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THE IDENTIFICATION OF PSEUDO-GRADIENT VECTOR FIELDS. t

Robert Lum AND Leon O. Chua. tt

Abstract
A vector fleld is called pseudo-gradient if it is either the composition of a matrix with
a gradient vector field or under composition with a matrix becomes a gradient vector
field. Of particular interest are those pseudo-gradient vector fields formed from the
composition of a matrix with a gradient vector field. Such vector fields are especially
amenable to construction as electronic circuits.

In this paper, the identification of such vector fields is completed for the cases
when the matrix is either invertible, invertible symmetric, symmetric positive definite
or diagonal positive definite. In the process of such identification, a decomposition
of the original vector field as the composition of a matrix and a gradient vector field
will ensue. The algorithm for identification is sufficiently deterministic to be fully

implementable as part of a larger software package dealing with electronic circuits.

t This work is supported in part by the Office of Naval Research under Grant N00014-89-J-1402.
tt The authors are with the Department of Electrical Engineering and Computer Sciences, Uni-
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§0. Introduction.

In the paper(3], “Invariance properties of continuous piecewise-linear vector fields,” several different
types of vector fields were presented. For some of these types of vector fields necessary and sufficient
conditions were imposed for their identification. However, one large and important class, pseudo-
gradient piecewise-linear vector fields, had unanswered questions to whose resolution this paper is
addressed.

The particular question that concerns this paper considers the decomposition of a piecewise-
linear vector field as the composition of a matrix, either invertible, invertible symmetric, symmetric
positive definite or diagonal positive definite, and a gradient piecewise-linear vector field. Thus,
it is the identification of a psuedo-gradient vector field for which there is a decomposition with a
matrix that is either invertible, invertible symmetric, symmetric positive definite or diagonal positive
definite.

Resolution of the above question allows the quick and efficient identification of piecewise-linear
vector fields whose electronic implementation is less complicated than the general piecewise-linear

vector field but not as simple as the gradient piecewise-linear vector field.

$1. Definitions.

In this section the definitions of the different piecewise-linear vector fields are presented.

Definition 1.1. A continuous piecewise linear vector field £ in n independent variables is given by

t
Ty ay bu ... bz m | @1 Bi z)
Sl|=]:]+]: : N : i
z «a b o0 b z j=1 ; ; z
n n nl nn n Qjn Bjn n

where 0 < o}y +...+al,, 0< f% +...+ 3%, for j = 1...m. Henceforth, continuous piecewise

linear vector fields will be called vector fields.

Definition 1.2. The vector field £ is a gradient vector field if there exists a function G such that
T z
£l | =VGE
Ty Zn
g%(zl, .o -93:")

gf:(:cl, ceerZp)

Definition 1.3. A pseudo-gradient vector field &, is a vector field for which there exists a matrix

X and gradient vector field ¢ such that either (X o £)(x) = ¢(x) or £(x) = (X 0 ¢)(x).
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Definition 1.4. Given a matrix A, define the set
Pg(A) = {X: XA = A'X!)}.
The matrix X is such that XA is a symmetric matrix.
§2. Rejoiner to [3].
The following are results from [3) that will be used in this paper.

Lemma (3] 3.11. Considering a matrix X written in the form of a n x n-tuple

-xll-

Zin

Tnl

bxﬂﬂ L

there exists a finite set of vectors vy,...,vp € R**" such that
Pg(A)={tivi+...+tpvp:ty,...,t, ER}

ProoF. To solve the equation XA = A*X! is the same as solving

n n

Z Z1kGk1 = Z Ar1Z1k
k=1 k=1

n n
lekakn = E Qk1Znk
k=1 k=1

n n
PRENT I P
k=1 k=1

n n
Z TnkQkn = Z GknTnk
k=1 k=1

which can be rewritten in the form

F 0 0 0 0 7 -2:11- -0 7
Q1n [ ; Jp eve —aA11 ... —Qg) Tin 0
—@ip ... —Gpp ... G11 ... Gp1 Tal B 0

L (; cee (; e (; e 6 ] _x:"‘_ L(.).



Thus, X € Pg(A) if and only if it solves the above equation. This means that

-1111 -

Lin

Tn1

L Lnn J

is in the kernel of the matrix in the right-handside of the above equation. By linear algebra, the
kernel is a linear subspace of R"*" which can written as the span of the linearly independent vectors

V1y...,Vp. Thus,

Pg(A):{tlvl+...+t,,v,:t1,...,t,€3?}. [ |

Lemma [3] 3.12. Given two linear subspaces spanned by the vectors wy,...,v, and wy,..., W,
respectively, the intersection of the two subspaces is given by the span of some vectors w, ..., u,

with r < p, q.

ProoF. Let x € {t1v1+...+t,,vp:t1,...,t,,€R}ﬂ{slw1+...+sqwq:sl,...,sqea}. Then

F 4y T "0
1 0

[Visee oy Vo Wiy ooy Wyl _:1 = 1o
._SQ.J ..0..

