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Abstract

Electronic devices are often modelled either by piecewise-linear functions or by

empirically-derived combinations of nonlinear elementary functions. We present

an alternative modelling technique which works directly from data and provides

a straightforward and relatively automatic method of interpolating smoothly from

measurements. Since the results arenon-explicit (that is, the models are algorithmic

rather than analytic), our approach is likely to be most appropriate in situations

where it is difficult to derive an explicit functional form analogous to the Ebers-Moll

equation for bipolar transistors. A good example is in the modelling of submicron

devices in VLSI circuits, where the relevant device physics are currently poorly un

derstood.
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1. Introduction.

Often in engineering it is necessary to treat one physical variable as a function

of several others [1]. For example, a bipolar junction transistor is often modelled

by treating the emitter current It and the collector current Ic as functions of the

quantities base-collector voltage V&c and base-emitter voltage V&e. The well-known

Ebers-Moll model [2] gives an explicit functional form for Ie and Ic which are mea

sured for different values of the applied voltages V&c and Vje [3]. But in many device

modelling problems it is not possible to determine such a function, either because the

inherent nonlinearities can not be approximated accurately by elementary functions,

or because the internal device physics is not well understood, as in many submicron

devices.

If no suitable function is known then it is necessary to determine one by exper

iment, and the resulting model is called a dc black box model [3]. One way to do

this is to observe the values of the dependent variable at certain fixed values of the

independent variables, then use the observations in a model that estimates the de

pendent variable for all situations. Radial Basis Interpolation (RBI) is one method

for doing this. There are others. One is piecewise-linear fitting [4, 5], which we shall

refer to several times in this paper. Another involves making a local linear fit and

then globally smoothing to give an approximate fit that is smooth and that is hoped

to be good in spite of the disturbance caused by the separate smoothing process [6].

RBI is attractive for nonlinear device modelling via the black box approach

for a number of reasons. Firstly, we shall demonstrate that it can be seen as a

very natural generalization of the canonical piecewise-linear modelling process [5].

Secondly, it proves to be veryflexible and powerful for a wide rangeof different kinds

of relationships: unlike smoothed linear fit, for example, it is not restricted in the

types of behaviour it can model, and it can give an exact fit at all points in some
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desired set. Thirdly, it can be used to improve the fit of an existing model. Finally,

it can be used in an automatic adaptive process which takes experimental data and

makes a black-box model that will fit the data well and be cheap to calculate.

2. Radial Basis Interpolation.

Consider the determination of a dependent variable, y, from an independent variable,

x € IRn, by an unknown function y, that is y = g(x). We are going to treat

g as scalar-valued since if the quantity in the problem is vector-valued, then we

have g(x) = (gi(x)i...,gn(x)) where y,- are scalars, and we can consider each gi

individually without any loss of generality.

There are infinitely many ways to produce a function / that fits a finite amount

of data, but for many purposes it is reasonable to restrict the class of models by

making assumptions about smoothness. Even then, one has to choose some class

of functions. It is well-known that global polynomial fits cause difficulties even

with scalar problems, and one of the advantages of RBI is that it allows fits which

are Ck smooth for any desired fc, but which do not share the wildly oscillating

nature of global polynomial approximations. Indeed, for some purposes, radial basis

functions can be used for extrapolation as well as interpolation, although, like other

interpolative methods, RBI is unlikely to be appropriate for extrapolation to large

distances.

2.1 Standard radial basis interpolation

Suppose that, by experiment say, values yi,...,ym of y have been found at

Xi, •••» £m« Then we have y^ = y(x,) for i = 1,..., m. The radial basis approximation

to g is the function / defined by

m

/(*) =£A^(I*-*<I) (i)
t=l
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where the radial basis function <j> is almost any scalar function of one variable we

care to choose (for example, the identity: </>(r) = r), and the Aj's are computed so

that all the known values fit exactly; that is, y* = f(xi) for i = 1,..., m.

