

3.9 Admissible Image Segmentations

Up till this point our analysis has yet not produced any results specifically about

the optimal image cost over the entire image domain, or to be more precise, over the continu

ity set. As a consequence we have not yet been able to make any claims about the existence

of an optimal continuity set or equivalently a collection of optimal edge segments specifying

such a set. For this development we need to return to our earlier idea of parametrizing the

space of continuity sets by image segmentations as in (3.1) - (3.3).

It was indicated already in section 3.3, that the existence of a unique optimal

image function zq 6 ft1(ft) for each open subset ft of the image domain allows us to

consider the optimal image cost over the whole continuity set as a function of the edge

segments forming the corresponding discontinuity set. In this section we make this claim

more precise by defining the optimal N-segment image cost, N € No, as a function of the

image segmentation. We then show, that this function is lower semicontinuous on a certain

class of image segmentations, which we will refer to as admissible image segmentations.

Following the discussion in section 3.1 we let S denote the compact interval [0,1].

By an N-segment image segmentation we then mean an R2N-valued function

where each one of the functions jn € C(E)2, n = 1,...,N parametrizes-a curve 7n(S),

representing and edge(-segment). The degenerate case, when N = 0, that is when no edges

are present, has been included only for later consistency in our notation. In this case it is of

course immaterial, what the function 7 is. If we define R° to be the trivial real vector space

{0}, it follows, that C(S)° consists of the single constant function 70 : E —> R° : a *-+ 0,

referred to as the trivial image segmentation. The discontinuity set D7of a given JV-segment

image segmentation 7 = [7^ •"fJj]T is now defined to be the union of the N edge segments
associated with 7, that is

Di = U 7n(£) (3.62)
n=l

(interpreted as usual as 0 if N = 0). For a given image domain B we also define the

corresponding continuity set C-, of 7 to be the "edge-free" portion of B, that is

C-f±B\Dy (3.63)

If N = 0, obviously C7 = B.
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Fact 3.9.1 The continuity set Cy is open in R2.

Proof: If N = 0, then C7 = B is the entire image domain, and hence open by definition.

If N 6 N, then 71,.. .,7// are continuous functions on the compact domain E. Thus D^ is

compact in R2, and since B is open, this implies, that C7 = B \ D^ is open. •

This trivial fact is important, because it allows us to consider image functions z € HX(C^)
without further restrictions on the image segmentation 7, a condition, that was used implic

itly in the discussion about the domain of the total cost function in section 3.1. Accordingly

we define the optimal N-segment image cost function

cN:C(X)2N-+R^n~cc^zCl) N£NQ (3.64)

where the continuity set C7 is defined as in (3.62) and (3.63) above, and the image cost cc7

is defined as in (3.19).

In spite of this desirable property of the continuity set, the results in the previous

section about admissible image segments suggest, that we restrict attention to a correspond

ing class of admissible image segmentations.

Definition 3.9.2 An image segmentation 7 = [7J™ •••7^]T € C(E)2yv, N € N0, of an
image domain B is said to be admissible, if each of the components of the continuity set

C<y = B \ \Jn=i 7n(E) of 7 is an admissible image segment of B.

Restricting the image segmentations to belong to this admissible class obviously rules out

edges with free endpoints (in the image domain), that is edges of the kind shown in figure 2.9.

This restriction is probably the most serious limitation of the existence proof presented in

this chapter. We argue however, that edges with free endpoints are rare, and that their

value for image segmentation purposes, one of the prime motivations for edge detection, is

limited, as they do not give rise to any new components of the continuity set.

Our next goal is now to show, that the optimal JV-segment image cost cat is lower

semicontinuous on the set of admissible image segmentations. For the proof of that we need

the following fact.

Proposition 3.9.3 Let £ € L2(B) be an original image function, and let the image cost

function cq be defined for open sets ft C B as in (3.19). Let C C B be an open set, and let

zeH\C). Then

cc(z) > cF(z\F) V open sets FCC



and

cc(z) = £ cG(z\G)
Geo

where Q is any disjoint open covering ofC consisting ofsubsets ofC.

Proof: Let F be an open subset of C. Then by proposition 3.6.3

Dk(z\F) = (Dkz)\F k=l,2

and by proposition 3.6.4 z\F € Hl(F). Hence cF(z\F) is well-defined, and

cc(z) =

•x (z - C)2 +fi^Dkzf dx

=cF(z\F)+ [
> cF(z\F)

*=i

(z-02 + /*£uW dx
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(3.65)

Since the members of Q are pairwise disjoint and open in R2, and hence at most countably

many, and since the integral kernel (z —Q2+ p.Y^k-\(Dkz)2 is positive, by the Monotone

Convergence Theorem and (3.65) we have that

cc(z) =£ /
GeGJQ

(*-o2+^£(/W
jk=i

dx = £ cG(*|G0
Geo

Theorem 3.9.4 Let £ € £2(P) he an original image function. Then the optimal N-

segment image cost c^ :C(E)2iV -* R+, N 6 N0, defined as in (3.64), is lower semicontin

uous on the set of admissible image segmentations of B.

Proof: Since C(E)° only contains the single trivial (admissible) image segmentation E —•

R°, corresponding to the empty discontinuity set, Co is trivially lower semicontinuous. Next

let 7 be an admissible JV-segment image segmentation of the image domain B, N € N, and

let Q be the collection of all the components of the continuity set C7 of 7. Clearly Q is

countable, and

£ IKIG|ll2(C) = IKIC,||J,(0,, = IKIILcb) < «



Thus given e > 0, 3 a finite collection {Gj}j=1 C Q, such that
t

2
£ c<?(0) = £ IKIGIIL(G) <| (3.66)

GeGo GeGo
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where £o = QN{^il/si- Since C?i,..., C?j are admissible image segments of B, 3 corre
sponding collections T\,...,Tj of open subsets of C?i,.. .,Gj respectively with the prop

erties (i) - (iii) listed in definition 3.8.1. Furthermore by lemma 3.8.3 we have that

sup cF(zF) > cGAzGj) j = 1,•••, J
Fefj

Thus we can pick Fj G T3, such that

cFj(zFj) >cGj(zGj) - 2j J=l,...,/ (3.67)

Now let

Then by property (i) of the collections T\,...,Tj and (3.63) above

_ J J
E=\jFjC[JGjCC^ = B\DyC ZD^

j=i j=i

Since the discontinuity set Z?7 of 7 is compact, and P is closed, this implies, that D-, and P

are separated by a Euclidean distance 6 > 0. Thus for anyimage segmentation .7'GC(E)2Ar,

such that ||7' —7||c(E)2JV <6/\/2, we have that, i?7/ C CP and hence, as P C B, we see
that, F C BC\ CDy = Cy. By proposition 3.6.4 it then follows, that zCyf\F GHl{F)
and zc ,\Fj G ^(P,), j = 1,...,J. Since G\,...,Gj and hence Pi,...,Pj are pairwise

disjoint, by (3.64), proposition 3.9.3, theorem 3.3.12 and (3.67) we then obtain

cn(i') =

>cF(zCi,\F)

J

> HCF,(^F,)
3=1

J

>Y,coMgj)-^ (3.68)
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Let
J

z±52*Gj\C-t

Then from proposition 3.6.8 we see, that z GHX(C7), and thus by the same token

J

*at(7) = cc,(zc,) < cCy(z) = £ cG(z\G) = £cGj(zGj) + £ cg(0) (3.69)
GeS i=l G€J7o

It now follows from (3.66), (3.68) and (3.69), that 6N(Y) > cN(f) - e, whenever H7' -

7llc(S)2^ < 6. m

The theorem above summarizes, what we need to know about the image cost

function. We are now ready to prove the existence of an optimal image segmentation,

which minimizes the total cost function.

3.10 Existence of Optimality

In this section we show, how the just demonstrated semicontinuity of the optimal

iV-segment image cost £pj together with the edge cost assumptions stated in the introduction

lead to the conclusion, that the total cost c{N,^,z) attains its minimum on a certain class of

domains. In particular this implies, that there exists some optimal image segmentation 7 G

C(E)2JV for some optimal N GNo, and thus optimal edges represented by thecorresponding
discontinuity set D7.

Typically a desirable edge cost function, such as those given in the examples of

the previous chapter, is not well-defined on the entire space C(E)2N. As mentioned in the

introduction of this chapter we therefore consider a collection of edge cost functions

cN : SN C C(E)2N - R^ JVGNo (3.70)

defined on some appropriate domains Sjsj, N GN0. In order to obtain a tractable descrip

tion of the discontinuity set, it is essential, that the number of edge segments is not allowed

to grow beyond all bounds. We therefore assume that

inf cnM —• 00 as AT —• 00 (3.71)
-r£SN v

As we noted earlier, the edge cost examples in the previous chapter all satisfy this condition.
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Naturally the domain of the total cost function is forced to depend on the domains

Sn, N G No, of the edge cost functions, and is therefore not just a simple Cartesian

product space. Given an original image function £ GL2(B), for any collection K, = {Kn Q

C(E)2N}jv€No» we therefore define the total cost function domain (subordinate to K) by

T>K = {(JV\7,*): z G1tl(CJ,j GKN,N GN0} (3.72)

where the continuity set C7 of 7 is defined (in terms of the corresponding discontinuity set

D^) as in (3.62) and (3.63), and the image cost function cc7 is defined as in (3.19). For the

same original image function C the total cost function is then defined by

c : Vs -• RT : (#.7. *)»- cNfr) + cc^(z) (3.73)

where

S = {5jv}^€No (3.74)

To be able to apply the semicontinuity result from the previous section, we need to

restrict the image segmentations to be admissible. Furthermore for each JV G No we need to

equip Sn with a topology no weaker than the inherited C(E)2^-topology, and sufficiently

strong, that the edge cost function cjv is lower semicontinuous. For this reason for N G No

we define An C C(Ti)2N to be the set of admissible N-segment image segmentations, and

Tn to be the topology on Sn generated by the function cn and the C(H)2N-topology. With

the optimal iV-segment image cost £n : C(E)2N, N GNo defined as in (3.64), from (3.73)

above we note that

c(N,y,zcJ = cjv(7)+ £n(7) 7 G SN (3.75)

We then have the following result asserting the existence of an optimal iV-segment image

segmentation for each N G No.

Fact 3.10.1 For each N G No the function cpj + cn\$n attains its minimum on every

nonempty T^-compact set K C Sn n An of image segmentations.

Proof: To prove that cn + cn\Sn attains its minimum on a nonempty 75v-compact set

K C Sn H An, it is sufficient to show, that the two functions cn and cn\Sn are lower

semicontinuous on Sn H An with respect to Tn. By definition of Tn, cn ' (Sn,Tn) -* R+

is continuous, and hence lower semicontinuous on Sn H An- From theorem 3.9.4 we know,

that £n is lower semicontinuous on An with respect to the C(E)27V-topology. Since Tn by
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definition is stronger than this topology, it follows, that c>/|Sjv : (Sn,Tn) —• R+ is lower

semicontinuous on Sn n An as well. •

The fact above suggests, that we consider a restriction of the total cost function c

to a subset V/c of Z>$. Thus we let

K = {K^NeNo (3.76)

where for each N G No, Kn Q Sn n i4jv is a 7/y-compact set of iV-segment image segmen

tations. From fact 3.10.1 we then see, that for each N G No, such that Kn -fi 0, there

exists an optimal iV-segment image segmentation 7^ GKn, which minimizes the function

cn\Kn + &n\Kn- We can therefore define the optimal total cost function c : No -*• [0,oo]

by

WJ^+W» "K»*° (3.77)
y 00 otherwise

For this function we have the following result, asserting the existence of an optimal number

of edge segments.

Fact 3.10.2 The function c attains its minimum. If Kn ^ 0 for some N G No, this

minimum is finite.

Proof: If Kn = 0 ViV G No, then c(N) = 00 ViV G No, in which case c trivially attains

its minimum. Suppose instead, that 3 N_ GN0, such that Kn_ f^ 0- Then c(N_) < 00. From

the nonnegativity of the optimal JV-segment image cost £n and the edge cost assumption

(3.71) we see that £(N) > cn(in) —• 00 as N —> 00. Hence 3 ~N G N0, such that

c(N) > c(K) ViV > W. This implies that

N

inf UN) = A W) < «U0 < 00
N6No N=0

Thus c attains its minimum for some N G {0,..., N}, and this minimum is finite.

For obvious reasons we refer to the number N, which minimizes the optimal total cost c,

as the optimal number of edge segments.

We are now finally in the position of reaching the main goal of this chapter, that is

we are ready to show, that the total cost function attains its minimum on every nonempty

domain T>£ of the kind introduced above.
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Theorem 3.10.3 Let £ G L2(B) be an original image function. Assume that the edge cost

functions cn ' Sn QC(E)2N -»• R^, N GN0, where E = [0,1], satisfy the condition

Define the continuity sets

inf cn(i) —• oo as N —• oo
ieSN

C, =BnU7.(2) 7=[7f ••-ii? €ft C(S)2 ^ eNo
n=l n=l

and consider the total cost function

2

JC-,
(^C)2 +mE(M:

fc=l

c/x

Vs = {(N,i,z): z GH\Ct),7 GSjv, JV GN0} /* > 0 (3.78)

Let X>x: = {(^,7,*) : z GW1(Cy),7 GAV,# GN0}, where for each JV GN0, KN C SV is

a compact set ofadmissible image segmentations with respect to the topology generated by

cn and the C(Z)2N-topology. IfV/c ^ 0, then c\Vjc attains its minimum. In other words,
there exists (N,*f,z), such that

c(N,y,z)>c(N,i,Z) V(tf,7,*)€0jc

Furthermore, given (N,j), then z is unique.

Proof: Assume that VK ^ 0, and let (N,f,z) G P/c- Then A> ^ 0. Thus by fact 3.10.2

3 N G No, which minimizes the optimal total cost function c defined in (3.77), and the

minimum is finite. Hence KN ^ 0 and

oo > c^(7N) + cN{lN) = c(N) > c(N) = cn(i) + CNtf) (3.79)

where cn and c# are the optimal N- and iV-segment image cost functions respectively

defined in (3.64), and 7^ GKn and 7 = 7^ G A'# are the image segmentations, which
minimize the functions cn\Kn + cn\Kn and c#|A'# + c#|A'# respectively according to

fact 3.10.1. Let zc^ G Ttl{C^) and z = zc*, G 7il(C7) be the unique optimal image

functions minimizing the image cost functions ccy and cc^ respectively defined in (3.19)

according to theorem 3.3.12. Then by (3.78)

c(N,-r,z) = cN(l) -r cc^(z) > c/V(7) + cc-,(2c7) = cN(7) + cN(l) (3.80)
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and by (3.75)

^(7) + ^(7) = c(iVr,7,^) (3.81)

The theorem now follows from the equations (3.79) - (3.81). •

The theorem above shows, that for any total cost function of the form considered in this

chapter, there exists an optimal image segmentation 7 consisting of an optimal number N

of edge segments and an optimal estimated image function z. Without the existence of

this optimal triplet (N,*f,z) the discontinuity set Z?7, that is the edges themselves, could

conceivably get wilder and wilder as the total cost c(N,,y,z) gets arbitrarily close to its

greatest lower bound. Theorem 3.10.3 is therefore most essential for the justification of

the global cost function minimization approach to edge detection and localization, that we

proposed in the previous chapter.

It should be pointed out, that we have not made any claims about the uniqueness

of the optimal edges. For some of the total cost functions considered in theorem 3.10.3,

it is in fact not too hard, although somewhat tedious, to find original image functions, for

which the optimal discontinuity set is not unique. Thus general claims about uniqueness

of the optimal edges cannot be made. Moreover, even in the event of a unique optimal

discontinuity set, {N,*f) is in general not unique, due to the general noninjectivity of the

map

|J AV^2R2:7~D7
NeN0

where 2R denotes the power set of R2. For example, reversing the parametrization of one

of the edge segments 71(E),..., 7jv(E), or permuting any two of them, does not alter the

resulting discontinuity set.

For edge detection purposes we are primarily interested in the optimal discontinu

ity set itself, so any nonuniqueness of (#,7) due to multiple parametrizations of this set is

an artifact, which can be neglected. The possibility of multiple optimal discontinuity sets

on the other hand is not an artifact, but means, that the complete solution of our edge

detection problem is indeed represented by the whole equivalence class of all the optimal

discontinuity sets. One could for example aim at finding the whole equivalence class, and

use another mechanism, such as higher level knowledge, to select the member of this class,

which is best in some sense. Alternatively one could adopt the point of view, that the

equivalence class of optimal discontinuity sets is sufficiently well represented by any of its
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members, and accept any one of these as the solution to the edge detection problem. In

practice the occurrence of multiple optimal discontinuity sets might be rare. On the other

hand the discontinuity sets corresponding to the different local minima of the total cost

might all be of value for later higher level processing steps, even if the optimal discontinuity

set is unique.

For image recovery purposes we are not only interested in the equivalence class of

optimal discontinuity sets, but also, and primarily, in the optimal estimated image function

zcy for each of the optimal continuity sets C7 = B \ .D7. Since by theorem 3.3.12 zc^ is

unique for a given C7, the class of optimal estimated image functions is exactly as large

as the equivalence class of optimal discontinuity sets. Again in practice it might be worth

while considering the optimal estimated image functions corresponding to different local

minima of the total cost.

The edge cost assumption (3.71) was used in the proof of theorem 3.10.3, to obtain

an upper bound N G No on the number of edge segments an optimal image segmentation

could have. This led us to the existence of an optimal number of edge segments N. If N

is large, this kind of reasoning is of little practical value. What really matters for practical

purposes however, is the existence of an optimal iV-segment image segmentation 7^ and

a corresponding optimal estimated image function zc N for each N G No, and this follows

from our proof regardless of the existence of N.

The critical reader has of course observed, that the collection fC of compact subsets

of admissible image segmentations in Sn, N G No yet is to be specified, and that the value

of theorem 3.10.3 strongly depends on how rich such a collection can be found. Since K

necessarily depends on S, which in turn depends on the expressions defining the edge cost,

we have in theorem 3.10.3 intentionally avoided being more specific about the selection of

K. This last step is the topic of the next section.

3.11 Image Segmentation Domains

In this final section we give an example of, how the collection K, of compact domains

of admissible image segmentations in theorem 3.10.3 can be chosen. By virtue of the

wide range of edge cost functions allowed by the hypotheses of that theorem, it is hard, if

not impossible, to specify meaningful such collections for all possible edge costs. Yet the

example, that we present in this section, serves at least a couple of different purposes. First
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of all we want to demonstrate the existence of at least one nontrivial collection /C, to which

theorem 3.10.3 can be applied. Secondly we want to show, that the collection K can be

specified by local conditions on the edge segments, suitable for computational verification.

3.11.1 Edge Cost Continuity

To be able to exhibit an example, which meets these goals, we will make the

additional assumption, that the edge cost is, what we shall call, Cl-continuous.

Definition 3.11.1 Let I GN. An edge cost function cn : Sn Q C(L)2N —• R+ is said to
be C'-continuous, if the following two conditions are satisfied:

(i) SN C C'(E)2"

(ii) cn is continuous with respect to the Cl(H)2N-topology.

If the edge cost is given by a collection {c^NeNo ofCl-continuous edge cost functions, we
say, that the edge cost is Cl-continuous.

As before we let E = [0,1]. For a set S C Cl(£)2N of iV-segment image segmen

tations, l,N G No, we define the l-range of S to be the set

RiMS) = (J II 7(0(S) CR2jV</+1> (3.82)
-yes i=0

Fact 3.11.2 Let N G N. If SN Q C^E)2*, R1§n(Sn) is open (in R2NV+V), and f :
Ri,n($n) —* R+ is a continuous function, then the edge cost function

cat :5* - FET :7»- / /(7(°V), •••,7(/V)) dcr
is Cl-continuous.

Proof: Let 7 GSn- Then 7W GC(L)2N, i = 0,...,l. Thus the compactness of E implies,

that Ri,n{{1(}) is compact. Since Ri,n{Sn) Is open in the locally compact space R2A^/+1),
Ri,n(Sn) is locally compact as well, [60, pl86]. Hence 3 a compact neighborhood K of

Ri,N({lf}) in Ri,n(Sn), [61, pl68]. Thus / is uniformly continuous on A', from which it

follows, that cn is continuous at 7. •

For an N-segment edge cost function defined as the integral over E of an algebraic expression

of the image segmentation and its / first derivatives, as those in the examples of chapter 2,
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it is natural to consider a domain Sn Q C'(E)2JV, whose /-range Ri,n(Sn) is open. The

fact above therefore shows, that the class of C'-continuous edge costs is quite large and a

very natural one to consider.

3.11.2 Compact Spaces of Admissible Image Segmentations

Given the C'-continuity assumption above our main objective is to construct a

collectionK = {A"jv}jv€N0 (depending on /), which satisfies the conditions in theorem 3.10.3,

and which is sufficiently rich, that the thereby induced collection of discontinuity sets, that

is {-D7}7gK-g£, contains a desirable edge detector output for every scene, that the original

image function could possibly represent. Exactly what this means, depends of course on,

what is considered to be desirable, and on in which environment the original image function

is sampled. We will not discuss these important issues here, but rather limit ourselves,

to pick Kn Q Cl(E)2N, N G No as large as possible with a reasonable number of local

constraints on the edge segments. To ensure, that the hypotheses of theorem 3.10.3 are

satisfied, we will assume, that the edge cost given by cn : Sn —*• R+» N G No is Cl-

continuous, and choose Kn, N G No as follows: For each N G No we first specify a

relatively largecompact subset ofC^E)2^. We then intersect this compact set with a closed

set in Cl(E)2N, such that the intersection is contained in the set An of ail admissible iV-

segment image segmentations. To form Kn, the so obtained intersection is then, if necessary,

intersected once more with a subset ofSn, which is closed in Cl(£)2N. It is clear, that Kn
so chosen is a compact possibly empty subset of Sn n An- Since So C Aq = C'(E)° = {70}

is trivially compact, we naturally let Kq = So. For N G N considerably more work is

required.

Compactness

In order to specify a large compact subset of C'(E)2^, we introduce a new family

of function spaces. For / G No, h G]0,1] and Q, C Rn we define Cl,h(Cl) to be the linear

subspace of C'(fi) consisting of those functions, whose derivatives of order < / are Holder

continuous with exponent h, that is

C'^(fl) = < ferUQ\. \l -„n \Daf(*) - Daf(y)\ . nn/ GC (ft): V SUP iu_w||fc < °°
or€NJ
\a\<l

(3.83)
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For compact sets fi C Rn we also define a norm on Cl,h(Q,) according to

ll/llcwpi) =ll/llc«(0) +V SUP lD*f\S ~Zm f€C/'"(ft) (3-84)a€Nn*,j,eft IP-VII
|or|<f **»

The important property of Cl,h(il) has to do with the notion of compact embed-

dings. We say, that the normed vector space X is embedded in the normed vector space Y,

and write X «-> Y, if X C Y and the identity map i : X —*• Y : x *-* x is continuous. If

moreover every bounded set in X is precompact, that is has compact closure, in Y, we say,

that X is compactly embedded in Y, and write X <-•<-»• Y.

Theorem 3.11.3 Let I G N0 and h G]0,1]. If ft C Rn is compact, then

C'«*(ft) «-m^> C'(fl)

A proof of this result can be found in [55, pll].

To make use of the embedding theorem above, for / G No, h G]0,1] and r > 0 we

define the set

KlXr = < far'.*m •ii t\\ v ,nn l/(0(<T)" /(0(r)l </ € C (E) : ||/||c<(E) V sup j-—-jj- <
t,t€E \° _ rl
°±T

r > (3.85)

Fact 3.11.4 let / GA'/,^, where / GN0, h G]0,1] and r > 0. Then ||/||ci.fc(E) ^ 2r-

Proof: If / = 0, it follows trivially from (3.85) that

o*m =ll/llco(E, +sup l/(1)(,^_ T{11)(T)I <
<t,t€E

2r

If / G N, for i = 1,...,/— 1 we have by the mean value theorem that

|/<0(ff) _ /(0(r)| < supl/C+^COIk ~r\< ||/|lc'(E)k - r\h V<r,r e E

Hence by (3.85)

II/IICNE) <||/lb(E) + ll/llc«(E) Vsup l/(0y~{l°(r)l <2r
<t,t€E \a ~ T\

\ °*T J
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Fact 3.11.5 let / GN0 and n GN. Then K£kfr is compact in C^E)" for all h G]0,1] and
r>0.

Proof: We recall, that the C/(E)n(-norm)-topology is identical to the product topology on

C'(E)n = n?=i C'(E), [60, pl21]. By the Tychonoff theorem it is therefore sufficient to

show, that K^h,r is compact in C(E). By fact 3.11.4 Ki^r is bounded in C/,/l(E). Since
E is compact, theorem 3.11.3 then implies, that Ki^r is precompact in C^E). Suppose

/ GCZ(E) \ Kixr- Then either 3 t G{0,...,/} and o GE, such that |/(,)(^)l > r, or 3
o,t GE, such that \/W(<r) - /(/)(r)l > r\a - T\h- In either case Cl(E) \ Kithtr contains an
open C*(E)-ball centered at /. Indeed, in the first case

flcpa (A l/V)! -') £C(=) ^*W
whereas in the second case

Thus Kith,r is closed, and hence compact in C'(E). •

We remark, that lim/40 limrio© A'2^r is exactly the mildly restricted linear subspace of
C*(E)2^, consisting ofthose image segmentations, whose /th derivative is Holder continuous.

Fact 3.11.5 therefore solves the problem of finding a large compact subset of (K2ffr) of
Cl(S)2N for / GNo and N GN. Obviously the "radius" r should be chosen large compared

with the dimensions of the image domain. For the Holder exponent on the other hand

any choice h G]0,1] makes sense. The smaller h > 0, the less restrictive the smoothness

constraint imposed by the Holder condition.

Admissibility

In order to specify a closed subset of admissible image segmentations in Kf%r,
we will impose a number of closed constraints on the image segmentations in C^E)2^ D
K2Nr. These can be classified as constraints of edge segment interconnection, regularity,
image boundary intersection and edge segment intersection. The interconnection constraint

ensures, that the curves forming the discontinuity set do not, at any point, have the same

component of the corresponding continuity set on both sides, or equivalently that none

of the components of the continuity set lies on both sides of any portion of its boundary.
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The regularity and various intersection constraints are necessary to avoid cusps, which are

too sharp to be modeled as the graph of a Lipschitz continuous function. For an image

segmentation 7 = frf •••7jv]T € Cl(Z)2N, l,N GN, of an image domain B =]a,b[x]c,d[
the constraints above can be described in terms of four small strictly positive constants

lj,6o > 0 and 8\,v G]0,1[ as follows:

Interconnection:

We will demand, that each endpoint of the edge segments 7n(E), n = 1,..., N, either

coincides with at least one other endpoint, or that it lies on the boundary dB of the

image domain. Endpoints, which are constrained to coincide, are said to form a node.

The endpoints, which are constrained to lie on the boundary dB, are also said to

form a node. This special node, referred to as the boundary node, will be denoted

hy MdB' The boundary node is of course allowed to be empty, that is the boundary

may be separated from all the edge segments. To distinguish constrained endpoint

coincidences from accidental ones, we associate with each ordered pair

(n,s)e EN ±{l,...,N}x {0,1}

the endpoint 7n(<s) of the edge segment 7n(E). Each node can then be identified with

a subset of the endpoint space En, and any given edge segment interconnection with a

directed graph I, referred to as the (edgesegment) interconnection graph, whosenodes

just represent these subsets of En, and whose branches 5(1),. ..,B(N) represent the

directed edge segments parametrized by 7„ : E -»> R2, n —1,...,JV. Figure 3.1

shows the simple correspondence between an 8-segment image segmentation (without

accidental endpoint coincidences) and its interconnection graph.

The nodes associated with any possible interconnection are obviously disjoint, and

their union equals the entire endpoint space En- The nodes therefore partition En

into equivalence classes of endpoints. The unique node, which contains the endpoint

(n,s), will be denoted by Af(n,s). As usual we write (71,5) ~ (p,t) to indicate, that

the endpoints (n,s) and (p, t) are equivalent, that is belong to the same node. If

(n,s) ~ (p,t) GEn^Msb and (n,s) ^ (p,t), we say, that (n,s) joins (p,t), and write

(n,5)M(p,i).

To describe which interconnection graphs correspond to admissible image segmenta

tions, we introduce the following notion of connectedness. Consider a subset J of the
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(a)

Figure 3.1: 8-segment image segmentation (a) and corresponding interconnection graph (b).

elements of an interconnection graph X, that is a subset of the branches and nodes of

J. A branch B and a node M of J are said to be directly connected iff there exists an

endpoint (n,s) G En, such that B = B(n) and Af = Af(n,s). This defines a relation

of "direct connectedness" on the elements of J. Two possibly identical elements of J"

are then said to be connected, iff they are equivalent with respect to the equivalence

relation generated by the relation of direct connectedness. We naturally refer to the

equivalence classes of the so connected elements of J as the connected components of

J. If we draw the nodes as circles, and the branches as curve segments between these

circles, not touching each other, these notions coincide with the intuitive concepts of

connectedness and connected components (of the drawing). Figure 3.2 shows a graph

X consisting of a single component and a subset of X with three components.

The interconnection constraint can now be expressed as follows:

(11) The image segmentation 7 satisfies constraints, which can be represented by a

directed graph X as described above.

(12) The number of connected components of X cannot be increased by the removal

of any single branch or node, except for the boundary node.

The exception of the boundary node is essential in order to allow for curves, such as

horizons, to cut through the image.
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(a) 0»)

Figure 3.2: Connected components of subset of directed graph, (a) Directed graph X with

one component, (b) Subset of X with three components.

Regularity:

(Rl) ||7„(<r)|| > u V<7GE n = l,...,JV

Image boundary intersection:

(Bl) For n = 1,.. .,N and Va € E at least one of the conditions (i) and (ii), and at

least one of the conditions (iii) and (iv) below are satisfied.

(i) o + ^o <7m(or) <b-60

(ii) |7n2WI<(l-^l)||7n(^)||

(iii) c + S0 < yn2(cr) <d-60

(iv) |7nlWI<(l-^l)||7nW||

(B2) ||7n(s) -x\\>S0 V* GdB V(n,s) G EN \ MdB

Stated in words the first constraint (Bl) just says, that any given point on the edge

segment 7n(E) is at least a certain distance away from dB, or has a tangent, whose

direction differs at least a certain amount from that of dB. The second constraint

(B2) inhibits, as we shall see later, completely the possibility of intersection of edge

segments right on the image boundary dB.
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Edge segment intersection:

To describe this constraint without a long list of separate cases, we first define a

number of subsets of E2. Thus for (n, s), (p,t) GEn we define the sets

Tnp(s,t)= i

{(a, t) G E2 : \a - r\ < v} if (n, s) = (p, t)

{{<r, t) GE2 : \<r - s\+ |r - t\ < v} if (n, s) M(p, t) (3.86)
0 otherwise

Obviously the sets Tnn(s,s), s = 0,1, n = 1,.. .,N are identical. This redundance

is kept for compact notation. Next for n,p G {1,.. >,N} we define the set

rnp = E2sUlJTnp(5,t) (3-87)
a=0 t=0

The edge segment intersection constraint can now be expressed as follows:

(El) ||7»(*)-7ptol|>4> V(<7,r)GTnp n,p £ {l,...,N}

(E2) For (n,s) M(p,t) e EN

(-ly+'UsfUt) <(1 - *ij||7nWIIIIvon

Similarly to the image boundary constraint (Bl) above, the constraint (El) basically

implies, that any two points on any of the edge segments 7n(E), n = l,...,N, are at

least a certain distance apart. In this case however, the constraint has to be relaxed

for points, which are forced to be close to each other, either by the interconnection

constraints, or by the fact, that they belong to the same edge segment with a small

difference between their respective parameter values a and r. These considerations

are taken care of by excluding the sets Ul=o Uf=o "£np(s, t) from the sets Tnp. For
example, these relaxations permit the continuation of an edge segment by a second

segment in almost any direction. They also permit the formation of a closed curve by

a single edge segment with a corner of almost any angle at the coinciding endpoints.

