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ABSTRACT

Thanks to recent advances in data acquisition, storage and processing, we are now

in a position to dramatically improve the operation of semiconductor manufacturing

equipment. This dissertation presents the development of the Berkeley computer-aided

manufacturing (BCAM) framework and its application for monitoring, maintenance and

diagnosis of semiconductor manufacturing equipment

Monitoring improves process quality by providing real-time access to critical vari

ables. Statistical abstractions of the real-time monitoring data are stored in the relational

database for trend and correlation analysis.

An equipment maintenance record keeping system combines a form-based user

interface with a relational database to record preventive maintenance (PM) and equip

ment repair events as they occur. Storing equipment PM and failure information in an



organized database has several benefits: Accumulated information is automatically

indexed to aid diagnosis of failures as they occur by quickly producing a history of simi

lar failures. Equipment failure information is available to other utility programs for

display and statistical analysis. Charts to summarize equipment downtime and frequent

failures are easily produced. This application has resulted in significant improvement in

the way information is used for the management of preventive maintenance and equip

ment repairs.

The diagnostic system employs evidential reasoning to conduct malfunction diag

nosis by combining different sources of evidence originating from maintenance informa

tion, online sensor data and statistically filtered inline measurement information. The sys

tem is capable of handling two types of evidence: qualitative ones, originating from spe

cial patterns of abnormal machinebehavior. Also, quantitative ones, that originate from

the violation of numerical constraints. These constraints are derived from physical,

empirical or semi-empirical equipment models, specifically created and characterized

through experimentation. The violation of each of these constraints gives rise to continu

ously varying belieffunctions that are used toinfer the specific type of equipment failure.

The functions of generic equipment monitoring, maintenance and diagnosis have

been built within BCAM's object-oriented programming environment. This environment

enables applications tobeintegrated and shared bymany pieces of equipment

In this dissertation we have chosen the Low Pressure Chemical Vapor Deposition

(LPCVD) operation and the Tylan diffusion furnaces as atest vehicle for the develop
ment of the abovementioned methodologies.
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Chapter 1

Introduction

1.1. Background and Motivation

The art of semiconductor fabrication has advanced rapidly in the recent years.

Powerful CAD tools have greatly shorten the design cycle of integrated circuits com

pared to just a few years ago. Unfortunately, not the same level of attention has been

given to semiconductor manufacturing itself, particularly in the quality and productivity

aspects [1],

Quality and productivity are intimatedly linked in semiconductor manufacturing.

The final yield of salable product depends strongly on tight process control through

several hundred steps in a manufacturing process. This yield can be improved by captur

ing and using five important data sets. They are:

(1) production lot history (work in process, or WIP) data

(2) *' inline**physical andelectrical measurements collected betweenprocess steps

(3) final electrical test data

(4) equipment maintenance records

(5) real-time processmonitoring data collected during processsteps

The first three of these data setshave been routinely collected in IC manufacturing

in order to detect process problems. However, because of very tight process

specifications, a large (and often highly variable) fraction of finished chips fail the final

functional test even when all inline measurements arewithin specified control limits. The

fact is that today it is impractical, costly, or impossible to make enough inline measure

ments to detect all possible process failures. When process failures do not become



evident until the final test, the specific cause of yield drop may be hard to identify before

a large amount of productgets damaged. This problem must be addressed and overcome.

The key to early detection of process problems is to use the data sets (4) and (5)

through the collection of maintenance information and the real-time monitoring of criti

cal variables during the process. The proper management ofmaintenance data could help

forecast equipment malfunctions. Similarly, well-organized real-time monitoring data

will facilitate the timely detection of process and equipment problems.

Today, in most U.S. plants maintenance data is collected in an ad-hoc manner -

usually in a lengthy text report, while monitoring data is not collected at all. Most of the

equipment in use is equipped with a CRT that displays real-time sensor data in

alphanumeric form. Unfortunately operators cannot effectively monitor more than a

small fraction of the critical parameters, and sensor data is usually not saved for later

analysis.

In this dissertation we will describe a framework to address equipment operation

problems. Within the Berkeley computer-aided manufacturing (BCAM) framework,

real-time monitoring data is combined with inline measurements and maintenance infor

mation in a logically integrated database. Ourobjective is to investigate new techniques

that improve equipment operation by the timely diagnosis of process and equipment

problems.

1.2. Thesis Organization

The subject of this dissertation is the construction of a computer-aided manufactur

ing framework and its application to equipment monitoring, maintenance and diagnosis

for semiconductor manufacturing. The Berkeley CAM framework and its relationship to

the computer-integrated manufacturing (CIM) architecture is described in Chapter 2.

Chapter 3 examines the requirements for an equipment monitoring system and our



experience with an early prototype of the system. A new scheme for equipment mainte

nance information management is presented in Chapter 4. In Chapter 5 we describe an

off-line equipment maintenance system that aims to provide step-by-step guidance for

lead operators and technicians to perform off-line maintenance. Chapter 6 discusses con

tinuous equipment diagnosis based on evidential reasoning. Conclusions and future work

are presented in Chapter 7.
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Chapter 2

The Berkeley Computer AidedManufacturing Framework

2.1. Introduction

The Berkeley computer-aided manufacturing (BCAM) System aims to support all

aspects of equipment operation and process control in semiconductor manufacturing.

BCAM is apart ofacomputer-integrated manufacturing (CIM) project, whose objective

is to develop and implement aprototype ofthe semiconductor manufacturing plant of the

future [1]. In this Chapter, Section 2.2 discusses the evolution of the BCAM system.

The overview of the BCAM framework is illustrated in Section 2.3. Section 2.4

describes the Berkeley CIM system. The relationship between Berkeley CIM and BCAM

is finally discussed in Section 2.5.

23.. Evolution of the BCAM Architecture

A precursor of BCAM was the Berkeley Intelligent Processing System (BIPS) [2].

BIPS, completed in 1987, aimed to advance semiconductor manufacturing by applying a

combination of expert system technology with traditional quantitative tools towards the

design and control of integrated-circuit fabrication processes. BIPS was intended to sim

plify the process recipe writing task and to provide tools for tighter process monitoring.

BIPS was built in ART [3], a commercial expert system shell, which provides various

knowledge representation paradigms, multiple inference methods, and primitives to con

struct a friendly user-interface.

Several lessons were learned from our experience with BIPS. The major lesson is

BIPS *s difficulty in system integration. We found that ART is avery good tool for quick

prototyping of an application but it is not suitable for practical deployment of a CAM



system. The reasonis that we would like to operate in a distributed, multi-tasking works

tation environment. In this case, the preferred user-interface would be an industry stan

dard such as the X window system.

Another lesson is that the recipe generation is a very complex operation. BIPS was

limited in that respect by its simple heuristic algorithm. It is now recognized that a

statistically-based equipment model must be employed in order to create a successful

recipe [4]. A third lesson is that Boolean diagnosis, such as that used in BIPS, can be

quite unstable in a noisy manufacturing environment, andit cannotprovide a measureof

the seriousness of a fault.

Because of these limitations in BIPS, BCAM, a *'second" generation CAM system,

was designed by the CIM group in Berkeley. In BCAM many generic tools have been

developed and work together to streamline equipment operation. An overview of BCAM

is given below.

23. The BCAM Framework

BCAM [5] uses inline, maintenance and real-time monitoring data that are being

collected and stored in an integrated relational database. Six functions that contribute to

the profitable operation of manufacturing equipment have been identified and imple

mented. These are real time monitoring, statistical process control (SPQ, equipment

maintenance record keeping, fault diagnosis, the efficient development of new recipes,

and the development and maintenance of equipment models. It is evident that each of

these capabilities must be specialized for each of a multitude of equipment in a clean-

room facility (Figure 2.1).

The six functions are also tightly coupled. For example, time plots of specific

parameters can be displayed when the online diagnostic program suspects that the pro

cess is out of control. Similarly, equipment models and SPC procedures are used by the



diagnostic system. These capabilities also share many basic, reusable primitives such as

numerical optimizers, reasoning agents and statistical routines. Obviously, the proper

integration of these functions will benefit the efficient development of the system and its

effectiveness within a greater CIM architecture.

23.1. Object-Oriented Integration

To optimize its basic primitives, BCAM is being built using the object-oriented

features of the CLOS (Common Lisp Objea System) [6] and C++ [7] programming

languages. Under each BCAM function, specific equipment application inherits the

knowledge and functionalities from a generic equipment object For example, a furnace

cluster consists of 16 tubes used for different purposes such as dry or wet oxidation,

nitride deposition and low-pressure chemical vapor deposition (LPCVD). Although these

reactors serve different purposes, they have many elements in common. For instance,

they use the same proportional-integration-derivative (PID) control algorithm for tem

perature control as well as the same pump system. Therefore, knowledge that is common

to all these reactors is made available to all the application programs that have been writ

ten for the generic reactor. Specific application programsuse special knowledge for each

reactor.

In the same manner, generic functionalities are shared by all the applications.

Functionalities such as output evaluation, sensitivity analysis of generic equipment

models, etc. are inherited by all the specific equipment models of different reactors [8].
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The benefit of organizing the knowledge and functionalities in an object-oriented

structure is three-fold. First, knowledge and functionalities are reusable and are not

redundantly stored. Secondly, the object-oriented structure is modular and easily main

tained. Becauseknowledge and functionalities are explicitly defined for each equipment

cluster, it is easy to update them. Finally, clearlydefined externaland internal functions

^ make the interface between two incompatible systems easier [9]. For example, diagnos

tic modules built in CLOS can call external functions provided by an equipment model

library written in C++.

23.2. Implementation

BCAM is a workstation-based CAM system expressly built to allow us to experi

ment with the ideas mentioned above. Parts of BCAM have been written in CLOS, C,

and C++. X window primitives are used by the monitoring, SPC, and diagnostic

modules. The equipment maintenance module combines a form-based interface with a

relational database to record preventivemaintenance and field repair events. All modules

use INGRES, a commercial relational database system, as a central data depository.

Direct communication with semiconductor manufacturing equipment is accomplished

through the Semiconductor Equipment Communication Standard (SECSII) protocol [10].

BCAM is also designed to support inter-equipment control in workcell

configurations [11]. Other packages such as numerical optimization routines, process

simulation tools (e.g. SUPREM, SAMPLE, SIMPL) and the statistical package RS/1, are

also available as external resources for our environment

In the next section we briefly describe the Berkeley CIM architecture and then dis

cuss how BCAM fits in this bigger picture.
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2.4. The Berkeley CIM Architecture

As pointed out by Hodges [1], current CIM architectures arecostly and complicated

due to the limitations of early-generation hardware, operating systems, local-area net

works, programming languages, and database systems. To provide the needed data pro

cessing capability, these systems typically consists of 4 to 6 hierarchical levels, as illus

trated in Figure 2.2. The problems oftoday's CIM architectures are summarized below.

(1) • There is no easy way to achieve a logically integrated database for all types of

manufacturing data.

(2) Application programs cannot communicate across different hardware, operating

systems and database systems.

(3) The large number of different user interfaces limits productivity.

(4) Global process monitoring across a heterogeneous environment is too tedious.

A two-level CIM architecture is designed to address the problems above.
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With current computer technologies, it is possible to construct a physically distri

buted but logically integrated database. This will greatly facilitate data manipulation

across the manufacturing floor and will lead to high productivity. Four recent advances

contribute to this realization. The most important advance was the development of rela

tional database systems that reduce the effort required for both the initial development

and the subsequent maintenance and modification of a system. This is because relational

databases support easy-to-use interfaces that allow end-users (in this case process,

maintenance and yield engineers) to manipulate the information stored in the database.

The second major development has been the industry-wide acceptance of high-

bandwidth communication standards flocal-area networks, or LANs) for linking systems

from different vendors in acost-effective way. LANsmake it possible to connect process

control applications directly to the fabrication equipment Consequently, inline and in-
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process measurements can be monitored by computers in real time.

A third important development is the emergence of distributed database manage

ment systems. Thanks to distributed database systems, information is physically stored in

many nodes, yet it appears to the user as a coherent entity. The distributed database sys

tem determines where the data is located, generates an efficient plan to retrieve or update

it, and ensures the consistency and integrity ofthe data.

The fourth important element is the spreading use of AI technologies. Many

knowledge intensive, error-prone activities in semiconductor manufacturing can be

automated by the use of AI techniques. The need for automated decision making in plan

ing, scheduling, diagnosis, maintenance, etc., becomes even more pressing in view of the

complexities of the new sub-micron ULSI processes.

Thus, thanks to relational databases, efficient communication, distributed data

management and AI technology, it is now possible to propose a CIM architecture that is

dramatically simpler and more flexible than thoseused in earlier systems. The proposed

architecture consists of two levels, as shown in Figure 2.3. The lower level in this archi

tecture includes the embedded controllers that provide real-time control of metrology and

processing equipment. Personal computers used as equipment controllers or for other

related tasks belong to this level as well.

The second level comprises a distributed network of multi-tasking workstations, file

and compute servers linked to a common distributed relational DBMS. A high-speed

LAN (10 to 100 Mb/s) provides communications among processors. Some computers

will be located in process areas and will function as "workcell** controllers. Workcell

controllers are linked directly to embedded equipment controllers, using SECSII or

another suitable protocol. Workcell controllers provide the feedback/feed-forward con

trol, recipe and process handling among equipment, in addition to the basic singje-

equipment control functions. A multi-tasking workstation will be able to handle 5 to 10
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major items of process equipment

Other computers at this same logical level may be devoted to support archival file

systems, production planning and scheduling aids. With a distributed relational database,

users issue the same commands to enter or query data in the database, no matter where

the users or the data are located. Menu or icon-based query systems permit engineers to

create ad-hoc queries without the help of a databasespecialist [12].
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Fig. 23 Two-level architecture for CIM

The objective of the Berkeley CIM architecture is to develop software modules for

controlling VLSI processing steps, and to demonstrate a flexible architecture for combin

ing these modules into an integrated CIM system based on this model. A unified

approach is taken to manage data involved in product and process design, control of

equipment, processes and facilities, quality assurance and testing, and production
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planning. Some issues of special importance to the Berkeley CIM architecture are

described below.

2.4.1. CIMBUS

The computer resources used in the IC manufacturing industry are heterogeneous.

There are different programs working in different operating systems, different user-

interface methods, different database systems. If we are going to interchange information

among N applications on different systems, N x (N -1) interfaces need to be developed.

This task is overwhelming in a stable environment and impossible in a rapidly changing

environment such as semiconductor manufacturing.

One solution to this problem is the creation of a computer integrated manufacturing

bus (CIMBUS) that acts as a coordinator among different applications. A major function

of CIMBUS is to change a data format from the source application to an intermediate for

mat and then change it to another data format that is used by the target application. Each

application requires one interface to this intermediate format and therefore we now only

need to build N x 1 interfaces instead of N x (N -1). CIMBUS is also a communication

bus that provides utilities to broadcast, receive, and send messages among applications

[13].

2.4.2. Planning and Scheduling

Another important application is company-wide production planning, along with

factory floor scheduling for the fabrication, assembly, and test of semiconductor pro

ducts. The goal is to develop a modular set of application programs utilizing linear pro

gramming techniques to make automated planning calculations which optimize corporate

cash flow [14]. In the area of factory floor scheduling, two broad problems have been

examined: (i) How should global information be summarized and used for real time
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resource allocation within the fab? and (ii) How much improvement in manufacturing

system performance can be expected from the use of global up-to-date information

instead of old or local data? Research on production planning and scheduling is comple

mented by an effort to improve the simulation models that describe these activities.