By linear algebra, the solution for ¢4, ..., tpy —S1y...y —84 is in the kernel of the matrix in the left of

the above equality. Let the kernel be spanned by the vectors y!,...,y". Thus,
t) n
tp yp
from which it follows that a spanning set of vectors for the intersection of the two subspaces is given
by
Y ¥
[ul,...,u,]z[vl,...,vp] :
Yp oo Yh
Without loss of generality, the vectors uy,...,u, may be assumed to be independent and form
a basis. The dimension of the intersection cannot exceed the dimension of the subspaces that it

intersects, thus r < p, q. |



Theorem (3] 3.13. Let £ be a vector field of the form

1 ay bir ... bin [ m | @i Binl' =
i)=Y Pl
Tn Qan bn1 ... band Lz, =t aj, Bin Tn
There exists a matrix X such that (X o £)(x) is a gradient vector field if and only if
by ... bia m @j1fi1 ... @j1Bjn
XePg| | : SN Neef | :
bar ... ban j=1 ainfin ... @jnbin

PROOF. Assume that there exists a matrix X such that (X o £)(x) is a gradient vector field. As in

the proof of theorem(3] 3.2, it is necessary and sufficient that
bll oo bln
x| : :
bnl s b”"

ai1Biy ... aj1Bjn

and

x . .
ajn/-;jl ajnﬂjn

to be symmetric matrices for (X o £)(x) to be a gradient vector field. Thus

by ... bin m ai1Bin ... aj1fBin
XePg| | : 1IN NP : ; : [
j=1

b,,l e b,m O!jnﬂjl e ajnﬁjn



§3. Auxiliary results.

The following are some auxiliary results needed to ensure that the alogrithms to be presented can
indeed be implemented in a deterministic fashion. Unlike existence proofs where it is sufficient
to demonstrate validity of a claim, constructive proofs are much more useful in the design and
implementation of functional algorithms.

The first two results deal with properties of polynomials while the rest deal with symmetric

matrices.

Definition 3.1. Let a € (IN U {0})*, then

k
] = Zai

i=1

and

a — .0 [~
X" =2, ...2.".

Proposition 3.2. Let
r
flz)) = i
i=0

be a polynomial in the variable =, of degree r with c, # 0. There exists y; # 0 such that fln) #0.

PROOF. If 0 = r then let = 1. In this case, f(y1) = co # 0. Assume that 1 < r, then

r—1
f(z1) = crel + Z c;z’i.

i=0

It may be assumed that ¢, > 0, otherwise consider —f(z,) instead of f(z;).
Let
M = max{|c;|:i=0,...,r—1}
Mr+1 }

y1 = max{1,
Cr

Then

r—=1
Fy) = eyl + D cinh
i=0
r—1

2> cry{ -M Zy;
i=0

> ey — Mryp™!
= ¥~ Nerps — M)

> 0. [ |
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Proposition 3.3. Let

r

flz1y..ozp) = Z Z Cax?®

i=0 la)=r
a€(INU(0})k

be a polynomial in k variables of degree r with cq # 0 for some |a| = r. There exists y;,...,yx # 0
such that f(y1,...,yx) #0.
PROOF. If 0 = r then let y = ... = y; = 1. In this case fQ@,...,1) = ¢o....,00 # 0. Assume that
1< r, then
r=1
f(zry..y2p) = Z cax"+z (E cax") .
laj=r i=0 \Jaj=i

Consider the nontrivial homogeneous polynomial given by

9(21y.ey2i) = Z caX®.

jal=r

Define new variables y,...,yx by y; = 3(1'“)'-‘. Then g(y1,...,y&) = h(z1) is a polynomial in z,

of order at most #(r + 1)*~1. By proposition 3.2 there is a value y1 # 0 such that A(y;) # 0. Then

the values y, ..., yg'“)k—l # 0 satisfy g(y1,..., yg"“)h-l) = K # 0. It may be assumed that X > 0,
otherwise consider —f(zy,...,z) instead of f(z1y.. . 2k).
Let
M = max{|ca| : |a| = 0,...,r =1}

e=max{|y|:i=1,...,k}

and choose '
A= ma.x{l, :1?-, Il—, (M(—"Z-’:sz)'re"l + 1)}

Then

r-1
(A, ..., Ayi) = Z ca(Ay)® + Z (Z ca(’\y)a)

|la|=r 1=0 \|a|=¢
r—1
= A" z cay°+z z caAiya
lal=r i=0 \|a|=i
r—1 i
2NE-MY [ Y aiye
i=0 \|a|=i
r—1
"R A itk—1Y,,;
>AK Mg( b1 ),\e
(r+k-=2) -1.r-1
> r - €M T r
>ANK-M k=1 rAT" e
yre1 . ’(r+k—2)! ,._1)
=A (/\Ix M =) re
> 0. |



Proposition 3.4. Let {wy,..

is symmetric if and oaly if

PROOF. An element

is symmetric if and only if

.y Wq} be a basis for a linear manifolds of matrices. An element

9
_s_ TiW;

i=0

iz.—(w; -wi)=0.

i=0

q
PIERL

i=0

i=0

Proposition 3.5. Let the given symmetric matrix be

Define the symmetric submatrices

¥nn ... Yin

Yo=| ! :
Yn1 Ynn
Y1 Yii

Yir .. Yii

for 1 < i < n. The matrix Y, is postive definite if and only if det(Y;)>0for1 <i<n.

PROOF. Assume that det(Y;) < 0 for some 1 < i < n. As det(Y;) is the product of the eigenvalues of

the Y; then one of the eigenvalues of Y; is nonpositive. Let A be this eigenvalue and x # (0,...,0)

be the associated eigenvector. Then

=]
: Y1
Zg .
0 .
: Yn1
L 0

Yin . 1 yn

Ynn : zi Yo ... Yii Zi

Lo

=Mz2+...,23)

<o.

Thus, if Y,, is positive definite then det(Y;) >0for1<i<n.
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Conversely, assume that det(Y;) > 0 for 1 < i < n. The proof will be by induction on n. If
n =1 then Y; = [y11] is a matrix with 0 < y;;. It is clear in this case that Y, is positive definite.