In particular smooth continuations and smooth closed curves are allowed.

Having completed the definitions of our interconnection, regularity and intersection

constraints, our next step is to show, that these constraints are closed, that is that the subset

of image segmentations in C^E)2", which satisfy these constraints, is closed in C'(E)2^.

In appendix B we prove the following:
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Fact 3.11.6 For any /, N G N the set of image segmentations in Cl(E)2N, which satisfy
the interconnection, regularity and intersection constraints (II), (12), (Rl), (Bl), (B2), (El)

and (E2) above is closed in C'(E)27V.

For l,N G N, h G]0,1], r,u,So > 0 and S\ G]0,1[ we define CitN{h,r,u),So,Si,v) to

be the setofimage segmentations in K2Nr, which satisfy the interconnection, regularity and
intersection constraints (II), (12), (Rl), (Bl), (B2), (El) and (E2) with the given constants

u), Sq, S\ and v for the image domain B =]a,6[x]c,d[. It follows immediately from the

facts 3.11.5 and 3.11.6, that Ci,N{h,r,u,So,6i,v) is compact in C^E)2^.
Our next step is to find conditions, under which the image segmentations in

CitN(h,i;v,$o,Gi,v) are admissible. In appendix B we prove the following:

Fact 3.11.7 let /, N G N, h G]0,1], r,u, So>0,Si,v G]0,1[ and assume that

v< (Jn±\
\2y/2rJ

where H = h if I = 1, and H = 1 otherwise. Then C/,jv(h,r,uj,So,Si, v) C An, that is the

image segmentations in C/,/sr(h, r,u, Sq, S\,v) are admissible.

3.11.3 Optimal Edge Results

With these preparations we are now ready to give explicit examples of collections

of image segmentation domains, which satisfy the hypotheses regarding K of theorem 3.10.3.

Theorem 3.11.8 Assume that the edge cost in theorem 3.10.3 is Cl-continuous for some

I G N. Let the constants h, r,u, So,S\ and v be as in fact 3.11.7, and for each N G N let Cn

be a closed subset ofSN- Then theorem 3.10.3 holds with

A'o = S0 (3.88a)

KN = CNnC/fN(/i,r,u;,tfo,£i,u) N €N (3.88b)

Proof: We have to show, that the image segmentation domains Kn, N £ No, satisfy the

hypotheses of theorem 3.10.3. Since C'(E)° = {70}, where 70 : E — R° is the unique

trivial image segmentation, is finite, A'o = So C C'(E)° is trivially compact in C'fE)0.

The continuity set C7o associated with 70 is by definition the entire image domain B,
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which being rectangular, is certainly of class C0,1. Hence by theorem 3.8.2 70, the only
possible image segmentation in A'o, is admissible. Thus A'o satisfies the hypotheses. Next

let N G N. From (3.88) and fact 3.11.7wesee, that Kn C Sn^ An- Since Cn is closed and

C/,jv(h, r,u,S0,Si, v)is compact in C'(E)2/V, it also follows, that Kn is compact in C'(E)2N.
Since the edge cost is C'-continuous and / > 0, the C'(E)2;v-topology is stronger than that

generated by the edge cost function cn and the C(E)2iV-topology. Thus Kn, N G N,

satisfy the hypotheses as well. •

Corollary 3.11.9 Assume that the edge cost in theorem 3.10.3 is Cl-continuous for some
I G N. Let the constants h,r,v,So,Si and v be as in fact 3.11.7. If C\tN(h,r,v,So,Si,v) C

Sn, ViV G N, then theorem 3.10.3 holds with

Kq = Sq

Kn = <w,jv(h,r,u;,£o,£i,v) N € N

Proof: Let Cn = CitN(h,r,w,So,Si,v), N G N, in theorem 3.11.8. •

Normally one would assign some edge cost co(7°) GR+ (most naturally 00(7°) = 0) to the

trivial image segmentation. This means, that So = {70} •£ 0, and hence

Vk:2{O}x{1°}xH1(B)^0

in theorem 3.10.3. Thus the case V/c = 0 need not be considered.

The corollary above can readily be applied to edge costs composed of any of the

general parametrized curve costs presented in chapter 2. In fact, for the edge cost examples

in (2.19) and (2.18) we have the following two corollaries:

Corollary 3.11.10 (Existence of C^-smooth Optimal Edges) Let the constants h,r,

cj,So,S\ and v be as in fact 3.11.7, and let ( G L2(B) and the domain Vjc be as in theo

rem 3.10.3 with

Kq = C1(S)° = {70}

Kn = CliN(h,r,u,So,Si,v) N G N

Ifv, A > 0 and v + \,\i > 0, then the total cost function

2>K-R+:(tfl7,*)->X> +AA(7»)]+ /
n=l JCi

2

jt=i

dx
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attains its minimum.

Proof: Let

SN ={7 €Cl(L)2N :||7„(<t)|| >| VcrGE, u=1,...,n} NGN0 (3.89)
and let

N

cN : SN - R+ :7 = [7? •••7*]T ~ £I" + AA(7n)] N GN0 (3.90)
n=l

Since 5b = {70} is a singleton, Co is trivially C1-continuous. Since Sn QCj(E)2N and its 1-

range Ri,n(Sn) is open in R4 VJV GN, it follows from fact 3.11.2, that cn, N GN, are C1-
continuous as well. Moreover from (3.89) we see, that Ci,N(h,r,v,&o,h,v) C Sn ViV G N.

Hence the hypotheses of corollary 3.11.9 are satisfied. Next from (3.89) and (3.90) we note

that

inf c;v(7)> Y) fi/ +A/ %d<r) >(u +A) (1 A%) N—> 00 as JV —• 00
l£sN n=\ \ JZ 2 J \2J

Since Sq ^ 0 implies, that Z>£ 7^ 0. the corollary therefore follows from theorem 3.10.3. •

Corollary 3.11.11 (Existence of C2-smooth Optimal Edges) Let the constants h, r,

lj,So,S\ and v be as in fact 3.11.7, and let £ G L2(B) and the domain Vjc be as in theo

rem 3.10.3 with

Kq = C2(E)° = {70}

KN = C2tN(h,r,u,S0,Si,v) N G N

Ifv, A, x, 1> 0 and v + A,// > 0, then the total cost function c : Vn —> R+ defined by

(*-oa+/«E(^*)s:(N,i,z) =j[>+AA(7n) +xK(7n) +iA(7n)K(7»)] +/
n=l JCi

attains its minimum.

2

da:

Jb=l

Proof: This proof is identical to that of corollary 3.11.10, with the exception that the sets

Ci,N(h,r,uj,So,Si,v) and Ri^n^n) are everywhere replaced by C2tN(h,r,v,So,Si,v) and

R2,n(Sn) respectively. •
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The four results above complete our discussion about the existence of the solution

to the global edge detection problem posed in the previous chapter. It is worth noticing,

that all these results remain valid if the image segmentation domains Kn, N G N, are

restricted by further constraints, as long as these constraints are closed with respect to the

Cl(£)2N-topology for the value of / under consideration. One could for example demand,

that the edge segments remain in the closure of the image domain, by adding the constraint,

that D7 C B, or equivalently that

1n{o)eB V<rGE n = l,...,JV V7 = [7lr- •.7£]r GKN W GN-

As another example, if (n, 5) M(p, t) G En, one could enforce a smooth continuation of the

edge segment 7n(E) by the segment 7p(E), by imposing the additional constraint

(-l)'7nW + (-l)'7P(t) = 0

on the members of Kn-

3.11.4 Image Segmentation Space Parameters

As far as the parameters h, r,u, Sq, S\,v and in some sense / are concerned, we have

been content with specifying ranges, which ensure, that the total cost function attains its

minimum on the resulting domain Vjc. For the implementation of an algorithm, honoring

the hypotheses in our existence proof, there is still an issue of selecting appropriate values

for these parameters. Since most of these parameters have simple geometric interpretations,

this should not cause any problem. The exceptions, if any, are the parameters v and possibly

h. For the choiceof h there seems to be little to go by. Any value in the range ]0,1] will work

theoretically, and one might as well pick the numerically most tractable value, which is likely

to be 1. For v the situation is different. If v is chosen too small compared with Sq, the edge

segment intersection constraint (El) will rule out useful edge segments far from intersecting

either themselves or each other, and in the extreme case the set Ci,N(h,T,u,So,S\,v) will

even be empty. To avoid these undesirable conditions, we would like to demand that

\a - t\ = v => ||7n(<r) - 7n(r)|| > Sq n = l,...,N (3.91)

We therefore first choose

/ S\U \ h

V< \2y/2r)
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where H = h if / = 1, and H = 1 otherwise, as suggested by fact 3.11.7. We then choose

So<T

Then (3.91) is satisfied. Indeed if 7 = [7f •••7^]r GCitN(h,r,u,So,Si,v) and |<r —r| =

v, <7, r G E, then

Il7n(*) - T«(r)H >

U")T
ll7n(<T)||

7n(<'):r7n(c)

hn(o) - 7»(r)]

L

uv

'r l|7nW||
Ja<tVt

' (ll7n(<T)||-||7n(<r)-7n(<r)||)rf<r
<tAt

> (u> - y/2rvH)v

>(u,-S-f)v

> Sq n = 1,...,N

The discussion above in part suggests the following selection rules for the constants

/, h, r, lj, So, S\ and v:

1. Select acceptable values for the minimum edge segment arc length AA > 0, the

maximum edge segment arc length Av > AA and the minimum intersection angle

9 G]0, 7t/2[, that is the minimum angle between tangents of edge and/or image bound

ary segments at points, where these segments intersect.

2. Let / be the smallest integer, such that the edge cost is C'-continuous.

3. Let h = 1, unless less smooth edge segments is a necessity.

4. Let u = AA.

5. Let r = Av.

6. Let #i == 1 — cos#.

_ / S\UJ \ «
7. Let v ~ I —j=- ) , where H = h if / = 1, and H = h otherwise.
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^ „ , . LJV
8. Let S0 = —.

The simple rules above do neither guarantee, that the edge segments can reside

anywhere in the image domain B =]a,6[x]c,d[, nor that they can acquire a certain accept

able maximum curvature. To satisfy these conditions, one would have to choose

r = Av V\a\ V|6| V\c\ V \d\ Vnvu2

where kv is the maximum curvature. However, any sensible choice of AA, Av and B would

imply that

AA<y/(b-a)2 +(d-c)2<Av
and that 0 G B, in which case Av > |a| V|6|V|c|V|d|, and the ratio of the resulting "minimum

radius of curvature" and the "radius of the image domain" is given by the expression

1 "2 A2— = — — < £ <ssr 1
KVX/(6-a)2 + (d-c)2 ry/(b-ay + (d-c)* ~ (6 - a)2 + (d - c)2

Thus under normal circumstances these considerations can safely be neglected.

If specific and independent bounds on location, length, curvature, etc. of the edge

segments are desired, the best approach would be to replace the compact set A2J^r in the
development of this section by another compact set, which precisely reflects these bounds.

Another consideration neglected by the rules above is, that the selection of Sq

imposes a minimum distance between nonintersecting edge segments.

However,
LJV u2 A*A

^0= -7T <
2 4\/2r 4V/2AV

Thus for any sensible choice of AA and Av one has #o <C AA, which should be satisfactory

for most purposes.
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An Algorithm for Global

Curve-Represented Edge

Detection

122

In the previous two chapters we have presented a paradigm for curve-represented

edge detection, and demonstrated the existence of a solution to the resulting optimization

problem. So far, however, little has been said about how to find such a solution. In this

chapter we present an algorithm intended for that purpose. We begin with a description

of the basic strategy. At this level the algorithm is essentially the same for all the total

costs that can be composed as weighted sums of the various cost functionals introduced

in section 2.2. We then concentrate on the specific cost functional that was used in our

computational experiments, and discuss our particular implementation of the algorithm in

some detail. Finally we present some of our experimental results.

Many of the concepts and notations that appear in this chapter were introduced

earlier, and will be used without repeating their definitions. Unless otherwise stated these

definitions can be found in chapter 2.

4.1 General Procedure

One of the main problems with the paradigm presented in chapter 2 is undoubt

edly that it is hard to find an image segmentation 7 and an estimated image function z
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that minimize the total cost cnc(7,z) = £aKt) + ^c^(z,Q + Scy(z) (for a given original

image function £ and a given edge segment interconnection of N edge segments). As we

recall from section 2.4, the optimality conditions for the edges cannot be used to obtain an

optimal image segmentation by simply solving a system of equations. However, given an

(JV-segment) image segmentation 7, represented either by general parametrized curves or

by splines, the continuity set C7 is easily evaluated. The optimal estimated image function

over C7 can then be found by solving the boundary value problem (2.39) (for z). This does

in turn make it possible to compute the image cost density differences Aqi,..., Aqn and

hence the total cost variation with respect to the image segmentation itself according to

(2.42) or with respect to its defining control vertices according to (2.46) and (2.47). An

appropriate adjustment of the image segmentation or the control vertices for lowering the

total cost can then be calculated. If the space of image segmentations is given a norm such

as (some version of) (2.1) or (2.5), this edge adjustment can furthermore be made in the

"direction" of steepest descent.

The discussion above suggests the general procedure displayed in figure 4.1 for

solving the global curve-represented edge detection problem posed in section 2.2. The

meaning of the general term "the edges", which appears thrice in the flow chart, depends

on how the actual edges are represented. If the actual edges are represented by general

parametrized curves, it refers to the image segmentation itself, which for example can be

represented by a table of sampled values of the edge segment parametrizations 71,.. . ,7jv-

The total cost variation with respect to "the edges" is in this case given by the functional in

(2.42), which can also be represented in tabular form. If on the other hand the actual edges

are represented by splines, "the edges" refer to the independent control vertices, that is the

intermediate vertices vnm, m = 1 + 2on,..., Mn - on, n = l,...,N, and the junctions

W\,...,wj associated with the image segmentation. The total cost variation with respect

to "the edges" is then given by (2.46) and (2.47). Finally, the convergence test in the flow

chart can refer to either the cost itself or to its variation with respect to the edges. In the

latter case it is necessary to have some measure of the magnitude of the variation, which

should converge to zero.

For implementation of the procedure in figure 4.1, splines offer a more tractable

edge representation than do general parametrized curves. Throughout the rest of this

chapter we will therefore only consider spline-represented edges. The total cost variation

with respect to the edges can in this case be identified with the total cost gradient with
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Figure 4.1: General procedure for solving the global curve-represented edge detection prob

lem.
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respect to the independent control vertices. The 2x1 block components gnm, m = 1 +

2on,..., Mn —on, n = 1,..., N, and g\,.. ,gj, of this gradient are as we recall given by

(2.47). The gradient is good for two purposes: Convergence (of the variation) can be tested

by comparing the Euclidean norm of the gradient with a fixed threshold ev > 0. If the space

of image segmentations is given the norm (2.5), the (negative) gradient also determines the

direction of steepest descent. For the global spline-represented edge detection problem the

general procedure in figure 4.1 thus naturally takes the form shown in figure 4.2. This

procedure is as we see a steepest descent scheme with fixed step size (3 > 0. It assumes that

the image segmentation configuration C and hence that the number of edge segments N as

well as the number of junctions J are given beforehand. The configuration can either be

determined in a preprocessing stage or updated in an outer loop.

4.2 Implementation

In order to verify that the algorithm in figure 4.2 operates as intended, it was

implemented in software for the total cost functional

N Mn-l .

CNcil, *) =t* £ £ IKm+1 - 1>„m|| +/ [{Z - C)2 +V.\\VZT\\2] dx (4.1)
n=l m=0 JCi

where the constants w,\i > 0. This cost functional, which is one of the simplest accounted

for by the paradigm presented in section 2.2, is obtained by choosing the edge cost (2.20)

with v = 0 and the stabilizer (2.8) specified by / = 1, fi0 = 0 and pi = fi > 0. With this

stabilizer the optimality condition for the estimated image function reduces to (2.40). The

image cost density introduced in section 2.3 is of course given by

e = (* - O2 +H|v*r||2 (4.2)

Since the number of edge segments n is fixed throughout the procedure, the presence cost

is constant. The (zero) value of the coefficient v does hence not affect the algorithm.

In this section we describe our implementation of the algorithm in some detail.

Although this particular global curve-represented edge detector is just one of many possible

implementations, the description illustrates the kinds of issues that any implementation has

to cope with. The description is also of interest for the understanding of our experimental

results as well as for anybody who wants to identify the weak points in order to improve on

the procedure.
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Figure 4.2: Fixed step size steepest descent scheme for solving the global spline-represented

edge detection problem.
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Figure 4.3: Pixel grid for global curve-represented edge detector.

The input to the global edge detector consists of an X\ x X2 array of real numbers

representing samples of an original image function ( : B = [0,X\] x [0,X2] -* Ron a squared

pixel grid X{ = ({1,...Xi} - §) x ({1,.. .X2} - \). This grid is shown in figure 4.3. Each
grid point x GX$, also referred to as a pixel site, can thus be thought of as the center of a

square pixel of unit width. The estimated image function z is naturally also represented by

an array of samples on the pixel grid X^. The edges are basically represented by a list of

control vertex sequences (vnm)^2, n = l,...,N, specifying N splines 71,...,7^. This
data structure, which is generated by the early processing stages of the globaledge detector,

will be discussed in more detail shortly.

The output data, which are available after each convergence test (in the flow chart

in figure 4.2), consist of

1. the edge cost, the image cost and the total cost.

2. a list of the control vertex sequences representing the edges.

3. an octal image (eight grey levels) displaying the edges, that is the spline curves and

possibly their defining control vertices.
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Figure 4.4: Neighboring pixel sites (filled circles) of center pixel site [x\ x2]T (empty

circle), (a) Eight-connected neighbors, (b) Four-connected neighbors.

4. a grey level image displaying the estimated image (function).

Before we continue the description of the global edge detector, we review two

common notions of connectedness among rectangular pixels on a rectangular pixel grid.

Two (distinct) rectangular pixels are said to be eight-connected if their boundaries have one

side or one corner in common. In the former case they are also said to be four-connected.

If two pixels are eight- or four-connected, we also say that their sites are eight- or four-

connected respectively. Two pixel sites x, y GX( are thus eight-connected iff ||x - yW^ = 1,

and four-connected iff ||a: - y\\i = 1. Figure 4.4 shows a pixel site x = [xi x2]T GX{ (in

the center) with its eight- and four-connected neighbors.

The organization of the rest of this section follows the block structure of the global

edge detector quite closely. Indeed, each of the four subsections corresponds to one of the

conceptual subroutines in the flow chart in figure 4.5. The convergence test and the edge

update subroutines are simple enough to be adequately described by the flow chart in

figure 4.2. They will therefore not be discussed any further.

4.2.1 The Initial Edge Finder

The goal of the initial edge finder is to find a starting point for the steepest

descent procedure, that is the loop that follows. Conceptually this involves the twofollowing

separate tasks:
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Initial Edge Finder

4>

Continuity Set Evaluation

Image Function Estimation

Cost Gradient Computation

Figure 4.5: Subroutine oriented flow chart of global curve-represented edge detector.
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1. Find an appropriate image segmentation configuration.

2. Select reasonable initial values for the independent control vertices, that is the inter

mediate vertices and the junctions.

In practice these two tasks are carried out in parallel as a data structure representing the

image segmentation is grown spline by spline. While the operation by which this data

structure is obtained has a significant influence on the output of the initial edge finder, it

is by no means central to the ultimate design of the global edge detector. The initial edge

finder is in its present status just one possible tool for getting the steepest descent procedure

started, and can as such almost certainly be improved. A fancier version of the global edge

detector might even include an additional outer loop in which the image segmentation

configuration is being updated. Since the initial edge finder is also quite intricate, we will

here only discuss the data structure that it generates as its output. A description of the

initial edge finder operation can be found in appendix C.

The data structure generated by the initial edge finder basically consists of a list

of (initial) independent control vertices and a list of splines representing the image seg

mentation configuration. A diagram of these lists and a typical example of their structural

relationships is shown in figure 4.6. The vertex list, which originally contains the initial

independent control vertices selected by the initial edge finder, will later repeatedly be ad

justed by the edge update routine inside the loop of the steepest descent procedure. It will

thus always contain the current values of the independent control vertices. The spline list

on the other hand is completely determined by the image segmentation configuration, and

therefore set once and for all by the initial edge finder.

Each spline in the spline list is represented by a sequence of pointers, each of

which points to one of the independent control vertices in the vertex list. The pointer

sequence thereby defines a control vertex sequence, which in turn specifies the spline. This

unnecessarily complicated representation of the splines themselves has the advantage of

simultaneously specifying the image segmentation configuration in a way that, as we later

shall see, also supports the computation of the (total) cost gradient. The splines can of

course be either closed or open. In the spline list in figure 4.6, for example, the first two

splines are open while the last spline is closed.

In addition to the pointer sequenceeach spline record in the spline list also contains

a reference to one of five procedures to be used by the cost gradient computation routine.
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Figure 4.6: Basic output data structure of the initial edge finder. (1 < ji < j2 < jz < J-)
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Conceptually this reference is equivalent to three binary, so called, type variables, o, (3 and

r, which indicate whether the spline is closed or open, and if open, whether its end vertices

are free or constrained to coincide with any other end vertex. The openness variable o,

which was introduced in section 2.1, takes the value 0 if the spline is closed, and the value 1

if the spline is open. The end condition variables (3 and r are only defined for open splines

and associated with the beginning end vertex Vo = v\ = v2 and the terminating end vertex

vm = VAf+i = i>a/+2 respectively. An end condition variable associated with a free end

vertex takes the value 0. One that is associated with a constrained end vertex takes the

value 1.

The type variables can indeed be derived from the pointer sequences in the spline

list, and are hence redundant as far as the representation of the image segmentation config

uration is concerned. However, the end condition variables for any given spline depend on

all the pointer sequences, so the derivation is far from immediate. Since the type variables

remain constant and are frequently referred to during the course of the steepest descent

procedure, they are therefore precomputed by the initial edge finder.

4.2.2 Continuity Set Evaluation

Before the boundary value problem (2.40) can be solved for the optimal estimated

image function (over the current continuity set), the domain, that is the continuity set C7

and its boundary #C7 have to be found. Since (2.40) must be solved numerically, this boils

down to determining which grid points (of the numerical method) that are inside C7, and

how #C7 affects the computational molecules centered at thosegrid points. The appropriate

way of representing C7 and #C7 thus depends on how the boundary value problem (2.40)

is discretized. The numerical method that we use, naturally uses the grid X( on which the

original image function £ is sampled. Its basic computational molecules are of the form

depicted in figure 4.7.

Representation

Since the discontinuity set Z>7 is a null set (in R2) and hence has empty interior, the

situation when the finite grid X{ intersects Z?7, is very rare, and can furthermore always be

circumvented by an arbitrarily small perturbation of Xc. We shall therefore simply assume

that X( C B \ Z?7 = C7. The representation ofC7 is thereby trivially provided by the grid
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*2 + l

*2 A
x2-i 9

X\ — 1 X\ X\ + 1

Figure 4.7: Basic computational molecule.

X{ alone.

The representation of #C7 can be explained in terms of (computational molecule)

bonds. In the context of the numerical method that we are using, a bond is simply a line

segment between a pixel site and one of its four-connected neighbors, (or would-be neighbors

if the pixel site in question is next to the boundary of the image domain.) Each pixel site

x G X( is thus attached to four bonds whose centers form the set x + 5 where

H= «€Z2:||f||, = l} (4.3)

Figure 4.8 shows the pixel sites in the grid X$ and their associated bonds. The bond centers

are marked with dashes. The square regions enclosed by the bonds (and the dashed box

joining the would-be pixel sites immediately outside the image domain) are referred to as

cells. The cells will as the pixels be labeled by their centers, which of course are points

in {0,...,X\} x {0,...,X2} C Nq. They are also subject to notions of eight- and four-

connectedness similar to those concerning the pixels.

A bond that intersects dCy, is said to be broken. A bond that is not broken is said

to be intact. The boundary #C7 is represented by a binary "continuity control function" w,

defined on the bond centers, that is w: [{0, ...,Xi} x ({1,...,A"2} - \)]U [({1,..., A'i} -
|) x {0,..., X2}] -* {0,1}. On the centers ofthe broken bonds w takes the value 0, and on
the centers of the intact bonds w takes the value 1.

Evaluation Procedure

From the intuitively obvious fact B.2.7we know that the boundary of the continuity

set is given by #C7 = dB U (B n £7). In order to determine the function w so that it
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Figure 4.8: Pixel sites (filled circles), would-be pixel sites (empty circles) and bonds (line

segments crossed by a dash at the center).
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represents this set, the array holding the values of w is first initialized so as to represent

dB. In other words, all the bonds intersecting dB are recorded broken by setting

w

w

and all the other (interior) bonds are recorded intact by setting

fo,x2-2) =w f*1'12" 2) =° X2~ 1',*#'*2

fan-2'°) =wf*i - 2yX2J =0 Xl =1^'">Xl

w

w

fxi,x2- «) =1 x\ = l,...,X\-l x2 = l,...,X2

(si - 2tX2J =1 *i =l»-..»«Xi x2 = l,...,X2-l
The second and much less trivial step is to record all the bonds intersecting BOD-,

as broken. This is done by sampling each function 7nm, m = 0,...,Mn —1, n = l,...,N,

in (2.4) at a number of points 0 = <rnm0 < 0nm\ < ••• < anmLnm = *> chosen so that any two

successive samples belongto two (distinct) four-connected cells. Denoting (the center of) the

cell that contains 7«m(anm/) by cnm/, / = 0,..., Lnm, we thus have ||cnm,/+i - cnm/||i = 1,

/ = 0,..., Lnm —1. The bonds between (four-connected) cells containingsuccessive samples

are then recorded broken, that is we set

w (Cnm/+2Cwm,/+1)=0 /=0,...,Znm-l m=0,...,Mn-l n=l,...,JV
Theevaluation ofthesamples 7„m(<7nm/) = E?=o Vn,m+rbr(<Jnmi), I = 0,..., Lnm,

m = 0,...,Mn —1, n = 1,.. .,N, normally requires access to a large number of sample

values of the basis functions 60,.. .,63. Since the evaluation moreover takes place inside the

steepest descent loop, it is therefore sped up by having the cubic polynomials 60,..., 63 in

(2.3) tabulated in a precomputed array.

4.2.3 Image Function Estimation

Discretization

The optimal estimated image function over a given continuity set is, as we recall

from section 2.4, given by the solution to the boundary value problem

(4.4a)

(4.4b)

z —fiAz = £ on C7
dz

den
on dC-f
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In practice this problem must of course be solved numerically, and for this purpose both the

Laplacian operator in (4.4a) and the normal differentiation operator in (4.4b) have to be

approximated by finite difference operators. Since the image function estimation is by far

the most computationally expensive subroutine of the global edge detector, it is important

to keep the expressions of the numerical method as simple as possible. For this reason the

simplest possible finite difference approximations were chosen.

For the Laplacian operator we use the five-point molecule approximation given by

Az(x) « £ zfa) - 4z(x) = £>*(*) - z(x)] (4.5)

where the displacement set E as before is defined by (4.3), and z$(x) is the actual or an

extrapolated value of z at the point x + £. If the bond between the pixel sites x and x + £

is intact, we obviously choose the actual value, that is

z^x) =z(x +0if w(x +!) =1 (4.6)
If on the contrary the bond between x and x + f is broken, then the two pixel sites x and

x + f are considered to be separated by the boundary #C7. In this case z$(x) must be

obtained by extrapolating z across #C7.

In the interest of simplicity we make the crude assumption that #C7 intersects the

bonds at right angles. At the intersection with a(broken) bond centered at x+ |, (£ GH,)
the normal derivative of z in the ^-direction can then be approximated according to

dz t \ ( V^- * **(*) - *(*)

When applied to the Neumann condition (4.4b), this approximation yields the discrete

boundary conditions

zfa) =z(x) if w(x +IJ =0
which combined with (4.6) leads us to the definition

*«(*) =*(* +"(* +!)*) *eXc £€5 (4.7)
Substituting (4.7) in (4.5) we now obtain

Az(x) »J2 z(* +w(x +f) «) "**(*) =Ew(* +f) M* +o- *(*)]
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The two equivalent discrete approximations of the boundary value problem (4.4) that these

expressions suggest are finally given by

(1 +4fi)z(x) -p£ 2(* +w(* +f) *) =COO ^X( (4.8)
and

[1 +u(x)p]z(x) - \i Y, w(x +|) z(x +0=C(0 x€X< (4.9)
where

z(x) =
1 + 4^

w(0 =Hw(x +2)
The linear system (4.9) can easily be rewritten on the matrix form

Az = ( (4.10)

Indeed, let

Cm.) = COO xex^ (4.iia)

Zk(x) = *(0 i6l( (4.11b)

where

*0O =Ui --JX2 +X2 +-
Then Ais readily seen to be a symmetric matrix with diagonal elements Ak(x\ux\ = 1+
u(x)fi, x 6 X(. All the other nonzero elements areequal to -pt, and the sumof the elements

in each row equals 1. The symmetric matrix A is thus both real and diagonally dominant.

By Gersgorin's circle theorem [62, p371] it is therefore also strictly positive definite.

Estimation Procedure

The algorithm that we use for solving the linear system (4.10), was obtained by
rewriting (4.8) as

and then interpreting this equation as a component bycomponent update law for the vector

z. This update law, which is extremely simple to implement on a computer, is equivalent

x exc
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to the following (locally underrelaxed) iteration scheme:

z(i+1\x) =

- l ,4 f/*«; fa?i - -,x2J 2(,+1)(*i - l,x2) +pw (zi,z2 - -J ar(,+1)(a?i,ar2 - 1)
+/jw fxi +2^2) ^(,)(xi +l,ar2) +/iii; (xi,s2 +2) ^(«i,*2 +l)

+p[4 - «(*)]*«(*) +C(o) (4.12)
The central question at this point is of course whether the algorithm above con

verges to a solution of (4.10). Fortunately the answer is affirmative. In order to demonstrate

this fact we make use of the following theorem from [63, p355].

Theorem 4.2.1 Suppose 77 GR^ and F - G € RKxK is nonsingular. If F is nonsingular

and the spectral radius of F~lG is strictly less than unity, then the sequence (y^)teN0

defined by Fy(t+l^ = GyW + 77 converges to (F —G)~l,q for any starting vector y(°) £ RK.

Defining the vectors f^ € R*1*2, i € No, in analogy with (4.11b) we then have the

following.

Theorem 4.2.2 The sequence (^)ieNo mR*1*2 defined by the algorithm (4.12) converges
to the solution of (4.10) for any starting vector 5^°) € RXlX*.

Proof: Collecting all the terms with iteration index i + 1 on the left hand side and all the

other terms on the right hand side, the iteration scheme (4.12) takes the form

(/ +L)z<i+V =(D +U)& +y^- (4.13)
where J, L,D,U £ r*i*2xXi*2?1 \s strictly lower triangular, U is strictly upper triangular,

I is the identity matrix, and D is diagonal with the diagonal entries

4 - u(x)
Dk(x)M*) = T+4/TM " * C

It moreover follows that

I+L-D-U=-£—
1 + 4/z

and hence by the symmetry of A that U = —LT. Let F = 1 + L and G = D + U = D —LT.

Then F and F —G = A/(I -f 4/z) are both nonsingular. Let Abe an eigenvalue of F~XG.