2.4.3. Berkeley Process-Flow Language

The Berkeley Process-Flow Language (BPFL) is used to describe microelectronics

manufacturing processes [15]. According to BPFL, there aremultiple application-specific

views of one process. Each view is derived from a BPFL specification with an

application-specific interpreter. The primary views are simulation and fabrication,

describing how to simulate and implement a process-flow. One goal of BPFL is to derive

the multiple views from the same basic information, in order to eliminate errors intro

duced by having redundant specifications of the same process in different notations.

BPFL will be the input language for the PROSE process simulation system [16] and

a work-in-progress (WIP) system [17]. Information from manufacturing can be used to

simulate actual steps using the ProfileInterchange Format [18].

2.4.4. Work in Progress

The work-in-progress (WIP) interpreter executes process specifications, handles

equipment allocation and control, and collects and stores data used to monitor the perfor

mance of a manufacturing facility and its products. The function of the WIP system is to

automate the process of running the fab in order to improve throughput and product qual

ity.

The WIP system uses a BPFL specification to direct and schedule processing steps

in a laboratory. All data used by the WIP system, including recipe specifications, are

stored in the INGRES database. Equipment scheduling is carried out with a separate
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scheduling system. In order to optimize equipment utilization, the WIP system groups

compatible lots of wafers requiring identical treatment A heuristic system that works in

concert with a production-scheduling system is being developed to automate wafer

grouping.

23. BCAM and the Berkeley CIM Architecture

BCAM operates at the lower level of the CIM architecture. In particular, BCAM

receives commands from BPFL/WIP to run, monitor and report a processing step. The

workcell controller works with BPFL/WIP to issue the possible recipe modification for

adjusting subsequent processing steps (feed-forward) or for fine-tuning a step in question

(feedback).
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3.1. Introduction

An equipment monitoring system is needed in order to improve process control.

The standard approach to process control employs physical measurements of critical

parameters such as film thicknesses, line widths, and particle counts. These so-called

inline measurements are made on a sampled basis at intermediate points in the process

sequence. For example, after a critical step film thickness or line-width is measured at

several locations on one or two wafers in each lot. These measurements are recorded as a

function of time and plotted on SPC charts. Control limits are established and corrective

action is taken when these limits are exceeded.

The complexity of the manufacturing technology however, has increased dramati

cally. Over the past decade, the number of distinct process steps in wafer fabrication has

roughly tripled, to about 300. The total number of critical process variables has increased

even faster, to almost 1000. Many undesirable process aberrations that reduce yield and

reliability cannot be detected from the standard inline measurements alone.

Process quality, however, can be improved through real-time monitoring of critical

variables during process execution. For example, the consistency of plasma etching of

polysilicon films is critically dependent upon gas composition, pressure, and power sup

plied to the electrodes. Modem plasma-etching equipment has sensors for these and

other variables. A built-in microprocessor (known as the embedded controller) monitors

this information in real time. Most modem semiconductor equipment also displays all

the real time information on a built-in CRT. Unfortunately, operators cannoteffectively

monitor more than a small fraction of the critical parameters, and the ones that are not
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monitored are usually not saved for later analysis. Direct communication with a host

computer can easily solve this problem.

Further, although most equipment is sufficiently automated and capable of perform

ing complex process sequences, the organization and management of control recipes is

done in an ad-hoc fashion. Typically, recipe management consists of

uploading/downloading using cassette or floppy disk, or direct recipe modification on the

panel. Hence, operators have to keep track of the "right" version of recipe for each pro

cess run. This is complicated by the fact that recipe editing on the panel is usually awk

ward and error-prone. As a result many mistakes happen due to using an improper

recipe. If a communication link existed between the equipment and host computer,

recipe management could then be automated in the host computer, eliminating a serious

cause of misprocessing and improving efficiency and productivity.

In this Chapter, we describe a generic equipment monitoring tool that has been

designed to address these issues. Section 3.2 describes the client-server architecture of

the generic equipment monitoring system. Management of real-time data, process infor

mation and statistical abstraction is discussed in Section 3.3. Section 3.4 describes the

user interaction with the monitoring system. Requirements of recipe management is out

lined in Section 3.5. The interaction between the equipment monitoring system and other

systems under the BCAM framework is discussed in Section 3.6. Section 3.7 summar

izes some comments from users and Section 3.8 describes the current status of the sys

tem. Conclusions are presented in Section 3.9.

3.2. Client-Server Architecture

Recently, there has been a tendency to use single-taskpersonal computers to moni

tor equipment [1]. The drawback is that the real-time data is still not accessible by a host

computer (workcell controller or factory controller). This complicates the correlation
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analysis across data sets from different stagesof the processthat is often necessary.

In order to facilitate access to a multi-tasking environment, the operation of the

generic monitoring system is based upon the client-server model [2]. The SEMI Equip

ment Communication Standard (SECSII) [3] is a communication protocol for exchanging

data and control commands between equipment controllers and host computer systems.

A SECSII protocol handling (SECStalk) program, adaptable to any equipment that can

handle SECSII communication protocol, acts as a server. An equipment monitoring

(monitor) program acts as a client that collects relevant process information and sensor

data, and produces descriptive real-time graphics of a process run. Both the SECSII han

dling (SECStalk) and monitoring (monitor) programs are generic and can easily be

adapted to additional equipment. Figure 3.1 shows the client-server structure of the mon

itoring system.

Several equipment such as Tylan furnaces, Lam etchers, Nanospec ellipsometers

(thin-film thickness measurement machine), etc., are connected to the SECStalk server in

the Berkeley Microlab. The monitor program can be initiated on a workstation or on an

ASCII terminal to collect, view, and store information into a database. Real-time data

plotting is available on bitmapped displays supporting X windows [4],
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33. Management of Real-Time Data, Process Information and Statistical Abstrac

tion

With the collection of real-time monitoring data and process information (e.g.

operator, recipe, lot ID) at each process step, data storage requirements will be at least

two orders of magnitude greater than before. For example, a typical 3-hour LPCVD pro

cess step, monitored at a moderate sampling rate of 3 samples/min with 60 sensor values

in each sample, needs approximately 1 Mbyte of storage (compared to inline measure

ments with 5 thickness measurements per wafer and 20-wafer per lot, that need about 2

Kbytes of storage.) For a typical 300 step process, real-time monitoring data can easily

amount to 300 Mbytes per lot Data management becomes an obvious concern if such a

large amount of data is going to be collected. We propose to employ statistical abstrac

tions in order to cope with this problem.

Statistical abstractions consisting of means, variances, and other important process

information are stored in the database. With this information in the database, it is very

easy to analyze trends and correlations.

Forexample, a processdrift duringanLPCVD runcan be detected by analyzing the

trend of the means of deposition temperature retrieved from the database. Or we can do

correlation analysis by comparing the power output efficiency for different deposition

temperatures in the same furnace.

The graphics interface for standard trend and correlation analysis will be supported

by the monitor program. It is also possible to write standard query language (SQL) [5]

"scripts" to support specific user-defined operations, although this is a task usually

reserved for database specialists. This way one can pre-define frequently used sets of

SQL queries. More queries can always be added to the setby the database specialist

An innovative approach to data manipulation is to provide a graphics interface for

users to "point" and "pick" related objects in order to form a query. This method has
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been demonstrated in the Berkeley Facility Management Tool (FMTool) [6]. Appendix

3.1 outlines some of the implementation details of the data management module of the

monitoring system.

3.4. User Interaction with the Monitoring system

3.4.1. X-Y and Various Graphing Capabilities

The interactive functions of the monitoring tool are based on the Xgraph and

Xmenu facilities [7]. In addition to the X-Y graphing capability, options such as zoom-in,

zoom-out, splines, etc. are also available Figure3.2 showsa displayexampleof real-time

monitoring of a Tylan furnacein the BerkeleyMicrolab. There is also a user specified file

for customizing the monitoring functions. (See Appendix 3.3a and 3.3b for the UNIX

manual pages of these programs.)

3.4.2. Historical Monitoring

A generic monitoring tool must be able to do real-time monitoring as well as "his

torical" monitoring. "Historical" monitoring is the ability to playback old process runs

either explicitly or through their statistical summaries. For example, center-zone tem

perature averages collected for the same recipe on the same equipment can be retrieved

from the database with an SQL query and displayed by the "online" program in order to

perform a trend analysis.
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time

Fig. 32 An example of real-time monitoring of a Tylan furnace. Here it displays

the difference between the real and set value of load zone temperature during the

deposition step. Options can be chosen from the stack menus.
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3.4.3. Statistical Process Control

Statistical process control (SPC) methods are intended to identify significant pro

cess deviation in the presence of the actual manufacturing noise. Such events are attri

buted to "assignable causes", i.e., special reasons that can be identified and corrected.

Such events might include material changes, equipment failures, operator error, environ

mental or procedural changes, etc.

Two common SPC techniques involve the use of the Shewhart chart with supple

mentary runs rules and the Cumulative Sum (CUSUM) chart [8]. The Shewhart and

CUSUM chart techniques for SPC are also used by the diagnostic system to generate a

corresponding belief measure depending on the severity of violating the error detection

limits.

The SPC module is currently under development A more detailed discussion on

this subject is presented in Chapter 6.

3.5. Recipe Management

With the proliferation of multiple recipes in an application-specific integrated cir

cuit (ASIC) production line, recipe management becomes an important issue. Several

functions can be supported on a host computer through a SECSII interface. First, before

downloading a recipe for a process run, the recipe can be verified by comparing it to the

specification in the process flow. Second, the creation of a new recipe or the modification

of one can be done with a recipe editor [91. Lastly, automatic recipe generation can be

accomplished through interface to the recipe generator module [10] of BCAM, or as part

of the automatic feedback and feed-forward control in workcell configurations [11]. The

recipe management module is currently under development
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3.6. Interaction with Other BCAM Modules

The generic monitoring tool provides the data to all other BCAM modules. For

example, the generic monitoring tool uses the SPC libraries for the combined real-time

Shewhart - CUSUM chart as mentioned in Section 3.4.3. When a malfunction is

identified by the diagnostic system, the monitoring tool can be used to automatically

display the relevant sensor parameters.

3.7. User Feedback

The generic monitoring system has been installed in the Berkeley Microelectronics

Fabrication Laboratory since March 1990. Students and staff have been using the moni

toring system to monitor their processes. They have found the monitoring system very

useful for process examination and equipment evaluation. Suggestions for improving the

monitoring system have been collected in view of the next release.

3.8. Current Status

The current version of the monitoring tool has been based on X/10 window primi

tives. INGRES, a commercial relational database management system, is used to store

the statistical information. The SECSII communication protocol is used to interface

between host computers and equipment Currently supported equipment include all the

Tylan furnaces (16 tubes), Lam etchers (2 etchers), Nanospec ellipsometers (optical film

thickness measurement), and the Alpha Step (profile film thickness measurement) in the

Berkeley microfabrication laboratory. Our goal is to provide data collection capabilities

for all the processes in the Berkeley Microlab.
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3.9. Conclusions

Data collection at the equipment level is regarded as one of the most important fac

tors for the success of sub-micron IC manufacturing [12]. In this Chapter, we have

presented several important issues that arise when data collection is fully automated at

the manufacturing floor. The issues considered here include the interactive display of

real-time monitoring data, the management of the data and their statistical abstractions,

as well as the implementation of recipe management along with the necessary statistical

process control functions.
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Appendix 3.1

Data Management Implementation Details

The real-time monitoring informationis collected into two files. One file is an info

file that contains information about the process (e.g. equipment, user, etc.) and a set of

statistical abstractions (e.g. average, standard deviation, stabilization time for furnace

operation, etc.). The other file is a data file that contains the digitized real-time values

(e.g. temperature, pressure, etc.) for a process run. The suffix of the info arid data files

consists of a unique equipment name, the unique lot ID, and the process monitoring start

ing time. Each piece of equipment has its own set of analog sensor values that can be

monitored. Appendix 3.2a shows the data format in the data file for a typical LPCVD

process.

After the run is complete, statistical abstractions are derived from the data file and

stored in the info file. For example, the arithmetic average and standard deviation of tem

perature, gas flow, and pressure during the deposition step are calculated from an LPCVD

run. Additional statistical information might also be important for a particular process or

a piece of equipment For example, in a furnace run, the temperature stabilization time,

i.e., time needed for a furnace reactor to reach its stabilized temperature, carries impor

tant information and can be acquired and stored in the info file. Appendix 3.2b shows the

contents ofan info file for a typical LPCVD process.

After the process run is completed, the information is moved from the info file to

the INGRES database. In particular, the info file is moved to two tables. The main table

is identified by the unique recipe name, the equipment type, and an index that points to

the corresponding equipment monitoring table. The equipment monitoring table contains

the process-related information and the relevant statistical abstractions.
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Appendix 3.2a

A Typical Data file for LPCVD processes

The following parameters are characteristic to an LPCVD process. A typical data file

contains several hundreds oflines of numerical values for these parameters.

PARAMETER UNIT DESCRIPTION

step step recipe step #

set_templ Celsius set value for load zone temp

real-tempi Celsius real value for load zone temp

set_tempc celsius set value for center zone temp

real_tempc celsius real value for center zone temp

set_temps celsius set value for source zone temp

real_temps celsius real value for source zone temp

set_N2 seem set value for N2 gas flow

real_N2 seem real value for N2 gas flow

set_SIH4 seem set value for SIH4 gas flow

real_SIH4 seem real value for SIH4 gas flow

set_PH3 seem set value for PH3 gas flow

real_PH3 seem real value for PH3 gas flow

set_mtorr mtorr set value for pressure

real_mtorr mtorr real value for pressure
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data.tyIanl6.22810.Nov.13.1989 (a typical data file name)

7010 0070 595.0 595.2 595.0 594.5 595.0 595.0 0.0 0.1 200.0 199.7 0.0 0.0 380.0 384.5

7113 0070 595.0 594.7 595.0 594.7 595.0 595.9 0.0 0.0 200.0 199.7 0.0 0.0 380.0 382.2

7159 0070 595.0 595.7 595.0 595.5 595.0 595.2 0.0 0.0 200.0 200.2 0.0 0.0 380.0 384.2

7211 0070 595.0 596.1 595.0 5962 595.0 595.6 0.0 0.0 200.0 200.5 0.0 0.0 380.0 3812

7252 0070 595.0 595.1 595.0 595.7 595.0 595.10.0 0.0 200.0 199.7 0.0 0.0 380.0 380.8

7288 0070 595.0 594.1 595.0 594.7 595.0 594.1 0.0 0.0 200.0 199.3 0.0 0.0 380.0 382.8

7329 0070 595.0 593.8 595.0 5942 595.0 594.1 0.0 0.0 200.0 200.3 0.0 0.0 380.0 383.6

7367 0070 595.0 595.2 595.0 5952 595.0 594.5 0.0 0.0 200.0 200.5 0.0 0.0 380.0 381.6

7407 0070 595.0 595.5 595.0 595.3 595.0 594.8 0.0 0.0 200.0 200.2 0.0 0.0 380.0 383.6

7455 0070 595.0 594.5 595.0 5943 595.0 595.8 0.0 0.0 200.0 199.8 0.0 0.0 380.0 380.6

7496 0070 595.0 593.8 595.0 594.0 595.0 594.8 0.0 0.0 200.0 199.5 0.0 0.0 380.0 381.6

7543 0070 595.0 5942 595.0 594.5 595.0 5952 0.0 0.0 200.0 199.8 0.0 0.0 380.0 382.6

7596 0070 595.0 595.2 595.0 595.5 595.0 5962 0.0 0.0 200.0 200.5 0.0 0.0 380.0 379.6
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Appendix 3.2b

A Typical Info file for LPCVD processes

The following information of the file are also stored in the main table that identifies the

equipment, the generic processing recipe and its associated user-specified parameter

values.