Notice that in the case where <j> is the identity function, equation (1) is

m

/to=I>i* - *<i (2)
«=i

which when x is scalar is a slightly specialised version of the canonical piecewise-

linear representation [7]. To come even closer to that model, we define the affine
9

plus radial basis interpolation (ARBI) as

m

f{x) =*.x +P+Y,*i<l>(\*-Xi\) (3)
1=1

where a € Rn and ft € R are to be found along with A € Rm. In the case where

n = 1 and <j> is the identity, (3) is exactly the canonical piecewise-linear form.

For the moment we shall concentrate on RBI, which is equivalent to choosing

a = 0 and ft = 0 in ARBI. Later we shall discuss the determination of a and /? in

the more general model (3).

We require that the interpolation be exact at the known data points. Thus

TO

yi = ^2^j<l>(\xi-Xj\) fori =l,...,m (4)

Writing the matrix $ with elements

$ij = <t>(\Xi-Xj\)

we can rewrite (4) as m linear equations in m unknowns:

*A = y (5)

where y and A are the vectors with elements y,- and Aj, i = 1,... ,m. Everything is

known except Als..., Am. Solving (5) therefore determines / completely.
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Notice that the radial basis approximation is linear in g. If

g(x) = pp(x) + aq(x) + r

and we write p and q for the vectors with components p(xj) and q(xi), and 1 for the

vector with all components equal to 1, then

A(y) = p\(p) + <rA(«) + rA(l),

where

A(p) = *"lp

and so on.

With some choices of <f>, RBI can be seen as an extension of natural splines

to multivariable interpolation [8, 9, 10]. The choices </>(r) = rk where k is an odd

positive integer [8] and </>(r) = rklog(r) where A; is an even positive integer [9, 10]

are particularly natural with the latter corresponding to thin-plate spline fits when

x € R . Not all choices of <j> are appropriate, however: <j>{r) = r2 is a bad one, at

least when the norm \x —x,| in (1) is the Euclidean norm, since then it just makes

a global quadratic fit.

We are going to use the spline-like interpolations. The effect of varying the

exponent is to alter the "stiffness" of the interpolation. (We are using a metaphor

here, since the physical idea of stiffness corresponds more closely to the size of a

multiplier on the third derivative.) In general, the higher, the exponent of r, the

stiffer the fitted surface will be, in the sense that more derivatives are forced to vary

slowly at the data points. The log(r) term canbe regarded as giving a small increase

in exponent. The case <j>{r) = r in this sense is infinitely unstiff, and so not smooth

at the data points. Thus r2 log(r) is the least stiff function that is likely to work well

and it is the one we shall usually employ.
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Computationally the significant part of the problem is that of solving the linear

equations (5) for A. The size of the matrix $ is the number m of data points and

so the computational effort, which is of order m3, may be large. Fortunately, this

calculation is only performed once for a particular set of data points and </>. The

work involved to interpolate for any given point is then considerably less, of order

m.

As well as the difficulty of long computation time, there is a risk that as m

grows, $ will become ill-conditioned. Dyn and Levin [9] show that well-conditioned

$ results from choices of <j> including

r2(*+i)log(r) fc>0)

|r|2fc+1 k > 1,

(rS+d2)*1/2 0<<*<1.

In the latter case, d is often chosen to be of the order of the separation of the data

points. Notice that any desired degree of smoothness can be obtained. For example,

rk log(r) is a Ck~l function of r > 0.

The choice r2 log(r) can give singular systems of equations in some (fairly con

trived) situations, even in one dimension. This is because r2 log(r) = 0 at r = 1 as

well as at r = 0. The problem is unlikely to arise in practice, and in this respect at

least, r3 is probably completely safe.

For our purposes, we shall assume that the number of data points required is

sufficiently small (up to a few hundred with current workstations) that numerical

and computational difficulties do not dominate the problem. In Section 2.3 we shall

discuss an automatic method of keeping under control the number of data points

required by the interpolation, and therefore the computational effort, even when

there are many measurements to fit.



