
Copyright © 1990, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

INCREMENTAL SYNTHESIS FOR

"ENGINEERING CHANGES"

by

Yosinori Watanabe and Robert K. Brayton

Memorandum No. UCB/ERL M90/76

27 August 1990

INCREMENTAL SYNTHESIS FOR

"ENGINEERING CHANGES"

by

Yosinori Watanabe and Robert K. Brayton

Memorandum No. UCB/ERL M90/76

27 August 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

INCREMENTAL SYNTHESIS FOR

"ENGINEERING CHANGES"

by

Yosinori Watanabe and Robert K. Brayton

Memorandum No. UCB/ERL M90/76

27 August 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California. Berkeley

94720

Incremental Synthesis for
"Engineering Changes"

Yosinori Watanabe and Robert K. Brayton
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley, CA, 94720, USA

August 27,1990

Abstract

The problemofrectifying designincorrectness due to specificationchanges
as well as design errorsofVLSI's is introduced In the light of the practical
significance of developing systems for the automatic rectification, a formu
lationof the rectification problem and a basic approachusing logic synthesis
techniques arepresented. It is shown that the rectificationproblem is closely
related to topics in sequential logic verification and the synthesis for hier
archical networks. The paper provides a review of both topics which are
currently being investigated by Berkeley's Logic Group.

1 Introduction

A goal for computer-aided design (CAD) systems for very large scaled integrated

circuits (VLSI) is to realize near-optimal designs that meet specifications set by the

designer and are competitive with or better than manual designs [3]. The ability

to quickly produce such designs is crucial for the application-specific integrated

circuits (ASIC) market.

Historically, CAD started with developing systems for the analysis of designs

and has evolved toward automatic synthesis. Both analysis and synthesis systems

1

for various CAD areas have been developed and made commercially available.

Indie practical design process ofVLSI's, however, what requires alarge amount
of time is rectification due to design incorrectness. Although the development

of automatic synthesis systems may result in reducing the designer's efforts for

rectification, one sees that the actual designprocessconsists ofanalysis, synthesis,

and rectification. Nevertheless, few systems for rectification are available.

There are two reasons that rectificationis required in designing VLSI's. One

is design errors, the main reason for the rectification so far. Design errors arise lo-

caUy in smallportions ofthe design. Designers try to completethe rectification by

slightly modifying the erroneous part. The otherreason is specificationchanges.

It is usual to encounter changes of the specification in the design process. The

rectification due to such an "engineering change" is generally more complicated

than for design errors since unlike design errors, a large part of the design may

be affected by the change of the specification and it is difficult to find how to

modify the original design. Therefore, in some cases, a change of the specifica

tion forces a redesign ratherthan rectification. Such a redesign is also necessary

if automatic synthesis from a behavioral description to silicon is used, because a

set ofmasks are generated automatically andthe designer is not allowedto touch

the intermediate products of the design. However, in some cases, the behavior

of the redesigned masks is close to that of the original masks, so that it may be

more practical to use the originaldesign with rectification. An automatic system,

which makes the minimal rectification on the original design to meet the correct

specification and functions interactively with automatic synthesis systems, pro

duces the following advantages. First, the designer can obtain rectified designs

without finding the erroneous partor the means ofmodification, andthus both the

designer's efforts and the design time spent on rectification will be dramatically

reduced. Second, automatic rectification will be possible for designs generated by

automatic synthesis systems and thus a set of rectified masks will be obtained as

alternatives to redesigned ones. While thereexists a strongdemand for automatic

synthesis with which correctdesigns are rapidly generated, one cannot ignore the

practical significance of the automatic rectification. Automatic rectification will

become an increasingly important issue as the ASIC market continues its rapid

growth since designing ASIC's typically requires frequent specificationchanges.

We have focused on the automatic rectification from the logic synthesis point

of view. This paper introduces a precise formulation of the rectification problem

which is reasonable enough for practicaluse and leads to related theoretical ques

tions and results.

If one considers the rectification problem in the domain of logic synthesis, the

problemessentiallyrequires the comparison ofthe Boolean functions correspond

ing to the correct andthe incorrect designs. Therefore it is crucial to compute effi

ciently the image of asubset ofthe domain for a given Boolean mapping. Coudert

et al. in [8] have proposed methods for the image computations of Boolean func

tions to enumerate reachable states of finite state machines. The methods have

been applied to verification of finite statemachines [24,8] and have a wide range

of applications for problems which require the state enumeration of finite state

machines [24]. Some examples stated in [24] are verification of asynchronous

circuits for particular protocols [7], testing of sequential faults in non-scan de

signs [10], and computation ofthe initial state after retiming [12]. Hence one sees

that developing efficient methods for image computation is a key issue in logic

synthesis and has been actively investigated in recent years.

The rectification problem requires a technique which synthesizes a Boolean

network with the minimal area whose functionality is compatible with a one-to-

many Boolean mapping that is obtained based on the comparison of the Boolean

functions of the correct and incorrect designs. A one-to-many Boolean mapping

is called a Boolean relation [5]. Boolean relations are a generalization of incom

pletely specified Boolean functions [5, 2]. Although it is well known that don't

cares are a powerful source for optimizing incompletely specified functions [2],

not all aspects of incomplete specification of Boolean functions can be captured

using don't cares. Minimization of Boolean relations helps in deriving smaller

networks which otherwise cannot be obtained. Boolean relations arise in several

contexts, e.g. in synthesis for hierarchical networks [5] and in synthesis of finite

state machines with sets ofequivalent states [13]. An exact procedure forthe min

imization ofBoolean relationshas been proposed [23]. Because of its exponential

complexity, however, the method cannot be applied to large examples. It is im

portantto develop ways ofminimizing Booleanrelations in reasonable time with

reasonable memory space [11].

