Copyright © 1990, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.



A GENERALIZED QUADRATIC
PROGRAMMING-BASED PHASE I-PHASE I
METHOD FOR INEQUALITY-CONSTRAINED
OPTIMIZATION

by

E. J. Wiest and E. Polak

Memorandum No. UCB/ERL M90/46

24 May 1990



A GENERALIZED QUADRATIC
PROGRAMMING-BASED PHASE I-PHASE Il
METHOD FOR INEQUALITY-CONSTRAINED

OPTIMIZATION

by

E. J. Wiest and E. Polak

Memorandum No. UCB/ERL M90/46

24 May 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720



A GENERALIZED QUADRATIC
PROGRAMMING-BASED PHASE I-PHASE I
METHOD FOR INEQUALITY-CONSTRAINED

OPTIMIZATION

by

E. J. Wiest and E. Polak

Memorandum No. UCB/ERL M90/46
24 May 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720



A GENERALIZED QUADRATIC PROGRAMMING-BASED PHASE I - PHASE I
METHOD FOR INEQUALITY-CONSTRAINED OPTIMIZATION*

E. J. Wiest! and E. Polak |

ABSTRACT

We present a globally convergent phase I - phase II algorithm for inequality-constrained minimi-
zation, which computes search directions by approximating the solution to a generalized qua-
dratic program. In phase II, these search directions are feasible descent directions. The algorithm
is shown to converge linearly under convexity assumptions. Both theory and numerical experi-
ments suggest that it generally converges faster than the Polak-Mayne-Trahan method of centers.
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1. INTRODUCTION
We consider the inequality-constrained nonlinear programming problem,

min, (F°@) 1 fix)s0 vjep) , (1.1)

where p denotes the set of natural numbers (1,..,p)} and the functions f/:R* -5 R,
Jj€ pufO] , are continuously differentiable. [Pol.4] proposed algorithms for the solution of
pnob-iem (1.1) which obtain a search direction at each iteration by solving a natural approximation
to (1.1) in which each function f/() is replaced by the quadratic approximation
flx)+\VFi(x), h)+%ih +H;h), for some H; € R**". The resulting subproblem is a qua-
dratic program with quadratic constraints, which we will call a generalized quadratic program
(GQP):

min, (F°@)+(VFI@x), h)+Yalh \Hib ) f 1)+ (VfI(x) b )+ Yalh \H;h)SO Viep). (12)

The use of GQP subproblems in algorithms for the solution of (1.1) offers some potential advan-
tages over the use of quadratic programs. For example, information about the curvature of indivi-
dual constraints can be incorporated directly into the constraints of the GQP subproblem. If the
matrices H; are positive definite and the current iterate is feasible, the resulting search direction is
a feasible descent direction. This paper presents the first thorough analysis of convergence and
rate of convergence of an implementable GQP-based algorithm.

There has been some theoretical analysis of GQP-based algorithms. The convergence of
conceptual phase II algorithms is treated in [Pol.4]. Rates of convergence are obtained for GQP-
based minimax algorithms in [Pol.5-6] under assumptions of uniform convexity. It is shown in
(Pan.3) that, on uniformly convex problems, the norms of the search directions constructed by a
conceptual GQP-based algorithm converge superlinearly to zero as the iterates approach a solu-
tion,!

The GQP-based algorithms proposed in [Pol.4, Pan.3-4] were conceptual, that is, they
assumed that the GQP subproblem is solved exactly. These algorithms were not implemented (to
our knowledge) because no finite step procedures for solving problem (1.2) were known [Pol.4,
Pan.4]. Furthermore, (1.2) may not have feasible solutions if x is infeasible for (1.1). In this
paper, we resolve these difficulties for the case of first-order information, where each H; is taken
to be a multiple of the identity.

Our GQP-based method approximates the solution to (1.2) by adding a correction to the
search direction of the Polak-Mayne-Trahan algorithm [Pol.2, Pir.1]. The approximation is exact
under certain conditions, and requires the solution of only one quadratic program and a projection
operation. The method uses the Polak-Mayne-Trahan search direction when no solution to (1.2)
exists.

Because we set each H; in (1.2) to a multiple of the identity, the search direction at each
feasible point is a feasible descent direction. Hence, once the algorithm constructs a feasible

'Quadratic constraints have also appeared in the subproblems of trust region algorithms [More.1). However, in these algo-
rithms, they fumction to limit the search direction, rather than to represent the constraints of the problem.



point, x;,, the inequalities
flx)<0 viep and folma)<f®x) . (1.3)

hold for all subsequent iterates, {x;);»;, This property is important in engineering design prob-
lems for which function evaluations are extremely costly and for which designs failing to satisfy
specifications are unacceptable [Nye.1]. Other first-order algorithms satisfying these require-
ments include [Hua.1, Mey.1, Mif.1, Pir.1, Pol.1-2, Top.1, Her.1].

We compare the efficiency of our GQP-based algorithm with that of the Polak-Mayne-
Trahan algorithm, because the GQP-based algorithm can be viewed as a modification of the
Polak-Mayne-Trahan algorithm and because the Polak-Mayne-Trahan algorithm satisfies (1.3)
and has been shown to converge linearly in Phase II [Pir.1, Cha.1] under convexity assumptions.
We show that the GQP-based algorithm converges linearly with a smaller bound on the cost con-
vergence ratio® than that obtained for the Polak-Mayne-Trahan algorithm. Numerical experi-
ments also show the new algorithm to be generally superior to the Polak-Mayne-Trahan algo-
rithm, and competitive with the feasible descent algorithm of [Her.1].

The GQP-based algorithm presented in this paper accepts infeasible starting points, and a
linear rate of convergence obtains even if the sequence of iterates approaches feasibility only
asymptotically.

In Section 3, convergence and rate of convergence results are obtained for a local, concep-
tual GQP-based algorithm. In Section 4, an implementation of the local, conceptual algorithm is
developed. In Section 5, the convergence and rate of convergence results are obtained for the sta-
bilized, implementable algorithm, and the results of numerical experiments are presented in Sec-
tion 6. The properties of the Polak-Mayne-Trahan algorithm are reviewed in the next section.

2. PROPERTIES OF THE POLAK-MAYNE-TRAHAN ALGORITHM

The Polak-Mayne-Trahan (PMT) algorithm [Pol.2] is a phase I - phase II extension of the
Pironneau-Polak algorithm [Pir.1], which, in tum, is an implementation of Huard’s method of
centers [Hua.1]. The PMT algorithm is one of very few first-order phase I - phase II methods for
which the rate of convergence is known (see also [Pol.3]), and its computational behavior is quite
competitive in this class. We will use the PMT algorithm as a benchmark for evaluating the new
algorithm. The PMT algorithm solves problems of the form

min {f°%x) | f/(x)<0, jep) , (2.12)

under the assumption that the functions f/:R* — R are continuously differentiable and the con-
straint qualification that the function max jeof i(x) not have any stationary points outside the
interior of the feasible set. )

We will use the following definitions. We denote the set of natural numbers {1,...,p )} by
p, and the set {0,1,....:} by pu0. The p smooth constraints f/(x)<0 in (1.1) can be

We define the cost convergence ratio of a sequence (x);en Which converges to £ to be
Lmsup ; o 1f %) = £ OGO 1£ Xx) = £ OG )1,



combined into a single nonsmooth constraint y(x) < 0, where y(x)4 max ; ¢, f/(x). Constraint
violation is indicated by the values of the function y,(x) 4 max (y(x),0). Finally, we define
first-order convex approximations to the functions f /(-) at x by