2.2 Affine plus radial basis interpolation.

We shall see later that RBI on itsown can perform relatively badly. Comparison

with the one-dimensional canonical piecewise linear form suggests, as we remarked

earlier, that linear and constant terms be added to the RBI function. Although it

is important to realise that a set of data points does not on its own define a unique

interpolating function, it is natural inthe absence ofany other information to require

that constant and linear functions, at least, should be interpolated exactly, and that

linear trends be identified. In making such a requirement we are imposing our own

prejudices on the data, but since these prejudices are usually well-informed, this is

a proper thing to do.

The naturalness ofusing ARBI rather than RBI is easily seen in the one dimen

sional case, where ARBI is a general piecewise linear fit while RBI is a piecewise

linear fit which is constrained outside the fitting region. To prove this, observe that

whenever x > maxi<,<m a;,-,

/(*) =5>|»-*,|
i=i

m

=^2^i(x-Xi)
t=l

m

= x2J At- —constant.
«*=i

Similarly, whenever x < mini<j<m x^,

TO

f(x) = constant —xV^ A,-.
t=i

That is, there is a symmetry in the RBI fit outside the range of the given points,

so RBI certainly cannot fit a general piecewise-linear function. (And it will clearly

be very bad at extrapolation in most cases.) It is easy to show that ARBI does not

suffer from this deficiency. The point is that unadorned RBI tends to be best at
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dealing with approximations of functions that are, in a suitable sense, symmetrical

around the origin.

The parameters of an ARBI are not specified uniquely by requiring exact fit at

the data points, since the addition of the n +1 parameters ai,..., an and /? means

that there are more unknowns than equations.

One way to remove the indeterminacy is to find the best affine fit first and then

fit a RBI model; this amounts to subtracting the best linear model before doing

the radial basis interpolation. (The same can, of course, be done with any desired

model; that is, any set of prejudices can be imposed at the start.) This approach is

conceptually simple and may often be preferred, but it is possible to do better. We

can require that the interpolation method be designed so that all affine functions

will be fitted exactly, a reasonable requirement as we have already discussed.

Lemma ARBI is exact for allfunctions of the formp.x + q whenever a, /? and A

are the unique solution to the equations

TO

y,= a.a;i +^ +^$tiA>, i=l,...,m, (6)

TO

£Ai=0' (7)
i=l

m

^Atzt =0. (8)
t=i

Proof: Suppose yt- = p.X{ + q for all i. Then a = p, £ = g, A= 0 satisfies (6-8), and

if (6-8) have a unique solution then solving them gives a, ft and A these values.

Remarks: Equations (6-8) specify m+1+n linear equations, which can be solved for

the n+l+m unknowns in a, /? and A. Therank condition needed for uniqueness holds

generically: that is, if it were false then almost all arbitrarily small perturbations of

the basis points xi and the data yi would make it true.
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2.3 Adaptive RBI and ARBI.

Often it will be possible to use all of the measured data in a RBI or ARBI

model, but in many cases a more economical model will be useful, or even essential

if using all of the data would give a matrix too large to invert in reasonable time.

An automatic method of selecting a subset of the data is desirable. The idea is to

choose some points from the original data in such a way that good approximations

are obtained for the other points. We describe a simple approach here, for the RBI

case. The ARBI case differs only in minor points of notation.

Begin with an RBI based on a small number of points, having indices in some

set 7£. (In the examples given later, we started with two diagonally opposite corner

points, but in practiceone might choose a larger initial set, chosen either randomly

or from knowledge of important features of the system being modelled.) Let /&, be

the radial basis interpolation function defined by the points in 11.

Examine the rest of the points and select the point which at this stage is being

interpolated with the least accuracy. That is, find the index i0 g 71 such that

\Mxio) —y«01 > |/*(*0 - Vi\

for all i g H. Bring the badly interpolated point xl0 into 11

Using the new fn so defined, re-examine the remaining points, and again select

the worst interpolated to bring into 7Z. Continue this process until a predefined

number of points have been used, or until no point is fitted with worse than some

given accuracy: that is, the worst interpolated point satisfies \fn(xi0) - y,0| < efor

some given e.

The addition of one point at a time need not involve re-inverting $ at each

stage since standard updating methods [11] can be used to make the calculation

more efficient.