Assume that 1 < n and the proposition is true for ng < n. Observe for 1 < i <n,

) [1 ya1i/yu ... vi/yn
i Y 0 1 .. 0
woeowl L&
" Y11 0 0 1 ya/yu ... via/yn

0 wye—wynya/vin ... y2ai—yava/val |o 1 (]

L0 w2 —waya/yu ... i —yaya/yn d LO 0 o 1

Define

Vo2 — yayn/yn ... Y2i — y2a¥i/yn

Zi1 = : :

Vi —yaya/yn ... i — ¥avi/yua

As yiidet(Zi-1) = det(Y;) then det(Z;_,) = det(Y:)/y11. Thus det(Z;_;) > 0Ofori—-1=1,...,n-1.

By induction, the matrix

Y2 —ynya/yin ... Yan — Y219n1/y11

Zn1 = : :
Yn2 = Ymi¥21/¥11 --. Yii — Ymi¥n1/y11

is positive definite. Thus

n n
ZZ(!IU = yayj1/yn)ziz; >0

=2 j=2
for (z2,...,za) # (0,...,0) and
211 [vir oo win] oy L 3 yZl{yll “es ynl({yll
Ty Yni ... Ynn] Lz z 0 0 1
Y 0 ves 0
0 y2—ynyn/vin ... Y2a — yu¥n1/yn
0 yn2=yni¥21/¥11 .. Ynn — Yn1¥n1/yn1
1 ya/yu ... va/yn -
0 1 ces 0
o o0 ... 1 i
n 2 n n
=y (1'1 + Zyu/ynxi) + D) (wij - vayj)ziz;
i=2 i=2 j=2
>0
for (z1,...,2,) #(0,...,0). Thus Y, is positive definite. [ |



§4. The pseudo-gradient vector fleld £ = X o ¢ with X an invertible matrix.

If { is a pseudo-gradient vector field of the form & = X o { where X is an invertible matrix then
X-!o¢§ is a gradient vector field. Thus, a pseudo-gradient vector field of the form § = X o(, X
invertible, has an invertible matrix Y such that Y o § is a gradient vector field. Conversely, if there
does not exist an invertible matrix Y such that Y o £ is a gradient vector field then ¢ cannot be
decomposed as £ = X o with X an invertible matrix and ¢ a gradient vector field. It is immediate
that if such a matrix Y exists then £ = Y-1 0o (Y 0¢§) is a valid decomposition of the desired form.

Let the vector field £ be given by

1 ay bu ver bin 2 m aj1 ﬂjl ‘ Iy
glif=]:|+]: SRR N I B N V1
Tn Qp bar ... ban In i=1 Qjn ﬁjn Tn

then an algorithm to determine the existence of invertible matrices Y with Yo ¢ a gradient vector
field is given by the following sequence of steps:

Step 1: Let S = {w{,...,wJ } where the vectors {w},..., wg } form a basis for

biu ... bin
Pg : : .
bar ... ban

Step 2: For i=1 to m repeat the steps 2.1 through to 2.3.

Step 2.1: Let T = {vj,..., v} .} where the vectors {vi,..., v}, } form a basis for
a1fBin ... aj1fBja

Pg : :
ajnBj1 ... ajnBia

Step 2.2: Let R = {wj,..., w} } where the vectors {wi,..., w,} form a basis for span(S) N
span(T).

Step 2.3: Let S = R.

Step 3: Form the matrix

Im
Y(z1,...024,) = Zx.-w}"

i=1

and let f(z1,...,,,) be the polynomial given by
f(z1,. . 2q,) = detY(zy,..., z4,.).

Step 4: Determine if f(z,,...,z,, ) is identically the zero function. If it is then go to step 5 else
choose values for zy,...,z,, such that f(zy,..., Zg.) # 0 and go to step 6.

Step 5: In this case, all matrices Y such that Yo £ is a gradient vector field are non-invertible.
Thus, there do not exist invertible matrices Y such that Yo¢ is a gradient vector field. The vector

field £ cannot be written in the form £ = X o where X is invertible and ¢ is a gradient vector field.

9



Step 6: In this case, there exists a set of values zy, ..., x4, such that the matrix
Y(z1,..002q,) = Zz;w}"
=1

is invertible and Y o§ is a gradient vector field. Thus £ can be written in the form € = Y-1o (Yo8)
with Y~! invertible and Y o £ a gradient vector field.

ExampLE 4.1. (Figure 1.) This example will demonstrate a case where the desired decomposition
does not exist. Let the vector field be given by
t
1] _ 01 Z1 0 1 Z1 -
fal=[o ol (=] RG] (2] -

¢
1 0 T1
L] |B] (]
Step 1: By lemma[3] 3.11, it is required to solve for X where

i 212 | |0 1] _ [0 Of [z 22
21 T2 [0 O] T |1 0] |zi2 z22]°

This means solving the set of linear equations given by

0=0
1 =0

0=z,
T21 = I21

which is the same as finding the kernel of the matrix given by

0 0 0 01
1 000
-1 000
0 0 0 0J
A basis for S is given by the vectors
0 0 07
1 0 0
o1'(11']o0
0 0 1]

Step 2: Since m = 2 then steps 2.1 to 2.3 need only be used twice.
Step 2.1: By lemmal[3] 3.11, it is required to solve for X where

Tiy 22| (0 0 _ [0 1][zy 2z
Z21 T22 1 0 - 0 0 T2 ITo2 )

This means solving the set of linear equations given by

Ty = T)2
0=u2z;

z22 =0
0=0

10



which is the same as finding the kernel of the matrix given by

0 00 O
0 0 0 -1
000 1
0 00 O
A basis for the T is given by the vectors
1 0 0
0 1 0
0]'10]"(1
0 0 0

Step 2.2: By lemma(3] 3.12, it is needed to find the kernel of the matrix given by

000100
100010
010001
0 01000
which is the span of the vectors

-17 ( 0

0 -1

0 0

0’| o ’

1 0

oJ L1

Thus, R is given by the span of the vectors

07 ro1

-1 0

0|'|-1 )