Fitnix) 8 {{3}‘3;)“7[327,’;’,2 e Z _E , 2.1b)
for some fixed y> 0. Note that f°(0 1 x) = 0and f /(0 |x) = f/(x) forall j € p.
Algorithm 2.1 )
Data: xo; a,Be(0,D; v>0;i=0.
Step 1: Compute the search direction,
h(x) argmin max fith1x) (2.22)
and evalu_ate the optimality function
o) 4 max Fith(n) 1) - wula). | @2b)
Step 2: If w(x;) <0, set
A = max (B* 1 £ + B*h(x)) - £ %x;) < 0B*6(x;) and w(x; + B*h(x)) <0) , (2.2c)
else set
A =max (B* 1w + B*h () - w(x) S of*6(x,) ) (2.2d)
Step 3: Setx;,, = x; + LA (x;).
Step 4: Replace i by i+1, and go to Step 1. a

Step 2 ensures that, once a sequence generated by Algorithm 2.1 has entered the feasible
regionX & {x € R* | fi(x)<0Vj e p }, it can never leave it. Referring to [Pol.1] we see that
the search direction vector 4 (x;) can be computed in two steps. First one solves the dual of
(2.2a), i.e., the positive semi-definite quadratic program

; ifi -
Jnax hﬂgg.jezpwuf (h 1 x)—yu(x)

= max ¥ Wfix)-yx)- % IVFIER,
[TY-Jp 0 i§g At j ez;_vuou (2.3)
for any solution u(x;). We denote the set of solutions to (2.3) by

Upp(r)@argmax 3 W f/x) -y, (x)- %yl ¥ W Vfix)?. This can be done using one of
Behu jep jepwo
several methods [Gil.1, Hoh.1, Hig.1, Kiw.1-2, Rus.1]. The unique primal solution, 4 (x;), is then

given by

k) =agmin T WEFIGI0=1 T WaVFik). @.42)
€ I'GZUO je!uo

From (2.3), we can write



8() = max j}.:, W) -y -%y 3 WP, (2.4b)

j e p o

The following theorem summarizes the properties of the optimality function 8:R"* — R, the
search direction function 4:R" — R" used in the above algorithm.

Theorem 2.1[Pol.1]
(@) If% is a local minimizer for problem (1.1), then () = 0.
(b) Foranyx € R*, 8(x) = 0 if and only if there exists A € Z,,, such that

Y QiVFi@ =0, (2.52)
je gw
TRI@ =w@. (2.5b)
iep
(c) Both 0(") and h(-) are continuous. m]

Note that if ¥ satisfies (2.5a-b) for some p € Z,.,, and y,(%) > 0, then p° = 0, and hence ¥ satisfies
the standard first order condition for a local minimizer of y(-). If 2 is a local minimizer of (1.1),
then U pp(2 ) is the set of Fritz John multiplier vectors which, together with £ , satisfy (2.5a-b).
Theorem 2.2:[Pol.1] If x is an accumulation point of a sequence (x;) i~y constructed by Algo-

rithm 2.1 in solving (1.1), then 6(x) =0. Furthermore, if, for all x € R* such that y(x) 20,
0 £dy(x) (where oy(x) denotes the generalized gradient of y(-) at x [Cla.1]), then y(X) <O0. a

It was first shown in [Pir.1] that an algorithm based on the search direction rule (2.2a) con-
verges linearly under convexity assumptions. Chaney [Cha.1] later established linear conver-
gence under slightly weaker assumptions. The following theorem is a variant of Chaney’s result,
accounting for the fact that Algorithm 2.1 uses an Armijo-type line search [Arm.1] rather than an
exact minimizing line search as in [Cha.1, Pir.1]. Let

Fi(x)8 3 i(x)ax? , (2.6)

and;_z“émin[wl ne Up(®)]).

Theorem 2.3: Suppose that

(i) the functions fi(-), j € p U0 are twice continuously differentiable,

(i) the set L & {x € R* 1 y(x) S, (xo)) is bounded, and the necessary conditions (2.5a-b) are
satisfied at a single point, £ € X, at which the Mangasarian-Fromovitz constraint qualification
holds (i.e. - there exist h € R* and 8> 0 such that {Vf/(2),h)<-38 for each j € p such that
fi®)=0),

(@iii) for 2 as above, and with

TAUUWInE Un@®)) . @.72)
where for anyp€ Z,,,,J )4 (j e p | >0), there exists m € (0, Y) such that



mihB< (h, [' T wWFi@ )]h). (2.7b)

e gUO
Jor every p € Upp(% ) and for every nonzero h € H, where

HA (h1(VFi®),h)=0,vjel }. 2.70)

If Algorithm 2.1 constructs a sequence (x;} 2 in solving problem (1.1), then (3) x; > £ as
i >0, and () if y(x;)<0foranyi € N, then

o) =F°@)

. J V4l S ) _ oﬂ_
TP ey EM -
foranyM>max,-e£w{|Ff(£)|.y]. o

Inequality (2.7d) then gives an upper bound on the cost convergence ratio of sequences con-
structed by Algorithm 2.1.

3. ACONCEPTUAL GQP-BASED ALGORITHM

We begin by considering a conceptual, local algorithm for solving (1.1) which computes a
search direction at x; by solving the generalized quadratic program,

GQP(x): min (fh 1x)1fith1x)<0 vjep) , (3.12)
withx = Xio
Local Algorithm 3.1:
Data: xo; Be(©0,1); yv>0;i=0.
Step 1: Compute the search direction,

b = hqe(x:) £ argmin (F°h 1x) 1 f/h 12)<0 Vjep). (3.1b)

Step 2: Compute the step size,
A; = max {B* 1 £ + B*h) - £ °(x) <B*F O 1 3),

vax; + BER) — wax) < ﬁ"[glg (F i1 %), 0) —y,(x)) (3.10)

Step 3. Set Xiy1 =X + k,'h;.
Step 4: Replace i by i+1, and go to Step 1. O
Lemma 3.1: Suppose that assumptions (i)-(iii) of Theorem 2.3 hold, and let £ be as defined in

assumption (ii) of Theorem 2.3. Then there exists a neighborhood V of £ such that GQP(x) has a
continuous solution, hgqp(x), forallx € V.

Proof: Suppose that x € R" is such that there exists an #’ € R” satisfying f /(& |1 x) <0 for all
jep. Then the set-valued map G(x)2 (heR*If/(h1x)<0,vjep) is upper

5



semicontinuous at x. G (x) is compact since the functions f /() are uniformly convex. Hénce, by
the Maximum Theorem [Ber.1], the set of solutions to GQP(x) is an upper semicontinuous set-
valued map at x. Since GQP(x) is a strictly convex program, its solution set is a singleton,
{hgqe(x) ). Therefore, the solution, hgqp(x), to GQP(x) is continuous at any point x at which
GQP(x) is strictly feasible.

By assumption (i) of Theorem 2.3, there exist he R* and §>0 such that
{Vf/(®),h)<-5 for each j € J(£). Therefore, there exist ¢ >0 and a neighborhood, V, of £
such that f/(th 1 x) <0 for all x € V and j e p. Therefore, GQP(x) is strictly feasible for all
x € V. Inlight of the previous paragraph, 4gqp(x) exists and is continuous in V. 0
For any x € R" such that GQP(x) has a solution, we will denote the set of Fritz John multiplier
vectors associated with the unique solution, A ggp(x) by

Ucqe(x) & (HE Byl Zuoujvfj(hcqp(x) Ix)=0,
jep

jz_:pu’f H(hcop(x) 1) =0) . (3.1d)

Consider the I, penalty function, p,(x)4ef%x)+w,(x), where €>0. The proofs below
exploit the correspondence between minimizers of the constrained problem (1.1) and those of the
minimax problem,

min,p(x). (3.29)

As is shown in the following lemma, the solution to (1.1) is also a strict local minimizer of p,(-)
for sufficiently small e. Let

de(x) 2 argmin (e f °(h 1 x) +max (0, F/h 1)) ), (3:2b)
and let
Be(x) 2 e f Ody(x) | x) + max {0, fi(dy(x) 1 x)} =y, (x). (3.2¢)

Recall that p°4 min (%1 p e Upp(®) ).