PARAMETER VALUE UNIT DESCRIPTION

EQUIP tylanl6 equipment name

PROCID FUPLY16C process ID

SIH4 249.9 seem set value for SIH4 gas flow

PH3 .0 seem set value forPH3 gas flow

PRESSURE 550.4 mtorr set value for pressure

TEMPL 620.0 celsius set value for load zone temp

TEMPC 620.0 celsius set value for center zone temp

TEMPS 620.0 celsius set value for source zone temp
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The following information is also stored in the monitoring table that identifies the

specific monitoring information for the equipment in question.

PARAMETER VALUE COMMENT

DATE 12/20/1989

START-MONITOR-TIME 11:24:44

LOTID 10311

USER Norman

STABILIZATION-TIME 185 time needed to reach temp stabilization (min)

DEPO-TIME 70 set value for deposition (min)

LDepMean 620.23 load zone deposition step temperature average

LDepSig 1.33 load zone deposition step temperature standard deviation

CDepMean 620.51 center zone deposition step temperature average

CDepSig 1.30 center zone deposition step temperature standard deviation

SDepMean 620.17 source zone deposition step temperature average

SDepSig 0.94 source zone deposition step temperature standard deviation

SIHtDepMean 249.79 deposition step SIH4 flow average

SIHjDepSig 0.08 deposition step SIH4 flow standard deviation

PH3DepMean 0.00 deposition step PH3 flow average

PH3DepSig 0.00 deposition step PH3 flow standard deviation

mtorrDepMean 550.74 deposition step pressure average

mtorrDepSig 1.27 deposition step pressure standard deviation

depogroup 82 the totalcollected samples during deposition step



info.tyIanl6.22810.Nov.13.1989 (a typical info file name)

DATE 11/13/1989

START-MONITOR-TIME 15:50:12

EQUIP tylan016

PROCIDFUPLY16C

RUNID 22810

LOTIDboblO

USER bob

STAB-TIME 78.6

DEPO-TTME240

SIH4 200.0

PID.O

PRESSURE 380.0

TEMPL 595.0

TEMPC 595.0

TEMPS 595.0

LDepMean 594.86 •

LDepSig 1.07

CDepMean 594.65

CDepSig 1.01

SDepMean 594.39

SDepSig 0.85

sih4DepMean 199.06

sih4DepSig 0.23

ph3DepMean 0.00

ph3DepSig 0.00

mtorrDepMean 380.43

mtorrDepSig 1.57

depogroup 145

35
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Appendix 3.3a

Manual Page for the Tylan Furnace Monitoring Program

(tytasks)

NAME

tytasks - a program that monitors Tylan diffusion furnaces.

SYNOPSIS

tytask -[cvl]

DESCRIPTION

Tytask is a generic monitoring program for all the Tylan furnaces. There are three

options for tytask.

-c To collect data.

When monitoring with the -c option, the program will ask the user to provide

the tube name (i.e. 1-16), non-critical step monitoring frequency (default is a

sample every 2 minutes), critical step monitoring frequency (default is a sam

ple every 20 seconds), and names of data and info files.

-v To collect and view data on X window display (workstation only).

The user will have to provide the same information as in option -c.

-1 To playback, copy, and pretty-print the data and info files, and quit the pro

gram.

Once tytasks is running, two files will be generated and stored under

/home/argonl/micro/Ub/bcam/data/mom*toring/<equipname>/data_.dir/:

data.<equipname>.runID.date contains the monitoring data according to the

predefined format below, while info.<equipname>.runID.date contains the date,

start-monitor-time, procID, lotID, runID and other information unique to the pro

cess being monitored.

After process run, information in the info file is then stored in the main and

<equipname>mon tables of the INGRES database.



FILES

micro/lib/bcam/bin/ directory containing the source code

SEE ALSO

online

AUTHORS

Norman H. Chang, Adhi Gaduh, Dave C. Mudie, Scott Miles

37
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Appendix 3.3b

Manual Page for General Interactive Use of the Monitoring Program

(online)

NAME

online - graphical user interface for the real-time monitoring program

SYNOPSIS

online <equipname>

DESCRIPTION

Online provides the graphical user-interface for the real-time monitoring program.

It displays real-time monitoring data in an X-Y window with options specified in a

stack menu.

The stack menu provides four frames. The DISPLAY menu has the options for

showing maximum display in the window, zoom-out, display of grid lines and

bounding box. The FLAGmenu has the options for splines, display of big marks or

small marks, change of time unit to hh:mm:ss, and display of bar lines. The MISC

menu contains commands for clearing the window, saving the plot and quitting the

program. The sensors to be monitored are selected from the ITEMmenu.

The program groups data entries with similar units into one X-Y window and a new

window is added automatically when entries with new units are selected from the

ITEM menu.

Command lines are selected by clicking and holding the middle or right mouse but

ton on the respective menu option. Zooming is accomplished by clicking and drag

ging the left mouse button to an arbitrary square area on the monitoring window.

The program will automatically search for position, initial active graph entries and

sensor name substitution. If no such user-defined file exists, the program will use

its default definition.
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The default file specified by the user is saved as ".<equipment>MONDEF** (equip

ment monitoring defaults) in the user source directory for a piece of equipment In

the default file, the user can specify the following parameters:

XPOS <value> - the x-coordinate of the first monitoring window

YPOS <value> - the y-coordinateof the first monitoring window

XSPC <value> - the incremental x spacing for the next monitoring window

YSPC <value> - the incremental y spacing for the next monitoring window

WIDTH <value> - the width of a monitoring window

HEIGHT <value> - the height of a monitoring window

PLOT <value> - plot the sensor #<value> when online initiated

<sensor> substitute name> - the <sensor> name is substituted by the substitute

name>

The following is an example default file.

XPOS 50

YPOS 200

XSPC 0

YSPC 100

WIDTH 800

HEIGHT 200

PLOT 1

PLOT 3

Gas_l NITROGEN

Gas_2 ARGON

Gas_5 OXYGEN

FILES

/home/argonl/bcam/src/monitoring/tylans directory containing

the source code
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SEE ALSO

tytasks

AUTHORS

Norman H. Chang,Adhi Gaduh,Dave C. Mudie
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Managing the Equipment Maintenance Records
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4.1. Introduction

The current practice of equipment maintenance in the semiconductor industry con

sists of three activities, namely equipment qualification, preventive maintenance, and

field repair. Equipment qualification includes a number of tests that must be completed

before the equipment is released to production. Preventive maintenance is conducted at

regular intervals and consists of routine inspection and cleaning. .Unscheduled field

repairs are often necessary during production to resolve equipment malfunctions.

Today, most of the information concerning equipment qualification and preventive

maintenance is collected on paper records. Operators or technicians must refer to these

records while conducting the respective activities. Information concerning field repairs,

however, has been managed in an ad-hoc manner. Malfunctions have been reported orally

or recorded in a free-style text report by the operators. Even when using a paperless,

computerized system such as COMETS [1] (a popular work in progress (WIP) system),

or the Berkeley lab information system (BLIS), the causes and actions to correct mal

functions are lost in long, unstructured reports. Since this information is not structured

properly it is very difficult to perform even the simplest analysis in order to highlight the

most frequent failures or to discover and correct common causes behind malfunctions.

In this chapter we present a new scheme for managing the information concerning

equipment maintenance activities. The scheme allows the user to interact with a rela

tional database through a form-based interface in order to record preventive maintenance

and field repairs of manufacturing equipment. All the information necessary to identify

the type and cause of equipment failure, time of occurrence, time of repair, etc. is stored
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in the relational database. Contrary to previous applications, this information is highly

organized and stored in a symbolic form, so that application programs can be developed

to perform process-wide analysis.

Next we outline the goals of the system. Section 4.3 describes the information

structure, while Section 4.4 illustrates the system functionalities. An application example

is given in Section 4.5. Finally, the conclusions are given in Section 4.6.

4.2. Goals of the Equipment Maintenance Record Keeping System

The system is used by equipment operators, maintenance technicians, and facility

managers and it serves four major functions. The first function is to help the fab manage

ment keep track of equipment maintenance events. This is accomplished through easy

access to maintenance records and equipment failure statistics. A second function is to

help maintenance technicians conduct off-line equipment maintenance by reviewing pre

vious maintenance cases. A third function is to enhance the operation of automated diag

nostic systems; since failure history is highly structured, we can use it to automatically

update the knowledge base of such a diagnostic system.t The last function is to facilitate

off-line equipment maintenance by providing lead operators or maintenance technicians

with multimedia (graphics, text, video, etc.) step-by-step guidance.

43. Information Structure

In order to support the above mentioned functions, the system must contain clear

and unambiguous maintenance reports. To achieve this, the semantics of equipment

maintenance events must be formalized. In this regard, we have treated an equipment

maintenance event as a collection of many-to-one mappings between observable

t Chapter 6 contains a detailed accountof this application.
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symptoms and actual faults. Observable symptoms are what an operator sees when the

equipment malfunctions. Such a symptom might be the fact that the motorized wafer boat

is stuck during a furnace run. Faults are the causes behind the equipment malfunction.

These are derived from the diagnosis conducted by a maintenance technician, and are

verified by the person who actually repairs the equipment For example, a malfunction in

the boat controller could be the cause behind the symptom "boat stuck'*. Observable

symptoms such as "boat-stuck" and "controller-screen-blank-out" are reported by the

operator, while the cause behind the symptom, i.e., the fault ("boat-controller-down'*) is

identified and reported by the maintenance personnel.

In order to avoid ambiguities, one standard description must be agreed upon for all

the symptoms and faults by all operators and technicians. Enforcing this standard

description is easy since it is coded using descriptive keywords, each paired with a long

description for better understanding.

Faults and symptoms for a specific piece of equipment are logically grouped into

hierarchical categories to simplify their organization. In order to avoid duplication, these

hierarchical structures are extended upwards to include equipment groups, or clusters.

Complete hierarchical categories are initially acquired for each cluster of similar equip

ment.

When there are different specialized equipment in the cluster, the corresponding

specialized symptoms and faults are marked for the equipment while the others are gen

eric throughout the cluster. For example, hierarchical categories are created for a furnace

cluster that contains 16 individual reactors. Among them, there are. about 10 different

kinds of reactors running with different sets of gasses, in varying temperature and pres

sure ranges. Specialized symptoms and faults for these reactors are in use when a particu

lar equipment is in question.
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4.4. System Functionality

The system supports the functions of problem and resolution reporting, report

browsinganddowntime statistics generation. These functions aredescribed below.

4.4.1. Reporting a Problem

When an operator completes a processing step, the system asks if anything abnor

mal has occurred during operation. If so, the equipment control program automatically

enters the equipment maintenance record keeping system. The operator is prompted to

choose one or more symptoms from a comprehensive list of symptoms known to occur on

that particular equipment. Altematively, a problem report can also be automatically

created by a diagnostic system.t

The symptoms are structured in a tree structure that allows the operator to be more

and more specific about the nature of the observed malfunction. If the operator is not

sure of the exact nature of the problem, or if none of the items on the list match the

observed symptoms, the operator may choose the "can't-tell" or "none-of-above"

options. Since ambiguity might arise lower in the decision tree, these options are avail

able at all levels. For example, "can't-tell" is chosen when the operator identifies that

the observable symptom is in the pressure area but cannot tell whether it can be best

described as "fail-leak-test" or "pressure-out-range".

The operator is then prompted for a free-form text description of the problem. This

free form report might contain details to aid the equipment maintenance technician in

diagnosing the problem.

When a new report is generated, the symptom keyword and the accompanying com

ments are entered into the database. The reported event is then treated as a "pending"

t See Section 4.5 of this chapter.



45

problem and is electronically posted where it will be seen by other operators ofthe equip

ment. At the same time the system notifies the designated maintenance technician about

the malfunction via electronic mail.

4.4.2. Diagnosing the Problem and Reporting the Repair

Repair reports are generated when a technician repairs the malfunctioning equip

ment and enters an assessment about the problem. At this time, the repairing technician is

asked to choose * fault from the list of failures known to occur on that equipment Like

the list of symptoms, the faults are also organized in a tree structure.

Although there could be multiple symptoms associated with each report, only one

fault may be reported. Therefore, when multiple faults are identified for the problem in

question, the technician can split the report into several reports, each with a fault and

corresponding symptoms. The technician has the same "can't-tell" and "none-of-

above" options as the reporting operator. In addition, the technician can also modify

existing entries or add new ones to the fault and symptom lists through a friendly user

interface.

After diagnosing and repairing the problem, the technician has the option to provide

a longer, free-form description of the event When complete, the report is stored in the

database and the warning to the operators is removed, thereby clearing the equipment

problem.

On occasion a technician might identify a problem without being able to repair it,

as some special-order parts may be neededorthe problem may not be very important In

this situation, diagnosing a problem without clearing it serves an important administra

tive function; production managers and equipment usersknow that the problem has been

looked at, and the technician is given the opportunity to enter further comments such as

"parts on order, due on 3/3/90".
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4.4.3. Report Browsing

Clearly, all the maintenance information that has been collected in the database

should be easily accessible to operators and technicians as well as to the fab manage

ment In our system a simple form-based query interface allows users to search current

and archived reports by specifying equipment name, user name, or problem types or any

combination such as "When was the last time we had &pumpfailure on tylan16?" Also,

the set of pending reports is retained in the equipmentstatus board', since most users are

only interested in current problems, the system displays this status board by default.

While browsing through a particular report, privileged users (members of the

maintenance staff) have the option to:

1. Update a report by adding new text comments

2. Diagnose a report, or change an earlierdiagnosis

3. Clear the report from the list of pending problems

4. Delete an erroneous report from the database

5. Split a report (when multiple faults are present)

6. Create a New report

Most of these options are self-explanatory. The split option is used when two faults

have been identified and the user has listed symptoms from both failures in the same

report If symptoms from more than two problems are reported together, the report may

be split several times.

4.4.4. Failure Analysis and Downtime Statistics

The information accumulated in the equipment maintenance database is made

available to independent analysis programs. One important function of these programs is

to provide users with database queries to support basic downtime statistics. For example,
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lab managers frequently ask "What are the uptimes of all the equipment in the past three

months?", "What is the equipment maintenance cost?", etc. Technicians, frequently

ask questions such as "How often has been symptom A associated to fault B in the

past?", or "What are the failure frequencies ofa specific item of equipment?", etc. Sim

ple plotting of various downtime statistics such as equipment uptimes and failure fre

quencies ("Pareto" chart) often gives powerful visual summaries of the cleanroom con

dition. Figure 4.1 shows an example of the annual fault frequency chart for Tylan fur

nace.

Histogram for Tylan Fault Frequency Classification

#occurrence

5 -

bank broken load in/out pump exhaust filter
rod malfunction fault

Fig. 4.1 A histogram showing the annual fault frequency for Tylan furnace.

4.5. Reports Generated by an Automated Diagnostic System

An automated diagnostic system interacts with the equipment maintenance record

keeping system by initiating "pending" maintenance events. In this case the symptom

categories, however might include symptoms that cannot be detected by the operators.