01 Lo

Step 2.3: Let S be the span of the vectors

0 0

-1 0

0'|-1

0 0

Step 2.1: By lemma[3] 3.11, it is required to solve for X where

2l -1 e 2
To1 T2 {0 1 1 1) |z12 z22)°
This means solving the set of linear equations given by
0=0
Ti+z12=0
0==zy; 4+ 12
Z21+ 222 = x21 + 22

11



which is the same as finding the kernel of the matrix given by

0 0 0 07
1 1 0 o0
-1 -1 00
0 o0 0 ol
A basis for the T is given by the vectors

-1 0 07
1 0 0
o |'|1]|’|o
0 0 1]

Step 2.2: By lemmal[3] 3.12, it is needed to find the kernel of the matrix given by

0 0 -1 00
-1 0 1 00
0 -1 0 10
0 0 0 01
which is the span of the vector

0

1

0

1

0

Thus, R is given by the span of the vector

Step 2.3: Let S be the span of the vector

oleo
———
——— — .

Step 3: The matrix Y(z,) is given by

Y(z1) =21 [_01 g]

and the function f(z,) is given by f(z1) = det(Y(z;)) = 0.
Step 4: It is clear that f(z;) is identically the zero function.
Step 5: It can be concluded that £ may not be decomposed as the composition of an invertible

matrix X and a gradient vector field .

ExampLE 4.2. (Figure 2.) This example will demonstrate a case where a desired decomposition

BIEE AR

12

exists. Let the vector field be given by

[2l=[ ][]+




Step 1: By lemma[3] 3.11, it is required to solve for X where

zyp 2120 1| _{0 1| |zn
21 X322 1 0 - 1 0 Z12

This means solving the set of linear equations given by

T12 = 12
Z11 = Z22
T2 =211
T21 =22

which is the same as finding the kernel of the matrix given by

0 00 O
1 0 0 -1
-1 00 1
0 00 O
A basis for S is given by the vectors
1 0 0
0 1 0
o[']0]"|1
1 0 0

T21
T22

Step 2: Since m = 2 then steps 2.1 to 2.3 need only be used twice.

Step 2.1: By lemma[3] 3.11, it is required to solve for X where

Z11 232 10 _ 1 0 T11
T21 IT22 0 0 - 0 0 I12

This means solving the set of linear equations given by

L1 =T
0=2zp

221 =0
0=0

which is the same as finding the kernel of the matrix given by

00 0 o
0 0 -1 0
00 1 o0
00 0 O
A basis for the T is given by the vectors
1 0 0
0 1 0
olj’{of’']o
0 0 1

T21
T22

|-

|



Step 2.2: By lemmal[3] 3.12, it is needed to find the kernel of the matrix given by

1 00100
010010
0 010000
100001

which is the span of the vectors

(=2 I~ I =]
- O = OO0

0 -1
-1} " J ]
Thus, R is given by the span of the vectors
0 -1
-1 0
0|’ O )
0 -1

Step 2.3: Let S be the span of the vectors

0 -1
-1 0
o't o
0 -1

Step 2.1: By lemma(3] 3.11, it is required to solve for X where

= e <005 96 2
Tz ®2) (0 1 -1 1j|z12 z22]°
This means solving the set of linear equations given by
0=0
=z +z12=0
0=—z11+ 212
—T21 + T2 = —T21 + T22

which is the same as finding the kernel of the matrix given by

6 0 00
-1 1 00
1 -1 00
0 0 00
A basis for the T is given by the vectors
1 0 0
1 0 0
ofj'|1]']o0
0 0 1



Step 2.2: By lemma[3] 3.12, it is needed to find the kernel of the matrix given by

0 -1 100
-1 0 1 00
0 0 0 1 0
0 -1 0 0 1
which is the span of the vector

1

1

1

0

1

Thus, R is given by the span of the vector

-1
-1

-1
Step 2.3: Let S be the span of the vector

-1
-1

Step 3: The matrix Y(z,) is given by
-1 -1
Y(z1) = 21 [ . _1]

and the function f(z,) is given by f(z,) = det(Y(z,;)) = z3.

Step 4: It is clear that f(z,) is not identically the zero function. By proposition 3.2, a value of

z) = 1 satisfies f(z,) # 0.

Step 6: It can be concluded that £ may be decomposed as the composition of an invertible matrix

X and a gradient vector field ¢ as
{13 23

x2 0 -1 0 -1

B [l [T (2]

0] |z 1] [z

J+ (3] +[4]

).
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§5. The pseudo-gradient vector field £ = X o ¢ with X an invertible symmetric matrix.

If § is a pseudo-gradient vector field of the form £ = Xo ¢ where X is an invertible symmetric matrix
then X~!o¢ is a gradient vector field, Thus, a pseudo-gradient vector field of the form £ = Xo(, X
invertible symmetric, has an invertible symmetric matrix Y such that Yo{ is a gradient vector field.
Conversely, if there does not exist an invertible symmetric matrix Y such that Y o € is a gradient
vector field then £ cannot be decomposed as £ = X o ¢ with X an invertible symmetric matrix and
¢ a gradient vector field. It is immediate that if such a matrix Y exists then E=Y1o(Yo&)is
a valid decomposition of the desired form. However, if there does not exist an invertible symmetric
matrix Y such that Y o £ is a gradient vector field there may still exist invertible matrices Y with
Y o ¢ a gradient vector field.
Let the vector field £ be given by

t
z) a) bin ... bia z m | Y1 Bi1 z
el if=:|+]: S R RN I | N N
T Qgq bnl oo bnn In i=1 QAjn ﬂjn Tn

then an algorithm to determine the existence of invertible symmetric matrices Y with Yo¢ gradient
vector fields is given by the following sequence of steps:

Step 1: Let S = {w{,..., w0 } where the vectors {w}, ..., wg } form a basis for

bll v bln
Pg : :

bul toe bnn

Step 2: For i=1 to m repeat the steps 2.1 through to 2.3.

