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Abstract

In receat years there has been a great increase in the use of computer modelling in many
fields of science and engineering. Tke success of such modelling is evident in computer
aided design and manufacturing where much of the testing process of the final product
can be done without resort to actual construction of intermediate attempts. Howzver,
there is another area of computer modelling whose results have been widely studied
without recourse to considering the caveats that computer modelling itself may entail.
This area is the computer modelling of nonlinear vector fields.

To model a nonlinear vector field by the use of a computer introduces a number
of errors intrinsic to computer modelling. This paper considers one such source of
computer generated error and its interpretation from the viewpoint of the user who
wishes to understand the original vector field.

The approach taken to investigate the pragmatic results of computer modelling in
consideration of the properties of the underlying nonlinear vector field will be essentially
topological. Generic properties, as will properties of denseness and openess to be
discussed will be interpreted from their effects on computer modelling.

As a byproduct of this work the class of continuous piecewise linear vector fields
has shown to be very amenable to theorectical analysis. This suggests that the use
of piecewise linear vector fields to be the preferred modelling technique from both a
practical and theorectical viewpoint. The theorectical results justifying the practical

observations.

t This work is supported in part by the Office of Naval Research under Grant N00014-89-J-1402.
1t The authors are with the Department of Electrical Engineering and Computer Sciences, Uni-

versity of California, Berkeley, CA 94720, USA.



§0. Introduction.

The use of computers in the simulation of nonlinear vector fields has grown enormously in recent years
with the advent of ever increasingly powerful computational speed in an era of decreasing hardware
cost. The computer generated phase portraits of nonlinear vector fields are now commonplace
and are indicative of the extent and impact which computers have had on the study of nonlinear
vector fields. Despite the pervasiveness with which computers are used in the study of dynamical
systems, there still remain questions as to the interpretation of their results, a question that becomes
exacerbated when the underlying system is not merely a dynamical system but also possesses chaotic
behaviour.

As an example of the problems of computer simulation, consider a parameterised family of
nonlinear vector fields for which the vector field corresponding to a fixed set of parameter values
has a hyperbolic periodic orbit whose stable and unstable manifold meet nontransverally. This
could happen in the case of a researcher interested in particular values of the parameters with a
certain significance. Furthermore, the parameter values at which the researcher is interested in
are irrational (e.g. 7) and as the parameterised vector field passes through this set of parameter
values the stable and unstable manifolds of the corresponding periodic orbit change from transversal
and nonintersecting (nonchaotic) to transversal and intersecting (chaotic). Since computer storage
of numbers is implemented by finite precision approximation, the researcher’s parameters would
therefore not be stored in their true irrational form but as rational approximations. As a result,
the vector field that he or she would be observing would not be the desired vector field but that of
a vector field whose parameters are rational. It is then not inconceivable that the researcher may
one day observe chaotic behaviour on a microcomputer with 16 bit precision to see such behaviour
disappear the next day on a 128 bit precision supercomputer. This is clearly an unacceptable state
of affairs.

In this paper the predominant type of vector fields to be studied are continuous piecewise linear
vector fields. With respect to these types of vector fields it is possible to give a partial answer of the
implications of computer simulation of such nonlinear vector fields. The problem to be addressed is
essentially the same as that brought up in the previous paragraph; namely, how does one interpret
the results of computer simulation of a piecewise linear vector field whose defining constants may
not be accurately stored inside a computer’s memory?

A partial answer to this };uwtion requires the mathematical concepts of openness and density,
leading naturally to the ideas of structural stability and genericity. Beginning with the work of
Poincare, Liapunov and Birkhoff, the understanding of these two basic concepts in dynamical systems
bas seen considerable development as fundamental research questions. It was in 1937 that Andronov
and Pontryagin introduced the modern definition of structural stability. Two decades later, Peixoto

was able to prove density of structurally stable vector fields on 2-dimensional manifolds. It was
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at this time that Smale proved a number of fundamental results and set down the main objective
of research into dynamical systems as the search for generic and stable properties. Hartman and
Grobman, simultaneously and independently, proved that local stability is a generic property. This
soon lead to the proof by Kupka and Smale that stable periodic orbits are also a generic property.

It is in this tradition of research into genericity and stability that the current work has been
directed. Although it may be tempting to apply previous results from the traditional theory on
compact manifolds and smooth vector fields, this is not the case of piecewise linear vector fields.
By the nature of their usage, the natural topology to induce on the set of piecewise linear vector
fields differs greatly from the traditional C* topologies traditionally used in differentiable dynamical
systems. Because of this departure, a separate analysis is needed to determine the properties of
piecewise linear vector fields.

However, by using a topological approach to the problem, the results of the paper have to be
reinterpreted from the viewpoint in which they were originally asked. The main result is contin-
gent on two important conjectures (conjecture 3.3 and conjecture 3.9) which serve as perturbation

claims on the families of piecewise linear vector fields. The main theorem (theorem 3.13) states that

given any continuous piecewise linear vector field in R? that contains saddle connections (including
homoclinic orbits) there exist arbitrarily small perturbations that do no contain any saddle connec-
tions. Thus, continuous piecewise linear vector fields in R2 without saddle connections are dense.
Furthermore, there are neighbourhoods about the perturbed vector field that contain vector fields
that do not contain any saddle connections at all. Although not strictly an openness property, this
result has the same flavour with important implications for computer simulation. The implication
of the theorem is that the continuous piecewise linear vector fields without saddle connections are a
dense set with nonempty interior. From the standpoint of computer simulation this could be weakly
interpreted as saying that in simulating a vector field with a saddle connection there is a possibility
of persistently simulating a vector field with no saddle connections at all. A piecewise linear vector
field full of saddle connections could be misleadingly simulated as having no saddle connections and
attempts to rectify the situation by increasing resolution may not alleviate the problem. Another
interpretation is that if a simulation should show the vector field as having a saddle connection
then the chances are that the saddle connection is illusory. The density of vector fields without
saddle connections throws doubt on the chances of actually simulating a vector field with a saddle
connection. .

The two previous interpretations of the results of this paper are further complicated by errors
that arise from numerical intergration techniques which in themselves are simulating yet another
different type of vector field altogether. In conclusion it is remarked that great care needs to be
exercised in the interpretation of computer simulation of nonlinear vector fields, with each step of

the simulation process introducing its own set of errors the final output has to be interpreted within
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its proper context.

§1. Definitions.

In this section the definition of a special class of continuous piecewise linear vector fields in ®2 will
be presented. This definition is sometimes called a lattice piecewise linear vector field by other
researchers.

Definition 1.1. P(n,m) is the set of order (n,m),0 < n,m, continuous piecewise linear vector fields

in R? given by

o b 4 P [ W 5 ol SRS o b [

where 0 < o, + 0%, 7 < ... < Tny Ta+1 < -+« < Ya+m. Henceforth, this special class of vector fields
will be called vector fields in P(n,m). Since only this class of vector fields are considered in this

paper, we will sometimes refer to them simply as vector fields to avoid clutter.

The lines £ = 71,...,7n 80d ¥ = Yn419+++» Ta+m can be considered as boundary lines which lie in
R? vertically and horizontally. Together, the vertical and horizontal lines effect a partition of R2
into which the vector field £ is linear in each element of the partition. This observation is elaborated

in the next definition of the partition associated with a given vector field £.

ExampLE 1.2. (Figure 1.) As an example of a continuous piecewise linear vector field consider the

vector field given by the equation

1 A 4 P P o

The lines z = —-1,0,1 and y = —1,2 are the horizontal and vertical boundary lines respectively of
the vector field. These lines together divide ®2 into 12 regions in which the vector field is linear in

each region.
Definition 1.3. Given a vector field £ €P(n,m) there is an associated partition of R2, Part(£) where
Part(§) = {Aij=LixW;:0<i<n,0< j<m}
with
Lo = (oo, m}s
Li = [7i, %i4a1)s 1<i<n
L = [1ny o),
Wo = (=00, Ya+1);
Wi = [Yatjs Yarssal; 1<j<m
Wm = [Ya4m, 00).
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Some basic topological concepts will be revised. The main topological ideas needed are openness
and density, but in order to give a rigorous meaning to these ideas and to understand their intent
some auxiliary definitions will be required.

Definition 1.4. Let X be a non-empty set. A metric d: X x X — R* is a function that satisfies
the following axioms:

(1) : Vz,y € X, 0 < d(z,y) with equality holding if and only ifz = y, .

(i) : Vz,y € X, d(z,y) = d(y, z), and

(iid) : Vz,y, 2 € X, d(z,y) < d(z, z) + d(z,y).

EXaMPLE 1.5. In R a metric is given by d(z,y) = |z — y|. In the natural numbers N, i.e. the set of
all integers, a metric can be defined by d(n,m) = 0 if n = m, and d(n,m) = 00 if n # m.

A metric enables the concept of distance to be imposed on an arbitratry set X. The first axiom
requires distance to be non-negative. Furthermore, two points are zero distance apart if and only
if they are the same point. The second axiom states the symmetry property of distance, that the
distance between two points is independent of which point the other is measured from. Lastly, the

third axiom is the triangle inequality.

Definition 1.6. Let X be a non-empty set with metric d(z, y). The metric d(z, y) defines a collection
of open balls as subsets of the set X. Given z € X and 0 < ¢ the open ball B(z, €) is the set

B(z,e) = {y € X : d(z,y) < €}.

ExampLE 1.7. Using the above metrics, an open ball in R is of the form B(z,€) = (z - €,z +¢)
while an open ball in N is of the form B(n, ¢) = {n}.

Open balls can be thought of as the collection of points no further than a certain distance from the
centre of the ball. Open balls are necessary to define an open set.

Definition 1.8. Let X be a non-empty set with metric d(z,y). An open set S C X is a set for
which every element can be contained inside an open ball lying wholly inside the set S. In other
words, for every z € S there exist 0 < e such that B(z,¢) C S.

EXAMPLE 1.9. An example of an open set in R is the set (0, 00). This can be shown as follows, let
z € (0,00) then B(z,z) = (0,2z) C (0, 00). However, the set of rationals Q is not open in R. Given
a rational point z € Q, there is no value of 0 < € for which B(z,€) = (z — €,z + €) contains only

rationals. All sets in N are open, this is because each element is an open ball containing itself.
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An open set is an extremely useful concept in topology. The set S C X may be all the elements of X
containing a certain property. If the set S is open then elements of S have open balls that lie wholly in
S. Thus, elements in close proximity to z € S also lie in S. The property that z enjoved is also shared
by elements close to z. Under small perturbations of z it is seen that the property that z has
is also shared by nearby elements. Thus, the property that defined the set S can be seen to be
invariant under small perturbations. In the examples above, the property that a number is posi-
tive is invariant under small perturbation of the number, however that a number is rational is not

a property that is maintained under small perturbation.

Having defined the open sets is tantamount to defining a topology on the cet X. A topology is
a preferred collection of subsets called the open sets which satisfy the topological axioms. For the
purposes of this paper all topologies will be induced by metrics on the underlying set.

Definition 1.10. Let X be a non-empty set with metric d(z,y). Let S € X. The closure of the set
S, written as S, is the set

S={zeX:Y0<eB(z,)nS # {}}

where {} denotes the empty set.

ExaMPLE 1.11. The closure of the set (0,00) is the set [0,00) while the closure of the set Q of

rational numbers is R.

The closure of a set gives those elements whose open balls always meets the given set. Thus, points
in the original set can come arbitrarily close to points in the closure of the set. Intuitively, the set

S consists of the elements of X that can be well approximated by elements of S.

Definition 1.12. Let X be a non-empty set with metric d(z,y). A dense set S C X is a set for
which § = X.

ExaMPLE 1.13. The set of rationals is a dense set in R because Q = R. The set (0, c0) is not a dense
set in R because [0,00) # R. Note that dense sets need not be open (the rationals) and open sets
need not be dense (the set (0,00)).

Because a dense set has closure equal to the whole set, this means that elements of the whole space
can be arbitrarily approximated by elements from the dense set. Thus, the dense set gives good
approximations to elements in X. The dense set may consist of those elements with a certain prop-
erty, in which case this property becomes a generic property since elements of the original set can
always be approximated by an element with this property. In the examples for ®, that a number is
rational is a generic property which many numbers share while that of being a positive number is

not as prevalent a property as the former.



In dealing with the topological properties of the set of P(n,m) vector fields there arises the
question of the appropiate topology (open sets induced by the different metrics) to place on the set.
The underlying manifold 2 on which the vector fields are defined is not a compact set. Because
of the non-compactness of ®? the usual C* topologies are inapplicable to the current analysis, the
C* topologies only being defined on compact sets. One way to apply a topology to P(n,m) is to
consider the vector fields not as vector fields on ®? but as vector fields on a compactification of R?
and then to apply the usual C¥ topologies to the induced vector fields on the compact extension of
R2, However this approach has several drawbacks. One of the drawbacks of this approach is that
the induced vector fields may. cot necessarily be well-defined on the compact extension of 2, this
could easily happen with the vector at the image of the point co. A second drawback is that the
local linearity of the original vector field (away from the boundary lines) will be lost in the induced
vector field. Yet another way to induce a topology on P(n,m) is to a priori choose a compact set of
R? and apply a C* topology to the restriction of vector fields to that compact set. The disadvantage
to thié approach is that it is by no means clear how ‘this compact set is supposed to be chosen. The
topology that was eventually chosen is that defined below in definition 1.14.