Thus, the rectification problem is relatedto the two fundamental issues oflogic

synthesis. In the light of the theoretical interest of the rectification problem, we

present what the rectification problem is, how the problem is solved, and how

the problem is related to other topics in this field. In Section 2, the rectification

problem is formulated. Section 3 presents a basic approach for the problem to

show how the image computations of Boolean mappings and Boolean relations

are used. In Section 4 and Section 5, we describe the problems of the image

computation andBoolean relationsrespectively anddiscuss basic approaches and

applicationsmainly being carried out by Berkeley's Logic Group. Development of

an automatic rectification system is discussed in Section 6, in which we provide

an answer to a fundamental question for the rectification problem, i.e. whether

rectification succeeds for a given design. Section 7 concludes this paper.

2 The Rectification Problem

A problem of rectifying design incorrectness is formulated. A typical situation

where rectification is considered is when the designer finds that the behavior ofthe

design needs to be changed after a set of layout masks has been already obtained

in the final stage of the design process. Therefore we suppose that rectification is

made for a combinational logic circuit represented at a gate level corresponding

to a set oflayout masks which have already been obtained.

2.1 Definitions

We begin with some terminology required for the problem formulation.

Definition; Boolean Network

A Boolean network is a directed acyclic graph where each node is a

Boolean variable y, and a representation /; of a Boolean function. A

directed arc from node i to node j exists in the graph if node j uses

the variable */,- explicitly in the representation /,-.

A Boolean network is a multiple level implementation of a set of Boolean

functions. For the purpose of rectification, we consider a Boolean network as one

corresponding to a combinational logic circuit represented at a gate level. In the

rest of the paper, we do not distinguish a Booleannetwork from a combinational

logic circuit or a gate level logic circuit.

Definition: Functional Error

A combinational logic circuit has a functional error if for some as

signment of signals at the primary inputs, the combination of signals

desired by the designer does not appear at the primary outputs after

an infinite interval of time.

We do not consider temporal design incorrectness in this paper. Namely, an

intended behavior of a given circuit is defined as follows.

Definition; Intended Behavior

A combinational logic circuit has an intended behavior if it has no

functional errors.

An intended behavior is generally given by the designer as a design specifi

cation. Recall that functional errors are deteaed at the mask level and are due to

either design errors or engineering changes.

2.2 The Rectification Problem

Ourobjectiveis to obtaina gate level circuit with no functional error by meansof

the minimum rectification. We consider that the rectification made for a given gate

level circuit, if possible, consists of (1) inserting additional circuitrybetween the

gate pins, before the primary input pins or after the primary output pins, and (2)

connecting input pins either to a power supply or ground. We exclude any other

rectification such as changing the number of input pins of gates or changing types

of gates. Here we define a gate pin or a pin as a terminalof a cell corresponding

to the gatethat is facing the routingarea andaninput pin (respectively output pin)

as a pin that is used as an input (output) for the cell. The operations necessary

to realize the rectification we consider above are (1) creating circuitry, (2) cutting

wires, inside the circuit, and (3) connecting a wire from a pin to power supply,

ground,or newly created circuitry. In general, the possibility of rectifications for

a given circuit depends upon its physical design. A chip obtained at the final

stage of the design process is typically so dense that little room is available for

placing additionalcircuitry or for wiring inside the circuit while one may expect

some room external to the circuit in the chip. Therefore, we assume that creating

circuitry and/orwiring are allowed only in the area surrounding the circuit inside

the chip. With this assumption, the rectification considered above is restricted to

(1) inserting additionalcircuitry before the primary input pins or after the primary

output pins, and(2) connectinginputpins eitherto power supply orground. Based

on the assumption, the rectification problem is formulated as follows.

Problem;

Given a Boolean network r\ and an intended behavior, find a least cost

Boolean network 77' with no functional error by

1. creating a Boolean network, 777, driven by the primary inputs

of 77 such that an input of a node in 77, which is driven by some

primary outputof777, was originally connected to aprimaryinput

of r?,

2. creating a Boolean network, 7/0, driven by the primary outputs

of 77, and

3. sticking the minimum number of the inputs of the nodes in 77 to

lorO.

We use as the cost either the number of cubes or the number of literals [3],

depending upon the method of the implementation.

2.3 Related Works

Several methods for the problem ofrectifying functional errors ofa given Boolean

networkhave been proposed [15,21]. A method provided in [15] performs aback

ward traversal for one primary output at a time to detect one gate responsible for

functional errors, followed by computing a set of functions to which the function

of the gate must be changed so that the rectification is completed. This method

works under a single fault assumption. For a multiple fault case, however, strin

gent constraintsarerequiredfor the method to succeed in the rectification. In [21],

a backward rectification method based on the transduction method [20] has been

proposed for single output NOR gatenetworks. Our approach, provided in the fol

lowing section, is novel in the sense that rectification is applied for all the primary

outputs at a time and functional errors are rectified without locating erroneous

gates.

3 Basic Approach

We present a basic approach for part of the rectificationproblem which does not

consider sticking inputs to either 1 or 0. The main reason for this exclusion is

that it is not clear how the stuck inputs affect the functionality of the entire net

work. At present, we have no way to estimate how much additional incorrectness

is introduced by sticking a single input. In addition, we consider attaching a net

work after the primary outputs only if rectification is not completed by means of

a network created before the primary inputs. In Section 6, we introduce a nec

essary and sufficient condition under which the rectification can be completed by

creating a network before the primary inputs only. Creating a network after the

primary outputs is straightforward if also the primary inputs are available, as de

scribed in Section 6. An alternative method which uses only the primary outputs

has not been found. Therefore, our current approachis to find a network with the

least cost which is attached before the primary inputs to complete the rectification

as much as possible, and then to complete the rectification if necessary using an

output network.