Step 2.1: Let T = {vj, ..., v}.} where the vectors {vi,..., v}.} form a basis for

ai1Bir ... @j1fBjn
Pg :

ajnﬂjl ‘e anﬂjﬂ

Step 2.2: Let R = {w{,..., wi } where the vectors {wi,..., w,} form a basis for span(S) N
span(T).
Step 2.3: Let S = R.
Step 3: From the equation
qzmxi(W.’" —(w"))=0
=1
determine a set of independent variables z1,...,Z; and dependent variables zj4,,.. .y Zq,. Form

the matrix

qm
Y(21eo0 i) = Y ziwl

i=1

16



and let f(z;,...,z%) be the polynomial given by
f(z1y...ozx) = detY(zyy ..., 2k).

Step 4: Determine if f(21,...,2%) is identically the zero function. If it is then go to step 5 else
choose values for z,, ...,z such that f(z1,...,z4) # 0 and go to step 6.

Step 5: In this case, all symmetric matrices Y such that Y o ¢ is a gradient vector field are non-
invertible. Thus, there do not exist invertible symmetric matrices Y such that Yo is a gradient
vector field. The vector field £ cannot be written in the form § = X o ¢ where X is invertible
symmetric and ¢ is a gradient vector field.

Step 6: In this case, there exists a set of values zy,...,z; such that the matrix
Im
Y(zlﬁ oo °1xq,,.) = inw}"
=1

is invertible symmetric and Y o £ is a gradient vector field. Thus § can be written in the form

E=Y"1o(Yo&) with Y~! invertible symmetric and Y o ¢ a gradient vector field.

ExampLE 5.1. (Figure 2.) This example will demonstrate a case where a vector field § can be

decomposed as § = X o( where the matrix X cannot be invertible symmetric but may be invertible.
Let the vector field be given by

[al=0 IR )+ R (2] -

This is the same vector field as in example 4.2. All the steps are identical until the end of step 2.3,

at which point a basis for S is given by

-1
-1
0
-1

A (3213 2) -1 9

Step 3: The equation

determines that

from which z, = 0. Thus,
0
Y(o1) = [ 0 g]
and f(z;) = det(Y(z1)) = 0.
Step 4: It is clear that f(z,) is identically the zero function.

17



Step 5: It can be concluded that & may not be decomposed as the composition of an invertible

symmetric matrix X and a gradient vector field ¢.

ExaMPLE 5.2. (Figure 3.) This example will demonstrate a case where a vector field € can be

decomposed as £ = X o ¢ where the matrix X is invertible symmetric. Let the vector field be given

7 f2]=01+ 0 )+ B [z

Step 1: By lemma(3] 3.11, it is required to solve for X where

Z11 212 1 2 — 1 3 Tl Z21
Z21 T2 3 11712 1 T2 T2’

This means solving the set of linear equations given by

z11 +3z12 = 211 + 3212
2zy1 + z12 = 221 + 3222
z21+ 3z22 = 2211 + 212
2221 + 222 = 2221 + 22

which is the same as finding the kernel of the matrix given by

6 0 0 o0
2 1 -1 -3
-2 -1 1 3
0 0 0 o0
A basis for S is given by the vectors
1 1 3
-1 0 0
0 |'f21']|o
1 0 2

Step 2: Since m = 1 then steps 2.1 to 2.3 need only be used once.
Step 2.1: By lemma(3] 3.11, it is required to solve for X where

Z11 ZT12 5 10 - 5 5 11 T2
ZT21 X222 5 10|~ 10 10 T12 T2 '
This means solving the set of linear equations given by

5z11 + 5z12 = 521y + 5212
10211 + 10212 = 5z2) + 5222
S5zr91 + S5r20 = 1023, + 10242

10321 + 10322 = 102321 + 10z22
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which is the same as finding the kernel of the matrix given by

0 0 0 o
10 10 -5 -5
-10 =10 5 5
0 0 0 o0

A basis for the T is given by the vectors

1 1 1
-1 0 0
0 |'|2]'|0
0 0 2

Step 2.2: By lemmal[3] 3.12, it is needed to find the kernel of the matrix given by

1 13 1 11
-2 00 -1 00
0 20 0 20
0 02 0 0 2
which is the span of the vectors
D—2- -~ 0 -
0 -1
-1 0
4 |']0
0 1
L1J Lo
Thus, R is given by the span of the vectors
=57 [—11
4 0
0|'|-2
2] Lo
Step 2.3: Let S be the span of the vectors
-5 -1
4 0
0 |'|-2
-2 ]

Step 3: The equation

a([2 4[5 ) e (2 012 )=

determines that

from which z2 = —2z,. Thus,

o
[\
—
+
]
©
—
N
o

Y(z1) = 2, [



and f(z1) = det(Y(z1)) = —10z3.

Step 4: It is clear that f(z;) is not identically the zero function. By proposition 3.2, a value of
z) = 1 satisfies f(z;) # 0.

Step 6: It can be concluded that £ may be decomposed as the composition of an invertible symmetric

matrix X and a gradient vector field ¢ as
z -3 471" ([-3 4
(2]=[2 5 ([3 &)
0.2 0.4 7 9 -2][z 51 [11'[=
- (23 wsle (T[22 0[] [81|02] [z

§6. The pseudo-gradient vector field £ = X 0¢, X a symmetric positive definite matrix.