Definition 1.14. Let I:P(n,m)— R32+m)+6 be the isomorphism given by

I(€) = (I(&h, - - -+ 1(€) 3(a+m)+6)
= (a1, @2, b114 512, b21, b22, @11, @12, -+ oy Abrmls Anprm2s T1s -+ o0 Ynt+m)-

The isomorphism induces a metric on P(n,m) by
d(§m) = max{I(€)i = il : 1< i < 3(n +m) + 6},
Thus B(¢, €) will denote the open ball B(¢,¢) = {n G.P(n, m) : d(&,7) < €}.

The topology in definition 1.14 seems to be the most appropiate for computer work with the vector
fields to be considered. In the simulation of general vector fields (not necessarily piecewise linear) on
a computer there are several potential sources of simulation error. Finiteness of computer arithmetic
means that real numbers can be at best approximated by finite decimal representations, thus losing
information in the truncated digits of the real number. Under the application of numerical algorithms
it becomes an important question as to the accuracy of the algorithm’s predictions and the true
value of the computer model. This problem becomes increasingly crucial as the time period in
which the simulation is performed becomes lengthened. The modelling of the original vector field
by a (piecewise linear) vector field introduces questions as to whether the vector field has the same
dynamics as the original vector field. Even if the dynamics were known to be faithful to the original
vector field, the representation of the vector field in the computer introduces its own set of concerns.

Because of the representaion of real numbers in a computer’s memory, a vector field with real defining
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constants would in actuality be represented by a vector field with rational constants approximating
the original real defining constants. The possiblilty then arises that the original vector field and the
represented vector field in the computer do not have the same dynamics.

Since tl;e vector fields to be considered are stored as a list of defining constants in the com-
puter’s memory, a topology on the defining constants would most easily facilitate an analysis of the
faithfulness of the modelling of a vector field with real defining constants by its computer represen-
tation. Under the topology of definition 1.14, vector fields are considered “close” in the topology if
the respective defining constants do not deviate too greatly from each other.

For each element in the partition of R? associated with a given vector field £, the vector field
restricted to that element is a linear vector field. The linear vector field to which this restriction of

£ induces is given in the lemma following the definition.

Definition 1.15. For each A;; € Part(£) there exists a unique linear vector field &; such that
§ijlai; = €lay. Let F(&i;) = {x € R? : &j(x) = 0} be the set of equilibrium points of &;. An
equilibrium point x;; € F(£;;) is said to be transitional if x;; € dA;; and nontransitional if x;; ¢ 8A;
t. Nontransitional equilibrium points are classified into those for which x;; € A;; and x;; ¢ A;j, the
former being called real equilibrium points and the latter being called virtual equilibrium points.
The set of equilibrium point of £ is the set given by F(£) = UL o U™, F(&;;).

Lemma 1.16. §;; is given by
..=; ainYi + EL.-.H iy Yir — .;,..,.1 ain i + EZ:"_.',:'.,_iH 0-"17-"]
G [ ] [02 — Thim @ia e + Tivmipr Qi = ontd L1 cog e + i @2
+ [bl! + Z;:'m Qi — E:"'=i+1 ain b2t 2?’:{.4-1 @iy — Z?':.n-o-jn “5’1] [z] )
b+ Loy @i = Thcipr @iz baa+ 0kl e = S0ET | LY
The linear vector field &; will be written as &;;(x) = dyj + Myjx.
PROOF. Since § < ... < 1i S 2L %41 <+ o- < Ty Mn41 < oo+ < Tntj S Y < Tatjt1 < o2 < Tngm
then £|a,; is given by

N H MRl IS oA TS R L
s B me-ne ¥ [ w-n

i'=n+l '=n4j+1
Thus,

n+j n+tm y A
fl ] E,c-.l Qi Y + 2,:=.+1 Qi Yy — Z.’l=‘:.+1 Qg Yir + Zi’:n-{-j-l-l Q1 Yt ]
Aij j n+m .

! a1 = Yiray @in2%ir + Liicipr QiTe — Livi 1y Qi Ter + Lopmgjar iz Wi
. ntj n+m .
bu+ Xicy @i = Lioa e b+ 0T 0 — X010 0 mll] [z]
. n+j n4+m . :
bart+ Yhoy @iz = Lhcip @iz daa+ 10T @i =T 0I0 e | LY

t 8S denotes the boundary of a set S, i.e. S =5 - S.
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It is clear that there exists a unique linear vector field &; such that &;jla,; = €lai;- |

§2. The generic equilibrium point structure.

‘In this section the generic equilibrium point structure of vector fields in P(n,m) will be analysed. This

is to establish open and dense subsets of vector fields in P(n,m) whose equilibrium point structure
is well understood before considering other phenomema that may be associated with vector fields.
It is understood that the term equilibrium point is used in the context of definition 1.4.

The first subset of vector fields to be considered are those with finitely many equilibrium points,
all of which are nontransitional. This will be shown to be an open and dense subéet of the vector
fields in P(n,m). From the stand-point of computer simulation of vector fields it follows by denseness
that the generic vector field will have only finitely many equilibrium points. By openness of this
property, finite precision arithmetic can also accurately approximate a vector field with finitely
many equilibrium points with a vector field with the same number of equilibrium points. That
all the equilibrium points are nontransitional means that the number of “real” equilibrium points
(corresponding to points for which the vector at that point is the zero vector) is also maintained
under small perturbation of the original vector field.

Definition 2.1. Go CP(n,m) is the subset consisting of vector fields £ with (n+1)(m+1) nontran-

sitional equilibrium points.

Theorem 2.2. Go is open in P(n,m).

PRroor. (Figure 2.) Let £ € Go. As F(£) = Ulo UTLo F(&i;) the number of equilibrium points [F(¢)|
of £ is given by v )
n m
IF@)I=3_ 3 IF@s)l-
=0 j=0
The linear vector field &; has the form &;;(x) = di;j + M;x. The value of the determinant of the
matrix M;; determines the number of equilibrium points of &;;. If detM;; = 0 then &;; has either 0
or infinitely many equilibrium points. In either case then |F(¢)| #(n+1)(m+1). Thus detM;; # 0
for 0 < i < n,0 < j < m. By continuity of the determinant function, there exists 0 < €ij such that if
€ € B(¢, €ij) then the matrix corresponding to E}j (the linear vector field for which Z",-j Iz, ;= &la, ;)
being M;; also has nonzero determinant. Thus IFE;)| =1.Let ¢, = min{e;; : 0< i< n,0< j <
m}. Then for £ € B(§, €1) we have |[F(;)| =1 for 0 < i <,0 < j < m. Then |F(F)| =(n+1)(m+1).
For each 1 < i < n+ m we have 0 < o2, + o%. There exists 0 < €7 such that if € € B(¢, €i2)
then &, &z for the vector field € also satisfy 0 < b??l + '07,32. Let ¢ = min{ej3:i=1<i<n+m)}.
Then for £ € B(¢,¢;) we have 0 < &% +@% for 1< i < n+ m.
Let H;; : P(n,m) x 2 — R? be the function

Hi;(6,%) = d;;(€) + M;;(O=.
8



As DyH;j(, xij) = M;; and detM;; # 0, by the implicit function theorem for Banach spaces there
are neighbourhoods N, NZ of €, xi; and a function h; : Nj; — N7, assigning to each £ € N}, its
unique equilibrium point X;; = h;;(£).

As x;; is not a transitional equilibrium point then it is either a virtual equilibrium point or a real
equilibrium point. The proof will continue in the case that x;; is a virtual equilibrium point. The
proof for a real equilibrium point in analogous. Since X j is virtual equilibrium point then x;; ¢ A;;.
As disjoint closed sets in R2, {xij} and A;j may be separated by the existence of 0 < €ij3, €ijq such
that

B(xijy €ij3) = {y € R? : d(y, x) < €;j3}
B(Aij eija) = {y e R?: x!éxiAx:j d(y, ) < €4}
are disjoint. The metric used in ®? is that given by d(y,x) = min{ly; - z1}; |y2 - 22|}

Consider the set N7 N B(xij, €i;3) C N7. By continuity of the function h;j, there exists a subset
NS C N}; such that h;j(N9) = NZ 0 B(xij, €ij3). Finally, let

M,-lj = N,-oj N B(&, €ijs)
M?' = ’l.,(M.l’).

I

Letf € M. Then d(€, £) < €j4. In particular the values ¥;, Fi+1) Tj» Tj41 corrresponding to € satisfy

1% = %l < €ijay
[Fig1 = Yit1] < €ijas
17 = %l < €ija

741 = Vi+1] < €4

Thus A;; = L; x W; is a set that satisfies A;; C B(Aqj, €i4). Also Rij = h;;(£) satisfies X;; €
B(xij, €ij3). As B(xij, €ij3) N B(Aij, €ij4) = {} it follows that X;; ¢ A;;. Thus, for £ € M,-‘J-,Y.-,' is
also a virtual equilibrium point. Similarly, if x ;; was initially a real equilibrium point then X;; is
also a real equilibrium point for £ € M} (M}; suitably chosen).

Let ¢ = min{min{y; = %-1:2<i < nn+2 < i < n+m},00}. For £ € B(,€5/2) the
values Fy,..., Tnym satisfy |7; — %| < €5/2. Thus 1341 — €5/2 < Ty and F; < i + €5 /2 for2 < i <
n,n+2<i<n+m Hence 0 = %41 —%i—€ < Fiy1—Fi- Thus, 73 < ... < ¥y Fng1 <+ v+ < Tntme

Finally, let

M = (Mo Mo ME) N B(E,€2) 0 B(E, €2) N B(E,e5/2).

For £ € M, £ is a vector field which has (n+1)(m+1) equilibrium points, each of which is nontransi-

tional. Thus Gy is open. |

Theorem 2.3. Gy is dense in P(n,m).



ProoF. (Figure 3.) Let £ be a vector field in P(n,m). As in the proof that G is open, there exist
0 < €1, €2 such that if £ € B(&,€;) then 0 < &% + &% fori = 1...,n+ m and if £ € B(¢,¢2) then
F1 < er € Fnr Tag1 < -+ < Tapm- It is required to show that for each 0 < ¢, B(¢,¢) N Go # {}.
It may be assumed that 0 < € < min{e;, €2}. Thus, it remains to show- that in B(,¢) there exist
vector fields whose equilibrium points are all nontransitional.

For each A;;j € Part({) there exists a unique linear vector field &; such that £.-,~l;g_.,. = £|a;; The
linear vector field §;; may be writtten as &;(x) = d;j + M;jx. The determinant of M;; determines
the number of equilibrium points of §;; and hence the number of equilibrium points of £.

If detM;; # O then the eigenvalues of M;; may be written as AljsA?; where 0 # A};, AZ;. Let
llzl| denote the modulus of the complex number 2. It is clear that if 0 < u < min{||A} Sl 1A%} then
the matrix M;; + uI also has nonzero eigenvalues. If detM;; = 0 then either one or both of the
eigenvalues of M;; is zero. If one eigenvalue is zero, so that the eigenvalues are 0, A,j, it is possible
to take A}; = oo. Then for 0 < y < min{||A} s 11A%;]1} the eigenvalues of the matrix M;; + I are
nonzero. If both eigenvalues of M;; are zero then take oo = A};, A%;. For 0 < 4 < min{||A} 5l 111}
the matrix M;; + uI has nonzero eigenvalues.

Choose

0 < p < min{e, min{|PA};]f, A%l : 0 < { < 0,0 £ j < m}).

Then the vector field £ = £ + uI lies in B(¢, ¢) and for each 0 < i < n,0 < j < m the induced linear
vector field for the partition A;; is given by f,-,-(x) = d;j + (M;; + pI)x. As det(M;; + uI) # 0 then
E,.,- has a unique equilibrium point. Thus & has (n+1)(m+1) equilibrium points. It will be shown
that if £ has transitional equilibrium points then there is a perturbation of € to a vector field without
any transitional equilibrium points.

As in the proof of openness of G in P(n,m) there is a 0 < 3 such that if fe B(£,e3) then {isa
vector field with (n+1)(m+1) equilibrium points. Let ¢4 = min{e3, e— zs}. Clearly B(E,¢eq) C B¢, €).
Without possibility of confusion, let £ = £.

Say a transitional equilibrium point lies along the vertical inez = ¥;, < ... < 7,,1 < i <

... < i < n. Let £ be a vector field with all the same defining constants as £ except
“:'11 "i:+u [0'.1 an+u]
; ’
“5?2 o 12 0-12 Qi 412
0’ . a; a;
ul 7:: + ::+ll 7'!:+1 - [ l.xl] %, + [ "l+ll] Vi1
ol 412 @iy2 412
By considering the formula for f t,&ij it happens that {,‘ = &j for i # 41,0 < j < m. It then

happens that £t = ¢ except on the vertical Strip [Yi,-1, %i,4+2] X R.