Given amultiple output Boolean network, 77, which requiresrectification, let n

be the number ofthe primary inputs and m the number of the primary outputs. Let

t be the number of input lines that are fed by the primary inputs. These lines are

called primary input lines. The introduction of the primary input lines is based on

the observation that typically in achip ormodule, all the primary input signals that

corresponds to the same primary input variable are not driven from the exterior

through the same pin and thus it is possible to assign different signals to pins that

were originally used as the same primary input.

8

Let fW : Bn' -*• B be aBoolean function for the i-thprimary output specified

by the intended behavior and represented in terms of the primary inputs. Namely,

fW is a function which must be satisfied by the i-th primary output in the correct

design. Let gW : Bl -* B beaBoolean function for thei-thprimary output of the

original network 77 andrepresented in termsofthe primary inputlines. Recall that

each primary input line is treated as an independent Boolean variable and there

are t > n of these variables. Finally, for each vertex (or minterm)1 x of the n
dimensional Boolean space Bn, let r(x) be the set of minterms y of B* with the

property that /(,-,(x) = g{i)(y) for i = 1, •••, m. In general, r(x) is a one-to-
many mapping and is called a Boolean relation [5]. Consider aBoolean network

777 with n inputs andt outputswhich is drivenby the primary inputs and feeds the

primary input lines. If for each minterm of the primary inputs, x, the minterm y

obtained atthe primary output stage of 777 is amemberof r(x),men me niinterm

y is applied to the original network 77 to realize the intended functionality /(,HX)
for i = 1,•••, m. Specifically, let h : Bn -* Bt be a multiple output Boolean

function. The function h is compatible with r if /i(x) € r(x) for each minterm

x in Bn. Then our objective is to find a Boolean network 777 with a compatible

function h with the least cost A structure of the rectified network is shown in

Figure 1.

We performed experiments for several examples. Hardware description of a

correctand incorrectdesigns were specified andtranslated into Boolean functions

using BDSYN [22]. Both designs were optimized to multiple level networks by

misll [4]. The incorrect network was mapped to a gate level network by specify

ing alibrary. Then foreachminterm xofBn forwhich rectification was required,

r(x) was computed and the relation r was minimized using a Boolean relation

minimizer [23] to find a compatible function h. A more detailed description of

1In thispaper, we makenodistinction betweenavertex,aminterm andanelementof aBoolean
space.

g(y)

h(x)

LLLLLt

Original Network

tttttttt
Attached Network

TTTTT

f(x)

Figure 1: Structure of the Rectified Network

this approach is found in Section 6. Accordingto the experiments, r(x) is usu

ally a very largeset and thus it is importantto compute and store r(x) efficiently.

This problem is generalized to the problem ofthe image computation for Boolean

relations. We also need a method which minimizes Boolean relations in reason

able time. We now present how these fundamental problems, namely the image

computations and the minimization of Boolean relations, are handled. As previ

ously mentioned, both problems are recognized as important issues in the field of

the logic synthesis because oftheir wide rangeof applications and possible future

impact. Thus they have been actively investigated in the community including

Berkeley's Logic Group. We describe the respective problems in the next sec

tions and focus on solution methods mainly proposed by Berkeley's Logic Group.

Image computations are discussed in Section 4. Section 5 describes Boolean re

lations.

10

4 Image Computations

The efficient computation of the images for Boolean mappings is important for

many algorithms in a wide variety of applications. One such example is the prob

lem of enumerating the set of states reachable from the initial states of a finite

state machine. This arises in equivalency checking between the sequential ma

chines [8], verification of asynchronous circuits for particular protocols [7], and

fault propagation for highly sequential circuits [10]. As we will see in Section 5, a

finite state machine contains a number of equivalent states in general, so that it is

represented in terms ofBoolean relations. Therefore, it is desirable to develop an

efficient way to compute the images for Boolean relations as well as for Boolean

functions.

We first describe the image and the inverse image computations of Boolean

functions, followed by an extension for Boolean relations.

4.1 Image Computations of Boolean Functions

The formal definition of the image or the inverse image of a set by a Boolean

function is given as follows.

Definition: Image of a Boolean Function

Given a Boolean function / : Bn —• Bm and a subset A of Bn, the

image of A by /, denoted /(A), is the set of minterms y 6 Bm for

which there exists a minterm x G .4 such that y = /(x).

Definition: Inverse Image of a Boolean Function

Given a Boolean function / : Bn —• Bm and a subset A of Bm,

the inverse image of A by /, denoted /~l(A), is the set of minterms

x 6 Bn for which there exist a minterm y € A such that y = /(x).

11

We are interested in computing f(A) for given / and A C Bn, or conversely,

computing /~!(^) for A C Bm. Coudert et al originally suggested methods
for this problem [8] and an improved version of the techniques have been imple

mented [24]. The methods employ binary decision diagrams (BDD) [6] to repre

sent Boolean functions. Boolean functions can be manipulated efficiently with the

use ofBDD's. Several techniques ofefficient implementation ofBDD's have been

proposed [1,19]. The BDD based methods are able to perform the image com

putations efficiently. We provide a review of the methods based on the reference

[24].

4.1.1 The Transition Relation Method

The transition relation method requires a BDD operation called the smoothing

operator [18] defined as follows.