If { is a pseudo-gradient vector field of the form £ = X o ¢ where X is a symmetric positive definite
matrix then X~1o0 £ is a gradient vector field. Thus, a pseudo-gradient vector field of the form
§ = Xo(, X symmetric positive definite, has a symmetric positive definite matrix Y such that Y o
is a gradient vector field. Conversely, if there does not exist a symmetric positive definite matrix
Y such that Y o £ is a gradient vector field then £ cannot be decomposed as £ = X o { with X
a symmetric positive definite matrix and ¢ a gradient vector field. It is immediate that if such a
matrix Y exists then £ = Y~1 0 (Y 0 ) is a valid decomposition of the desired form. However, if
there does not exist a symmetric positive definite matrix Y such that Yo€isa gradient vector field

there may still exist invertible symmetric matrices Y with Y o £ a gradient vector field.

Theorem 6.1. Let £ be a vector field of the form

z1 ) b1 ... bin F31 m | @51 ﬁjl ¢ xy
Stil=1:1+]": : N s : : 3 Bl /1 0
zn a" bnl ces bﬂﬂ 2,. j=1 ajn ﬁjn zn

There exists a symmetric positive definite matrix X such that (X o €)(x) is a gradient vector field if

bi1 ... bin m aj1Bi1 ... aj1Bja
XePg|| : 110N ee : : ,

and only if

bar ... ban j=1 ajm@jl .o ajnﬂjn
X is symmetric and fori =1,...,n,
i1 ... Ty
0<det| : .
Tit ... 2y
ProoF. Immediate from theorem(3] 3.13 and proposition 3.5. [ |
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Let the vector field £ be given by

z1 ay bn e bln 21 m aj1 ﬂjl ‘ z1
¢ ;]=[s]+ P ] z}+2 AR ERE
Tn Qn bu1 ... ban Tn j=1 Qjn ﬁjn ZTn

then an algorithm to determine the existence of symmetric positive definite matrices Y with Y o £
gradient vector fields is given by the following sequence of steps:

Step 1: Let S = {w9,..., w) } where the vectors {w}, ..., wQ } form a basis for

( bir ... bia )
Pgl|: S
bar ... ban
Step 2: For i=1 to m repeat the steps 2.1 through to 2.3.
Step 2.1: Let T= {v{,..., v} } where the vectors {vi,..., v} } form a basis for
aj1/3j1 ‘e O’jxﬂju
Pg : :
ajnfBjin ... jnfin
Step 2.2: Let R = {wj,..., w} } where the vectors {wi,.. .y w4} form a basis for span(S) N
span(T).
Step 2.3: Let S= R.
Step 3: From the equation

f: zi(wi® = (wl*)) =0

i=1
determine a set of independent variables z;,...,z; and dependent variables zi,,,..., z4,.. Form

the matrix

qm
Yo(21,..0 k) = ) 2w
i=1

Define the matrices

Y,.(ml,...,a:;.)n Y"(zl,...,tk)u
Yi(z1y...,z8) = :

Ya(T1s.oorzp)iz ... Ya(z1,.. P TE)ii

and let fi(21,...,2+) be the polynomial given by

f.-(a:l, cey TE) = detY.'(.‘L'l, ceey x;,)

for1<i<n.

Step 4: Determine if there exist values zy,..., ) such that the following set of inequalities hold

simultaneously,
filzyy .o 2i) >0

falzyy.ooyzi) >0.
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If such values do not exist then go to step 5 else go to step 6.

Step 5: In this case, all symmetric matrices Y such that Y o § is a gradient vector field are either
non-invertible or invertible and not positive definite. Thus, there do not exist symmetric positive
definite matrices Y such that Y o¢ ié a gradient vector field. The vector field £ cannot be written
in the form £ = X o { where X is symmetric positive definite and ¢ is a gradient vector field.

Step 6: In this case, there exists a set of values zy, ...,z such that the matrix

qm
Ya(z1,.. 01 2q,) = Z ziwl
i=1
is symmetric positive definite and Y, o £ is a gradient vector field. Thus § can be written in the

form £ = Y71 0 (Y, 0 ) with Y;! symmetric positive definite and Yoo £ a gradient vector field.

ExampLE 6.1. (Figure 3.) This example will demonstrate a case where a vector field & can be

decomposed as £ = X o { where the matrix X cannot be symmetric positive definite but may be
invertible symmetric. Let the vector field be given by

lnl=Le s R BlET 2]

This is the same vector field as in example 5.2. All the steps are identical until the end of step 2.3,

at which point a basis for S is given by

~57 -1
4 0
0 |'|-2

-2 0

Step 3: The equation
a2 4]1-[=5 41\ s ([t 01_[-2 0])_]o o
1Vlo -2 0 -2 2\l-2 o -2 0/ /7 ]0o o0

determines that
2|0 4]ia [0 210 o
11-4 o -2 0|T |0 o
from which 22 = —2z,. Thus,
-5 4 -1 0
Y2(21)=z1[0 _2]+=L'2 [__2 0]
_.[-3 4
Tl 4 -2
Yi(z1) = z;[-3]

and
fa(21) = det(Y3(z1)) = —1022

fl(zl) = det(Y;(zl)) = —3z,.
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Step 4: It is clear that the inequalities
-10z2 >0

~3z; >0
cannot be satisfied simultaneously.

Step 5: It can be concluded that £ may not be decomposed as the composition of a symmetric

positive definite matrix X and a gradient vector field .

ExaMPLE 6.2. (Figure 4.) This example will demonstrate a case where a vector field £ can be

decomposed as § = X o { where the matrix X is symmetric positive definite. Let the vector field be

[al= BB 2]+

Step 1: A basis for S is given by the vectors

given by

1 07 ro0 0
0 1 0 0
o|'fo}’f1i")0

0 0J Lo 1
Step 2: Since m =1 then steps 2.1 to 2.3 need only be used once.