If the matrix

[06,1 01.',+11]
Q52 Q4,412
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is nonsingular then the implicit function theorem may be applied to the function
' . . '
H; (o, o) o .~} = [al] o+ o en—ay |,
i (@1, 03,71, 72) o n+ @iz + iy 12 — o T2
to determine a function h;, and neighbourhoods N, ", of (a@iy1y @iy2) and (11, 72) respectively such
that hy, : N — N7 assigns to each element in N} the corresponding vertical lines in N?. In fact

the function h.-, is a diffeomorphism. Let
= B((ei1; @iz2)s €4/ (n + m)) O (NG 0 B((%,5 Yir41)s €4/ (n + m)))
Ni, = hia(Ns.)~

Let (72;, u+1) € N& = {(%,17i,+1)}. Then there exist (af? g 2) such that h,l(a"l,au,) =
(v 5 ~ 1+1)- Furthermore, the vector field &1 with the same defining constants as £ except the values

.,1’0’-,2’ 7", vh 141 lies in B(&, ¢4/(n + m)). Note that, as h;, is a diffeomorphism , it may be taken
that 7‘1 # %i,. As in the proof of openness, £ can be chosen so that no new nontransitional

equilibrium points are created along the linesz=y; for 1<i<iy—1.
[Or.', 1 Qi ]
a2 Q412

[a.‘,+n] =‘ k; '05.1]
Q412 ' [ &4, 2

for some constant k;,. As 0 < a? ,;; +a? ,,, then k;, # 0. A solution to the following equalities

a':‘ a’:l [ -
b ][]
@2 O 412 L &y 2

ai| ol | [@i,1
[ i ] T + [ o | T = aaiz (%, + kiyvia+1)

If the matrix

is singular then

a2 1412

[ n,l] [aul
l|2 0"2
["’{wu] -k [am]
a1z ' laigs

R

is given by

Yo = Yo+ = pifkiy.
Choose 0 < y;, < min{es/(n + m), e4]ki,|/(n + m)}. The vector field £t with all the same defining
constants as £ except 7! +¥i}41 lies in B(, €4/(n + m)). As in the proof of openness, £ can be
chosen so that no new nontransitional equilibrium points are created along the lines z = ; for
1<i<ip—1.
Assume a transitional equilibrivin point x;,; exists for the linear vector field &,; this point

lying along the vertical line z = v;,. The point x;, ; is also a transitional equilibrium point for £;,-1;.

11



Consider the perturbed vector field £ with 4} # v,. Note that for the vector field £ it happens
that (;',‘-';_1,- = §;,-1; so that x;, ; is also an equilibrium point for § i1, in particular it is an equilibrium
point of E:'.;-lj'

I {;}j also bad a transitional equilibrium point for the linear vector field x:::,- along the line
z = 7! then this would be another equilibrium point for the linear vector field ff:_u. AsdetM;,; # 0
then {:-"‘_1,. may have at most one equilibrium point. By contradiction, £ does not have any
equilibrium points along the line z = 72: .

By induction, if transitional equilibrium points lie along the lines v;, < ... < ¥;,,1< i1 < ... <
i; < n then there is a sequence of perturbed vector fields &1,...,£ with the final vector field &'
having no transitional equilibrium points along z = v;,1 < i < n.

Say a transitional equilibrium point lies along the line z = «v,. Consider the vector field £ with

all the same defining constants as £ except that

af _ a‘i‘ —u a::,*l
o] ™ a3 " oy

Ta =T + bin
where 0 < pp < min{ey/(n+m), es/((n+m)lai]), e4/((n+m)|ai¥|)}. By choosing u, small enough,
it is possible to ensure that no new transitional equilibrium points are created along the lines z = +;
for 1 < i £ n - 1. The vector fields E“:f"* coincide on (~o0, ¥*_,] x R. Furthermore f,‘,"_,,- and
§n-1; are identical as linear vector fields. Say a transitional equilibrium point existed for the vector
field E,',',"',-, it is also an equilibrium point for the vector field 5:‘_11., then it is also an equilibrium
point for {3_, ;. If {7 has a trausitional equilibrium point along 92 # i+ then §a-1; would have
two equilibrium points. This is not possible as detM3_,; # 0. Thus £ does not have transitional
equilibrium points along the line z = 44,1 < i < n. Similarly, the vector field &™ can be perturbed
to a vector field {"*+™ with neither vertical nor horizontal lines 73 . .., Yn4+m having any transitional
equilibrium points. As successive perturbations are at most a distance &/(n + m) apart, and there

are at most (n+m) perturbations necessary, then £&*+™ ¢ B(&, €4). Thus Gy is dense in P(n,m). N

The next subset of P(n,m) to be considered is an open and dense subset of G consisting of those
vector fields all of whose equilibrium points are hyperbolic. The concept of a hyperbolic equilibrium
point occurs frequently in differential dynamical systems. Again, it can be shown that hyperbolic

equilibrium points are a generic feature of vector fields.

Definition 2.4. The point x;; is a hyperbolic point if the eigenvalues of the matrix M;; (&;(x) =
di; + M;;x) do not lie on the imaginary axis. The point x € F(£) is a hyperbolic if it is hyperbolic
for some F(&;;).

Definition 2.5. Let G; C Go be the subset consisting of vector fields § € Go with (n+1)(m+1)

nontransitional hyperbolic equilibrium points.

12



Theorem 2.6. G, is open in P(n,m).

PROOF. Let £ € G, there exist 0 < ¢ such that if £ € B(£,¢;) then € € Go. Let Xij;0 < i < n be
the equilibrium points for §. Each x;; is the unique equilibrium point for &ij. As &ij(x) = dij+M;;x
and x;; is a hyperbolic equilibrium point for M;; then the eigenvalues of M;; do not lie on the
imaginary axis. By continuity of the eigenvalues on the defining constants of a vector field, there is
an 0 < ¢; such that if £ € B(¢, €;;) then f,-j has a unique hyperbolic equilibrium point.

Let ¢ = min{e;, min{e;; : 0 < i < 0,0 £ § < m}). For € € B(£,¢€) the vector field £ has
(n+1)(m+1) nontransitional hyperbolic equilibrium points. [ |

Theorem 2.7. G, is dense in P(n.m).

Proor. It is suffficient to prove that G, is dense in Go. Let § € Go and 0 < e. Without loss of
generality € may be chosen so small that B(¢, €) C Go. Thus, it is needed to show that B(£,€)NG; #
{}. For each linear vector field &;(x) = dij + M;;x let A};, A%; denote the eigenvalues of the matrix
M,;.

If 0 # red};,red}; then let ¢; = min{|reA};|, reA};]}. If 0 = reA}; and since £ has nonzero
determinant then A}j is purely imaginary. As the eigenvalues of a 2 x 2 matrix with real entries
occur in complex conjugate pairs then 0 = reA,?j. Letgj=oc0. HE=¢+ pl with0 < pu < €ij then
the vector field §;;(x) = xij + (M;; + #I)x has a hyperbolic equilibrium point.

Finally, let ¢; = min{e, min{e;; : 0 < i < n,0 < j < m}}. For 0 < u < € the vector field
fx)=(£+ uI)(x) has (n+1)(m+1) nontransitional hyperbolic equilibrium points. [ |

Our next generic property is a preparatory result needed for a later proof. The generic property to
be presented in definition 2.8 refers to the eigenvalues at a hyperbolic equilibrium point, namely that
generically the eigenvalues are distinct. As a result of having distinct eigenvalues, it follows that the
eigenvectors associated to the eigenvalues are also distinct and remain so under small perturbations

of the original vector field.

Definition 2.8. Let Ga C G; be the subset of vector fields such that if £ € G; then £ has
(n+1)(m+1) nontransitional equilibrium points. For each equilibrium point x;; the matrix M;;

(&j(x) = dij + M;x) has two distinct eigenvalues.

Theorem 2.9. G; is open in P(n,m).

PROOF. Let £ € G;. There exist 0 < ¢ such that if € B(£,€;) then £ € G;. Foreach0 <i < n,0 <
j £ m let the eigenvalues of the matrices M;; be A%;, A%.
As 0 # A}, — A}, then by continuity of the eigenvalues on the defining constants of the vector

field £ there exists 0 < ¢; such that if £ € B(£,€;;) then the corresponding eigenvalues X,?,.,Xf,. are

also distinct. Let ¢ = min{e;, min{e;; : 0 < i < n,0 < j < m}}. For £ € B(¢, ¢), the vector field

13



€ has (n+1)(m+1) nontransitional hyperbolic equilibrium points, the corresponding matrix at each

equilibrium point having two distinct eigenvalues. |

Theorem 2.10. G is dense in P(n,m).
Proor. It is sufficient to show that G is dense in G;. Let £ € G; and 0 < e. Without loss of
generality it may be assumed that € is so small that B(,¢) C G,. It is sufficient to show that
B(&,€) NGy # {}. For &;j(x) = d;; + Mjx let the matrix M,; be written as
[mg mn]
mi  m#

where the entries are polynomial functions in the defining constants of £. If the matrix M;; has two
distinct eigenvalues then

0 (mi} + m3)? = d(mffm} — mifm}).

By continuity of the above discriminant (being the discriminant of the corresponding characteristic

equation of the matrix) there exist 0 < ¢;; such that if 0 < g < ¢;; then the matrix

mj} mi? + u
mi} + m?f

also has a pair of distince eigenvalues. If the matrix M;; does not have two distinct eigenvalues then

0 = (m}} + mi})? - 4(mi}mi} — mlIm}).

If 0 # |[m{} + m3}| then let ¢; = |m}? + m?}|. For 0 < s < ¢;; then the matrix

m,’} m12 +p
G

has nonzero discriminant 4u(m}? + m?! + p) and thus two distinct eigenvalues. If 0 = |m}? + m?}

then let ¢;; = 0. Again, for 0 < p < €i; the matrix

m}} mi? + u
m3} + u mz)z
will have nonzero discriminant 442 and two distinct eigenvalues.
Finally let €, = min{¢, min{e;; : 0< i < n,0< j < m}). For 0 < u < ¢; then the vector field
= ay b biz+ul 2 L P
- e B[]
v az baa+pu by y ai2 N Latih igl aiz by =l
will bave (n+1)(m+1) nontransitional hyperbolic equilibrium points, the corresponding matrices

having a pair of distinct eigenvalues. 1
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The property of a vector field being properly transversal (to be defined below) will be shown to be a
generic property of vector fields in P(n,m), specifically the vector fields that are properly transversal
form an open and dense subset of the vector fields in P(n,m). Properly transversal vector fields
bave importance from the viewpoint of computer simulation of piecewise linear vector fields. In a
properly transversal vector field the invariant manifolds of distinct hyperbolic equilibrium points
meet transversally, thus any saddle connections between distinct equilibrium points in a properly
transversal vector field must contain poixits of nonzero curvature. It is an immediate observation
that saddle connections between manifolds at the same equilibrium point (homoclinic orbits) have
points of nonzero curvature along the connection. Any saddle connection must then contain points
of nonzero curvature. Along these points of nonzero curvature a numerical agorithm runs the risk
of deviating from the original saddle connection. This makes the accurate simulation of saddle

 connections in the generic vector field more difficult than would otherwise be the case.

Definition 2.11. Let £;(x) = dij + M;;x be a linear vector field for which M;; has a pair of
distinct nonzero eigenvalues which do not lie on the imaginary axis. Let the eigenvalues of M;; be

- Aljs AL, If the eigenvalues are complex then let

L}j ={},
L ={}.
If the eigenvalues are real then to each eigenvalue there is a corresponding eigenvector through the
equilibrium point x;;; namely v} v¥;. Thus, let
Lij={xij+tv}: te R}
L ={xij+tv}: teR).

The sets L};, L% are called the lines through x;;.

(F

Definition 2.12. A vector field £ is called properly transversal whenever max{|i’ — il, |j’ — il}=1
implies that the lines through x;; intersect each line through x;/j: transversally.

Definition 2.13. Let G3 C G be the subset of vector fields that are properly transversal.

Theorem 2.14. G3 is open in P(n,m). )

PRoOF. (Figure 4.) Let § € Ga. As £ € G; there exists 0 <  such that if £ € B(£,¢;) then € € Ga.
For the equilibrium points xij, xirj» with max{|i’ - i|,|j* = j|} = 1 the lines L%, LX,, k, k' = 1,2
intersect transversally. By continuity of the lines on the defining constants of the vector field ¢,
there exists 0 < €;jxirjoxr Such that if € € B(€, €;jrirjrar) then the corresponding lines f;,f:;. also

intersect transversally.
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Finally, let € = min{e;, min{eijairjar : 0 € i € 0,0 < j < mymax{|i’ - i}, |j' = jl]} = L,k k' €
{1,2}}}. If £ € (&, €) then the vector field £ is properly transversal. |

Theorem 2.15. G3 is dense in P(n,m), 2 <n,m.

PRoOF. (Figure 5.) Let £ € G2 and 0 < . It is sufficient to show that B(£,¢) N G3 # {}. Without
loss of generality it may be assumed that ¢ is so small that B(¢, ¢) C Ga.

[061 0.‘+u]
@iz @413
for1<i<n-1,n+1<i<n+m-1 Consider the following sequence of perturbations given by

El’ .. .,au-l’sn-ﬂ'" .’En-l-m-l.

If the matrix

Consider the matrix

) [au au]
a2 022
has nonzero determinant then let £ = £. By continuity of the determinant function, there exists
0 < €] such that if £ € B(¢!,¢}) then the corresponding matrix for £ also has nonzero determinant.
Let ¢ = min{e}, e}
If the matrix above has determinant equal to zero then consider the perturbation & obtained

from £ as the vector field having all the same defining constants except
ajy = a1 — paya,
aly = az + may
for 0 < ) < min{e¢/|a11]), ¢/la12])}. Then the matrix
[a{, “%1]
af; al,
has nonzero determinant ;(af; + af;). There also exists 0 < ¢, such that if £ € B(¢!,¢}) then the

corresponding matrix for £ also has nonzero determinant. Let ¢ = min{e}, e — d(£2, £)}.

i=1 i-1
agn @411
a-j;1 i-1

]

@412

If the matrix

has nonzero determinant then let & = ¢*~1. By continuity of the determinant function, there exists

0 < ¢ such that if £ € B(£', ¢!) then the corresponding matrix for £ also has nonzero determinant.

Let ¢ = min{e}, €;_1}.
If the matrix above has determinant equal to zero then consider the perturbation & obtained

from £-1 as the vector field having all the same defining constants except
P e .