Then 3y € C*1*2 such that F~xGy = y\ and yHy = 1, from which it follows that

(1 + yHLy)X = yHFyX = yHGy = yHDy - yHLTy



139

Denoting the real and imaginary parts of yHLy by aand 6respectively and letting d= yHDy
we thus have that

(l + a + ib)\ = d-a + ib (4.14)

Since A is strictly positive definite, we note that

0 < yH(I+L -D + LT)y = 1+ 2a - d

whence 1 + a > d —a. Since the positive semidefiniteness of D implies that d > 0, it is also

true that a + 1 > a —d. Hence 1 + a > \d—a\ > 0. From (4.14) we then see that

2 (d-a)» + fc»
|A| -(l +a)2 +&2<1

which proves that the spectral radius of F~~1G is strictly less than 1. From (4.13) and
theorem 4.2.1 it now follows that

lim & =(F- G)-1—^-- =A-1?
«-oo v J 1+ 4// s

Although the choice ofstarting vector 5*°) does not have any influence on whether
and to which limit the iteration (4.12) converges, it does of course affect the number of

iterations that are required in order to reacha certain convergence criterion. The closer 5^°)

is to the solution j4-1C of (4.10) the faster convergence can in general be expected. It is
therefore desirable to choose some prior estimate ofA'1(as starting vector. The first time

the image function is estimated, the original image function vector Cis without much doubt

the best such prior estimate that is available without further processing. In the first cycle
of the steepest descent loop we therefore choose z^ = <f. If the updates of the edges are
sufficiently small the difference between the image functions estimated during successive
steepest descent loop cycles can be expected to be fairly small as well. The estimated

image function from the previous cycle is then likely to be a better prior estimate than the

original image function. Beginning from the second cycle we accordingly choose £*°) to be

the solution of (4.10) from the previous cycle in the loop. This choice furthermore has the

convenient consequence that i<°) is already stored in the estimated image function array
since the previous cycle. The iteration (4.12) can thus begin without prior loading of z<0\

While the estimated image functions from successive steepest descent loop cycles
most likely differ very little at most pixel sites, their values are almost completely unrelated
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at the relatively few pixel sites that happen to be on different sides of the same edge during

the two cycles, due to the edge update that takes place in between. With the choice of

starting vector described above one should therefore expect the most significant updates of

z(%\ (as far as both magnitude and importance for the ultimate convergence areconcerned,)
to be concentrated to the relatively few pixel sites close to the edges. In order to assure

adequate convergence of(z^)i at these pixel sites, theconvergence criterion (ofthe iteration
(4.12)) must be sensitive to discrepancies over small subregions of the pixel grid X^. The

termination condition for (4.12) is therefore of the form

||#H) _ ^ < £z

where ez > 0 is a constant threshold.

4.2.4 Cost Gradient Computation

Cost Gradient Components

After the image function has been estimated, as described above, the global edge

detector computes (a slightly modified version of) the gradient of the total cost (4.1) with

respect to the independent control vertices in the vertex list. The main purpose for doing

this is to determine an appropriate edge update for reducing the total cost. If the (total)

cost gradient components are computed according to (4.10), and the total cost functional

satisfies the simplifying assumptions underlying the identity (2.26), then the sequence of

such updates generated throughout the steepest descent procedure will finally yield an image

segmentation at which the cost gradient vanishes. That is, the control vertex (optimality)

conditions in section 2.4 will be attained. This is basically what we want. However, the

control vertex conditions can in similarity with the other edge conditions in the same section

be expected to interfere with the possibilities of detecting edge segments with free endpoints.

From the perspective of the steepest descent update law the problem is that the update term

associated with the (arc or polygon) length cost makes the edge segments "pull" on their

endpoints in the tangential direction. At endpoints that are constrained to form a junction

with some other endpoint(s), there are sufficiently many other "update forces" present to

balance this "pull". At free endpoints, however, the only other possible update force is

(more or less) orthogonal to the "pull" direction. In this case equilibrium can therefore in

general not be achieved.
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The difficulty considered above could of course be eliminated by simply excluding

edge segments with free endpoints from our model. Rather than taking such a drastic

measure, however, we have chosen to get around the problem in a heuristic manner by

artificially inhibiting the "pull" on the free endpoints. For the total cost (4.1) this is

achieved by modifying the formula (2.47b) for the cost gradient components associated

with the junctions to

9j =

neNjo

Vn2 ~ Vn3

\Vn2 ~ Vn3

2 m 3

•wAi

+R*Y1YU2 vn,m-r+a / ±Qn(m - r+a)br(a)b3(a) da
ro=0r=0 s=0 J°

+ £
Vn,Mn - vn,Mn-l

Vn,Mn ~ vn,Mn-l

M„+2 3 3

WTr,

+R* 1Z H £ vn,m-r+s / A^n(m - t +a)br(a)b3(a) da
m=Mn r=m-Mn +ls=0 *'0

j = i,...,J (4.15)

where /?„ and rn are the end condition variables of the nth spline. The terms associated

with the polygon length cost are thereby removed from the updates of the free end vertices.

The intermediate vertices are of course not directly affected by the free endpoint difficulties.

The cost gradient components associated with these control vertices are therefore left as

given by (2.47a), that is

9nm —

± f Vnm ~ Vn,m-1 Vnm - Vn,m+l \
\\\Vnm ~ t>„,m_i|| \\vnm - »n,m+l||/ ^

3 3 j

+R* SS vn,(m-r)modA/„+5 / ±Qn((m - r) mod Mn +a)br(a)'b3(a)da
r=0 a=0 Jo

m- l +2on,...,Mn-on, n=l,...,JV (4.16)

Image Cost Density Difference Approximation

In order to compute the modified cost gradient components as given by (4.15) and
(4.16), the image cost density difference functions Aqi,...,Aqn have to be expressed in
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Figure 4.9: Notions for approximation of image cost density on each side of short directed

curve T.

terms of some known quantities. From section 2.3 we know that

±0n{<r) = Q+A*) ~ Q-A*) ^ € S„ n = 1, -,N

where £+,„ and £_,„ are the image cost densities evaluated on the left and right sides

respectively of the (directed) edge segment 7„(Sn) at the point "yn(a). The image cost

density (4.2) is, however, given in terms in terms of the image functions C and z of which

only samples on the pixel grid X^ are available. The functions Q±tTl,AQn : Sn —• R,

n = 1,..., AT, must thus all be approximated in terms of these samples.

Consider first a general short directed curve T C R2 that goes from one cell (cen

tered at) Co to one of its four-connected neighbors (centered at) c\ without entering any

other cell in between. Define two orthogonal unit vectors in 5 by

f t = c\ - c0

£„ = RX£T

where Rx as before is the 90° clockwise rotation matrix defined in (2.11). The six pixel

sites at the corners of the two cells are then given by x± + p£T, p = —1,0,1, where

x±
cp + ci &,

2 2

and oriented relative to T as shown in figure 4.9. The image cost density on the left and

right sides of T can therefore be approximated by the constants g+ and £_ respectively

given by

'̂ r(a?±)-*-*rOc±)''2
£± = [*(a:±)-C(z±)] +/' + [z*tv(x±)-z(x±)]'
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where z^, £ € S, is defined by (4.7). If T is part of an edge segment—the case of interest,

the bond centered at (co+ Ci)/2, which joins x± with x±^£u, is necessarily broken. Thence

zTiuix±) = z(x±) and we have

Q± = [*(x±) - C(*±)]2+jM*±)- *-^(*±)]2

The discussion above strongly suggests that the image cost density differences

Aqi,. . .,Aqn be approximated by piecewise constant functions. With the sample point

sequences and cell sequences from the continuity set evaluation conveniently at hand we

therefore choose the approximation

A£n(m + *) « ±Qnml = Q+nml - Q-nml CT G]<7/, <7/+l[,

/ = 0,...,Inm-l, m = 0,...,Mn-l, n = l,...,AT (4.17)

where the constants Q±nmi are defined by

Q±nml = [z(x±nml) - C(*±nm/)]2+^[^nml(x±nml) - 2-tnml(x±nml)Y

_ . Cnm/ + Cnm,l+1 , ^xSnmi
*±nm, = j * ~2~

snm/ = cnm,/+l — cnml

Computational Procedure

With the image segmentation configuration represented as described earlier in this

section, the terms of the sums in (4.15) and (4.16) are most efficiently accumulated spline
by spline. We therefore return to (4.1) and (4.2) and rewrite the total cost variation (2.46)
with respect to the control vertices as

N

$WCJVC(7.*)= $^tf»
n=l

where

6n = w6vn(vn0,...,v„,Afn+2) - / Agn6ini/ dl
An(S„)

obviously is the contribution from the nth spline. Expanding 6n according to (2.28), (2.29)
and (the second last line of) (2.30) we find that



Sn =

= w
n ( Vn2-Vn3 V ,

W„-o„ /
V"^ / Vnm - Vn,m-l

=T?2o„ \Km-tfe,m-l||

\\\VnMn-vn,Mn-l\\J
ln-1 3 3 .j

XT YU2 ^Qn(m + a)br(a)'bs(a)dav^m+sRxSvnf
n=0 r=Oa=0,/0

+ £
m=l+2o

+

Mn-1 3 3

Vnm ~~ Vn,m+1

\vnm - V„,m+i |
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The modified contributions from the nth spline obtained after deleting the terms, if any, that

are responsible for the "pull" on the free endpoints, and incorporating the approximation

(4.17) is thus given by the linear combination

Pn

]£ °Zp6vn,mnp =
P=l

= zu
a ( Vn2-Vn3 \ c
PnOn [ 7, [7 0Vn2

\ K2- Vn3 /

Mn-On

+ £
m=l+2on

Vnm *** Vn,m—1 , Vnm ~ Vn,m+l

\Vnm - Vn,m-l|| \\Vnm ~ t>n,m+l1

T

J. ^ « / vn,Afn ~ VntMn-l \ c„
\\\VnMn-Vn,Mn-l\\J

Mn-1 3 3 Lnm-1 f0nm,l+l
~ X) ZD Z A?nm/ / ' br(a)bs(a)dav^m+sRx6vnim+r

m=0 r=Oa=0 /=0 ffnml

where a„i,...,an,P„ € R2 and mnl,...,mn,pn € {0,. ..,Mn + 2}.

Because of the interconnection constraints and the spline end conditions, the con

trol vertex variations 6vntTnnp, p = 1,..., Pn, n = n,..., JV, are of course not independent.

The block components of the cost gradient can therefore not just be identified with the vec

tors ctnp, p— 1, •. •, Pm n = n,..., JV. Instead each block component consists of the sum

of all those vectors that multiply any of its associated control vertices. For the purpose

of computing these sums each 2x1 block component of the cost gradient of equivalently

each control vertex in the vertex list has a designated accumulator, which the cost gradient

computation routine initializes to zero. Each such accumulator is actually contained in the

record of its associated control vertex in the vertex list. The accumulator designated to

J #Vr
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the block component associated with any particular control vertex of any given spline is

thereby addressable from the spline list by the same mechanism as are the coordinates of

that control vertex. For each p = 1,..., P„, n = 1,..., N, the vector anp is computed and

added to the contents of the accumulator designated to the block component associated

with v„tmnp. When this procedure is completed, all the block components, as given by

(4.15) and (4.16), are contained in their designated accumulators.

The computation of the vectors anp, p = l,...,Pn, n = nt...,JV, normally

necessitates access to the value of the integral f°* br(a)b(a) da for all the 16 combinations

of r,5 € {0,.. .,3} and for a large number of values of a^ and a\. For higher speed the

functions

«rs(*) = / 6r(?)6(0 ofc r, s6{0,..., 3}
Jo

are therefore tabulated (alongside of the basis functions 6o,...,&3,) thereby allowing the

integral above to be computed by meansof the single subtraction ars(ai)—ar3(ao). Although

defined as an indefinite integral, each such function ars is merely a known sixth order

polynomial, and thus very simple to pre-evaluate.

4.3 Experimental Results

The global curve-represented edge detector described in section 4.2 was, as men

tioned earlier, implemented for studying the performance of the steepest descent procedure.

Our experiments with it had two major purposes. Most importantly we wanted to demon

strate that the steepest descent procedure does indeed adjust the edges so as to reduce the

total cost, and that the edge adjustment moreover represents an improvement to human

evaluation. Secondly we wanted to show how the estimated image, the detected edges and
the convergence rate are affected by the edge cost and stabilizing cost coefficients Aand p.
as well as by the number of control vertices used in the image segmentation configuration.
In this section we present some of the results of these experiments.

4.3.1 Edge Adjustment

A First Example

For the first experiment to be presented we used the original image (ofa personal

computer) shown in figure 4.10. The initial edges obtained with the initial edge finder are
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Figure 4.10: Original image used in first example.

shown in figure 4.11. As we see, the initial edges are located way off the corresponding

contours of high gradient magnitude of the original image function. After 20 iterations—

cycles of the steepest descent loop—the edges had been adjusted as shown (in black) in

figure 4.12 (a). For comparison the initial edges are also superimposed (in grey). The

edges obtained after 60 and 100 iterations are shown (in black) in figure 4.12 (b) and (c)

respectively with the edges obtained 40 iterations earlier superimposed (in grey). As we

see, most of the edge adjustment took place during the 20 first iterations. Indeed, the edges

from the 60th iteration hardly show at all in figure 4.12 (c), indicating that the adjustment

from the 60th to the 100th iteration is practically negligible.

In figure 4.13 the edges obtained after 100 iterations are superimposed on the

original image. The match between these edges and the contours of high gradient magnitude

of the original image function is, as we see, quite satisfactory.

The total edge adjustment during the 100 first iterations represents a significant

improvement to a human observer. This is easily seen from figure 4.14, which shows the

initial edges (in grey) superimposed on those obtained after 100 iterations (in black). The

improvement can also be appreciated from figure 4.15, which shows the estimated image
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Figure 4.11: Initial edges obtained from original image in figure 4.10.

after 0 and 100 iterations.

Going back to figure 4.10 and 4.11 we note that some of the visible edges in the

original image were not detected by the initial edge finder. The present implementation

of the global edge detector does neither add to nor delete any of the initial edges, and is
therefore essentially unable to change this condition, (except by stretching or shrinking the
initial edges). If the missing edges were to be detected one would have had to adjust the
parameters of the preliminary edge detector (described in section C.l) accordingly.

A Second Example

The original image in the foregoing example was quite simple. For our next ex

ample we used the much more detailed original image (of a painting) shown in figure 4.16.
Figure 4.17 shows the initial edges obtained with the initial edge finder. The edges resulting
after 180 iterations are shown alone in figure 4.18 and superimposed on the original image
in figure 4.19. Once again the edges were adjusted so as to match the contours of high
gradient magnitude of the original image function. The most apparent improvements are
those involving the shapes ofthe little statue, the decanter and the top ofthe glass. From
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Fig. 4.12: (a)

Fig. 4.12: (b)
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Fig. 4.12: (c)

Figure 4.12: Adjusted edges obtained from original image in figure 4.10 after: (a) 0 (grey)
and 20 (black) iterations, (b) 20 (grey) and 60 (black) iterations, (c) 60 (grey) and 100
(black) iterations.
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Figure 4.13: Adjusted edges after 100 iterations superimposed on original image.

Figure 4.14: Adjusted edges after 100 iterations (black) and initial edges (grey) obtained

from original image in figure 4.10.



(a)

(b)

Figure 4.15: Estimate of original image in figure 4.10 after: (a) 0 iterations,
iterations.
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b) 100
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Figure 4.16: Original image used in second example.
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Figure 4.17: Initial edges obtained from original image in figure 4.16.
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Figure 4.18: Adjusted edges obtained from original image in figure 4.16 after 180 iterations.



H
wm

•i

HEHlv
"•I

w

m" -Ml 3
^WmmM^Ww 11111

^p^^^^^^^^^^P K Jill

ipf-air hi
tillllltlfc^

mMMk^^M^l .,1.1. _J]UU1
Figure 4.19: Adjusted edges after 180 iterations superimposed on original image.

r-:

I

j^^^^H-

155



156

the estimated images shown in figure 4.20 it is also clear that the edges associated with the

stripes on the cloth in the lower right corner agree much better with the contours of high

gradient magnitude of the original image function, after than before the edge adjustment.

Free Endpoints

In both the examples discussed above the initial edges possess (at least) a few free

endpoints. Comparing these edges with those obtained after the edge adjustment we find

neither essential growth nor essential shrinkage of the edges (in the tangential directions) at

those free endpoints. Edge adjustment in the direction normal to the edge does, however,

take place as much at the free endpoints as anywhere else. This phenomenon is probably

easiest to notice on the edges in figure 4.17 and figure 4.18 that correspond to the right hand

side of the glass in the right part of the image in figure 4.16. Altogether the observations,

which are in full agreement with our prior expectations, indicate that our heuristic method

for dealing with the free endpoint problem works as intended.

Cost Reduction

The total cost reduction from the edge adjustment generated by the steepest de

scent procedure amounted to 30% in both the above examples. The cost reduction resulting

from the entire edge detection process, that is the reduction from the minimum image cost

(of the estimated image function) in the complete absence of edges to the total cost after

the steepest descent procedure adjustment of the initial edges, was of course greater. In the

first example above this reduction was 55%. In the second example it was 49%.

In all our experiments the total cost decreased steadily during the beginning of

the edge adjustment, that is the early cycles of the steepest descent loop. As expected, the

steady decline in the cost then slowly diminished, whereupon the cost started to fluctuate

up and down. In some of the experiments a pronounced trend of slow cost reduction was

sustained many iterations after this fluctuation began. This pattern seems to be caused

by slow convergence of some of the edges after the majority of the edges have already

converged.
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Fig. 4.20: (a)
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Fig. 4.20: (b)

Figure 4.20: Estimate of original image in figure 4.16 after: (a) 0 iterations, (b) 180

iterations.
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Figure 4.21: Original image used in edge cost coefficient experiment.

4.3.2 Parameter Dependence

The Edge Cost Coefficient

For our experiments regarding the edge cost coefficient A we used the original

image (of a telephone) shown in figure 4.21. This image was a relatively hard one for the

initial edge finder to process. As a result the initial edges, which are shown in figure 4.22,

are not as good as one would have hoped. However, the example illustrates quite well how

the edge adjustment is affected by the choice of the parameter A.

We first processed the initial edges with a quite low value of A. As a consequence

of the relatively mild penalty for the length of (the control polygons defining) the edges

the edge adjustment proceeded for well more than 250 iterations without reaching conver

gence. The edges obtained after 100 and 250 iterations are shown in figure 4.23 (a) and

(b) respectively. As we see, the edges were adjusted considerably so as to make up for the

inadequacies of the initial edge finder output. Most notable are the added wiggles along the

receiver cord boundary and the addition of the edges outlining the boarder and the side of

the phone body. We also note some spurious edges resulting from occurrences ofone spline
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Figure 4.22: Initial edges obtained from original image in figure 4.21.

curve stretching so as to represent more than one distinct segments of the contours of high

gradient magnitude of the original image function.

For our second processing of the initial edges in figure 4.22 we increased the value

of A by a factor 50. In this case the edges that converged after about 50 iterations. The

resulting edges are shown in figure 4.24. As expected the high edge cost made the edges

less inclined to stretch. Consequently the adjusted edges are less wiggly and there are no

spurious edges present besides the few produced by the initial edge finder. The shape of

the edges outlining the receiver cord and the key pad are moreover less accurate, and the

boarder on the left rim of the phone body does not appear.

In summary a higher value of A seems to lead to faster convergence and to prevent

the appearance of spurious edges. The price paid for these advantages is a less accurate

representation of wiggly edge shapes and a weaker tendency for the edge adjustment to

make up for those edges that the initial edge finder did not detect.
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(a)

(b)

Figure 4.23: Adjusted edges obtained with A= 65 from original image in figure 4.21 after:
(a) 100 iterations, (b) 250 iterations.
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Figure 4.24: Adjusted edges obtained from original image in figure 4.21 with A = 3250 after

50 iterations.

The Stabilizing Cost Coefficient

Our next example illustrates the influence of the stabilizing (or nonsmoothness)

cost coefficient p. The original image that was used for this experiment is shown in fig

ure 4.25. (It shows a detail of the surface of a chip.) The edges produced by the initial edge

finder are shown in figure 4.26.

We first processed these edges with the extremely low stabilizing cost coefficient

p = 0.5. The edges had then converged already after 50 iterations. The resulting edges are

shown alone in figure 4.27 (a) and superimposed on the original image in figure 4.27 (b).

The adjusted edges are, as we see, fairly accurate. However, the edge outlining each of

the dark circular regions inside the brighter strips is broken, or erroneously brought into

contact with the edge corresponding to the boundary of the surrounding strip.

The estimated images obtained after 0 and 50 iterations are shown in figure 4.28 (a)

and (b) respectively. Because of the low value of p they are both very similar to the original

image and hence to each other, despite the fact that the edges obtained after 50 iterations

exhibit significant differences from the initial edges.
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Figure 4.25: Original image used in stabilizing cost coefficient experiment.

Figure 4.26: Initial edges obtained from original image in figure 4.25.
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(a)

(b)

Figure 4.27: Adjusted edges obtained with /* = 0.5 from original image in figure 4.25 after

50 iterations.
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(a;

Figure 4.28: Estimate obtained with fi = 0.5 of original image in figure 4.25 after: (a) 0
iterations, (b) 50 iterations.
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For the second processing of the initial edges in figure 4.26 we used the 20 times

greater stabilizing cost coefficient p = 10. In this case it took about 350 iterations for

the edges to converge. The resulting edges are shown alone and superimposed on the

original image in figure 4.29 (a) and (b) respectively. Comparing these pictures with those

in figure 4.27 we note that the increase of the parameter p improved the accuracy of the

edges. In particular, all but one of the dark circular regions in the interior of the brighter

strips were now correctly detected as such.

Figure 4.30 (a) and (b) show the estimated images obtained after 0 and 350 it

erations respectively. With the higher value of p the image estimation results in severe

smoothing of the original image. Prior to the edge adjustment a substantial part of this

smoothing takes place across the contours of high gradient magnitude of the original im

age function. As a result the estimated image in figure 4.30 (a) is relatively blurry. After

the edge adjustment, on the other hand, the edges are sufficiently well lined up with the

high gradient magnitude contours to prevent almost all smoothing across these contours.

Thence, as figure 4.30 (b) well illustrates, the estimated image function is close to being

piecewise constant.

In summary a high value of the parameter p seems to yield more accurate edges and

estimated image functions that are closer to being piecewise constant than does a low value

of p. The price one pays for the higher accuracy of the edges is a longer time to convergence.

There are two contributing factors to the slower convergence. First of all, with a significantly

higher value of p the smoothing resulting from the image function estimation is, as we just

have seen, much more severe. The numerical solution of the system (4.10) therefore requires

many more iterations of (4.12) (inside the image function estimation routine), whence each

iteration of the steepest descent procedure takes a substantially longer time. Secondly, for

reasons soon to be discussed a high value of p in general stimulates more edge adjustment

than a low value of p. Convergence of the edges can therefore in general be expected to

require more iterations (of the steepest descent procedure).

Since multiplication of the total cost with a strictly positive constant has no influ

ence on the steepest descent procedure and thus neither on the edge adjustment, an increase

of the stabilizing cost coefficient p is equivalent to a decreased emphasis on the edge and

deviation costs. It should therefore not be surprising that an increase of p in similarity

with a decrease of A, promotes the tendency of the edges to adjust to the contours of high

gradient magnitude of the original image function. However, since an increase of p unlike
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(a)

Figure 4.29: Adjusted edges obtained with p - 10 from original image in figure 4.25 after

350 iterations.
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(a)

(b)

Figure 4.30: Estimate obtained with p = 10 of original image in figure 4.25 after: (a) 0

iterations, (b) 350 iterations.
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Figure 4.31: Initial edges obtained with im = 4 from original image in figure 4.10.

a decrease of Abesides de-emphasizing the edge cost also de-emphasizes the deviation cost,

the edges are less likely to get attracted to small isolated such contours if p is increased

than if A is decreased an "equivalent" amount. In other words, an increase of p selectively

promotes adjustment of the edges towards the "more significant" high gradient magnitude

contours.

Control Vertex Density

In order to illustrate how the number of control vertices in the image segmentation

configuration affects the detected edges we reprocessed the original image in figure 4.10 with

a higher control vertex density than before. For our first example we used the maximum

sampling interval tm = 16. In other words, there was roughly one control vertex per sequence

of 16 (consecutive) preliminary edge pixels. (See section C.3 for a precise definition of im.)

This time around we chose im = 4, resulting in roughly four times as many control vertices

for each edge segment as before. In this case the initial edge finder produced the edges

shown in figure 4.31. These initial edges are, as we see, less rounded and therefore more

accurate than those shown in figure 4.11 from our first example. The edges obtained after 80
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Figure 4.32: Adjusted edges obtained from original image in figure 4.10 with im = 4 after

80 iterations (black) and with im = 16 after 100 iterations (grey).

iterations are shown (in black) in figure 4.32. For comparison the adjusted edges obtained

in our first example after 100 iterations are superimposed (in grey). In spite of the smaller

number of iterations, (80 vs. 100,) the adjusted edges are also less rounded and more

accurate than those obtained in our first example with the lower control vertex density.

In general a higher control vertex density—lower value of im—seems to yield more

accurate edges as well as faster and more well-behaved convergence. The price one pays for

these advantages is a less compact parametrization of the edges and a stronger tendency

for the edges to take on quite irregular shapes and thereby also to get attracted by less

significant contours of high gradient magnitude of the original image function.
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Chapter 5

Biased Anisotropic Diffusion

In this chapter we present and analyze a second global edge detection approach

based on variational regularization. While the new paradigm was originally intended as

a general improvement on variational edge detection, the resulting algorithm can also be

viewed as a new anisotropic diffusion method. We thereby unify these two, from the original

outlook, quite different methods. This puts anisotropic diffusion, as a method in early vision,

on more solid grounds; it is just as well-founded as the well-accepted standard regularization

techniques. The algorithm to be presented moreover has a number of attractive properties,

which makes it very competitive with other existing global edge detection methods.

5.1 Introduction

Of all the global edge detection approaches that we have encountered so far, all

but one—the anisotropic diffusion method—are based on some kind of regularization. Reg

ularization can, as we saw in chapter 1, be achieved in different ways. In probabilistic

regularization [25, 26] the problem is reformulated as Bayesian estimation. In variational

regularization [20, 21, 40, 41, 16, 22, 23, 24, 42], (of which the approach presented in chap

ter 2-4 obviously is an example,) it is posed as a cost (or energy) functional minimization

problem, leading to a variational principle. In spite of the different outlooks of these ap

proaches they essentially end up with the same mathematical and computational problem;

given an original image function ( : B -> R, defined on some open bounded connected

image domain B C R2, minimize a cost functional Q(u;, z), where w is some function rep

resenting the edges, and z : B —*• R is the estimated (or reconstructed) image function. In
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each case the total cost can furthermore be divided into three components according to

C((w, z) = €(w) + V{z, C) + S(w, z)

where the edge cost S measures the extent of the edges, the deviation cost V measures the

discrepancy between the estimated and the original image functions, and the stabilizing cost

measures the nonsmoothness or the a priori "unlikeliness" of the estimated image function.

The "edge function" w can be defined in a variety of ways. It might for example be

an image segmentation or a vector of control vertices, such as those considered in chapter 2-

4. In this chapter, however, it is, as most frequently in the literature, simply a function

of the form w : B —*• R, which to each point in the image domain assigns a "measure of

continuity" or a "discontinuity type".

Given a specific edge function w it is generally the case, that there exists a unique

optimal estimated image function zw, which can be found by solving a linear partial dif

ferential equation. While most of the regularization approaches do take advantage of this

condition, none of them is capable of solving for the optimal edges in a similar way. The

optimality conditions for the edges do either not exist, or else they consist of unsolvable

equations. For the minimization of C((iu, z) with respect to w all of the regularization

approaches referred to above therefore resort to some kind of stochastic or deterministic

search method such as the "Metropolis algorithm" or "steepest descent". Because of the

tremendous size of the solution space any such search method is by itself quite expensive.

In addition the general nonconvexity of the cost function causes any converging search algo

rithm to get stuck at local minima. The common response to this unfortunate situation has

been to solve whole sequences of minimization problems, as a mechanism for "gravitating"

towards a good local (hopefully a global) minimum. The GNC-algorithm introduced in

[23, 24] and simulated annealing [25] are both examples thereof. As a consequence every

global edge detection method up to date except the anisotropic diffusion methods involves

some form of repeated iterative minimization process, and because of the high computa

tional cost that this implies, the optimality of the solution is often compromised.

For anisotropic diffusion—the only global edge detection method that does not

require the repeated iterations associated with the regularization based methods—the con

cerns are naturally of a different character. This method, as we recall from section 1.5,

does not seek an optimal solution of any kind. Instead it operates by repeatedly filtering

the image function with a smoothing kernel of small support, thereby producing a sequence
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of diffused image functions of successively lower resolution. At some stage in the iterated

filtering process remarkably impressive edges can be extracted by postprocessing the dif

fused image function with a rudimentary local edge detector. In the limit, however, all

edges disappear, and the diffused image function converges to a constant. Needless to say,

any solution of interest therefore has to be selected from the sequence of diffused image

functions way before convergence.

The selection itself has so far been a matter of manual inspection. If automation

is necessary, one can of course, in the absence of more sophisticated rules, simply prespecify

a number of filter iterations. A more serious problem due to the necessity to select a

solution prior to convergence, may arise in an analog circuit implementation where the

diffusion process must be latched or halted in order to retrieve the diffused image function

of interest.

In this chapter we show how the variational regularization approach by Terzopoulos

[21,40] can be modified so that the calculus of variations yields useful optimality conditions,

not only for the estimated image function, but for the edges as well. The result is a global

edge detection algorithm, which does not suffer from the high computational costs of most,

if not all, of the other regularization-based such methods.

As it turns out, the new algorithm can also be viewed as a (new) biased anisotropic

diffusion method. (The term "biased" will be explained in section 5.4.) This unification

of the apparently quite different regularization and diffusion approaches is in itself very

interesting. It also shows that it is completely fair to think of anisotropic diffusion as a

global edge detection method. (The doubts, which were legitimately raised in section 1.5,

are indeed reduced to whether a given anisotropic diffusion algorithm is truly global, or

just approximates a global method.) Finally the unification brings the anisotropic diffusion

approach an appealing sense of optimality. Anisotropic diffusion is thus a method for solving

a well-defined mathematical problem, not just an image processing technique, by which one

image can be transformed into another more pleasing looking one. With this face-lift of the

foundations of the anisotropic diffusion method its extraordinary performance is no longer

so surprising.

Even more exciting than the unification just discussed, is the fact that the new

algorithm shares the better properties of both the regularization based methods and the

anisotropic diffusion method. Indeed:
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1. It only requires the solution of a single boundary value problem on the entire image

domain—almost always a very simple region.

2. It converges to a solution of interest.

The first of these properties implies a number of advantages over other existing regulariza

tion methods. In particular:

(i) No explicit search method is necessary.

(ii) No sequence of minimization problems has to be solved.

The computational cost is therefore relatively low. The second property represents a couple

of advantages over the existing diffusion methods:

(i) It removes the problem of manual selection of, which one in the sequence of diffused

image functions, to be postprocessed with the local edge detector.

(ii) It is superior for circuit implementations.

The rest of this chapter is organized as follows: In the next section we review

Terzopoulos' edge representation in terms of continuity control functions. In section 5.3 we

propose our modification of his paradigm, and derive the resulting conditions for optimal

ity. In section 5.4 we compare our variational edge detection method with the anisotropic

diffusion algorithm introduced by Perona and Malik. In section 5.5 and 5.6 we study some

properties of the biased anisotropic diffusion. In section 5.7 we discuss discretizations of

the variational edge detection problem, and propose numerical and analog circuit solutions.

Section 5.8 is devoted to convergence, uniqueness and stability analysis of the discretized

problem and the proposed algorithm. Finally section 5.9 covers our experimental results.