This is because the automated diagnostic system has a more detailed "view" of the

operation through real-time monitoring. Appendix 4.1a shows the symptom categories
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for Low-Pressure Chemical Vapor Deposition (LPCVD) reactors. Those symptoms

marked with * can be seen by the automated diagnostic system but not by the operators.

Similarly, there is a difference in the level of detail in detecting a fault from a

maintenance technician's point of view. This is because the diagnostic system cannot

evaluate subtle pieces of evidence that are not represented in its knowledge base. So, it

cannot always pin-point the actual faults. For example, the diagnostic system may con

clude that there is something wrong in the pump-system without offering any more

details. After going through several testing procedures and detailed examination, the

technician might discover that the actual fault is "filter-dirty", a level of detail not acces

sible by the automated diagnostic system.

Note that the interaction between the diagnostic system and the maintenance data

base is bidirectional. Indeed, an important piece of information that can be derived from

the equipment maintenance information management system is the symptom-fault

incidence. These arethe cumulative frequencies of symptom-fault observed by the opera

tors anddiagnosed by the technicians. The cumulative frequencies are used to update the

symptom-fault belief list of the diagnostic system (see chapter6).

4.6. Implementation Details

The equipment maintenance record keeping prototype is implemented with Rela

tional Technology's INGRES database system [2] and the Application-By-Forms (ABF)

development package [3]. The system is designed to run on ASCII terminals as well as

on bitmapped displays using the X Window System.
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4.6.1. Database Design

The equipment maintenance database is composed of three relations representing

the main "objects" of the system, and several relations that describe how these objects

are connected.

The first relation, faults, represents the hierarchy of fault and symptom entries.

Each entry has a unique ID number, a shortname, a long description, and the ID of its

parent to identify a location in the hierarchy. Currently, faults and symptoms are stored

as two disjoint hierarchies in the same data structure because there are no difference

between them in nature.

A second relation, report, records the information unique to each reported problem.

Each entry stores a unique ID, the equipment involved, and an associated comment ID.

Additionally, each entry records the user who reported the problem, the time ofreporting,

the user who diagnosed the report, the time of diagnosis, and the time of final problem

resolution.

Finally, the relation comments is used to store text blocks of arbitrary length. Each

entry consists of a comment ID, a text sequence number, and 80-characters of text

Entries with the same ID are sortedin sequenceto reproduce the original block of text

4.6.1.1. Database objects

The equipment maintenance record keeping system alsomakes use of the following

relations from the existing Microlab database:

1. labusers - people who use the facility

2. resource - equipment in the facility

3. prgroup - identifies groupsof equipment
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4.6.1Jt. Mapping relations

The following relations are used to specify relationships between the aboveobjects:

1. reportfault - identifies which faults areassociatedwith a report

2. reportsymp - identifies which symptoms are associated with a report

3. faulttree - cache of hierarchy infaults

4.6.2. Database Summary

Figure 4.2 summarizes the database relationships according to the Entity-

Relationship diagram convention [4].
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Q Mqusnce J

^7ocomment ID

LABUSERS RESOURCES COMMENTS

Entity-Relationship diagram for FAULTS database

Boxes indicate database objects

Ovals indicate attributes of an object

Diamonds indicate relationships between objects

An arrowhead indicates a "many-to-one" relationship

Figure 4.2 The database Entity-Relationship diagram.
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4.7. An Application Example

Here we show an example of using the equipment maintenance records to report,

diagnose, repair and clear a problem.

During an LPCVD processing step, John (the operator), observed that the controller

screen (TYCOM) of the LPCVD reactorsuddenly stopped responding. After trying any

thing he knew, he failed to make the TYCOM respond. He then actuated the equipment

maintenance record keeping system to report the problem on an ASCII terminal next to

the malfunctioning TYCOM. Figure 4.3 shows the first screen of the equipment mainte

nance records. This screen reports a pending problem on a different machine. Clearly,

the TYCOM problem has not been reported yet, so John chose the command "new" to

initiate a new problem report as shown in Figure 4.4. He checked the problem report

before he released the report to the "pending** problem status board (Figure 4.5). Once

the problem report is released as "pending", the system will notify the responsible tech

nician and supervisor via electronic mail or via broadcasting message if the problem is

serious. Later, Susan, the technician, diagnosed the problem and chose the.actual fault

(central control module -> defective electronic cage -> defective microcomputer board

(MCB)) from the fault menu of the Tylan furnace as shown in Figure 4.6 and 4.7. Susan

then cleared the report (Figure 4.8). This fault (MCB) is then paired with the symptom

(TYCOM) and stored in the database.

A help menu is also available throughout the operation of the equipment mainte

nancerecord keeping system. An example of the help menu is shown in Figure 4.9. Fig

ure 4.10 shows how the technician can edit the symptom and fault menus through a

friendly user-interface.



Equipment:
User:

Symptom:
Fault:

MICROLAB FAULT REPORTS
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Use *JKFG and TAB to move around. Use ESC to execute a command.

Help StatusBoard Read Update Clear Delete New Match >

Fig. 43 The first screen of the equipment maintenance records. Users can look at

the current "pending" problems in the status board (It shows a Lam etcher problem),

initiate a new problem report, or look at old reports.

SELECTING SYMPTOMS

Details Name Descrip

5

0

1

2

2

0

2

0

temperature-control
TYCOM
boat-loader

power

vacuum

process-tube
quartzware
recipe

general temperature control problems
TYCOM controller problems
boad-Ioader malfunction

problem with system power
vacuum or pressure related
tube crack or dirty problems
broken or related problems
lost recipe or other problems

Use *JKFG and TAB to move around. Use ESC to execute a command.

Help Select Abort CantTell NoneOfAbove More Less Match >: select

Fig. 4.4 An operator observed a TYCOM malfunction (the control screen has no

response) and selected the TYCOM symptom from the symptom menu of the Tylan

furnace. More than one symptom can be chosen.
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REPORT INSPECTION

Report ID: 165
Equipment: tylanl6

User: John

Tech:

Symptoms

TYCOM

Comments

Reported: 03-apr-199015:24:02
Diagnosed:

Cleared:

Fatal: n

TYCOM problem on tylanl6 from John (03-apr-199015:24:02)

User Comments:

TYCOM doesn't respond.

Use \JKFG and TAB to move around. Use ESC to execute a command.

Help Diagnose Symptoms Update Clear Delete Split >

Faults

Fig. 4.5 The malfunction report can be checked and modified by the operator be

fore releasing the problem report. Once the problem report is active (or "pending"),

the system will notify the responsible technician and superviser via electronic mail

or via broadcasting message if the problem is serious.



tylan!6 PROBLEM DIAGNOSIS

Details Name Descrip

0 AMP amplifier board
3 CCM central control module

0 ROP remote operating panel
0 SCR firing circuit board
5 temperature-control temp control related faults
1 boaMoader boaMoader related faults

7 excessive-deposition cause components failure
2 gases gas supply problems
5 leak leaking somewhere
4 more

Use *JKFG and TAB to move around. Use ESC to execute a command.

Help Select Abort CantTell NoneOfAbove More Less Match >: select
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Fig. 4.6 Later, the technician diagnosed the problem and chose the actual fault

from the fault menu of the Tylan furnace. Here the CCM (defective central control

module) fault was selected by the technician.
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tylan!6 PROBLEM DIAGNOSIS

Details Name Descrip

0

0

0

1

MCB

disk-I/O
memory-board

serial-I/O

microcomputer board
disk I/O board

NA

serial I/O board

Use "JKFG and TAB to move around. Use ESC to execute a command.

Help Select Abort CantTell NoneOfAbove More Less Match >: select

Fig. 4.7 Electronic-board-cage (defective electronic board cage) was selected

under the CCM fault. Finally, MCB (defective microcomputer board) was chosen

from the four choices under electronic-board-cage by the technician. This fault

(MCB) is paired with the symptom (TYCOM) in the database. If multiple faults

are present, the report can be split into multiple reports each with the corresponding

symptoms and one actual fault



REPORT INSPECTION

Report ID: 165
Equipment: tylanl6

User: John

Tech: Susan

Symptoms

TYCOM

Comments

Reported: 03-apr-199015:24:02
Diagnosed: 03-apr-199016:00:01

Cleared: 04-apr-199013:34:01
Fatal: n

User Comments:

TYCOM doesn't respond.

Diagnosed as MCB (microcomputer board) (03-apr-199015:36:42)

Comments from Susan 03-apr-1990 15:36:42

Faulty component in the microcomputer board.
We have replaced the faulty component In the board.
The equipment is up now.

Use *JKFG and TAB to move around. Use ESC to execute a command.

Help Diagnose Symptoms Update Clear Delete Split >

Faults

MCB
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Fig. 4.8 The final report shows all the information concerning the maintenance

event. When a report is cleared by the technician, the problem is considered solved

and the equipment is up again.
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Help Menu

ESC-New will allow you to post a new problem report without leaving

"Browse" mode.

ESC-Match allows you to ignore reports you are not Interested.
Enter a search pattern, and all rows without this pattern in the
subject will be removed.

ESC-SetFault allows you to select a "fault" restriction for

ESC-FindOld.

ESC-SetSymptom allows you to select a "symptom" restriction for

ESC-FindOld.

ESC-FindOld will retrieve all reports matching the restriction
fields as described above.

ESC-End leaves "Browse" mode.

NextPage(T) PrevPagefG) Find Top Bottom Help End

Fig. 4.9 A Help menu of the current screen is available when needed.

FAULT EDITING

Details Name Descrlp

0 AMP amplifier board
3 CCM central control module

0 ROP remote operating panel
0 SCR firing circuit board
5 temperature-control temp control related faults
1 boat-loader boat-loader related faults

7 excessive-deposition cause components failure
2 gases gas supply problems
5 leak leaking somewhere
\ more

Use \JKFG and TAB to move around. Use ESC to execute a command.

Help More Less New Detail Delete Replace PickUp PutDown Hlddens

Match UnMatch End

Fig. 4.10 The technician can edit the symptom and fault menus. Here acomplete
editing menu is shown.
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4.8. Conclusions

The first release of the system was integrated into the current Berkeley Lab Infor

mation System (BLIS) in March, 1990. The new equipment maintenance information

management system handles all the equipment maintenance events. The old text-based

maintenance system is kept for read-only browsing and archival purposes. Appendix

4.1b shows the fault categories of LPCVD reactors.

The system has successfully provided technicians and management with a tool for

monitoring the equipment maintenance events and resolving equipment malfunction.

The possibility of updating the knowledge base of the online diagnostic system through

automatic collection of downtime maintenance statistics is being tested. An alternative

system to facilitate off-line equipment maintenance by providing lead operators or

maintenance technicians with step-by-step guidance with schematics and graphics is

described in Chapter 5.
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Appendix 4.1a

Symptom Categories for LPCVD Reactors

(Symptoms marked with * are observable by the automated diagnostic system but not by

the operators.)

1. temp-control

1.1. abnormal-stabilization-time

1.2. critical-temp-differs

13. temp-differs-TYCOM-ROP

1.4. T/C-open

1.5. T/C-out-calib

1.6. templ-out-control*

1.7. tempc-out-control*

1.8. temps-out-control*

2. flow-control

2.1. sih4-out-control*

22. ph3-out-control*

3. pressure

3.1. fail-leak-test

3.2. pres-out-range
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4. bodt-Ioader

4.1. unload-load

5. process-tube

5.1. broken

5.2. general-leak

S3, toxic-gas-leak*

6. quartzware

6.1. broken

6.2. excess-deposition

7. TYCOM

8. power

8.1. tube-power

8.2. bank-power

9. program-on-hold*

10. recipe

11. inline-thickness-drift*

12. preventive-maintenance



Appendix 4.1b

Fault Categories for LPCVD Reactors

1. terminal

1.1. keyboard

1.2. CRT

2. printer

3. central-control-module

3.1. power-supply

3.2. floppy-control

33. electronic-board-cage

3.3.1. MCB (microcomputer board)

3.3.2. memory-board

3.3.3. disk-IO

3.3.4. serial-IO

3.3.4.1. software

3.3.4.2. hardware

4. slave-module

4.1. CPU

4.2. digital-temp-controUer

43. I/O

63
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4.4. power-supply

5. AMP (amplifier board)

6. SCR (firing circuit board)

7. ROP (remote operating panel)

8. power

8.1. boat-loader

8.2. pump-system

8.3. gas-panel

8.4. load-station

9. gasses

9.1. MFC (mass flow controller)

9.2. no-gas-in-cylinder

9.2.1. SIH4

9.2.2. PH3

10. boat-loader

10.1. stuck

11. process-tube

11.1. boat

11.1.1. missing-dumray-wafers

11.1.2. broken-dummy-wafers

11.13. broken-boat

11.2. baffle

113. cantilever-sheath-broken



12. pump-system

12.1. mechanical-pump

12.1.1. oil-pres-gauge

12.1.2. motor

12.13. inlet-filter-screen

12.1.4. pump-worn-out

12.2. oil-filtration-unit

12.2.1. filter-can-corroded

12.2.2. oil-gauge-replace

12.2.3. oil-pump

12.2.4. rubber-hoses

12.2.5. oil-filter

123. manifold

123.1. transition

123.2. bellows

123.3. inline-filter

123.4. gate-valve-defect

13. pressure-control

13.1. butterfly-valve

13.2. servomotor

133. cap-manometer

14. temp-control

14.1. temp-controller

65
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14.2. heatmg-element-worn

14.3. thermal-insulation

14.4. T/C-out-calib (thermocouple out of calibration)

14.5. T/C-open

15. leak

15.1. door-Leak

15.2. cantilever-leak

153. rear-transition-leak

15.4. rear-manifold-leak

15.5. quartzware-leak

15.5.1. tube-crack

15.5.2. T/C-sheath-crack

15.5.3. injector-crack

15.5.4. cantilever-sheath-crack

16. excess-depo

16.1. process-tube

16.2. boats

163. transition

16.4. bellows

16.5. inline-filter

16.6. butterfly-valve

16.7. gate-valve

17. Recipes



18. maintenance

18.1. temp-calib

18.2. cap-manometer

183. pres-servo-calib

18.4. clean-excess-depo

18.5. MFC-calib

18.6. inline-filter-change

67
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Chapter 5

An Off-Line Equipment Maintenance Aid

5.1. Introduction

Scheduled and unscheduled maintenance is needed in order to keep manufacturing

equipment operating properly. This can be achieved more effectively if abnormal

machine conditions are detected asearly as possible. A Generic Equipment Maintenance

System (GEMS) was developed to assist operators in conducting off-line equipment

maintenance and diagnosis. This work was carried out at Harris Semiconductor in the

summer of 1988.

The goals of GEMS are to capture and retain the knowledge of equipment mainte

nance (EM) engineers. This will help operators to diagnose equipment malfunctions and

increase mean time between failures (MTBF). GEMS can also be used as atraining tool

for novice EMengineers and equipment operators.

A diffusion furnace is acommonly used, complicated piece ofequipment, so it was

chosen to demonstrate the capability ofGEMS. Without GEMS, lead operators can only

solve 10% of furnace malfunctions. GEMS's first objective is to provide the guidance

and knowledge so that lead operators can resolve 50% of furnace malfunction problems.

The structure ofGEMS is designed to be general, so that many pieces ofequipment

can be accommodated. This can be realized by constructing GEMS in an object-oriented

programming style, so that while the user interface is standardized, the reasoning strategy

ischosen to suit various equipment maintenance and diagnosis problems.