Definition: Smoothing Operator

Given a Boolean function f : Bn -+ B and a set or a subset of the

input variablesfor /, x = {xi, •••. Xk}f the smoothing operator of /

by x is defined as

Sx(f) = S^i-S^S^if))-)),

where SXi(g) = gXi + gX'., and ga designates the cofactor of the func

tion g with respect to the literal a.

Note that the smoothing operator is independent of the order of the input vari

ables by which a Boolean function is cofactored. The smoothing of a function is

realized very efficiently on BDD's.

We are ready to present the transition relation method, which computes the

images of Boolean functions.

12

Definition: Consistency Function

Given a Boolean function / : Bn -» Bmy the consistency function

of /, F(x,y), is the characteristic function defined for a subset of

Bn x Bm which consists of pairs of the minterms (x, y) such that

y = fix).

Ifwe denote /, (x), z = 1, • •, m as a Booleanrepresentation of the i-th func

tion of / : Bn —> Bm in terms of the inputvariables {a?i, •••, £„}, then the con-
m

sistency function of/ isrepresented as F(x,y) = JJ(t/t = /,(x)), where yt isthe

i-th output variable defined in Bm and / = g designates the equivalencybetween

/ and g which is realized by an XNOR operation. The consistency functions are

represented in terms of BDD's. In this paper, we make no distinction between a

set and its characteristic function.

The image of a subset A of Bn by /, /(A), is a projection of a set .F(x,y) n

A x Bm on the space Bm. This is realized by means ofthe smoothing operator as

follows since the projection of F(x, y) on the space Bm is obtained by smoothing

the BDD for F(x, y) by the set of the inputvariables x = {x i, •••, xn}.

/(A) = 5x(F(x,y)nA(x)),

where A(x) is the characteristic function of the set A. Hence the image computa

tions of Boolean functions are completed with two BDD operations: an and and

a smooth.

Similarly, the inverse image of a subset A of Bm by /, /_1(A), is obtained as

/-l(A) = Sy(F(x,y)nA(y)),

where A(y) is the characteristic function of the set A and y = {*/i, •••, ym} are

the output variables of /.

13

4.1.2 The Recursive Image Computation Method

The other method for the image computations of Boolean functions employs an

other operator, originally introduced by Coudert et al [8], called the constraint

operator. The operator is a generalizationof the cofactoroperation [2] and thus is

also called the generalized cofactor [24].

The generalized cofactor extends the classical definition of a cofactor of a

Boolean function by a cube [2] to a cofactor by an arbitrary non-null Boolean

function.

Definition: The Generalized Cofactor

Given a Boolean function / : Bn —• I?, a non-null Boolean function

c: Bn —> B, and an orederingof the inputvariables (xi, a*2, • •, xn),

the cofactor of / with respect to c, /c, is the function fc — /(7rc),

where kc is a mapping from Bn to Bn defined as follows:

f x ifc(x) = 1
' ~" I arg min d(x,y) ifc(x) = 0,

where

<*(x,y) = X>,-yt-|2n-''.

The generalized cofactor is defined depending upon a given ordering of the

input variables, which is not a major restriction for an operation on BDD's. The

mapping ttc projects a minterm x to a minterm y in the onset of c which has the

closest distance to x according to the distance d. It is shown that y is defined

uniquely given an ordering of the input variables and hence distance d. If / is a

multiple outputBoolean function, / = {f\, •••, fm }, then the cofactorof / with

respect to c is definedas fc = {(/i)c, •••, (/m)c}-

The generalized cofactor is reduced to the classical cube cofactor if c is a cube,

since y = 7rc(x) is defined regardless of the ordering of the input variables as

14

function cofactor(f,c)

begini

if(c = 0) return error,

if(/ =:1) return 1;

if(/ =:0) return 0;

if(c = 1) return f;

if(cxr = 0) return cofactor(/xl, cx,);
if (cT, = 0) return cofactor(/ '̂) ^Xl)*

returnixi cofactor(/Xj,cXl) + xi cofactor(/^, Cxr);
end

Figure 2: The Generalized Cofactor Algorithm

follows:

1 if a: = 1 and xt = 0

Vi = I 0 if c,= 0 and Xi = 1
Xi if Ci = 2 or Ci = Xi.

Here Xi and t/, is the value ofthe i-th variable of the minterm x and y respectively

while Ci is the value of the i-th variable of the cube c; c, = 0 if the i-th variable

appears complemented in c, c,- = 1 if the i-th variable appears notcomplemented

in c and c, = 2 if the i-th variable does not appear in c.

An algorithm for the generalized cofactor with BDD's is shown in Figure 2.

The algorithm takes as inputa BDD for / anda BDD for c, wherethe ordering of

theinput variables is identical, andreturns aBDD ofthecofactor of / withrespect

to c. The properties of the classical cube cofactor which the generalized cofactor

also preserves are provided in the reference [24].

Using the generalized cofactor, the image of a Boolean function is computed

recursively. The method is called the recursive image computation method. For

15

a given multiple output Boolean function / : Bn -* Bm and a subset of Bn9 A,

we want to compute the image of Aby /, /(A) (also denoted image(f, A)). Let

c : Bn —• J5 be a Boolean function such that c(A) = 1 i.e. the characteristic

function for A. Then the range of the cofactor of / with respect to c, fc(Bn) is

identical with /(A) since /c(Bn) = f(7rc(Bn)) and7rc(B") is the onset of c which

is A. Therefore,the problemof computing the image of A by / is reducedto the

problem of computing the range of fc.