5.2 Terzopoulos' Edge Representation

From our brief review of stabilization in chapter 2 we recall that the "classical"

stabilizers that first appeared in early vision problems did not allow estimation or recon

struction of image functions with discontinuities. In order to improve on this framework,

Terzopoulos [21, 40] introduced a more general class of stabilizing functional referred to as
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controlled-continuity stabilizers. These are of the form

where w = [w\ ••-w/]T, and the weighting functions wi,...,wj : R^ —• [0,1], referred to
as continuity control functions are in general discontinuous. They are in particular able to

make jumps to zero, and edges, where the partial derivatives of z of order > j are allowed

to be discontinuous, are represented by the sets

n ^(W) i=o,...,/-i (s.i)
t=J+l

For the edge cost Terzopoulos proposes the functional

€(w) = / 5Z ^«(1 —v>i) dx

where the constants Ai,..., Aj € R+ satisfy £t=i ^«* > 0- Unfortunately this paradigm fails

to support a genuine variational technique for minimizing the total cost with respect to the

continuity control function vector w. In fact it does so for a couple of reasons.

First of all, calculus of variations with respect to w requires that the space W

of admissible continuity control functions is embedded in some topological vector space.

Any continuity control function, which can be separated from the set of all strictly positive

continuity control functions by this topology, that is any continuity control function, which

represents an essential set of edges according to (5.1), will necessarily belong to the boundary

of W. Hence the continuity control function vectors of particular interest, that is those

representing edges, can be optimal, without being critical, that is, without resulting in a

zero variation of the total cost with respect to w.

Secondly, if the variation of the total cost with respect to w is set to zero, one

obtains the ridiculous condition

\ 2K K ( a«*' j ,a,. ;=i,...,/
under which the total cost is completely independent of w. Thus the optimal continuity

control function vector can not be found by means of calculus of variations, even if it does

not represent an essential set ofedges. Terzopoulos resolves this problem by first discretizing

the entire space of continuity control functions; w is defined on a finite subset D—a dual
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pixel grid—and only allowed to take the values 0 or 1. The edge cost is modified accordingly

to

x6D t=l

For a solution he then applies a descent method in the continuity control function vector

space W1. Prior to each update of iu, the optimal estimated image function zw for the

present w is computed, by solving the Euler equation—a partial differential equation in

zw—associated with the variational principle &gCc(w,z) = 0. This method is expensive,

and since the update Aw is based on the cost difference C^(w + Aw,zw) —Ct(w,zw), as

opposed to C((w + Aw, zw+aw)—C<(w, &w)—computation of zw+Aw for all possible updates

Ait; would be far too expensive—convergence to a global minimum cannot be guaranteed.

5.3 Genuinely Variational Edge Detection

For our problem of detecting discontinuities of a bivariate image function, the

appropriate deviation and stabilizing costs in the paradigm above are given by

D(*,C)= f(z-Q2dx
Jb

and

S(w,z)= f w\\VzT\\2dx
JB

As in the earlier chapters we will assume that the image domain B C R2 is open bounded

and connected. In order to remedy the difficulties with Terzopoulos' method, we propose

the use of a smooth continuity control function w : B -* R+. If w was prespecified, this

would amount to the simplest straight forward generalization of Tikhonov stabilization to

bivariate regularization. However, as Terzopoulos we will consider w to be a variable, and

optimaize the total cost with respect to both w and z. To avoid the problem with optimal

continuity control functions, which are noncritical, and thus impossible to find by means of

variational calculus, we will arrange the edge cost, so that for each estimated image function

z, the total cost C^w, z) attains its minimum for exactly one optimal continuity control

function wz, whose range is confined to lie in ]0,1]. This idea is similar to the use of barrier

functions in finite dimensional optimaization [64]. The uniqueness of w2 for a given z, also

allows us to solve for wz in terms of z in a way similar to Blake and Zisserman's elimination
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of their "line process" [23, 24]. The edge costs, we propose for this purpose, are of the form

£(w) = f Xf
Jb

owdx
B

where the edge cost coefficient A > 0 is constant, and the edge cost density function f :

R+ -> R is twice differentiate. Our total cost functional is thus given by

Cc(w, z) =J [A/ ow+(z - C)2 +w||Vzr||2] dx (5.2)
It would be appropriate to multiply the stabilizing cost S(w, z) by the square of

a (constant) scale-space parameter p > 0. However a true magnification of the scale of

resolution of the edge detector should be equivalent to a shrinkage of the width and height

of the image domain (along with the induced space scaling of the functions defined thereon)

by the same factor. For any consistent discretization of the problem the effective scale-space

parameter will therefore be inversely proportional to, and might as well be absorbed in, the

pixel width h.

Setting the first variation of Q(w?,z) to zero yields the Euler equations

z(x) - C(x) - V •(wVz){x) = 0 Va: € B (5.3a)

Xf\w{x)) + ||Vz(x)T||2 = 0 Var € B (5.3b)

t»(*)^-(«) =0 VxedB (5.3c)

where V« denotes the divergence operator, and d/den denotes the directional derivative in

the direction of the outward normal. The second variation of C( with respect to w is also

easily found to be

CAK z) =Jb ±(fow)(6w? dx (5.4)
Together with the desired existence of a unique optimal continuity control function

wz for each possible estimated image function z these equations put some restrictions on

the edge cost density /. In fact from (5.3b) it follows, that /'|]0,1] —• R_ must be bijective,

and that /'(]l,oo[) C R+. Likewise from (5.4) we see, that /" must be strictly positive

on ]0,1[, and that /"(l) > 0. the simplest functions, which satisfy these requirements are

given by

/(u;) = u;-lnu; =• f'(u) = 1 (5.5)
to

and

/(u>) = u; In u; - u => /'(u;) = lnu> (5.6)
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but there are of course many other possibilities, for example:

*">-"'+(,-lV' * /V) =l~ P€R+s{l} (5.7)
However, some choices of p might be better than others. In section 5.6 we will present an

argument supporting the further restriction, that p < 2. Another example, which might be

of special interest to circuit designers, consists of the somewhat involved edge cost density

f -u>(lnw)2 +2u;lnw-2u; ifw€]0,l]
f[uj) = < (5-8)

y a>(lnu;)2 —2wlnu; + 2u —4 ifu>€]l,oo[

with derivative | (,„.)> if^iM
^ (lnw)2 ifw€]l,oo[

Given that / satisfies these conditions, /'|]0,1] is invertible, and since w is strictly

positive, we end up with the equations

z(x) = C(x) + V • (wVz)(x) Var€£ (5.10a)

w(x) = g(\\Vz(x)T\\) VxeB (5.10b)

•^-(x) =0 Var €dB (5.10c)
oen

where the function g : R+ —*]0,1], (for reasons soon to make sense,) referred to as the

diffusivity anomaly, is defined by

«(7) *(/HM)-1 W) 7>o (5.ii)
The properties of the edge cost density / clearly imply, that g is a strictly positive

strictly decreasing differentiable bijection. In particular ^(0) = 1, and lim-y^o© 0(7) = 0.

For the edge cost densities in (5.5) and (5.6) the diffusivity anomaly depends explicitly on

the square of its argument, and takes the forms

<7(7) =--^T 7>0 (5.12)
1 + A

and

fif(7) =e-^ 7>0 (5.13)
respectively. In contrast the edge cost density in (5.9) yields

0(7) =e~^ 7>0 (5.14)
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Since our method necessarily yields continuity control functions, for which

uT^O}) = 0

Terzopoulos' edge representation is inadequate. The simplest and most reasonable modifi

cation is to consider the edges to consist of the set w_1(]0,0]), where 9 is a fixed threshold.

Since the diffusivity anomaly g is strictly decreasing, we have

«.-1(]o,e]) = ||VzT||-1([s-1W,oo[)

whence the edges are obtained by thresholding the magnitude of the gradient of the esti

mated image function.

Other possibilities are of course possible. One could for example attempt to detect

various desired edge patterns by filtering w. One could also try to make the threshold

adaptive, and/or let it depend on the position x in some clever way. With attempts along

these lines however, one will most likely tend to stray away from the original optimality

principle, and End up in the kind of hacker's nest that the introduction of such a principle

was initially meant to avoid.

5.4 Biased Anisotropic Diffusion

Perona and Malik [27, 29] have introduced anisotropic diffusion as a method of

suppressing finer details, without weakening or dislocating the larger scale edges. The initial

value problem governing their method is given by

^(x,t) =V.(wVz)(x,t) VxZB VOO (5.15a)

w(x,t) = g(\\Vz(x,t)T\\) Vi6 5 VOO (5.15b)

^-(*,0 =o VxedB Vi>0 (5.15c)

z(x,0) = C(x) \fx€B (5.15d)

where the diffused image function z and the diffusivity w are functions of both position

x € B and time t > 0, V- and V denote the divergence and the gradient respectively with

respect to x, and the diffusivity anomaly g : R+ —• R+ is a decreasing function.

As the name "anisotropic diffusion" suggests, these equations have appealing phys

ical interpretations. The function z can for example be thought of as representing the
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temperature T in a thin slab 5 of a material, whose initial temperature is given by £, and

whose space- and time-varying thermal diffusivity (or thermal conductivity, if time is scaled

appropriately,) is given by w. This analogy is depicted in figure 5.1.

The Euler equations we derived in the previous section are very similar to the

initial value problem (5.15). In fact, a solution of (5.10) is given by the steady state of the

initial value problem

dz
-z-(x,t) = ((x,t)-z(x,t) + V.(wVz)(x,t) Vx€£ Vt > 0 (5.16a)

w(x, t) = g(\\Vz(x, t)T\\) VxeB Vt > 0 (5.16b)
dz

-—-(a;,t) = 0 Vx€dB V* > 0 (5.16c)
oen

z(x,0) = x(x) Vx€B (5.16d)

which is obtained from (5.15) by replacing the anisotropic diffusion equation (5.15a) by the

closely related "biased" anisotropic diffusion equation (5.16a). Since our interest is in the

steady state solution, the initial condition (5.15d) can also be replaced by an arbitrary initial

condition (5.16d). The continuity control function w thus plays the role of the diffusivity,

and will be referred to as such, whenever the context so suggests.

The bias term £ —z in (5.16a) intuitively has the effect of locally moderating the

diffusion as the diffused image function z diffuses further away from the original image

function £. It is therefore reasonable to believe, that a steady state solution does exist.

The following physical interpretation of this initial value problem further substantiates this

belief: Let S be a thin slab of some material resting on top of another slab So of some (other)

material as in figure 5.2. Suppose that the space- and time-varying thermal conductivity

of S is given by aw, where the constant a > 0 is the coefficient of heat transfer between

S and So. If the initial temperature at each point x € B of S is given by x(x)i ana< tne

temperature distribution of So is held fixed at £, then z represents the space- and time-

varying temperature of 5. Besides supporting useful intuition about our variational edge

detection method, the analogy above suggests a physical mechanism, which could serve as

a model for the design of analog circuits, which realize the solutions of the boundary value

problem (5.10).

The possibility of suppressing finer details, while the more significant edges remain

intact, or are even strengthened, is a consequence of the anisotropy, which in both the

diffusions described above in turn is caused by the nonconstancy of the diffusivity anomaly g.
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x2

*• Xi

Figure 5.1: Physical model of unbiased anisotropic diffusion.

x2

B

•*• X\

T(x,t) = z(x,t)

T(x,t) = ((x)

Figure 5.2: Physical model of biased anisotropic diffusion.
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If g is constant, the unbiased diffusion (5.15a) reduces to Gaussian blurring, while the steady

state of the biased diffusion (5.16a) in a sense corresponds to filtering with a doubly cascaded

first order Butterworth filter. For our variational method governed by the boundary value

problem (5.10), the choice of g was based on optimality considerations. Perona and Malik

select their function g, by demanding, that the resulting unbiased anisotropic diffusion

enhances the already pronounced edges, while the less significant edges are weakened. Based

on an analysis including only blurred linear step edges—an unnecessary restriction, as we

shortly shall see—they vouch for diffusivity anomalies of the form

9il) =, Lx« (5.17)

where c, A > 0 and a > 1/2 are constants. It is easy to check, that, if these functions

were substituted in the Euler equation (5.10b), the corresponding edge cost densities would

satisfy the requirements of our variational method. (To be precise, the constant c would

actually have to be equal to unity. This is however an artifact, which would not have

surfaced, had we incorporated the scale-space parameter p, and vanishes regardless in the

discretization process.) Incidentally, for their experimental results, Perona and Malik use

exactly the functions, we proposed in (5.12) and (5.13), of which only the former belongs

to the class specified by (5.17).

Finally we note,.that the heuristically motivated method that Perona and Malik

used for extracting a set of edges from the diffused image function, is practically identical to

the method implied by our edge representation in terms of the continuity control function.

While they threshold the absolute difference between four-connected neighbor pixel values,

our edge representation leads, as we saw in the previous section, to thresholding of the

magnitude of the gradient.

5.5 The Extremum Principle

The extremum principle is a common tool for proving uniqueness and stability with

respect to boundary data for linear elliptic and linear parabolic problems [65]. For quasi-

linear equations, such as the Euler equation (5.10a) and the biased anisotropic diffusion

equation (5.16a), it is not quite as conclusive. Nevertheless it provides bounds on the

solution and useful insight for convergence analysis of the numerical methods employed

to find such a solution. We will present an extremum principle for the biased anisotropic
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diffusion problem (5.16) as well as for the boundary value problem (5.10). In both cases we

will assume that the diffusivity anomaly g : R+ —• R+ is continuously differentiable.

Theorem 5.5.1 Let z : B x R+ —• R be a solution of the biased anisotropic diffusion

problem (5.16), where it is assumed, that ( : B —• R is uniformly continuous. Assume

further, that z and its first and second order partial derivatives with respect to x are

continuous (on B x R+). Then the following claims are true:

(i) If ±yT : B —*• R : x •-» ±z(x,t) has a local maximum at £ € B for some fixed r > 0,

then

±§f(C,r)£±C(0=F»(«,i-)
(ii) If±z has a local maximum at (f,r) € B x R+, then

±z(£,r)<±C(0

(iii) inf [C(0 AX(0] < *(*, 0 < 8iip[C(0 VX(0] Va: € B Vt > 0

Proof: From (5.16a) and the continuity assumptions regarding g, £ and z one can show, that

dz/dt is uniformly continuous on5xT for every bounded interval TC R+, and therefore

has a unique continuous extension to B x R+. By the bounded convergence theorem of

integration it also follows, that this extension equals dz/dt on the boundary dB x R+.

Hence (5.16a) is satisfied on all of B x R+ (with the appropriate one-sided derivatives on

dB XR+). Suppose that ±yT has a local maximum at £ € 5 for some r > 0. Then by

Taylor's formula (and the Neumann condition (5.16c), if f 6 dB) wehave, that VyT(£) = 0,

and ±AyT(£) < 0. Thus

±V •(wVz)(£,r) = ±Vw(£,r)Vyr(0T ± t»K,r)AyT(0 < 0

whence (i) follows. Suppose next, that ±z has a local maximum at (f,r) e B x R+. Then

±yT has a local maximum at f, and dz/dt(£,r) = 0. Hence (ii) follows from (i). Finally

consider the compact set B x [0,Ti], on which the continuous functions ±z attain their

maximal values, say at (f±,r±). If r± = Ti, then ±dz/dt{Z±,T±) > 0, and ±yT± has a local

maximum at £±. Hence (i) implies, that ±z(£±,r±) < ±C(f±). If r± €]0,Ti[, the same

conclusion follows immediately from (ii). Since T\ > 0 was arbitrarily chosen, this shows,

that

siip ±z(x,t) < sup ±C(^)
(r,0€BxR+ x£B
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from which (iii) follows. •

For the boundary value problem (5.10) governing our variational edge detection method a

proof similar to that above yields the following extremum principle:

Theorem 5.5.2 Let z : B —*• R be a solution of the boundary value problem (5.10).

Assume further, that z and its first and second orderpartial derivatives are continuous (on

B). Then

jnfC(0 <*(*)< si>P C(0 Va:€B
*€B £€B

We remark, that in both the theorems above, the assumption, that the derivatives

of z are continuous up to and including the boundary dB (xR+), (or equivalently uniformly

continuous on every bounded subset of the interior of the domain of z,) could have been

traded for a weaker bound on z, which in addition to the values of z on B (x{0}) also

includes those on dB (xR+). However, for the discretized problem, that we eventually

will have to solve, the subtle difference between plain vs. uniform continuity of z and its

derivatives is of no consequence. The "stronger-assumption-conclusion" versions of the

extremum principles presented above are therefore more useful in this context.

According to the two theorems above the solutions of the biased anisotropic dif

fusion problem are well-behaved, in that they do not stray too far away from the original

image function £, unless forced to by the initial condition, and even if so, they eventually

approach the range of £ as t —*> oo. In plain language condition (i) of the first theorem says,

that the diffused image process, at each of its momentary critical points (with respect to

x) is headed towards the original image function. Condition (ii) of the same theorem says,

that all the noninitial local extrema of the diffused image process are within the range of

the original image function, and condition (iii) gives explicit bounds on the entire collection

of diffused image functions in terms of the initial and original image functions. The sec

ond theorem bounds the steady state diffused image function in terms of the original data

alone. In other words, our variational edge detection method produces an estimated image

function, whose range is contained inside that of the original image function.
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5.6 Edge Enhancement

It was mentioned earlier, that the biased anisotropic diffusion (5.16), in similarity

with its unbiased counterpart (5.15), has the important property of suppressing finer details,

while strengthening the more significant edges. Indeed, the edges are roughly either sharp

ened or blurred depending on their present strength, viz. the magnitude of the gradient of

the diffused image function z.

In order to see this, we define the edges to consist of the points in the image

domain B, at which the magnitude of the gradient of the diffused image function has a

strict local maximum along the direction perpendicular to the edge, that is the direction of

the gradient. For simpler notation we let a = ||VzT||. We also define ev and eT to be the

unit vectors in the directions of [dz/dxi dz/dx2] and [dz/dx2 —dz/dxi] respectively,

that is ev is normal, and eT is tangential to the edge. Since a > 0 on the edges, e„ and eT

are well-defined on the points of interest. The edge points can now be characterized by:

£ =0 (5.18a)
9 a . /- -«i x
84 < ° (5-18b)

For a typical edge of interest it is reasonable to assume that its strength a exhibits a fairly

pronounced peak along its perpendicular direction, resulting in a large value of \d2a/de*\.

On the other hand a can be expected to vary quite moderately—at most with a fairly

constant derivative (shading component)—along the edge, with a small value of \d2a/de^\

as a consequence. We will therefore at little loss allow ourselves to restrict attention to edge

points, at which

^ «Aa <0 (5.19)
Our discussion includes in particular all symmetrically blurred (smooth) step edges. For

points on such edges the approximation (5.19) is indeed exact, even if the size of the step

varies linearly with arc length along the edge.

We begin by noting, that

_ _ t Oa
VaVz1 = -t—a

aeu

and

ft*
0e7 =" (5'2°)
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Assuming that all functions involved are sufficiently smooth, and that the diffusivity is of

the usual form w = goa, from (5.18a) and (5.19) we then have.

= jr—(VwVzT +wAz)
S Xt I \y-> ,-r Tt . 9W . , d .= —Moa)VaVzTH_Az + w_A2

d_
dev

t i \d<T
{goa)irf. +ig>oa)£-Az +wA£-

, , ^2a ,= {9 oa)^ja +(g oa)Aa
« [(g' o a)a + g oa]Aa

From (5.20) it also follows that
da_ d dz
dt dev dt

Hence on the edges, the biased anisotropic diffusion (5.16) causes the edge strength to vary

with time according to
da dC dz ' , .A
m*K-de-»+i*0<T)A<T

where

V>(7) = 0(7)7 7 > 0 (5.21)

Rewriting this equation as

-^(a - ac) a -(a - ac) +(<?' oa)Aa (5.22)

where ac = dQldeu, it is clear, that the bias term -(a —ac) merely has a moderating

effect on the enhancement/blurring of the edge, while the decision between enhancement

vs. blurring depends on the sign of the "driving" term (tp' o a)Aa associated with the

unbiased anisotropic diffusion.

For the desired performance of weakening the weak edges, while strengthening the

strong ones in a consistent manner, since Aa < 0, it is therefore necessary, that there exists

an edge enhancement threshold 70 € R+, such that

V?,_1(R-) = ]7o,oo[ (5.23a)

^({O}.) = {70} (5.23b)

¥?,"1(R+) = [0,7o[ (5.23c)
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Furthermore, if so, the threshold 70 clearly controls the sensitivity of the edge detector,

and one would hence expect it to be closely related to the intuitively similarly acting edge

cost coefficient A. Indeed from (5.11) and (5.21) it immediately follows, that ^'(7) is a

function of 72/A. Since R+ —»• R+ : 7 •-*• 72/A is strictly monotone, 70 must therefore be

proportional to y/X. It is easy to verify, that the diffusivity anomalies given in (5.12), (5.13)

and (5.14) satisfy (5.23) with 70 = V% 70 = \/A/2 and 70 = y/X respectively. For the
diffusivity anomalies corresponding to the edge cost densities in (5.7) on the other hand,

an edge enhancement threshold 70 = y/pX/(2 —p) satisfying (5.23) will exist if and only if

p€]0,l[U]l,2[.

Although the discussion above generates some useful insight, and offers guidelines

for sensible choices of the diffusivity anomaly g, it is not completely satisfactory, in that it

does not account for the change in location and orientation of the edges in the image domain

during the diffusion process. In fact, by evaluating the second partial derivative d2a/dtdeu,

one can show, that only edges with certain symmetry properties, for example symmetrically

blurred linear step edges, will remain fixed in position, during the diffusion. If one neglect

this weakness—a forgotten subject in previous papers—one could be misled to believe, that

the enhancement/blurring decisions about the edges are completely determined by the local

properties of the original image function £ at the edge points. If this was true, one could

just as well detect the edges, by checking these properties, amounting to nothing more, than

thresholding the directional derivative of ( in the direction of its gradient at points, where

this derivative has local maxima—a previously explored paradigm in local edge detection

[13, 66].

If the diffused image function converges to a unique steady state solution, that is a

solution of the boundary value problem (5.10), the edge enhancement/blurring is of course

in the limit independent of the initial condition (5.16d). Indeed from (5.22) weimmediately

obtain the steady state edge enhancement

a - ac = (<p' oa)Aa (5.24)

This equation is clearly valid independently of how the edges move during the diffusion

process. On the other hand ac is not representative of the original edge strength ||V£T||, if

Vz and V£ differ too much in orientation.

Since the range of the steady state solution, by the extremum principle, is confined

to lie within the range of the original image function, an amply enhanced edge strength a



188

can only be maintained along a very short distance acrossthe edge. Such edges are therefore

sharpened.

For the numerical solution of the boundary value problem (5.10) on a regular com

puter there are, as we shall shortly discuss, good reasons for updating the estimated image

function according to a rule, different from a straight forward discretization of the biased

anisotropic diffusion equation. However, the final edge enhancement (5.24) is independent

of the path to the solution, so the discussion above is still valid.

Besides being of vital importance for the edge enhancement mechanism, the exis

tence of the edge enhancement threshold 70 also provides a natural choice for the threshold

to be used in the postprocessing, whereby the edges are finally extracted from the estimated

image function. It is intuitively clear, that, for our edge representation to be consistent with

the edge enhancement mechanism, the edge representation threshold in section 5.3 should

be given by 9 = 5(70). The edge set iu_1(]O,0]) will then consist of the points in the image

domain, where the magnitude of the gradient of the estimated image function exceeds 70,

that is exactly those points, where the edge strength has been enhanced. On the other

hand, and this is in a sense the essential benefit with our regularization approach, the

bistability of the edge enhancement mechanism will deplete the set of points, at which the

gradient magnitude of the estimated image function takes values close to 70. The edge set

ty""1(]0,^]) will therefore be almost indifferent to changes in 9, as long as 9 belongs to some

substantial neighborhood of 0(70)• These circumstances are clearly ideal for thresholding,

and consequently our edge representation is practically consistent with the edge enhance

ment mechanism for a whole interval of edge representation thresholds, corresponding to a

relatively wide range of gradient magnitudes.

5.7 Discretization

For a numerical solution of the variational edge detection problem in section 5.3

the boundary value problem (5.10) has to be discretized. The original image function Q

is most likely already given only on a squared pixel grid. Assuming that this is the case,

the simplest way of discretizing the image functions z and ( for the numerical problem, is

obviously to use the same grid. For the evaluation of the expression V •(wVz) there are on

the contrary a number of more or less equally sensible choices. One can for example expand
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V • (wVz) in terms of z and its derivatives according to

V •(wVz) = {g' oa)-Vz HzVzr + (go<r)Az

where a = ||VzT||, and H denotes the Hessian operator. With the numerous discrete

approximations of Vz and Hz at hand, this leaves a multitude of open possibilities. Alter

natively one can treat u?Vz as a single function, readily evaluated at appropriate points in

terms of some discrete approximation of Vz, and then take some discrete approximation

of its divergence. We have settled for the latter approach, which has the special quality of

highlighting the diffusion mechanism. This in turn naturally leads to expressions, which

are particularly convenient for both hardware and software implementation as well as for

theoretical analysis of the resulting algorithms.

To be more specific, let us consider an original image function (, given on a grid

{jh : j € J}, where h > 0 is the pixel width, and J = {l,...,7i} x {1,...,J2} for some

J11J2 € N. The corresponding image domain is thus given by B =]^, J\ + 2[*]2,J2 + 2[-
We then define the discretized shifted functions

Cot;) = CUh) jeJ

zq(j) = z(arg min/gj ||/ - j - q\\ •h) j € J q 6 S

v>gU) = 9(<rq(j)) 3 € J qeS

where 5 = {—1,0, l}2, and aq(j) is some discrete approximation of ||Vz((i7 4- f)^)r||. It
is reasonable to demand, that aq(j) be specified in terms of z at the smallest possible

symmetric set of neighboring grid points of-(j+ |)/i. This requirement leads to the discrete

approximations:

Jl j_ (Z1u0 ~ *0,1 +Zqi,-l ~ *0,o)2 +(-91,0 ~ ^0,-1 +~9l ,1 ~ *0,o)2 n _ • -, /r or^Naq - ^ qi = ±1 (5.25a)

Jl j_ (Z0,g2 ~ zlfi +*-l,<72 ~ ^O.o)2 + (Z0,q2 ~*-l,0 +Zhq2 - *0,o)2 „ _ , « ,* 0cu\<rq - g^2 92 = ±1 (5.25b)

„2 j_ (^91,92 ~ Z0,o) + (*gi,0 ~ •fo.re) „ „ <- t 1 1\ (K O*^°q = ^2 9i»<72 Gi-1,1) (5.25c)

where we have dropped the dependence of j € J for shorter notation, and written zqi i92 for

zq. The two discrete approximations of (5.10), which immediately come to mind, can after

some manipulation (from a variety of starting points) be written as

Co - *o + -2T2 Y, w*(zi ~ ~°) = ° P2 = *'2 (5/26)
9 qesP
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Figure 5.3: Discrete approximation molecule structures, (a) "Cartesian"; p2 = 1. (b)

"Diagonal"; p2 = 2.

where Sp = {q € 5 : ||^|| = />}, /o2 = 1,2. Note, that the Neumann condition (5.10c) is

conveniently taken care of by the "arg min"-adjustment in (5.25b), which systematically

replaces any otherwise required value of z at a grid point outside B, by the value of z at

the closest grid point inside B, thereby ensuring that

z-i,q2(l,j2) - zo,q2(l,j2) = 0

Zl,q2(Jli32) ~ z0,q2(Jlj2) = 0

^1,-i(ii,i)-^1,o(ii,i) = o

ZqulUuh) ~ Zqu0{juh) ~ 0

j2 = 1,...,J2 q2 - -1,0,1

ji = l,...,Ji 9i = -1,0,1

The computational molecules associated with the two approximations, p2 = 1,2,

in (5.26) have the structures depicted in figure 5.3, where the filled circles (atoms) mark

the sites associated with the evaluation of £ and z, and the empty circles (bonds centers)

mark the sites associated with the evaluation of w. In each case the sum involved contains

four terms.

The "Cartesian" approximation has a few apparent advantages. First of all the

simple structure of its molecules makes it ideal for hardware implementations—an issue

we will return to shortly. Secondly it provides tight coupling between all pairs of eight-

connected pixel neighbors. In contrast, as one can see from figure 5.3, the "diagonal"

approximation results in two interleaved but separated computational lattices. An algo-
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rithm based on this approximation therefore models two more or less separate diffusion

processes, which are coupled only through the shared diffusivity function, that is the co

efficient function(s) of the quasi-linear equation (5.26). For original image functions with

mildly well-behaved statistics however, the smoothing effect of the diffusion will, as one

would guess, and as our experimental results also indicate, cure this problem. A third

minor advantage of the Cartesian approximation is, that its associated truncation error is

only \/2/4 times that of the diagonal approximation.

The diagonal approximation also has a couple of advantages: As figure 5.3 reveals,

it requires only half as many evaluations of the continuity control function, as does the

Cartesian approximation. In addition these evaluations are simpler, as they are governed by

(5.25c) as opposed to (5.25a) and (5.25b) in the Cartesian case. The diagonal approximation

thus leads to faster and simpler software implementations. Our experiments further show,

that it, despite its drawbacks, yields excellent results.

There are several possible ways of solving the discretized equation (5.26) numeri

cally. One method, which is obvious in the light of the discussion in the previous sections,

is to propagate the corresponding discretized biased anisotropic diffusion equation

(o) .
*o = Xo

,0+1) ^. JOzri; = zZ' + k

,(«'+!) jl

-4° +^£»W-4°:
P n q€Sp

where the initial image function \o • J -*• R is arbitrary, most naturally chosen equal to (o,

k > 0 is the time step size, and i € No is an iteration index, representing the time variable

t according to: t = ik. However this algorithm is numerically stable only for sufficiently

small values of the step size k, and safe play will necessarily bring down the convergence

rate. Since we are not interested in the diffusion per se, but merely its steady state solution,

this problem can be avoided, by choosing some robuster iteration method. Such methods

are easily generated by treating the quasi-linear equation (5.26) as a linear elliptic equation,

and applying any of the commonly used Jacobi, Gauss-Seidel or successive over-relaxation

methods. The Jacobi method for example yields the iteration scheme:

40) = Xo (5.27a)

p2h2 + vf? p2h2Co + £ «4°4°
qeSp

•2 —= 1,2

(5.27b)
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Figure 5.4: Analog circuit for solving the variational edge detection problem (5.10).

77T(0 =w

9€5P

(0W (5.27c)

Aside from numerical methods equation (5.26) can be solved by means of analog

circuits. Indeed, by inspection of the Cartesian approximation (p2 = 1), one immediately

sees, that its solution zq is realized by the (steady state) potentials of the upper layer of

nodes in the resistive network in figure 5.4, where the voltages v(j), j € J, represent the

original image function, the controlled conductances G(j + §), j € J n (J - q), q 6 Si,

model the continuity control function, and the fixed conductance Gh determines the scale

of resolution. More precisely, if

v(j) = *>iCot?)

G(j +l)=Giwq(j)
Gh = Gxh2

VjeJn(J-q), v?e5!

where vi and G\ are strictly positive constants, then the potentials in the upper node layer

take the values v\Zo(j), j € J. The Neumann condition is trivially implemented by leaving

out the "loose" connections of the nodes next to the boundary.

The fact that our variational edge detection problem (5.10) is a time independent

boundary value problem, as opposed to an initial value problem, makes this circuit realiza-
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tion much more tractable, than those proposed for the solution of the unbiased anisotropic

diffusion problem (5.17) [28].

1. No precision capacitors are necessary to model the time dependency of the diffu

sion. This will save a lot of silicon area, and make the performance less sensitive

to imperfections in the manufacturing process, and completely insensitive to stray

capacitances.

2. No simultaneous loading or latching of the voltages, representing the diffused image

function is required. The image function I/O-processes can be asynchronous. Conse

quently precision timing is not an issue.