GEMS is built on KEE, acommercial expert system shell [1] that provides menu

and graphics interface, frame-based knowledge representation, and an object-oriented,
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rule-based inferencing scheme. Next, Section 5.2 describes the general user interface

style employed by GEMS. Section 5.3 explains the knowledge acquisition process,

inferencing strategy and knowledge scope of GEMS. The software structure is described

in Section 5.4. Conclusions will follow in Section 5.5.

5.2. The User-Interface of GEMS

The GEMS display is partitioned into prompu comment and graphics areas, as

shown in Figure 5.1. Messages (questions and suggestions) for the users appear in the

prompt area. The comment area shows additional information such as the reason why a

question was asked. In the graphics area, graphic illustrations are shown along with the

diagnosis session. A dynamically changing menu guides the user through the diagnostic

tasks.
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Fig. 5.1 The front-end user interface design

Graphical representations are very important in equipment maintenance and diag

nosis. An equipment problem which is difficult to describe in words very often can be

effectively illustrated with simple graphics. Therefore, in GEMS, helpful schematics or

graphics are provided wherever are needed. For example, a problem may be that no H2

flow is detected. The reason may be because the main gas valve is not open, the gas

shelf-valve is not in the right position, the regulator is not functioning properly, or a mass

flow controller is malfunctioning. These problems can be communicated by a simple

schematic illustrating the relationship between a gas flow system and gas valves. In Fig

ure 5.2, we show an example of the off-line equipment maintenance aid, where the sys

tem prompts the user to check the gas shelf-valve of tube 1, while the corresponding



schematic is displayed.

Please check the gas shelf valve

ofTube #1!

Valve in the vertical position

Is open!

USER TYPE-IN START

Problem: No gas flow at tube #1

Gas shelf valve is the first

possible place for the problem.

Gas Valve System

•**««*•

(MM*

Gas Valve System • no gas flow
at tube 1 can be accounted by
the gas shelf valve offor the
regulator malfunction or the
main valve off or other problems

Fig. 5.2 The off-line equipment maintenance aid helps the user to

diagnose the gas valve system problem.
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The capability to generate reports is also an essential element of the off-line mainte

nance system. Reports aregenerated at the end of each session and include all the opera

tions, their sequence, the specific tube, the time,- the name of the operator, etc. The usual

maintenance event reporting is done at COMETS, a work-in-progress tracking system

used by Harris Semiconductor. Since there is no direct link from GEMS to COMETS,

GEMS guides the user to enter the information into COMETS at the end ofeach session.

Anotherimportant feature ofGEMS is the fact thatthe expertmaintenance engineer

can edit the maintenance knowledge. This is done in the "modification mode'* that

allows editing the prompt, entering comments, modifying graphics explanations and
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reports for every diagnosis route, etc. This flexibility is needed because whenever the

equipment-related conditions change, the knowledge base must reflect the change. Fig

ure 5.3 shows the "modification mode.**

Fig. 5.3 Editing the knowledge of GEMS. Here, the expert is edit

ing the prompt question.

S3. Knowledge Acquisition, Inferencing and Knowledge Scope of GEMS

There is no standard approach to the knowledge acquisition process, as knowledge

can be attained from observations [2] or from first principles [3]. For GEMS, most of the

knowledge comes directly from the expert engineers. After discussing the furnace prob

lems with the domain experts, we organized the equipment symptoms, faults and solu

tions hierarchically. Figure 5.4 shows an example of this structure for the gas valve sys

tem.
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According to how often problems have been happening in the past, step-by-step

guidelines have been set to guide the user through an optimum sequence of diagnostic

actions. The human expert usually checks the most likely problem first Occasionally

however, problems that are not as likely are checked first if they are easier to verify. For

example, if the symptom is that there is an intermittent gas flow, the first thing to do is to

check the main valve, the gas shelf-valve and the regulator before considering the more

likely but harder mass-flow controller problem. Consequently, the basic knowledge struc

ture is built on the heuristic hierarchical structure of symptom, fault, and solution.

Furnace Abort 1

Display "gas level problem" on CRT

I
Display "no gas flow" on CRT i

diagnosis path choice:

(historic likelihood)

symptoms

Gas Shelf Regulator MainValve Others faults
Valve Off Broken Off

Turn on Valve -- -- solutions

Fig. 5.4 Hierarchical decomposition of the gas valve system faults

organized in symptoms, faults and solutions.

The knowledge scope of GEMS is partitioned into three levels: the lead operator

level, the process/maintenance technician level, and the expert equipment maintenance

engineerlevel. Hgure 5.5 compares the knowledge levels for the diffusion furnace. Very

large increases of knowledge are needed to move to the next more sophisticated level.

The initial goal of GEMS is to acquire the complete scopeof knowledge to help the lead
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operators solve 50% of the total furnace malfunction problems. (Typically, an unaided

lead operator can solve 10% of the diffusion furnace problems). This will greatly

increase machine up-time and hence efficiency of productioa

Furnace problem Solving %

Lead
Operator

Maintenance

Technician

Knowledge Scope

» In # of rules needed

Expert Maintenance
Engineer

Fig. 5.5 The knowledge scope in terms of rules needed to match

the different levels of experience.

5.4. The Software Structure of GEMS

GEMS is built on top of KEE, a commercial hybrid expert system shell, and runs

on a SUN 3/60. GEMS makes extensive use of the object-oriented programming metho

dology in KEE for its knowledge structure and control strategy. GEMS performed

sufficiently in an object-oriented programmingenvironment

GEMS consists of five objects.

(1) Basic GEMS Object : contains comments, graphics, prompt, and their associated

functions.
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(2) Question-Type-in Object: asks the user to type in some information in response to

a question.

(3) Question-Choice Object: asks the user to pick an item from a number of available

choices.

(4) Pure-Action Object : includes functions for guiding the user in completing an

action.

(5) Yes/No-Action Object: asks the user a yes/no question and takes the appropriate

actions.

Any of the subsequent objects (units in KEE's terminology) will either inherit the charac

teristics from the Basic GEMS object or from the combination of the Basic-GEMS object

and one of the other four objects.

Symptoms are hierarchically decomposed into levels as shown before. There may

be some actions or questions needed to lead to the next symptom level. When a symp

tom can be accounted for by single or multiple faults, heuristic diagnostic sequence is

taken to investigate which fault can best explain the symptom. During the investigation

of the possible fault, some actions and responses are needed for guiding the user through

fault verification. A solution will be proposed once the fault is identified.

5.5. Conclusions

This project demonstrates how a Generic Equipment Maintenance System (GEMS)

works for a diffusion furnace. GEMS is developed using KEE, fully utilizing its features

such as its object-oriented programming, the menu and graphicscapabilities.

The construction of the hierarchical knowledge base is object-oriented. Graphics

and schematics are used to illustrate symptoms, questions or actions. After a fault has

been identified, the system proposes a solution. The object-oriented style of the

knowledge base makes the task of adding knowledge to the system easier, and also
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facilitates the construction ofother equipment maintenance systems.

Since GEMS is a generic tool for equipment maintenance, it has the potential to

become a large-scale equipmentmaintenance system for all the fabrication equipment in

the production line. This way, GEMS couldintegrate andstandardize the maintenance of

all pieces of equipment in anIC fabrication environment providing the advantage of cen

tral control and quick adaptation ofknowledge.

Currently, a specific GEMS has been built for the DDC furnace in use at the Harris

semiconductor facility in Melbourne, Florida. The knowledge base contains about 2000

objects, and an equal number of rules. The DDC furnace GEMS has been in use on the

manufacturing floor since January, 1989. We have conducted several operator training

sessions for GEMS, and have found that the end-users Oead operators) are pleased with

its performance. Some user comments are summarized below:

(1) The user cannot pay attention to several places on the screen at the same time.

Therefore, the most important information should be presented in the prompt sec

tion, while the comment section should contain the additional information or the

explanation of why the question in the prompt section is asked. The prompt and

graphics sections arevery important to the user.

(2) Using a mouse is direct and simple, and very convenient for clean room operators.

(3) The hierarchical decomposition into symptom, fault and solution is very

comprehensive. The explanation of the diagnostic analysis greatly enhances a

user's knowledge about the equipment

Other applications of GEMS are currently planned for the Harris manufacturing

facility.

GEMS's functions are complementary to the equipment maintenance record keep

ing system described in the last chapter. GEMS provides an explicit diagnostic route

from observed symptoms to actual fault We are investigating a case-based diagnostic
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methods to provide functions of both systems.

However, with the equipment maintenance and real-time monitoring data available

(through SECSn link), a continuous diagnostic system can be built that aims to detea

equipment problems automatically. The next chapter describes such an automated diag

nostic system.
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6.1. Introduction

Modem integrated circuit (IC) production requires the completion of hundreds of

process steps. Most of these steps are conducted by sophisticated manufacturing equip

ment [1], whose reliable operation is vital to IC production [2,3]. Occasionally, equip

ment fails to operate properly. Serious malfunctions might result in lengthy downtime.

Even minor malfunctions, if not identified at an early stage, can result in long runs of

misprocessed product, and might eventually cause serious equipment damage.

Traditionally, an experienced equipment operator will attempt to identify and diag

nose malfunctions by drawing on experience from the equipment operation history, real

time readings and observations of the finished product. Even assuming that an experi

enced operator is always present, this task is often time consuming and difficult. Hence,

we are motivated to investigate an automated malfunction diagnosis system to aid equip

ment operators detect and analyze equipment problems [4].

Early diagnostic systems were based on the manipulationof experiential knowledge

and pattern recognition techniques [5,6]. Unfortunately, early systems were restricted by

not being able to accommodate quantitative models. They were further limited in their

representation of "uncertain**knowledge. More recently, Kramer [7] proposed a diag

nostic approach that uses quantitative models and probabilistic reasoning. Although this

application shows significant promise for the continuous processing common in the

chemical industry, its direct use in semiconductor manufacturing is questionable. First,
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semiconductor processing is mostly a "batch** process. Also, the development and useof

first principle quantitative models of the process is not asadvanced in the semiconductor

industry as it is in thechemical industry. The reason for thisis that most processing steps

in semiconductor manufacturing are too complex to afford the development of practical,

physically-based models. Recently a number of semi-empirical and empirical

equipment-specific process models [8,9] have been developed. These models have been

created and characterized through experimentation with the equipment in question. In

this chapter we showhow these modelscanbe used within an automated diagnostic sys

tem.

The diagnostic system we are presenting here is based on processing information

(or "evidence**) regarding the behavior of the manufacturing equipment in question.

Because of the batch character of the manufacturing process, "evidence** accumulates

over time in an irregular fashion. Evidence regarding equipment condition can be col

lected before processing by checking the equipment maintenance records. It can also be

collected during processing from online equipment sensors, and after processing from

inline physical and electrical wafer measurements. Often, diagnosis cannotbe conclusive

until later evidence verifies an early conjecture about the problem.

An important feature of the system is based on the continuous accumulation of

information coming in at different times during a manufacturing sequence. In order to

accommodate the batch character of the semiconductor fabrication process, we have

developed a "chronological** approach to equipment diagnosis. In this approach diag

nosis is broken into three stages, where the system analyzes historical information before

the run, real-time data during the run, and product inspection data after the run.

We use the Dempster-Shafer (D-S) evidential reasoning approach [10,11] to

represent and combine evidence. This method provides for consistent and unambiguous

evidence combination. A prototype of this diagnostic system was implemented in an
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object-oriented programming environment. This implementation enables knowledge and

functionalities to be shared by different pieces ofmanufacturing equipment

We have applied the D-S diagnostic method to a reactor used for Low Pressure

ChemicalVapor Deposition (LPCVD) ofundoped polysilicon films. Our results indicate

that this diagnostic system is sensitive, stable, and accurate.

In the remainder of this chapter, a brief review of the Dempster-Shafer theory is

given in Section 6.2. Section 6.3 describes the diagnostic methodology in detail. The

adaptive adjustment of the belief functions is discussed in Section 6.4. The implementa

tion of the diagnostic software is covered in Section 6.5. Section 6.6 discusses the appli

cationof the prototypesystem, andourconclusions are given in Section 6.7.

62. Dempster-Shafer Model for Fault Inference

Since its introduction in 1976, the D-S theory has demonstrated its usefulness in a

number of practical applications [12,13]. This theory is briefly reviewed below.

6.2.1. Support, Plausibility and Uncertainty

According to the D-S theory, each proposition A is assigned a probability range,

represented as [Bel(A), Pls(A)], a subset of the interval [0,1]. The term Bel(A) is the

belief measure of A (also known as "support** of A) and is directly proportional to the

available evidence that supports the proposition A. The term Pls(A) refers to the plausi

bility of A. The plausibility is by definition related to the lack of evidence that contrad

icts A. Accordingly, if-iA symbolizes the negation of the propositionA, the plausibility

can be derived from:

Pls(A)= l-Bel(-nA) (6.1)

where Bel(-iA) indicates the measure ofbelief attributed to the proposition —iA. Also,
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BeKA)-rBel(-A) = l-(Pls(A)-Bel(A)) £ 1 (6.2)

which means that the commitment of belief to a propositiondoes not force the remaining

belief to be committed to its complement This is a departure from classical probability

andgives to the D-S method the powerto express uncertainty u(A), definedas:

u(A) = Pls(A)-Bel(A) (6.3)

Forexample, A[0.4,0.8] means that there is some belief for both A and -iA. In particu

lar, Bel(A) = 0.4, Pls(A) = 0.8 which means that Bel(-iA) = 0.2 and u(A) = 0.4. In

terms of classical probability, we can say that the exact probability of A is known to be

between 0.4 and 0.8.

6.2.2. Basic Probability Mass Distribution

The information that can be analyzed by our diagnostic system is categorized with

the help of a set of descriptive "labels**. For example, temperature readings will come

under "temperature**, film thickness readings under "film thickness** and information as

to whether the equipment has been recently cleaned will come under the label "clean

ing'*. Each label thus defines a categoryof information. We will call this set ofcategories

the "evidence space** and we will symbolize it by E. Furthermore, the diagnostic system

has a fixed number of failure hypotheses, one that relates to proper equipment operation

and one for each of the recognizable failures such as "thermocouple out of calibration*'

or "pressure controller drift**. We will call this set the "fault space**, and we will sym

bolize it by 6. In D-S theory terminology, 0 is theframe ofdiscernment.

Consider now a multivalued mapping T from space E (evidence space) to space 6

(fault space). Each element in E is mapped to a subset of elements in 6, i.e., each piece

of evidence can be mapped either to individual hypotheses or to any subset of 6. The

objective of this mapping is to distribute belief to each of the hypothetical faults that are

related to the observed evidence.
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to specify the way that belief from an evidence is distributed in 6, we define the

concept of the Basic Probability Mass Distribution (BPMD). The BPMD is a set of

numerical beliefs that result from the distribution of the unit belief of an evidence, to the

set of hypotheses in the frame of discernment 0. In other words, the BPMD distributes

belief over the set of propositions in the fault space. The BPMD is represented by a set

of Basic ProbabilityMasses (BPM). For instance, the BPM of A, symbolized as m<A>,

represents the belief attributed to A which may be either a single fault or any subset of

the fault space. Any unassigned belief is assigned to the entire set 6. Unassigned belief

serves to introduce uncertainty into the diagnosis.