2.4 Best fit RBI

We now briefly discuss an approach due to Broomhead (private communication),

who suggests using singular value decomposition to provide a best least squares fit

to the data using some subset of the data points. It is the method of choice when

the data is noisy. Although it could in principle be used for data reduction, it is

not clear how to define an adaptive algorithm analogous to the one we have just

described.

Suppose we have somehow selected a subset 71 of the data indices. We describe

the building of a best-fit RBI model; an ARBI model could perhaps be built by

subtracting off the best affine fit first, or simply by including the affine parameters

a and 0 in the fitting calculation.

Using the independent variables Xj, i € 71 as basis points, form the matrix $^

with elements

$*»; = *(l** - *il). «= 1,... ,m, j G71.

Now solve the equations

SfcA* = y (9)

for A^t-, i £ 7Z. Assuming 7Z is a strict subset of1,...,m, there are more unknowns

than equations. By calculating the pseudo-inverse of $^ in the standard way by

singular value decomposition [12], or in any other way, we obtain a least-squares

solution A?£ of (9).

Define the approximate interpolating function

f7i(x) = Yf^i<t>(\x-xi\). (10)
ten

Equation (10) defines a function that fits the data in a best least squares sense for

the given subset 71.
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Selection of the subset 71 remains the main problem with this method. It may

be possible to select suitable principal components by singular value decomposition

of all of the data, but this assumes the data set is small enough to decompose, in

which case it is certainly small enough for $ to be inverted. Our recommendation

is that this method be borne in mind for cases where the data is noisy; since this

is not usually the case with circuit element data, we do not consider this technique

further in the present paper.

3. Examples of RBI.

Tobe accepted by the electronic device modelling community, RBI will have to

do well in some cases that can already be modelled satisfactorily. Here and later

in this paper, we have taken some widely-used explicit models and used them as

software circuit elements, to generate pseudo-experimental data for use by RBI.

Then we have compared surface plots of the RBI results with surface plots of the

original functions. Throughout we have used <j>(r) = r2log r unless stated otherwise.

Ebers-Moll model: complete fit

The Ebers-Moll equation for the emitter current Je of a BJT is

je =p, _ i)/5 _ {evb,/vt _ 1)Ia/Qf

Fig 1 shows this function when Ia = 10~14, Vt = 0.026 and ocf = 0.99. Here, the

vertical coordinate denotes Je, the horizontal coordinate in front denotes VbCi and

the horizontal coordinate at the back denotes Vbt> Reconstruction of this surface

was attempted using just the knowledge of a few points on it.

A 25 point grid was chosen to give more points in the rapidly varying regions:

in fact, the grid was I x I where / = {0.4,0.56,0.72,0.76,0.8}. The result of RBI

using this set is shown in Fig 2. This grid was chosen because it gave the RBI
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a lot of information only where it was likely to be needed: that is, only where the

function wasfar from being locallyflat. Further accuracy could of course be obtained

by using more data points. On the region shown in the graph, the greatest error is

0.043. With only 25 data points the RBI model is remarkablygood, and there are no

problems with either computational time or numerical errors. This would appear to

be a practically feasible way of modelling a circuit element: take more observations

in areas where the output is varying rapidly and fewer where it is varying slowly.

A piecewise-linear example

It might seem that cases where piecewise-linear functions are traditionally used

will not be easy to manage using RBI, because RBI uses smooth functions. That

this need not be so is shown in Fig 3a which shows a radial basis model of the

function f{xux2) = |xi| on the set [-1,1] x [-1,1] using only 30 points. The

points were chosen using the automatic method of Section 2.3, which selected the

points shown in Fig 3b. The original 400 data points were from a grid I x I where

X= {-1, -7/9, -5/9,..., -1/9,1/9,..., 5/9,7/9,1}. Except very close to the fold

the model is very good; close to the fold, there was never any data given to the model,

and the real system is probably not modelled well by the piecewise-linear function in

any case. It is remarkable how well RBI has performed. This is not to say that RBI is

always more appropriate than piecewise-linear functions; the latter have advantages

when one is interested in an explicit qualitative analysis ofthe circuit dynamics [13]

and in many other problems, though as it happens, RBI is also extremely powerful

in dynamical systems problems ([14]; see also Mees and Chua, in preparation).