3. The settling time is determined only by the stray capacitances and therefore prac

tically nil. The particularly simple representation of the original image function Co

therefore allows the circuit to process sequences of images at a frequency, which is

limited only by the I/O-capacity.

The most serious difficulty with implementing the circuit in figure 5.4 is probably

the realization of the controlled conductances most of which depend on the potentials at

six! of the surrounding nodes. This problem can be greatly simplified, by replacing (5.25a)

and (5.25b) by a cruder approximation of ||Vz((j+§)/i)T||. If zo,±i» *9i,±i> z±\,o and 2±i,92
are approximated by zo,o> zq\,o-> ^o.o and zo,g2 respectively, one obtains the much simpler

expression

aq =\Zq ~*o1 qeSx (5.28)
The conductance G(j + J) then only depends on the absolute value of the voltage across it,

and can thus be realized by a regular voltage-controlled nonlinear resistor with i-v charac

teristic

i=$(v) =Givxh sgn(u)y> (-^j-J
where as before ^(7) = 5(7)7. The validity of the approximation (5.28), which by the way

also simplifies the diffusivity anomaly (5.14), has been tested experimentally by Perona

and Malik [29], who introduced it for solving the unbiased anisotropic diffusion problem

numerically, and obtained very satisfactory results.
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5.8 Convergence

In this section we will study some rudimentary convergence properties of the

Jacobi-like iteration method (5.27). For certain parameter values we manage to show,

that this iteration converges to a limit point, which satisfies (5.26), depends continuously

on the original image function £o* and is independent of the initial image function xo- Be

sides convergence of the iteration we thus obtain both uniqueness and a sense of stability

with respect to the initial data. This sounds too good to be true, and as a matter of fact

the assertions are valid only for parameter values, far from those of major interest for edge

detection purposes. Albeit this serious weakness our analytical results give some indication,

that solutions exist, and that these solutions are reasonably well-behaved—a hypothesis fur

ther supported quite strongly by our experiments. They might also serve as a starting point

for future theoretical development. One could possibly obtain better results, if one applied

some more sophisticated iteration method. However this would most likely drastically com

promise the simplicity of the algorithm. We have therefore confined our analysis to the

Jacobi-like method, which after all yields remarkably satisfactory experimental results.

We begin our discussion with a couple of observations closely related to the ex

tremum principles from section 5.5.

Proposition 5.8.1 Let z0 be a solution of the discretized boundary value problem (5.26).
Then

A Co(0 <zo(j) < V Co(0 Vj € J

Proof: Let j± = arg max/€j±z0(l). Then ±[zg(j±)-z0(j±)] < 0, Vg 6 5. Hence by (5.26)

V ±*o(0 = ±zo(j±) < ±Co(i±) < V ±Co(0

Proposition 5.8.2 Let z0%\ i GN0 be defined by the iteration scheme (5.27). Then

A[Co(0 AXo(/)] <4°(i) < V[Co(0 Vxo(0] Vj €J Vi € No

Proof: Let i € N0, and j € J. From (5.27a) and (5.27b) we see that z£\j) is a convex
combination of Co(i) and 4* (i)» <1 € Sp, and thus in the convex hull of {Co(0» 4,~1,(0 :



I € J}- Since this is true Vj 6 J, we have

#-1)(0] ^ A 4,}(0 fx y*(i)m ^ w7c 7F/*~m w*(t~1)
ieJ

The proposition then follows by induction.

AKoWA 4i_1)(0] < A 4°(0 < V 4°(0<v«W) v^"''oi
ieJ ieJ i€J
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Using the bounds provided by the proposition above we can show the following

two convergence results:

Lemma 5.8.3 Let z0 , i € No, be defined by the iteration scheme (5.27) in terms of an

initial image function \o and an original image function Co- Let yy, i € No, be defined

in a completely analogous manner, but with xo &nd Co replaced by ipo and rjo respectively.

Assume that the dependency on the edge cost coefficient X is reflected by the diffusivity

anomaly g given by (5.12). If X is sufficiently large, then

limsup \\yjp - 4*Jlloo < c||*?o ~ ColU exponentially
i—*oo

for some known finite constant c.

Proof: To be specific we will only prove the lemma for the diagonal approximation (p2 =

2). The proof can however easily be reconstructed to cover the Cartesian case as well.

For i 6 No, let yq , Tq , vq , q £ S2 and »(*) denote the functions associated with t/g
corresponding to zq , aq , wq, q € S2 and w^ = w2 respectively. For simpler notation
also define the following bounds:

£(0 = ll^-^lloo *€No

E = ||%-Co||oo

Rz = V[Co(i)vxo(i)]-AlCo(i)Axo(i)]

Ry = VMi)vMi)]- AWi)A«i)l
jeJ jeJ

M = llColloo V Hxolloo

From the definitions of the shifted functions zq, yq, q € S, and proposition 5.8.2 we further



note that

D® > 114° -4°iloo V9€5 Vi€N0
Rz > V4°(J)-A4°0') ^eS Vie No

Ry > V4°(i)- A4°(i) V?€5 Vt€N0
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M > Halloo V? € 5 Vi € N0

Dropping the dependence on j € J and i € No for shorter notation, from (5.25c) we then

have

\i - °1\ =

= 2X21(2/91,92 - 2/0,0) +(2/91,0 - 2/0,92)2 - (*91,92 - 20,0)2 ~(^j.O - ^0,92)2|

= 2^2 1(2/91,92 ~ 2/0,0 +291,92 ~ 20,0)(2/9i,92 ~ 2/0,0 - 29i,92 +*0,o)
+ (2/91,0 - 2/0,92 + *91.0 ~ 20,92)(2/9l,0 ~ 2/0,92 ~ 29l,0 + *0,92 )l

^ 2(iZy + RZ)2D
2h2

4RD
Vj eJ Vi € N0

Thus from (5.12) we see that

K - W9I =

= \9° rq-g oaq\
_ VqVqWl ~ T2\

X
AvaWaRD'VW1J

~ Xh2

which in turn implies that

Vj £J Mq e S2 Vi <= N0

Hence

\v-w\< ^ \vq -wq\< Y, ~3-^— <
9€$2 9€52

Xh2 ~ Xh2

I2/0 - *o| =

- (2h2r)o + £ v*Vi
9€52

2h2 + v

1

2/i2 + W

Vj e J Vi 6 No

2/i2Co + Y, wiz*
9€52



2h2 + v 2h2 + w

1

2/*2Co + 2 wi9*
9652

\w — v'

2h2(r}0 - Co) + Yl K2/9 - ^9*9)
9G52

1

-2h2 +vM+2i^{2h2 +E+^-W\M +*D)
^ v S8RM
~ 2h2 + v V A/*2

Since v^)(j) < 4, Vj € J, Vi € No, we therefore conclude that
0°+ 1 )D + E Vj € J Vi e N0

£>(*•+!) < 1 fSRM
l +£ W/*2 )D® +E+ 1

If A> IQRM/h4, the assertion of the lemma then follows.

Vi € No
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(5.29)

Theorem 5.8.4 For sufficiently large values of the edge cost coefficient X the discretized

variational edge detection problem (5.26) has a unique solution, which is Loo-norm-stable

with respect to the initial data, and to which the iteration method (5.27) converges inde

pendently of its initial state xo-

Proof: Assume that Ais large enough for lemma 5.8.3 to be conclusive. Let zj, 4 >2
€ N0, be given as in lemma 5.8.3 with Vo = 4 an(^ ^0 = Co- Then 4 = 4* » Vi € N0,
and E = 0. By lemma 5.8.3, a simple Cauchy sequence argument (in Loo(J)) and the

observation, that the left hand side of (5.26) is a continuous function of zo with respect

to the Zoo-topology, (zq is a continuous function of z0, Vq € S,) it then follows, that zy

converges to a solution of (5.26) (as i —* 00) independently of its initial value xo- Next let

Xo and ipo be two possibly different solutions of (5.26), and let zfi\ 4 » *' € N0, be given
as in lemma 5.8.3 with 770 = Co- Then z0'* = xo, 4'* = ^0, Vi GN0, and E = 0. Thus by
lemma 5.8.3

ll^o - Xolloo = lim||4,')-z0,)||oo=0
i—•oo

which shows, that the solution of (5.26) is unique. Finally let xo and ipo be the solutions

of (5.26) given, that the corresponding original image functions are Co and 770 respectively,

and let 4 1 4 » *€ No, be given as before. Again z£' = xo, 4 = ^0, Vi € N0. From
proposition 5.8.1 and lemma 5.8.3 it thus follows that

lift) - Xolloo =Jim ||4° - 4°Hoc <11% - Cojloo
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which proves the stability of the solution. •

Unfortunately the theorem above gives a too pessimistic view of, what our ex

periments undoubtedly confirm, is really going on; it is only conclusive for values of the

edge cost coefficient A, far greater, than those, for which the algorithm is useful for edge

detection. There are two reasons for this shortcoming.

First of all at most locations j 6 J the constant R in the proof of lemma 5.8.3

is an overly conservative bound for the local differences of zy, it is meant to estimate. If

the iteration scheme was linear, this problem could easily be remedied, by replacing the

Z-oo-norm in the convergence analysis by a Sobolev norm, which incorporates the evolution

of theselocal differences as well as that of zQ1' itself. However, as we discussed in section 5.6,

the nonlinearity, inherited from the boundary value problem (5.10), is by our choice such,

that the local differences are strengthened, wherever initially sufficiently pronounced. Lo

cal differences of magnitude of the order R are therefore eventually to be expected. The

intuitive reason for the success of the scheme lies in the earlier demonstrated fact, that

the strengthened edges are simultaneously sharpened, so that the set of slow convergence

shrinks during the iteration—a mechanism that is not captured by the Xoo-style of the proof

above. Since the nonlinearity prohibits Fourier techniques, this problem might be hard to

fix.

Secondly the theorem suggests, that Abe chosen proportional to h4. In contrast,

(as one would also guess from, the way Aenters the defining expressions of the diffusivity

anomaly,) our experiments indicate, that A be chosen proportional to h2, as if the unity

term inside the parenthesis in (5.29) was missing. The intuitive reason for this discrepancy

has to do with another case of competing processes. A closerexamination of the proof above

shows, that the source of this term is the unit bound on the continuity control function wq,

inherited from the properties of the diffusivity anomaly g. Since wq actually takes values

close to unity at the abundant locations of almost vanishing image function gradient, this

bound is tight. However rewriting (5.27b) as

,('+i) JO _

1 + W0

we see, that at such locations

2ft2(Co - 4°) + £ «i°c*$° - 4°)
9€S2

,0+D _ .0) ^ 2/iV (,)
'0 z0 ~ c U0 z0 )
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Thus it seems, like the large values ofiuJ destroy the exponential convergence rate locally,
and only at those locations j € J, where 4 0) nas already practically converged.

5.9 Experimental Results

In this section we present some experimental results regarding our variational

edge detection method, governed by the cost functional (5.2). In all the experiments the

edge cost density was given by f(w) = w —\nv, corresponding to the diffusivity anomaly

<jr(-y) = 1/(1 + 72/A). The images involved were obtained by solving the diagonal (p2 = 2)

discrete approximation (5.26) of the boundary value problem (5.10). For computational

simplicity we used a Gauss-Seidel-like iteration method, rather than the Jacobi-like scheme

(5.27).

As mentioned earlier, the iteration method converges to the solution of interest.

In general, as one should expect, the convergence is faster, if the initial image function xo is

set equal to the original image function Co* The sequence of images in figure 5.5 illustrates

this condition. It shows, that reasonably good results are obtained well before 50 iterations,

and that convergence in the "sense of insignificant perceptible changes" is reached after

about 100 iterations. These observations, are as far as we can tell from our experiments,

valid, whenever xo = Co- In particular, they seem to hold independently of the choice of

the edge cost coefficient A and the pixel width h, at least in the range of interest for edge

detection.

The variational edge detection method itself as well as the iteration method, we

employed to solve it, appear to be remarkably robust with respect to changes in the initial

image function. Indeed if xo i=- Co» the iteration method still converges, if yet at a slower rate.

To demonstrate this behavior, we tried the algorithm on the same original image function,

as in figure 5.5, but with the particularly unfavorable initial image function xo = 0. Some

samples from the resulting sequence of images are shown in figure 5.6. The fact that the

limit image functions in the figures 5.5 and 5.6 are perceptually so close, also indicates, that

the solutions, even though multiple, in large exhibit the desirable type of behavior, that

mathematically stringent uniqueness would warrant. As one should expect, the significant

differences seem to be limited to affect small blobs of high contrast relative to the local

background. It is interesting to note, that the little dark blobs in the center of figure 5.5 (f),

which are missing in figure 5.6 (f), represent pixel values, which are closer to the zero initial
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Fig. 5.5: (a)

Fig. 5.5: (b)
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Fig. 5.5: (c)

Fig. 5.5: (d)
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Fig. 5.5: (e)

Fig. 5.5: (f)

Figure 5.5: Estimated image after i iterations, when xo = Co- (a) i = 0 (original image),

(b) i = 25. (c) i = 50. (d) i = 100. (e) i = 200. (f) i = 800.
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Fig. 5.6: (a)

mm

Im til

*****>&**

Fig. 5.6: (b)
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Fig. 5.6: (c)

Fig. 5.6: (d)
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Fig. 5.6: (e)

Fig. 5.6: (f)

Figure 5.6: Estimated image after i iterations, when Xo = 0- (a) i = 25. (b) i = 50. (c)

i = 100. (d) i = 200. (e) i = 400. (f) i = 800.
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image, used to generate the sequence in figure 5.6, than are the corresponding pixel values

(of the nonblobs) in figure 5.6 (f). This indicates, that the solution, which is implicitly

selected by choosing a particular initial image function, tends to reflect the smoothness

properties, rather than the actual values of the initial image function.

The nonuniqueness of the solutions of (5.26), stemming from the existence of

multiple local minima of the total cost functional (5.2), should not be very surprising. In

fact for most of the other existing regularization based edge detection methods it is relatively

easy to construct examples of original image functions, for which the total cost functional

exhibits this behavior. It is clear from the experimental results shown in figure 5.6, if not

by intuition, that all the local minima of the total cost are potentially satisfactory solutions

to the edge detection problem. Moreover by choosing the initial image function xo to equal

either the original image function or a constant, it seems like we have found a method of

selecting those local minima, which correspond to the cases of the most and least detailed

estimated images respectively. These extreme cases might actually be of more interest, than

the solution corresponding to the global minimum.

For our observations regarding the parameter dependence of the solution, that is

the influence of the edge cost coefficient A and the pixel width h on the estimated image

function z, we recall, that r = \jh is a true scale-space parameter governing the spatial res

olution of the edge detector, and that \fX, proportional to the edge enhancement threshold

7o, controls its sensitivity in a linear fashion. Since the local differences of the (original)

image function, unlike the discrete approximations of its derivatives, remain invariant un

der scale-space variations in terms of h, a more meaningful sensitivity parameter is in this

context given by s = y/Xh, which is proportional to the corresponding local difference en
hancement threshold ioh. (The same conclusion would have been obtained, had we kept

h constant and instead incorporated the explicit scale-space parameter p in the total cost

functional, as discussed in section 5.3.) Figure 5.7 shows an example of how the estimated

image function (after 100 iterations) depends on the scale-space parameter r for a fixed

sensitivity parameter (s = y/20). Its dependence on the sensitivity parameter s for a fixed

scale-space parameter (r = \/50,) is illustrated in figure 5.8.

In order to extract a set of edges from the estimated image function z, we fol

lowed the strategy outlined in section 5.3, and simply thresholded the gradient magnitude.

Figure 5.9 shows the edges extracted from the estimated image function in figure 5.7 (b)

using two different thresholds, one lower than, and the other one equally much higher than
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(a)

(b)

Figure 5.7: Estimated images for different values of the scale-space parameter r. (a) r2

12.5. (b) r2 = 100.
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(a)

(b)

Figure 5.8: Estimated images for different values ofthe sensitivity parameter s. (a) $2 = 10.
(b) s2 = 40.
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the edge enhancement threshold 70. As predicted by the discussion in section 5.6, the ex

periments confirm, that the edge extraction is very robust with respect to changes in the

threshold $ for a wide range of thresholds around 70. In fact, if one allows a couple of edge

segments to change, the range in question in this case extends well beyond, that spanned

by the three examples in the figure.
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(a)

(b)

Figure 5.9: Extracted edges for different values of the threshold i) = g~1(9). (a) t) = 22.

(b) 0 = 67.
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Chapter 6

Conclusions

At the time our efforts in edge detection began, almost all existing edge detection

methods were based on the use of local operators (for deciding whether or not a given pixel

belonged to an edge). Most such local methods yield edges that exhibit systematic errors,

and all of them lack a mathematical problem formulation that relates the entire output

of edges to the entire input—the original image function. These shortcomings motivate a

global approach.

We have proposed and studied the properties of two paradigms for global edge

detection. We have also developed general methods and more specific algorithms for solving

the resulting computational problems. These algorithms were implemented in software and

their performances demonstrated and evaluated through a number of experiments.

Both our paradigms are based on variational regularization, and expressed math

ematically as the minimization of a cost functional depending on the edges as well as a

piecewise smooth estimate of the true image function. The total cost consists in both cases

of the sum of three separate subcosts—an edge cost penalizing the extent of the edges, a

deviation cost promoting close approximation of the true image function by the estimated

image function and a stabilizing cost favoring a smooth estimated image function.

The most essential difference between the twoapproaches lies in the representation

of the edges. In the first paradigm the edges are represented by parametrized curves in R2.

In the second paradigm, which led us to the biased anisotropic diffusion method, they are

represented by a (strictly positive) real valued continuity control function defined on the

entire imagedomain. Both approacheshavetheir merits. While the global curve-represented

edge detection method yields a more structured—higher level—description of the edges, the
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biased anisotropic diffusion method is easier to implement and requires less computation.

The edges obtained with the biased anisotropic diffusion method are in general also better

looking than those obtained with our global curve-represented edge detector. It is important

to note, however, that "better looking" is not necessarily better, unless the detected edges

are subject to human inspection, (for example by the editor of a prominent journal.) A

higher level description might be more valuable for further machine processing. It should

also be noted that the global curve-represented edge detector most likely is open for more

improvement than the biased anisotropic diffusion method, which does not require that

initial edges are found externally.

Whether or not the proposed global edge detection methods are going to be use

ful in the future is not clear at this point. With present technology their relatively high

computational cost is a serious disadvantage in comparison with the much faster local meth

ods. However, highly specialized analog VLSI chips dedicated to solving partial differential

equations similar to the Euler equations associated with the kind of cost functional that

our paradigms involve, are being developed in research laboratories. If this effort succeeds,

global edge detection methods will become more tractable. Another possible avenue for

speeding up the global edge detection methods would of course be to develop or possibly

employ existing algorithms for solving the Euler equations with parallel processing.

6.1 Curve-Represented Edge Detection

In the curve-represented edge detection paradigm the edges are represented by

parametrized curves. We have considered quite general spaces of such curves—restricted

only by continuity, smoothness and regularity constraints. We have also considered the

special case of uniform cubic B-spline curves in detail. The spline curves offer simpler—lower

dimensional—parametrizations, which are particularly convenient for implementations. The

curve-represented edge detection paradigm is modular in the sense that it includes a number

of different edge and stabilizing costs, from which different linear combinations can be

selected to form a variety of total cost functional together with the deviation cost. Most of

the edge costs apply to (edges represented by) general smooth regular parametrized curves.

For edges represented by splines we have also proposed a couple of additional edge costs

denned directly in terms of the associated control polygons. These edge costs are most

often simpler to deal with than those that apply to the wider class of edges represented by
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general parametrized curves. The different stabilizers essentially enforce different degrees

of (piecewise) smoothness of the estimated image function.

In order to solve the global curve-represented edge detection problem, the total

cost functional must be minimized. Following one of the standard approaches of calculus

of variations we have somewhat heuristically derived a number of optimality conditions for

the image segmentation, that is the edges, as well as the estimated image function. The

optimality conditions regarding the edges are unfortunately but not surprisingly practically

useless for solving the edge detection problem. In other words, there is no known method

available for finding an image segmentation that satisfies these conditions. The edge opti

mality conditions do, however, bring us some valuable insight about the properties of any

such optimal image segmentation. With the optimality conditions regarding the estimated

image function, on the other hand, the situation is more or less reversed. These conditions

dictate that the optimal estimated image function satisfies an (elliptic linear partial dif

ferential) Euler equation, which can be shown to have a unique solution. While this fact

hardly provides much insight about the optimal estimated image function, (which is not of

primary concern anyway,) it does support a computationally straight forward method for

finding the unique optimal estimated image function, which minimizes the total cost for a

given, not necessarily optimal, image segmentation.

Because of the heuristics involved and the complicated way in which the optimal

edgeconditions depend on the (optimal)estimated image function, the variational approach

does not suffice to settle the issue of whether thereexist an optimal imagesegmentation and

an optimal estimated image function, which minimize the total cost functional. In order

to answer that question we have taken a somewhat different route employing techniques

and results from modern functional analysis. Our answer is affirmative, if yet valid only

for a somewhat restricted space of image segmentations. Our analysis is moreover limited

to a particularly simple choice of stabilizer. The chosen stabilizer is (just because of its

simplicity), however, the most interesting one for processing of image functions representing
brightness data.

Based on the heuristically derived variations of the total cost with respect to the

edges and the optimality conditions regarding the estimated image function we have pro

posed a method for solving the global curve-represented edge detection problem. More

precisely, the method finds an image segmentation and an estimated image function at

which the total cost functional has a local minimum. It starts out with some initial guess
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of what the optimal edges should be, and proceeds by adjusting these edges according to

a steepest descent rule. In order to compute the appropriate adjustment of the edges, the

optimal estimated image function for the present edges must be known. Each step of the

steepest descent procedure therefore requires the solution of the Euler equation governing

this optimal estimated image function. This can be done by way of standard numeri

cal methods, for example Gauss-Seidel. Since the Euler equation is quite well-behaved,

convergence to a unique solution can be guaranteed. The solution of the Euler equation

does, however, require considerable computational resources, and is therefore—at least with

present technology—the bottleneck of the entire edge detection method.

The global curve-represented edge detection method is most conveniently imple

mented for edges represented by splines. For such edges and a specific relatively simple

total cost functional we have developed a detailed global edge detection algorithm. This

algorithm has been implemented in software and subject to substantial experimentation.

Our experimental results verify that the algorithm essentially operates as intended. They

also provide examples of how the detected edges and the estimated image function depend

on the edge and stabilizing cost coefficients as well as the control vertex density of the

splines representing the edge segments.

6.1.1 Future Work

There are three more or less obvious major directions for further development of

the global curve-represented edge detection method and the theory underlying it. First of

all, the variational calculus, upon which the method is based, ought to be straightened out.

Secondly, the existence theorem 3.10.3 can almost certainly be generalized to apply to a

wider space of image segmentations than those satisfying the image segmentation constraints

(II), (12), (R), (Bl), (B2), (El) and (E2) in section 3.11, or to total cost functional with

more general stabilizers. Finally, there are many algorithm and implementation alternatives

that remain to be investigated.

The variational calculus in chapter 2 suffers from two basic weaknesses; it does

not consider second variations, and it is heuristic. By including second variations in the

analysis, one might be able to rule out certain spurious "solutions", that is saddles and local

maxima, which satisfy the optimality conditions without corresponding to local minima of

the total cost functional. A strict mathematical development of the variational calculus
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Figure 6.1: Edge segment (solid) with the same component of the continuity set on both

sides.

would most likely necessitate mathematical sophistication and techniques comparable to

those in chapter 3. If successful, such a development could support the relaxation of the

intersection constraints (Bl), (B2), (El) and (E2) on the space of image segmentations to

which the existence theorem 3.10.3 applies. It could also result in a full understanding

of the theoretical problems with the free endpoints. This might in turn lead to a more

general set of optimality conditions, which permit the existence of such endpoints, and to a

theoretically satisfactory way of treating such endpoints in the computational methods for

solving the global curve-represented edge detection problem.

We have just commented on one possible generalization of theorem 3.10.3, and

that one is probably the easiest such generalization to achieve. Besides a relaxation of the

intersection constraints it seems also quite possible to relax the interconnection constraints

in section 3.11 a bit. A reasonable first attempt would be to replace the constraint (12)

by one that only prohibits free endpoints. This would for example allow edge segments

that have the same component of the continuity set on both sides. An example of such an

edge segment is depicted in figure 6.1. The ultimate goal would of course be to remove the

constraint (12) altogether, thus allowing edge segments with free endpoints. Whether this is

to ambitious, and under which additional conditions, if any, this might be possible, is hard

to say. Finally, the application domain of theorem 3.10.3 could be extended by generalizing

the proofs in chapter3 so as to incorporate cost functionals with stabilizers involving second
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and higher order partial derivatives of the estimated image function. With the techniques

that we have used, however, this would most likely require a restriction of the space of

image segmentations so that the boundaries of the components of the continuity set are

guaranteed to be smooth.

During the implementation of the global curve-represented edge detector described

in section 4.2 lots of viable design alternatives were necessarily left unexplored. There are

thus many interesting changes and possibilities for improvement of the implemented algo

rithm that are worth further investigation. One could for example develop and implement a

version of the algorithm that enforces all the image segmentation constraints in section 3.11.

One could also experiment with algorithms for edges represented by general parametrized

curves rather than splines and for cost functionals involving different edge and stabilizing

costs. In terms of tuning the existing algorithm for better performance it would probably

make most sense to upgrade the preliminary edge detector described in section C.l. The

first suggestion would be to improve its jump mechanism. It could for example be made to

adapt according to some local property of the original image function. The edge initiation

and termination thresholds U and tt could also be made adaptive. The preliminary edge

detector could furthermore be replaced altogether or preceded by some other "continuity

control function-represented" edge detector. Two choices worth trying would be the Canny

edge detector [4] and the biased anisotropic diffusion method described in chapter 5. Ul

timately it would be desirable to furnish the global curve-represented edge detector with

an outer loop that allows for deletion of existing edge segments, introduction of new edge

segments, and other changes of the image segmentation configuration while the steepest

descent edge adjustment procedure is in progress. The initial edge finder and hence the

preliminary edge detector, which is part thereof, would then play a less significant role and

thus not require much improvement. Finally, there is an obvious need for automating the

selection of the edge and stabilizing cost coefficients A and //—the two fundamental param

eters. Since the edge adjustment procedure, in which these parameters are active, operates

on the output from the initial edge finder, such an attempt should also involve the related

parameters of the preliminary edge detector.
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6.2 Biased Anisotropic Diffusion

In our second paradigm the edges are represented by a continuity control function.

Although the approach is based on variational regularization, the resulting method can

also be viewed as a biased anisotropic diffusion method. This circumstance exemplifies

the close connection between the regularization and diffusion approaches in early vision,

and we hope that our analysis has shed some fruitful light on this interesting subject.

Besides being of general interest, the coincidence of the two paradigms has also allowed

us to analyze our variational edge detection method in the diffusion context. We have for

example showed, that it shares the attractive edge enhancement property characteristic of

the unbiased anisotropic diffusion method.

Unlike other existing regularization approaches to edge detection, our method

is tailored to support calculus of variations, not only with respect to the estimated/recon

structed image function, but also with respect to the continuity control function representing

the edges. This modification of the paradigm leads to substantial computational savings in

comparison with many, if not all, of the other regularization methods, without impairing the

performance. The sharpness of the edges, which is seemingly given up from the outset, is

regained during the iteration by the edge enhancement mechanism. This was demonstrated

by our theoretical analysis as well as by our experimental results.

The most notable difference between our method and other existing anisotropic

diffusion methods is, that our method converges to a solution of interest. This fact removes

the problem of deciding when to stop the diffusion process as well as that of actually

stopping it. As our discussion has revealed, the removal of the latter of these two problems

represents a major advantage for potential analog circuit implementations. The price, that

one pays for this improvement, is that the estimated image functions for different values of

the scale-space parameter no longer can be generated recursively.

For the solution of the variational edge detection problem we have proposed an

algorithm as well as an analog circuit realization. For a practically limited range ofparam

eter values the algorithm has further been found to beextremely well-behaved; it converges
to a unique solution of the discretized problem, independently of the initial image function,

that is the initial state of the iteration process. An important aspect, about the proposed
circuit, is, that it does not require either capacitors or synchronous readout.

While our theoretical convergence analysis has some limitations, our experimental
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results have clearly demonstrated that this method works very well for typical parameter

values of interest for edge detection. The algorithm does indeed converge to a solution

of interest, that is an estimated image function, which is remarkably robust with respect

to the initial image function. Furthermore the edges, which are obtained by postprocess

ing the estimated image function with a rudimentary local edge detector—thresholding of

the gradient—are insensitive to changes in the threshold—the goal of the regularization. In

addition to the convergence and robustness issues our experiments have exhibited the depen

dence of the solution on the values of the scale-space and sensitivity parameters embedded

in our paradigm.

6.2.1 Future Work

A number of theoretically relevant problems have been left open. The most im

portant mathematical questions that need to be answered, are arguably whether or not

a solution to the quasi-linear variational edge detection problem (5.10) exists, and under

which conditions such a solution is unique. In the case of nonunique solutions it would

moreover be most interesting to characterize the different solutions and somehow relate

the properties of the solution to those of the corresponding initial image function x m the

biased anisotropic diffusion problem (5.16). The same problem is also relevant for the nu

merical methods that can be employed for solving the edge detection problem (5.10). Other

important issues concerning the numerical methods are the traditional ones of consistency,

convergence and stability.

Any result pertaining to the numerical method will of course depend on the par

ticular method under consideration. Some methods might lend themselves to nice results

while others do not. An effort along these lines will thus consist in part of finding the most

tractable numerical method(s) to work with. The choice of numerical method does of course

also involve the discretization of the image domain and the discrete approximations of the

differential operators that figure in (5.10). For additional possibilities one can moreover

experiment with different edge cost density functions.

Besides being of interest for further theoretical developments the choices of the

numerical method and the edge cost density function also naturally affects the convergence

rate. Since the edge detection problem (5.10) is nonlinear, it might be hard to obtain

good theoretical bounds on this rate. The problem is, however, of immediate practical
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importance. In order to improve the performance of the biased anisotropic diffusion method

it might thus be worth while estimating the convergence rate empirically for a number of

different numerical methods and edge cost density functions.
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Appendix A

Proof of Theorem 3.8.2

The introduction of the concept of admissible image segments in section 3.8 made

the proof of the central lemma 3.8.3 relatively simple. To show directly from definition 3.8.1,

however, that a given subset of an image domain B is an admissible image segment of B,

is far from trivial. For verification of the hypotheses of lemma 3.8.3 we therefore rely on

theorem 3.8.2, which states that every Lipschitz domain fi C B is an admissible image

segment of B. In this appendix we prove this important theorem.

A.l The Original Atlas

Let ft C R2 be a (bounded open) Lipschitz domain. Thence according to defini

tion 3.5.1 there exist a finite collection {Tm}Jf=1 ofcoordinate transformations, a collection

{<j>m : Am =]am,bm[—• R}Jf=i of corresponding Lipschitz continuous functions, and a num

ber d > 0 such that the maps

$m : Qm = ATOX] -</,<*[-> tfm = $m{Qm)

: x>-> Tm(xi,<j>m(xi) + X2) m=l,...,M

satisfy the conditions:

(i) I/m+i$m(gm+)Cft m = l,...,M

(ii) tfm- = *m(<2m-)cCft m=l,...,A/

M M

(Hi) (J tf«0 = U *rn{Qm0) = OQ
m=l m=l
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where Qm± = R| n Qm, Qm0 = Rg n Qm and Umo = $m(Qmo), m = l,...,Af. Without

further assumptions the original atlas {$m}Jf=1 maybe very complicated and inconvenient

to work with. (This circumstance is of course the price one pays for the ease with which

the Lipschitz property can be verified.) However, given any original atlas of the form above

it is fortunately possible to generate a new atlas that satisfies a few additional conditions.