Let us denote g = {gi, ••• ,gm} as the cofactor of / with respect to c. Our

problem is to compute the range of g. Let {y\, •••, ym } be the set of the output

variables of g. Then due to the fact that

range(g) = yiimage({f2, •••i/mK/f^l)) + y[image({f2, •••. /nJi/f^O)),

we obtain the range of # defined recursively as

range(g) = y\range({(f2)h,- ••, (/„,)/,}) + y/iranpe({(/2)/1s •••, (/m)/,'})•

Hence, the method performs cofactoroperationsrecursively on the BDD's to com

plete the image computation.

4.2 Image Computations of Boolean Relations

We now introduce a method for the image computations ofBoolean relations. We

consider the situationprovidedin Section3. Namely, for a given mintermx6 5n,

let r(x) be a setofminterms y such that /(,,(x) = g{i)(y) for i = 1,•••, m. The
mapping r is a Boolean relation from Bn to B*.

Definition: Image of a Boolean Relation

Given a Boolean relation r : Bn ^ Bl and a subset A of £n, the

image of A by r, r(A), is the set of minterms y € B* for which there

exists a minterm x G A such that y € r(x).

16

Definition; Inverse Image of a Boolean Relation

Given a Boolean relation r : Bn -+ Bl and a subset A of £', the

inverse image of A by r, r_1(A), is the set of minterms x G Bn for

which there exists a minterm y G A such that y G r(x).

The image or the inverse image computations for Boolean relations are com

pleted by extending the transition relationmethod. Weneed to define a consistency

function of a Boolean relation.

Definition; Consistency Function

Given a Boolean relation r : Bn —> B\ the consistency function of r,

R(x, y), is the characteristic function defined for a subset of Bn x Bf

which consists ofpairs of the minterms (x,y) such that y G r(x).

The consistency function is represented in terms of a BDD as i?(x, y) =
m

JJ(/(,)(x) = g^(y)). The image ofa subset AofBn by r is a projection of

a set R(x,y) C\ A x Bl on the space B*. Therefore, we obtain

r(A) = 5x(i?(x,y)nA(x))?

where x is a set of the input variables and A(x) is the characteristic function of A.

Note that if in particular A is a minterm in Bn, c, then r (A) is computed by taking

the cofactor of i?(x, y) with respect to c: r(A) = {R(x, y))c.

Similarly, the inverse imageof a subset A of Bm by r, r~l (A), is obtained as

r-l(A) = Sy(fl(x,y)nA(y)).

where y is a set of the output variables of r.

17

zlna+b'+c* z2=a'+b+c*

N'l

x yx I..b^l^p. a^Nr j

Figure 3: Example of the Insufficiency of Don't Care Sets

5 Boolean Relations

In this section, a review of Boolean relations is provided. We describe insuffi

ciency of don't cares to represent incompletely specified Boolean functions and

claim that Boolean relations area generalization ofincompletely specified Boolean

functions. Both exact and heuristic algorithms for minimizing Boolean relations

are presented.

5.1 Boolean Relations

Figure 3 is an example to show that don't cares do not provide enough informa

tion for optimally simplifying an incompletely specified Boolean function. The

subnetwork Ari can be simplified to iV{, as shown in the figure, without affecting

the functional behavior of the primary outputs zi or z2.

If don't cares are sufficient to represent incompletely specified Boolean func-

18

tions, then Ni must be simplified to N[using don't cares associated with j/4 and

2/5, denoted DCa, and DCs respectively. In the simplification which eliminates y2i

the observability don't care [3] for y2 needs to contain a'b'. The don't care for y2,

DC2, is obtained as

DC2 = (((ft)»s(F4)^) + 2?C4)(((ft)«s(F5)^) + I>C5)
= (6c+ Z>C4)(ac + DC5),

where F4 and F3 are representations of Boolean functions for 2/4 and ys, respec

tively. Therefore, the only way that DC2 contains a'b' is that both DC4 and DCs

contain a'b'. This implies that y4 can be simplified independently of ys and thus

y4 = yl + y2 is simplified to t/4 = yi = be. However, this simplification leaves

ys = ac + a'b' and the functionality of the primary output z2 would be incorrect.

Hence, the simplification from N\ to N[cannot be completedonly with don't cares

associated with the N\.

Let us consider a general case to find an expression which provides all the

conditions under which a Boolean function is simplified. Given Boolean func

tions / : Bp —• Bn and g : Bq —• Bm with n < q, consider a function

h = ^(/(x),xp+i, •••. xr), where r = p + q - n and g is a completely speci

fied function. Then, h is a Boolean function from Br to Bm.

For a given minterm of Sr, x = {xi, •••, xp, xp+i, •••, zr}, let r(x) be a set

of minterms y € Bn such that#(y. Zp+i, •••, xr) = h(x). In general, r is a one-

to-many mapping from Br to 1?" and is a Boolean relation. It is shown in [5] that

the Boolean relation r provides all the conditions under which / : Bp —> I?n is

altered to another function /" : Bp -> Sn without affecting the functionality of fc.

Note that a Boolean relation r is reduced to an expression using don't cares only

if r(x) can be expressed as a single cube for each minterm x G Br. In this sense,

we see that don't care expressions are a special case of Boolean relations.

19

HIzO

Comparator

'fc2 xl xO

Adder

tl to %1 U

Figure 4: Hierarchical Network

5.2 Applications of Boolean Relations

As we have seen in the previous section, Boolean relations are a generalizationof

incompletely specified Boolean functions. Boolean relations arise in any context

which manipulates incompletely specified Boolean functions.

5.2.1 Hierarchical Networks

A direct application ofBoolean relations is hierarchicalnetworks where a network

withits function g is driven by another network / andotherinputs {xp+1, •••, xr}.