Ebers-Moll model: automatic subset selection

Sometimes the shape of the function is totally unknown before interpolation,

but many data points are available or can be .measured easily. An interpolation

fitting all of these points is desirable, but is generally computationally expensive.
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To simulate this situation, values of the emitter current Ia were calculated from

the Ebers-Moll equation on a grid of 400 data points. (Actually, this number of

data points could be fitted completely on a workstation but our purpose here is

to illustrate data compression.) The algorithm of Section 2.3 was applied to select

subsets of the points.

Figs 4(a)-(c) show interpolations of the 400 point Ebers-Moll data based on

subsets of 9,25 and 49 points respectively. The 49 point automatic interpolation has

a maximum absolute error of 0.02 and a mean absolute error' of 0.005.

MOSFET model

The Shichman-Hodges model [15] for a MOSFET is,

r _ / KV9* - Vt - 0.5V*)Vi. if Vga -Vt> Vda,
Id"\ 0.5k(Vga - Vt)2(l +\(Vda - Vga +Vt)) otherwise,

which is plotted as Fig 5 for k = 5 x 10~5,Vi = 1.0 and A = 0.02. Figs 6(a)-(c)

show RBI approximations for 9, 25 and 49 points using the automatic version of the

algorithm. The greatest error in the 49 point case is 2 X10~7, with a mean absolute

error of 6 x 10"8.

RBI versus ARBI

RBI can fit badly if the surface to be fitted lies far from the origin. Suppose

O we were interplating, say, (Id + 5), where Id is from the Shichman-Hodges model.

Because RBI is linear in the function being fitted, the result for a fixed set of ba

sis points will just be the surface of Fig 5 added to the RBI fit for the constant

function with value 5. Fig 7 shows an r2 log r RBI approximation to this constant

function, using 11 randomly selected points on the square [—1,1] x [—1,1]. (This

was deliberately selected to show exceptionally bad performance.)

The explanation for the poor performance of radial basis interpolation without

affine functions is the same here as we discussed in Section 2.3 in the one-dimensional
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case: the RBI model is incomplete since it enforces symmetry about the origin, and

is also biased to functions which are zero there. In the present case, for large \x\ in

the RBI model

/(*)«(f>W|)-
Since we have been using basis functions </> which areincreasing, f(x) will tendeither

to +00 or to —00 depending on the sign of J^ A,-.

Think of the RBI surface as a flexible sheet fixed at a number of points. If the

surface is fixed as |r| —• 00, then moving all of the points up will stretch it in a way

that may have little to dowith the function that is being approximated. Thisis very

clear in Fig 7. It happens that there, £Af < 0, so the surface is fixed at -00 as

canbe seen from the picture. Thecure would be to make £ A* = 0 which is exactly

condition (7) in the definition of the ARBI model. This makes the surface flat at

infinity. In the same way, condition (8) allow the surface to tilt if necessary.

We conclude that if increasing basis functions are being used, ARBI should

always be used in preference to RBI; at worst, it can do no harm beyond slightly

increasing the computational effort. (It could be argued that one should instead

use decreasing radial basis functions, but these have theirown problems, and in our

experience require many more points to fit the sort of functions we are considering

in this paper.)

Volterra kernel

Fig 8 shows the graph for a 2nd-Order Volterra kernel given by

|#2(*1,*2)| = |*i +x2\/yj(l0« +x\ )(106 +x\),

and interpolations using the above algorithm axe shown in Figs 9(a)-(c) for 9, 25 and

49 points. The greatest error in the 49 point case is 5 x 10~5, with a mean absolute

error of 10"5.
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4. Discussion

The examples make it clear that ARBI isa useful method for modelling nonlinear

functions for which onlyexperimental data is available, or for which data is available

and there is a model which provides a partial fit.

The first thing to bear in mind is that any modelling method which takes all of

its knowledge of the function from the data points requires there to be enough data

points to represent all features of interest.