Some crucial simplifying assumptions regarding the original atlas can thereby be justified

as outlined below.

We will first without loss of generality assume that the intervals Ai,..., Am have

been foreshortened as necessary so that none of the Lipschitz charts $i,...,$m is redun

dant, or more precisely

M
tfmoNlJ^Wa m=l,...,M (A.l)

P=i
p^ro

Consequently each boundary segment Umo, tn— 1,..., M, intersects exactly two other (by

the Lipschitz condition necessarily distinct) boundary segments in {Uvq}^L1. The indices
of these boundary segments, each of which contains exactly one of the endpoints of £/mo,

will be labeled lm and rm (for left and right respectively). Thus

lim $m(xi,0)€ Uim0
x\{am

lim $m(x!,0)€ UTmQ
X\\Om

m = 1,...,M

The geometrical relationships between the boundary segments £/m0, Uimo and UTmo and

their associated local coordinate systems, (which for each x € R2 indicate the values of

T~1(x), T[^(x) and T~J(x) respectively,) are shown in figure A.l. Since r/m = lTm = m,
we also have

lim $/m(xu0)€ Um0

lim $rm(xuQ)e UmO
*l l<*rm

m = 1,...,M

The a;mi-coordinates* of these two points will as indicated in the figure be labeled am and
bm respectively.

Obviously am,6m € Am. From (A.l) it also follows that 6m > am. Hence the

closures of any pair of disjoint boundary segments in {Umo}m=\ are also disjoint. In other

The Xmi- and im2-coordinates of any point x € R2 are given by [1 0]TT^!(z) and [0 \]TTZl{x)
respectively.
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xrml

Sml

Figure A.l: Boundary segments f/m, £//m, UTm and their associated local coordinate systems.
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words,

Ur^nU^=0 pe {l,...,M}\{m,/m,rm} m = 1,...,M

Since the sets U\jo,..., Um,o are compact, the minimum distance between any two disjoint

such sets is strictly positive. We will therefore without loss of generality assume that the

number d > 0 above is chosen sufficiently small that

UmnUp = 0 pe{l,...,M}\{m,/m,rm} m = l,...,M (A.2)

Finally we will make an assumption about the relative orientation of the local

coordinate systems associated with overlapping boundary segments. As indicated in fig

ure A.l, for each m = 1,...,M, we let 9m denote the orientation angle of the xrmi-axis

relative to the xmi-axis. Let furthermore Lm denote the Lipschitz constant of the function

<f>m. The maximum absolute angle that the tangent of the graph f<j>m of <f>m forms with the

£mi-axis is then bounded by the constant

nm = arctan Lm < — (A.3)

By inserting an additional Lipschitz chart $a/+i with range inside the open set Um 0 Urm,

and thereafter again reducing the number d and foreshortening the domains Am and Arm

as necessary, one can always obtain a new atlas {$m}mii °f Lipschitz charts with the same
properties as the old collection, but with the original angle 9m replaced by two new angles

9m and 0m+i both half the size of the original 9m. The Lipschitz constant Lm+i of the new

function <j>m+i ♦ Aa/+i —• R introduced by this process can moreovereasily be seen to satisfy

the relation Lm+\ < Lm VLTm. By repeating this insertion procedure sufficiently many

times one can thus reduce the maximum absolute relative orientation angle between the

local coordinate systems associated with overlapping boundary segments to an arbitrarily

small value, without increasing the maximum value of the Lipschitz constants. We will

therefore without loss of generality assume that

|0m| +(*?mV77rJ<! 77l =l,...,Af (A.4)
In this section we have carefully used the subscript m to indicate that the indices

lm and rm are those ofthe unique boundary segments in {(/po}J£i that contain the left and
right endpoints of Umo. In the interest of avoiding too many subscripts we will henceforth

most often let this dependence be implicit, and simply denote these indices by / and r

respectively.
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A.2 A Family of Modified Atlases

Equipped with the preliminaries from the previous section we are now ready to

build the tools for generating a collection T& of interior set approximations of the domain

0, with the properties specified in definition 3.8.1. The idea is to let Tq be an infinite subset

of a collection {Fh}he]o,H] where Fh is obtained from Q by basically shifting its boundary
dil inwards a distance that tends to zero as h [ 0. Technically this is done by for each

m = 1,..., M, introducing a set {<j>mh '• Am —* R}/ig]o,//] °f Lipschitz continuous functions

with the properties that <f>mh > <f>m and 4>mh I <t> uniformly (on Am) as h [ 0. The next step

is to let the collection {{^m/i}m=i}/i€lo,//] somehow induce a collection ofmodified Lipschitz
chart atlases, which can be made to satisfy the conditions (i)-(iii) of definition 3.5.1 for the

sets in ^n.

Since we must show that the collection Fq satisfies condition (ii) of definition 3.8.1,

it is desirable that the induced Lipschitz charts share the ranges of those in the original atlas,

and that they and their inverses all satisfy a Lipschitz continuity condition with a uniform

Lipschitz constant. These circumstances make the construction of {{<j>mh}m=i}he]o,H] and
the induced Lipschitz charts somewhat more complicated than one at first might expect.

First of all, the transformed graphs Tm(f,/,m, m = 1,..., M must join so as to form simple

closed curves. Secondly, the simple Lipschitz chart construction in definition 3.5.1 must be

modified.

A.2.1 The Collection {WmjtfiLiW/o

Consider the two boundary segments Umo and Utq and their associated local co

ordinate systems shown in figure A.2. Let for each h > 0, as there indicated bmk be the

%m\-coordinate of limXliar $r(x\yh). From the figure we then see that

bmh = £m - hsin 9m -+ bm as h [ 0 (A.5)

Since the interval Am is open, this means that 6m^ € Am for sufficiently small h > 0. For

such values of h we define

A (»\-A /- n• L• [Zmh - <t>mCbmh) - h](Xl ~ <*m) , r , ( . „,
<Pmh{xi) = <Pm{xi) + n + z x\ e\am,omh\ (A.6)

where cmh = <j>m(bm) + h cos9m is the a-m2-coordinatc of the left endpoint limXljap $r(zi,/i)

of the curve segment $r(Ar, {/*}).
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Cmh

Figure A.2: Construction of the curve segment Tm^ (heavy line).
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From the angle condition (A.4) it follows, as one can see from figure A.2, that

0 < cmh - <i>m(bmh) < Lmh\ sin 9m\ + hcos 9m < Lmh + h (A.7)

Since

lim 4>mh(xi)= lim 4>m{xi) + h (A.8)

4>mh(bmh) = Cmh (A.9)

and 0m^ —<j>m is affine, (A.7) implies that

0 < <f>mh(xi) - <M*i) < {Lm + l)h yix1 €]am,6m/l] (A.10)

Hence for sufficiently small ft>0we have

Tmh = {Tm(xu<lhnh(xi)) : xx e]am,bmh]} CUm+CQ (A.ll)

The geometrical construction of this curve segment from the two boundary segments Umo

and Uro is illustrated in figure A.2.

From (A.5) and (A.7) it follows that

Cmh - <f>m(bmh) - h Q(U\
bmh - 0>m

The function defined by (A.6) is therefore Lipschitz continuous with Lipschitz constant

Lmh = £m + 0(h) (A.12)

By (A.3) and the differentiability of the arctan-function we also have

ffmh = arctan Lmh = nm + 0{h) (A.13)

The procedure above can of course be carried out for each one of the functions

0i,...,<f>M- For sufficiently small h > 0 the angle condition (A.4) then also applies to fjmh

and fjrh, that is

W +(UVW< \ (A.14)
This means that the (transformed) curve segment T~1(rr/l) is the graph of a function on

some interval ]6m/,, dmh] (of the a:mi-axis) where dmh is the armi-coordinate of the right end-

point Tr(brh,crh) of Trh. According to (A.5) and (A.7) \\mhioTr(brh,crll) = Tr(6r,<£r(6r))
and by the nonrcdundancy condition (A.l) (applied to Uro) we have Tr(br,<f>r(br)) g f/m0.
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From the angle condition (A.4) it therefore follows that linujo dmh > bm. Hence for suffi

ciently small h > 0, T~l(Um n Trh) is the graph of a function (pmh :]bmh,bm[-+ R. Let

<t>mh(xi) = <pmh(xi) *1 €]bmh,bm[ (A.15)

Together (A.6) and (A.15) then define a function <f>mh : Am —> R.

We already know that <f>mh is Lipschitz continuous on ]<zm,&m/J with Lipschitz

constant given by (A.12). From (A.13), the angle condition (A.14) and the differentiability

of the tan-function it also follows that <f>mh is Lipschitz continuous on J&m/i, bm[ with Lipschitz

constant

tan(|0m| + f}rh) = tan(0m + rjr) + 0(h)

Finally, from (A.7), (A.8) (applied to 0^), (A.9) and (A.11) (applied to Trh) we see that

<f>mh is continuous at bmh- Hence <f>mh : Am -> R is Lipschitz continuous with Lipschitz

constant

Lmh = [Lm Vtan(|0m| + nr)] + 0(h) (A.16)

By the definition of <pmh and (A.ll) it follows that Tm(fVmh) C Um 0 Trh C

Um nil = Um+. Thus

<t>mh(x\) = <Pmh(x\) > <f>m(Xl) VXi €]6mft,6m[

From (A.10) (applied to <f>rh) and the angle condition (A.4) we also have that

(f>mh(xi) - 4>m(x\) < Lmhhsm \9m\ + (Lm + l)hcos9m Vi! e]bmh,bm[

By (A.16) the asymptotic behavior of <f>mh on ]am,6mA], as dictated by (A.10), therefore

generalizes to

0 < <l>mh(xi) - <f>m(xi) < (Lmh + Lm + l)/i = 0(h) Van € Am (A.17)

From the discussion above we conclude that there exist three finite constants H >

0, Lj, > Vm=i Lm and K^ > 0, such that for each m = 1,..., M and each h e]0, H], (A.6)

and (A.15) define a function <f>mh : Am -* R that satisfies the Lipschitz condition

\<i>mh(y\) - <t>mh(xi)\ < L^yi - xi\ Va;i,2/i € Am (A.18)

and the "localization" condition

d
0<<t>mh(xi)-(f>m(xi)< K*h< - V*i€Am (A.19)
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A.2.2 The Induced Lipschitz Charts

Let for each m = 1,..., M and each h e]0, H]

A ( \ • J Tm(xl,<l>mh(xi) +Xmh±(Xl)X2) if X<= Qm±
9mh(x) = < (A.20)

( Tm&i^mhfa)) if a: € QmO

where

Xmk±M =!±»»(«l)-*•*(«!) „ gAm (A.21)

We thereby obtain a collection {Ah = {$m/i}m=i}/ie]o,J/] of modified atlases. In view of
(A.19) it is easy to check that the map X2 »-»• <t>mh(x\) + Xmh+(x\)x2 maps ]0,d[ onto the

nonempty interval ]0mAOPi)»^m(si)+d[» and that x2 •-* 0m/t(xi) + Xm/i-.(a;i)^2 maps ]-rf,0[

onto the nonempty interval ]<f>m(x\) —dt4>mk(xi)[. Hence the three sets

Umh+ = $mh(Qm+) = {Tm(x): 4>mh(x\) < x2 < <t>m(xi) + d,Xi <E Am} (A.22a)

Umh- = $mh(Qm-) = {Tm(x) I<}>m(xi) - d < X2 < <l>mh(xi),Xi e Am} (A.22b)

Umho = $mh(Qmo) = {Tm(xu4>mh(xi)) Ixx € Am} (A.22c)

are, as shown in figure A.3, mutually disjoint and satisfy the conditions

Umh+ U Umh- U UmhO = Um (A.23)

Umh+ U tfrofc0 C Um+ (A.24)

0mfc- 2 #m- U Um0 (A.25)

From the angle conditions (A.4) and (A.14) it moreover follows that

0mfc+ C Ctf/*. DCf/r/l_ (A.26)

and

5i/mA- C £/m_ U Uih- U tfr/l_ U £/m/l0 U Uiho U tfr/lo (A.27)

Fact A.2.1 lJm=i W«fc- C Cfi U(JJLi^mfc- UffroW>).

Proof: Since Q is open we have that Um- C Cfi C Cft, m = 1,...,M. Moreover, by

definition /m,rm € {1,...,M}, m = l,...,Jl/. Hence (A.27) implies that
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xm\

Figure A.3: The sets Umh± and Umho and their relationships with the sets Um± and Umo-



U dUmh- C |J (Um- UUmh- UffmA0) CCfl UQ (^»A- UffmM)
m=l m=l m=l
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Next we want to show that the maps defined by (A.20) are Lipschitz charts. Since

$mh is defined differently on each of the three sets Qm± and Qmo, the verification of the

Lipschitz continuity condition must be separated into multiple cases. The same goes for

$~i, which as it naturally turns out, is given by different expressions on each of the sets
Umh± and Umho. By the following proposition, however, the Lipschitz condition can be

verified without considering the nowhere dense sets Qmo and Umho. The number of cases

that have to be considered is thereby effectively reduced to only a couple.

Proposition A.2.2 Let f be a continuous function from a subset X of a normed vector

space V to a normed vector space, and let D be a dense subset of X. If f\D is Lipschitz

continuous with Lipschitz constant L, the same is also true for f.

Proof: Let x,y € X and let c > 0. Since / is continuous and X = D, 3xd € D n Bv(x,e)

and yD <= D n Bv(y,e) such that \\f(xD) - f(x)\\ < c and \\f(yo) - /(y)|| < €. Hence

ll/(y) - /(*)|| <

< 11/(2/) - f(yD)\\ -r \\f(yD) - f(xD)\\ + \\f(xD) - /(*)ll

<2c + L\\yD-xD\\

< 2f + L(\\yD - 2/|| + \\y - x\\ + ||x - xD\\)

< L\\x- 2/H + 2(1 + !)€

Since € > 0 was arbitrarily chosen, the proposition follows. •

Fact A.2.3 Each $ € A = \Jhq]o,H]^h is a Lipschitz chart. All the members of A and
their inverses furthermore share a common Lipschitz constant L^ < oo.

Proof: Let m € {1,...,A/}, and let h €]0,//]. The coordinate transformation Tmaffects

neither the properties of invertibility and difierentiability nor the values of Lipschitz con

stants. It will therefore without loss of generality be assumed to be the identity map.
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From (A.18) and (A.21) we see that <f>mh and Xmh± are Lipschitz continuous with Lipschitz

constants Lj, and 2L<f,/d respectively. Next by (A.19)

and

M d
sup 4>mh(x\)< V SUP l<M*i)| + x < oo

xiGA l=1xi€Am

1 3
- < inf Xmh±(x\) < sup Xmh±(xi) < -
2 *i€Am xi€Am ^

(A.28)

Since Qm and Um (being the range of a Lipschitz chart,) are bounded, proposition 3.5.2

therefore implies that the maps $mh± —$mh\Qm± are Lipschitz charts with inverses given

by

.-i*mh± : Umh± — Qm±
Xi

. Xmh±(xi) .

and that 3 a constant L, independent of m and h, such that

\\*mh±(v) ~ *mh±(x)\\ < L\\y - x\\ Vs, y € Qm±

\\K\±(y) - K\±(*)\\ < L\\y - x\\ vx, y <= umh±

The map $mho —®mh\QmO is of course also invertible with the simple projection

$-i
mhO >UmhO —• QmO ' X »-*

X\

0

(A.29)

(A.30a)

(A.30b)

(A.31)

Since the sets Umh+> Umh- and Umho are mutually disjoint, it thus follows that $mh has an

inverse given by

$-i (x) = J *ml±to if *^ Umh±
•mhQ(x) nit L/m/iO

Since $m/,± and $m\± are differentiable a.e., and the sets Qm0 and Umho are ofzero measure
(in R2), it also follows that $mh and $m\ are differentiable a.e. It finally remains to prove the
claim about the Lipschitz constant Lj,. Since <f>mh is continuous and Xmh± satisfy (A.28), it
follows directly from (A.20) that $mh iscontinuous onQmo, and from (A.29) and (A.31) that

$m\ is continuous on Umho- Consider first the (slightly more complicated) map $m\. Let
x,yeUm- If-ar,y € Umh+ or *,y € tfm/l-, then ||*~UiO-*-ito|| < I||y-ar|| by (A.30b).
If instead x 6 Umh+ and y € Umh-, then the line segment between x and 2/ must by the

intermediate value theorem contain a point w € Umho- Let c > 0. Since $m\ is continuous
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at w and Umho Q dUmh+ n dUmh-, 3u>+ € Umh+ n 5R2(ti;,€) and w_ € tfm/i- n 5R2(w,€)

such that \\$-\(w±) - *;l(w)|| < €. Hence by (A.30)

\\K\(y) - K\(*)\\ <

< n*i(y) - •;A(*-)ii + n*i(».) - *;Atoii + ll*;lto - *i(«+)ii

+ ll*;U«+) - *i(»)ll
<I(||y-w_|| + ||w+-a:||) + 2€

< X(||y - w|| + \\w - s|| + 2e) + 2e

= L\\y-x\\ + 2(L+l)e

Since e > 0 was arbitrarily chosen, it once again follows that ||$^/i(y)—$m\toll ^ •^l|y""a?ll-
We thus conclude that $m\\Umh+ UUmh- is Lipschitz continuous with Lipschitz constant

L. Substituting Qm±, Qmo and $mh for Umh±, Umho and $m\ respectively in the argument

above we likewise find that the same is true for $mh\Qm+ U Qm-> Since Umh+ U #m/i- is

dense in Um, and Qm+ UQm_ is dense in Qm> the fact then follows by proposition A.2.2. •

A.3 A Collection of Interior Set Approximations

In this section we use the modified atlas collection {Ah}he]o,H] to construct a

collection fn of interior set approximations of the domain ft. We also prove a few results

about the properties of the sets in Tq. From these we conclude that Tq satisfies the

conditions (regarding Fq) in definition 3.8.1. The proof of theorem 3.8.2 then follows.

Let h €]0, H], and define the set

M
Fh = ft \ |J Umh-

m=l

Since ft is bounded and open, so is obviously its interior set approximation Fh* In addition

Fh satisfies the conditions listed in the following five facts.

Fact A.3.1 For each m = 1,..., A/ the following inclusions hold:

(i) Umh+ C Fh

(ii) Umh- C C7\
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(iii) Umho Q dFh

Proof: Let m € {l,...,Af}. From (A.24) we know that Umh+ Q Um+ Q ft. By the

decomposition (A.23) and the separation condition (A.2) we also have

M M

Umh+CUmC f) tUpC fl ZUvh-
p-i P=i

pg{m,/,r} p£{m,l,r}

Since Umh+ and Umh- are disjoint, it is moreover true that Umh+ Q ^Umh-- Finally by
(A.26), Umh+ QtUih- nijUrh-- Combining these four inclusion relations and recalling that

Umh+ (being homeomorphic to Qm+) and ft are open we get

(M \ ° M 0 M
ftnp|CtfpA- =fi°nf|(C^-) =n^{JuPh- =Fh

P=i / P=i P=i

This proves (i). Next we note that

M

Fh =ft n|J Uph- CiUmh- = (lUmh-y
P=i

Since Umh- (being homeomorphic to Qm-) is open, we therefore have Fh Q(\)Umh-j C
C/7m^_, which proves (ii). Finally, as the sets Umh± and Umho are images of Qm± and Qmo
respectively under the same homeomorphism ($mh), we have that Umho Q Umh+ n Umh-.

Hence by (i) and (ii), Umho QFh n \)Fh C Fh n C-FX, from which (iii) follows. •

Fact A.3.2 Fh C ft.

Proof: By its definition Fh C ft. Hence 7^ C ft. From fact A.3.1 (ii) and (A.25) it

moreover follows that
M M

lFh 2 (J Umh- 2 \J Um0 = dQ
m=l m=l

Thus7\ CftnCdft Cft. •

A/Fact A.3.3 8Fh C (Jm=i tfmAo



Proof: By fact A.3.1 (ii)
M

U Umh- C lFh
m=l

Since ft is open, fact A.2.1 therefore implies that

0Fh =

=a(ft \ u^r)
M

C0ftU (J^m/t-
m=l

Af

C Cft U |J (Umh- Utf^o)
m=l

M
CCftuCfXU |J UmhO

m=l

However, from fact A.3.2 we also see that Cft C ZFh C ZdFh, whence the fact follows.

Fact A.3.4 The set Fh is a Lipschitz domain.

Proof: Define the maps

Am * L±m X<-m • "m

d d

2'2
R2 :x >-+ Tm(x\,<j>mh(x\) + x2) m = 1,...,A/

Then by (A.19) and fact A.3.1 (i) and (ii)

Xm(Amx]o,-J) CUmh+QFh m=l M
and

(Amx -^O^CUmh-ClF,Xm ( Am Xlm i *-»m ?h m=l,...,M

Furthermore by (A.20), fact A.3.1 (iii) and fact A.3.3

m m

|J Xm(Am x {0}) = |J Umho = dFh
m=l m=l

Since Fh is bounded and open, the fact thence follows directly from definition 3.5.1.

Fact A.3.5 The collection {Fh,U\,.. . ,J7a/} is an open covering of SI.
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Proof: From fact A.2.1 and the decomposition (A.23) we first note that

MM M M

|J UmlZ= U (dUmh- UUmh-) CCft U |J (Umk- UUmho) QCft U (J tfm
m=l m=l m=l m=l

Hence
M / M \ M

i^ =ftN U tfm^ftnCICftU |J Um) =̂ (J U*
m=l \ m=l / m=l

which implies that

fiCFAu|J^
m=l

Moreover,
A/ Af

dQ.= \JUm0Q{j Um
m=l m=l

Since Fh and #1,..., J/m are open, the fact then follows.
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Consider now the entire collection {Fh\he]o,H] where Fh for each h is defined as

above. Since ft is open, fact A.3.2 implies that Fh CC ft, whence g = p(dFn,dQ) > 0.

From fact A.3.3 we know that dFH = Um=i UmHo- Likewise dft = Um=i um0- Since

the coordinate transformations T\,. ...Tm preserve distances, (A.19) and (A.22c) therefore

imply that
M

K+H > A inf 4>mH(x\) - 4>m(x\) > g

Let H = g/K*. Then obviously H < H. From (A.19) and (A.22b) it also follows that

Umh-CUmH- Vfc€]0,#] m = l,...,M (A.32)

Let furthermore T& = {-f\}fc€]o #]• ^e tnen nave tne following two facts.

Fact A.3.6 There exists a uniformly bounded collection {PF € C(ril(F),Hl(R2))}F^n
of extension operators.

Proof: Let U = {Um}m=o where U0 = Fj{. From fact A.3.5 we recall that U is an open

covering of ft. Let thence * = {ipm}m=o ^e a C°°-partition of unity for ft subordinate to It.

Then let h e]0, //]. According to fact A.3.4 the bounded open set Fh is a Lipschitz domain.

From fact A.2.3 we also know that Ah is an atlas of Lipschitz charts, and that the members

of Ah and their inverses share a common Lipschitz constant L4 < 00, which is independent
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of h. The facts A.3.1 and A.3.3 moreover imply that Ah satisfies the conditions (i)-(iii) of

definition 3.5.1 for the domain Fh. Next, from (A.32) we see that

M M
U0 = FH = ft S |J UmH- Cft V|J Umh- = Fh

m=l m—1

Since It is an open covering of ft, fact A.3.2 furthermore shows that It is an open covering

of Fh as well, which in turn means that $ is also a C°°-partition of unity for Fh subordi

nate to It. We note in particular that It and hence \P are independent of h. Altogether

the observations above imply that the hypotheses of theorem 3.7.7 (with Fh playing the

role of ft) are satisfied. Hence 3 an extension operator Pph € C(Hl(Fh),ri1(R2)) with

norm HiVjJIifW'fFjj.WfR3)) bounded (above) by a constant that only depends on the three

constants JW, La and M* = Vm=o V/=osuPr€R2 ll$» toll* Since Af, La and Af* are all

independent of h, this completes the proof. •

Fact A.3.7 \xmh{om(Sl \ Fh) = 0.

Proof: Let p € {1,..., Af}. From (A.22b) and (A.23) we see that

ft n Uph- = Up+ n Uph- = {Tp(x): <t>p(xx) <x2< 4>Ph(xi),xi € ap}

Since m(dUph-) = 0 and the Jacobian determinant \Jtp\ = 1» using (A.19) we therefore

obtain

m(ft DUph-) = m(ft fl Uph-) = J (<f>ph - <i>v) dxi < K<t,h(bp - ap)

By the definition of Fh and the subadditivity of the Lebesgue measure it hence follows that

/ M \ A/
i(ft \ Fh) = m (J (ft Di/p/l_) < K+h ^2(bp - ap) -> 0 as /i | 0m(

,p=i / P=i

Proof of Theorem 3.8.2: Let ft be a subset of class C0,1 of an image domain B,

and define as above Fq to be a collection of open interior set approximations of ft. The

conditions (i), (ii) and (iii) of definition 3.8.1 then follow by fact A.3.2, fact A.3.6 and

fact A.3.7 respectively. •
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Appendix B

Proofs of Results in Section 3.11

A couple of the results in section 3.11 were stated essentially without proof. In

this appendix we present proofs of these results along with some of their preliminaries. In

section B.l we prove fact 3.11.6. In section B.2 we prove fact 3.11.7.

B.l Proof of Fact 3.11.6

Throughout this section we assume, as in the hypotheses of fact 3.11.6, that

l,N € N. We need to show, that the image segmentations in Cl(H)2N, which satisfy the

interconnection, regularity and intersection constraints (II), (12), (Rl), (Bl), (B2), (El)

and (E2) presented in section 3.11 is closed in Cl(Z)2N. Since intersections of closed sets

are closed, these constraints need not be dealt with all at once. We therefore define T/ to

be the set of image segmentations in Cl(E)2N, which satisfy the interconnection constraints

(II) and (12). Likewise we define Tfli, Tgi, Tb2> Tei and Te2, to be the sets of image

segmentations in C'(E)2N, which satisfy the constraints (Rl), (Bl), (B2), (El) and (E2)

respectively. We will show, that each of the sets T/, Tm, Tbi, Tb2, Tei and Te2 is closed

in C'(S)2N. Fact 3.11.6 then readily follows.

Fact B.l.l The set T/ is closed in Cl(Z)2N.

Proof: Let Tj be the set of all image segmentations in C'(S)2/V satisfying the inter

connection constraints associated with the directed graph J according to (II). Suppose

7 = [7?,---7^]r € Cl(Z)2N \ TT. Then 3 two joining endpoints (n,s),(p,t) € EN, such
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that 7n(s) ^ 7p(0» or 3 (n,s) € A/sb, such that 7n(<s) £ 0J9. In the first case

R / ll7nW-7p(0lh r ri(yVN v «
#C(E)2JV I 7» T~7= 1 £ G (L) x Ir

In the second case the point 7n(s) is separated from the closed set dB by a Euclidean

distance 6 > 0. Hence

Bcpr^JccW^r!
In either case 3 a nonempty open Cl(H)2N-baU centered at 7, which is contained in Crj.

ThusTj is closed in Cl(E)2N. Since N < 00, the space En is finite, and therefore the

number of possible interconnections of N edge segments is also finite. In particular the

number of such interconnections identified with directed graphs, which satisfy (12), is finite.

Since

Ti = (J rl
7 satisfies (12)

and the union of finitely many closed sets is closed, the fact follows. •

Fact B.1.2 The set Tm is closed in C'(S)2iV.

Proof: Suppose 7 = [7?* •••T^]7* € Cl(E)2N \ TRi. By (Rl) this is equivalent to, that 3

n € {1,..., N} and a 6 S, such that ||7nto|| < ^- Since / > 1, this implies that

W-Il7ntolh ,- r*\t*\W^C'(S)2^ (7»

Hence Thi is closed in Cl(£)2N.

V2
') CC'(£)5 ^Tm

For the proofs, that the intersection constraints are closed, we will need the fol

lowing elementary preliminary result.

Proposition B.1.3 Let v,iy,ar,y € Rn s {0}. Then the following is true:

0)

00

\vk\ \v>k\
llvll " "

T
IT x

W\\\\x\

\w\

Tw y

\w

w

\w\

2\\v- w\

\w\
k = 1,..., n

<2H"-H1 +2||x - t/II
\w\



Proof: Let fc€ {1,. ..,n}. Since

|t>*| \v>k\
\\v\\ \\w\\

<

<
Vk Wk

H"Mi
<

V w

\H M
IHh>-||«HI

IMIMI
.IIIHI-IHIIIHI + Nllb- w\\

IMIIMI
2||»- HI

\w\

(i) follows, and therefore

Tvx x

\v\\\\x\

which proves (ii).

Tw1y
<

V W

W
+

X

iwi"
y

\\y\\
^2||t;-HI . 2||x

~ Ml ||l
-»ll

Hlllvll /II
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Fact B.1.4 The set TBi is closed in Cl(Z)2N.

Proof: Suppose 7 = frf •. -1n)t e Cl(2)2N\TBi, that is 3 n € {1,..., N} and a 6 S, such
that both the conditions (i) and (ii) or both the conditions (iii) and (iv) of the constraint

(Bl) are violated. Suppose (i) and (ii) are violated, or equivalently that

7mto£[a+A>,fc-<$o] (B.l)

and

|7n2tol>(l-<5l)||7nto (B.2)

Since the set [a + 60,b - 60] is closed, (B.l) implies, that it is separated from 7nito by a
distance r0 > 0 (in R). Hence

£mto $[a + 60,b- 60] V/3 6 £c/(S)2w(7,r0)

From (B.2) we see, that 7nto 7^ 0, so (B.2) is actually equivalent to

l7n2to|
Il7»toll

>l-6i

(B.3)
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and then by proposition B.l.3 (i)

IIA.WB

V0 € C'(E)2Ar, for which

k(°) * 0 (B.4)

and

2llA.fr) - 7n(<r)l| . l7»2(<r)l ,,, ,„ ,,
Il7»(*)ll <1J7^I_1 +*1 (B-5)

Now (B.5) implies that

lAatol >

>|7ni

> |7«2(^)I "

>|7n2to|-|l7nto-/3nto||
|7n2to|-(l-^l)ll7nto

2

_|7n2tol+(l-^l)ll7ntol|
2

>0

Thus (B.5) is a stronger condition, than (B.4), which can hence be neglected. Since / > 1,

we therefore have that

Jl^J >1-* V/J €acipHT.rO (B.6)
IIAitoll

where by (B.2)
, . l7n2(<T)|-(l-^,)||7n(7)|L „T\ = y= > U

2\/2

From (B.3) and (B.6) we now see that

*c«(E)»"(7. r0 Ari) £ C'(S)2iV \ TB1

If instead of (i) and (ii), conditions (iii) and (iv) are violated, a similar proof shows, that 3

an open nonempty C'(S)2^-ball centered at 7 and contained in Cl(T,)2N \ Tb\> Hence T^i

is closed in Cl(T,)2N. •

Fact B.1.5 The set TB2 is closed in Cl(Z)2N.
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Proof: Suppose 7 = [^''-InT € Cl(X)2N \ TB2- By (B2) this is equivalent to, that 3

(n,s) GEN\J\fdB and x £ dB, such that ||7nW - x|| < 60. Hence

Bow (t,*1""7^"*") £c'(S)2"-rB2
which shows, that TB2 is closed in Cl(H)2N. I

Fact B.1.6 The set TEi is closed in Cl(Z)2N.

Proof: Suppose 7 = {li'"lJj)T € C^E)2^ \ r^. By (El) this is equivalent to, that 3

n,p € {1,..., JV} and (o,t) € Tnp, such that ||7„to - 7ptoH < ^o- Hence

o („ 6o ~ Il7nto ~ 7PtoH\ r ri,V\2N v r^C(E)2" I7. r^ ) <= C(S) \ T^i

which shows, that Tei is closed in C'(£)2N. •

Fact B.1.7 The set TE2 is closed in Cl(Y,)2N.