A simple example is a comparatordrivenby an adder as shown in Figure4 [3,23].

In Figure 4, the function of the adder, / : B4 -* B3, is / = a + 6, while the

function of the comparator, g : B3 -* B2, is given by:

z = <

01 ifa + 6<3

00 ifa + 6 = 3ora + 6 = 4

10 ifa+6>4.

Therefore, a^xi^o = {000,001?010} are not distinguished by the comparator. A

Boolean relation associated with the adder is shown in Table 1.

20

a\aobibo #2£i£o

0000 {000,001,010}
0001 {000,001,010}
0010 {000,001,010}
0100 {000,001,010}
1000 {000,001,010}
0011 {Oil,100}
0101 {000,001.010}
0110 {011,100}
1001 {011,100}
1010 {011,100}
1100 {Oil,100}
0111 {Oil,100}
1011 {000,001,010}
1101 {Oil, 100}
1110 {000,001,010}
1111 {000,001.010}

Table 1: Boolean Relation of the Adder

The minimized representation of / by using only don't cares is shown in Ta

ble 2, while the minimization of the Boolean relation results in the smaller repre

sentation as shown in Table 3.

5.2.2 Finite State Machines

Another application of Boolean relations is finite state machines. Finite state ma

chines may contain a numberofequivalent states. Namely, for a given current state

and a set of inputs, multiple states are implied by the machine. Usually equivalent

states are removed using state minimization techniques. However, this can lead to

suboptimal results. Equivalent states can be represented in terms ofBoolean rela

tions and the minimization or the restracturing of the machine based on Boolean

21

a\aobibo X2X\Xo

11-0 Oil

-110 Oil

10-1 Oil

-Oil Oil

-111 100

11-1 100

111- 010

1-1- 100

Table 2: The Minimized Representation using Don't Cares

aiaobibo X2X\Xq

0-1- 010

1-0- 010

1-1- 100

1 001

-1-- 001

Table 3: The Minimized Representation using Boolean Relation

relations may result in a smaller machine which otherwise could not be achieved

[14]. In implementing a finite state machine, it is crucial to remove redundancies

to obtain a highly testable circuit. A fault that causes interchanges and/or creates

equivalent states is called an equivalent sequentially redundant fault (SRF). It is

shown mat equivalent-SRF's are removed through logic minimizations based on

Boolean relations and an algorithm for this problem has been proposed [9].

22

5.3 Minimizing Boolean Relations

The problem of minimizing Boolean relations is to find a Boolean function, /,

compatiblewith a given Boolean relation r such that the minimum representation

of / is minimum among all the functions compatible with r. Recall that a Boolean

function / : Br -* Bn is compatible witha Boolean relationr if /(x) G r(x) for

each minterm x G BT. An exact and a heuristic approach for the problem have

beenproposed [11,23]. Both approaches arebased on the two level minimization.

We provide a brief review ofboth methods.

53.1 Exact Minimization of Boolean Relations

The observation that the minimum implementation of a Boolean relation in dis

junctive form consists of prime implicants of some compatible function leads to

the exact minimizer [23], which is based on an extension ofthe Quine-McCluskey

method [17]. For a given Booleanrelation from Br to Bn, a prime implicant of

a Boolean function compatible with the relation r is called a c-prime of r. The

first stepis to generate all the c-primes. Insteadof finding all the compatible func

tions and generatingprimes for each function, all the c-primesof r can be derived

by means of a type of iterated consensus operation startingwith the set of all the

implicants whose inputpart is a minterm x6Br and the outputpart is r(x). Af

ter the set of the c-primes {ci, •••, cj is obtained, a compatible functionwith the

least cost is chosen. This is formulated as a 0 - 1 integer linear programming
t t

problem: minimize C = Ylwiai subject to Vx 6 Br : f{x) = YLQJci e rM>
j=i i=i

where aj 6 B and Wj is a cost of cj.

LetT bea matrix representation of aBoolean function of {a i, •••, a *}, which

is the product of the 2r constraints shown above. Then the problem is reduced to

the following problem:

Find a subset of columns of T, 5, with the minimum cost C such that

23

for each row T,, either

1. 3j : Uj = 1 and Tj G S or

2. 3j : Uj = 0 and Tj £ 5,

where Tj is the j-th column of T.

This is a binate covering problem [23] and the minimum representation of the

Booleanrelationis obtainedby solvingtheproblem. Thisprocedureis exponential

both in terms of CPU time and memory space required to store c-primes.

5.3.2 Heuristic Minimization of Boolean Relations

The heuristic Boolean relation minimizer [11] is based on an extension ofEspresso

[2]. The idea is that starting from a Boolean function compatible with r, the ex

pand, irredundant, and reduceprocedures are iterativelyapplied to find a compat

ible function with less cost until no improvement is observed. The method makes

use of test pattern generation techniques in each procedure. The first step is to

create a two level AND-OR network, called the interconnected network, in which

a subnetwork for an initial function compatible with r, driver PLA, drives another

network, driven PLA, so that the given relation is realized. The problem is to al

ter the driver PLA without affecting the functional behavior of the interconnected

network. Then the expand procedure is applied to the driver PLA in which a re

dundant literal is removed for each cube. Unlike Espresso, however, the function

of the driver PLA does not have to be preserved as long as the new function is

still compatible with r. Therefore, in the domain of Boolean relations, a literal is

redundant if the removal of the literal does not affect the functionality of the inter

connected network. Thus, the expand procedure removes a literal if a stuck-at-1

fault for the literal is undetectable in the interconnected network. Followed by the

expand procedure is the irredundant procedure which removes redundant cubes.