Step 2.1: By lemma(3] 3.11, it is required to solve for X where
e IO R el
2o T22| |7 14 6 14| |z12 x22]°
This means solving the set of linear equations given by
3z +7z12 =321 + Tzy2
611 + 14212 = 3291 + T2
3x21 + Txog = 6z1; + 142,

6x2; + 149 = 6221 + 14z,
which is the same as finding the kernel of the matrix given by

0 0 0 o0
6 14 -3 -7
-6 -14 3 7
0 0 0 0

A basis for the T is given by the vectors

-7
3
0 b
0

Step 2.2: By lemma(3] 3.12, it is needed to find the kernel of the matrix given by
1000 -7 17

1)

QN O =
DO O =

0100 3 00
0010 0 20
0001 0 06



which is the span of the vectors

(r' 71 r-11 r-71)
-3 0 0
0 -2 0
s101,]0],]|-6])
1 0 0
0 1 0
\LO0J LOJ L1JJ
Thus, R is given by the span of the vectors
' (=71 111 7]
3 0 0
0 (’f2]']0
L 0J Lol Lel
Step 2.3: Let S be the span of the vectors
(=77 17 [77
3 0 0
o}|'[2]']|o0
Lo ) Lol Le.

(T e 8 ) 8 )

determines that
a0 3] [0 -2]_Jo o
13 o 22 o[ o o

from which z; = 3/2z;. Thus,

Yg(zl,23)=xl[—07 g]ﬂz[l o]+z3[7 o]

2 0 0 6
_ —-lﬁl.tl+7.’l:3 3z,
- 3z, 6z3

11
Yi(z1,23) = [—72:1 + 71:3]

and
fz(zl) = det(Yg(:L‘l)) = —9.‘8% + 421!:23 —33z123

fi(zy) = det(Yi(21)) = —%zl + Tz3.
Step 4: It is clear that the inequalities
-9z% + 4223 — 332,23 > 0
—12—1:::1 +723>0
can be satisfied simultaneously by (z;, z3) = (0,1).
Step 6: It can be concluded that £ may be decomposed as the composition of a symmetric positive

definite matrix X and a gradient vector field ¢ as
-1
1| _ 0 70
elz]=05 o] = ([5 &]+¢)
_ 0 7 21
=[5 21 ([2]+ (2]
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§7. The pseudo-gradient vector field § = X 0 (, X a diagonal positive definite matrix.

If £ is a pseudo-gradient vector field of the form £ = X o { where X is a diagonal positive definite
matrix then X~! o ¢ is a gradient vector field. Thus, a pseudo-gradient vector field of the form
§ = X o(, X diagonal positive deﬁnité, has a diagonal positive definite matrix Y such that Yo ¢ is
a gradient vector field. Conversely, if there does not exist a diagonal positive definite matrix Y such
that Y o £ is a gradient vector field then ¢ cannot be decomposed as £ = X o ¢ with X a diagonal
positive definite matrix and ¢ a gradient vector field. It is immediate that if such a matrix Y exists
then £ = Y~1o(Y o) is a valid decomposition of the desired form. However, if there does not exist
a diagonal positive definite matrix Y such that Y o £ is a gradient vector field there may still exist

symmetric positive definite matrices Y with Y o £ a gradient vector field.

Definition 7.1. Define the set

a B d; diay B
C N I = l3reR> | L =2
Qn ﬁ" dﬂ dna" ﬁﬂ

Lemma 7.2. There exists vectors such that

ay B k ci1
Qn B f=1 Cin

Proor. It is required to solve the equations
diay =Af

dnan =\By.
If there exist a; = 0 with 8; # 0 then 0 = AS; from which A = 0 and the above equations reduce to

dloq =0

dya, =0.

Let e; denote the i-th coordinate vector. If Qiyy.or@i; # 0 and a4;,,,...,a4, =0 then

a) ) n
C e = z ti,ei, :ti, ER ).
Qn Bn k=j+1

If it happens that whenever o; = 0 that 3; = 0 then consider Qiyyeeor@i; #0045, 4,.00,a4, =0,

The equations reduce to
di,a;, =AG;,

di;ai; =A6;;.
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Thus

l

B

L+ 41
I
Qn

on

Definition 7.3. Define the set

b1
D|| :
bnl

bln ] )
ban

P

1

Lemma 7.4. There exists vectors such that

: D
B

PRroorF. It is required to solve the equations

1e. d.’b.‘j = djbj,' or,

b1y

D{| :
bnl
[ dib1y
dnbnl

F 0
b12

bln

—bln
0

0

dlbln

dnbnn

b2

0
_b2n

0

|

Bi. )
—e;,
a,',‘

[ d1b11

-dnbnl
[ d1bny

-dlbln

0 -
0

bn2

0 |

By linear algebra theory there are vectors such that

b1
D{| :
bul

)-8

Definition 7.5. Given d;,...,d, € R then

A(dl, ...,dn) =

E
t;

d 0
0 d
0 o

—bnl [
bnl

n
+ E tiei, : \t, €ER

k=j+1

dljl [dlbll dlbln} [dlbll
dn dnbnl oo d dnb”l

nbnn

dlbln 1

dnbnn -
dnbnl T

dnénn o

HE)

}.

dlbln

dnbnn

J'



Theorem 7.6. Let £ be a vector field of the form

z i bun ... b Ty m | &1 ﬂjl ¢ T
o A e R s R B B : : IR
Ty [+ 7 bar ... bun In =1 Qjn ﬁ)l‘l Zn