Lemma 3.2: Suppose that assumptions (i)-(iii) of Theorem 2.3 hold, let £ be as defined in
assumption (ii) of Theorem 2.3, and let V be as defined in Lemma 3.1. Then, for any
ee (O'EOI(I'EO»’ there exists a neighborhood, W, c V, of £, such that, for all x € W,,
@) pex)2pR)+Ymix -2, and (0) d(x) = hgee(x).

Proof: (a) Assumptions (i)-(iii) of Theorem 2.3 ensure that the point £ satisfies the standard

second-order sufficiency conditions for problem (1.1) [McC. l] In fact, they ensure that £
satisfies these conditions for the problem,

min_ (f%0) - Ymlx -2 PIf/(x) - Ymbx -2 P<0) . (3:2d)

It follows from Theorem 4.6 of [Han.1] (see Theorem A.1 of the Appendix for a restatement),



therefore, that £ is a strict local minimizer of p¢()-Ym(e+ 1)l -% B, provided that
1/e>3,  ,u’ for some Kuhn-Tucker multiplier vector for the problem (3.2d), u € R®, associ-

ated with £ . Since the Kuhn-Tucker multiplier vectors for (3.2d) associated with £ are the same
as those of (1.1), we can construct a Kuhn-Tucker multiplier vector for (3.2d) from any Fritz John

multiplier vector, p € Upp(% ), as follows:

up= @, . w0, (3.2¢)
because the Mangasarian-Fromovitz constraint qualification (assumption (ii) of Theorem 2.3)
ensures that p®>p°> 0. Hence, if 1/e> lul; = (1 —E") /E°, then £ is a strict local minimizer of
pe) - Ym(e+ Dl-— £ R. This implies that p (%) < px)— Ym (e + Dlx - £ P for x in some neigh-
borhood of £ .
(b) We recall that by Lemma 3.1, the solution ggp(x) to GQP(x) exists for all x in a neighbor-
hood V of £. We will now prove that, for any £<EOI(I'EO)’ de(x) = hgop(x) for all x in a
neighborhood of £ .

We first show that, for x near £, the norm of some Kuhn-Tucker multiplier vector associ-

ated with the solution to GQP(x) is bounded from above by (1 - u°)/ E". We denote the set of
Kuhn-Tucker multiplier vectors for GQP(x) by

KT gop(x)8 (4 € R21 Vf %hgoe(x) 1 )+ 3 u/Vf i(hgoe(x) 1 x) =0,
jep

T Wfi(haerx) 1) =0) (3.3)

lep

for xeV. Since hgep(®)=0 and y,(£)=0, an inspection of (3.1d) reveals that
Ugqe(®) = Upp(X ). By assumption (ii) of Theorem 2.3, ;_1° >0. Since Ugqp(') is an upper sem-
icontinuous, compact-valued set-valued map at £, there exists, for any e (0, 1), a neighbor-
hood, W5 < V, of 2, such that p° > p° - § for every p € Ugop(W3). Now, every Fritz John multi-
plier vector pe Ugee(x) comesponds to a Kuhn-Tucker multiplier vector,
u, 8 (', ... . WP/p% € KTgqp(x). For such Kuhn-Tucker multiplier vectors,
gl =1-p/pl<Q -p_1°+8)/@°—8) for every p € U qp(W ).

Because (i) for any de (0,p), there exists a neighborhood W of £ such that
min (lul; | u € KT ggp(x) } <(1-p°+ 8)/(u°- 8) for x € W (from the previous paragraph), (ii)
max ;. , f /(W 1x)<0 for x € V and some k' € R* (from the proof of Lemma 3.1), and (i)
problem GQP(x) is a convex program, we can apply Theorem 4.9 of [Han.1] to conclude that, for
e<(N®-8)/(1-01°+9), hgoe(x) is the unique minimizer of the convex function
min 4 ¢ g f %(d | x)+max {0, f/(d 1 x)} forall x € W5 (See Theorem A.2 of the Appendix
for a restatement of Theorem 4.9 of [Han.1].) Hence, 4 cop(x) =dg(x) for all x € W;. Since § was
arbitrary, such a neighborhood exists for any e < /(1 - ). m]

Theorem 3.1: Suppose that assumptions (i)-(iii) of Theorem 2.3 hold, and let £ be as defined in



assumption (ii) of Theorem 2.3. Then, for any neighborhood, W, of % , there exists a neighbor-
hood Vw ¢ W of £ such that, if xo € Vw, the sequence (x;};cn constructed by Algorithm 3.1
remains in Vv and converges to % .

Proof: Let A () denote the iteration map of Algorithm 3.1. The function A (-) maps one iterate
into the next, i.e., x;,; =A(x;). The sequence {x;}; ¢ Will remain in a set Vw if the set Vv is

invariant under A ("), i.e., A(V») € Vw. We now show that such a neighborhood Vw ¢ W of £
exists.

Let e <p’/(1-p?) be arbitrary. By Lemma 3.2(a), there exists a neighborhood W of £
such that p.(x) 2p.&)+ Wm'Ix -£ * for x € W, For small enough §>0, therefore, the set
Vwl (x € W lp(x)<p.8)+3) is contained in W. By the continuity of p,(-), the set Vw is a
neighborhood of £ .

By Step 2 of Algorithm 3.1, with x; = A(xg) forany x4€ V,

Pe(x1) —Pe(xo) = elf %x ) — £ °x )] + W, (x 1) - W, (x )]
< Aglef “hage(xa) | x0)+ max (f /(hge(xa) 1 30 . 01 — lxo)] . '(3.42)

By Lemma 3.2(b), hgqp(xo) = he(xo) for xo € Vw, and, hence,
Pe(x1) =P e(xo) S Aglef *(helxo) 1 xg) + max (fi(hexo 120),0) =y, (xo)]

= ABe(x) 0. (3.4b)

Therefore, p(x,) < p(xo) Sp2) + 9, implying that A (Vw) < Vv.

Now we show that only £ can be an accumulation point of the sequence (x;}; ¢ N CON-
structed by Algorithm 3.1, from an x, € Vw. Suppose that {x;}; ¢ x converges to X € Vv, where

K cNand ¥ #£. Since, by assumption (i) of Theorem 2.3, £ is the only stationary point for
(1.1) in Vw, ¥ cannot be stationary for problem (3.2a). By Lemma 3.1, f %(hgqp(x) | x)) is con-
tinuous in Vw, and therefore there exist 8 > 0 and a neighborhood, W < Vw, of x such that

0, (x) <=5, (3.4¢c)

for all x € W’. Clearly, there exists an iqe K, suchthatx; € W foralli >ig, i € K. Let M’ <o
be such that IF/(x)I<M’ forall x € W. Then,

[0+ Migop(r)) S £7(6) + MVf /(%) , hoop(x:) )+ VM’ Mk gop(x)P? (34d)
foralli e K ,i >iy Hence,forje p andA<1,
S0+ Migp(x. 1 = W) SA (£ 1(5) + (Vf (%), hoop(x:))+ M Mhgop(x )P - yi(x)) . (3.4e)
since y,(x) 2 f/(x). ForA<y/M’,then
FI0 + Mrgae()) = wi(m) SA £ /() + (VFH(x) L hge(x))+ Yerth gae(e)l® — wa(x) )



= A (f/(heoe() | %) - Wu(x) ) . (3.40

Taking the maximum over j € p
Walx; + Migoe(x:)) ~ Walx)) < l{:pg); (0.f j(’_lcqr(x.') Ix)) - \I’+(xi)} , (3.4g)

forallAe (0,y/M']andi >iy,i € K. Setting j = 0in (3.4d),
£ 005 + Migoe(x:)) = £ ) SA{AVF I (%) , hgoe(x:) )+ Yerlh goe(x:)PP)

= "(hoe(x) 1 %) (3.4h)

forA<y/M’ andi € K, i >i, Inequalities (3.4g) and (3.4h) and Step 2 of Algorithm 3.1 imply
that A; > By/M’. From Step 2 of Algorithm 3.1 and the fact that hgope(x;) = h¢(x;) fori >ig,

PeXin) = P ex) = po(x; + Aih ge(x:)) — pe(x:)

< ls{t’-f U goe(x:) 1 %) + max (0.F/(hooe(x:) 1 %)} - \lf+(x.-)}
< k.-{ef Oho(x:) 1 %)+ max (0. Fithox) 1 %)) - %(x.-)}

= M6(x). (3.4i)

Thenfori e K ,i > iy,

P -p o) =p < oy s-B8. (34)
Now pe(x;.1) S pe(x;) for all i >i, by (3.4i). Hence (3.4j) implies that p(x;) > -0 as i = oo,
However, this is impossible, since {x;}; ¢ is contained in the bounded set Vw. Therefore,
X #2 cannot be an accumulation point for the sequence.