24

Similarly to expand, a cube in the driver PLA is redundant if the removal of the

cube does not affect the functionality of the interconnected network. Therefore,

from the point of view of the test pattern generation, an AND gate in the driver

PLA can be removed if a stuck-at-0 fault at the output of the gate is undetectable

in the interconnected network. The reduce procedure, which follows the irredun

dant procedure,tries to make eachprime cube non-prime, hoping that the resulting

representation may lead to a better prime and irredundant representation after re

applying the expand and irredundantprocedures. Specifically, for each AND gate

in the driver PLA, a literal which is not connected to the gate is added one by one

as input of the gate to see if a stuck-at-1 fault on the literal is detectable. Then the

literal is retained only if it is undetectable in the interconnected network. These

proceduresare iterated aslong as the cost of the representation for the driver PLA

is decreasing. The experimental results show that this method works in reasonable

time even for large examples.

6 Development ofan Automatic Rectification System

A preliminaryversion of an automaticrectification system has been implemented

as a package of misll [4]. In this section, we discuss the overall flow of the rec

tification process. We also discuss some heuristics used to keep the memory re

quirements small, and some results which make the proceduremore efficient. The

system takes as input two Boolean networks corresponding to the correct and in

correct designs. A modified logic verification algorithm [16] is used to find a set

of minterms of Bn, denoted M, for which rectification is necessary. M is rep

resented in terms of a BDD. Note that if a minterm x G Bn is not in M, then

the original network completes the correct result. In order to keep the Boolean

relation small for representation and use in the Boolean relation minimizer, we

construct a Boolean relation, r, which is a restricted form of the one introduced in

25

Section 3. Specifically, r is defined as follows:

, x f (y € Bl\ /W(X) = flfW(y)t- = i,..., m} ifx GM
r(x) = \

(y such that the value of jr, is equal to the value of x, ifx £ jlf,

where x, is a primaryinput originally connected to the primaryinput line yj.

We now formalize this construction and give a procedure for creating r. The

consistency function, 5(x, y), oftherestricted Boolean relation r is computed as
follows. Let w(xi)t for each primaryinputx„ be a set of the variables of the pri

mary input lines that were originally connected to .t,. Let W be a set of minterms

of Bl such that for each z,, all the variables in w(xi) take the same value. In other
n

words, Wis represented as W= JJ (JJ t/j? = */*)• Then Risgiven by the
«=1 yityfc€u?(x,)

union of R n M x £' and RnM' x Wt where M' is the complement of M and R
m

isa consistency function defined as R= II(/(,)(X) = 0(i)(y))- T^e consistency

function R is represented in terms of a BDD as R = RM 4- RW. In practice,

instead of computing r(x) for each x G Bn, we first compute R(x,y) and then

obtain r(x) by taking the cofactorof R withrespectto each minterm x. Note that

the fundamental Boolean operations such as AND or OR, as well as the cofactor

operation are completed very efficiently on BDD's. Once r(x) is determined for

all x, it is minimized by externally calling the exact Boolean relation minimizer

[23] to obtain an attached network before the primary inputs.

Note that if r(x) is empty for some x G M9 then there is no hope to complete

rectification by attachinganetworkbeforetheprimaryinputs only. Thepossibility

of the rectification is checked by the following:

Theorem 6.1 Given a Boolean relation r : Bn -+ Bl and a set AC. Bn, there

exists a minterm x G A such that r(x) = <j> ifand only if A g r~l(r(A)).

Corollary 6.1 A set of minterms x of A such that r(x) = 6 is given by A n

(-r-MrfA))).

26

Hence, the rectification is completed by means of the network attached before

the primary inputs if and only if M is contained in r~l(r(M)). Note that this

check is done very efficiently by the transition relationmethod in the early stage

of the rectification process.

If a minterm x such that r(x) = <j> exists in M, the system sets r(x) in the

same way as the case where x $ M. Namely, according to the above corollary,

M is replaced by M n r~l(r(M)). It then creates the inputnetwork rjj as above

and creates a network rjo after the primary outputs of the incorrect network r\ as

follows. For eachprimary output zt? of rj, i = 1,•••, m, let Ei (respectively /,-) be a

set ofminterms ofthe primary inputs,x, suchthatr(x) = q> andmust be excluded

from (respectively included in) the on-set of the function of r, to complete the

rectification. Ei and 7, are obtained as BDD's when M is computed. Then r}0 is

anm outputnetworkwherethe function of the i-th outputis given by (z{ + /,)£-.

Finally, the system produces the two networks m and rjo as output. In practice,

our limited examples have not led to a case where a network after the primary

outputs was necessary.

Currently this method is exponential both in CPU time and memory space due

to the exponential complexity of the exact minimizer of Boolean relations. For

example, the Booleanrelation minimizerrequires that r(x) is explicitly given for

each minterm x in a table format. Thus to be truly practical, it is desirable to

obtain a BDD based heuristic minimizer for Boolean relations. We are presently

evaluating the method in [11].

7 Conclusion

We have introduced the problem ofrectifying design incorrectness caused by spec

ification changes and/or design errors. A problem formulation and a basic ap

proach for the problem have been presented. A necessary and sufficient condition

27

has been derived under which the rectification can be completed by means of a

network attached before the primary inputs. We have discussed the close rela

tionship between the rectification problem andthe image computation ofBoolean

mappings as well as the minimizationof Boolean relations. Current results for

both issues show that the methods proposed so far requirevarious improvement.