If there is already somefavoured model, it can be subtracted offor factored out

before the process begins, as was done in the discussion of best affine fit. In that

case,far fewer data points are likely to be required and the computational effort will

be enormously diminished.

If there are more than 2 or 3 parameters, a checkshould first be made to discover

whether some of them have simple roles, for example as scale factors. This is not

because ARBIis inherently incapable of dealing with suchcases, but is to reduce the

need for a very large number of measurements and the consequent need for a large

radial basis model. For example, an additive constant will be dealt with correctly

and completely by the affine fit stage but if the additivity is not recognised by the

experimenter, many unnecessary measurements may be made. Similarly, an output

scalefactor will also be dealt with by the affine fit, but once more at the expense of

a requirement for many measurements: had the experimenter used logarithmic plots

to discover that the parameter was a scalefactor, there would have been a reduction

in the dimension of the space of measurements. In other words, good interpolation

methods do not do away with the need for good science.

Whether or not other simplifications have beenachieved, it mayoften be possible

to choose to make measurements more densely in regions of interest and less densely

elsewhere; in such cases, a direct fit to all of the data will probably suffice.
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If it is necessary to use a method that is as automatic as possible, the adaptive

procedure of Section 2.3 is recommended, after possible subtraction of a preferred

model and identification and removal of variables with simple roles such as scaling.

It assumes that enough measurements can be made to give information about all

important features. In the case of noisy data the method of Section 2.4 is likely to

be better, but has the disadvantage that thereis no very clear way to choose a subset

of points efficiently.

Finally, to put things in perspective, it may be useful to compare the pros and

cons of ARBI with the canonical piecewise-linear representation and its recent gen

eralization [4]. The main advantage of the latter seems to be in situations where

it is advantageous to exploit the linearity property in qualitative analysis, and in

piecewise-linear circuit equilibrium analysis where many useful techniques and algo

rithms are available, including one for finding allequilibrium solutions via combina

torial techniques [5, 16, 17]. No other presently available representation can make

such guarantees.

The ARBI method is, however, more general in certain respects, since a piece-

wise linear fit to a surface will involve many components if the surface has a complex

shape, and combinatorial methods will eventually fail because of their exponential

dependence on the number of segments. As we have pointed out, the main uses

of ARBI are likely to be in cases where the device physics is poorly understood,

where ablack box model is satisfactory, and where either the extensive investigation

needed for a full piecewise-linear analysis is too costly, or the system does not yield

to piecewise-linear representation.
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Figure Captions

Fig 1 Surface defined by the Ebers-Moll model of a BJT.

Fig 2 Radial basis approximation to the BJTsurface ofFig 1using thebasis points
defined in the text, chosen so that more data is available near the back and

right edges where the function is varying more rapidly.
Fig 3 Radial basis approximation to a piecewise-linear function. The points were

chosen from a 20 x 20 grid by the adaptive algorithm of Section 2.3. (a)
The approximation to the surface, (b) The subset of points selected by the
algorithm from the uniform grid. Note that the algorithm had noinformation
very close to the fold and has made a smooth approximation there; the
important feature is that the flat sections have been approximated well.

Fig 4 Radial basis approximation to the BJT surface of Fig 1 using the adaptive
model, choosing data from a 20 x 20 grid, (a) 9 point subset; (b) 25 point
subset; (c) 49 point subset.

Fig 5 Surface defined by Shichman-Hodges model of a MOSFET.
Fig 6 Radial basis approximations to the MOSFET surface of Fig 5 using the

adaptive algorithm and a 20 x 20 grid, (a) 9 point subset; (b) 25 point
subset; (c) 49 point subset.

Fig 7 Poor approximation by unmodified radial basis algorithm without affine part.
Shown isanRBI fit to the constant function with value 5, using 11 randomly
selected basis points. Theresulting surface may beregarded asa flexible sheet
fixed at -co at its edges, and stretched over the data points.

Fig 8 Surface defined by a Volterra kernel.

Fig 9 Adaptive radial basis fits to the Volterra surface of Fig 8. (a) 9 point subset;
(b) 25 point subset; (c) 49 point subset.
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