Proof: Suppose 7 = [7?* •••7j(J]T € C'(E)2Ar \ T^. By (E2) this is equivalent to, that 3

two joining endpoints (n, s), (p, *) € E^, such that

(-lJ^'W^W) >(i - 'i)IIW<')llll'W)ll (B.7)

From (B.7) we note, that 7„(ct) # 0 and %(t) ^ 0, so (B.7) is equivalent to

/ Us+t 7n(g)r7P(r)
1 ' ll7n(<r)||||7P(r)|| > "

and then by proposition B.l.3 (ii)

V/? € C(E)2N, for which

HA.tollllA(r)||

Pn(°) ± 0 (B.8a)

far) ? 0 (B.8b)
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and

2llA.fr) - 7nWH . 2||4(r) - 7p(r)|| +, t,WTT,(r) , , . ,_Q,
Il7»fr)ll + ||7p(r)|| <( l> ||7n(<r)||||7p(r)|| l +H {a*>

Now (B.9) implies that

IIA.MII >

> Il7nl

> IlinfrMI -

> lft.MII - ||7»(") " M*)\\
(-l)'+'7„(<T)r7p(r) - (1 - *,)||7nfr)ll||7p(r)||

and similarly

2||7P(r)||

>(l - |) |IW»)II
>0

IIA.MII >(l - I) ll7P(r)|| >0
Thus (B.9) is a stronger condition, than (B.8), which can hence be neglected. Since / > 1,

we therefore have that

%(S)^(7,r)CC'(S)2JVNr£2

where by (B.7)

r± (-l)^nto%(r)-(l-tfi)||%to|||fa(r)||
4>/2(||7nto||V||7p(r)||)

Hence rE2 is closed in C'(E)2/V. •

The proof of fact 3.11.6 is now trivial.

Proof of Fact 3.11.6: Let T be the set of image segmentations in C'(E)2A^, which satisfy

all of the interconnection, regularity and intersection constraints (II), (12), (Rl), (Bl), (B2),

(El) and (E2). Then

r = T/ n TRl n tB\ n rB2 n rEi n rE2

Hence fact 3.11.6 follows from the facts B.l.l - B.l.7. •
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B.2 Proof of Fact 3.11.7

Throughout this section we assume, that 7 = [7^••«7jv]T € CitN(h,r,u,6o,6\,*>)>
where the constants /,JV, h,r,LJ,6o,6\ and v satisfy the hypotheses of fact 3.11.7, that is

l,N € N, h G]0,1], r,o>,£0 > 0, #i,v €]0,1[ and

/ 6\u \ »

V< \2V2r)
where H = h if / = 1, and H = 1 otherwise. We have to show, that the image segmentation

7 is admissible. By theorem 3.8.2 it is sufficient to show, that all the components of the

corresponding continuity set C7 are of class C0,1. This in turn can be done, by verifying

the conditions of the Lipschitz domain characterization given on page 78.

B.2.1 Function Graph Representations

We begin with three results, each of which considers a connected subset of one of

the following types of sets:

1. A single edge segment.

2. A union of two joining edge segments.

3. A union of an edge segment and a line segment of the image domain boundary dB.

We will show, that each such subset is a curve segment, which can be (re)parametrized by

its coordinate along some axis in R2, so that it is congruent to the graph of a Lipschitz

continuous function of the form <j> :]a,6[—• R. It is easy to see, that these curve segments

are subsets of dC-,. Later we will also see, that every point on the boundary of Cy, and

therefore every point on the boundary of any of its components, belongs to some curve

segment of this kind. From this we will be able to prove, that every component of Cy is of

class C0'1.

Fact B.2.1 Let n G{1,...,N}, and assume, that Br(v,c) C E for some € e]0,v]. Define
the function

f:BR(cr,() - R: c1- wT[7n(c) - 7nto]

where u is the unit vector pointing in the direction of^n(o). Then f is strictly increasing,

and the curve segment 7„(/?r((t,€)) is congruent to the graph of a Lipschitz continuous

function <f> :]a,b[—* R.
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Proof: Since 7„ € A'2^r, and / > 1, we have Vc GBR(a,e) that

/W =

= uT7nto + wT[7„(c) - 7n(<r)]

>H7nto||-||7nW-7ntoll

> u - y/2r\<; - a\H

> u> - y/2rvH

>0

Hence / is continuous and strictly increasing, and thus a bijection from Z?r(<7, e) to ]a,6[,

where

« = WT[7n(<7 - e) - 7n((T)]

6 = uT[ln(a + e) - 7nto]

We therefore have the situation depicted in figure B.l, from which it is evident that

7„(£r(<t,€))2/^

where

<f> :]a,b[-+.R : yx ~ icl[7»(/~l(yi)) - 7nto]

Since ||7n(c)|| < v/2^ Vc G E, we also see, that <f> is Lipschitz continuous with Lipschitz

constant

X^ = sup t,, ; . < 7=—- < co
<eBR(<,,c) u17n(0 w- y/2rvH

Fact B.2.2 Let € G]0,v], and let (n,s),(p,t) G En be two joining endpoints. Define a

function f :] -e, c[ by

f{<:) ±i wTW^ - (-1)'*) - ?p(0] *<e] -e,0[
\ «T[7n(5 +(-l)S0-7nW] ifcG[0,c[

where u is the unit vector pointing in the direction of

( Us ln(s) _ ut lp(t)
1 } ||7»(-)ll ( } ll7P(0ll

Then f is strictly increasing, and the curve segment 7n(E DBr(s,€)) U7p(E fl #r(*,c)) is

congruent to the graph of a Lipschitz continuous function 4> :]«,&[—• R.
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7»(0)

6 = #&)

Figure B.l: Function graph representation of subset of single edge segment.
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Proof: Let

1 ' IttnWII
and

« 7p(0
«- = (-i)'dIWOII

Since (n,s) M(p,t), the edge segment intersection constraint (E2) implies that

(-i)s+,7..«r7p(t) <(i'- aOII-ynWIIII-WOII

Since moreover yp GK2hr, and / > 1, we have Vc G] -c,0[ that

(v-w)T±[lp(t-(-l)\)-lp(t)] =
= (w _ ,)r(-i)'7P(t) + (to - *)T(-i)U(< - (-i)'O - 7p(0]

>||7p(0ll"(-l)^^}^}0 "Ik"v\\\\U* -(-l)'O -7P(0II
>||%(*)ll-(l-*i)ll«0l|-2V5r|c|ff

> Buj - 2\/2rvH

>0

Hence v —w ^ 0, so u is actually well-defined, and

^)> H„-H| >0 V?el"f'0[
Since 7„ GKfhv> ^ similarly follows that

/(t)> «,-,|| >0 *€lM
In addition, by the continuity of 7„ and 7P we have

lim/(<) = /(<)) = lim/(?) = <)
s\0 clO

Hence / is continuous and strictly increasing. For the same reasons as in the proof of the

previous fact we therefore have that

7n(E n BR(s,€)) U7p(S n 2?r(/, 0) S f+

where <f> :]a,b[—> R is Lipschitz continuous. If we define uj_ G R2 as in figure B.2, the



7p(1-0

7nW = 7p(0
u J

6 = tftti)

Figure B.2: Function graph representation of subset of two joining edge segments.
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function <$> is defined by

<l>(y\) =

where

«i[7p(* - (-irrUyi)) - 7p(01 ^ th €]a,0[
«I[7n(5 +(-l)V-1(2/i))-7nW] if yi G[0,6[

a = uT[lp(\t - e|) - 7P(0]

^ = uT[ln(\s-e\)-ln(s))
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For the third parametrization result concerning boundary segments, composed by

intersecting portions of the edge segments and the image domain boundary, we need an

initial parametrization of the image domain boundary segments {a} x [c,d], {6} x [c,d],

[a,b] x {c} and [a,6] x {d}. We therefore define the functions fn : E —• R2, n = —3,.. .,0,

by

7-3to =

a

c + (d - c)o

7-2(0) =

b

c + (d— c)a

7-1 to =

a + (b —a)a

c

7oto =

a + (6 - a)o~

d

and observe, that Un=-3 7n(S) = dB. We then have the following.

Fact B.2.3 Assume that 7nto = 7Pto for some n G {1,...,JV}, p G {-3,...,0} and

a, t G E. Let s, t G {0,1}, €1 G]0, u] and €2 > 0 be chosen, so that

En = <r + (-l)s[0,Cl[CE

and

Ep = r + (-l)<[0,€2[CE

Then the curve segment 7„(E„)U7P(EP) is congruent to the graph of a Lipschitz continuous

function 4> :]«,&[—• R.



Proof: Let

and

/(?) =

7p« =

« = (-!)
7n(g)

II+-WII
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Il7p(f)ll
and define a function / :] —€2>€i[—• R by

- •Jt'htr - (-l)'O " 7,(1-)] if « €] -«a,0[
- t»f[7„(a + (-l)'O - 7n(<r)] if <6 [0,«,[

As in the proof of the previous fact it is then sufficient to show, that / exists, and is

bounded below by a strictly positive constant on ]—€2iO[U]0,£i[, and that / is continuous

at the origin. Suppose p = 0. Then 7n2to = ^» ancl

IfcWII = A-a
0 [ 0

Hence by boundary intersection constraint (Bl)

l7ntoT7P(r)| = I7mtolll7pto|| < (1 - 6i)\\U*

For c G] —62,0[ we thus have

= (w-v)t(-1)%(t)

>II* (r)|| _ l7n(g)r>(r)|

>IIWr)||-(l-*,)||Wr)||

= 6i(b-a)

>0

Since 7„ 6 Kfh%r, and / > 1, for c 6)0,«i[ we also have that

Ac) =

= (V ~ «>)T(-l)57nto + (V ~ W)T(-IY[U° +(-1A) " 7nto]

>IWnto|| - '̂ y^lP' "II" "Hlll7n(* +(-1 A)"7nto||
>ll7ntol|-(l-^i)||7ntol|-2v/2r|c|w

> Siuj - 2y/5rvH

>0

Vces

.o-:
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Finally by the continuity of 7„ and 7P we have

Km/(c) = /(0) = lim/(c) = 0

This completes the proof for p —0. For p G {-3, -2, -1} the proofs are almost identical.

B.2.2 Edge Segment Intersections and Simple Curves

Intersections

The main purpose of the three results above is to demonstrate the existence of

a sufficiently large family of subsets of dCy, which are congruent to graphs of Lipschitz

continuous functions of the form <f> :]a,6[—• R. The parametrizations in facts B.2.1 and

B.2.2 have a second important consequence, however, as they allow us to characterize all

possible edge segment intersections.

Fact B.2.4 The edge segments 7n(E), n = 1, , iV, intersect (at and) only at joining

endpoints. In other words iffn(a) = 7P(r), then either o,r G {0,1} and (n,a) M(p,r), or

K<r) = (p,r).

Proof: Assume that 7nto = 7p(r) f°r some n,p G{1,.. .,iV"} and <r, r G E. Then by edge

segment intersection constraint (El)

(<7,r)GE2\rnp

Hence by (3.87) 3 s,t G {0,1}, such that (<t,t) G Tnp(s,t), and then by (3.86) either

(n,s) = (p,t) and \o —t\ < v, or (n,s) M (p,t) and \a - s\ + \t —t\ < v. In the former

case the injectivity of the function / in fact B.2.1 implies, that a = r, and therefore

(n,a) —(p,r). In the latter case the injectivity of the function / in fact B.2.2 implies, that

a = s and r = t, and therefore (n,a) txi (p,r). •

The fact above has a few interesting consequences: Together with the boundary

intersection constraint (B2) it implies, that the image segmentation 7, satisfying the hy

potheses in fact 3.11.7, satisfies the interconnection constraints imposed by exactly one

interconnection graph. For the rest of this section this graph will be referred to as the
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(unique) interconnection graph associated with the image segmentation 7, and denoted by

z,.

Another interesting consequence of fact B.2.4 is, that no edge segments intersec

tions can take place on the image domain boundary. Indeed if there is an edge segment

intersection at 7„(<r) = 7P(r), n,p G {1,...,JV}, a,T G E, then (n,a),(p,r) G En and

(n,a) M(p,r). By boundary intersection constraint (B2) it then follows, that 7nto £ dB.
A third consequence of fact B.2.4 ultimately has to do with the existence of simple

curves in the discontinuity set D7. For this discussion it will be helpful to define a few new

concepts.

Simple Curves

Consider an interconnection graph J. If a branch B in I is directly connected

to a node M in J, we say, that the pair (B,M) is a link in T. Thus all links are of the

form (B(n),M(n,s)), (n,s) G EN. Clearly (B(n),M(n,s)) = (B(p),M(p,t)), iff n = p

and (n, s) ~ (p, t). Hence the surjective map (n,s) *-* (B(n),M(n,s)) is also one-to-one,

except at endpoints of edge segments, which are closed, or both begin and end on dB.

At such endpoints it is "two-to-one", still mapping endpoints of distinct edge segments to

distinct links. We therefore write (B,M) <-< (n,s), (also using the reverse symbol »-*, when

appropriate,) to indicate, that (B,M) = (B(n),J\f(n,s)). Afinite sequence V = (£9)^=1,
(Q € N,) of links in J is said to be a path in I, if Mq is directly connected to Bq+\ for

q = 1,.. .,Q —1. If in addition Mq is directly connected to B\, we say, that V is closed.

The path V, whether closed or not, is said to be simple, if the branches B\,...,Bq and the

nodes A/*i,.. .,A/*q are all distinct. Finally if a subsequence of V is also a path in J, it is

referred to as a subpath of V.

Proposition B.2.5 Let V= (Cq)^=l be a closed path in an edge segment interconnection
graph. Then there exists a closed subpath V = {Cq)®=l ofV, such that C[ = C\ and
M'Q, = Mq. If Bi i {£2,...,0q}, *»en V is simple. If Mq £ {M\,...,MQ-X}, and
Bq ^ Bi, then V is again simple, and moreover Cq, = Cq.

Proof: Apply the following algorithm to V.
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Forq = 2,...,Q:

If 3 p < q, such that Mp = Mq,

delete Cp+i ,...,£, from V.

Let V' = (Cq)g-1 consist oftheremaining (less than once deleted) links in theorder inherited
from V. Then V is clearly a closed path with C[ = d, {C2>.. .,C'Q,} C {£2, ••-,£<?} and
A/g/ = A/q. Moreover the nodes M[,.. .,A/q/ are distinct. Unless Q' = 2, this implies, that
the sets {M'q_i,M'q}, 9= 1,..., Q', (where we interpret Mq = A/q,,) and hence the branches
#{,...,#Jv are distinct as well. Thus V' is simple, whenever Q' ^ 2. Suppose first, that

B\ i {#2, •••, Bq}, and that Q' = 2. Since B[ = Bi, and tf2 G {£2, ••,#q}, it then follows,

that B[ ^ B'2, and hence that V is simple. Suppose instead, that Mq £ {Mi,.. •,A/q_i},

and that Bq ^ B\. Then Cq does not get deleted. Thus Cq, —Cq. If Q' = 2, we therefore

have, that B[ = Bi ^ Bq = B'2, and again we conclude, that V is simple. •

Fact B.2.6 Assume that (Cq)q=i •«—< ((fig,^))^-! is a simple closed path in the edge seg
ment interconnection graph J7, and that T is a nonempty connected subset of BC\P, where

Q

P=[j 7.4(E)

Then there exists a simple curve S in R2, such that T C S C BC\P with oneof the following

two additional properties:

(i) S is a closed curve in B.

(ii) S intersects dB at and only at its distinct endpoints.

Proof: Suppose MdB i {Mi,. ..,Mq}. Then

(nq,sq)M(nq+i,l-sq+i) q = l,...,Q-l

(nQ,sQ)M(ni,l-si)

By fact B.2.4 the edge segments 7„q(E), q —\,...,Q, intersect at and only at joining

endpoints. Since the branches Bi,...,Bq and the nodesMi,.. -,M"q are distinct, it therefore

follows, that P is a simple closed curve. In particular P is a closed connected set. If

dB fl P = 0, as B n P D T ^ 0, it therefore follows, that PCS. Let S = P. Then (i)
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.-j-pa ,-*F>

(a) (b)

Figure B.3: Simple curve S (solid line) constructed from simple closed path (with Q = 4

links) in interconnection graph, such that T(heavy line) C S C B fl IjJLi 7n,(S) (entire
curve), (a) Path without boundary node, (b) Path with boundary node.

is satisfied, and Fc^cInP. If on the other hand dB DP ^ 0, the set BO P can
have several components, one of which must contain the connected set T. By boundary

intersection constraint (B2)

lnq(s)$dB 5 = 0,1 q=l,...,Q

Thus from boundary intersection constraint (Bl) we see, that at every x G dB n P, P has

a tangent, which forms a nonzero angle with the line segment(s) of dB passing through x,

that is P is transversal to B. The closure ofeach component of B DP is therefore a simple

curve with distinct endpoints on dB as shown in figure B.3 (a). Let S be the closure of the

component containing T. Then (ii) is satisfied, and

TCSCBHPC BOP

Suppose instead, that MdB G {Mi,...,Mq}. Then 3 a unique pG {l,...,Q}, such that
Mp = MdB' Shift the path with respect to its index qaccording to

J j\\Q "\Q -L((»;.<))?=i ~ (4)7=1 = (£P+i,...,£g,A,.-.,£P>
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so that Mq = MdB- Then

K.<)K(»i+i.l-*;+i) g = l,...,C-i
(»Q,*Q)>(ni»l-«i)€A/wi

Thus by fact B.2.4

P = U K(S)
g=l

is a simple curve with distinct endpoints 7„'(1 - s'i),7fn' (sq) € 9B. Again P is a closed

set, and the closure of each component of B D P is a simple curve with distinct endpoints

on dB, as shown in figure B.3 (b). Thus as before we let S be the closure of the component

containing T. Then (ii) is satisfied, and T C S C B n P. •

B.2.3 Lipschitz Property Verification

In verifying the Lipschitz domain characterizing conditions on page 78 for a bound

ary point of a domain, specified only as a component of the complement (relative to the

image domain) of the union of unknown edge segments, it is relatively easy to show, that the

boundary point lies on a boundary segment, which is congruent to the graph of a Lipschitz

continuous function. In fact this task has essentially already been taken care of by the

facts B.2.1 - B.2.3. The hard part is to show, that the two different sides of this boundary

segment are locally contained in the domain and its complement respectively. The main

hurdle is indeed to show, that these two sides are not in the same component, that is that

they are separated by the edge segments. One way to approach this problem is to search

for a simple closed curve in the boundary of the continuity set, such that one of the two

sides, just mentioned, is locally inside this curve, and the other side is locally outside. The

following two facts address this problem.

Fact B.2.7 dC^ = dB\j(Bf) D7).

Proof: Since the discontinuity set D-, is a null set (in R2), it has empty interior. Hence

C.D7 = R2. Since the image domain B is open, we therefore have that B —B n CD7 C

B n CZV It thus follows that 5CB(1 CD-v C 77, whence

Cv = B \ IL = B n ZD^ = B



Since CCy = ZB UD^ = ZB UD^, and D7 is closed, we therefore obtain

0O, =5 n (Zb u £7) =55 u(5ni)7) =55 u (B n £7)
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Fact B.2.8 Let G be a component of the continuity set C7, and let x G dG. Then there

exist a curve segmentT, a Lipschitz continuous function <j> :]a,6[—• R and an open connected

set ft C R2, such that

(ii) dQ, is a simple closed curve.

(iii) ilDG

(iv) a; G T C 5ft C dC^

(v) />(x,ftn5C7)>0

Proof: Since G is a component of C7, it follows that 5G C 5C7. By fact B.2.7 the point x

must thus belong to the disjoint union (55\D7)U(55n.D7)U(5n.D7). For the rest of this

proof we will distinguish between the three possible cases corresponding to x G dB \ D7,

x GdB n D7 and x G 5 n D-, respectively.

Case 1: x G55 \ Z>7

Since the image domain B is rectangular, it is trivial to show the existence of a curve

segment T and a Lipschitz continuous function 4> :]a,b[—> R, such that T S< p^ and x GT C

55 C 5C7. From fact B.2.7 we see that 5 DdC^ C Z>7. Since Z>7 is compact, and x # D7,
we therefore have

p(x, B n 5Cy) > p(z, D7) > 0

Moreover B D C~, D G. Since 5 is an open connected set, and dB is a simple closed curve,

this completes the proof of case 1.

Case 2: x G 55 n £>7

Assume without loss of generality, that x = 71 (a), a G S. It is possible, that 7x is
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(S B

M (b)

(c)

Figure B.4: Intersection of image domain boundary dB and edge segment 71(E) at point

x = 7ito. (a)-(b) 71 locally outside 5 at a. (c)-(d) 71 not locally outside 5 at a.
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locally outside 5 at a, as in figure B.4 (a) and (b). The opposite is also possible, as the

configurations in figure B.4 (c) and (d) show. The analysis of case 2 is therefore naturally

broken up into two separate subcases.

Subcase 2a: 3 c> 0, such that 71 (E n BR(a, e)) C C5.

Define the compact set

N

Z>(0 = 7i(Sn5r(<7,€))U U7n(S) (B.10)
n=2

The edge segments 7n(E), n —1,.. .,N, do not intersect on dB, sox^ D(e). Moreover,

from fact B.2.7 we have

5 n dC-f C £>7 \ 7l(E n BR(a,e)) C D(e)

Hence

p(x,BC\ dC-,) > p(x, D(e)) > 0

The rest of the proof of this subcase is identical to that of case 1.

Subcase 2b: 7i(E n BR(a,e)) g ZB Vc > 0.

Since 5 is convex, and 71(E) forms nonzero angles with dB at x, 3 s G {0,1} and ei G]0, v],

such that

E+ C E

and

7i(S5.) C 5 (B.lla)

7!(EnE_) C ZB (B.llb)

where

E± = O±(-l)S[0,€i[

Now by interconnection constraint (12) the number of components of the interconnection

graph J7 is unchanged, if the branch 5(1) is removed. Hence the node(s) M(l,0) and

M(l, 1) (possibly equal) are connected in J7 \ {5(1)}, which in turn implies, that 3 a closed

path in J7, with 5(1) figuring in and only in its first link. Thus by proposition B.2.5 this

path has a simple closed subpath (Cq)^ <-< ((nq,sq))®=l (in J7), such that 5i = 5(1),
that is 7„, = 71. Let

Q

9=1
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(a) (b)

Figure B.5: Components fti and ft2 of 5 \ S for simple curve S. (a) S intersects dB at

and only at its distinct endpoints x\- and x-\. (b) S is a closed curve in 5.

Then 7i(E+) is a connected subset of 5 fl 5. From fact B.2.6 it therefore follows, that 3

a simple curve S intersecting dB at and only at its distinct endpoints x\- and x-\, (one of

which is x,) such that

71(E+)CSC5nPC5n£7 (B.12)

Hence S separates 5 \ S into two open components fti and ft2 with simple closed curve

boundaries satisfying

5ftifl5ft2 = S

5ftiU5ft2 = 55 U 5

as in figure B.5 (a). Since S C £)7, we have, that G C C7 C 5 \ S. The connected set G

must therefore be contained in one of the components of 5 \ 5. Assume without loss of

generality, that G C ftt. Since x\- ^ x-\, 3 p G {-3,.. .,0}, r G E, t G {0,1} and €2 > 0,

such that

7Pto = 7ito

EPCE

and

7p(Ep) C 5ft! (B.13)
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where

Ep = r + (-l)*[0,62[

Thus by fact B.2.3 3 a Lipschitz continuous function <p :]a,6[—• R, such that

r = 7l(E+)U7P(Sp)^^ (B.14)

Next from fact B.2.7, (B.12) and the properties of fti we see that

5 C 5fti C 55 U5 C 55 U(5 n £7) = dC^

Hence by (B.12), (B.13) and (B.14)

x G T C 5fti C dC^

Finally, as fti C 5, from (B.llb) and (B.12) we have

7i(E DBR(a,€i)) = 7!(E n E_) U7i(E+) C ZB U5ftx C Cftj

From fact B.2.7 it therefore follows that

fti n dC^ = fti n D7 C D(ci)

where D(ti) is defined as in (B.10). Thus as before

p(x, ft! n dC^) > p(x, D(ei)) > 0

which completes the proof of case 2.

Case 3: x G 5 fl £>7

As in the previous case we assume without loss of generality, that x = 7i(<r), a G E. Since

the edge segments are allowed to intersect in 5, it is however possible, that x also belongs

to some edge segment other than 7i(E). For this reason the analysis is once again naturally

broken up into subcases.

Subcase 3a: a G E°

Since x G 5, 3 € G]0,u], such that

5r(<t,0CE

7i(BR(cr,c))CB
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Thus by fact B.2.1 3 a Lipschitz continuous function <j> :]a,b[—»• R, such that

r = 7i(5R(<7,6))s^

For exactly the same reasons as in subcase 2b 3 a simple closed path (£g)j_i in J7, such

that 5i = 5(1). Again we let P be the union of the edge segments corresponding to the

branch(es) of the path. Then T is a connected subset of 5 DP. From fact B.2.6 it therefore

follows, that 3 a simple curve S, either closed in 5, or intersecting dB at and only at its

distinct endpoints, and such that

rc5c5nPC5nD7 (B.15)

Whether S is closed or not, from figure B.5 it is clear, that it as before separates 5 \ S into

two components fti and ft2 with the same properties as those considered in subcase 2b. In

particular fti D G. Replacing (B.12) in the analysis of subcase 2b by (B.15), we then find

that

x G T C 5fti C dCn

This also implies that

fti n dC-, = fti n D7 C D7 \ T C D(e)

where D(e) is defined as in (B.10). By fact B.2.4 x £ D(e), so again we obtain

p(x, fti n dCJ > p(x, D(c)) > 0

Subcase 3b: a G 5E

As in subcase 2b we see, that the nodes M(l,0) and M(l, 1) are connected in I7 \ {5(1)}.

Hence M(l,Q) and M(l,l) are equal or both directly connected to some branch(es) other

that 5(1). In either case A/r(l,cr) must contain at least one endpoint besides (l,cr). Since

71(a) = x G 5, we know, that (\,a) &A/as, so the endpoints in M(\,a) are mutually

joining, and therefore

ln(s) = x V(n,s)~(l,<r) (B.16)

Thus 3 € G]0,t>], such that

7n(Ss)C5 V(n,«)~(lto (B.17)
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where

Ss = En5R(s,€) 6 = 0,1

Moreover the curve segments 7n(E3), (n,s) ~ (l,<x), emit from x in a more or less radial

fashion, or to be more precise, the functions

fn3 : [0,£[- R : c ~ ||7n(5 + (-l)'c) - ln(s)\\ (n,s) ~ (l,a)

are strictly increasing. Indeed, as 7 GKfhr* *°r anv n € {1,..., N} and (c,r) GTnn(s,s)

we have

7n(c)T7n(r) >

> ll7.MII (Il7n(0ll - Il7n(r) - 7n(0ll)

> w(w - \/2r|r - c|")

> w(u; - y/2rvH)

>0

Hence for (n, s) ~ (1, <r)

<* flM _
dc 2

= [7»(* + (-1A) " 7n(5)]T7n(^ + (-1)\)(-1)'

= r7n(5+(-l)V)T7n(5 +(-in)^
./o

>0 VcG]0,€[

Since the functions fns, (n,s) ~ (l,a), are positive and continuous (at the origin), it

therefore follows, that they are strictly increasing. Define the compact set

N

D,= \J 7n(S x (So UEi)) U |J 7n(Ss)
n=1 (n,s)eEN\Jf(l,<r)

Then ZB UD* is closed, and by fact B.2.4 x £ ZB UDm, so

g = p(x,ZBuDm) > 0

Let U = BR2(x,q). By assumption Ci,N(h,r,u,60,6i,v) ^ 0, (as it contains 7.) Thus

u) < >/2r, so

^ ^ H ^lw 1
2v/2r 2
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(nz>s3) (n2,52)

(n4,54)

(nii^i)

Figure B.6: Curve segments 7n<(Eai) labeled by (n,-,s,), i = 1,...,/, separating neighbor

hood J7 of common endpoint x into 1 = 4 components Ui,..., {//.

whence BR(0,e) n 5r(1,c) = 0. For each (n,s) ~ (l,cr) we therefore conclude that

7n(s + (-l)a€)eDmcZU

and since fns is strictly increasing, it follows, that 7n(Es) intersects the circle dU exactly

once. Moreover as the curve segments 7„(ES), (n,s) ~ (1,<t) intersect only at their com

mon endpoint x, their intersections with dU are distinct. Let M(l,a) = {(wi,s;)}/=1 be

numbered counterclockwise with respect to these intersection points as in the example in

figure B.6, and let

r, = t/n7n,(sSi) i = i,...,i (B.18)

By construction the sets U(n,s)~(i,<7)7n(Es) an(* ^* do not share any endpoints, (either
(n,s) ~ (1,<t) or (n,s) G En \M(l,a),) so by fact B.2.4 they are disjoint. Since U C 5

and Dm C ZU, fact B.2.7 therefore yields

undC^ = un(D^\D.) = un (J 7n(S5) = |J r,-
{n,s)~(l,a) t=l

(B.19)

From the properties of the curve segments 7„(ES), (n,s) ~ (1,0"), we see, that Ti,...,T[

are simple curve segments from a: to dU, intersecting only at their common endpoint x.
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Since J > 2, the set U n dC^ therefore separates the set U \ dC-, into / open components

Ui,...,Ui according to figure B.6. Now GC C5C7, and U is a neighborhood ofx GdG, so

Gn(U\dC^) = GnU^0

Thus G intersects at least one of the components Ui,...,Ui. Assume without loss of

generality, that G C\ Ui ^ 0. We are now ready to proceed with steps similar to those, we

used in the proofs of the previous subcases. First of all since e G]0, v], and (ni, si) M(n^, ^2)1

by fact B.2.2 3 a Lipschitz continuous function <p :]a,6[—• R, such that

r = 7nI(S,1)U7na(S-a)Si^ (B.20)

Next, as (1,0") £ MdBi by interconnection constraint (12) the number of components of

J7 is unchanged, if the node M(\,a) is removed. Hence the branch(es) 5(ni) and 5to)

(possibly equal) are connected in J7 \ {M(\, a)}, which in turn implies, that 3 a closed path

in I7, in which M(\,a) figures exactly once. Moreover from figure B.6 it is clear, that this

path can be chosen, so that its first and last links are (B(n2),M(n2,1 —32)) <—« to> 1 —̂ 2)

and (B(ni),M(l,a)) «-< (ni,$i) respectively. Thus by proposition B.2.5 3 a simple closed

(sub)path (£9)JLi «-< ((Pq,tq))%i in I7, such that (pi,h) = (n2,l - s2) and (pQ,tQ) =
(»i, si). Let as before P be the union of the edge segments corresponding to the branch(es)

of this subpath. Then by (B.16), (B.17) and (B.20) T is a connected subset of 5 n P. As

in subcase 3a we therefore conclude, that 3 a simple curve S, such that

rcsc5npc5n£>7 (B.21)

and which separates B \ S into two components fti and ft2 with the same properties as

those considered in the subcases 2b and 3a. In particular fti D G. Just as in subcase 3a we

then find that

ar G T C 5fta C 5C7 (B.22)

Finally it remains to prove, that p(z,fti DdCy) > 0. This can be done by showing, that

U fl fti fl dC~, = 0. Since x G Ti, from (B.19) we see that

/ /

U= (UddC^) U(U\ dCJ =\jTiu\JUi = Tl\JT2UUiUV
i=i »=i

where

v=U(iW*»u|Jtt
«'=3 »=2
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For Ti U T2 (B.18), (B.20) and (B.21) imply that

Ti U T2 C 5 = 5fti D5ft2 (B.23)

Next for the component Ui of U \ dCy from (B.22) we obtain

Ui C U \ 5fti C 5 \ S

The connected set Ui must therefore be contained in one of the two components of 5 \ S.