A = °‘i+}1 - Hioj ,

afi1z = aifls + mialy!
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for 0 < ui < min{e;—1/|ai7?]), €i=1/]ais1])}. Then the matrix

“:El °:E+u
o3 alyy;
has nonzero determinant p;((af7!)?+(ai;)?). There also exists 0 < ¢/ such that if £ € B(¢', €)) then

the corresponding matrix for £ also has nonzero determinant. Let ¢; = min{¢}, €1 — d(&, £-1)}.
Notice that if £ € B(§"+™=1, eatm-1) then the matrices
[Uex 5.'4-11]
Tz Ttz

have nonzero determinant for 1 <i<n-1,n+1<i< n+m—1. A vector field that is properly
transversal in the ball B(§"+™=1, ¢, 1) will also be properly transversal in the original ball
B(&, €). Without possibility of confusion let £ = £°+™-1 and € = €nym-1.

It may also be assumed that the matrices given by

- ac+u] [’ri-u -% 0 ] [0:.'1 0!-+u]
+ 2z
[-032 Qis12 0 Yier = %) laiz  aigaz (2255 = % = %i1)

for equilibrium points x;; = (z5,¥i;) and 1 < i < n - 1,0 < j < m have nonzero determinant.
Similarly, it may also be taken that the matrices

—-aj) 0’j+11] [7j+l - 0 ] [0;'1 ij-l-n]
+ 2Wii = Vi = Tis1
[-%'2 ajt1 0 vier = Lajz  ajang) BV~ = %4)

for equilibrium points x;; = (zij,yi) and 0 € i < ny,n+1 < j < n+ m - 1 have nonzero
determinant. It may also be taken that for £ € B(€,¢) the corresponding matrices for € also have

nonzero determinant. These claims follow by a proof analogous to that for the matrices

[dn Oti+u]
a2 Qg2
for1<i<n-1,n+1<1i<n-+m-1 having nonzero determinants.

Consider a perturbation of £ with all the same defining constants except
o) o} a a
o]+ [2n]= o]+ o]
oz ) 12 a3z2
i L bl i e R P
+ = 7n+
[0'12 " az; K a1z az22

' +
Bu(af b )= [ 3]+ [Su T O o]

a12+ a3 — af

[‘71-72 0 ]
0 n-nl’
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As DoHy(a11.012, 71, 72),



has nonzero determinant, there exist neighbourhoods N} x NZ, N3 of (71,72) and (a1, a12) and
function ky : N} x N7 — N} satisfying

B(ha(rho )i oh) = [ 2] [ 22]

As the matrix for D,H; (a1, 012,11, 72) iS

[Ou 021]
a2 ag
with nonzero determinant then h; is in fact a diffeomorphism. Note that

-1 0 @11 a2
Dyhi(mim) = [ ? 0 ¥ - 71] [au azz] )

Let X1(71,72) be the vector field with the same defining constants as £ except that
X3
a
&) = monr
12

X X
azy _|oun+az - ajy

X - Xy |
az3 a12 + a2 — ajy

73(':74'
7 = 1.

Let G1j(X1(71,72)1x) = d1(X2(1:72)) + M1i(Xa (1], %))x. As D:Gyj(Xi(ms 12)(x15) = My;,
which has nonzero determinant, by the implicit function theorem there exist neighbourhoods N}j X
NE NP of (11,72) and x;; and function gy, : Nij x N — N, assigning to X;(7],7}) its unique
equilibrium point xi(j‘ .

Now,

G1;(X1(1,73), %)

XX 4 XX n j
_ [01 —antnt eyt + Xhoaeinve — Lo L e + DDA 06'17."]

X1.X X n n+j
az — o N + ad Rt + Lhos @iraver — TeL g i + 2?':':“4-1 @2

X n+j
+ b + oy — o - Yi=sain b2+ 3070 L ain - 23::?4-;4.1 @itz
bay + aX.— Xy — E"’ iy boy + En-f-j Qiry = Zn-l-m . y
12 22 =3 @i 22 it=n41 Xi'2 i'=n4j+1 Xi'2

_ [01 - a7 + (en + az — o) + Siesqinme — Lot

i=ng1 @i + 23::4-54-1 ain i
X, X X X n j
az = o3t + (e 4022~ 030)" + T _g e — L0t g cinave + T0Em, L) cinre

X :
bu+el —(en+an—aoff)=Yh saim b+ rii i - 23:':-“'-;1 a"l] ["’]

X : X n j
ba+eid — (o2t az—ajf) -l _saiz bpn+ Yl i — Y i1 @iz

y
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Thus, and writing x,; = (215 115)»

D,G1;(X1(11: 1)y X15)

=|0 en+ 021] [72 -n 0 ] [au a1z ]
[0 o1z +azz 0 v2-7) laa a2 (m+m)+
[ 11 u] +2 [1: n ] [au an] 2
o1z —o 0 Y—-n a1 @22

—an  an ”7-"n 0 ] [au 021]
= + 2215 — 1 — 72)-
[-012 Cl'22] [ 0 T2-1 a2 Q32 ( H—n 73)

As the matrix above has nonzero determinant it follows that g1 : Ni;x N3; — N3; may be considered
a diffeomorphism for 0 < j < m. As gy; is a diffeomorphism, the sets g;'(L%,.), 97 (L5, ),k =
1,2,j'=j~1,j,j +1 are submanifolds of N}; x N};. Then if

(71, m) € N}; x U“' Hi-1 Yi=1 (05 (Z850) v o3 (Z5;))

the vector field £’ = X;(41, 73) is identical to £ except on the region (—o0, 13] x R.

On the region (—o00, 11} x R, £g; = §o; and on the region [1}, 73] x R, £5; = £0 < j < m. Thus,
Ly = Lo,.,LQ,. = Lyj for k= 1,2,j' = j—1,j,j+ 1. As the equilibrium point x}; does not lie on
any of these lines then L’IJ, k = 1,2 can only intersect the lines L'zj,, L 2,-.k =1,2,j'=j-1,5,j+1
transversally.

Finally, let

(v 18) € (N x N = Ui, (o (Z4) L a3/ (255)))
N B((11,72), €) VATV N B((e11, a12), €))

and €' = Xi(7],73) be the perturbed vector field. Note that the points x};, x Lo max{Ji’ — il |’ -
jl}s#' # i have lines that only intersect transversally. Note that d(£!,£) < e. There exists 0 < ¢,
such that if £ € B(e!,¢}) then the corresponding lines for £ also intersect transversally. Let & =
min{e}, e~ d(¢1, €)}. Then B(€!, 1) C B(£,¢).

Continuing in this manner, there is a sequence of perturbations &2, .y £*=1 and suitably chosen
€2,...,€n-) such that B(§*~1,€q-1) C -+« C B(£}, &1) C B(&, €). The vector field £*~! is such that

if x"'l

yXp7! are equilibrium points with max{}i’ = i],| — j|} = 1,i’ # i then the lines through
these points only intersect transversally.

As in the case for the vertical lines z = 4,...,7va, there are perturbations of the horizontal
lines y = Yn41+-++1 Ynem. The corresponding perturbed vector field £+1,...,£7+™ and suitably
chosen €n415-. . €ntm-1 Satisfy B("t™"1, eaum-1) C -+ C B(E"t), €n41) € B(E"1,€n-1). The

final perturbation £”+™-1 is a vector field such that if x:;"‘"“ 2;‘,""" are equilibrium points with
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max{|i’ — i], |j’— j|} = 1 then the lines through these equilibrium points only intersect transversally.
The vector field £*+™ is properly transversal and lies in B(€, €). Thus, G3 is dense in P(n,m). i

Theorem 2.16. G3 is dense in P(n,1),2 < n, P(1,m), 2 < m.
ProoF. The theorem will be proved for the case P(n,1), 1 < n. The proof for the case P(m,1),1 < m
is analogous and will not be repeated.

It is sufficient to prove that G is dense in G3. Let £ € G3 and 0 < e. It is required to show that
B(&,¢) N Ga # {}. Without loss of generality it may be taken that ¢ is so small that B(,¢) C G;. ‘

As in the proof that G3 is dense in P(n,m), 2 <n,m there is a sequence of perturbations
&,...,6" 1such that ¢ is a perturbation of ¢/=1(1 < j < n) ending in £*~1. The perturbaton £7-!
is a vector field such that if x{;™!, x3.7.? are two equilibrium points with max{i’—i], |j'~j|} = 1,4’ # i
then the lines through these points only intersect transversally. The vector field &=! may be
constructed with d(£"~1,£) < ¢(n — 1)/n. There also exists 0 < €; such that if £ € B(£"~!, ;) then
the corresponding lines for £ also intersect transversally.

Let 0 < i < n and consider the linear vector fields £;!, £5,~!. Along the vertical strip [vi, ¥i41] X
R the vector field £~ is given by

™=}
[ :11] -+
a-1

bn-l

& I[‘lu‘leﬁlkﬂ[ ] n-l bu-l n-l [ ]+Z

=1
ai'l ( n-—1 n+11 n—1
ol i (U t) + n-l l - 7n I

,.-;.,,1 Qg ®at12

Consider the perturbation X;(aj, a}) of £r-1 ltzi,7, 1x® Where
Xi(a},a}) = [0‘1- - (e} —ap3l) 7:;}] [bn-: bzl +af - Q::—ix] [z] +
[

n=1__ - a1 Yan=-1 u-l n-1
« (a3 — apii2) a1 + a3 - api;

2 [apg? : " apy?
> a:.-l =7+ 3 | -0+ [3] -l
i'=1 2 =il Qirz

Notice that X;(a},a})io = €% ! regardless of the values of (e}, a}). Now define the function

Hi(Xi(a1, a3)s x) = Xi(af, a3)(x).

D.Hi(Xi(ep3i anzis)s xi) = ME™?

and detM[;™! # 0 there exist neighbourhoods N} x N?, N? of (er3i1rafsl)) and x;; respectively

and a function h; : N} x N7 — NJ assigning to Xi(}, a}) its corresponding equilibrium point xXi.
Furthermore, with x;; = (41, 1),

n=-1
- - 1 0
D Hi(Xi(epzinahil)ixi) = [ Tnt1 n_l] [ ] yi1 + [0 1] (yir — 7251
~Tn+i
[2yll - 27:;} ]
0 2yi1 — 27:;{
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As £"~1 does not have any transitional equilibrium points then x;; does not lie on the line y= 7:;}
Thus, 2y;; — 27,':;{ # 0 and

detDoHi(Xi(anti1 engis)s Xi1) # 0.
Thus, h; is in fact a diffeomorphism. ‘
Let L, L%, be the lines through the point x;o. By choosing (a}, a}) € N} x Nj — ui_ k7 (LE)
the vector field X(a}, a}) has a equilibrium point xX‘ which does not lie on the lines L}, L?,. The

lines through xX* can only intersect the lines through x5 transversally.
Finally, choose

(al,a2) € Moo (N} x Nj — Ui_1A7H(ZE)) N B((ef3) alTl) e/n) N B((entin @nzla) €1)-

The vector field

S Bt i) g PE R TROO e |

>[5l s [24] -z
=1 Qir
is properly transversal. As d(£",€"~!) < ¢/n then d(£", ) < e. Thus Gj is dense in P(n,1). [ |

Theorem 2.17. G3 is dense in P(1,1).

PRroor. It is sufficient to prove that G; is dense in G3. Let £ € G3 and 0 < e. Without loss of
generality ¢ may be chosen so small that B(§, ¢) C G;. It is required to show that B(£,€)NGs # {}.

The vector field £ may be written as

ay buy bn] [an] [ 21]
= et
¢ [ ] [ ] [bzx b2 a2 ' nl ly = 72l
As in the proof that Gs is dense in P(n,1), there is a perturbation & of £ such that if x;; is an

equilibrium point of £2 then the lines through x?,- and xf-,-j,, J' = 0,1 only intersect transversally.
The vector field £ has the form

—(a - by b -
52[;]=[01 (0’1 021)‘72]+[11 12+ a} 021] [au]|’»‘-71|+[ ]ly Tal.

az — (o) — az2)72 bs1 by +af-azxn
for which it is possible to choose (af,a}) € B((as1,a22),€/2). Thus, d(€2,£) < €/2. There exist
0 < € such that if £ € B(£2, ¢;) then the equilibrium point X;; also have nontransversal intersection
with lines through the points X341, j' = 0, 1.
As with the proof that G is dense in P(1,m), there is a perturbation & € B(£2, min{e,, ¢/2}).
The vector field £! is such that if x};,x},_;,# = 0,1 are equilibrium points of £! then the lines
through these points only intersect transversally. The vector field & has the form

¢ [ ] [ = (e} —aa)v2 — (af - 011)71] [bu +af—a bha+a]- 021] +
az — (af — a22)72 = (o = a12)n ba+af—az byz+ab—ar

(]t -t [ b=
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for (af, off) € B((a1,a12), min{e;, €/2}). The vector field £! is properly transversal and satisfies
d(£1,€) < e. Thus Gj is dense in G;. |

Theorem 2.18. Gj3 is dense in P(0,0), P(n,0)1 < n, and P(0m)1 < m.

Proor. It is sufficient to show that .Ga is dense in G3. Let £ € G2 and 0 < e It is required to
show that B(£,€) N Gs # {}. Without loss of generality it may be taken that ¢ is so small that
B(,¢) C Ga.

That G3 is dense in G3 for P(0,0) is apparent from the fact that P(0,0) only contains linear
vector fields. thr proof for P(0,m), 1 < m, is analagous to the proof for P(n,0), 1 < n.

If 2 < n then by the same technique as used in the proof of denseness of Gz in P(n,m), 2 <
n,m, there is a sequence of perturbations £, ...,£%~1. The final vector field, £*~1, has equilibrium
points x% ! such that the lines through this equilibrium point only intersects the lines through
the equilibrium point x?;llo transversally. The vector field £*~! is properly transversal and can be
chosen such that d(£*-1,€) < e.