Evidential intervals for individual hypotheses [Bel(A),Pls(A)] can be derived from

the BPMD. Using this paradigm, the belief and plausibility of a proposition A are given

by:

Bel(A) = Imi<Ai> (6.4)

Pls(A) = 1- Zmj<-TAj> (6.5)

where Ai c A, 9 = A^j-iA and -iAj c -iA. Thus, the total belief in A is the sum of

beliefs ascribed to A and all the subsets of A.

62.3. Rules of Combination

Let us now assume that the system has observed two independent sets of evidence,

Ei and E2, both subsets of the evidence space E. If mi and m.2 are the two BPMDs

induced on 9 by the multivalued mappings Ti (Ei to 9) and 1*2 (E2 to 9), the combined

BPMD can be computed using Dempster's rules ofcombination [10]:

m(C)=I>i^2(Bj)| where A.nB. =c (66)

k = 2mi(Ai)m2(Bj), if AjOBj = <|> (6.7)
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In other words, under the assumptionthat evidence comes from independent sources, the

BPM of the intersection of Ai and Bj is the product of the BPMs of Ai and Bj. The

denominator (1-k) is used to normalize against the "lost** belief which otherwise would

have been assigned to empty sets.

As an example, consider the frame of discernment 9 = {Fi, F2, F3, F4, £} where

Fi» ^2. *% and F4 are faults and £ is the hypothesis of fault-free operation. Assume there

are two BPMDs induced in this frame of discernment for respective mappings of T\ and

r2:

mi(FiuF2,F3f F4,C,9) = (0.48,0.12,0,0.2,0.2)

m2(F2, FiuF3,F4uC, 9) = (0.0,0.7,0.1,0.2)

The combination of mi and m2 is depicted in Table 6.1.

Each cell in this table contains the intersection of the corresponding propositions

from mi and ni2 along with the product of their individual beliefs. Note that the intersec

tion of any proposition and 9 is the original proposition. Consequently, by applying Eq.

(6.6) we have:

m(Fi,FiuF2,F3,C,FiuF3,F4uO =(0.42,0.12,0.135,0.075,0.175,0.025)

and the corresponding probability intervals, derived from Eq. (6.5), are: Fi[0.42,0.765],

F2[0,0.17], F3[0.135,0.36], F4[0,0.075] and £ [0.075,0.15].
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Fi u F2 0.48

F3 0.12

F4

0.2

0.2
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F2 0 Fi 0.34 0 0.048 FiUF2 0.096

0 0 F3 0.084 0 0.012 F3 0.024

0 0 0 0 F4 0 D 0

0 0 0 0.14 c 0.02 c 0.04

F2 0 FiUF3 0.14 I>4UC 0.02 9 0.04

F2 0 Fi^jF3 0.7 F4^jC 0-1 9 0.2 m2

Table 6.1 Illustration of BPMD Combination

6.2.4. Efficient Implementation of Dempster's Rules of Combination

In semiconductor manufacturing, timely diagnosis is critical. It is therefore impor

tant to focus on the efficient implementation of Dempster's rules of combination. To

achieve this goal, we assume that only single faults can be present at any given time. This

reduces the number of mappings to thehypothesis space from 2e to 9. This assumption is

not very restrictive since multiple faults rarely occur independently. It is however possi

ble for secondary faults to be triggered by the occurrence of primary faults. Since these

faults always happen together, they can be modeled as a single fault in the fault

hypothesis space.

To further increase the speed of computation, Dempster's rules of combination

have been implemented as an efficient bit-array operationin Lisp [13].
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63. Overview of the Diagnostic System

Due to the batch character of semiconductor processing, malfunction diagnosis

takes place in three consecutive steps. The first step is maintenance diagnosis, performed

by analyzing the relevant utilities, inventories and maintenance history, such as the time

elapsed since the last tube cleaning. The second step is real-time diagnosis. This is based

on the analysis of real-time sensor data such as temperature, pressure, gas flow, etc.

Finally, there is inline diagnosis, based on physical and electrical tests performed on pro

cessed wafers. An example of the three stages of diagnosis for LPCVD reactors is shown

in Figure 6.1. The basic components of the diagnostic system are described below.

Maintenance Diagnosis
before run

maintenance

inventory
utilities

Online Diagnosis
during run

Inline Diagnosis
after run

temperature

pressure

gas flow
heating

deposition rate
resistivity
spot defects
stress

diagnostic
action

information
flow

available
evidence

Time

Fig. 6.1 The three stages ofdiagnosis for LPCVD reactors.

63.1. Knowledge Base and Inference Engine

The knowledge base is a formalized description of the structure and function of the

processing equipment. It contains the relationships between the various types of evi

dence and fault hypotheses. Evidence can originate from maintenance records, from
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real-time sensor data during processing, and from wafer measurements after processing.

Accordingly, the evidence is organized into three groups, namely maintenance, real-time,

and inline.

The inference engine is a program that performs the mapping from the evidence

space E to the fault hypothesis space 9. In terms of the D-S theory, each fault hypothesis

is assigned anumberbetween 0 and 1 asa measure of the belief about the fault, given the

evidence that the system has collected so far. For each new piece of evidence, the D-S

theory provides a formal belief accumulation method to calculate the total belief contri

buted by the separate pieces of evidence.

63.2. Diagnostic Methodology

During each of the three diagnostic steps, malfunction diagnosis is performed via

the resolution of qualitative and quantitative constraints. These two classes of constraints

are described below.

9

63.2.1. Qualitative Constraints

The qualitative constraints are rules that specify the normal operation of a pieceof

equipment. For example, one kind of qualitative constraint determines the texture of the

deposited polysilicon under normal conditions. If the texture is different from what is

normally expected, that qualitative constraint is violated. Otherqualitative constraints are

violated when the evidence shows other signs of abnormal behavior. Ideally, the qualita

tive constraints are compiled from the collective experience of a number of equipment

experts.

Qualitative constraints are applied through all three stages of diagnosis. The status

ofequipment maintenance canbe checked by retrieving the relevant information from the

database. Furthermore, status patterns originating from binary sensor information are
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generated during the process. These violations are resolved by assigning belief to the

respective fault hypotheses. Evidence derived from observation of the film texture for

example, will map to the fault about contamination on the reactor wall. The actual

"value" of the texture, i.e. whether the texture is smooth or coarse, determines the final

belief assignment on the relevant fault For another example on the resolution of a quali

tative constraint, consider the on/off indicator of a heating element. This indicator should

normally be "on" during temperature ramping steps. If it stays "off** for an unusually

long time, this would violate an equipment constraint and would clearly indicate a seri

ous problem with the temperature controller.

63.2.2. Quantitative Constraints

There are two types of quantitative constraints. One class of quantitative constraints

is based on numerical equipment models. These models have been created and character

ized through experimentation [8,9]. Such constraints will be violated when the actual

observations differ substantially from the model predictions. If, for example, the system

observes polysilicon layers that are significantly thicker than expected, and if there are

reliable temperature and pressure readings, then the conclusion would be that the mass

flow controller is out of calibration.

The other class of quantitative constraints applies to the real-time monitoring of

sensor readings using statistical process control techniques [14,15]. This class of con

straints is described in Section 6.3.3.2.

The quantitative constraintsgenerate belief that is proportional to the seriousness of

their violation. More specifically, let e be the difference between the measured and the

predicted polysilicon thickness. Under the assumption that the equipment is operating

properly, e is a normally distributed random variable of zero mean and of constant vari

ance a2 (Figure 6.2), which can be estimated from measurements. Under the assumption
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that the process is operating normally, we can find a symmetrical (1 - a) confidence inter

val for e:

V*S8S^*-i* (6-8)
where s2 is the estimated variance (using n samples), and t, a ,s/>n is the allowed1-y.n-l

deviation of £, calculated using the student-t distribution [14]. If the allowed deviation is

set at the +/- 3sigma level, then a is 0.0027. The resulting 6a process control limits

ensure that, when the equipment is operating properly, we will only get one point beyond

the control limits for each 200 observations.

Typically, an alarm is signaled when the residual, £, exceeds a control limit (tot).

This, however, is equivalent to the generation of a high belief that will be distributed to

the respective faults. Making belief behave as a step function at the tol value makes the

diagnostic system unstable in the presence of noise. A smoothed belief function that will

yield incremental changes in belief associated with the incremental changes in operating

conditions is preferred (also see Figure 6.2).
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belief

-tol residual

step belief function

tol

smoothed belief
function

Fig. 6.2 Residual distribution under normal equipment operation.

A step belief function is replaced by a smoothed belief function to

generate gradual fault belief around the tolerance limit

The following sigmoid belief function has been used in neuralnetwork applications [16].

b(e) = (1-u)

iW°^'1)]
(6.9)

where b(e) is the belief function related to a constraint. The function above is also called

a "squashing'* function because its response has maximum sensitivity around tol. This

means that the belief function will be sensitive at the crossing point and insensitive when

e is either in the normaloperating range or farinto the abnormal range.

Another benefit from this function is its simplicity. Eq. (6.9) uses an adjustable

parameter G to control the sharpness of the belief transition. When G approaches ©o, the

belief function becomes a step function at tol. Figure 6.3 shows the belief versus G when

e changes from 0a to 6a with tol set at 3a. The default value for G is set at 5 because

belief is modeled to be smaller than 0.1 when e is 2a and larger than 0.2 when e is 2.5a

(assuming that uncertainty u is zero). This canbe seen in Figure 6.3. The factor (1-u),

the maximum belief that can be supported by the constraint, is initially set from
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experience and is different for each source ofevidence.

Fig. 63 Belief versus G when e changes from Qa to 5a with tol

set at 3a

So, given e and the distribution depicted in Figure 6.2, we can derive the belief that

originates from the evidence. When e > 0, belief b is generated as in Eq. (6.9), and then

distributed to the various fault hypotheses.

63.23. Belief Distribution

Oncethe collectivebelief from one source ofevidencehasbeen generated, it has to

be distributed to the various faults, i.e. a BPMD must be formed. The way belief is dis

tributed among the various fault hypotheses merits some discussion.
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First, we define the fault hypothesis sets of constraint violations. When e > (or <)

0, from Figure 6.2, the violated fault hypothesis set is designated as H+ (or H"). H+ (or

H~) may consist of a subset of faults from fault hypothesis space. For example, the

expression

H+ = (Fi \^j F2, F3) means that the suspected fault set (induced from e > 0) contains

faults Fj \j F2 or fault F3. Now suppose that from equipment maintenance experience,

we can associate H+ with a frequency distribution (F\ \^j F2, F3) =(0.8,0.2). This fre

quency distribution of H+ indicates that whenbelief is generated (with the particular e >

°)»Fi {J F2 takes the 80% of thebeliefwhile F3 takes the remaining 20%.

BPM*s are assigned to the fault hypothesis sets H+, H" and H° (the set of the

remaining faults and the "no fault**) in the following manner

m<H+, H",H°, 9>= <b,0, l-b-u,u>, e>0 (6.10)

m<H+,H- H°,9> = <0,b, l-b-u,u>, e<0 (6.11)

The evidential intervals implied by this belief assignment indicate that when the con

straint residual is greater than zero, the probability that the constraint is actually high is

between b and b + u, whereas the probability that it is low is between zero andu. When

the residual is less than zero, these intervals are reversed. Note that the uncertainty

involved in evaluating theconstraint is assigned directly to 9. This means that u supports

all relevant hypotheses and cannot be attributed to any particular subset in the frame of

discernment. Finally, the BPMD*s for all evidence sources are subsequently combined

according to Dempster's rules of combination (Section 6.2.3).

Consider the example of a frame of discernment 9 = {Flt F2, F3, F4, £}, where Flf

F2, F3, and F4 are fault hypotheses and £ is the hypothesis of fault-free operation.

Assumethatthere are two constraints withthe fault distributions givenin Table 6.2.



e>0 e<o

constraint 1 (FiUF2.F3)=(0.8,0.2) (F4) = (D

constraint 2 (F2)= (D (FiUF3) =0)

Table 62 Example for defining belief distribution list for a set of two constraints
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When £>0, (Fi ^ F2, F3) =(0.8,0.2) means that the fault hypothesis Fi \j F2 gets the

generated belief multiplied with the factor 0.8 as specified in the belief distribution list

Similarly, F3 gets 02*belief from constraint 1. Further, assume that bi = 0.6, ui = 0.1

and £1 > 0 for the first constraint. Also assume thatb2= 0.7, U2 = 0.2 and 62<0 forthe

second constraint Then,

mitFxuF* F3, F4, £, 9) = (0.48,0.12,0,0.2,0.2)

m2(F2,F1uF3,F4uC,9) = (0.0,0.7,0.1,0.2)

where £ signifies fault-free operation. The combination of mi and m2 was depicted in

Table 6.1. Consequently, by applying the rules ofcombination again, we have:

m(F1,FiuF2,F3,C,F1uF3,F4uO =(0.42,0.12,0.135,0.075,0.175,0.025)

and the corresponding probability intervals, derived from Eq. (6.5), are: Fi[0.42,0.765],

F2[0, 0.17], F3[0.135, 0.36], F4[0, 0.075] and £ [0.075, 0.15]. Hence, the hypothesis

about the fault Fi has the largest support in the group. (This can also be seen in Table

6.1.)
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63.3. Belief Generation in Three Diagnostic Stages

Since semiconductor manufacturing consists of a sequence ofbatch processes, diag

nostic belief is generated in three stages, namely before, during and after the completion

of each process.

633.1. Maintenance Diagnosis

As discussed in Chapter 4, the computerized equipment maintenance records not

only keep the field repair reports but also have the preventive maintenance history of

each piece of equipment The maintenancediagnostic module predicts the possible faults

by examing the preventive maintenance history of a pieceof equipment

For example, the tube cleaning history is treated as a source of evidence for an

LPCVD reactor. Tube cleaning is a preventive maintenance activity usually conducted

every 10 hours of deposition time (approximately every 4 typical LPCVD runs). Belief

of the fault excessive deposition is derived from the evidence tube cleaning history by

treating accumulated deposition time since the last tube cleaning as the residual and the

10 hours as the tol limit in Eq. (6.9).

63.3.2. Real-Time Diagnosis

When performing diagnosis using real-time sensor readings, quantitative con

straints are examined by the application of statistical process control (SPC) principles.

Next, we focus on how belief is derived from quantitative constraints using SPC con

cepts.

Real-time monitoring data usually comes in the form of multivariate sampling at a

relatively high sampling rates (3 samples/second). It is possible to expect significant

auto- and cross-correlation among the samples. After some initial study of the auto

correlation structure of real-time monitoring data, we found that there is not a simple
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consistent time series model [24] that describes a given data set So we decided not to

process data throughtime series modeling fortius analysis. Other studies [25] arepursu

ing this topic.

Traditional SPC is based on the application of either Shewhart or cumulative sum

(CUSUM) charts. Shewhart charts can monitor large shifts efficiently while CUSUM

charts aremore applicable when small continuous drifts are present

Since large shifts and small drifts can occur together, a combined Shewhart -

CUSUM control chart technique [15] is used for the analysis of real-time monitoring

data. To generate belief as a function of the severity of the tolerance limit violation, we

use the statistic

Zi =̂ (6.12)

where m is the target mean value, a is the standard deviation of y (which is obtained

from previous runs) and yi is the ith observation of a single real-time reading. The

CUSUM scheme requires two cumulative sums, one for positive shifts and one for nega

tive shifts. The formulas used are

SHl =max[0,(Zi - k) + S^-1)] (6.13)

Su=max[0,(-zi - k) + Sl,- i)] (6.14)

where k signifies the deviation (expressed in standard deviations) that we can tolerate. If

either Sh or Sl becomes greater than a decision value h, this signals that the process is

out of statistical control. The starting CUSUM value, S0 is set equal to zero in a standard

CUSUM scheme. (When S0 is not set equal to zero we have a fast initial response (FIR)

CUSUM scheme with a "headstart" of SQ.) The parameterk for the CUSUM scheme is

obtained directly as k = -*- where A is a displacement that we want to detect. The chart

can also be designed for a given in-control average run length (ARL) [14]. ARL is the
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average number of observations between alarms. Ideally, we would like ARL to be long

when the process is running well and short when there is a deviation.