Since Vi is compact, the sequence (x;}; . n © Vv must converge to the set of its accumu-
lation points. We have shown that £ can be the only accumulation point for the sequence.
Therefore, the sequence converges to £ . o

Let >4 max (1’ pe Upp(®)).

Theorem 3.2: Suppose that assumptions (i)-(iii) of Theorem 2.3 hold with £ as defined there,
that xq,€ Vw, with any Vw as defined in Theorem 3.1, and that Algorithm 3.1 constructs a
sequence {x;} ;2o in solving (1.1) starting from a point x, € Vw. Then, (a) for any e < ;_1° /1(1- |._1°),
lim sup PeXin) —pe(X) <1 _B_;'n_l min {
T pex)—pR)

and (b) if y(x;)<0foranyise N,

€
= , 1
11 +e) )

(3.5a)



0 _ fOa
umsupf(“*‘) f'®)

r < 1-BooH%- . (3.5b)
oS %) - @) - M

O

Proof: (a) Let positiveee (0, E" 1(1- E")) be arbitrary. The proof of Theorem 3.1 gives us a
relation between the decrease in the penalty function p(x) at iteration i and the decrease
predicted by 8,(x),

P -per) < Bl o). 66

for large i. Hence,

Pe(Xin1) — pelx;) < % Tim sup 0.(x;)
Pe(xi)—peX) e
To complete our proof, we will make use of Theorem A.3 in the Appendix, which is a restate-
ment of Lemma 3.3 of (Wie.1]. This result provides an upper bound on the right-hand side of

(3.7). For this purpose, we will show that the assumptions of Theorem A.3 hold. Assumptions
(i) and (ii) of Theorem 2.3 ensure that assumptions (i) and (ii) of Theorem A.3 hold with respect

to the minimax problem (3.2a) at £ . Next we turn to assumption (iii) of Theorem A.3.

lim sup
L

) 3.7
Pe(x) —pe(R)

We associate with the minimax problem (3.2a) the set of multiplier vectors U (% ) consist-
ing of those u € %,,, such that

WeVr @)+ T W (V@) +VFI@)) =0, (3.82)
jep

u°ef°(i‘)+}2‘. W ef'@)+fI(®)) =pR). (3.8b)
er

The sets U (% ) and U pp(% ) are related as follows. Since y,(% ) = 0, (3.8a-b) can be rewritten as

evVrys) + T wvfi@y=o0, (3.9a)
jep
Twfi@)=0. (3.9b)
rep

Then, since 1-p° =3, ¢, W, €. 1',... W)/ (e+1-p") € Ugqe® ), for any pe U (2). Since
Ugqe(®) =Upp(R) as we  showed in the proof of Lemma 3.2,

€.1t,... . 0P/ E+1-p® e Upp(X) for any pe U %). It follows from assumption (iii) of
Theorem 2.3, that, with H as defined in Theorem 2.3,

j
mihP<{h ﬁﬂ@n stl;_;FFj(’?) kY, VheH,h=0, (3.10a)
Z [Zperlo

forany pe U (%). Hence forany pe U2 ),

10



mJhB < (h, [u°eF°(£)+ TW(eF'@)+F/@)) (k) VheH ,h#0, (3.10b)
JE€pP

where m, 2 min{m@E+1-p)IpeUf)) =m(e+1-max{p’lpe U E))}).  Hence,

assumption (iii) of Theorem A.3 is satisfied at £ for the minimax problem (5.1), and it therefore

follows from Theorem A.3 that

0,(x;) min (m,, (1 +¢€)y)

- (l +8)Y * (3.11)

lim sup
P77 pex)—pe®)
Combining (3.11) with (3.7) yields
Pelliv) ~pelti) By min(me,(1+ey)
M (1+¢e)y

lim sup
§ =

Pe(x) —peX)

—-p min{melb({1+8),'y} . (3.12)

Next consider any pe U, ). As mentioned above, (e, p!,... ,uWP)/(e+1-u e Upp(®).
Recall that p°2 max (u’ipe Upp(®)). Then

€ =0

—_—<l, )

e+1-p° . (3.13)
and hence

me=m(e+l-max{u°lp.eUe(f)})Zm-%. (3.14)

Substituting (3.14) into (3.12) yields
Pelxin)—pen) B
Pex)—peX)

Adding 1 to each side of the inequality in (3.15), we obtain (3.5a).
(b) Using the fact that p(x;) = £ %(x;) fori > i,

&) -F°R®)

lim sup
§ =)o

min (me/ o1 +€)) , v) s-ﬂ%mm(io(—lig.ll : (3.15)

s oy P g ) 3.16
P2 %) -F°®) Pa™ 1’1 +¢€) (3.16)
Since e < u®/ (1 - W) is arbitrary, (3.5b) holds. o

Unless £ is also an unconstrained minimizer of f %) (in which case, p° = 1), the bound in
(3.5b) on the cost convergence ratios of sequences constructed by Algorithm 3.1 is smaller than
the bound in (2.7d) for sequences constructed by Algorithm 2.1,

1- aBQf/ﬁ")ﬁE" <1- EOI";- .
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4. GLOBALIZATION AND IMPLEMENTATION OF THE GQP SUBPROCEDURE
There are two issues associated with the use of the problem

GQP(x): min{f°(hlx)lfj(hIx)SO,vje;_)} , @.1)

as a search direction subprocedure that must be resolved. The first is the issue of globalization.
When x is not feasible for (1.1) and is far from a solution to (1.1), GQP(x) may not have any
feasible solutions. The second is the issue of implementation. Unlike the search direction prob-
lem (2.2a) of Algorithm 2.1, GPQ(x) cannot be transformed into a quadratic program to be solved
by known methods. We must find an efficient method for solving it in a neighborhood of any

solution 2 of (1.1), where, by Lemma 3.1, GQP(x) is known to have a solution.

We will develop the globalized, implementable search direction subprocedure in three
steps. First, we will show that GPQ(x) is equivalent to a problem GQP(x) with linear equality
constraints and a single quadratic inequality constraint, determined by the constraints active at the
solution to GPQ(x). Second, we will use the PMT search direction subprocedure to predict which
constraints are active at the solution. This will allow us to construct a problem with linear equal-
ity constraints and a single quadratic inequality constraint which approximates GQP (x). We will
show that, when the approximating problem has a solution, it can be easily obtained from the
PMT search direction vector h(x). Third, we will incorporate these observations in a search
direction subprocedure which reverts to the PMT search direction when the approximating prob-
lem has no solution.

Because, the PMT search direction subprocedure correctly predicts the constraints active at
the solution to GQP(x) when x is near a solution to (1.1) at which strict complimentary slackness
holds, the globalized, implementable search direction subprocedure leads to a phase I - phase II
algorithm which has the same robustness properties as the PMT algorithm and the same rate of
convergence as the conceptual Algorithm 3.1.