If 1 = n then, as in the proof that G3 is dense in P(n,1) 2 < n, there is a perturbation &' of £
of the form

- (o' - L
g bt B Pl B el L

which is properly transversal. Furthermore, £! can be chosen such that d(¢!,£) < ¢. Thus G3 is
dense in G,. [ |

The final subset of P(n,m) to be considered is a technical result that will aid in some of the proofs

in the next section. Again, this subset is an open and dense subset of P(n,m).

Definition 2.19. Let G4 C G3 be the subset of vector fields such that if £ € G4 and &;;,0 < i <
n,0 < j < m is the linear vector field that satisfies &;la,; = €la,; with the form

wli]=[&]+ [ ;]

Theorem 2.20. G, is open in P(n,m).

then 0 # m}?m?}.

PROOF. Let £ € G4. As £ € G3 there exists 0 < ¢ such that B(¢, €)C Gs.Foreach0<i<n,0<
J < m there exists 0 < ¢; such that if £ € B(¢, €;;) then 0 # 7} 2m?7} for the vector field €.

Finally, let € = min{e;, min{e;; : 0 < i < n,0 < j < m}}. For £ € B(£,¢€;) the vector field £
satisfies 0 # mLM} for 0<i<n,0< i< m. |

Theorem 2.21. G4 is dense in P(n,m).
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PRooOF. 1t is sufficient to show that G; is dense in G3. Let £ € G3 and 0 < . Without loss of generality
it may be taken that e is so small that B(£,¢) C Ga. It is required to show that B(¢,€) NG, # {}.

For each 0 < i < 1,0 < j < m consider the linear vector field &; for which §islai; = Ela,;
I£0 # m{fm}} then there exists 0 < «; such that if £ € B(¢,€;;) then 0 # F}??} for the
corresponding values of €. In particular, the vector field £ given by

JHELHE HNIH
for 0 < u < €;; lies in B(, €;5).

If 0 = m}?m}?} then either 0= m;} or 0 = m3}. 1 0  m]? then let ¢;; = [m}?|. If 0 # m}} then

let ;j = Im3}|. If 0= m}} = m?} then let ¢; = oo. Clearly the perturbation

MR HE WNIH

for 0 < u < ¢;; satisfies 0 # 7}]77;. Finally let ¢, = min{e, min{e;; : 0 < i < n,0 < j < m}}. For
0 < u < € the vector field given by

MR HE I

lies in G4. Thus G4 is dense in G3 as required. |

§3. Saddle connections in the generic vector field.

This section will be concerned with the phenomenon of saddle connections in a vector field. It had
been originally hoped to prove that the set of vector fields without saddle connections form an open
and dense subset of P(n,m). This goal had not been achieved but in the process results were obtained
whose interpretation from the standpoint of computer simulation is identical. The first step in the

sequence of the results pertains to the occurence of homoclinic orbits in vector fields.

Definition 3.1. Let ¢(x,?) denote the orbit through the point x and satisfying the following

differential equation
¢'(x,t) = &(¢(x, 1))

é(x,0)=x

Assume that the vector field £ € G4 contains a homoclinic orbit through the (necessarily) real
equilibrium point x;,j, As linear vector fields do not admit homoclinic orbits, the orbit I' must
cross one of the boundary lines 2 = %,...,%a O ¥ = Ya41y+++y Tnsm- If the vector field ' should
only cross a horizontal line y = 7;, then consider the vector field £ obtained as the rotation of £

under 7/2 radians. The vector field £ has a homoclinic orbit T crossing one the the vertical lines
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T = —Yn4myec oy —Tn+1. It may thus be taken that the original homoclinic orbit crosses a vertical
line z = 4.

If ip < i; then consider the vector field £ obtained from £ by reflection about the y-axis. The
vector field £ has a homoclinic orbit passing through the point x,_;,j, and crossing the vertical line
T = =%, = Tp41-i, Thus, for the vector field € it happens that n 4+ 1 — §; < n — ip. It may be
assumed that for the original vector field £ that the homoclinic oribit through x;,;, crosses a vertical

line z = v;, with {3 < {o.

Theorem 3.2. Let £ € G4 have a homocline orbit T' through the point x;,;, crossing the line z = +;,
with i3 < ig. Let

S = {(%,,y) : T crosses z = v;, at the point (%,,y)}.
Then S has finitely many elements.

Proor. Without loss of generality the elements of S may be ordered according the the times of

crossing of I with the line z = «;,,

S = {(%yrwr) : (iyr vr41) = (73,0 v1)1 &)y 8 = min{0 < ¢: ¢((74,, 1), t) crosses z = v, }}.

Thus the y-ordinates y1,...,4x ... give the sucessive points (¥, ,¥1)s ..y (7iys Y )y - . . Of crossing of
T with z = v;,.

Assume S has infinitely many elements. If limg.oo |yx| = oo then the points (4,,vx) are
unbounded. The homoclinic orbit I' will then be unbounded, as also will be T' U {x,;,}. However,
TU{xi,j, } is homeomorphic to S? (the circle in R2). As S? is bounded and F'U{x;,j,} is unbounded,
a contradiction arises. Thus it can be concluded that limg .o [yx| < c0.

By the Bolzano-Weierstrauss theorem, the set {3 : 1 < k < oo} has a convergent subsequence

+{yr, : 1 <1 < oo} with limit y’. Consider the vector £(v,,y’) at the point (v;,,y’). There are three
cases to consider as to whether £(v;,,y').[1 0]¢ is less than, equal to, or greater than zero.

Assume §(7,,¥').[1 0]* < 0. The vector £(;,, y’) points left into the region {(z,y) : z < i, }. By
continuity of the vector field there exists 0 < € such that if y € (¥ —¢, 3’ +¢) then £(v;,,).[1 0)¢ < 0.
As Bmy_.o y&, = ¥, it is possible to choose Ykigr Yk, € (V' — 6y’ + €) with gy, < Yi,, - Let T~ be
the portion of I' joining the points (7i,y ¥k, )s (%;1 ¥k, ). Consider the closed curve I™ U ({,} x
[Yr1gs ¥y, ])- It is immediate that lime—oo ¢((%,, ¥, o)1) and lime _ oo &((%,, Y&, )1 t) lie in different
components of I'" U ({v;,} x [¥xigs Y&, ])- Then lim,.oo (¥ s Yiery 1 t) # limee_ oo (G T )
contradicting the assumption of a homoclinic orbit.

Similarly, the assumption that £(vi,,y’).[1 0] > 0 will also lead to the same type of contradic-
tion. Thus, consider the case that &(v,,y’).[1 0]* = 0.

Consider the two intervals (y — ¢, '), (/, ¥’ + ¢€) where ¢ is chosen so small that (v — ¢,3’) C
Wies (¥, ¥/ +€) € W), for some 0 < jo < j1 < m. At least one of the two intervals contains infinitely
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many elements from S. It may be assumed that it is the interval (y’ — ¢,y’) € W;, which contains

infinitely many elements of S. Consider the linear vector field given by

A . d'lu'o m';llio 'uo [ ]
i [y] - [d?u'o * mil mf?,o

Along the line z = 95, the linear vector field is given by

£IIJO 7“ ] [ 'uo] [millllo m}go] [751] .
?jo mil, mik y
If &, jo(7i,» v) has z-ordinate zero then

0= diluo + m'x:o7'l + mluoy

As m}% 3 0 there is a unique solution to the above equation. Thus, g’ is the only value of y
for which the above equality holds. This implies that for y € (y' — ¢,y’) the vectors &, jo(%,,¥)
are not tangent to the line z = 4;,. In other words, £(v,,¥).[1 0)* < 0 or &(v,,¥).[1 0]* > O for
vEW - &Y).

If§(¥i,+y).[1 0)* < 0 for y € (¥'—¢,¢') then choose w, yu, € (V-6 y) withye, ) < yz,, . Let T~
be the portion of I joining the points (vi,; Y&, )s (¥iss ¥iy, ). Consider the closed curve I"‘ U({,} x
(Ykigs ki, ])- It is immediate that lime—oo 6((7i,, Yk, )1 t) and lime—._ oo #((7i;» Yay, ) t) lie in different
components of I'™ U ({%,} X [yk, ¥x,]). Then imeoo (%092, )1 t) # limem—oo ¢((Yiyr Y1, 1 1)
contradicting the assumption of a homoclinic orbit. Similarly, if £(7i,,y).[10)* > 0 fory € (' — ¢, ¥)
then a contradiction also arises. Thus, it cannot happen that &(v;,,y').[1 0] =

Hence, S has finitely many elements. [ |

The following conjecture was found to be necesary to prove the results in this section. Differentiable
dynamics is able_ to utilise local perturbations of vector fields in the C* topologies, this technique
of local perturbation is not available when the vector fields are piecewise linear vector fields. The
conjecture is essentially a global perturbation conjecture whose validity has been supported by

computer simulation.

Conjecture 3.3. Let (7i,,y) be a point for which1 < iy < n. Let the orbit through (v, , y) cross the
line z = ;, at the point (vi,,y"). For every 0 < € there exists £, & € B(¢,¢) with 7}, =57 = 7,,
and f:j, E?j = §ij for iy < i such that the orbit through the point (%, ,y) crosses the line z = v, at
(%7 (46, 7)) with T <y < 7.

Remark: There do exist vector fields that coincide with £ on the set [v,,00) x R. For example, let
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€ be the vector field with all the same defining constants as £ except
& =&Y, = o - ain;,
11 + &1 = bu + @i
@2 = &2, = a2 — @27,
b1 + &iy2 = bay + iy

Clearly &;; = &; for iy < i while

£ [z ] _ &= The @i + 2:3.:.514.1 @it + T 1%, + Lo, 41 XY=
ULy T = Lirzy @uzve + Lisiy @i ter + Tiyami, + iy 41 XY=
E:"'gaﬂ ainYi + 23:’:4.;“ ain Y
2?’:':4-1 @iz + z?':':-i-j«lvl QY
+ 511 + 2='=1 Qg — 2:,‘;‘11 Qg — a“‘ - 2:,"="+1 ain
Ba1 + iy @iz — TiTh  eia = Tz — Thoy, 41 @i
biz + 2?'::&1 @iy = Z?’::uu-{»j.q.l ai’l] [z]
b+ Tith s = Lot e LY

=£.1% S @iyl ~ aiy
=& [y] +20%, = 2) [35.2-%2]

for i < #;.

Let x be a saddle point. To the saddle point can be associated the stable manifold W*(x) = {y:
limi—co ¢(y,t) = x} and unstable manifold W¥(x) = {y : lim—._o ¢(y,t) = x}. Furthermore,
W*(x) = W} (x)U{x} UW}(x) where W} (x), W3 (x) are the connected components of W*(x) — {x}.
Similarly, W*(x) = W¥(x) U {x} U W§(x) where WP(x), W§(x) are the connected components of
We(x) — {x}.

Theorem 34 Let £ € G4 have a homoclinic orbit T' through the point Xiojo Joining the manifolds
WP (Xigjo)s Wi (Xiojo) and crossing the line z = -y.-,., t1 < io. Forevery 0 < e there exist a perturbation
€' of § and 0 < ¢, such that if§ € B(€!, ;) C B(£, €) then € does not have a homoclinic orbit through
the point X5, joining W (Kiojo)» Wi (Rigjo)-

Proor. (Figures 6,7.) Let

S = {(%,,yx) : T crosses z = v, at the point (v,,y)}.

By theorem 3.2, the set S has finitely many elements. Furthermore, the points (%,, yx) are ordered
by k as to their respective times of crossing of I' with the line z = %, -

As S is bounded, there exists values y_ < y; such that (v,,y-) and (76,, y+) are not in the
interior of I' U {xiyjo} and if (vi,,yx) € S then y_ < g < y;. As (7i,»y+) are not in the interior
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of 7 U {Xi,j,} by the Jordan curve theorem any closed curve joining these two points which crosses
T' U {x,j,} finitely does so an even number of times. As ¥;, was chosen so that iy < io and Xiojo 18
a nontransitional equilibrium point, the line segment {7;,} x [y-,y+] crosses ' an even number of
times. Thus, S has an even number of elements. Let $ = {(%,,y:) : 1 < k < 2p} for some 1 < p.
Note that if k is odd then &(%,,yx).[1 0]* < 0 and if k is even then &(v,,y:).[1 0)¢ > 0.

It may be taken that the homoclinic orbit I' is transversed in & clockwise direction. If this were
not the case, then under a reflections about the z-axis the vector field £ is conjugate to a vector field
€ having a homoclinic orbit T through X;,;, transversed in the clockwise direction. Thus g < y3,.

There are two cases to consider as to whether W3 (x;, ;,). lies in the interior or exterior of the
region bounded by I' U {x;,j,}. The proof will proceed in the case that W} (x;,;,) lies in the exterior
of the region bounded by I' U {x;,j,}. The proof in the other case in analagous and will not be
repeated.