There exists a diagonal positive definite matrix A(dy,...,ds) such that (A(dy,...,dn)0&)(x) isa
gradient vector field if and only if

b1 ... bin m aj1 Bi1
A(dy,...,ds) €D : : N o) B I ,
i=1

bnl N b”" Qjn ﬂ]n
and0<d; fori=1,...,n.
PRoOF. Assume that there exists a matrix A(d), ..., d,) such that (A(dy, ..., ds)0€)(x) is a gradient

vector field. As in the proof of theorem(3] 3.2, it is necessary and sufficient that

[dibyy ... dibia ]

_d"bnl sae dnbnn-

and -
[ diajy Bi1

S Il B
| dnaijn Bin |
for (A(d1,...,da) 0 £)(x) to be a gradient vector field. Thus, by lemmas 7.2 and 7.4,

b1y ... bia m «jy ﬂjl
A(dy,...,ds)eD [ | : SfnfNet] s ||
ji=1

bnl vee bvm Ajn ﬂjn

The condition that 0 < d; is necessary and sufficient for A(dy,...,ds) to be a diagonal positive

definite matrix. [ |

Let the vector field £ be given by
3 o1 bu . bln T m 73] le ‘ z)
§li=1]:|+]: SRR S N RV P
Zn Qn bar ... ban Tn =1 Qjn ﬂjn Tn
then an algorithm to determine the existence of diagonal positive definite matrices Y with Y o 13

gradient vector fields is given by the following sequence of steps:

Step 1: Let S = {w{,..., w{ } where the vectors {w?,..., w } form a basis for

bll cee bln
bni ... bun
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Step 2: For i=1 to m repeat the steps 2.1 through to 2.3.

Step 2.1: Let T = {v{,..., v} } where the vectors {vi,..., v}, } form a basis for

A ajy Bi1
cl|:|]:
Qja Bin

Step 2.2: Let R = {wj,..., wi,} where the vectors {wj,.. .y w$,} form a basis for span(S) N
span(T).

Step 2.3: Let S = R.
Step 3: Determine if there exist values zy,.. .1 &q,, such that the following set of inequalities hold

simultaneously,
si(Wwih +... 4+ 24, (W )1 >0

21 (W')n + ..+ 2g, (W3 )n >O0.
If such values do not exist then go to step 4 else go to step 5.
Step 4: In this case, all diagonal matrices Y such that Y o ¢ is a gradient vector field are either
non-invertible or invertible and not positive definite. Thus, there do not exist diagonal positive
definite matrices Y such that Y o £ is a gradient vector field. The vector field £ cannot be written
in the form £ = X o ¢ where X is diagonal positive definite and ¢ is a gradient vector field.

Step 5: In this case, there exists a set of values zy,...,z such that the matrix

AWiy..oyyn)

with

qm
yi =) zi(wl);

i=1
is diagonal positive definite and A(yi,...,ys) o £ is a gradient vector field. Thus & can be written
in the form § = A(y1,..,¥n) "1 0 (A(y1,.. .1 Yn) 0 ) With A(y1,...,yn)"? diagonal positive definite
and A(y1,...,yn) o € a gradient vector field.

Note that if there exists a solution y,..., Ygm tO

z;(w{")l +...4 zqm(w;"'n)l =€ >0

21 (Wl)n + ...+ :v.,m(w;"'n),, =€, >0

then there exists a solution ¥, ..., Yg,. to

zl(wf')l + ...+ zq, (wg:..)l 21

2i(Wn + .o+ 2g, (WH )a 21
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by scaling the original values y, ..., y,, with a sufficiently large constant. Decompose the variables
TiyeeyTgn 88 i = 2} —2? for i = 1,...,qm. It then follows that y} = Vv Ygm = Yguo ¥ =

0,... ,ygm = 0 is an optimal solution to the linear programming problem of
n
minimise Z vi
i=1

subject to
(WP = 23 (WP + ...+ :c;m(w;"‘n h - zgm(w",',‘")l +v—uy =1

(WP — 22 (WP)a + ... + z;m(w,';"n),. - 3’3... (W )14+ vn —un =1
zl,z3,..., z;m, zgm >0
UlyeeeyUpyV1y...,0q 20.
Conversely, given an optimal solution to the above linear programming problem, if 0 < u; — v; for

i=1,...,n then z; = z! — 2? is a solution to the original problem
o(wi'h +...+ Tgn(wWan)1 >0
2y (W) + ...+ 2q,, (Waw )a >0.

ExampLE 7.1. (Figure 4.) This example will demonstrate a case where a vector field £ can be

decomposed as £ = X o { where the matrix X is diagonal positive definite. Let the vector field be

o[a]- Bl FIET 2]+

Step 1: A basis for S is given by the vectors

] B1H

Step 2: Since m =1 then steps 2.1 to 2.3 need only be used once.

given by

Step 2.1: By lemma 7.2 a basis for the T is given by the vector

{H)g

Step 2.2: By lemma(3] 3.12, it is needed to find the kernel of the matrix given by

s 1]

B (LA T

which is the span of the vector



Thus, R is given by the span of the vector

il

Step 2.3: Let S be the span of the vector

Step 3: The equations

1
531>0

2
71’1>0

can be satisfied simultaneously with z; = 21.
Step 5: It can be concluded that £ may be decomposed as the composition of a diagonal positive

definite matrix A(7,6) and a gradient vector field ¢ as
-1
o] _[7 0 70
[2l=[0 & (2 29

=[5 41 (Gl (BB 2]+

)
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Figure captions.

Figure 1. This is the phase portrait corresponding to the vector field given by

[al=o alfz]+ BIJRT ] -+ BT[]+

Figure 2. This is the phase portrait corresponding to the vector field given by

[2]=B I BIRT Rl R 2]

Figure 3. This is the phase portrait corresponding to the vector field given by

[al=Ll« s Mzl ClET (2]

Figure 4. This is the phase portrait corresponding to the vector field given by

- BB T
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