Thus, we begin by developing an equivalent statement for GQP(x). For any x € R"* and set
J € p, we define the problem '

PGe.J):  min (FOh 1x)LFh 12)S0, Fih1x)=F/h 12),vj €I\ jo) (4.22)

where joe€ J is arbitrary. A brief inspection of (4.2a) reveals that the problem P(x,J) is
independent of the selection of j, € J. We will denote the solution to P(x ,J) by d(x ,J).

Since the functions f /(- | x) all have the same quadratic term, %Wk 2, the equality con-
straints in (4.2a) are linear. Hence, problem (4.2a) requires the minimization of a quadratic func-
tion subject to linear equality constraints and a single positive-definite quadratic inequality con-
straint. A subproblem of this form appears in trust region methods, and efficient methods for
solving it have been developed [Mor.1]. However, because f %: | x) and f /% | x) have the same
quadratic term, a simpler technique can be used to solve (4.2a) for our choice of J (see Proposi-
tion 4.2).

Assuming that (4.1) is féasible, we define the active constraint index set by
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o) (jep | Filhogetx)1x)=0) . - @42b)
(The set J gqp(x) may be empty.) A small amount of reflection confirms that the problem GQP(x)
is equivalent to the problem P(x , J gop(x)). (Problem P(x , J gqp(x)) is what we referred to above
as GQP(x).) Hence, when the set J coe(x) is known, the problem GQP(x) is relatively easy to
solve. Next, for any p € Z,,4, let

JW4 (jeplw>0) (4.3a)
and let ppp(x) be any selection from U pp(x). In the following propositions, we will prove that the
use of

Tep(x) 27 (upp(x)) (4.3b)
as an estimate of J gqp(x) has several desirable consequences.

The following proposition shows that d(x , J pp(x)) can be obtained rather easily from 4 (x).
Recall that, for any x € IR* such that GQP(x) has a solution, we denote the set of Fritz John mul-
tiplier vectors associated with the solution by U gqp(x) (see (3.1d)).

Proposition 4.2:  Suppose that problem P(x ,Jpp(x)) has a solution d(x ,Jpp(x)). Let
jo€ Jpp(x) be arbitrary, let G, be a matrix with columns Vfi(h(x)1x)-Vf/*h(x)!x),
J € Jpp(x)\jo, let N, be a matrix whose columns form an orthonormal basis for the null space of
GY, and let P, AN,NT be the orthogonal projection operator whose range is the null space of
GI. Then there exists at € R such that

d(x ,Jpp(x)) = h(x) + P, Vf % (x) | x) . @4.4)

Proof: First, we rewrite P(x , J pp(x)) in the form
min (f %k 1 x) | f/(h 1x)<0, g, +GTh =0}, (4.5a)

where jo€ Jpp(x) is arbitrary, g, is the vector with elements f/(h(x)|x)~f’(h(x)|x),
j € Jpp(x)\ jo. Since g, + GTh(x) =0, it follows that if we set & = h(x) + 3k in (4.53), then we
must have GT6h = 0, which implies that 84 =N,y for some y. Hence, By substituting 8k =N,y
into (4.5a), the equality constraint in (4.52) can be eliminated. Upon expansion of the functions
f (-1 x) around h(x), (4.5a) becomes

min { £ %(h(x) | x) + (VF %k (x) | x), N,y )+ %yiN,y 2|

FihE) 1 x)+ (Vf*h(x) 1x), N,y )+ %N,y 12<0) . (4.5b)

If Jpp(x) = O, then pde = 1, then V£ %k (x) | x) = 0 and the optimal solution to (4.5a) is 8k (x) = 0.
Now suppose that Vf °h(x) | x) #0. This implies that pdp(x) < 1 and that Jpp(x) = ©. Then the
solution 3k (x) for problem (4.5b) satisfies the first-order condition

NT [p."Vf Oh(x) 1 x) + (1 - pOVF *(h(x) 1 x) + ysh(x)] =0, (4.5¢)
for some u’ e [0, 1). Since N,NT8h(x) = P,8h(x) = 8k (x), we obtain from (4.5c) that
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Sh(x) =71 [u°P,vf Oh(x) | x)+ (1 - PP, Vf *(h(x) | x)] . (4.5d)

Now, h(x), the solution to (2.2a), satisfies the optimality condition
T ;e puo Mp(x)VF /(R (x) | x) = 0. Rearranging this equation (and dropping the dependence of
Hpp ON x) yields

0= BV °(h(x) 1 )+ (- WIVF () 1)+ 3 e (VF7Gh) 1) - VF () 1] 4.5e)

jep
Applying P, to both sides of (4.5¢), we conclude that
0 = pdpP. Vf % (x) | x)+ (1 - up)P, Vf *(h(x) 1 x) , (4.50
since P,(Vf /(h(x) 1 x)— VF "*(h(x) 1 x)) = 0 for all j € p by the definition of P,. Since pfp<1,
Hop

P.Vf ' h(x)1x)=- 1_M%P,vf %h(x)|x). 4.5g)
Substituting (4.5g) into (4.5d) yields
0
8h(x) =7 W0~ (1 ~ u)—2— |P, VF (h ) 1 3) (4.5h)
1-Wep o

The search direction d(x , J pp(,)) may not be a feasible solution for GQP(x). The following
subprocedure returns the Polak-Trahan-Mayne search direction in this case.

Search Direction Subprocedure 4.1:

Step 1: Compute the Polak-Trahan-Mayne search direction 4 (x) and identify the set J pp(x).
Step 2: Compute the step, Ak(x) = P, Vf %h(x) | x) .

Step 3: Compute t € R by solving

min {f %h(x)+1Ah(x) 1 x) | Fi(h(x)+ TAR(x) 1 x)SO v €p). (4.6)
(If problem (4.6) is infeasible, set t = 0.)
Step 4: Setd(x) = h(x) + A (x). a

The minimization in Step 3 can be performed very quickly since it involves only quadratic
functions of a single variable. Note that Ak (x) of the Search Direction Subprocedure 4.1 is equal
to t8h(x), with 8k (x) as defined in the proof of Proposition 4.2. The following proposition sum-
marizes the useful properties of d(x).

We now prove that, if 4 (x) is feasible for GQP(x), then d(x) is a feasible direction promis-
ing as much decrease in the objective as a(x). If h(x) is not feasible for GQP(x), then d(x) pro-
vides as much improvement in the constraint violation as A (x).

Proposition 4.3:

@) Iffi(h(x)1x)s0for cach j € p, then f%d(x) 1 x) < f%h(x) | x) and fi(d(x) 1 x) <0 for
eachjep. -

®) Ifmax;e, fi(h(x)1x)>0, thenmax ¢, f/(d(x) 1x)Smax ;o , f/(h(x) 1 x).
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(c) IfGQP(x) is feasible and J pp(x) = J gop(x), then d(x) solves GQP(x).
Lemma 5.1 shows that the assumptions of Proposition 4.3(c) hold in a neighborhood of a
solution £ to (1.1), provided that strict complementary slackness holds at £ .

Proof: (a) This follows from the fact t = 0 is feasible for the single-variable minimization in
Step 4.

(b) If problem (4.6) is feasible, then
max ;¢ , f/(d®x)Ix)=0<max; ., f/(h(x)x). @.7
If problem (4.6) is infeasible, d (x) = A (x).

(c) Since Jpp(x) = Jgop(x), d(x ,Jpp(x)) solves GQP(x). We show that Algorithm 4.1 com-
putes d(x ,J pp(x)). Since d(x ,Jpp(x)) minimizes Fo1x) over
(heR"Ifih12)<0,jep),

Fod@ Tept)) = min, (O 1x)1fih12)50.j€p)

< min (FO%h(x)+tAR(x) 1 x) | fi(h(x)+TAR(X) 1 x)S0,j € pl.