By conjecture 3.3 there exists £ € B(, €) such that for the vector field £ the orbit through
(%11 31) crosses the line z = ¥, at the point (%,,y};) where g}, < y2p. Let I'! be the portion of
the orbit starting at (7,,1) and ending at (7, y},) under the vector field £!. Consider the region
bounded by the five sets: T, Uz 8((%i,s 1) )y {72 } X [Upr ¥2p)s UR0((%i1» ¥2p)s 2)s {Xiojo}. Note
that W{(x;,j,) is not in the region bounded by the above set of points. Note also that the orbit
through the point (7i,,y3,) under £ cannot exit the aforementioned region, then the orbit of (v;,, 1)
under the vector field § does not form a homoclinic orbit. The vector field £! does not have a
bomoclinic orbit through x}, ;, joining W (x},; ) and W} (x} ; ). Furthermore, as the the boundary
of the above region can be continuously deformed under small perturbations in the defining constants
of £! there exists 0 < ¢ such that if £ € B(£2, €1) C B(, ¢) then the vector field £ does not have a
homoclinic orbit through X;,j, joining W(%i,j,) and Wi (Xioj0)- [ |

Corollary 3.5. Let £ € G4 and 0 < e. There exists £ and 0 < € such that if§ € B(¢',¢') C B(&,¢)

then £ does not have any homoclinic orbits.

PROOF. For a given vector field £ let #(¢) denote the number of homoclinic orbits that £ posseses.
For a subset S C G4 define N(S) = max{#(£) : £ € S}. Note that since S C G, and any £ € G,
may have at most (n + 1)(m + 1) real equilibrium points then £ may have at most 2(n + 1)(m+1)
homoclinic orbits, thus N(s) < 2(n + 1)(m + 1).

Without loss of generality it may be assumed that 0 < ¢ is so small that B(¢,¢) C Gq. If
N(B(§ €)) = 0 then the corollary is true for & = £ and € = e. Thus let £} € B(¢, €) be a vector
field for which there is a homoclinic orbit through the point x;,;, and joining W,:‘{ (Xiojo)s Wi (Xiojo)
with k}, k1 € {1,2}.

Consider B(&}, € — d(€3,€)) C B(&,¢). By theorem 3.4 there exists £ and 0 < ¢; such that if
€€ B(€,e1) C B(EL, e~ d(€},€)) C B(&,€) then € does not have a homoclinic orbit through X;,j,
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and joining W (Riojo)» Wiy (Rioio)- Thus N(B(E!, €1)) < 2(n + 1)(m +1) — 1. I N(B(€', 1)) = 0
then the corollary is true with £’ = £ and ¢ = ¢;. Otherwise let £ € B(£!,¢€;) be a vector field
with a homoclinic orbit through the point x?,;, and joining W,??(x,?x a» Wiz (x3,)-

As before, there is a set B(£2,e2) C B(£3, €2 — d(€3,€')) C B(£,61) € B(E,¢€) such that
if £ € B(£2,¢;) then the vector field £ does not have a homoclinic orbit through X;,;, join-
ing W:} (Kiojo ) Wi; (Xiojo)» mor does it have a homoclinic orbit through the point X;,;, joining
W,;‘?(ml,-,),w,:?(se.-,,,). Thus, N(B(£%,€)) < 2(n+ 1)(m+1) -2,

Continuing in this manner there is a sequence of sets B(¢*, ;) C ... C B(£, 1) C B(¢, €) such
that if £ € B(£*, <) then £ has at most 2(n + 1)(m + 1) — k homoclinic orbits. If N(B(¢*, ) = 0
then the corollary is true with & = £* and ¢’ = ¢. Since 0 < N(B(¢*,e:)) < 2(n+ 1)(m +1) - k
then the number of terms in the sequence cannot exceed k = 2(n + 1)(m + 1). The sequence will
thus terminate after a finite number of terms in a set B(¢*, x) for which N(B(&*,€x)) = 0. The
corollary is then true for £’ = ¢* and ¢ = ¢, [ ]

Saddle connections between different sﬁ&e points will be divided into two types. Saddle connections
which are of type I have results amenable under conjecture 3.3 while similar results for saddle
connections of type II need conjecture 3.9 for their proof. |
Our aim of the proofs about saddle connections is to show that the vector fields without saddle
connections are dense in P(n,m). In particular, given a vector field with a saddle connection,
there exists a perturbation such that neither the perturbed vector field not any vector field from a

sufficiently small neighbourhood of it has the same saddle connection as the original vector field.

Definition 3.6. Let § € G4 have a saddle connection I' joining the two saddle points Xiojos Xiy jy
with fo < #1. If jo < j1 then define 4 = [%q, %i,+1] X [io»Tis+1)- If j1 < Jjo then define 4 =
[%ios %i:+1] X [j1» Yjo+1)- The saddle connection T is said to be of type I if I'n (R?—A4) #{} and to
be of type Il if " € 4.

Let I be a type I saddle connection for a vector field £ € Gi. AsTNA4 # {} and the endpoints of '
lie in the interior of A, then there are points for which I crosses 9 A. By rotation and reflection of
the original vector field, if necessary, it may be assumed that I' crosses 84 at points along the line
z = ¥, and that the saddle points which I joins are Xiojor Xiyj, Where fp < ;. It may further be
taken that for (z,y) € T it happens that lim;—_ o, ¢((2,y),t) = Xiojo and lime o0 &((z,y),t) = Xiyj,.

Theorem 3.7. Let £ € G4 have a saddle connection T of type I Jjoining the saddle points x;,jo, Xi, j,
where io < i1, and crossing the line z = Yio- Let

S = {(%0y) : T crosses z = ¥;, at the point (7, )}
Then S has finitely many elements.
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PROOF. Order the elements of S according to their times of crossing of I' with the line z = %,
5 = {(%ior 2 : (Yio» Yk+1) = $((%i0r 2) 1), ta = min{0 < £ : $((7io, ya), t) crosses z = =, }}.

Thus the y-ordinates y,...,yx, ... give the successive points (Y5, Y1)+« s (Yios Y&)s - . - of crossing of
I with z = v,.

Assume S has infinitely many elements. If limg—o |yx| = co then the points (7i,, y&) are
unbounded as a set in R3. As the point Xiojo i8 montransitional there exists'o < € such that
B(xiyj0:€1) N {z = %,} = {}. The point Xi,j, is nontransitional, there exists 0 < €2 such that
B(xi,j,) N {z = 7i,} = {}. Furthermore, there exists ¢; < ¢; such that if ¢ < t; then ¢((7.-;, Y1) t) €
B(xXiqjo)€1) and if t3 < ¢ then ¢((%,, 1) t) € B(xi, j,,€2). Consider ¢((¥io, ¥1),t) for t € [t;,13). For
these values of ¢, ||¢"((7is 1), t)|| attains a maximum M for ¢ € [t1, ;). Thus, for any two values
#,2" € [t1,15] it happens that [|((%is 1), ¥) — ¢((%ios v2)s )| < MIt' — ] < M (t2 — t1). Thus,
|31 =uil = [|(%i0s ¥1) = (%o» 48)|l € M(22—11) from which it follows that |ys| < M(t;—%;)+|y1|. Then
limg oo |yi| < oo contradicting limy—o |yx] = 00. Thus it may be assumed that limg_ oo lye| < o0,

By the Bolzano-Weierstrauss theorem, the set {® : 1 £ k < o0} has a convergent subsequence
{yr, : 1 £ 1 < o0} with limit y'. Consider the point (7i,,¥’), as £ does not have any nontransitional
equilibrium points then &(v;,,¥’) # O. Thus there exists 0 < €3,¢€4 such that the flow in [y, —
€3, %o + €3] X [ — €4, 4 + €4] = V conjugate to a a linear flow. Let 1 < lo be such that if I <1
then (%o, Yri) € [7io — €3/2,%io + €3/2] X [y — €4/2,y’ + €4/2) = U. Consider the orbit of a point
(Yio» ¥xy) for lo < 1. As the flow in the regions U,V are conjugate to linear flows then the orbit of
the point (7io,yx,) can only join with the point (viy, ¥k,,,) by exiting U, exiting V, re-entering V
and re-entering U. As U C V there exists a finite time 0 < 7 bounding from below the amount of
time for the orbit through (7i,, yx,) to travel from 8S to OR. Thus, if (Yiqs ¥a, 1) = O((Yio» Y )s Te))
then 27 < i,. Inductively it follows that (viy, ) = @((Yios Yisp )1 try) where 2(1 = lo)T < . As
I — oo then (7, yx,) € B(Xi, j,, €2) in contradiction to (7, yx,) being on the line z = 4;,. Thus §

has finitely many elements. [ |

Theorem 3.8. Let § € G4 have a saddle connection T' of type I joining the saddle points x;, o Xiyjs
where io < i1, along W (xi,j,) and W{(x;,j,) respectively and crossing the line z = +;,. For every
0 < e there exists & and 0 < ¢ such that if ¥ € B(¢",¢) C B(€,¢) then the vector field € does
not have a saddle connection joining the saddle points %i,jo, %;,;, along W (Kiojo) and WP (%i,5,)
respectively.

Proor. (Figures 8,9,10.) Let
S = {(%ios¥x) : T crosses z = ¥;, at the point (7i,, yx)}-

Consider the set ®2 U {co} as the one point compactification of R2. In this set {z = v, } U {oc} is

a closed curve passing through the point co. The points x;,j,, Xi,;, both lie in the same component
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of R2 U {00} — ({z = ¥ip} U {c0}). As T is a curve joining Xiojo» Xiyjy» if it crosses the line z = %,
a finite number of times then by the Jordan curve theorem, this number of crossings is even. Thus
S = {(¥io»¥s) : 1 < k < 2p) for some 1 < p. Without loss of generality it may be assumed that
(Yiss ¥2p) is @ point of transversal intersection of I' and the line z = 7. The end of the proof will
consider the case if this should not happen to be the siutation.

By conjecture 3.3, there exists a vector field & € B(¢, €) such that the orbit through (¥i, ¥1)
intersects the line z = +;, at the point (-n,,yg,,) where y}, < y2p. Furthermore, y3p can be chosen
so close to yp that for y € [y}, y2p] the vector £!(7i,y) is transversal to the line z = ;.

As (%i,y ¥3,) is formed by the transversal intersection of WP (Xi,jo) 8nd £ = %,, for sufficiently
small 0 < el the vector field £ € B(£!, ¢}) also has transversal intersection of WP (%i,j,) and z = 7,
at the point (%;,, ¥a,) Where Jip,, is close to yl,. As (i, y2p) is formed by theaintersection of Wi (xi,5,)
and z = v;,, for sufficiently small 0 < €} the vector field € € B(£, ¢}) has transversal intersection of
Wi (xi,5,) and z = 7;, at (F;,,7.) where , is close to yz,.

Choose 0 < € < min{e}, &}, ¢ — d(£1,£)} so small that for £ € B(E!, 1) C B(£,€), 7z, < 7. and
the vector &(7;,, ) is transversal to z = %, for y € [Fzp, 7..]. Consider the set B(&,e). If it happens
that for every £ € B(£1,¢;) the vector field £ does not have a saddle connection joining the saddle
points Xigjo» Xiyjy along W(Rivjo)» Wi (Xi,j,) then the theorem is true with £ = fland e =e.

Let £ € B(€!,¢;) have a saddle connection I'? joining the saddle points x7 . ,x? ; along
W(x?;,) and Wi(x? ;) respectively. Let

i1j1
5% = {(v2, ) : T crosses z = +Z, at the point (+7,, )}

As noted before, S? = {(+3,,1) : 1 < k < 2q} where p < g. Observe that (7,,42) € 5? so that
y2 = y} for some 2p < 1 < 2¢. Since there is a saddle connection joining x? ; and x? ; the orbit
through (v2,y3,) meets z = 77, at (v2,32) = (22, 4f) Let &2 = € — d(£,§) and consider the set
B(&,€2) C B(£!, e1).

Say it happens that ! = 2q. By a second application of conjecture 3.3, there exists £ € B(£2, ¢;)
with y3, < y3, and £3(+2,, ) is transversal to z = 42, for y € [v3,, 43,)- Thus £3(72,, y) is transversal
tor= 7, for y € [y3,, 3,)- Let T3 be the portion of the orbit that starts at (7,,¥3,) and ending at
(43, 93,) Let U = T3U ({22} x [131 43,]). There are two possibilities as to whether x7, ;, lies in the
interior or exterior of the region bounded by U.

Consider the case that x7, j, lies in the exterior of the region bounded by U. Note it happens
that limi—_ e ¢3((72,, 43,):t) € U while lim¢—oo 63((72,,3,):t) ¢ U. It thus follows that the orbit
through (v7,y3,) cannot join with (v2,y3,) to form a saddle connection between Wp(x? ;) and
W)

In the case that 7 ;, lies in the interior of the region bounded by U it is possible to observe
that lime—._ oo ¢3((12,¥3,)st) € U while lim¢—.oc 43((73,,¥3,),?) € U. The orbit through (+7,43,)
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cannot join with (v%, 43,) to form a saddle connection between W(x2;,) and Wi(x? ;).

As the boundary of U is preserved under small perturbations in the defining constants of &,
there exists 0 < €3 such that of £ € B(£3, €3) then the vector field €3 does not have a saddle connection
Joining W (Rioj,) and W} (%, 5, ). The theorem is then true for ¢ = £ and ¢’ = min{es, e—d(£3, £2)}.

Next, consider the possibility that I < 2. Consider the point (2, y§q) and the orbit through
this point. Define the set

T2 ={(v%om) : (o) i) {z= 2} = () 20 < K0 < ta).