Another control parameter to be defined is h, the decision value (or the tolerance

limit) for S^ and S^. Therefore, to generate belief from the CUSUM scheme, we treat h

as the tol limit and treat S^ and S^ as residuals in the quantitative constraint during

real-time diagnosis. In general, we have

(6.15)

where b=b(SH4) is the belief function related to the CUSUM quantitative constraint of

the control parameter which could be temperature, gas flow or pressure.

Similarly, to generate belief from the Schwhart scheme, we treat 3a as the tol limit

and treat the difference between the real control parameter reading and the expected set

value for the control parameter as residual.

63.33. Inline Diagnosis

Between the batch process steps the system examines the residuals of the inline

measurements. These are compared to the corresponding values predicted by the equip

ment models. The comparison forms quantitative constraints that arederived from physi

cal, empirical or semi-empirical equipment models. For example, we examine the resi

dualof deposition rate from a low-pressure chemical vapordeposition (LPCVD) reactor.

The residual is defined as the difference between the measured deposition rate and the

one predicted by the model In this work, we are using the deposition rate model

developed by Lin [8].

-AE

R(T,P,Q,X) =APctexp"*T_
1-

1+

k3

1+tiO\Q,T,
(6.16)
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where T, Q, P, X are the temperature, gas flow, pressure, and wafer position, respectively.

The 3a of deposition rate is obtained from the prediction error of the deposition rate

model and is used as the tol limit for the generation ofbelief.

63.4. Information Flow within the Diagnostic System

Figure 6.4 shows the flow of information in the diagnostic system. The maintenance

records, historical statistical information and inline measurements are stored in the

INGRES relational database [17]. From there, the diagnostic system can automatically

retrieve information using the Standard Query Language (SQL) [18]. During the online

diagnostic stage, the system applies the SPC rules to evaluate the behavior of the equip

ment. Finally, in the inline diagnostic stage, the system examines the residuals of the

inline measurements and corresponding values predicted by the equipment models. All

these pieces of evidence are fed into the inference engine and the corresponding BPMDs

are generated and combined.

When the belief associated with a particular fault hypothesis exceeds the defined

threshold value of the fault various actions are initiated. For example, the system might

create a report notify the technician about the problem, display the monitored parameter

on the screen, and possibly terminate the process when the problem is considered serious.
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Fig. 6.4 The information flow within the diagnostic system

6.4. Adaptive Tuning of Belief Functions

Although the use of smoothed belief functions ensures the stability of the diagnostic

system, the final probability intervalsdepend on the choice of the belief function parame

ters. If there is no feedback mechanism to refine the evidence-fault association, the diag

nostic inferences might suffer from poor choices of tol, G, u, and the evidence-fault

belief distribution list

In order to solve this problem, a method has been developed to adjust the belief

functions automatically. There are three flexible parameters in the belief function: one is

the critical value (tol), for which the belief takes the value of (l-u)/2. Other function

parameters that can be adjusted are the uncertainty u, and the parameter G which controls

the sharpness of the transition.
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Adaptive adjustment is also needed for the belief distribution mechanism, which

governs the distribution of belief to the various fault hypotheses associated with a piece

of evidence. Next we explain how tol, u and the belief distribution list can be set and

updated automatically. For this implementation, the parameter G was fixed (see Section

6.3).

6.4.1. Adaptive Adjustment of the Tolerance Limit

The limit tol has a statistical meaning: it is the +/- 3a limit around zero for the resi

dual value of each of the quantitative constraints. As such, tol can be updated using the

observations from the n most recent samples. Obviously,'during the collection of these

observations, an "out of control*' group should be excluded from the calculatioa Deter

mining the subgroup size n for the calculation of tol requires some judgement. In general,

the subgroup size should be large, so that we can get a good estimate of the variation.

Also, the choice of the subgroup should be such that the appropriate variation is

represented, i.e., multiple readings from one wafer should be used to represent wafer-

level variation, etc. This problem is also discussed in [19]. In this implementation, tol is

set at the 3a level, and it is estimated from all the real-time readings collected for the last

three runs of the furnace.

6.4.2. Adaptive Adjustment of Evidence Uncertainty and Belief Distribution

To adjust the uncertainty u associated with eachpieceof evidence and to properly

set the belief distribution list, we use historical information from previously observed

problems.This historical informationhowever, is stored in a symbolic form as it has been

described in Chapter 4. Each maintenance event forms a maintenance report that con

tains a symptom (that the diagnostic system will use as evidence) selected from a pre-

specified symptom hierarchy. Upon identification and repair, the technician reports the
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cause (i.e. what the diagnostic system recognizes as the "fault**), again using a pre-

specified fault hierarchy. This record is then stored in a relational database [20]. Symp

toms (and their explanation, if available) can be stored in the database by the operator or

directly by the diagnostic system. The diagnostic system can later browse through this

database and adjust its knowledge base according to the statistical historical information

of various symptoms to confirmed faults.

The statistics extracted from the equipment maintenance records can be used to

upgrade the uncertainty u and the belief distribution list For example, when the thickness

of the deposited polysilicon film deviates more than 3a from the estimated target, the ini

tial fault-belief distribution list attributes a belief factor of 0.6 to the fault hypothesis of

the thermocouple being out of calibration, and a belief of 0.2 to the union of the faults in

the pressure controller and flow controller. This evidence carries an initial uncertainty of

0.2. After collecting the downtime statistics in the equipment maintenance records for a

while, we found that a better distribution breakdown is 0.8 and 0.1 with an uncertainty of

0.1 for the same evidence-fault mapping.

Since the initial knowledge given by the maintenance engineercomes from experi

ence, in the long run it will not be more correct than the downtime statistics collected in

the equipment maintenance records. After enough reports have been collected, statisti

cally significant patternsbegin to emerge, and a new belief distribution should be created

and installed in the knowledge base. Althoughwe have not yet automated this operation,

we expect to do so in the future.

63. System Implementation

The diagnostic system described in this chapterhas been built as a module of the

Berkeley Computer Aided Manufacturing (BCAM) system [21]. This module is imple

mented in CLOS (Common Lisp Object System), an object-oriented programming
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language built on top of Common Lisp [22]. The BCAM system is written in C, C++ and

CLOS and is running under UNIX on SUN 3 and SUN 4 systems.

The structure of the diagnostic module is general and it can accommodate various

semiconductormanufacturing processes. The knowledge base was also designed to facil

itate easy implementation and modification for different pieces ofequipment

We have used an object-oriented architecture to closely mimic the conceptual

hierarchy of the knowledge structure. The basic objects are the evidence and the fault.

The multivalued mapping between evidence and faults is stored in each evidence

"instance**. When a fault belief exceeds its threshold value, general purpose subroutines

("methods") are dispatched to perform different activities such as the creation of a

"pending** problem entry in the maintenance database, the notification of the mainte

nance engineer, the display of relevant evidence (processing parameters) on the screen

for real-time monitoring, the termination of the process, etc. The Dempster-Shafer rea

soning and the statistical process control routines have also been implemented as

independent "methods."

The knowledge base also has a hierarchical structure in order to facilitate applica

tions on clusters of similar equipment For example, the furnace diagnosis module con

tains knowledge about 16 individual reactors. Some of this knowledge is generic and

applies to all reactors, some however is specialized and applies only to the reactors used

for chemical vapor deposition. At a lower level we have knowledge that only applies to

special types of CVD reactors. Whenever diagnosis is initiated on a specific furnace, the

knowledge base uses "inherited** generic knowledge enhanced with the appropriate spe

cialized elements.

As partof the greaterBCAM framework, the diagnostic module works very closely

with other modules. For example, foreign function procedures are provided to invoke a

real-time monitoring tool. The diagnostic module also interacts with the INGRES
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relational database for storing and retrieving information pertinent to equipment opera

tion.

6.6. Application Examples

A prototype of the diagnostic system has been applied to a furnace cluster that con

tains 16 reactors used for silicon oxidation, nitride deposition, LPCVD, etc. Here we

present an example drawn from the operation of a low-pressure chemical vapor deposi

tion (LPCVD) reactor used for the deposition of undoped polysilicon. The knowledge

base for this particular example contains 22 faults and their mappings to 24 different

types of evidence. Appendix 6.1 contains the definitions for the evidence and fault as

classes. Appendix 6.2 then depicts the mapping relationships and their frequency distri

bution list between the instances of evidence and fault. About 80% of the knowledge

base contents is common to all the reactors, with the rest specifically written for the reac

tor used in this example. In all, the diagnostic module consists of about 7000 lines in

CLOS, out of which about 1500 lines are specific to the furnace cluster.

The output of the diagnostic system is presented to the operatorin a graphical form

as shown in Figure 6.5. On the left side of this graph we start with the beliefs associated

with the various faults afterexamining the maintenance records of the reactor. During the

deposition, sensor readings are interpreted and thebeliefof the various faults is plotted in

real-time. Finally, after the inline wafer measurements, the final beliefs are displayed on

the right side of the same diagram. For the example presented in Figure 6.5, the system

first conducted maintenance diagnosis and found that there may be a slight chance for

excessive deposition for the next run. The system reached this conclusion by analyzing

the tube cleaning history. Since the belief given to this problem is small (0.13), no action

is taken and the process continues.
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At the start of deposition, the system examines the time needed to reach a stable

deposition temperature. This was found to be longer than usual and it contributed to the

belief associated with the faults thermocouple-out-of-calibration and temperature-

controller-problem. During deposition however, the pressure readings were consistently

higherthan expeaed. So, the belief of the pressure-controller-problem quickly reached a

high value (0.76), overshadowing all other faults. Finally, after the wafer measurements,

some belief was assigned to thermocouple-out-of-calibration, while the pressure-

controller-problem stayed at the top of the ranked fault list. These inferences were later

verified by the maintenance technician.



104

fault belief

l.Or

03

0.0
o-"f ,;*r

maintenance real-time
(Includes maintenance evidence)

* - pressure controller problem
o - thermocouple out of calibration
x - temperature controller problem
+ - excessive deposition

.0
y'
...-X

+- +
■♦ time

inline
(Includes maintenance and

real-time evidence)

Fig. 6S Existing pressure controller problem. Belief of top faults

is shown along maintenance, real-time and inline diagnosis stages

from a process run on an LPCVD reactor.

A second (in this case simulated) example is presented in Figure 6.6. With the same

maintenance and inline data as before, a pressure drift slowly develops during processing.

Here, the gradually rising belief of the pressure-controller-problem can be directly moni

tored by the operator during deposition. An alarm can be initiated automatically when

this belief crosses a given threshold.
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Fig. 6.6 A simulated example of detecting an emerging pressure

controller problem during processing.
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A third example is shown in Figure 6.7. Here we found no problem at the mainte

nance diagnostic stage. However, during online diagnosis, the temperature stabilization

time was 180 minutes, about three times longer than expected. After the problem was

reported to the operator, the long stabilization time was found to be the result of special

processing procedures. So, the high fault belief attributed to the thermocouple-out-of-

calibration and temperature controller problem hypotheses were deliberately eliminated.

This intervention was later justified by the inline diagnosis; after several wafer readings,

the system verified the hypothesis of properequipment operation.
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Fig. 6.7 An example of operator intervention during diagnosis.

Belief on thermocouple out of calibration and temperature con

troller problem were eliminated after consultation with the opera

tor.

The final example is shownin Figure 6.8. The CUSUMbelief generation technique

is used during real-time diagnosis in this example compared to the Shewhart belief gen

eration technique used in the last three examples. CUSUM can detect small drifts of

real-time parameters during a critical process step. Here, the system detects a tempera

ture controller problem at the middle of the process run.



fault belief

1.0+

maintenance real-time
(Includes maintenance evidence)

* - mass flow controller problem
o - thermocouple out of calibration
x - temperature controller problem

* time

inline
(Includes maintenance and

real-time evidence)

Fig. 6.8 An example of detecting temperature drift by using

CUSUM belief generation during real-time diagnosis.
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6.7. Conclusions

In this chapter we have presented a diagnostic system based on the Dempster-

Shafer evidential reasoning method. This method has been shown to work well in batch

production environments.This system has the capability to self-adjustby using a compu

terized equipment maintenance record facility. The algorithms and software used for the

automatic adjustment though still underdevelopment, show significant promise.

There are three distinct benefits gained by using the D-S evidential reasoning

method. First, the D-S theory provides a way to integrate evidence from multiple, asyn

chronous sources. This is an important consideration for batch manufacturing processes.

Second, it provides a ranked list of faults at any given moment of equipment operation.
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The ranked list always incorporates the latest available evidence. Finally, thanks to the

implementation of smoothed, continuous belief functions, the D-S method yields fewer

false alarms. Because incremental changes in equipment operating conditions result in

proportional riseof fault beliefs, this method is alsosensitive to slowly emerging faults.

There are, however, four main limitations on the application of the D-S theory for

diagnosis. First significant effort is required for the fine-tuning of belief functions. This

problem is partially solved by the self-adapting capability of the knowledge base. A

computerized equipment maintenance record system can be used to add evidence-fault

mappings that might have been overlooked. This is very important since we are working

under the assumption of a "complete** hypothesis space, and omitting evidence-fault

mappings will seriously limit the accuracyofthe inferences.

Secondly, the approach has limited real-time performance, because of the rather

complex operations needed in order to perform BPMD combination. The LPCVD appli

cation requires an average of 10 BPMD combinations foreach new evidence reading, in

addition to the related I/O operations to collect the data. This performance is acceptable

here since the sampling rate is rather slow (3 samples per minute). However, for applica

tions such as plasma etching or rapid thermal annealing, the sampling rates are typically

set to several samples per second. Although we employed an efficient implementation

using bit-array computation, it is still difficult to cope with sampling rates this fast. The

temporary solution for this problem is to store the incoming information and let thediag

nosis module catch up later.The long-term solution is to runthe BPMD combinations on

multiple CPUs in parallel, since the orderof BPMD combination does not affect the out

come of the diagnosis. In another attempt to improve the real-time performance, we are

porting the current version of the diagnostic systemto C++ [23].

Thirdly, using the D-S theory under the single fault assumption can be restrictive,

especially when multiple, induced faults are present. One way to remedy this situation is
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to treat a particular combination of faults as a single fault in the fault space.