Moreover

fti n Ui d G n Ui ^ 0

so it must be the case that

Ui C fti (B.24)

The remaining part V of U can be treated in a similar way: By our definition of a simple

closed path in an interconnection graph, it follows that

{(Pg.*fl)}?=i nMq = {(PQ,tQ)} = {(ni,si)}

and hence that

{(*».!-<«)}$LinA/g ={(Pi,l-<i)} ={(n'2,*2)}

Thus

({Pg}JLi x{0,l})nA/g ={(ni,si),(n2,s2)}
Since Mq = M(pQ,tQ) = M(ni,si) = M(l,ar), we therefore conclude that

ni <l {P<t)%i »=3,.../

Hence by fact B.2.4 and (B.21)

Ti \ {x} C 7„,(S°) C ZP C C5 i = 3,..., /

from which it follows, that VCU\SCB\S. Since V is (path-)connected, it must then

be contained in fti or ft2. However U is a neighborhood of x, and by (B.21) and (B.22)

x G S C 5ft2, so (B.23) and (B.24) imply, that ft2 n V = ft2 n U ^ 0, whence

V C ft2 (B.25)
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From (B.23) - (B.25) we now find, that UC\Qi = Ux CC5C7, and therefore fti n5C7 CZU.
Hence

p(x, fti n dCJ > p(x, ZU) = q > 0

This completes the proof of case 3. •

We are now ready to complete the proof of fact 3.11.7.

Proof of Fact 3.11.7: We have to show, that the image segmentation 7 (satisfying the

conditions stated in the beginning of this section) is admissible. By theorem 3.8.2 it is

sufficient to show, that every component of the continuity set C7 is a Lipschitz domain.

We will show this, by verifying, that the Lipschitz domain characterizing conditions given

on page 78 are satisfied at an arbitrary point on the boundary of an arbitrary component

of C7. Thus let G be a component of C7, and let x G dG. By fact B.2.8 and the Jordan

Curve Theorem 3 a curve segment T, a Lipschitz continuous function x :]fl> b[~* R and an

open set ft C R2, such that

(ii) 5ft = 5Cft is a simple closed curve.

(iii) ft 3 G

(iv) x G T C 5ft C dCy

(v) p(x,ftn5C7)>0

Let T be the unique rigid coordinate transformation, for which T(px) = T, and define the

map

X :]<i,6[xR -R2:i/m T(yux(V\) + 2/2)

By proposition 3.5.2 X is a homeomorphism, so 3 a unique yx €]a,6[x{0},such that X(yx) =

x. Since x :laib[~+ " ^s continuous, px and hence Tare connected curve segments, which do

not contain their endpoints. Thus 5ft\T $ x is closed, and therefore p(x,dQ\T) > 0. Since

p(x,ftn5C7) > 0 as well, this implies, that 3 d > 0, such that Q =}-d,d[2C (]a,b[xR)-yx,

and U = X(yx + Q) is an open neighborhood of 2-, which intersects neither 5ft \ T nor

ft fl dCy. Define the three sets
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U± = X(R|n (yx + Q)) (B.26a)

UQ = X(R2Qn(yx + Q))3x (B.26b)

Then

X~1(U±) = R2±n(yx + Q)

and

are disjoint. Hence T C\U± = 0, and therefore

5ft n tf± = (5ft \ r) n u± c (5ft \ r) n u = 0

Since U±, the continuous image of a connected set, is connected, this means, that either

U± C ft or U± C Cft. Moreover

U0 C X(Rg (1 (]a,b[xR)) = X(]a,6[x{0}) = T C 5ft

Since 17 is a neighborhood of a: G5ft = 5Cft, and ft is open, this implies that

ft n (U+ u U-) = ft n (U s u0) d ft n cr n C5ft = ft n u £ 0

and likewise

Kfin(U+uU-)DZUnu ?0

Hence one of the sets U± is contained in ft, and the other one is contained in Cft. Suppose

U+ C ft. Then

U- C Cft C ZG (B.27)

For U+ we note the following: Since U is a neighborhood of x G dG,

Gr\u+ = Gnanu = Gnu^0

Moreover

dGnu+ c5C7nftnf/ = 0

Since U+ is connected, we therefore conclude that

U+ C G (B.28)
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For Uo finally, as X is a homeomorphism, from (B.27) and (B.28) we have that

UoCU^nincGnWcdG (B.29)

Define the Lipschitz continuous function

<f>:] -d,d[-> R : yx •-• x(Vxi + Vi)

and let

$:Q->R2:y~T+(yi,<t>(yi) + y2)

where T+ is the coordinate transformation defined by

T+(y) = T(yx + y) y GR2

Then

Hence

and

$(y) =

= T+(yi,x(yxi + 2/i)+ J/2)

= T(yxi + 2/1, x(Vxi + yi) + Vx2 + 2/2)

= X(yx + y) Vj/ G Q

*(R£ n 0) = X(yx + (R^ n Q)) = ff±

$(RgnQ) = X(yx + (R?nQ)) = £/0

From (B.26) - (B.29) it then follows that

$(R2+nQ) C G (B.30a)

$(Ring) c Cg (B.30b)

xG$(R0nQ) C 5G (B.30c)

Suppose instead, that U+ % ft. Then U+ C Cft and U- C ft, so the roles of U+ and £/_ in
the proof above are reversed. In this case we define

4>:] -d,d[-+ R : yi h- -\(yxl - yx)



and

* :Q -> R2 : y .- T_(yi, <p(yi) + y2)

where T_ is the coordinate transformation defined by

T-(y) = T(yx - y) y GR2

Again <j> is Lipschitz continuous, and

$(y) =

= r_(yi,-x(yxi-yi) + y2)

= T(yxJ - yi,x(Vx\ - V\) + 2/*2 - 2/2)

= X(yx - y) Vy G Q

Since —Q = Q, we now obtain

*(R| n Q) = X(yx - (R2± n Q)) = X(yx + (R2T n g)) = ^

and

*(R2 n Q) = X(yx - (R2 n g)) = X(yx + (R20 ri Q)) = tf0

Hence the conditions (B.30a) - (B.30c) are again satisfied, and the fact follows.

268
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Appendix C

Initial Edge Finder Operation

The initial edge finder was introduced in section 4.2 as the first subroutine of the

global curve-represented edge detector there presented. As part of that presentation we also

discussed the initial edge finder's basic output data structure, which was noted to consist of

a vertex list and a spline list. In this appendix we take a look at the mechanism by which

that data structure is generated.

Throughout our description of the initial edge finder operation we will frequently

consider distances between points in the image domain. All such distances are co-norm

distances. In other words, the distance between the two points x,y G R2 is given by

|*i "* 2/11 v \x2 —V21- By a slight abuse of language the distance between two pixels will

always be understood to mean the be distance between the sites of those pixels.

At a high level of description the initial edge finder performs the following sequence

of operations:

1. Detect preliminary edges and junctions.

2. Select initial junctions.

3. Form splines and select initial intermediate vertices.

4. Compute (spline) type variables.

The first of these four steps, which is by far the most involved, is a pure preprocessing stage;

it does not generate any of the initial edge finder output. The second step generates part

of the vertex list. The third step generates most of the spline list and the remaining part of
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the vertex list. The fourth step finally completes the spline list. We will next take a closer

look at each of these processing stages.

C.l Preliminary Edges and Junctions

Before the image segmentation configuration and the initial control vertices can

be found, a preliminary set of edges and junctions must be obtained with some external

preliminary edge detector. Since the final location of the edges will be determined by the

global steepest descent procedure, the preliminary edge detector does not need to be very

sophisticated; a simple local edge detector is good enough. It is, however, important that the

output data structures are well suited for selecting the image segmentation configuration and

the initial control vertices. For this reason we wrote our own preliminary edge detector. The

procedure is built around a simple contour tracing scheme, which traces smooth contours of

high brightness gradient magnitude (of the original image function £). It does not produce

high quality edges, but it is well tailored for its purpose of helping to generate a starting

point for the steepest descent procedure.

C.l.l Data Structures

The primary output from the preliminary edge detector consists of a list of pre

liminary edges and a list of preliminary junctions. Each preliminary edge is by itself a list

of (sites of) eight-connected pixels located along one of the traced contours. A prelimi

nary junction is just a single pixel (site), which is always the first or the last of one of the

preliminary edges.

As a secondary output the preliminary edge detector generates an X\ x X2 array

of so called edge status records—one for each pixel in the (original) image. Each edge status

record holds three pieces of information:

1. If the pixel belongs to one of the preliminary edges, it is marked (on the edge status

record) as an edge pixel.

2. If the pixel is within a certain distance re, referred to as the edge zone radius, from

an edge pixel, then it is marked as an edge zone pixel.

3. If the pixel is within a certain distance tj, referred to as the junction zone radius,

from one or more preliminary junctions, then the edge status record points to one of
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(a) (b) (c)

Figure C.l: Contours, (a) Smoothly closed, (b) Nonsmoothly closed, (c) Open.

these preliminary junctions. The pixel is moreover said to belong to the (junction)

zone of that preliminary junction.

While the junction zone and edge information is used by the later stages of the initial edge

finder, the edge zone information is only used internally by the preliminary edge detector—

primarily as part of the mechanism for forming preliminary junctions. The edge zone

also serves to prevent multiple preliminary edges along "wide contours" of high brightness

gradient magnitude. Thinning of the preliminary edges is therefore unnecessary.

The lists constituting the preliminary edges can be circular or linear. The circular

lists are referred to as closed edges. They correspond to traced contours that close smoothly

upon themselves. Such a contour is depicted in figure C.l (a). A closed edge may or may

not intersect the zone of any preliminary junction. If it does, it will later contribute to the

generation of a number of open splines. If not, it will result in a single closed spline. The

linear lists are referred to as open edges. They correspond to traced contours that close

nonsmoothly upon themselves or to open contours. These kinds of contours are shown in

figure C.l (b) and (c). An open edge both begins and ends with junction zone pixels. In

the rare case of a nonsmoothly closed contour these pixels will belong to the zone of the

same preliminary junction.

C.l.2 Preliminary Edge Detector Operation

Edge Initiation Condition

The outermost loop of the preliminary edge detector scans the original image

column by column. At each pixel outside the currently detected edge zone it computes
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an estimate of the brightness gradient VC using a 3 x 3 window. If the magnitude of this

gradient exceeds a certain fixed threshold U referred to as the edge initiation threshold, the

scanning is temporarily interrupted and a decision is made to begin the tracing of a new

contour. In order to suppress short spurious preliminary edges caused by noise and other

disturbances, the threshold U should be chosen a bit higher than the expected (lowest)

value of ||VCr|| along the contours of interest. The influence of short spurious preliminary

edges is further repressed by the spline formation mechanism to be discussed later in this

appendix.

"Contour Center" Location

Due to smooth shading as well as blurring and sampling in the image formation

process many "contours" of high brightness gradient magnitude are not all that sharp, but

rather a few pixels wide. Consequently the pixel that triggers the tracing of a new contour

might not be very representative for the actual edge. Before starting tracing a new contour,

the preliminary edge detector therefore attempts to locate the "center of the contour" by

searching along a line parallel to the brightness gradient at the triggering pixel. The search

begins at the triggering pixel and continues pixel by pixel in the direction of increasing

brightness gradient magnitude. It terminates as soon as the first local maximum of the

brightness gradient magnitude is encountered. The pixel site of this maximum is recorded

as the first pixel of the new preliminary edge.

Edge Extension Outside the Edge Zone

After the first pixel of a new preliminary edge has been recorded, the preliminary

edge detector begins tracing a smooth contour of high brightness gradient magnitude. The

tracing, which of course starts out at the first pixel of the new preliminary edge, is carried

out by making a sequence of short jumps from one pixel to another. The mechanism for

selecting these jumps will be described shortly. Each time a jump has been made, (the list

constituting) the new preliminary edge is extended by a sequence of eight-connected pixels

along the line segment joining the centers of the two pixels between which the jump took

place.

As the contour tracing proceeds and the new preliminary edge is being extended,

the edge status array is also being updated. The extension pixels themselves arc marked
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as edge pixels. In addition all the pixels within the distance ofan edge zone radius re from
any of the extension pixels are marked as edge zone pixels. The edge zone pixels are of

course just the pixels inside the union of all the (2re + 1) X(2re + 1) windows centered at

any of the extension pixels. The main purpose of collecting this edge status information is

to facilitate the detection of the events when the new preliminary edge is being extended

into (eight-connected) contact with or into the vicinity of the pixels of a previously detected

preliminary edge. Since the extension pixels are always in contact with and/or in the vicinity

of the most recently detected pixel(s) of the new preliminary edge, the updates of the edge

status array must be delayed, or else their main purpose will fail. The most simple minded

approach would be to avoid updating the edge status array while a contour is being traced.

(Computationally this would not cause any problem. One would just have to retrace each

new preliminary edge upon the completion of its detection.) The simple minded method

would, however, prevent the desired detection of the event when the new preliminary edge

is being extended into (the vicinity off) its own tail. The necessary delay of the edge status

array updates is therefore implemented by shifting the extension pixels through a short

FIFO buffer before marking them and their neighboring pixels as edge and edge zone pixels

respectively.

The Jump Mechanism

Most of the properties of the preliminary edges are determined by the mechanism

that selects the jumps by which the contours are traced. In our description of this mechanism

the pixel to which the previous jump was made, that is the most recently recorded pixel of

the new preliminary edge, will be called the (present) frontier pixel. The pixel to which the

next jump is going to be made will be called the (present) destination pixel. The direction

of the vector from the center of the frontier pixel to the center of the destination pixel will

be referred to as the jump direction. The distance between the frontier and the destination

pixels will be called the jump distance. Figure C.2 shows a window of pixel sites in which

a jump of distance three is taking place. The most recently recorded pixel sites of the new

preliminary edge are highlighted with wide filled circles. The sites of the extension pixels

are marked with empty circles. The jump and its direction are indicated by the arrow

pointing from the frontier pixel site F to the destination pixel site D.
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D

Figure C.2: Contour tracing jump from frontier pixel F to destination pixel D.

Brightness Gradient Requirement. The main objective of the jump mechanism is

that the brightness gradient magnitude ||VCT|| remains high along the traced contour. This

is achieved by insisting that ||VCT|| at the destination pixel exceeds a certain threshold tt

referred as the edge termination threshold. If no such destination pixel can be found, the

contour tracing is terminated at the present frontier pixel.

Possible Destination Pixels. For reliable detection of L-junctions, of which a couple

of examples are depicted in figure C.3, it is important that the preliminary edges are kept

reasonably smooth. This is accomplished by restricting the set of possible destination

pixels so that the directions of successive jumps do not differ too much. The set of possible

destination pixels for each jump thus depends on the previous jump direction. (If no previous

jump has been made, a direction normal to the brightness gradient is substituted for the

previous jump direction.)

Consider the frontier pixel site F and the previous jump direction indicated by the

arrow in figure C.4. The pixel sites at equal distances from the frontier pixel site are joined

by the dashed squares 5j, d = 1,2, On each of these squares there is one pixel site that



Figure C.3: L-junctions.
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Figure C.4: Possible destination pixel sites (wide circles). Filled wide circles indicate ex

trapolation sites.
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is closest to the dashed ray extrapolating the previous jump direction arrow. These pixel

sites known as extrapolation sites are indicated by wide filled circles. For some previous

jump directions (other than that in the figure) two pixel sites on the same square would

both qualify as extrapolation sites. In such a situation an arbitrary choice is made. There

is thus always exactly one extrapolation site on each square. The set of possible destination

pixel sites at distance d from the frontier pixel site consists by definition of the unique

extrapolation site on Sd together with its d closest neighbors (indicated by wide empty

circles) in each of the two directions along Sd- At each distance d 6 N from the frontier

pixel there are thus 2d + 1 possible destination pixels.

A possible destination pixel at which ||VCr|| > U, is said to qualify as a destination

candidate. Hypothetical jumps to destination candidates are referred to as jump candidates.

Noise Suppression. Short gaps in the contours of high brightness gradient magnitude

are most likely caused by noise, insignificant small scale information or the lack of context

dependent adaptation of the edge termination threshold. In order to bridge such undesirable

gaps the jump distances are allowed to vary from jump to jump. The possible jump distances

range from a minimum of unity to a maximum set by a constant parameter dm € N. If any

destination candidate can be found within a distance dm from the frontier pixel, a jump is

made. There are no requirements on the brightness gradient at the extension pixels that

are filled in along the line segment joining the frontier pixel and the destination pixel.

Jump Distance Considerations. Long jumps have two significant advantages over

short jumps. Most importantly, the long jumps offer a richer variety of jump directions.

They therefore give the preliminary edges a less "boxy" appearance. Secondly, the long

jumps require slightly fewer brightness gradient evaluations and comparisons per extension

pixel. The jump mechanism therefore favors long jumps by always selecting a jump can

didate of maximal distance dj < dm. Consequently the possible destination pixels furthest

away from the frontier pixel are examined first. The possible destination pixels closer than

dj from the frontier pixel need obviously not be found at all.

Contour Direction. As a final consideration the jump direction should not only war

rant smoothness of the preliminary edge, but preferably also approximate the underlying

contour direction. When there are more than one jump candidates of the same distance to
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Contour

RlV?

Figure C.5: Contour directions.

choose from, the jump mechanism therefore selects the jump candidate whose direction best

matches the contour direction. When first tracing a contour in the original direction, the

contour direction is defined to be that of the left normal vector R^V(T of the brightness

gradient. The contours will, as we soon shall see, often be traced in the reverse direction

as well. The contour direction is then given by the (opposite) right normal vector RXV(T.
The orientations of the contour directions relative to the brightness gradient are shown in

figure C.5.

A Jump Selection Example. While the general description of the jump mechanism

above is quite complete, an example might still be clarifying. Figure C.6 (a) illustrates a

situation similar to that in figure C.4. As before the possible destination pixels are indicated

by wide (filled or empty) circles. The wide filled circles, however, have a different meaning.

They here highlight the destination candidates.

Suppose dm = 4. The jump mechanism first finds and examines the possible desti

nation pixels on the square Sdm = S*. Since there are no destination candidates on S4, the

search continues on £3, where two destination candidates are found. The jump mechanism

now selects the jump candidate whose direction is closest to the contour direction R^V£T.

The resulting extension pixels are indicated by the wide circles in figure C.6 (b). The circle

at the destination pixel site is filled. Had there not been any destination candidates on S3,

the search would have continued on S2 and so on.
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R*V?

Fig. C.6: (a)
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Fig. C.6: (b)

Figure C.6: Jump selection example, (a) Sites of possible destination pixels (wide circles)

and destination candidates (wide filled circles), (b) Sites of extension pixels (wide circles)

and destination pixel (wide filled circle).
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Edge Termination Conditions

The edge extension proceeds as described above until one of the following edge

termination conditions is satisfied:

1. The new preliminary edge is extended into an area where edge zone has previously

been marked on the edge status array.

2. The brightness gradient magnitude drops below the edge termination threshold U so

that no destination candidates can be found.

In the former case the preliminary edge detector will extend the new preliminary edge into

eight-connected contact with (one of) the preexisting edge pixels inside the edge zone. In

the latter case the contour tracing is terminated immediately at the present frontier pixel.

Edge Extension Inside the Edge Zone

The extension of a preliminary edge inside the edge zone begins with continued

tracing of the contour. The contour tracing procedure is the same as before with the

exception of the two following modifications of the jump mechanism:

1. Only jumps of unit distance are considered, (exactly as the edge extension outside the

edge zone would be with dm = 1.)

2. The contour direction is not updated, but remains normal to the brightness gradient

at the last frontier pixel prior to the entry into the edge zone.

The first modification is meant to improve the localization of the preliminary edges in the

neighborhoods of junctions. The second modification prevents the contour direction from

getting distorted in the vicinity of another contour.

The contour tracing inside the edge zone terminates when one of the following four

conditions is satisfied:

1. The new preliminary edge is extended into eight-connected contact with a preexisting

edge pixel, that is a pixel that is already marked as an edge pixel on the edge status

array.

2. The brightness gradient magnitude drops below the edge termination threshold tt so

that no destination candidates can be found.
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(a) (b)

(c) (d)

Figure C.7: Extent of new preliminary edge (solid) inside edge zone (shaded) surrounding

preexisting edge (dashed) at contour tracing termination according to the conditions 1 (a),

2 (b), 3 (c) and 4 (d) listed in the text.

3. The new preliminary edge is extended back outside the edge zone.

4. The extension of the new preliminary edge inside the edge zone exceeds a certain

limit.

These four situations are illustrated by the schematic diagrams in figure C.7. If the first

termination condition is satisfied, the goal of bringing the new preliminary edge in eight-

connected contact with the preexisting edge (pixels) inside the edge zone is already achieved.

In each of the other three cases the short portion of the new preliminary edge that is inside

the edge zone, is retraced, and the pixel closest to the preexisting edge pixels identified as

the last contour pixel. Any pixels that might have been appended to the new preliminary

edge after the last contour pixel, are then replaced by a sequence of eight-connected pixels

along the line segment joining the last contour pixel with the closest of the preexisting edge

pixels. Such a sequence is of course necessarily shorter than the edge zone radius re, which

is typically set to some small integer value.
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Backward Tracing, Edge Closure and Preliminary Junctions

When the contour tracing (followed by possible linear edge extension inside the

edge zone) has come to an end, the preliminary edge detector checks whether the contour

is open or closed. A contour is considered to be open if the first and last pixels of the

corresponding preliminary edge are within a distance of one junction radius r,- from each

other, or if this preliminary edge is so short that such a criterion does not make much sense.

A contour that is not open is naturally said to be closed.

If the contour is open, the new preliminary edge is also declared to be open, and its

last pixel is recorded as a preliminary junction. As always whenever a preliminary junction

is recorded, all the pixels in the (2rj + 1) x (2rj + 1) window centered at the preliminary

junction are simultaneously marked as junction zone pixels on the edge status array. The

contour tracing then resumes where it started, but in the reverse direction. Meanwhile

the new preliminary edge is being extended backwards from its (changing) first pixel. The

backward tracing process is identical to the forward tracing process described earlier. The

termination conditions for the two processes are also identical. When the backward tracing

terminates, the first pixel of the new preliminary edge is recorded as a preliminary junction,

and the edge status array updated accordingly.

If the contour instead is closed, the preliminary edge detector checks whether it

closes smoothly on itself. If it does not, the new preliminary edge is again declared to

be open, and its last pixel is recorded as a preliminary junction. The junction zone of

this preliminary junction necessarily covers both the first and the last pixels of the new

preliminary edge. No preliminary junction is therefore recorded for the first pixel. If the

contour on the other hand does close smoothly on itself, the new preliminary edge is declared

to be closed, and is then extended (by a few pixels along a short line segment) as necessary

so that its first and last pixels become eight-connected. No preliminary junction is recorded

in this case. A closed contour, whether smoothly closed or not, is for obvious reasons never

traced backwards.

C.2 Initial Junctions

At Y-junctions and arrow-junctions such as those depicted in figure C.8, the pre

liminary edge detector will ideally form two preliminary junctions at the same pixel. For
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Figure C.8: (a) Y-junction. (b) Arrow-junction.
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Figure C.9: Three clusters of preliminary junctions with overlapping junction zones.

more complicated junctions there might be even more preliminary junctions with junction

zones lying on top of each other. In practice, however, the multiple preliminary junctions

will not coincide perfectly. In order to recognize such collections of close preliminary junc

tions as single junctions, every cluster of preliminary junctions whose junction zones overlap

is designated exactly one initial junction. Figure C.9 depicts three examples of such clusters.

The preliminary junctions are shown as filled circles. Their junction zones are indicated

by the surrounding squares. Each initial junction is given the location of the arithmetic

mean—or equivalently the geometric center—of its constituent preliminary junctions. For

the later purpose of forming splines each initial junction is also given a junction zone equal

to the union of the junction zones of its constituents. The end result is a list of initial junc

tions whose associated junction zones are mutually disjoint. This list forms the beginning of

the vertex list, which will be completed by the subsequent stages of the initial edge finder.
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C.3 Splines and Initial Intermediate Vertices

C.3.1 Preliminary Edge Segment Formation

Although preliminary junctions are only formed at the end pixels of the open

edges, most preliminary edges—both closed and open—will pass through many zones of

preliminary junctions formed at the end pixels of other preliminary edges. In order to form

splines that define an image segmentation configuration as described in section 4.2, the

preliminary edges are retraced and broken up at each passage through any of the initial

junction zones, so that a collection of preliminary edge segments is obtained.

As we recall, the open edges do always begin and terminate inside some initial

junction zone(s). They are all thus partitioned into one or more preliminary edge segments,

which also have this property. Such preliminary edge segments will be referred to as open

edge segments.

The closed edges on the other hand do not necessarily intersect any junction zones

at all, and even if they do, their first and last pixels may not be inside any of the junction

zones. The retracing of a closed edge therefore begins with a search for an intersection with

an initial junction zone. From the moment a pixel inside such an intersection is found, the

closed edge is processed exactly as an open edge, which both begins and terminates at that

pixel. The closed edge is in this case thus partitioned into one or more open edge segments.

If the closed edge does not intersect any of the initial junction zones, it is "partitioned" into

exactly one preliminary edge segment. Such a preliminary edge segment will be referred to

as a closed edge segment.

C.3.2 Sampling

Every time the retracing procedure isolates a new preliminary edge segment, a

new spline is formed and appended to the spline list. A closed edge segment generates

a closed spline. An open edge segment generates an open spline. End vertices of open

splines are always among the junctions, for which initial values have already been selected

and recorded in the vertex list. Intermediate vertices on the other hand constitute new

independent control vertices, which must be appended to the vertex list. Initial values

for these control vertices are gathered from samples of the preliminary edge segments. The

sampling is governed by an integer parameter im, known as the maximum sampling interval,
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Figure C.10: Samples (indicated by filled circles) of closed edge segment.

which dictates the maximum number of preliminary edge (segment) pixels that are allowed

between successive samples. Besides assisting the selection of the initial control vertices,

the sampling therefore also determines the length of the control vertex sequence associated

with each spline.

Closed Edge Segments

A closed edge segment is simply sampled evenly at every zcth pixel site as indicated

in figure C.10. Where on the closed edge segment the sampling begins, does not matter.

Normally ic = im, but for very short closed edge segments the parameter ic is reduced as

necessary so that at least three samples are obtained. The sampling thus yields a sequence

(wm)m=o °f P'xel s'tes f°r some A/ > 3. This sequence is appended to the vertex list, and

a new closed spline with control vertex sequence

(vm)mio2 = («0,...,MA/_l,tiO,Wl,W2)

is appended to the spline list.

Open Edge Segments

An open edge segment begins and terminates, as we recall, always inside the zones

Wjb and Wjt of some initial junction(s) Wjb and Wjt respectively. The samples of such a
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(a)

(b)

Figure C.ll: Samples (indicated by filled circles) of open edge segments beginning and

terminating inside initial junction zone(s) (indicated by squares).

preliminary edge segment always include the last pixel site before its exist from Wjb and

the first pixel site after its entry into Wjt. Between these pixel sites the open edge segment

is sampled evenly at every i0th pixel site. The two junction indices jb,jt € {1,..., J} may

of course be identical. This situation is depicted in figure C.ll (a). The case when jb / jt,

is illustrated in figure C.ll (b). Normally i0 = im, but if jb = jt and the open edge segment

is very short, i0 is reduced as necessary so that again at least three samples are obtained.

The sampling thus yields a sequence {um)^~3l for some M > 5. (Ii jb = jt, A/ > 6.) This
sequence is appended to the vertex list, and a new open spline with control vertex sequence

(fm)m=0 = (Wjb,Wjb,Wjb,U3,...,UM-l,Wjt,Wjt,Wjt)

is appended to the spline list.
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C.3.3 Alternative Initial Intermediate Vertex Selection

Picking the initial values for the intermediate vertices from the samples of the

preliminary edge segments, as in the method outlined above, is very simple minded. In

fact, the method works only because the resulting spline curves roughly approximate their

defining control polygons, whose vertices by definition are identical to the sampled pixel

sites. It would make much more sense to select the initial control vertices so that the

resulting spline curves interpolate the samples of the preliminary edge segments. This

would most likely yield superior starting points and hence shorter convergence times for

the steepest descent procedure. Our main interest, however, is to study the performance

of the steepest descent procedure, and for this purpose the simple minded method is quite

adequate. Indeed, the worse the starting points are, the more robustness (of the procedure)

can be demonstrated.

If spline curves that interpolate the preliminary edge segment samples are desired,

they are not very hard to achieve. Let q be a new spline with control vertex sequence

(vm)mio• If 9 *s cl°se(l, the new initial independent control vertices, which have to be

selected, are vq,..., i>a/-i« The remaining control vertices are determined by the constraints

VM+m = Vm m = 0,1,2 (C.l)

In order to determine vo,..., vm-\ so that q interpolates uq, ..., wa/_i, one can for example

demand that

w0 = q(M-l) (C.2a)

um = q(m-l) m = l,...,M-l (C.2b)

Substituting (2.2), (2.3) and (C.l) in (C.2) one then easily obtains the 2M x 2M system

4 1

1 4 1

1 4 1

1

vo w0

®h • =
I

1
. vM-\ . UA/-1

4

(C.3)

where ® denotes the Kronecker product, and I2 is the identity matrix in R2. (The zero

elements in the leading are left blank for better readability.) If q is open, the new initial
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independent control vertices, which have to be selected, are V3,

control vertices are determined by the constraints

v0 = vi = v2 = wjb

VM - VM+l = Vm+2 = Wjt

In this case it is reasonable to demand that

5^a/_i. The remaining

(C.4a)

(C.4b)

um = q(m-l) m = 3,...,M-l (C.5)

A substitution similar to the one above then yields the 2(M —3) x 2(M —3) system

4 1

1 4 1

1 4 -
(C.6)

0

The coefficient matrices of the systems (C.3) and (C.6) are obviously positive,

symmetric and diagonally dominant. By Gersgorin's circle theorem [62, p371] they are

consequently also strictly positive definite. Both the systems (C.3) and (C.6) thus have

unique solutions, which are easily computed with some numerical method such as Gauss-

Seidel. Since the coefficient matrices are real, symmetric and strictly positive definite, the

Gauss-Seidel method is indeed guaranteed to converge to the unique solution from any

starting point [63, p355]. The obvious choice for such a starting point is of course given by

0 P> -.

Wh

t>3 W3 0

®h • = • 6- I

4 1
. vM-\ . . «M-1 0

1 4 Wjt.

«<°) - u m = 3o,..., M — 1

where o is the openness of the new spline.

C.4 Type Variables

The computation of the type variables on, @n and rn, n = 1,... N, actually begins

already during the spline formation procedure just described. To each control vertex in the

vertex list there is for this purpose a designated counter, which is originally set to zero.

Every time a control vertex sequence (vm)m=o °f a new °Pen spline is recorded in the
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spline list, the counter(s) associated with v0 (= vj = v2) and vm (= vm+i = VM+2) are

incremented. (If the endpoints of the new open spline are constrained to coincide, that is

vo = vm, the same counter associated with both t>o and vm is incremented twice.) When the

spline formation procedure terminates, each counter shows how many times its associated

control vertex in the vertex list serves as an end vertex for an open spline. The counters

associated with junctions thus contain strictly positive integers while those associated with

intermediate vertices remain at zero.

A special type variable computation procedure, which follows after the spline for

mation procedure, examines the counters associated with the end vertices of each spline in

the spline list. A value of zero indicates (an end vertex of) a closed spline, a value of one

indicates a free end vertex (of an open spline), and a value greater than one indicates a

constrained end vertex (of an open spline). With this information at hand the type of each

spline is trivially determined and recorded in the spline list.
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