Note that if (+7,, y2) € T? then (2, 14) ¢ S else (+2,» v&) would not be the last point of transversal
intersection of I'? with z = 4. Hence the orbit through the point (2,» 1) is tangent to the line
z=1i. '

If T2 = {} then (2 ,3,) is the last point for which *((7,,¥3,)1t) meets z = 42 for 0 < ¢.
As x? ;. is a nontransitional equilibrium point there exists 0 < €29 such that B(x} ;,, &) N {z =
7%} = {}. It may be taken the €, is so small that for £ € B(£2,¢;) it happens that B(R j,) €24) N
{z = 72} = {}. There exist 0 < t;, such that if ¢3; < ¢t then (74, ¥3 ) t) € B(x ;s €2q). Let
I'? be the orbit ¢?((77,,43,)t) for times 0 < t < t3,. Note that I'? is a compact set for which
PPn{z=+)= (v%,193,)- By restricting 0 < ¢; it is possible to ensure that for £ € B(&,¢2)
it happens that £ = ¥7, and I, only have the point (’7,30,172,) in common. If the vector field
€3 € B(£2, ¢;) has a saddle connection then consider

S% = {(v3,yx) : T'® crosses z = 4 at the point (7w}

As before, $° = {(v},m) : 1 £ k < 2¢'} where ¢ < ¢. Consider the point (42, 93,) with image
(73, ¥?) for some 2g < I < 2¢". If I < 2¢’ then the orbit I'3 intersects z = 7, at a point other that
the image of (77, ¥3,). This is in contradiction to the construction of B(£2, ¢;). Thus ! = 2¢'.
If T? # {} then consider the perturbation £ of £2 as the vector field with all the same defining

constants as 2 except

of = af — paf,

of = o] - al,,

To=To— 8
where 0 < g1 <y = min{es, €2/|e? |, €2/la? 5|} is so small that T4 has only the point (73, ¥5,) in
common with the line z = v} . Thus T# = {}. If there is a value of uo such that uo has a saddle
connection joining W (x[’;) and Wi(x}? ) then let £ = ¢#° and €3 < €; — d(£¥, £?) be so small
that T = {} for any vector field £ € B(£3, €3). The proof can then proceed with respeci to showing
that there is a subset B(£*, ¢4) C B(£?, €a) such that if £ € B(£*, ¢4) then € does not have a saddle
connection joining W¥(¥;,j,) and W{(%;,;, ). If it happens that for every value of u the vector field
§* does not have a saddle connection joining W(x% jo) and W{(x} . ) then let €3 = ¢#1/2 and
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€3 < €2 — d(£3, £2) be s0 small that T = {} for vector fields £ € B(¢3, €3). If none of the vector fields
in B(£3, €3) has the required saddle connection then the proof is finished else the proof can proceed
with respect to showing that there is a subset B(&*, ¢5) C B(£3, €3) such that if £ € B(£4,¢q) then &
does not have a saddle connection joining W¥(%;,;,) and W{ (%, 5, ).

Consider the case that the last point of crossing of the saddle connection I' and the line z = ¥;,
should not happen to be a point of transversal intersection. For sufficiently small 0 < p < u; < ¢
consider a perturbation of the original vector field £ to £# where the latter vector field has all the
same defining constants as the former vector field except that

of = a1~ paig

af = a3 — paig.

Ty = Yo — B
It may be assumed that u is chosen so small that the last point of crossing of any saddle connection
with the line z = 9}, is transversal. Say there exists a value of g such that the vector field % has
a saddle connection whose last point of crossing with the line z = 4£, is transversal, then the proof
can proceed as before but within the set B(£#°, e~ d(£%°, €)). If it should happen that for all values
of u the vector fields £# do not have the required saddle connection then consider &¥1/2. Choose
0 < €,,/2 so small that if £ € B(&»/ 2, €,,/2) and the vector field £ has a saddle connection then
the last point of crossing of that saddle connection with the line z = ¥, is transversal. If none of
the vector fields in B(¢&#/2, €4,/2) have the required saddle connection then the proof is completed,

otherwise it reduces to the case at the beginning of the proof. |

The following conjecture is to type II saddle connections what conjecture 3.3 is to type I saddle
connections. Again, the significance and difficulty of proving the following conjecture lies in the
type of perturbations allowable for vector fields. Neither conjecture 3.3 nor conjecture 3.9 are
anticipated to have simple proofs, although proofs can be given for restricted cases, the general
proof for both these conjectures will have to allow for a wide variety of behaviour for the orbit that

these conjectures claim to perturb.

Conjecture 3.9. Let z;,j, be a real equilibrium point for which 1 < io < n. Let the orbit through
Ziojo Cross the line z = %,41 at the point (vio41,¥’). For every 0 < € there exists ?, Ez € B(¢¢)
with 7}, = ‘-7?1 = +,, and f:,-, E?,- = §ij for ip + 1 < i such that the orbit through the points

Fhojor Tanjo CTOSSES the line z = %io41 8t (Yig41, 71y (Yio1, 72) With P < y < 7.

Theorem 3.10. Let £ € G4 have a sadd]e connection T of type II joining the saddle points

Xiojor Xirjy Where ig < i1, and crossing the line z = v;y41. Let

S = {(Yio+1,¥) : T crosses z = %41 at the point (Yig+1, )}
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Then S has finitely many elemeants.

PROOF. Order the elements of S according to their times of crossing of I' with the line z = %41,

S = {(Fo#11U8) t (Yio#+1s Yi1) = S((Yio+1, Y ) ta),
t = min{0 < ¢: ¢((Yio+1, Y& ) t) crosses z = %g41}}
Thus the y-ordinates y1,..., Y&, ... give the successive points (Yig4+1s Y1)+ +s (Yig+1s Y& )s - - - Of cross-
ing of T’ with z = {41.

Assume S has infinitely many elements. If limi—c [yx| = o0 then the points (.41, k) are
unbounded as a set in ®%. As the point x;,j, is nontransitional there exists 0 < ¢ such that
B(Xioj0r€1) N {Z = %Yig41} = {}. The point x;,;, is nontransitional, there exists 0 < €3 such that
B(xi,j,)N{z = %, +1} = {}. Furthermore, there exists #; < t, such that ift < #; then ¢((%,,1),t) €
B(xiojo1€1) and if t2 < ¢ then ¢((%,,%1):t) € B(xi,j,, €2). Consider ¢((Yio+11¥1):1) for t € [t1, t2].
For these values of ¢, ||¢"((7io+1, ¥1), t)|| attains a maximum M for t € [t1, t2]. Thus, for any two values
t',t" € [t1, ta] it happens that ||$((Yio+1, ¥1)s t') = S((Yio+1, 01)s )|l < M|t'— "] < M (22 —t,). Thus,
ly1 = vkl = [|(Yio+15 ¥1) = (Fio+1, va)l| £ M (23 —1;) from which it follows that |yx| < M(t2—t1)+ |1 .
Then limx— |y&| < 00 contradicting lims—co [yi| = 00. Thus it may be assumed that limg e [yz] <
oc.

By the Bolzano-Weierstrauss theorem, the set {s : 1 < k < oo} has a convergent subsequence
{yx :1 <1< oo} with limit y’. Consider the point (vig+1, '), as € does not have any nontransitional
equilibrium points then &(vi,+1,¥’) # 0. Thus there exists 0 < €3, €4 such that the flow in [Yio+1 —
€3, Yio+1 T €3] X [y’ — €4, ¥' +€4] = V conjugate to a a linear flow. Let 1 < I be such that if lo < I then
(Yio+11¥k:) € [Yio+1 = €3/2,Vios1 + €3/2] X [t = €4/2,y’ + €4/2) = U. Consider the orbit of a point
(Yio+1,¥k,) for lo < I. As the flow in the regions U,V are conjugate to linear flows then the orbit of
the point (7,41, Yx,) can only join with the point (¥i,+1, Yk, ) by exiting U, exiting V, re-entering V
and re-entering U. As U C V there exists a finite time 0 < 7 bounding from below the amount of time
for the orbit through (7ig+1, yx,) to travel from 8S to 8R. Thus, if (Yio+1 Yeipr) = S((Yio+1s ¥ar )s Ty
then 27 < 7),. Inductively it follows that (Yig4+1, Y%, ) = S((Yio+1, Yk, )s i) Where 2(1 = lo)T < t,. As
I — oo then (%i,+1, ¥x,) € B(Xi,j,,€2) in contradiction to (7,41, ¥x,) being on the line z = v 41.

Thus S has finitely many elements. |

Theorem 3.11. Let § € G4 bave a saddle connection T of type II joining the saddle pointsx;, jos Xiyjy
where io < 1y, along W (x;,j,) and W{(x;,j,) respectively and crossing the line z = +;,41. For every
0 < ¢ there exists ¢ and 0 < ¢ such that if € B(¢', €’) C B(&, €) then the vector field € does not have
a saddle connection joining the saddle points X;yjo, Xi, j, along WP(Xi,j,) and W}(X;,j,) respectively.

Proor. (Figures 11,12,13.) Let

S = {(fio+1,¥&) : T crosses £ = %,41 at the point (Yig+1, ¥2)}-
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Consider the set 2 U {00} as the one point compactification of R2. In this set {z = 7,41} U {00}
is a closed curve passing through the point co. The points xi,j,, Xi, j, lie in different components of
R2U {oo} = ({z = Yip+1} U{0}). As T is & curve joining x;,jo, Xi, j,, if it crosses the line z = 7,4
a finite number of times then by the Jordan curve theorem, this number of crossings is odd. Thus
S = {(%io+1:¥x) : 1 £ k < 2p+ 1} for some 1 < p. Without loss of generality it may be assumed
that (7io41, ¥2p+1) is & point of transversal intersection of I' and the line = 9;,41. The end of the
proof will consider the case if this should not happen to be the siutation.

By conjecture 3.9, there exists a vector field £ € B(¢, ¢) such that the orbit through (Yig4+1,¥1)
intersects the line £ = v;,41 at the point (7;,+1,y§p+1) where y.}PH < yY2p+1. Furthermore, y3,.,
can be chosen so close to y;p41 that for y € [y3,41, Yap+1] the vector £1(vio41,4) is transversal to
the line z = ¥4, 41.

As (7;,+1,y§,,+1) is formed by the transversal intersection of W (xi,j,) and £ = ¥iz+41, for
sufficiently small 0 < ] the vector field £ € B(£!, el) also has transversal intersection of W¥(Xi,j,)
and z = ¥, at the point (F;,41, Jap41) Where J,,,, is close to yi,.1. AS (%ip+1, Y2p+1) is formed by
the intersection of W{(x;, j,) and £ = %;,41, for sufficiently small 0 < €} the vector field € € B(£!, €?)
has transversal intersection of W{(x;,;,) and z = ¥;,,; at (Fi,41,7.) Where F, is close to yzp41.

Choose 0 < &1 < min{e}, ¢}, e — d(¢,£)} so small that for € € B(£!, 1) C B(£, €),Tapyr < Tn
and the vector £(F;,41.¥) is transversal to z = 7,41 for y € [F2p+1: 7. ). Consider the set B(£!,¢;).
If it happens that for every £ € B(£1, €;) the vector field € does not have a saddle connection joining
the saddle points Riyj, Xi,j, along W (Rioj,), Wi (Xi,j,) then the theorem is true with & = ¢! and
e=c

Let £ € B(',¢1) have a saddle connection I'? joining the saddle points x? o1 X7 ;, along
W(x3 ) and W(x?

iojo 11

) respectively. Let

52 = {(7?04-1, Yk): I? crosses z = io+1 at the point (7-30+11 we)}-

As noted before, §2 = {(97 41 ) : 1 < k < 2¢ + 1} where p < g. Observe that (73 +1¥%) € S? 0
that y? = y} for some 2p+1 <1 < 29+ 1. Since there is a saddle connection joining x? ;, and x? ;. '
the orbit through (7,41, ¥3p41) meets 2 = 72, at (1241, 92) = (2,410 UF)- Let €3 = € — d(£, €) and
consider the set B(&, ;) C B(£Y, e1).

Say it happens that I = 2¢ + 1. By a second application of conjecture 3.9, there exists £3 €
B(&% €3) with g3, < Y341 a0d €3(72 41, ) is transversal toz = 42 |, fory € (Y3419 ¥3441) Thus
€3(73 41)y) is transversal toz = 43, ,, fory € [¥3p+1s ¥3441)- Let I' be the portion of the orbit that
starts at (7,411 ¥3p41) and ending at (v3 41, 43,41) Let U =T3U ({23 ,} x (43541 ¥3¢41])- There
are two possibilities as to whether x? ; lies in the interior or exterior of the region bounded by U.

Consider the case that "-3; j, lies in the exterior of the region bounded by U. Note it happens

that lime— _ oo 63((72 41 ¥3441): %) € U while lim,_ o $3((72 41+ ¥3441): 1) € U. It thus follows that
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the orbit through (74,41, 43,41) cannot join with (73 41,¥3,41) to form a saddle connection between
Wi (x3,;,) and Wi (x}, i) ‘

In the case that ﬁ‘ j, lies in the interior of the region bounded by U it is possible to observe
that lime— oo 6%((Y3,41: ¥3¢4+1):t) € U while limi—co ¢%((72 411 ¥3441): ) € U. The orbit through
(7,41 ¥3q41) cannot join with (72 41,¥344,) to form a saddle connection between Wy (x3 ;) and
Wi (x,5)-

As the boundary of U is preserved under small perturbations in the defining constants of &3,
there exists 0 < e3 such that of £ € B(£3, €3) then the vector field £ does not have a saddle connection
joining W (%;,;,) and W{(%;,j,). The theorem is then true for & = £° and ¢ = min{es, e—d(£3, £2)}.

Next, consider the possibility that | < 2¢ + 1. Consider the point (17,41, ¥3441) and the orbit
through this point. Define the set |

T? = {(v3 41 %0) : (R 41 g1 h ) N{z = 72 11} = (41 ) 20+ 1 < E,0 < t4).