Since d(x ,Jpp(x)) can be expressed as h(x)+T,Ah(x) | x) for some Tty € R, problem (4.6) is
feasible and has the solution 7,. Therefore, d(x) =d(x , J pp(x)). a

S. A STABILIZED IMPLEMENTABLE GQP-BASED ALGORITHM

We replace Step 2 of Algorithm 3.1 with the Search Direction Subprocedure 4.1 to obtain a
global phase I - phase II method, and we establish its convergence properties.

Algorithm 5.1:

Data: xo, B€(0,1); yv>0;i=0.
Step 1: Compute a search direction 4; = d(x;) by means of Search Direction Subprocedure
4.1

Step2:  Compute a step size,
A= max {1 £ +B4) - £ 00) <0 1 ),

vz + Brd) -y (x) < B [11!133: (£ 1x),0) -y, } . ¢é.1)

Step 3: Set x;,, = x; + \;d;.
Step 4: Replace i by i+1, and go to Step 1. O

The three cases listed in Theorem 5.1 are exhaustive. In case (b), 8(x) = 0 implies that
0 € dy(x), where dy(x) denotes the generalized gradient of y() at x. This case is normally ruled
out by assumption. The convergence result obtained for Algorithm 5.1 is slightly weaker than
that obtained for Algorithm 2.1 in Theorem 2.2. In case (c), where Algorithm 5.1 constructs a
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sequence which remains infeasible but has feasible accumulation points, not all of the accumula-
tion points are guaranteed to be stationary points of problem (1.1).

Theorem 5.1: Suppose that the functions f/() in (1.1) have continuous derivatives, that Algo-
rithm 5.1 constructs a sequence {x;} 2y in solving (1.1), and that X is an accumulation point of
the sequence.

(a) If there exists an iy € N such that y(x;) <0, then 8(x) = 0.

(®) Ifwy(x;)>0foralli € N andy(x) >0, then 8(x) = 0.

© I_fv(xi)>0forallieNandqr(f):O,thenli‘mianO(x;)l =0.

Proof:  First we derive bounds on 1d(x )1 for use in the proof of parts (a) and (b). Suppose that
the subsequence (x;};ex converges to X, for some subset X — N, and that 8(x)#0. By

Theorem 2.1, 6(:) is continuous, and, by (4.2b), 6(x) <0 for all x € R*. Therefore there exists a
3> 0 and a neighborhood, W o, of x such that

8(x) = max (f/(h(x)1x)}) -y, (x)<-5, (5.2a)
J eguo
for all x € W,. We use this fact and Proposition 4.3 to show that Id(x)I> 0 for all x in a neigh-
borhood of x.

Suppose that y(x) < 0. In view of (5.2a), there exists a neighborhood, W, c W, of X, such
that y(x) < 486 for all x € W,. Then, forx € W,,

?gf"(h(x) Ix)<8(x)+y,(x)<-%5<0. (5.2b)
From P;oposition 4.3(a), we have that
Fod@) 1 x) -y, x) < F %R (x) 1 x) - wy(x) S B(x) <~ & (5.20)

forall x € W,. Since y(x) < 43§, if follows from (5.2b) and (5.2c) that £ %d(x) | x) <— %3 for all
x € W,. Hence, since f °(0 | x) = 0, and since  °(k | x) is continuous in , uniformly in x, there
exists b* > 0 such that l1d(x)I> b’ forall x € W,.

Now suppose that y(x) >0. We proceed in a manner similar to that in the previous para-
graph. There exists a neighborhood, W, c W, of X, such that y(x) > %y(x) for each x € W,.
For each x € W, either max; ¢ , f/(h(x) 1 x) > 0, or else max; ¢ , f /(h(x) | x) < 0. In the former
case, it follows from Proposition 4.3(b) that

l,ngfj(d(X) Ix)—yu(x) < ;ng:fj(h ®) Ix) -y (x) < -3. (5.2d)
In the latter case, it follows from Proposition 4.3(b) that
max £ /(d (x) 1 2) - y,(6) < 0= Yilx) = - Yy(®) (5.2¢)

for all x € W, Therefore, for all x € W, max ;¢ , f/(d(x) | x)-y,(x) <—min( &, %y()].
Hence, since max;q,f/(01x)-y,(x)=0 for xeW, and since the function
max ; ¢ , f /(h | x) is continuous in 4, uniformly in x, there exists b € (0, &) such that ld(x)I> b
forallx e W,.
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Because the functions f *(- | x) are strongly convex in 4, uniformly in x, ld(x)! is also
bounded from above in W, Because ld(x)! is bounded on W, and the gradients Vf/(:) are con-
tinnous, there exist A>0 and a neighborhood, W, of %, such that
1f oVf (x +sAd (x))ds — VfI(x)l < Yeyb for all x € Wy, A€ [0,X) and j € pu0. (We assume
without loss of generality that W, c W, if y(¥) <0 and that W3 « W, if y(x) > 0.)

(@) Suppose that y(x;) <0 for some iy € N. (This implies that y(x;) <0 for all i 2i, and that
y(x) <0.) Then there exists an i, 2i,such thatx; e W, foralli >i,,i e K.Fori>i,,i € K and
Ae (0.4l

00 + M)~ £ %) = (V%) g+ [ o[VF % + sAdy) — VF Ox)Mds , M)
SA{AVFO)  d)+ W o[VF 7 (x; + 5Ady) = Vi (x))ds 1)
SA{VFO) , d;)+ b ldl)

SAAVF%x,) , di)+ P} =Af %d; 1 x;) . (5.3a)
Similarly, forA e (0,3],i >i;,i € K,and j € p,
FIG M) SALF5) + (VFI(R)  d)+ I o [VFF(x; + shdy) - Vi (x,)1ds 1)

SA{SI0) +{VF (%), d))+ Vabldil) SAf(d; 1 x;). (5.3b)
Taking the maximum over j € P, and using the fact that y,(x;) = 0, we obtain from (5.3b) that
Valx; + M) -y (x;) S 1[5!13: (Fid1x),0) -y, , (5.3c)

for i > ij.i e K and Ae (OA]. It follows from (5.3a), (5.3c) and Step 2 of Algorithm 5.1 that
A;>BAfori >i,,i € K. By Proposition 4.3(a), f °(d; | x;) < 6(x;) fori >i,,i € K, and hence
005 +Mdy) - £ °x) S MF i 1 %) Shi8(x;) S - 14BAS (5.:3d)
fori>i,,iek.
However, this is impossible, since f°%x;) is monotone decreasing for i =i, and

o) f) fox), as i f) e, Thus, the necessary condition (2.5a-b), must be satisfied at x in this
case.

(b) Now suppose that y(x;) >0 for all i € N and that y(x) > 0. Then there exists an i, € N such
that x; € W, for all i 2i,,i € K. For any x € R* such that f/(h(x) | x)<0 for each j € p,
fi@d(x)1x)s0 for each jep by Proposition 4.3(a). For any xe R* such that
max ; ¢, f/(h(x)1x)>0, max;,f’(d(x))x)smax;.,f/(h(x)Ix)sO by Proposition
4.3(b). Therefore, f /(d(x) 1 x)<y(x) forall j € p and x € R*. Hence,

1
FI00+ M) —wilx) = £ + (VFFG) A+ ([ 1V Gy + sAd) = VD (x)lds |, M () - wyxi)
0
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SASIG) + AVfI(x) . di)+ b Ml -y (x) )
SAFI) +(VFI(x) , d))+ Yeld,P -y (x,) )
=M1 %) -v(x)) (5.42)

foralli >i,,i e K, Ae (0,A], and j € p. Taking the maximum over j €p, and using the fact
that 0— w,(r) S Mmax ; ¢ ,f /(d; 1 %)~ v, ()],

Vaxi + M) - v, (x) S Mimax (Fid1x),0) —y,&)l. (5.4b)
Similarly,
I + ) - £0x) SAF %d; 1 x;) (5.4¢)

foralli>i,,ieK, e (0,A),and j € p. It follows from (5.4b), (5.4c) and Step 2 of Algorithm
S.1thatA; >PAfori >i,,i e K. -

From Proposition 4.3(b), if max, ¢ , fEh@) 1x)>0,
max f(d; | %)~ W) S max £ 40 1 x) - 9,5) < 60) < - 8. (5.4d)
Otherwi-se, max ¢, f 5(h(x) | x,-) <0, which, together with Proposition 4.3(a), implies that
max,  , (@, %)= V) SO W) (5.4¢)

There exists i, > i, such that y,(x;) > Y4y, (x) fori >i,,i € K. Substituting (5.4d) and (5.4e¢) into
(5.40),

Vaxi + M) = Yy (x) S = &; min (y,(x;), 8} <—PAmin { %y, (®),5) | (549
fori>i,,iek.
Since y(x;) is monotone decreasing, (5.4f) implies that y(x;) — — oo as i — «=. However, this
4 K

is impossible, since y(x;) - y(¥) as i — oo, Therefore, the necessary condition (2.5a-b) must be
satisfied at x.