Specifically, in the image computations, the BDD sizes for the consistency func

tions must be kept small during the operation. In the minimization of Boolean

relations, we need a heuristic method which results in small representations com

parable to the exact procedure. The development of computer-aided-rectification

(CAR) ofVLSI's will depend upon the continuing development of these related

and important problems.

8 Acknowledgements

The authors wish to thank F. Somenzi for providing a program for Boolean rela

tion minimization. Helpful discussions with A. Ghosh andH.Touati aregratefully

acknowledged. This researchis supportedin partby the NationalScience Founda

tion and the Defense Advanced Research Projects Agency under contractnumber

NSF/DARPA-MEP-871-9546.

References

[1] K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient Implementation of a

BDD Package. In 27th ACM/IEEE Design Automation Conference, pages

40-45, Orlando, June 1990.

[2] R. K. Brayton, G. D. Hachtel, C. McMullen, and A. Sangiovanni-Vincentelli.

Logic Minimization Algorithmsfor VLSI Synthesis. Kluwer Academic Pub

lishers, Boston, 1984.

28

[3] R. K. Brayton, G. D. Hachtel, and A. Sangiovanni-Vincentelli. Multilevel

Logic Synthesis. Proceedings ofThe IEEE, Vol. 78(No. 2), February 1990.

[4] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang. MIS:

Multiple-Level Logic Optimization System. IEEE Transaction onComputer

AidedDesign ofIntegratedCircuits and Systems, Vol. CAD-6(No. 6):1062

-1081, November 1987.

[5] R. EL Brayton and F. Somenzi. Boolean Relations andthe Incomplete Speci

fication ofLogic Networks. In International Conference on VeryLarge Scale

Integration, Munich, August 1989.

[6] R. E. Bryant. Graph Based Algorithms for Boolean Function Manipulation.

IEEE Transactions onComputers, Vol. C-35(No. 8):677-691, August 1986.

[7] J. R. Burch, E. M. Qarke, K. L. McMillan, and D. L Dill. Sequential Circuit

Verification using Symbolic Model Checking. In 27th ACM/IEEEDesign

Automation Conference, Orlando, June 1990.

[8] O. Coudert, C. Berthet, and J. C. Madre. Verification ofSequential Machines

Based on Symbolic Execution. InProceedings oftheWorkshoponAutomatic

Verification Methodsfor FiniteState Systems, Grenoble, France, 1989.

[9] S. Devadas, H. K. Ma, A. R. Newton, and A. Sangiovanni-Vincentelli. Irre

dundant Sequential Machines via Optimal Logic Synthesis. IEEE Transac

tions on Computer Aided Design, pages 8-18, January 1990.

[10] A. Ghosh, S. Devadas, and A. R. Newton. Test Generation for Highly Se

quential Circuits. InlEEE InternationalConference on Computer-AidedDe

sign, pages 362-365, November 1989.

29

[11] A. Ghosh, S. Devadas, and A. R. Newton. Heuristic Minimization of

Boolean Relations using Testing Techniques. In IEEE International Con
ference on ComputerDesign, Cambridge, September 1990.

[12] C. E. Leiserson, F. M. Rose, and J. B. Saxe. Optimizing synchronous cir

cuitry by retiming. In R. Bryant, editor, 3rd Caltech Conference on Very

Large Scale Integration, pages 87-116,1983.

[13] B. Lin and A. R. Newton. Restracturing State Machines and State Assign

ment: Relationship to Minimizing Logic Across Latch Boundaries. InInter

national Workshop on Logic Synthesis, May 1989.

[14] B. Lin and F. Somenzi. Minimization of Symbolic Relations. In IEEE In

ternationalConference on Computer-Aided Design, November 1990.

[15] J. C. Madre, O. Coudert, and J. P. Billon. Automating the Diagnosis and the

Rectification of Design Errors with PRIAM. In IEEE International Confer

ence on Computer-Aided Design, November 1989.

[16] S. Malik, A. Wang, R. K. Brayton, and A. Sangiovanni-Vincentelli. Logic

Verification using Binary Decision Diagrams in a Logic System Environ

ment. In IEEE International Conference on Computer-Aided Design, pages

6-9, November 1988.

[17] E. J. McQuskey Jr. Mirdmization ofBoolean Functions. Bell System Tech

nical Journal, Vol. 35:1417-1444, November 1956.

[18] R. McGeer. On the Interaction ofFunctional and Timing Behavior ofCom

binational Logic Circuits. PhD thesis, U.C. Berkeley, November 1989.

[19] S. Minato, N. Ishiura, and S. Yajima. Shared Binary Decision Diagram

with Attributed Edges for Efficient Boolean Function Manipulation. In 27th

30

ACM/IEEE Design Automation Conference, pages 52-57, Orlando, June

199a

[20] S. MurogaandT. Ibaraki. SynthesisofNetworks with aMinimum Number of

Negative Gates. IEEE Transactions ofComputers, Vol. C-20:49-58, January

1971.

[21] S. Muroga, Y. Kambayashi, C. H. Lai, andJ. N. Culliney. The Transduction

Method - Design ofLogic Networks based on Permissible Functions. IEEE

Transactions ofComputers, 1989.

[22] R. B. Segal. Bdsymlogic description translator bdsim:switch-level simula

tor.TechnicalReport UCB/ERL M87/33, University ofCalifornia,Berkeley,

May 1987.

[23] F. Somenzi and R. K. Brayton. An Exact Minimizer for Boolean Relations.

In IEEE International Conference on Computer-Aided Design, November

1989.

[24] H. J. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangiovanni-

Vincentelli. Implicit State Enumeration of Finite State Machines using

BDD's. In IEEE International Conference on Computer-Aided Design,

November 1990.

31