Note that if (v2,1,%) € T? then (¥241,tn) ¢ S else (924, ) would not be the last point
of transversal intersection of I'? with z = 4 ,,. Hence the orbit through the point (72 ., ) is
tangent to the line z =43 ;. A

If T2 = {} then (7} 41,¥3441) is the last point for which ¢2((7241)¥3441)1t) meets z =
72,41 for 0 < t. As x? . is a nontransitional equilibrium point there exists 0 < €441 such that
B(x? ;o1 €2¢+41) N {z = 93,41} = {}. It may be taken the €2441 is so small that for £ € B(£2,¢;)
it bappens that B(X?;,,€2¢+1) N {z = 72,,,} = {}. There exist 0 < #304) such that if tag4; < ¢
then ¢2((72 41, ¥3¢41)s?) € B(XZ ;s €2¢+1). Let T2 be the orbit (72 411 ¥3q41 )1 ) for times 0 <
t < t3941. Note that T'? is a compact set for which I N {z = 77 ,;} = (72 41, ¥3441)- By restricting
0 < ¢ it is possible to ensure that for § € B(¢%¢;) it happens that z = ¥2,, and T, only have
the point (7?0_,,1,?,,“) in common. If the vector field £3 € B(£2?, ¢;) has a saddle connection then

consider

S% = {(¥3 41, ) : T3 crosses z = 73 ,, at the point (72 410 w)}

As before, % = {(9341.4) : 1 £ k < 2¢' + 1} where ¢ < ¢'. Consider the point (7 41, ¥3,) with
image (73 41, 4) for some 2+ 1 <1< 2¢'+ 1. If 1 < 2¢' + 1 then the orbit I'? intersects z = %41
at a point other that the image of (v ,1)¥3,41). This is in contradiction to the construction of
B(€%,¢2). Thusl = 2¢' + 1.

If T? & {} then consider the perturbation & of £2 as the vector field with all the same defining

constants as £2 except
»

- p2 2
a1 =0 = HAen
B N2 2

Q; = Q) = pag 412
7o, = 2
o+l = Yig+1 — H
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where 0 < u < m = min{e;, &3/|ad ;11],€2/|0d 2]} is s0 small that T'¥ has only the point
(72, 41+ ¥3,) in common with the line z = 92 ;. Thus T* = {}. If there is a value of uo such that uo
has a saddle connection joining W (x}y;,) and W ( ,-;"j‘) then let £3 = £#0 and €3 < €2 —d(£#, £2) be
so small that for any vector field £ € B(£3, €3) it happens that T = {}. The proof can then proceed
with respect to showing that there is a subset B(&!,¢q) C B(£3, €3) such that if £ € B(£4, €4) then
€ does not have a saddle connection joining W (%i.j,) and W}(%;,j,). If it happens that for every
value of p the vector field £# does not have a saddle connection joining W¥(x, ;) and Wi (x{ ;)
then let £3 = £#1/2 and €5 < €3 — d(£3,£2) be so small that T = {} for vector fields £ € B(£3, e3).
If none of the vector fields in B(£3, €3) has the required saddle connection then the proof is finished
else the proof can proceed with respect to showing that there is a subset B(&!, 4) C B(€3, €3) such
that if £ € B(£*4, ¢4) then £ does not have a saddle connection joinix;g W (iojo) and W{(X;,j,)-
Consider the case that the last point of crossing of the saddle connection I' and the line z = 4,41
should not happen to be a point of transversal intersection. For sufficiently small 0 < u < i1y < €
consider a perturbation of the original s;ector field & to £# where the latter vector field has all the

same defining constants as the former vector field except that

of = a1 - pai, 411

af = a2 = P12
Viot1 = Tio+1 — B
It may be assumed that u is chosen so small that the last point of crossing of any saddle connection
with the line z = 75‘0,,,1 is transversal. Say there exists a value of yo such that the vector field g#o
has a saddle connection whose last point of crossing with the line z = 44, ,, is transversal, then the
proof can proceed as before but within the set B(&, e — d(£#0,€)). K it should happen that for
all values of u the vector fields £# do not have the required saddle connection then consider &4/2,
Choose 0 < ¢,,/, so small that if £ € B(§#:/2,¢,,/2) and the vector field £ has a saddle connection
then the last point of crossing of that saddle connection with the line z = ¥;,,, is transversal. If

none of the vector fields in B(§*1/2,¢,,/;) have the required saddle connection then the proof is

completed, otherwise it reduces to the case at the beginning of the proof. |

Corollary 3.12. Let §{ € G4 and 0 < . There exists § and 0 < ¢’ such that if§ € B(£',¢') C B(¢, €)

then € does not have any saddle connections between distinct saddle points.

PRrooF. For a given vector field £ let #(£) denote the number of saddle connections between distict
saddle points that £ posseses. For a subset S C G4 define N(S) = max{#(¢) : £ € S}. Note that
since S C G4 and any £ € G4 may have at most (n + 1)(m + 1) real equilibrium points then £ may
have at most (n + 1)(m + 1)(2(n + 1)(m + 1) — 1) saddle connections between distinct saddle points,
thus N(s) < (n+1)(m +1)(2(n+ 1)(m +1-1).
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Without loss of generality it may be assumed that 0 < ¢ is so small that B(§,¢) C Gy If
N(B(&:€)) = 0 then the corollary is true for & = £ and € = ¢. Thus let &3 € B(&, €) be a vector field
for which there is a saddle connection joining the points x;, jor Xiy 5, and joining W:{ (Xiojo)s W,:; (%iy4,)
with k}, k} € {1,2}.

Consider B({j,¢€ ~ d(£3,€)) C B(£,¢€). By either theorem 3.8 or theorem 3.11 there exists
€' and 0 < € such that if £ € B(£l,e) € B(E}, e~ d(£3,£)) C B(,¢) then € does not have
a saddle connection through X;,j,, xi,j, and joining W (Ricjo)s Wi (Xi,5,)- Thus N(B(€,€)) <
(n+1)(m+1)(2(n+1)(m + 1) — 1) — 1. K N(B(£!, €1)) = 0 then the corollary is true with £ = ¢!
and € = ;. Otherwise let £ € B(€',€;) be a vector field with a saddle connection through the
points x? . , x? ;. and joining W (xZ5) Wk‘g(x?ajs)’

As before, there is a set B(&2,€;) C B(€3, €2 — d(£3,€1)) C B(€},e1) € B(§, €) such that if
€ € B(£%,¢€3) then the vector field £ does not have a saddle connection through %;,j,, X;,j, joining
H",;‘: (Kiojo)s VV,:; (Riyj2)» mor does it have a saddle connection through the points %;,j,, %;,j, joining
Wi (%), Wis (%isis). Thus, N(B(€,€2)) < (n+ 1)(m + 1)(2(n + )(m +1) = 1) - 2.

Continuing in this manner there is a sequence of sets B(¢*,e:) C ... C B(€}, €;) C B(£, €) such
that if £ € B(€*, ex) then £ has at most (n+1)(m +1)(2(n + 1)(m + 1) — 1) — k saddle connections.
If N(B(&F, ex)) = O then the corollary is true with £’ = £* and € = €. Since 0 < N(B(&*, &) <
(n+1)(m +1)(2(n + 1)(m + 1) — 1) — k then the number of terms in the sequence cannot exceed
k= (n+1)(m+1)(2(n + 1)(m + 1) = 1). The sequence will thus terminate after a finite number
of terms in a set B(£¥, ;) for which N(B(¥, ex)) = 0. The corollary is then true for & = £* and

€ = ¢, |

The following is the main theorem of this paper as alluded to in the introduction. The proof is an

immediate consequence of corollaries 3.5 and 3.12.

Theorem 3.13. Let §{ € G4 and 0 < e. There exists £ and 0 < ¢’ such that if§ € B(£',€') C B(¢, ¢)

then € does not have any saddle connections.
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Figure captions.

Figure 1. This is the phase portrait corresponding to the vector field given by

e[3)= o)+ [ S wa= [ A] - e n- [t [ -2

Figure 2. The equilibrium point x;; and the set A;;j can both be perturbed so that the corresponding
images X;; and A;; do not intersect, thus preserving the nontransitional nature of the original point
x;; and the line 2 = +;. This means that the property of being a nontransitional point is persistent
under small perturbations of the original vector field.

By limiting the amount of perturbation of the equilibrium point and the set A;; with constraints
on the defining constants of the vector field, the nontransitional nature of an equilibrium point can

be preserved.

Figure 3. If it should happen that the point x;, j, is a transitional equilibrium point then a perturba-
tion of thelinez=v;, toz = 7:: changes the nature of x;, ;, to that of a nontransitional equilibrium
point. In contrast to nontransitional points, the transitional nature of a point is not necessarily pre-
served under perturbation of the original vector field. Being transitional is not a persistent property
of equilibrium points. Furthermore, since transitional points can always be perturbed to nontransi-
tional points, the latter property is a denseness property. That is, being a nontransitional point is
generic property.

Given a vector field with transitional points, by carefully manipulating the defining constants
of the vector field, the formerly transitional equlibruium point can be made nontransitional. By
repeating the process to all the equilibrium points results in a vector field that consists only of
nontransitional points. It should be noted that in perturbing a point to be nontransitional that care

must be exercise not to create new transitional equilibrium points.

Figure 4. In this example, the equilibrium points x¢0, X031, X10, x31 have transversal intersection of
their lines, for sufficiently small perturbations to X0, Xo1,X10, X11 the properly transversal nature of
the original vector field is still preserved. A properly transversal vector field is thus preserved under
small perturbations of the original vector field. Being properly transversal is a persistent property

of a vector field.

By contraints on the original defining constants of the vector field, the properly transversal

nature of the vector field is maintained.

Figure 5. The equilibrium point x;;_; has lines that do not meet transversally with the lines of
Xi-1j-1 and X;415-1. By perturbing the equilibrium point Xij—1 to x}j_l, the new equilibrium point
has only transversal intersection of its lines with the points x;_yj_; and Xi4+1j-1. In contrast to
properly transversal vector fields, those which are not properly transversal can always be perturbed

to a vector field that is properly transversal. Being properly transversal is thus a generic property.
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A pair of lines which intersect along their entire lengths can be pertubed to intersect transver-
sally. By perturbing all pairs of lines which do not intersect transversally to transversally intersecting
lines, the original vector field becomes one which is properly transversal. It should be noted that

in perturbing a pair of lines to intersect transversally, that care must be taken so that previously
transversal intersection of lines are still preserved.

Figure 6. '.[‘he vector field £ has a homoclinic orbit at the equilibrium point x;,;, joining the invariant

manifolds W{'xi,j, and W{x;,j,. This is the assumed set-up of the vector field for the proof of the
theorem.

Figure 7. Because of the set formed by I'! and portions of the invariant manifolds Wxi,j, and
W{Xiojo, the vector field £ does not have a homoclinic orbit joining Wx;,;, and Wixiojo-

By perturbing the vector field so that the homoclinic orbit enters a region that it cannot
escape, the orignal homoclinic orbit has been destroyed. This process can be applied repeatedly to
the original vector field to create a vector field without any homoclinic orbits. However, in repeated

applications of the process, case must be taken that new homoclinic orbits are not created.

Figure 8. The vector field £ has a type I saddle connection between the saddle points x;,5, and x;, ;.
This saddle connection joins the invariant manifolds W (x;,j,) and W{(x;, ;,). This is the assumed
set-up of the vector field for the proof of the theorem.

Figure 9. The vector field £2, after perturbation of the vector field £ still has a saddle connection
joining the saddle points x?,;, and x?,;, along the invariant manifolds W (x?,;,) and W} (x?;,).

It is possible that after small perturbation of the vector field that a saddle connection still exists,
as illustrated by this figure. By perturbing a second time it is possible to remove the possibility
of a saddle connection between the original manifolds by forcing the orbit to enter a region from
which it cannot escape nor form the connection between the original manifolds. This process can be
repeatedly applied to ensure that the ensuing vector field does not have any type I saddle connectiops.

However care must be exercised, that in the process new saddle connections are not formed.

Figure 10. The vector field £3, being a perturbation of the original vector field £, does not have a
saddle connection joining the saddle points x? ;) and x? ; along the invariant manifolds W(x? ; )
and Wy (x,;, ). This is because: of the set formed by I'® and part of the line z = 73 The orbit cannot

form a saddle connection along the given manifolds as it cannot escaped the formed region.

Figure 11. The vector field £ bas a type II saddle connection between the saddle points x;,j, and
Xi,j,- This saddle connection joins the invariant manifolds W¥(xi,j,) and W§(x;,;,). This is the

assumed set-up of the vector field for the proof of the theorem.

Figure 12. The vector field £2, after perturbation of the vector field £ still has a saddle connection

joining the saddle points x? . and x? ; along the invariant manifolds W#(x? ; ) and W?(x? . ).
ojo 151 1 1 P40j0 13\ %,
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It is possible that after small perturbation of the vector field that a saddle connection still exists,
as illustrated by this figure. This is a situation analagous to that for a type I saddle connection of
persistence of a saddle connection under a particular choice of perturbation. By perturbing a second
time it is possible to remove the possibility of a saddle connection between the original manifolds by
forcing the orbit to enter a region from which it cannot escape nor form the connection between the
original manifolds. This process can be repeatedly applied to ensure that the ensuing vector field

does not have any type II saddle connections. However care must be exercised, that in the process

new saddle connections are not formed.

Figure 13. The vector field £2, being a perturbation of the original vector field £, does not have a
saddle connection joining the saddle points x,;, and x?,;, along the invariant manifolds W (x3,;,)
and W} (x} ;). This is because of the set formed by I'® and part of the line z = 7 . Unlike the case
in figure 11, the equilibrium point x,?o’-o may be perturbed to x;’-’m-o due to side effects of corollary
3.9. The orbit cannot form a saddle connection along the given manifolds as it cannot escaped the
formed region.
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