(¢) Now suppose that y(x;) >0 for all i € N and that y(x) = 0. In this case, we do not show that
6(x) = 0, but merely that lim inf; _, ., 10(x;)| =0.

To obtain a contradiction, suppose that lim inf; _, .8(x;) <— & <0. Then there exists i, € N
such that 6(x;) <— &’ for all i >i,. By Proposition 4.3(a-b),

max ;¢ , f(d; 1 x,) Smax (0, max ;¢ , /(R (x) 1 %))

<max (0, 6(x;) +y,(x))) . : (5.53)

Hence
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max; ¢ p £/ %)~ i) S max (- y(x), 8(z) ) Smax (- y, (%)~ &) <0, (5.5)

for all i >i,. This implies that y,(x;) is monotone decreasing, and, since y(x) = 0, the sequence
{v.(x:) }; ¢ n converges to 0. Therefore, there exists i, > i, such that y.(x;) <% 8 forall i >i,,
Hence,

max ; ¢, f/(h(%) 1 %) S0(x) +y,(r) S - &'+ 48 <0, (5.5¢)
foralli >i 2._ From Proposition 4.3(a), then,

FOd: 1 %) ST () 1 ) S 8(x;) + W, (x;) S— %8’ , (5.5d)
for all i >i,. This implies that f %(x;) is monotone decreasing for fori >i,.

Now we use the fact that X is an accumulation point of the sequence (x;}; ¢ n. It follows
from an argument similar to the ones used in parts (a) and (b) that there exists A > 0 such that
A >Aforalli >i,,i € K. Combining this fact with (5.5d) and Step 2 of Algorithm 5.1,

foa) - f %) S - 48 (5.5¢)
fori>i,,i € K. Since f°x;) is monotonically decreasing, (5.5¢) implies that f%(x;) = — o as

K
i -0, This is impossible, however, since f°x;) — f %) as i — . The contradiction proves
that lim inf; _, 16(x;)| = 0. o

Recall the definitions of Jgqe(x) and Jpp(x) in (4.2b) and (4.3b) respectively, and that
h cqp(x) denotes the solution to GQP(x).

Lemma 5.1: Suppose that assumptions (i)-(iii) of Theorem 2.3 hold, and that (iv) strict comple-
mentary slackness holds at the solution, 2 , of (1.1), ( i.e. - for everypne U(X)and j € P w >0 if

and only if f/(£) =0). Then, there exist a neighborhood, V"', of £ , K € R® and 8 > 0 such that,
for allxe VvV, (a) ‘,Pl’(x) =JGQ’(x), and(b) d(x)= hGQP(x)‘

Proof: First we observe that assumption (ii) of Theorem 2.3 implies that y(2 ) 0. Assumption
(iv), above, implies that Upp(£ ) is a singleton {fl } for some fL € E,,,, and hence that 7 =700
={jep | f/(®)=0).LetV be as defined in Lemma 3.1.

(@) Because (i) Upp(x) = {1 }, (ii) Upp(-) is an upper semicontinuous, compact-valued set-
valued map, and (iii) A/ > 0 for all j e 7, there exists a neighborhood Wy < V of £ such that
W >0 for every j € 7 and p e Upp(W ). From the definition of J pp(x) in (4.3b), Jpp(x) > 7 for
all x € W,. Now we show that Jpp < 7. By strict complementary slackness, f/(£ ) <0 for every
j&7. Since h(®) =0 and &() is continuous [Pol.1], there exists a neighborhood, W, c W, of £

such that f/(h(x) | x)-y,(x) <0 for all j¢7 and x € W,. It follows from the definition of

Upp(x) that w/ =0 for every j¢J and every pe Upp(W,). Hence je¢J implies jeJpp(W ).

Therefore, J pp(x) =7 foreveryx e w,.

By a similar argument, we show that J ggp(x) = 7 for all x contained in a neighborhood of
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A

£. (@) Since hgepe(X)=0 and wy,(£)=0, an inspection of (3.1d) reveals that
Ugp®)=Up(®)= (1 }. (ii) Lemma 3.1 implies that s ggp(x) is continuous in W,, and hence
U gop(x) is an upper semicontinuous, compact-valued set-valued map. (jii) For all j € 7.pi>o0.
Hence, there exists a neighborhood, W’y c V, of £ such that p/>0 for every jel and
K€ Ugop(W o). From the definition of U gop(x) in (3.1d), this implies that f (hgqe(x) | x) = 0 for
j €2 and x € W’,. Hence, by the definition of J ggp(x) in (4.2b) J cqe(x) D 7 forevery x € W,
Now we show that Jgqp(x) © 7. By strict complementary slackness, f/(£) <0 for every j el.
Since hgoe(£ ) =0 and hggp(-) is continuous, there exists a neighborhood W', € W’y of £ such
that £ /(hgoe(x) | x) <0 for every j2J and x € W’;. From the definition of U coe(x), p/ =0 for
every jeJ and every pe Ugqpei’). Hence je} implies that jeJgoe(W';). Therefore,
Joqe(x) =7 forevery x € W’,. Statement (a) holds with V" = W, N W",.

(b) This follows from (a) and Proposition 4.3(c). (m}

The following theorem asserts that, under an additional strict complementarity assumption,
the implementable Algorithm 5.1 has the same asymptotic rate of convergence as Local Algo-
rithm 3.1. Without the strict complementarity assumption, the bound on the cost convergence
ratio which can be obtained for Algorithm 5.1 is the same as that obtained for Algorithm 2.1 in
Theorem 2.3. However, an improved bound is not obtained for Algorithm 2.1 under this addi-

tional assumption. Under the strict complementarity assumption, Upp(¥) = {fi } for some
R € Z,,, and hence y° = w=no
Theorem §8.2:  Suppose that assumptions (i)-(iii) of Theorem 2.3 hold, that (iv) strict comple-

mentary slackness holds at (2 ,{1) for every A € Upp(®), (i.e. - for every j € B fi/ >0 if and only
if /(%) =0), and that Algorithm 5.1 constructs a sequence (x;) 2 in solving (1.1). Then, (a)

x; % asi >0, (b) foranye<f®/(1-09,

lim sup Msl—ﬁ%min{ 1), (5.62)
7T pex)-pe®) Aot +e)
and (c) ify(x;)s0foranyize N,
0. \_ £O0r0
lim sup MS l—B-;n—l- . (5.6b)
P %) -1'®) o

Proof: (a) The sequence lies in the bounded set L defined in assumption (ii) of Theorem 2.3, and
hence it converges to the set of its accumulation points. By Theorem 5.1, lim inf; _, . 18(x;)! = 0.

We prove that £ must be an accumulation point. Suppose not. Then there exists a neigh-

borhood W of £ such that {x;};n = L\ W. By assumption (ii) of Theorem 2.3, there is no
point in L\ W which satisfies (2.5a-b). Since L\ W is compact, this and Theorem 2.1(b) imply
that inf {6(x) | x € L\ W } >0. But this contradicts the fact that lim inf; . 18(x;)! =0. Hence
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% must be an accumulation point.