Finally, a problem arises from the fact that the D-S theory assumes the indepen

dence of evidence in the evidence space. This assumption becomes very limiting when

we deal with rapid sampling rates, where the data can have substantial auto- and cross-

correlations. We are currently experimenting with statistical abstraction techniques for

data processing during online and inline diagnosis [24,25]. Tliese techniques will let us

focus on processing trends rather than raw data.
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Appendix 6.1

Definitions for Evidence and Fault classes

Evidence class definition for LPCVD Reactors

(defclass evidence 0

((name

rreader evidence-name)

(participated-arg

;;; participating parameters in this evidence

rtypelist

accessor participated-arg)

(associated-faults

;;; the evidence - fault mappings for this evidence
linitform nil

:type list
accessor associated-faults)

(uncertainty

;;; the uncertainty defined for this evidence

linitform nil

:type float

accessor evidence-uncertainty)
(belief-function

;;; the belief generation function for this evidence
:initform 0

accessor belief-function)

;;; G is the sharpness parameter for the belief function

(G
:initform 4

.•accessorG-val)

(equipment

;;; the generic or specific equipmentthisevidencebelongsto
linitform nil

:type list

accessor equipment)

)
(documentation "The foundation of all the evidence"))
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Subclasses ofevidence class

(defclass maintenance-evidence(evidence)
((maintenance-evidence-list

rinitform nil

:type list

allocation :class

:accessor maintenance-evidence-list)

)

Odocumentation "Evidence occurs during maintenance period"))

(defclass online-evidence (evidence)
((online-evidence-list

tinitform nil

rtypelist

:allocation :class

:accessor online-evidence-list)

)

Odocumentation "Evidence occurs during online period"))

(defclass inline-evidence (evidence)
((inline-evidence-list

rinitform nil

:type list

:allocation xlass

accessor inline-evidence-list)

)

(rdocumentation "Evidence occurs during inline period"))



Fault class definition for LPCVD Reactors

(defclass fault 0

((name

:initarg rname

rreader fault-name)

(equipment

:initarg:equipment
accessor equipment-name)

(effect

;;; There are two effects: one is a deadly faultwhich causes equipment
;;;breakdown. The other is a warning fault

:initarg reflect

accessor effect)

(support

rinitarg rsupport

rinitform 0

rreadersupport)

(plausibility

rinitarg rplausibility
rinitform 1

rreaderplausibility)

(explanation

;;; text documentation when this fault occurred

rinitform 0

raccessorexplanation)

(supported-evidence

;;; the list of evidence that will lead to this fault

rinitform nil

raccessor supported-evidence)

(threshold

;;; fault threshold defined thatcaninitiatediagnostic actionswhen
exceeded

rinitform nil

raccessor threshold)
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(threshold-list

;;; the list of current faults that exceed their threshold values

for the fault class

rinitform nil

rtypelist
relocation rclass

raccessor threshold-list)

(fault-list

;;; the current fault list that has a above-noise level belief

for the fault class

rinitform nil

rtypelist

relocation rclass

raccessor fault-list)

(fault-BPMD-bit-value-list

;;; the current BPMD bit-value list for the fault class

rinitform nil

rtypelist

relocation rclass

raccessor fault-BPMD-bit-value-list)

(fault-BPMD-bel-pls-list
;;; the current fault belief-plausibility list for the fault class

rinitform nil

rtypelist
relocation rclass

raccessor fault-BPMD-bel-pls-list)

)
(rdocumentation "The foundation of ei faults"))



Subclasses ofFault class

(defclass no-fault-and-theta (fault)

((no-fault-and-theta-list

rinitform nil

rallocation rclass

raccessor no-fault-and-theta-list)

)
(rdocumentation "no-fault and theta in the BPMD list")

)

(defclass online-fault (fault)

((online-fault-list

rinitform nil

rallocation rclass

raccessor online-fault-list)

)
(rdocumentation "An online fault"))

(defclass maintenance-fault (fault)

((maintenance-fault-list

rinitform nil

rallocation rclass

raccessor maintenance-fault-list)

)
(rdocumentation "A maintenance fault"))

(defclass inline-fault (fault)

((inline-fault-list

rinitform nil

rallocation rclass

raccessor inline-fault-list)

)
(rdocumentation "An inline fault that happens after the process run"))
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Appendix 6.2

The Mappings Between the Instances of Evidence and Fault

Explanation of Terminology

Evidence: A

;;; A is an instance of the Evidence class

Class: LPCVD

;;; the class of equipment applied is the LPCVD reactors

Uncertainty: 0.1

;;; the uncertainty of this evidence A is 0.1

Mapping Faults:

(positive (A, B) 0.6)

(positive (C) 0.4)

(negative (D) 1.0)

;; The evidence - fault mappings

;;When £ >0 for this evidence, the frequency distribution
;; is(A^jB, C) =(0.6,0.4), where the belief generated by
;; the evidence isdistributed proportionally tothe fault A^jB
;; and fault C according to the frequency distribution.
;; When epsion <0, the frequency distribution is (D) =(1).



The Maintenance Evidence - Fault Mappings

Evidence: *tube-clean-history_evi*
Class: LPCVD

Uncertenty r0.1
Mapping Faults:

(positive (*excess-depo-gen*) 1.0)
(negative (*excess-depo-gen*) 1.0)

Evidence: *T/C-ceib-history_evi*

Class r LPCVD

Uncertenty r0.1

Mapping Faultsr

(positive (*out-of-calib*) 1.0)

(negative (*out-of-calib*) 1.0)
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The Online Evidence - Fault mappings

Evidence r *kms-out-cntl_evi*

Class: generic

Uncertenty r0.15
Mapping Faults:

(positive (*S-heating-element-worn* *S-therme-insulation*) 1)

(negative (*S-heating-element-wom* *S-therme-insulation*) 1)

Evidence r *kmc-out-cntl_evi*

Class rgeneric

Uncertenty r0.15
Mapping Faults:

(positive (*C-heating-element-wom* *C-therme-insulation*) 1)

(negative (*C-heating-element-worn* *C-therme-insulation*) 1)

Evidence r *kml-out-cntl_evi*

Class rgeneric

Uncertenty r0.15

Mapping Faults:

(positive (*L-heating-element-worn* *L-therme-insulation*) 1)

(negative (*L-heating-element-worn* *L-therme-insulation*) 1)

Evidence: *tempc-out-cntl_evi*

Class: generic

Unceruunty r 0.1

Mapping Faults:

(positive (*temp-contxoller*) 1)

(negative (*temp-controller*) 1)

Evidence: *temps-out-cntl_evi*

Class rgeneric

Uncertainty r0.1
Mapping Faults:

(positive (*temp-controller*) 1)

(negative (♦temp-controller*) 1)



Evidence r *templ-out-cntl_evi*

Class: generic
Uncertainty r0.1

Mapping Faults:

(positive (*temp-controller*) 1)

(negative (*temp-controller*) 1)

Evidence: *tempc-drift_evi*

Class: generic

Uncertainty: 0.2

Mapping Faults:

(positive (*temp-controller*) 1)

(negative (*temp-controller*) 1)

Evidence: *templ-drift_evi*

Class rgeneric

Uncertainty: 0.2
Mapping Faults:

(positive (*temp-controller*) 1)

(negative (*temp-controller*) 1)

Evidence: *temps-drift_evi*

Class: generic

Uncertenty: 0.2

Mapping Faults:

(positive (*temp-controller*) 1)
(negative (*temp-controller*) 1)

Evidence: *SIH4-drift_evi*

Class: generic

Uncertenty: 0.2

Mapping Faults:

(positive (*mass-flow-controller*) 1)

(negative (*mass-flow-controller*) 1)

Evidence: *PH3-drift_evi*

Class: generic

Uncertenty: 0.2
Mapping Faults:

(positive (*mass-flow-controller*) 1)

(negative (*mass-flow-controller*) 1)
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Evidence: *PH3-out-cntl_evi*

Class: generic
Uncertenty: 0.2

Mapping Faults:

(positive (*mass-flow-controller*) 1)
(negative (*mass-flow-controller*) 1)

Evidence: *SIH4-out-cntl_evi*

Class: generic
Uncertenty: 0.2

Mapping Faults:

(positive (*mass-flow-controller*) 1)
(negative (*mass-flow-controller*) 1)

Evidence: *pressure-out-cntl_evi*

Class: generic

Uncertenty r0.2

Mapping Faults:

(positive (*pressure-controller*) 1)
(negative (*pressure-controller*) 1)

Evidence: *pressure-drift_evi*
Class: generic
Uncertenty: 0.2
Mapping Faults:

(positive (*pressure-controller*) 1)
(negative (*pressure-controller*) 1)

Evidence: *n2-drift_evi*

Class: generic
Uncertainty: 0.2

Mapping Faults:

(positive (*mass-flow-controller*) 1)
(negative (*mass-flow-controller*) 1)

Evidence: *n2-out-cntl_evi*

Class: generic

Uncertenty: 0.2

Mapping Faults:
(positive (*mass-flow-controller*) 1)
(negative (*mass-flow-controller*) 1)



Evidence r *pump-without-gas_evi*
Class rgeneric

Uncertenty r0.1
Mapping Faults:

(positive (*oil-backstream*) 1)

Evidence: *program-on-hold_evi*

Class: generic
Uncertenty: 0.1
Mapping Faults:

(positive (*gas-panel-not-auto*) 1)

Evidence: *temp-cntl-not-on_evi*
Class: generic

Uncertenty: 0.1

Mapping Faults:

(positive (*digite-temp-cntl-off*) 1)

Evidence: *templ-reach-max_evi*

Class: generic

Uncertenty: 0.1
Mapping Faults:

(positive (*L-T/C-open*) 1)

Evidence: *tempc-reach-max_evi*

Class: generic
Uncertenty: 0.1

Mapping Faults:

(positive (*C-T/C-open*) 1)

Evidence: *temps-reach-max_evi*

Class: generic

Uncertenty: 0.1

Mapping Faults:

(positive (*S-T/C-open*) 1)

Evidence: *sih4-veve-leak_evi*

Class: LPCVD

Uncertenty: 0.1

Mapping Faults:

(positive (*toxic-gas-leak*) 1)

(negative (*toxic-gas-leak*) 1)
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Evidence: *ph3-veve-leak_evi*

Class: LPCVD

Uncertainty: 0.1

Mapping Faults:

(positive (*toxic-gas-leak*) 1)
(negative (*toxic-gas-leak*) 1)

Evidence: *n2-veve-leak_evi*

Class: LPCVD .

Uncertenty: 0.1

Mapping Faults:

(positive (*leak-in-general*) 1)
(negative (*leak-in-general*) 1)

Evidence: *abnorme-stabilization-time_evi*
Class: LPCVD

Uncertenty: 0.1

Mapping Faults:

(positive (*T-C-out-ceib*) 0.6)
(positive (*temp-controller*) 0.4)
(negative (*T-C-out-ceib*) 0.6)
(negative(*temp-controller*) 0.4)

The InlineEvidence - FaultMappings

Evidence: *inUne-thick-drift_evi*
Class: LPCVD

Uncertenty: 0.05

Mapping Faults:

(positive (*T-C-out-ceib*) 0.7)
(positive (*pres-controller* *MFC* *excess-depo-gen*) 0.3)
(negative (*T-C-out-calib*) 0.7)
(negative (*pres-controller* *MFC* *excess-depo-gen*) 0.3)
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Chapter 7

Conclusions and Future Work

This work focuses on the development of a Computer Aided Manufacturing (CAM)

framework and its application on equipment monitoring, maintenance and diagnosis for

semiconductor manufacturing. The monitoring module is now in common use in Berke

ley Microlab. The mentenance module is now under beta test in the Berkeley Microlab,

while a prototype of the diagnostic system has been demonstrated for LPCVD of

undoped polysilicon. A summary of the major results and future directions follows.

7.1. Major Results

Real-time monitoring of equipment operation is vite to the success of today's sem

iconductor manufacturing. It provides a tool for lab personnel to detect problems that

cannot be detected when only inline measurement data are taken. We have built a gen

eric monitoring tool that provides many engineering utilities for interactive real-time

monitoring. A method for data abstraction is developed to dee with the growing

amounts of data from equipment monitoring. This method extracts the essential statisti

cal information from real-time monitoring data and saves it in the database for easy

correlation and trend aneysis.

A computerized equipment maintenance record keeping system has been developed

that combines a form-based user interface with a relatione database for recording preven

tive maintenance and field repair events. The semantics of preventive maintenance (PM)

and repair events are formalized to create unambiguous and clear maintenance reports.
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Organizing equipment PM and failure information symbolically in a database offers

several advantages. Accumulated information is automatically indexed to aid diagnosis

of failures as they occur by quickly producing a history of similar failures. Equipment

failure information is available to other utility programs for display and statistice

analysis, for summaries such as preventive maintenance interves, mean time between

failures, performance trends, etc. Charts to summarize equipment downtime and failure

frequencies are easily produced.

The system is now in use at the Berkeley Microfabrication Facility. Lab techni

cians have entered knowledge of over a hundred different pieces of equipment into the

database. This application has resulted in significant improvement in the way informa

tion is used for the management of preventive mentenance and equipment repairs.

We have also developed a diagnostic system that employs the Dempster-Shafer

(D-S) evidential reasoning technique to conduct malfunction diagnosis on semiconductor

manufacturing equipment This is accomplished by combining evidence originating from

equipment maintenance records, from ree-time equipment data, and from measurements

on the finished product Using this information, the causes of equipment malfunctions are

inferred through the resolution of qualitative and quantitative constraints.The qualitative

constraints describe the "norme" operation of the equipment The quantitative con

straints are numerical models that apply to the manufacturing step in question. These

models are specifically created and characterized through experimentation and statistice

aneysis. The violation of these constraints is linked to the evaluation of continuous

4'belief functions' • for the calculation of the "belief' associated with the various types

of failure. The belief functions encapsulate the experience of many equipment mainte

nance specialists. Once created, the belief functions can be fine-tuned automatically,

drawing from historice maintenance records. These records are stored in symbolic form

in order to facilitate this task.
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A prototype of this diagnostic system was implemented in an object-oriented pro

gramming environment. This implementation enables knowledge and functionalities to

be shared by different pieces of manufacturing equipment The D-S diagnostic method

was first applied to a reactor used for Low Pressure Chemical Vapor Deposition

(LPCVD) of undoped polysilicon films. Experimental results indicate that this diagnostic

system is sensitive, stable, and accurate.

12. Future Work

7.2.1. A Unified Equipment Maintenance and Repair System

The equipment maintenance record keeping system lacks the capability to guide the

user through step-by-step diagnosis. While the off-line equipment mentenance ed

guides the user through step-by-step diagnosis, it does not store the failure history in an

organized database as the equipment mentenance record keeping system does. It would

be interesting to pursue an approach that combines the strength of the equipment mainte

nance ed and the equipment maintenance record keeping system. Such a system would

help the user perform step-by-step diagnosis as well as record the information in the data

base by using a case-based diagnostic reasoning method [1].

7.2.2. Improving the Diagnostic System

The evidence and fault instances are defined in the knowledge base of the diagnos

tic system. Although a bigger set offault and evidence instances are defined in the data

base of the maintenance record keeping system, any changes of the instances in either

system will cause knowledge inconsistency problems. A better solution is to unify and

store these instance definitions in the maintenance database and provide the diagnostic

system with a direct link to the database. This way, the knowledge base will contain a
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dynamic and accurate representation of the manufacturing process.

Of the three diagnostic stages, the inline diagnostic stage could produce more accu

rate fault belief by solving the empirice equipment models in reverse [2].

The interactive interface for the current diagnostic system can be further improved

by linking the fault belief display to visue earm functions.

Finally, while the diagnostic system works sufficiently for the LPCVD application,

rapid process steps such as rapid thenne annealing or plasma etching might pose a prob

lem. The speed of the diagnostic system is not sufficient for conducting diagnosis of

rapid process steps. The efficiency of the diagnostic system can be improved by imple

menting it in C++ [3].
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