Let V” be as defined in Lemma 5.1. The iteration maps (see the proof of Theorem 3.1) of
Algorithms 3.1 and 5.1 coincide for x € V. By Theorem 3.1, there exists a neighborhood

vV < v of 2 such that if the sequence (x;}; ¢ €nters V', it remains in V" and converges to
Z. Since £ is an accumulation point of the sequence, it must enter V. Hence, the sequence
converges to £ .

(b) and (c) Since, by (a), (x;}; e n cOnverges to £ and the iteration map of Algorithm 5.1
coincides with that of Algorithm 3.1 in the neighborhood V” of £, the results of Theorem 3.2
hold. Since Upp(£)= (R ),p°=p"=R" o

6. NUMERICAL RESULTS

Algorithm 5.1 was compared with Algorithm 2.1 and the feasible descent algorithm in
[Her.1] (which also satisfies (1.3)) on several well-known inequality-constrained problems. Table
1 summarizes the performances of the three algorithms on these problems. The results for the
algorithm of [Her.1] are quoted from that paper. The abbreviations in the table have the follow-
ing meanings:

NF: Number of objective function evaluations.

NG: Number of constraint function evaluations.

NDF: Number of gradient evaluations of the objective function.

NDG: Number of gradient evaluations of the constraints.

Each constraint was counted separately in the tabulation of NG and NDG. Bounds on the vari-
ables, i.e., x/ <0, were not included in the tabulation.

The algorithm parameters for both Algorithms 2.1 and 5.1 were set at
a=09,B=09,y=10in the experiments. To reduce the number of trial step sizes tested in the
Amijo step rule, quadratic interpolation was used at each iteration of both algorithms to deter-
mine the initial trial step size.

The Rosen-Suzuki problem is problem 43 in [Hoc.1]. See Figure 1 for a comparison of the per-
formance of Algorithms 2.1 and 5.1. (The y-axis label "Cost Error" of the figures refers to the

quantity, f%x)~f°%)). Colville’s Test Problems One and Two are problems 86 and 117,
respectively, in [Hoc.1].

Kuhn-Tucker Problem [Con.1]: This problem has a unique minimizer at which neither the
Kuhn-Tucker constraint qualification nor the Mangasarian-Fromovitz constraint qualification

holds. It serves as a test of algorithm robustness. The minimum value of -1 occurs at£ = (0, 1).
Both algorithms converged to the solution from the feasible initial point x4 = (0.25, 0.25). How-

ever, Algorithm 2.1 converged sublinearly, while Algorithm 5.1 converged linearly. See Figure
2.
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Circular-Quadratic Problem: In this problem, the function approximations are exact for y=1,
thatis, f/(h 1 x) = f/(x + h) for j € p 0.

min { %(x?+ (x2+4)%) | B((x;+ 1) +x3)-250, %((x,-1)*+x3)-2<0} . 6.3

The minimum value of 4.5 occurs at £ = (0, -1); the feasible initial point x, = (1, 1) was used.
Infeasible Problem: This simple problem was constructed to demonstrate the behavior of the
algorithms when the constraints cannot be satisfied.

min { -x, | (x,+10)2+x2<0 ,(x,-10>+x2<0 } . (6.2)

The minimum value of 1 occurs at the origin. Both Algorithms 2.1 and 5.1 converged to the solu-
tion from the initial point x = (-10, —20).

7. CONCLUSION

We obtained a bound on the cost convergence ratio of sequences constructed by Algorithm
5.1 which is smaller than that obtained for Algorithm 2.1. On all of the standard problems on
which they were tested, Algorithm 5.1 far surpassed the performance of Algorithm 2.1 and was
competitive with the first-order feasible descent algorithm of [Her.1]. Search Direction Subpro-
cedure 4.1 was developed as a method for approximating the solution to the GQP subproblem.
The above facts show that the subprocedure can profitably be viewed as a speed-enhancing
correction to the method of centers search direction (2.2a).

8. APPENDIX

The following two Theorems are special cases of Theorems 4.6 and 4.9 of [Han.1], used in
the proof of Lemma 3.2. ’

Theorem A.1 [Han.1]: Consider the problem
min, (%) 1g/x)<0, viep}, (A.1)

and suppose that the functions g’ () are twice continuously differentiable.

If X € R, together with a Kuhn-Tucker multiplier vector & € R}, satisfies the standard
second-order sufficiency conditions [McC.1], then, for any € < 1/W\,, X is a strict local minimizer
of the function eg°(-) + maxg /(). o

iep

Theorem A2 (Han.1): Consider the problem (A.1) and suppose that (i) the functions g/(-) are
convex and continuously differentiable, and (ii) there exists X € R* such that g/(x') <0.for all
Jj€ p.

If ¥ € R", together with a Kuhn-Tucker multiplier vector & € R}, satisfies the standard
second-order sufficiency conditions [McC.1], then, for any € < 1/lul,, X is a global minimizer of
the function eg°(:) + max g0, o

The following theorem is a restatement of Lemma 3.3 in [Wie.1].
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Theorem A3 [Wie.1]: Suppose that

@) for j € q, the functions g/:R* — R are twice continuously differentiable, and that e >0 is
given, -

(i) there exists TeR such that the set S 2 (xe R*I1¢(x)<T.jeq), where

o(x) 4 max g/ (x), is bounded and contains a single point £ such that
€q

_Z w vgi@)=o0, (A.2a)
jeq
and
p> Wel@)=0®), (A.2b)
€9

for some p € %,.

Let J* be the union of the sets J (1), taken over all u € I, which, together with £ , satisfy

(A.2a-b). Let B denote the null space of the matrix with columns (Vg/ (%))} j e s> Suppose also
that

(iii) there exists r > 0 such that, for allf\ € U(R),

€q

riai<in, Lz pl G’(f)]h) VheB , (A.3)

where G/(x) denotes the second derivative matrix of g/(x). Then,
Sx) _min{r.p)

lim sup , A4)
x97% ¢(x) - «f ) P (
where ¢(x)ébmig. max g/(x) + {Vg/(x) , h }+ Yaplh P — (x) with p > 0. g
eR jeq
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FV

Problem Algorithm NF NG NDF NDG

Rosen-Suzuki [Her.1] 7 27 7 21  43.81453
Algorithm 2.1 66 198 33 99  -43.83851
Algorithm 5.1 6 18 3 9 43.82342
[Her.1] - 15 54 15 45  43.99907
Algorithm 2.1 132 396 66 198 43.99912
Algorithm 5.1 20 60 10 30  43.99927

Colville #1 [Her.1] 6 60 6 60 -32.03453
Algorithm2.1 265 2650 127 1270 -32.06142
Algorithm 5.1 12 120 6 60 -32.21449
[Her.1] 9 90 9 90 -32.34851
Algorithm 2.1 884 8840 436 4360 -32.34851
Algorithm 5.1 32 320 16 160  -32.34865

Colville #2 {Her.1] 36 190 36 180  32.81567
Algorithm 2.1 1840 9200 872 4360  32.81530
Algorithm 5.1 526 2630 246 1230  32.66952
[Her.1] 53 320 53 265  32.34897
Algorithm 5.1 1741 8705 324 1620  32.34906

Kuhn-Tucker Algorithm 2.1 92 184 46 92 -0.9009127
Algorithm 5.1 45 90 6 12 092223418
Algorithm 2.1 6116 12232 3058 6116  -0.9900006
Algorithm 5.1 110 220 15 30  -0.9905035

Circular-Quadratic  Algorithm 2.1 10 20 5 10 4.526097
Algorithm 5.1 2 4 1 2 4.530063
Algorithm 2.1 54 108 27 54 4.500000
Algorithm 5.1 4 8 2 4 4.500000

Table 1: Summary of Numerical Results
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